prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore.common.tensor import Tensor from mindspore.ops import operations as P @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_nobroadcast(): context.set_context(mode=context.GRAPH_MODE, device_target='GPU') np.random.seed(42) x1_np = np.random.rand(10, 20).astype(np.float32) x2_np = np.random.rand(10, 20).astype(np.float32) x1_np_int32 = np.random.randint(0, 100, (10, 20)).astype(np.int32) x2_np_int32 = np.random.randint(0, 100, (10, 20)).astype(np.int32) output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np)) output_np = np.minimum(x1_np, x2_np) assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np)) output_np = np.maximum(x1_np, x2_np) assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np > x2_np assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Greater()(Tensor(x1_np_int32), Tensor(x2_np_int32)) output_np = x1_np_int32 > x2_np_int32 assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np < x2_np assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Less()(Tensor(x1_np_int32), Tensor(x2_np_int32)) output_np = x1_np_int32 < x2_np_int32 assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np)) output_np = np.power(x1_np, x2_np) assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np / x2_np assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np * x2_np assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np - x2_np assert np.allclose(output_ms.asnumpy(), output_np) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_nobroadcast_fp16(): context.set_context(mode=context.GRAPH_MODE, device_target='GPU') np.random.seed(42) x1_np = np.random.rand(10, 20).astype(np.float16) x2_np = np.random.rand(10, 20).astype(np.float16) output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np)) output_np = np.minimum(x1_np, x2_np) assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np)) output_np = np.maximum(x1_np, x2_np) assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np > x2_np assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np < x2_np assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np)) output_np = np.power(x1_np, x2_np) assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np / x2_np assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np * x2_np assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np - x2_np assert np.allclose(output_ms.asnumpy(), output_np) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_broadcast(): context.set_context(mode=context.GRAPH_MODE, device_target='GPU') np.random.seed(42) x1_np = np.random.rand(3, 1, 5, 1).astype(np.float32) x2_np = np.random.rand(1, 4, 1, 6).astype(np.float32) x1_np_int32 = np.random.randint(0, 100, (3, 1, 5, 1)).astype(np.int32) x2_np_int32 = np.random.randint(0, 100, (3, 1, 5, 1)).astype(np.int32) output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np)) output_np =
np.minimum(x1_np, x2_np)
numpy.minimum
from __future__ import absolute_import, print_function, division, unicode_literals import unittest import os import numpy as np from xcessiv import functions, exceptions from sklearn.datasets import load_digits from sklearn.ensemble import RandomForestClassifier from sklearn.decomposition import PCA from sklearn.pipeline import Pipeline import pickle filepath = os.path.join(os.path.dirname(__file__), 'extractmaindataset.py') class TestHashFile(unittest.TestCase): def test_hash_file(self): assert functions.hash_file(filepath) == "1c67f8f573b69a9da2f986e1006ff63a" \ "10fbb70298af45d0293e490b65b34edc" assert functions.hash_file(filepath) == functions.hash_file(filepath, 2) class TestImportObjectFromPath(unittest.TestCase): def test_import_object_from_path(self): returned_object = functions.import_object_from_path(filepath, "extract_main_dataset") assert callable(returned_object) pickle.loads(pickle.dumps(returned_object)) # make sure pickle works class TestImportObjectFromStringCode(unittest.TestCase): def test_import_object_from_string_code(self): with open(filepath) as f: returned_object = functions.\ import_object_from_string_code(f.read(), "extract_main_dataset") assert callable(returned_object) pickle.loads(pickle.dumps(returned_object)) # make sure pickle works class TestImportStringCodeAsModule(unittest.TestCase): def test_import_string_code_as_module(self): with open(filepath) as f: module = functions.\ import_string_code_as_module(f.read()) assert callable(module.extract_main_dataset) assert module.dummy_variable == 2 pickle.loads(pickle.dumps(module.extract_main_dataset)) # make sure pickle works class TestVerifyDataset(unittest.TestCase): def test_correct_dataset(self): X, y = load_digits(return_X_y=True) verification_dict = functions.verify_dataset(X, y) assert verification_dict['features_shape'] == (1797,64) assert verification_dict['labels_shape'] == (1797,) def test_invalid_assertions(self): self.assertRaises(exceptions.UserError, functions.verify_dataset, [[1, 2, 2], [2, 3, 5]], [1, 2, 3]) self.assertRaises(exceptions.UserError, functions.verify_dataset, [[1, 2, 2], [2, 3, 5]], [[1, 2, 3]]) self.assertRaises(exceptions.UserError, functions.verify_dataset, [[[1, 2, 2]], [[2, 3, 5]]], [1, 2, 3]) class TestIsValidJSON(unittest.TestCase): def test_is_valid_json(self): assert functions.is_valid_json({'x': ['i am serializable', 0.1]}) assert not functions.is_valid_json({'x': RandomForestClassifier()}) class TestMakeSerializable(unittest.TestCase): def test_make_serializable(self): assert functions.is_valid_json({'x': ['i am serializable', 0.1]}) assert not functions.is_valid_json({'x': RandomForestClassifier()}) assert functions.make_serializable( { 'x': ['i am serializable', 0.1], 'y': RandomForestClassifier() } ) == {'x': ['i am serializable', 0.1]} class GetSampleDataset(unittest.TestCase): def setUp(self): self.dataset_properties = { 'type': 'multiclass', } def test_classification_dataset(self): X, y, split = functions.get_sample_dataset(self.dataset_properties) assert X.shape == (100, 20) assert y.shape == (100,) assert len(np.unique(y)) == 2 self.dataset_properties['n_classes'] = 4 self.dataset_properties['n_informative'] = 18 X, y, split = functions.get_sample_dataset(self.dataset_properties) assert X.shape == (100, 20) assert y.shape == (100,) assert len(np.unique(y)) == 4 self.dataset_properties['n_features'] = 100 X, y, split = functions.get_sample_dataset(self.dataset_properties) assert X.shape == (100, 100) assert y.shape == (100,) assert len(np.unique(y)) == 4 self.dataset_properties['n_samples'] = 24 X, y, split = functions.get_sample_dataset(self.dataset_properties) assert X.shape == (24, 100) assert y.shape == (24,) assert len(np.unique(y)) == 4 def test_iris_dataset(self): X, y, split = functions.get_sample_dataset({'type': 'iris'}) assert X.shape == (150, 4) assert y.shape == (150,) def test_mnist_dataset(self): X, y, split = functions.get_sample_dataset({'type': 'mnist'}) assert X.shape == (1797, 64) assert y.shape == (1797,) def test_breast_cancer_dataset(self): X, y, split = functions.get_sample_dataset({'type': 'breast_cancer'}) assert X.shape == (569, 30) assert y.shape == (569,) def test_boston_housing(self): X, y, split = functions.get_sample_dataset({'type': 'boston'}) assert X.shape == (506, 13) assert y.shape == (506,) def test_diabetes(self): X, y, split = functions.get_sample_dataset({'type': 'diabetes'}) assert X.shape == (442, 10) assert y.shape == (442,) class TestVerifyEstimatorClass(unittest.TestCase): def setUp(self): self.source = ''.join([ "from sklearn.metrics import accuracy_score\n", "import numpy as np\n", "def metric_generator(y_true, y_probas):\n", " argmax = np.argmax(y_probas, axis=1)\n", " return accuracy_score(y_true, argmax)" ]) self.wrong_source = "metric_generator = ''" self.dataset_properties = { 'type': 'multiclass', } def test_verify_estimator_class(self): np.random.seed(8) performance_dict, hyperparameters = functions.verify_estimator_class( RandomForestClassifier(), 'predict_proba', dict(Accuracy=self.source), self.dataset_properties ) assert round(performance_dict['Accuracy'], 3) == 0.8 assert hyperparameters == { 'warm_start': False, 'oob_score': False, 'n_jobs': 1, 'verbose': 0, 'max_leaf_nodes': None, 'bootstrap': True, 'min_samples_leaf': 1, 'n_estimators': 10, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'criterion': 'gini', 'random_state': None, 'min_impurity_split': None, 'min_impurity_decrease': 0.0, 'max_features': 'auto', 'max_depth': None, 'class_weight': None } def test_non_serializable_parameters(self): pipeline = Pipeline([('pca', PCA()), ('rf', RandomForestClassifier())]) performance_dict, hyperparameters = functions.verify_estimator_class( pipeline, 'predict_proba', dict(Accuracy=self.source), self.dataset_properties ) assert functions.is_valid_json(hyperparameters) def test_assertion_of_invalid_metric_generator(self):
np.random.seed(8)
numpy.random.seed
from __future__ import print_function, division import numpy as np import os import errno import tensorflow as tf from tabulate import tabulate from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.preprocessing import QuantileTransformer, RobustScaler from sklearn.preprocessing import FunctionTransformer import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import math def min_max_scale(X_train, X_valid, X_test): scaler = MinMaxScaler(feature_range=(0.0, 1.0)) scaler.fit(X_train) norm_train = scaler.transform(X_train) norm_valid = scaler.transform(X_valid) if X_valid is not None else None norm_test = scaler.transform(X_test) if X_test is not None else None return norm_train, norm_valid, norm_test def standard_scale(X_train, X_valid, X_test): scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_valid = scaler.transform(X_valid) if X_valid is not None else None X_test = scaler.transform(X_test) if X_test is not None else None return X_train, X_valid, X_test def interquartile_scale(X_train, X_valid, X_test): scaler = RobustScaler(quantile_range=(25.0, 75.0)) scaler.fit(X_train) X_train = scaler.transform(X_train) X_valid = scaler.transform(X_valid) if X_valid is not None else None X_test = scaler.transform(X_test) if X_test is not None else None return X_train, X_valid, X_test def quantile_transform(X_train, X_valid, X_test, columns): t = QuantileTransformer() t.fit(X_train[:, columns]) qX_train = t.transform(X_train[:, columns]) qX_valid = t.transform(X_valid[:, columns]) \ if X_valid is not None else None qX_test = t.transform(X_test[:, columns]) if X_test is not None else None if X_valid is not None: X_train[:, columns] = qX_train X_valid[:, columns] = qX_valid X_test[:, columns] = qX_test return X_train, X_valid, X_test else: return X_train def augment_quantiled(X_train, X_valid, X_test, columns): t = QuantileTransformer() t.fit(X_train[:, columns]) qX_train = t.transform(X_train[:, columns]) qX_valid = t.transform(X_valid[:, columns]) \ if X_valid is not None else None qX_test = t.transform(X_test[:, columns]) if X_test is not None else None mX_train, mX_valid, mX_test = min_max_scale(X_train, X_valid, X_test) X_train = np.concatenate((mX_train, qX_train), axis=1) if qX_valid is None: return X_train else: X_valid = np.concatenate((mX_valid, qX_valid), axis=1) X_test = np.concatenate((mX_test, qX_test), axis=1) return X_train, X_valid, X_test def log_transform(X_train, X_valid, X_test, columns): t = FunctionTransformer(np.log1p) part_X_train = t.transform(X_train[:, columns]) part_X_train = t.transform(X_train[:, columns]) part_X_valid = t.transform(X_valid[:, columns]) part_X_test = t.transform(X_test[:, columns]) X_train[:, columns] = part_X_train X_valid[:, columns] = part_X_valid X_test[:, columns] = part_X_test return X_train, X_valid, X_test def accuracy(predictions, labels): return 100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) / predictions.shape[0] def accuracy_binary(predictions, labels): predicted_class = np.argmax(predictions, 1) actual_class = np.argmax(labels, 1) correct1 = np.logical_and(np.greater(predicted_class, 0), np.greater(actual_class, 0)) correct2 = np.logical_and(predicted_class == 0, actual_class == 0) return 100.0 * (np.sum(correct1) + np.sum(correct2)) / predictions.shape[0] def compute_classification_table(predictions, labels): n_cls = labels.shape[1] class_table = np.zeros((n_cls, n_cls)) predicted_cls = np.argmax(predictions, 1) actual_cls = np.argmax(labels, 1) for (a, p) in zip(actual_cls, predicted_cls): class_table[a][p] += 1 return class_table def compute_classification_table_binary(predictions, labels): class_table = np.zeros((2, 2)) predicted_class = np.argmax(predictions, 1) actual_class = np.argmax(labels, 1) for (a, p) in zip(actual_class, predicted_class): class_table[int(a > 0)][int(p > 0)] += 1 return class_table def correct_percentage(matrix, dataset_name='Test'): """ :param matrix: map from actual to predicted :return: precision and recall measurement """ epsilon = 1e-26 num_classes = matrix.shape[0] weights = np.array([np.sum(matrix[i, :]) / np.sum(matrix) for i in range(num_classes)]) weights =
np.reshape(weights, [num_classes, 1])
numpy.reshape
from __future__ import absolute_import from __future__ import division from __future__ import print_function from analysis.extra_analysis import get_cv_description, colvars from system_setup import create_cvs from system_setup.create_stringpaths import cvs_len5path from system_setup.string_finding.pnas_simulation_loader import * from utils.helpfunc import * logging.basicConfig( stream=sys.stdout, level=logging.DEBUG, format='%(asctime)s %(name)s-%(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') import numpy as np from scipy import stats import matplotlib.pyplot as plt import utils logger = logging.getLogger("density_field") def plot_2d_field(xvalues, yvalues, Vij, cvx, cvy, ngrid, cmap=plt.cm.Greys, heatmap=True, scatter=False): if heatmap: xmin = np.amin(xvalues) xmax = np.amax(xvalues) ymin = np.amin(yvalues) ymax = np.amax(yvalues) X, Y = np.meshgrid(np.linspace(xmin, xmax, ngrid), np.linspace(ymin, ymax, ngrid)) Z = Vij # np.reshape(Vij, X.shape) Z = Z - Z.min() # Z[Z>7] = np.nan # plt.figure(figsize=(10,8)) # Zrange = Z.max() - Z.min() # levels = np.arange(Z.min(), Z.min() + Zrange / 2, Zrange / ngrid) im = plt.contourf( X.T, Y.T, Z, # np.rot90(Z), #FOR plt.imshow() # levels=levels, cmap=cmap, extent=[xmin, xmax, ymin, ymax]) ct = plt.contour( X.T, Y.T, Z, # levels=levels, extent=[xmin, xmax, ymin, ymax], alpha=0.3, colors=('k',)) # im.cmap.set_under('k') # im.set_clim(0, Z.max()) cbar = plt.colorbar(im, orientation='vertical') cbar.set_label(r'$\Delta G$ [kcal/mol]', fontsize=utils.label_fontsize) cbar.ax.tick_params(labelsize=utils.ticks_labelsize) # plt.ylabel(cvy.id) # plt.xlabel(cvx.id) plt.grid() # plt.show() if scatter: # gaussian normalized by total number of points xy = np.vstack([xvalues, yvalues]) colors = Vij(xy) im = plt.scatter(xvalues, yvalues, c=colors, cmap=cmap) plt.colorbar(im, orientation='vertical') plt.ylabel(cvy.id) plt.xlabel(cvx.id) plt.show() def to_free_energy(density, norm=1, delta=1e-7): """ConvertsTODO move to separate module""" return lambda x: -kb * 310.15 * np.log(density(x) / norm + delta) def get_cv_coordinates(simulation_evals, cvs): """Put all CV values into a matrix with len(cvs) rows and total number of simulation frames as columns""" frame_count = 0 for simulation, cv_values in simulation_evals: frame_count += len(simulation.traj) cv_coordinates = np.empty((len(cvs), frame_count)) logger.debug("Aggregating all simulations") for i, cv in enumerate(cvs): frames_offset = 0 for simulation, cv_values in simulation_evals: val = cv_values[i] traj_size = len(val) cv_coordinates[i, frames_offset:(frames_offset + traj_size)] = val frames_offset += traj_size return cv_coordinates def integrate_cv(V, cv_idx, width=1): return
np.sum(V, axis=cv_idx)
numpy.sum
# Copyright (c) 2003-2019 by <NAME> # # TreeCorr is free software: redistribution and use in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions, and the disclaimer given in the accompanying LICENSE # file. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the disclaimer given in the documentation # and/or other materials provided with the distribution. from __future__ import print_function import numpy as np import os import coord import time import fitsio import treecorr from test_helper import assert_raises, do_pickle, timer, get_from_wiki, CaptureLog, clear_save from test_helper import profile def generate_shear_field(npos, nhalo, rng=None): # We do something completely different here than we did for 2pt patch tests. # A straight Gaussian field with a given power spectrum has no significant 3pt power, # so it's not a great choice for simulating a field for 3pt tests. # Instead we place N SIS "halos" randomly in the grid. # Then we translate that to a shear field via FFT. if rng is None: rng = np.random.RandomState() # Generate x,y values for the real-space field x = rng.uniform(0,1000, size=npos) y = rng.uniform(0,1000, size=npos) nh = rng.poisson(nhalo) # Fill the kappa values with SIS halo profiles. xc = rng.uniform(0,1000, size=nh) yc = rng.uniform(0,1000, size=nh) scale = rng.uniform(20,50, size=nh) mass = rng.uniform(0.01, 0.05, size=nh) # Avoid making huge nhalo * nsource arrays. Loop in blocks of 64 halos nblock = (nh-1) // 64 + 1 kappa = np.zeros_like(x) gamma = np.zeros_like(x, dtype=complex) for iblock in range(nblock): i = iblock*64 j = (iblock+1)*64 dx = x[:,np.newaxis]-xc[np.newaxis,i:j] dy = y[:,np.newaxis]-yc[np.newaxis,i:j] dx[dx==0] = 1 # Avoid division by zero. dy[dy==0] = 1 dx /= scale[i:j] dy /= scale[i:j] rsq = dx**2 + dy**2 r = rsq**0.5 k = mass[i:j] / r # "Mass" here is really just a dimensionless normalization propto mass. kappa += np.sum(k, axis=1) # gamma_t = kappa for SIS. g = -k * (dx + 1j*dy)**2 / rsq gamma += np.sum(g, axis=1) return x, y, np.real(gamma), np.imag(gamma), kappa @timer def test_kkk_jk(): # Test jackknife and other covariance estimates for kkk correlations. # Note: This test takes a while! # The main version I think is a pretty decent test of the code correctness. # It shows that bootstrap in particular easily gets to within 50% of the right variance. # Sometimes within 20%, but because of the randomness there, it varies a bit. # Jackknife isn't much worse. Just a little below 50%. But still pretty good. # Sample and Marked are not great for this test. I think they will work ok when the # triangles of interest are mostly within single patches, but that's not the case we # have here, and it would take a lot more points to get to that regime. So the # accuracy tests for those two are pretty loose. if __name__ == '__main__': # This setup takes about 740 sec to run. nhalo = 3000 nsource = 5000 npatch = 32 tol_factor = 1 elif False: # This setup takes about 180 sec to run. nhalo = 2000 nsource = 2000 npatch = 16 tol_factor = 2 elif False: # This setup takes about 51 sec to run. nhalo = 1000 nsource = 1000 npatch = 16 tol_factor = 3 else: # This setup takes about 20 sec to run. # So we use this one for regular unit test runs. # It's pretty terrible in terms of testing the accuracy, but it works for code coverage. # But whenever actually working on this part of the code, definitely need to switch # to one of the above setups. Preferably run the name==main version to get a good # test of the code correctness. nhalo = 500 nsource = 500 npatch = 16 tol_factor = 4 file_name = 'data/test_kkk_jk_{}.npz'.format(nsource) print(file_name) if not os.path.isfile(file_name): nruns = 1000 all_kkks = [] rng1 = np.random.RandomState() for run in range(nruns): x, y, _, _, k = generate_shear_field(nsource, nhalo, rng1) print(run,': ',np.mean(k),np.std(k)) cat = treecorr.Catalog(x=x, y=y, k=k) kkk = treecorr.KKKCorrelation(nbins=3, min_sep=30., max_sep=100., min_u=0.9, max_u=1.0, nubins=1, min_v=0.0, max_v=0.1, nvbins=1) kkk.process(cat) print(kkk.ntri.ravel().tolist()) print(kkk.zeta.ravel().tolist()) all_kkks.append(kkk) mean_kkk = np.mean([kkk.zeta.ravel() for kkk in all_kkks], axis=0) var_kkk = np.var([kkk.zeta.ravel() for kkk in all_kkks], axis=0) np.savez(file_name, all_kkk=np.array([kkk.zeta.ravel() for kkk in all_kkks]), mean_kkk=mean_kkk, var_kkk=var_kkk) data = np.load(file_name) mean_kkk = data['mean_kkk'] var_kkk = data['var_kkk'] print('mean = ',mean_kkk) print('var = ',var_kkk) rng = np.random.RandomState(12345) x, y, _, _, k = generate_shear_field(nsource, nhalo, rng) cat = treecorr.Catalog(x=x, y=y, k=k) kkk = treecorr.KKKCorrelation(nbins=3, min_sep=30., max_sep=100., min_u=0.9, max_u=1.0, nubins=1, min_v=0.0, max_v=0.1, nvbins=1, rng=rng) kkk.process(cat) print(kkk.ntri.ravel()) print(kkk.zeta.ravel()) print(kkk.varzeta.ravel()) kkkp = kkk.copy() catp = treecorr.Catalog(x=x, y=y, k=k, npatch=npatch) # Do the same thing with patches. kkkp.process(catp) print('with patches:') print(kkkp.ntri.ravel()) print(kkkp.zeta.ravel()) print(kkkp.varzeta.ravel()) np.testing.assert_allclose(kkkp.ntri, kkk.ntri, rtol=0.05 * tol_factor) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) np.testing.assert_allclose(kkkp.varzeta, kkk.varzeta, rtol=0.05 * tol_factor, atol=3.e-6) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.6 * tol_factor) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.5*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.7 * tol_factor) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.7*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.7 * tol_factor) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.7*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.5 * tol_factor) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor) # Now as a cross correlation with all 3 using the same patch catalog. print('with 3 patched catalogs:') kkkp.process(catp, catp, catp) print(kkkp.zeta.ravel()) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.5*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor) # Repeat this test with different combinations of patch with non-patch catalogs: # All the methods work best when the patches are used for all 3 catalogs. But there # are probably cases where this kind of cross correlation with only some catalogs having # patches could be desired. So this mostly just checks that the code runs properly. # Patch on 1 only: print('with patches on 1 only:') kkkp.process(catp, cat) print(kkkp.zeta.ravel()) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) # Patch on 2 only: print('with patches on 2 only:') kkkp.process(cat, catp, cat) print(kkkp.zeta.ravel()) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.9 * tol_factor) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) # Patch on 3 only: print('with patches on 3 only:') kkkp.process(cat, cat, catp) print(kkkp.zeta.ravel()) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) # Patch on 1,2 print('with patches on 1,2:') kkkp.process(catp, catp, cat) print(kkkp.zeta.ravel()) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.4*tol_factor) # Patch on 2,3 print('with patches on 2,3:') kkkp.process(cat, catp) print(kkkp.zeta.ravel()) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.7*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor) # Patch on 1,3 print('with patches on 1,3:') kkkp.process(catp, cat, catp) print(kkkp.zeta.ravel()) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor) # Finally a set (with all patches) using the KKKCrossCorrelation class. kkkc = treecorr.KKKCrossCorrelation(nbins=3, min_sep=30., max_sep=100., min_u=0.9, max_u=1.0, nubins=1, min_v=0.0, max_v=0.1, nvbins=1, rng=rng) print('CrossCorrelation:') kkkc.process(catp, catp, catp) for k1 in kkkc._all: print(k1.ntri.ravel()) print(k1.zeta.ravel()) print(k1.varzeta.ravel()) np.testing.assert_allclose(k1.ntri, kkk.ntri, rtol=0.05 * tol_factor) np.testing.assert_allclose(k1.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) np.testing.assert_allclose(k1.varzeta, kkk.varzeta, rtol=0.05 * tol_factor, atol=3.e-6) print('jackknife:') cov = kkkc.estimate_cov('jackknife') print(np.diagonal(cov)) for i in range(6): v = np.diagonal(cov)[i*6:(i+1)*6] print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_kkk)))) np.testing.assert_allclose(np.log(v), np.log(var_kkk), atol=0.5*tol_factor) print('sample:') cov = kkkc.estimate_cov('sample') print(np.diagonal(cov)) for i in range(6): v = np.diagonal(cov)[i*6:(i+1)*6] print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_kkk)))) np.testing.assert_allclose(np.log(v), np.log(var_kkk), atol=0.8*tol_factor) print('marked:') cov = kkkc.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) for i in range(6): v = np.diagonal(cov)[i*6:(i+1)*6] print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_kkk)))) np.testing.assert_allclose(np.log(v), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkc.estimate_cov('bootstrap') print(np.diagonal(cov)) for i in range(6): v = np.diagonal(cov)[i*6:(i+1)*6] print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_kkk)))) np.testing.assert_allclose(np.log(v), np.log(var_kkk), atol=0.5*tol_factor) # All catalogs need to have the same number of patches catq = treecorr.Catalog(x=x, y=y, k=k, npatch=2*npatch) with assert_raises(RuntimeError): kkkp.process(catp, catq) with assert_raises(RuntimeError): kkkp.process(catp, catq, catq) with assert_raises(RuntimeError): kkkp.process(catq, catp, catq) with assert_raises(RuntimeError): kkkp.process(catq, catq, catp) @timer def test_ggg_jk(): # Test jackknife and other covariance estimates for ggg correlations. if __name__ == '__main__': # This setup takes about 590 sec to run. nhalo = 5000 nsource = 5000 npatch = 32 tol_factor = 1 elif False: # This setup takes about 160 sec to run. nhalo = 2000 nsource = 2000 npatch = 16 tol_factor = 2 elif False: # This setup takes about 50 sec to run. nhalo = 1000 nsource = 1000 npatch = 16 tol_factor = 3 else: # This setup takes about 13 sec to run. nhalo = 500 nsource = 500 npatch = 8 tol_factor = 3 # I couldn't figure out a way to get reasonable S/N in the shear field. I thought doing # discrete halos would give some significant 3pt shear pattern, at least for equilateral # triangles, but the signal here is still consistent with zero. :( # The point is the variance, which is still calculated ok, but I would have rathered # have something with S/N > 0. # For these tests, I set up the binning to just accumulate all roughly equilateral triangles # in a small separation range. The binning always uses two bins for each to get + and - v # bins. So this function averages these two values to produce 1 value for each gamma. f = lambda g: np.array([np.mean(g.gam0), np.mean(g.gam1), np.mean(g.gam2), np.mean(g.gam3)]) file_name = 'data/test_ggg_jk_{}.npz'.format(nsource) print(file_name) if not os.path.isfile(file_name): nruns = 1000 all_gggs = [] rng1 = np.random.RandomState() for run in range(nruns): x, y, g1, g2, _ = generate_shear_field(nsource, nhalo, rng1) # For some reason std(g2) is coming out about 1.5x larger than std(g1). # Probably a sign of some error in the generate function, but I don't see it. # For this purpose I think it doesn't really matter, but it's a bit odd. print(run,': ',np.mean(g1),np.std(g1),np.mean(g2),np.std(g2)) cat = treecorr.Catalog(x=x, y=y, g1=g1, g2=g2) ggg = treecorr.GGGCorrelation(nbins=1, min_sep=20., max_sep=40., min_u=0.6, max_u=1.0, nubins=1, min_v=0.0, max_v=0.6, nvbins=1) ggg.process(cat) print(ggg.ntri.ravel()) print(f(ggg)) all_gggs.append(ggg) all_ggg = np.array([f(ggg) for ggg in all_gggs]) mean_ggg = np.mean(all_ggg, axis=0) var_ggg = np.var(all_ggg, axis=0) np.savez(file_name, mean_ggg=mean_ggg, var_ggg=var_ggg) data = np.load(file_name) mean_ggg = data['mean_ggg'] var_ggg = data['var_ggg'] print('mean = ',mean_ggg) print('var = ',var_ggg) rng = np.random.RandomState(12345) x, y, g1, g2, _ = generate_shear_field(nsource, nhalo, rng) cat = treecorr.Catalog(x=x, y=y, g1=g1, g2=g2) ggg = treecorr.GGGCorrelation(nbins=1, min_sep=20., max_sep=40., min_u=0.6, max_u=1.0, nubins=1, min_v=0.0, max_v=0.6, nvbins=1, rng=rng) ggg.process(cat) print(ggg.ntri.ravel()) print(ggg.gam0.ravel()) print(ggg.gam1.ravel()) print(ggg.gam2.ravel()) print(ggg.gam3.ravel()) gggp = ggg.copy() catp = treecorr.Catalog(x=x, y=y, g1=g1, g2=g2, npatch=npatch) # Do the same thing with patches. gggp.process(catp) print('with patches:') print(gggp.ntri.ravel()) print(gggp.vargam0.ravel()) print(gggp.vargam1.ravel()) print(gggp.vargam2.ravel()) print(gggp.vargam3.ravel()) print(gggp.gam0.ravel()) print(gggp.gam1.ravel()) print(gggp.gam2.ravel()) print(gggp.gam3.ravel()) np.testing.assert_allclose(gggp.ntri, ggg.ntri, rtol=0.05 * tol_factor) np.testing.assert_allclose(gggp.gam0, ggg.gam0, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) np.testing.assert_allclose(gggp.gam1, ggg.gam1, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) np.testing.assert_allclose(gggp.gam2, ggg.gam2, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) np.testing.assert_allclose(gggp.gam3, ggg.gam3, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) np.testing.assert_allclose(gggp.vargam0, ggg.vargam0, rtol=0.1 * tol_factor) np.testing.assert_allclose(gggp.vargam1, ggg.vargam1, rtol=0.1 * tol_factor) np.testing.assert_allclose(gggp.vargam2, ggg.vargam2, rtol=0.1 * tol_factor) np.testing.assert_allclose(gggp.vargam3, ggg.vargam3, rtol=0.1 * tol_factor) print('jackknife:') cov = gggp.estimate_cov('jackknife', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.4*tol_factor) print('sample:') cov = gggp.estimate_cov('sample', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) print('marked:') cov = gggp.estimate_cov('marked_bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.9*tol_factor) print('bootstrap:') cov = gggp.estimate_cov('bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.3*tol_factor) # Now as a cross correlation with all 3 using the same patch catalog. print('with 3 patched catalogs:') gggp.process(catp, catp, catp) print(gggp.gam0.ravel()) np.testing.assert_allclose(gggp.gam0, ggg.gam0, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) np.testing.assert_allclose(gggp.gam1, ggg.gam1, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) np.testing.assert_allclose(gggp.gam2, ggg.gam2, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) np.testing.assert_allclose(gggp.gam3, ggg.gam3, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) print('jackknife:') cov = gggp.estimate_cov('jackknife', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.4*tol_factor) print('sample:') cov = gggp.estimate_cov('sample', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.6*tol_factor) print('marked:') cov = gggp.estimate_cov('marked_bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) print('bootstrap:') cov = gggp.estimate_cov('bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.4*tol_factor) # The separate patch/non-patch combinations aren't that interesting, so skip them # for GGG unless running from main. if __name__ == '__main__': # Patch on 1 only: print('with patches on 1 only:') gggp.process(catp, cat) print('jackknife:') cov = gggp.estimate_cov('jackknife', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) print('sample:') cov = gggp.estimate_cov('sample', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.7*tol_factor) print('marked:') cov = gggp.estimate_cov('marked_bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) print('bootstrap:') cov = gggp.estimate_cov('bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) # Patch on 2 only: print('with patches on 2 only:') gggp.process(cat, catp, cat) print('jackknife:') cov = gggp.estimate_cov('jackknife', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) print('sample:') cov = gggp.estimate_cov('sample', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.7*tol_factor) print('marked:') cov = gggp.estimate_cov('marked_bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) print('bootstrap:') cov = gggp.estimate_cov('bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) # Patch on 3 only: print('with patches on 3 only:') gggp.process(cat, cat, catp) print('jackknife:') cov = gggp.estimate_cov('jackknife', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) print('sample:') cov = gggp.estimate_cov('sample', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.7*tol_factor) print('marked:') cov = gggp.estimate_cov('marked_bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) print('bootstrap:') cov = gggp.estimate_cov('bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.9*tol_factor) # Patch on 1,2 print('with patches on 1,2:') gggp.process(catp, catp, cat) print('jackknife:') cov = gggp.estimate_cov('jackknife', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.6*tol_factor) print('sample:') cov = gggp.estimate_cov('sample', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.6*tol_factor) print('marked:') cov = gggp.estimate_cov('marked_bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) print('bootstrap:') cov = gggp.estimate_cov('bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.5*tol_factor) # Patch on 2,3 print('with patches on 2,3:') gggp.process(cat, catp) print('jackknife:') cov = gggp.estimate_cov('jackknife', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.6*tol_factor) print('sample:') cov = gggp.estimate_cov('sample', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) print('marked:') cov = gggp.estimate_cov('marked_bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=1.0*tol_factor) print('bootstrap:') cov = gggp.estimate_cov('bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.3*tol_factor) # Patch on 1,3 print('with patches on 1,3:') gggp.process(catp, cat, catp) print('jackknife:') cov = gggp.estimate_cov('jackknife', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.6*tol_factor) print('sample:') cov = gggp.estimate_cov('sample', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.6*tol_factor) print('marked:') cov = gggp.estimate_cov('marked_bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.7*tol_factor) print('bootstrap:') cov = gggp.estimate_cov('bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.5*tol_factor) # Finally a set (with all patches) using the GGGCrossCorrelation class. gggc = treecorr.GGGCrossCorrelation(nbins=1, min_sep=20., max_sep=40., min_u=0.6, max_u=1.0, nubins=1, min_v=0.0, max_v=0.6, nvbins=1, rng=rng) print('CrossCorrelation:') gggc.process(catp, catp, catp) for g in gggc._all: print(g.ntri.ravel()) print(g.gam0.ravel()) print(g.vargam0.ravel()) np.testing.assert_allclose(g.ntri, ggg.ntri, rtol=0.05 * tol_factor) np.testing.assert_allclose(g.gam0, ggg.gam0, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) np.testing.assert_allclose(g.vargam0, ggg.vargam0, rtol=0.05 * tol_factor) np.testing.assert_allclose(g.gam1, ggg.gam1, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) np.testing.assert_allclose(g.vargam1, ggg.vargam1, rtol=0.05 * tol_factor) np.testing.assert_allclose(g.gam2, ggg.gam2, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) np.testing.assert_allclose(g.vargam2, ggg.vargam2, rtol=0.05 * tol_factor) np.testing.assert_allclose(g.gam3, ggg.gam3, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) np.testing.assert_allclose(g.vargam3, ggg.vargam3, rtol=0.05 * tol_factor) fc = lambda gggc: np.concatenate([ [np.mean(g.gam0), np.mean(g.gam1), np.mean(g.gam2), np.mean(g.gam3)] for g in gggc._all]) print('jackknife:') cov = gggc.estimate_cov('jackknife', func=fc) print(np.diagonal(cov).real) for i in range(6): v = np.diagonal(cov)[i*4:(i+1)*4] print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_ggg)))) np.testing.assert_allclose(np.log(v), np.log(var_ggg), atol=0.4*tol_factor) print('sample:') cov = gggc.estimate_cov('sample', func=fc) print(np.diagonal(cov).real) for i in range(6): v = np.diagonal(cov)[i*4:(i+1)*4] print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_ggg)))) np.testing.assert_allclose(np.log(v), np.log(var_ggg), atol=0.6*tol_factor) print('marked:') cov = gggc.estimate_cov('marked_bootstrap', func=fc) print(np.diagonal(cov).real) for i in range(6): v = np.diagonal(cov)[i*4:(i+1)*4] print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_ggg)))) np.testing.assert_allclose(np.log(v), np.log(var_ggg), atol=0.8*tol_factor) print('bootstrap:') cov = gggc.estimate_cov('bootstrap', func=fc) print(np.diagonal(cov).real) for i in range(6): v = np.diagonal(cov)[i*4:(i+1)*4] print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_ggg)))) np.testing.assert_allclose(np.log(v), np.log(var_ggg), atol=0.3*tol_factor) # Without func, don't check the accuracy, but make sure it returns something the right shape. cov = gggc.estimate_cov('jackknife') assert cov.shape == (48, 48) @timer def test_nnn_jk(): # Test jackknife and other covariance estimates for nnn correlations. if __name__ == '__main__': # This setup takes about 1200 sec to run. nhalo = 300 nsource = 2000 npatch = 16 source_factor = 50 rand_factor = 3 tol_factor = 1 elif False: # This setup takes about 250 sec to run. nhalo = 200 nsource = 1000 npatch = 16 source_factor = 50 rand_factor = 2 tol_factor = 2 else: # This setup takes about 44 sec to run. nhalo = 100 nsource = 500 npatch = 8 source_factor = 30 rand_factor = 1 tol_factor = 3 file_name = 'data/test_nnn_jk_{}.npz'.format(nsource) print(file_name) if not os.path.isfile(file_name): rng = np.random.RandomState() nruns = 1000 all_nnns = [] all_nnnc = [] t0 = time.time() for run in range(nruns): t2 = time.time() x, y, _, _, k = generate_shear_field(nsource * source_factor, nhalo, rng) p = k**3 p /= np.sum(p) ns = rng.poisson(nsource) select = rng.choice(range(len(x)), size=ns, replace=False, p=p) print(run,': ',np.mean(k),np.std(k),np.min(k),np.max(k)) cat = treecorr.Catalog(x=x[select], y=y[select]) ddd = treecorr.NNNCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2, min_u=0.8, max_u=1.0, nubins=1, min_v=0.0, max_v=0.2, nvbins=1) rx = rng.uniform(0,1000, rand_factor*nsource) ry = rng.uniform(0,1000, rand_factor*nsource) rand_cat = treecorr.Catalog(x=rx, y=ry) rrr = treecorr.NNNCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2, min_u=0.8, max_u=1.0, nubins=1, min_v=0.0, max_v=0.2, nvbins=1) rrr.process(rand_cat) rdd = ddd.copy() drr = ddd.copy() ddd.process(cat) rdd.process(rand_cat, cat) drr.process(cat, rand_cat) zeta_s, _ = ddd.calculateZeta(rrr) zeta_c, _ = ddd.calculateZeta(rrr, drr, rdd) print('simple: ',zeta_s.ravel()) print('compensated: ',zeta_c.ravel()) all_nnns.append(zeta_s.ravel()) all_nnnc.append(zeta_c.ravel()) t3 = time.time() print('time: ',round(t3-t2),round((t3-t0)/60),round((t3-t0)*(nruns/(run+1)-1)/60)) mean_nnns = np.mean(all_nnns, axis=0) var_nnns = np.var(all_nnns, axis=0) mean_nnnc = np.mean(all_nnnc, axis=0) var_nnnc = np.var(all_nnnc, axis=0) np.savez(file_name, mean_nnns=mean_nnns, var_nnns=var_nnns, mean_nnnc=mean_nnnc, var_nnnc=var_nnnc) data = np.load(file_name) mean_nnns = data['mean_nnns'] var_nnns = data['var_nnns'] mean_nnnc = data['mean_nnnc'] var_nnnc = data['var_nnnc'] print('mean simple = ',mean_nnns) print('var simple = ',var_nnns) print('mean compensated = ',mean_nnnc) print('var compensated = ',var_nnnc) # Make a random catalog with 2x as many sources, randomly distributed . rng = np.random.RandomState(1234) rx = rng.uniform(0,1000, rand_factor*nsource) ry = rng.uniform(0,1000, rand_factor*nsource) rand_cat = treecorr.Catalog(x=rx, y=ry) rrr = treecorr.NNNCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2, min_u=0.8, max_u=1.0, nubins=1, min_v=0.0, max_v=0.2, nvbins=1) t0 = time.time() rrr.process(rand_cat) t1 = time.time() print('Time to process rand cat = ',t1-t0) print('RRR:',rrr.tot) print(rrr.ntri.ravel()) # Make the data catalog x, y, _, _, k = generate_shear_field(nsource * source_factor, nhalo, rng=rng) print('mean k = ',np.mean(k)) print('min,max = ',np.min(k),np.max(k)) p = k**3 p /= np.sum(p) select = rng.choice(range(len(x)), size=nsource, replace=False, p=p) cat = treecorr.Catalog(x=x[select], y=y[select]) ddd = treecorr.NNNCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2, min_u=0.8, max_u=1.0, nubins=1, min_v=0.0, max_v=0.2, nvbins=1, rng=rng) rdd = ddd.copy() drr = ddd.copy() ddd.process(cat) rdd.process(rand_cat, cat) drr.process(cat, rand_cat) zeta_s1, var_zeta_s1 = ddd.calculateZeta(rrr) zeta_c1, var_zeta_c1 = ddd.calculateZeta(rrr, drr, rdd) print('DDD:',ddd.tot) print(ddd.ntri.ravel()) print('simple: ') print(zeta_s1.ravel()) print(var_zeta_s1.ravel()) print('DRR:',drr.tot) print(drr.ntri.ravel()) print('RDD:',rdd.tot) print(rdd.ntri.ravel()) print('compensated: ') print(zeta_c1.ravel()) print(var_zeta_c1.ravel()) # Make the patches with a large random catalog to make sure the patches are uniform area. big_rx = rng.uniform(0,1000, 100*nsource) big_ry = rng.uniform(0,1000, 100*nsource) big_catp = treecorr.Catalog(x=big_rx, y=big_ry, npatch=npatch, rng=rng) patch_centers = big_catp.patch_centers # Do the same thing with patches on D, but not yet on R. dddp = treecorr.NNNCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2, min_u=0.8, max_u=1.0, nubins=1, min_v=0.0, max_v=0.2, nvbins=1, rng=rng) rddp = dddp.copy() drrp = dddp.copy() catp = treecorr.Catalog(x=x[select], y=y[select], patch_centers=patch_centers) print('Patch\tNtot') for p in catp.patches: print(p.patch,'\t',p.ntot,'\t',patch_centers[p.patch]) print('with patches on D:') dddp.process(catp) rddp.process(rand_cat, catp) drrp.process(catp, rand_cat) # Need to run calculateZeta to get patch-based covariance with assert_raises(RuntimeError): dddp.estimate_cov('jackknife') zeta_s2, var_zeta_s2 = dddp.calculateZeta(rrr) print('DDD:',dddp.tot) print(dddp.ntri.ravel()) print('simple: ') print(zeta_s2.ravel()) print(var_zeta_s2.ravel()) np.testing.assert_allclose(zeta_s2, zeta_s1, rtol=0.05 * tol_factor) np.testing.assert_allclose(var_zeta_s2, var_zeta_s1, rtol=0.05 * tol_factor) # Check the _calculate_xi_from_pairs function. Using all pairs, should get total xi. ddd1 = dddp.copy() ddd1._calculate_xi_from_pairs(dddp.results.keys()) np.testing.assert_allclose(ddd1.zeta, dddp.zeta) # None of these are very good without the random using patches. # I think this is basically just that the approximations used for estimating the area_frac # to figure out the appropriate altered RRR counts isn't accurate enough when the total # counts are as low as this. I think (hope) that it should be semi-ok when N is much larger, # but this is probably saying that for 3pt using patches for R is even more important than # for 2pt. # Ofc, it could also be that this is telling me I still have a bug somewhere that I haven't # managed to find... :( print('jackknife:') cov = dddp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=2.3*tol_factor) print('sample:') cov = dddp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=1.2*tol_factor) print('marked:') cov = dddp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=1.3*tol_factor) print('bootstrap:') cov = dddp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=2.2*tol_factor) zeta_c2, var_zeta_c2 = dddp.calculateZeta(rrr, drrp, rddp) print('compensated: ') print('DRR:',drrp.tot) print(drrp.ntri.ravel()) print('RDD:',rddp.tot) print(rddp.ntri.ravel()) print(zeta_c2.ravel()) print(var_zeta_c2.ravel()) np.testing.assert_allclose(zeta_c2, zeta_c1, rtol=0.05 * tol_factor, atol=1.e-3 * tol_factor) np.testing.assert_allclose(var_zeta_c2, var_zeta_c1, rtol=0.05 * tol_factor) print('jackknife:') cov = dddp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=2.6*tol_factor) print('sample:') cov = dddp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=3.8*tol_factor) print('marked:') cov = dddp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=2.3*tol_factor) print('bootstrap:') cov = dddp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=2.6*tol_factor) # Now with the random also using patches # These are a lot better than the above tests. But still not nearly as good as we were able # to get in 2pt. I'm pretty sure this is just due to the fact that we need to have much # smaller catalogs to make it feasible to run this in a reasonable amount of time. I don't # think this is a sign of any bug in the code. print('with patched random catalog:') rand_catp = treecorr.Catalog(x=rx, y=ry, patch_centers=patch_centers) rrrp = rrr.copy() rrrp.process(rand_catp) drrp.process(catp, rand_catp) rddp.process(rand_catp, catp) print('simple: ') zeta_s2, var_zeta_s2 = dddp.calculateZeta(rrrp) print('DDD:',dddp.tot) print(dddp.ntri.ravel()) print(zeta_s2.ravel()) print(var_zeta_s2.ravel()) np.testing.assert_allclose(zeta_s2, zeta_s1, rtol=0.05 * tol_factor) np.testing.assert_allclose(var_zeta_s2, var_zeta_s1, rtol=0.05 * tol_factor) ddd1 = dddp.copy() ddd1._calculate_xi_from_pairs(dddp.results.keys()) np.testing.assert_allclose(ddd1.zeta, dddp.zeta) t0 = time.time() print('jackknife:') cov = dddp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=0.9*tol_factor) t1 = time.time() print('t = ',t1-t0) t0 = time.time() print('sample:') cov = dddp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=0.7*tol_factor) t1 = time.time() print('t = ',t1-t0) t0 = time.time() print('marked:') cov = dddp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=0.8*tol_factor) t1 = time.time() print('t = ',t1-t0) t0 = time.time() print('bootstrap:') cov = dddp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=1.0*tol_factor) t1 = time.time() print('t = ',t1-t0) t0 = time.time() print('compensated: ') zeta_c2, var_zeta_c2 = dddp.calculateZeta(rrrp, drrp, rddp) print('DRR:',drrp.tot) print(drrp.ntri.ravel()) print('RDD:',rddp.tot) print(rddp.ntri.ravel()) print(zeta_c2.ravel()) print(var_zeta_c2.ravel()) np.testing.assert_allclose(zeta_c2, zeta_c1, rtol=0.05 * tol_factor, atol=1.e-3 * tol_factor) np.testing.assert_allclose(var_zeta_c2, var_zeta_c1, rtol=0.05 * tol_factor) t0 = time.time() print('jackknife:') cov = dddp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=0.8*tol_factor) t1 = time.time() print('t = ',t1-t0) t0 = time.time() print('sample:') cov = dddp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=0.8*tol_factor) t1 = time.time() print('t = ',t1-t0) t0 = time.time() print('marked:') cov = dddp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=0.8*tol_factor) t1 = time.time() print('t = ',t1-t0) t0 = time.time() print('bootstrap:') cov = dddp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=0.8*tol_factor) t1 = time.time() print('t = ',t1-t0) t0 = time.time() # I haven't implemented calculateZeta for the NNNCrossCorrelation class, because I'm not # actually sure what the right thing to do here is for calculating a single zeta vectors. # Do we do a different one for each of the 6 permutations? Or one overall one? # So rather than just do something, I'll wait until someone has a coherent use case where # they want this and can explain exactly what the right thing to compute is. # So to just exercise the machinery with NNNCrossCorrelation, I'm using a func parameter # to compute something equivalent to the simple zeta calculation. dddc = treecorr.NNNCrossCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2, min_u=0.8, max_u=1.0, nubins=1, min_v=0.0, max_v=0.2, nvbins=1, rng=rng) rrrc = treecorr.NNNCrossCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2, min_u=0.8, max_u=1.0, nubins=1, min_v=0.0, max_v=0.2, nvbins=1) print('CrossCorrelation:') dddc.process(catp, catp, catp) rrrc.process(rand_catp, rand_catp, rand_catp) def cc_zeta(corrs): d, r = corrs d1 = d.n1n2n3.copy() d1._sum(d._all) r1 = r.n1n2n3.copy() r1._sum(r._all) zeta, _ = d1.calculateZeta(r1) return zeta.ravel() print('simple: ') zeta_s3 = cc_zeta([dddc, rrrc]) print(zeta_s3) np.testing.assert_allclose(zeta_s3, zeta_s1.ravel(), rtol=0.05 * tol_factor) print('jackknife:') cov = treecorr.estimate_multi_cov([dddc,rrrc], 'jackknife', cc_zeta) print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=0.9*tol_factor) print('sample:') cov = treecorr.estimate_multi_cov([dddc,rrrc], 'sample', cc_zeta) print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=1.2*tol_factor) print('marked:') cov = treecorr.estimate_multi_cov([dddc,rrrc], 'marked_bootstrap', cc_zeta) print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=1.5*tol_factor) print('bootstrap:') cov = treecorr.estimate_multi_cov([dddc,rrrc], 'bootstrap', cc_zeta) print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=0.6*tol_factor) # Repeat with a 1-2 cross-correlation print('CrossCorrelation 1-2:') dddc.process(catp, catp) rrrc.process(rand_catp, rand_catp) print('simple: ') zeta_s3 = cc_zeta([dddc, rrrc]) print(zeta_s3) np.testing.assert_allclose(zeta_s3, zeta_s1.ravel(), rtol=0.05 * tol_factor) print('jackknife:') cov = treecorr.estimate_multi_cov([dddc,rrrc], 'jackknife', cc_zeta) print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=0.9*tol_factor) print('sample:') cov = treecorr.estimate_multi_cov([dddc,rrrc], 'sample', cc_zeta) print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=1.1*tol_factor) print('marked:') cov = treecorr.estimate_multi_cov([dddc,rrrc], 'marked_bootstrap', cc_zeta) print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=1.5*tol_factor) print('bootstrap:') cov = treecorr.estimate_multi_cov([dddc,rrrc], 'bootstrap', cc_zeta) print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=0.6*tol_factor) @timer def test_brute_jk(): # With bin_slop = 0, the jackknife calculation from patches should match a # brute force calcaulation where we literally remove one patch at a time to make # the vectors. if __name__ == '__main__': nhalo = 100 ngal = 500 npatch = 16 rand_factor = 5 else: nhalo = 100 ngal = 30 npatch = 16 rand_factor = 2 rng = np.random.RandomState(8675309) x, y, g1, g2, k = generate_shear_field(ngal, nhalo, rng) rx = rng.uniform(0,1000, rand_factor*ngal) ry = rng.uniform(0,1000, rand_factor*ngal) rand_cat_nopatch = treecorr.Catalog(x=rx, y=ry) rand_cat = treecorr.Catalog(x=rx, y=ry, npatch=npatch, rng=rng) patch_centers = rand_cat.patch_centers cat_nopatch = treecorr.Catalog(x=x, y=y, g1=g1, g2=g2, k=k) cat = treecorr.Catalog(x=x, y=y, g1=g1, g2=g2, k=k, patch_centers=patch_centers) print('cat patches = ',np.unique(cat.patch)) print('len = ',cat.nobj, cat.ntot) assert cat.nobj == ngal print('Patch\tNtot') for p in cat.patches: print(p.patch,'\t',p.ntot,'\t',patch_centers[p.patch]) # Start with KKK, since relatively simple. kkk1 = treecorr.KKKCorrelation(nbins=3, min_sep=100., max_sep=300., brute=True, min_u=0., max_u=1.0, nubins=1, min_v=0., max_v=1.0, nvbins=1) kkk1.process(cat_nopatch) kkk = treecorr.KKKCorrelation(nbins=3, min_sep=100., max_sep=300., brute=True, min_u=0., max_u=1.0, nubins=1, min_v=0., max_v=1.0, nvbins=1, var_method='jackknife') kkk.process(cat) np.testing.assert_allclose(kkk.zeta, kkk1.zeta) kkk_zeta_list = [] for i in range(npatch): cat1 = treecorr.Catalog(x=cat.x[cat.patch != i], y=cat.y[cat.patch != i], k=cat.k[cat.patch != i], g1=cat.g1[cat.patch != i], g2=cat.g2[cat.patch != i]) kkk1 = treecorr.KKKCorrelation(nbins=3, min_sep=100., max_sep=300., brute=True, min_u=0., max_u=1.0, nubins=1, min_v=0., max_v=1.0, nvbins=1) kkk1.process(cat1) print('zeta = ',kkk1.zeta.ravel()) kkk_zeta_list.append(kkk1.zeta.ravel()) kkk_zeta_list = np.array(kkk_zeta_list) cov = np.cov(kkk_zeta_list.T, bias=True) * (len(kkk_zeta_list)-1) varzeta = np.diagonal(np.cov(kkk_zeta_list.T, bias=True)) * (len(kkk_zeta_list)-1) print('KKK: treecorr jackknife varzeta = ',kkk.varzeta.ravel()) print('KKK: direct jackknife varzeta = ',varzeta) np.testing.assert_allclose(kkk.varzeta.ravel(), varzeta) # Now GGG ggg1 = treecorr.GGGCorrelation(nbins=3, min_sep=100., max_sep=300., brute=True, min_u=0., max_u=1.0, nubins=1, min_v=0., max_v=1.0, nvbins=1) ggg1.process(cat_nopatch) ggg = treecorr.GGGCorrelation(nbins=3, min_sep=100., max_sep=300., brute=True, min_u=0., max_u=1.0, nubins=1, min_v=0., max_v=1.0, nvbins=1, var_method='jackknife') ggg.process(cat) np.testing.assert_allclose(ggg.gam0, ggg1.gam0) np.testing.assert_allclose(ggg.gam1, ggg1.gam1) np.testing.assert_allclose(ggg.gam2, ggg1.gam2) np.testing.assert_allclose(ggg.gam3, ggg1.gam3) ggg_gam0_list = [] ggg_gam1_list = [] ggg_gam2_list = [] ggg_gam3_list = [] ggg_map3_list = [] for i in range(npatch): cat1 = treecorr.Catalog(x=cat.x[cat.patch != i], y=cat.y[cat.patch != i], k=cat.k[cat.patch != i], g1=cat.g1[cat.patch != i], g2=cat.g2[cat.patch != i]) ggg1 = treecorr.GGGCorrelation(nbins=3, min_sep=100., max_sep=300., brute=True, min_u=0., max_u=1.0, nubins=1, min_v=0., max_v=1.0, nvbins=1) ggg1.process(cat1) ggg_gam0_list.append(ggg1.gam0.ravel()) ggg_gam1_list.append(ggg1.gam1.ravel()) ggg_gam2_list.append(ggg1.gam2.ravel()) ggg_gam3_list.append(ggg1.gam3.ravel()) ggg_map3_list.append(ggg1.calculateMap3()[0]) ggg_gam0_list = np.array(ggg_gam0_list) vargam0 = np.diagonal(np.cov(ggg_gam0_list.T, bias=True)) * (len(ggg_gam0_list)-1) print('GGG: treecorr jackknife vargam0 = ',ggg.vargam0.ravel()) print('GGG: direct jackknife vargam0 = ',vargam0) np.testing.assert_allclose(ggg.vargam0.ravel(), vargam0) ggg_gam1_list = np.array(ggg_gam1_list) vargam1 = np.diagonal(np.cov(ggg_gam1_list.T, bias=True)) * (len(ggg_gam1_list)-1) print('GGG: treecorr jackknife vargam1 = ',ggg.vargam1.ravel()) print('GGG: direct jackknife vargam1 = ',vargam1) np.testing.assert_allclose(ggg.vargam1.ravel(), vargam1) ggg_gam2_list = np.array(ggg_gam2_list) vargam2 = np.diagonal(np.cov(ggg_gam2_list.T, bias=True)) * (len(ggg_gam2_list)-1) print('GGG: treecorr jackknife vargam2 = ',ggg.vargam2.ravel()) print('GGG: direct jackknife vargam2 = ',vargam2) np.testing.assert_allclose(ggg.vargam2.ravel(), vargam2) ggg_gam3_list = np.array(ggg_gam3_list) vargam3 = np.diagonal(np.cov(ggg_gam3_list.T, bias=True)) * (len(ggg_gam3_list)-1) print('GGG: treecorr jackknife vargam3 = ',ggg.vargam3.ravel()) print('GGG: direct jackknife vargam3 = ',vargam3) np.testing.assert_allclose(ggg.vargam3.ravel(), vargam3) ggg_map3_list = np.array(ggg_map3_list) varmap3 = np.diagonal(np.cov(ggg_map3_list.T, bias=True)) * (len(ggg_map3_list)-1) covmap3 = treecorr.estimate_multi_cov([ggg], 'jackknife', lambda corrs: corrs[0].calculateMap3()[0]) print('GGG: treecorr jackknife varmap3 = ',np.diagonal(covmap3)) print('GGG: direct jackknife varmap3 = ',varmap3) np.testing.assert_allclose(np.diagonal(covmap3), varmap3) # Finally NNN, where we need to use randoms. Both simple and compensated. ddd = treecorr.NNNCorrelation(nbins=3, min_sep=100., max_sep=300., bin_slop=0, min_u=0., max_u=1.0, nubins=1, min_v=0., max_v=1.0, nvbins=1, var_method='jackknife') drr = ddd.copy() rdd = ddd.copy() rrr = ddd.copy() ddd.process(cat) drr.process(cat, rand_cat) rdd.process(rand_cat, cat) rrr.process(rand_cat) zeta1_list = [] zeta2_list = [] for i in range(npatch): cat1 = treecorr.Catalog(x=cat.x[cat.patch != i], y=cat.y[cat.patch != i], k=cat.k[cat.patch != i], g1=cat.g1[cat.patch != i], g2=cat.g2[cat.patch != i]) rand_cat1 = treecorr.Catalog(x=rand_cat.x[rand_cat.patch != i], y=rand_cat.y[rand_cat.patch != i]) ddd1 = treecorr.NNNCorrelation(nbins=3, min_sep=100., max_sep=300., bin_slop=0, min_u=0., max_u=1.0, nubins=1, min_v=0., max_v=1.0, nvbins=1) drr1 = ddd1.copy() rdd1 = ddd1.copy() rrr1 = ddd1.copy() ddd1.process(cat1) drr1.process(cat1, rand_cat1) rdd1.process(rand_cat1, cat1) rrr1.process(rand_cat1) zeta1_list.append(ddd1.calculateZeta(rrr1)[0].ravel()) zeta2_list.append(ddd1.calculateZeta(rrr1, drr1, rdd1)[0].ravel()) print('simple') zeta1_list = np.array(zeta1_list) zeta2, varzeta2 = ddd.calculateZeta(rrr) varzeta1 = np.diagonal(np.cov(zeta1_list.T, bias=True)) * (len(zeta1_list)-1) print('NNN: treecorr jackknife varzeta = ',ddd.varzeta.ravel()) print('NNN: direct jackknife varzeta = ',varzeta1) np.testing.assert_allclose(ddd.varzeta.ravel(), varzeta1) print('compensated') print(zeta2_list) zeta2_list = np.array(zeta2_list) zeta2, varzeta2 = ddd.calculateZeta(rrr, drr=drr, rdd=rdd) varzeta2 = np.diagonal(np.cov(zeta2_list.T, bias=True)) * (len(zeta2_list)-1) print('NNN: treecorr jackknife varzeta = ',ddd.varzeta.ravel()) print('NNN: direct jackknife varzeta = ',varzeta2) np.testing.assert_allclose(ddd.varzeta.ravel(), varzeta2) # Can't do patch calculation with different numbers of patches in rrr, drr, rdd. rand_cat3 = treecorr.Catalog(x=rx, y=ry, npatch=3) cat3 = treecorr.Catalog(x=x, y=y, patch_centers=rand_cat3.patch_centers) rrr3 = rrr.copy() drr3 = drr.copy() rdd3 = rdd.copy() rrr3.process(rand_cat3) drr3.process(cat3, rand_cat3) rdd3.process(rand_cat3, cat3) with assert_raises(RuntimeError): ddd.calculateZeta(rrr3) with assert_raises(RuntimeError): ddd.calculateZeta(rrr3, drr, rdd) with assert_raises(RuntimeError): ddd.calculateZeta(rrr, drr3, rdd3) with assert_raises(RuntimeError): ddd.calculateZeta(rrr, drr, rdd3) with assert_raises(RuntimeError): ddd.calculateZeta(rrr, drr3, rdd) @timer def test_finalize_false(): nsource = 80 nhalo = 100 npatch = 16 # Make three independent data sets rng = np.random.RandomState(8675309) x_1, y_1, g1_1, g2_1, k_1 = generate_shear_field(nsource, nhalo, rng) x_2, y_2, g1_2, g2_2, k_2 = generate_shear_field(nsource, nhalo, rng) x_3, y_3, g1_3, g2_3, k_3 = generate_shear_field(nsource, nhalo, rng) # Make a single catalog with all three together cat = treecorr.Catalog(x=np.concatenate([x_1, x_2, x_3]), y=np.concatenate([y_1, y_2, y_3]), g1=np.concatenate([g1_1, g1_2, g1_3]), g2=np.concatenate([g2_1, g2_2, g2_3]), k=np.concatenate([k_1, k_2, k_3]), npatch=npatch) # Now the three separately, using the same patch centers cat1 = treecorr.Catalog(x=x_1, y=y_1, g1=g1_1, g2=g2_1, k=k_1, patch_centers=cat.patch_centers) cat2 = treecorr.Catalog(x=x_2, y=y_2, g1=g1_2, g2=g2_2, k=k_2, patch_centers=cat.patch_centers) cat3 = treecorr.Catalog(x=x_3, y=y_3, g1=g1_3, g2=g2_3, k=k_3, patch_centers=cat.patch_centers) np.testing.assert_array_equal(cat1.patch, cat.patch[0:nsource]) np.testing.assert_array_equal(cat2.patch, cat.patch[nsource:2*nsource]) np.testing.assert_array_equal(cat3.patch, cat.patch[2*nsource:3*nsource]) # KKK auto kkk1 = treecorr.KKKCorrelation(nbins=3, min_sep=30., max_sep=100., brute=True, min_u=0.8, max_u=1.0, nubins=1, min_v=0., max_v=0.2, nvbins=1) kkk1.process(cat) kkk2 = treecorr.KKKCorrelation(nbins=3, min_sep=30., max_sep=100., brute=True, min_u=0.8, max_u=1.0, nubins=1, min_v=0., max_v=0.2, nvbins=1) kkk2.process(cat1, initialize=True, finalize=False) kkk2.process(cat2, initialize=False, finalize=False) kkk2.process(cat3, initialize=False, finalize=False) kkk2.process(cat1, cat2, initialize=False, finalize=False) kkk2.process(cat1, cat3, initialize=False, finalize=False) kkk2.process(cat2, cat1, initialize=False, finalize=False) kkk2.process(cat2, cat3, initialize=False, finalize=False) kkk2.process(cat3, cat1, initialize=False, finalize=False) kkk2.process(cat3, cat2, initialize=False, finalize=False) kkk2.process(cat1, cat2, cat3, initialize=False, finalize=True) np.testing.assert_allclose(kkk1.ntri, kkk2.ntri) np.testing.assert_allclose(kkk1.weight, kkk2.weight) np.testing.assert_allclose(kkk1.meand1, kkk2.meand1) np.testing.assert_allclose(kkk1.meand2, kkk2.meand2) np.testing.assert_allclose(kkk1.meand3, kkk2.meand3) np.testing.assert_allclose(kkk1.zeta, kkk2.zeta) # KKK cross12 cat23 = treecorr.Catalog(x=np.concatenate([x_2, x_3]), y=np.concatenate([y_2, y_3]), g1=np.concatenate([g1_2, g1_3]), g2=np.concatenate([g2_2, g2_3]), k=np.concatenate([k_2, k_3]), patch_centers=cat.patch_centers) np.testing.assert_array_equal(cat23.patch, cat.patch[nsource:3*nsource]) kkk1.process(cat1, cat23) kkk2.process(cat1, cat2, initialize=True, finalize=False) kkk2.process(cat1, cat3, initialize=False, finalize=False) kkk2.process(cat1, cat2, cat3, initialize=False, finalize=True) np.testing.assert_allclose(kkk1.ntri, kkk2.ntri) np.testing.assert_allclose(kkk1.weight, kkk2.weight) np.testing.assert_allclose(kkk1.meand1, kkk2.meand1) np.testing.assert_allclose(kkk1.meand2, kkk2.meand2)
np.testing.assert_allclose(kkk1.meand3, kkk2.meand3)
numpy.testing.assert_allclose
import requests from bs4 import BeautifulSoup import numpy as np import pandas as pd import selenium from selenium import webdriver from webdriver_manager.chrome import ChromeDriverManager from selenium.common.exceptions import ElementClickInterceptedException import time from selenium.webdriver.common.keys import Keys #------------------------------------------------------------------------------- # Funciones para la obtención de datos def insertNone(datos): """ Función que trata los datos nulos de cada obra :param datos: lista con los datos actuales de la obra :return: lista con todas las variables """ columnas = ["Número de catálogo","Autor","Título","Fecha", "Técnica","Soporte","Dimensión","Serie","Procedencia"] for col in columnas: if col not in datos: indice = columnas.index(col)*2 datos.insert(indice, col) datos.insert(indice + 1, "None") return datos def getPage(srcUrl): """ Extrae la estructura HTML de una página web. :param srcUrl: Página web de la que extraer el contenido, debe ser un enlace web en formato string. :return: Estructura HTML de la web """ pageStr = requests.get(srcUrl) pageCont = BeautifulSoup(pageStr.content, features="html.parser") return pageCont def getLinks(pageCont): """ Extrae los enlaces url dentro de la clase "presentacion-mosaico" de una web a partir de su estructura HTML. :param pageCont: Estructura HTML de una web. :return: lista con los enlaces url mencionados """ mosaico = pageCont.find_all(class_="presentacion-mosaico") links = [] for obra in mosaico: prueba = obra.find('a') links.append(prueba.get("href")) return links def getLinksMax(pageCont,max): """ Extrae los enlaces url dentro de la clase "presentacion-mosaico" de una web a partir de su estructura HTML. Contiene un numero mázimo de links :param pageCont: Estructura HTML de una web. :param max: número maximo de links :return: lista con los enlaces url mencionados """ mosaico = pageCont.find_all(class_="presentacion-mosaico") links = [] len(mosaico) for i in range(max): prueba = mosaico[i].find('a') links.append(prueba.get("href")) return links def getDatos(pageCont): """ Extrae los datos incluidos en la ficha técnica :param pageCont: Estructura HTML de una web :return: Lista con el contenido de la ficha técnica """ ficha = pageCont.find(class_="ficha-tecnica") if ficha is not None: tags = ficha.find_all(['dt', 'dd']) # En dd están los datos de cada pieza y en dt el nombre de la variable elementos = [] for elemento in tags: if elemento.name == "dd": # Contenido cadena = [] for x in elemento.stripped_strings: cadena.append(x) elementos.append("".join(cadena)) else: for z in elemento.stripped_strings: # Etiqueta elementos.append(z) # Añadido de las columnas pendientes, columna de Url y obtención del link if len(elementos) < 18: elementos = insertNone(elementos) elementos.append("UrlImagen") elementos.append(getLinkImage(pageCont)) else: elementos = ["Número de catálogo","","Autor","","Título","","Fecha","", "Técnica","","Soporte","","Dimensión","","Serie","","Procedencia","","UrlImagen",""] return elementos #------------------------------------------------------------------------------- # Funciones para la descarga de imágenes def load_requests(source_url): """ Descarga imagen contenida en source_url :param source_url: :return: None """ r = requests.get(source_url, stream = True) if r.status_code == 200: aSplit = source_url.split('/') ruta = "./img/"+aSplit[len(aSplit)-1] print(ruta) output = open(ruta,"wb") for chunk in r: output.write(chunk) output.close() def getLinkImage(pageCont): """ Extrae el link de la imagen de una obra contenida en pageCont :param pageCont: :return: Link de la imagen de la obra """ linksImagen = [] imagenInfo = pageCont.find(class_="section-viewer") for img in imagenInfo.findAll('img'): # Obtención de todos los img-src linksImagen.append(img.get('src')) return list(filter(None, linksImagen))[0] #------------------------------------------------------------------------------- # Desplegado completo de una página dinámica option = webdriver.ChromeOptions() # Iniciación de la conexión con el navegador option.add_argument("--headless") # Opcion para que no aparezca el navegador # Install Driver driver = webdriver.Chrome(ChromeDriverManager().install(), options = option) webBase = "https://www.museodelprado.es/coleccion/obras-de-arte" driver.get(webBase) try: driver.find_element_by_tag_name('body').send_keys(Keys.END) # Función que permite llegar al final de la pagina web print("Fin pagina") time.sleep(600) # Necesitamos 2000 segundos hasta que la pagina llega al final print("Fin time") except: print("error") # Obtenemos el archivo html para beautifulsoup body = driver.execute_script("return document.body") source = body.get_attribute('innerHTML') # Extraemos la estructura de la página base pagBaseStr = BeautifulSoup(source, "html.parser") driver.close() # Extraemos los links enlacesObras = getLinks(pagBaseStr) numMax = len(enlacesObras) #enlacesObras = getLinksMax(pagBaseStr,numMax) # Extraemos los datos datos = [] inicio = 1 for link in enlacesObras: try: print(inicio,"/",numMax) tempPage = getPage(link) tempData = getDatos(tempPage) if len(tempData)!= 20: print(tempData) datos.append(tempData) inicio += 1 time.sleep(0.5) except Exception as e: print(str(e)) pass datosNP = np.array(datos) for i, _array in enumerate(datosNP): if i == 0: # Sólo se va a ejecutar en la primera iteración luego iniciamos el df tempData = np.reshape(datosNP[i], (10, 2)) # Lista de listas fichaTec = tempData[:, 1] # Extrae la info datosDF = pd.DataFrame(data=[fichaTec], columns=tempData[:, 0]) else: tempData =
np.reshape(datosNP[i], (10, 2))
numpy.reshape
import math import matplotlib.pyplot as plt import numpy as np from scipy.special import expit from decimal import Decimal def sigmoid(z): # SIGMOID Compute sigmoid functoon # J = SIGMOID(z) computes the sigmoid of z. g = np.zeros(z.shape) g = expit(z) return g def sigmoidGradient(z): #SIGMOIDGRADIENT returns the gradient of the sigmoid function #evaluated at z g = 1.0 / (1.0 + np.exp(-z)) g = g * (1 - g) return g def displayData(X, example_width=None): # [h, display_array] = DISPLAYDATA(X, example_width) displays 2D data # stored in X in a nice grid. It returns the figure handle h and the # displayed array if requested. # closes previously opened figure. preventing a # warning after opening too many figures plt.close() # creates new figure plt.figure() # turns 1D X array into 2D if X.ndim == 1: X = np.reshape(X, (-1, X.shape[0])) # Set example_width automatically if not passed in if not example_width or not 'example_width' in locals(): example_width = int(round(math.sqrt(X.shape[1]))) # Gray Image plt.set_cmap("gray") # Compute rows, cols m, n = X.shape example_height = int(n / example_width) # Compute number of items to display display_rows = int(math.floor(math.sqrt(m))) display_cols = int(math.ceil(m / display_rows)) # Between images padding pad = 1 # Setup blank display display_array = -np.ones((pad + display_rows * (example_height + pad), pad + display_cols * (example_width + pad))) # Copy each example into a patch on the display array curr_ex = 1 for j in range(1, display_rows + 1): for i in range(1, display_cols + 1): if curr_ex > m: break # Copy the patch # Get the max value of the patch to normalize all examples max_val = max(abs(X[curr_ex - 1, :])) rows = pad + (j - 1) * (example_height + pad) + np.array(range(example_height)) cols = pad + (i - 1) * (example_width + pad) + np.array(range(example_width)) # Basic (vs. advanced) indexing/slicing is necessary so that we look can assign # values directly to display_array and not to a copy of its subarray. # from stackoverflow.com/a/7960811/583834 and # bytes.com/topic/python/answers/759181-help-slicing-replacing-matrix-sections # Also notice the order="F" parameter on the reshape call - this is because python's # default reshape function uses "C-like index order, with the last axis index # changing fastest, back to the first axis index changing slowest" i.e. # it first fills out the first row/the first index, then the second row, etc. # matlab uses "Fortran-like index order, with the first index changing fastest, # and the last index changing slowest" i.e. it first fills out the first column, # then the second column, etc. This latter behaviour is what we want. # Alternatively, we can keep the deault order="C" and then transpose the result # from the reshape call. display_array[rows[0]:rows[-1] + 1, cols[0]:cols[-1] + 1] = np.reshape(X[curr_ex - 1, :], (example_height, example_width), order="F") / max_val curr_ex += 1 if curr_ex > m: break # Display Image h = plt.imshow(display_array, vmin=-1, vmax=1) # Do not show axis plt.axis('off') plt.show(block=False) return h, display_array def nnCostFunction(nn_params, input_layer_size, hidden_layer_size, \ num_labels, X, y, lambda_reg): # NNCOSTFUNCTION Implements the neural network cost function for a two layer # neural network which performs classification # [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ... # X, y, lambda) computes the cost and gradient of the neural network. The # parameters for the neural network are "unrolled" into the vector # nn_params and need to be converted back into the weight matrices. # # The returned parameter grad should be a "unrolled" vector of the # partial derivatives of the neural network. # Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices # for our 2 layer neural network Theta1 = np.reshape(nn_params[:hidden_layer_size * (input_layer_size + 1)], \ (hidden_layer_size, input_layer_size + 1), order='F') Theta2 = np.reshape(nn_params[hidden_layer_size * (input_layer_size + 1):], \ (num_labels, hidden_layer_size + 1), order='F') # Setup some useful variables m = len(X) # # You need to return the following variables correctly J = 0; Theta1_grad = np.zeros(Theta1.shape) Theta2_grad = np.zeros(Theta2.shape) # ====================== YOUR CODE HERE ====================== # Instructions: You should complete the code by working through the # following parts. # # Part 1: Feedforward the neural network and return the cost in the # variable J. After implementing Part 1, you can verify that your # cost function computation is correct by verifying the cost # computed in ex4.m # # Part 2: Implement the backpropagation algorithm to compute the gradients # Theta1_grad and Theta2_grad. You should return the partial derivatives of # the cost function with respect to Theta1 and Theta2 in Theta1_grad and # Theta2_grad, respectively. After implementing Part 2, you can check # that your implementation is correct by running checkNNGradients # # Note: The vector y passed into the function is a vector of labels # containing values from 1..K. You need to map this vector into a # binary vector of 1's and 0's to be used with the neural network # cost function. # # Hint: We recommend implementing backpropagation using a for-loop # over the training examples if you are implementing it for the # first time. # # Part 3: Implement regularization with the cost function and gradients. # # Hint: You can implement this around the code for # backpropagation. That is, you can compute the gradients for # the regularization separately and then add them to Theta1_grad # and Theta2_grad from Part 2. # # add column of ones as bias unit from input layer to second layer X = np.column_stack((np.ones((m, 1)), X)) # = a1 # calculate second layer as sigmoid( z2 ) where z2 = Theta1 * a1 a2 = sigmoid(np.dot(X, Theta1.T)) # add column of ones as bias unit from second layer to third layer a2 = np.column_stack((np.ones((a2.shape[0], 1)), a2)) # calculate third layer as sigmoid ( z3 ) where z3 = Theta2 * a2 a3 = sigmoid(np.dot(a2, Theta2.T)) # %% COST FUNCTION CALCULATION # % NONREGULARIZED COST FUNCTION # recode labels as vectors containing only values 0 or 1 labels = y # set y to be matrix of size m x k y = np.zeros((m, num_labels)) # for every label, convert it into vector of 0s and a 1 in the appropriate position for i in range(m): y[i, labels[i] - 1] = 1 # at this point, both a3 and y are m x k matrices, where m is the number of inputs # and k is the number of hypotheses. Given that the cost function is a sum # over m and k, loop over m and in each loop, sum over k by doing a sum over the row cost = 0 for i in range(m): cost += np.sum(y[i] * np.log(a3[i]) + (1 - y[i]) *
np.log(1 - a3[i])
numpy.log
import json import numpy as np from scipy.constants import e as qe from scipy.constants import m_p import xpart as xp bunch_intensity = 1e11 sigma_z = 22.5e-2 n_part = int(5e6) nemitt_x = 2e-6 nemitt_y = 2.5e-6 filename = ('../../xtrack/test_data/sps_w_spacecharge/' 'optics_and_co_at_start_ring.json') with open(filename, 'r') as fid: ddd = json.load(fid) RR = np.array(ddd['RR_madx']) part_on_co = xp.Particles.from_dict(ddd['particle_on_madx_co']) part = xp.generate_matched_gaussian_bunch( num_particles=n_part, total_intensity_particles=bunch_intensity, nemitt_x=nemitt_x, nemitt_y=nemitt_y, sigma_z=sigma_z, particle_ref=part_on_co, R_matrix=RR, circumference=6911., alpha_momentum_compaction=0.0030777, rf_harmonic=4620, rf_voltage=3e6, rf_phase=0) # CHECKS y_rms = np.std(part.y) py_rms =
np.std(part.py)
numpy.std
import dataclasses import os import typing from copy import deepcopy from io import BytesIO from pathlib import Path import numpy as np from PartSegCore.algorithm_describe_base import AlgorithmProperty from PartSegCore.analysis.io_utils import ProjectTuple from PartSegCore.analysis.save_functions import SaveCmap from PartSegCore.channel_class import Channel from PartSegCore.io_utils import SaveBase, SaveROIAsNumpy, SaveROIAsTIFF from PartSegCore.roi_info import ROIInfo from PartSegCore.universal_const import Units class SaveModeling(SaveBase): @classmethod def get_fields(cls) -> typing.List[typing.Union[AlgorithmProperty, str]]: return [ AlgorithmProperty("channel", "Channel", 0, value_type=Channel), AlgorithmProperty("clip", "Clip area", False), AlgorithmProperty( "reverse", "Reverse", False, help_text="Reverse brightness off image (for electron microscopy)" ), AlgorithmProperty("units", "Units", Units.nm, value_type=Units), ] @classmethod def get_name(cls): return "Modeling Data" @classmethod def get_default_extension(cls): return "" @classmethod def get_short_name(cls): return "modeling data" @classmethod def save( cls, save_location: typing.Union[str, BytesIO, Path], project_info: ProjectTuple, parameters: dict, range_changed=None, step_changed=None, ): if not os.path.exists(save_location): os.makedirs(save_location) if not os.path.isdir(save_location): raise OSError("save location exist and is not a directory") parameters = deepcopy(parameters) if parameters["clip"]: points = np.nonzero(project_info.roi_info.roi) lower_bound =
np.min(points, axis=1)
numpy.min
from __future__ import print_function, division import os, sys, warnings, platform from time import time import numpy as np if "PyPy" not in platform.python_implementation(): from scipy.io import loadmat, savemat from Florence.Tensor import makezero, itemfreq, unique2d, in2d from Florence.Utils import insensitive from .vtk_writer import write_vtu try: import meshpy.triangle as triangle has_meshpy = True except ImportError: has_meshpy = False from .HigherOrderMeshing import * from .NodeArrangement import * from .GeometricPath import * from warnings import warn from copy import deepcopy """ Mesh class providing most of the pre-processing functionalities of the Core module <NAME> - 13/06/2015 """ class Mesh(object): """Mesh class provides the following functionalities: 1. Generating higher order meshes based on a linear mesh, for tris, tets, quads and hexes 2. Generating linear tri and tet meshes based on meshpy back-end 3. Generating linear tri meshes based on distmesh back-end 4. Finding bounary edges and faces for tris and tets, in case they are not provided by the mesh generator 5. Reading Salome meshes in binary (.dat/.txt/etc) format 6. Reading gmsh files .msh 7. Checking for node numbering order of elements and fixing it if desired 8. Writing meshes to unstructured vtk file format (.vtu) in xml and binary formats, including high order elements """ def __init__(self, element_type=None): super(Mesh, self).__init__() # self.faces and self.edges ARE BOUNDARY FACES # AND BOUNDARY EDGES, RESPECTIVELY self.degree = None self.ndim = None self.edim = None self.nelem = None self.nnode = None self.elements = None self.points = None self.corners = None self.edges = None self.faces = None self.element_type = element_type self.face_to_element = None self.edge_to_element = None self.boundary_edge_to_element = None self.boundary_face_to_element = None self.all_faces = None self.all_edges = None self.interior_faces = None self.interior_edges = None # TYPE OF BOUNDARY FACES/EDGES self.boundary_element_type = None # FOR GEOMETRICAL CURVES/SURFACES self.edge_to_curve = None self.face_to_surface = None self.spatial_dimension = None self.reader_type = None self.reader_type_format = None self.reader_type_version = None self.writer_type = None self.filename = None # self.has_meshpy = has_meshpy def SetElements(self,arr): self.elements = arr def SetPoints(self,arr): self.points = arr def SetEdges(self,arr): self.edges = arr def SetFaces(self,arr): self.faces = arr def GetElements(self): return self.elements def GetPoints(self): return self.points def GetEdges(self): assert self.element_type is not None if self.element_type == "tri": self.GetEdgesTri() elif self.element_type == "quad": self.GetEdgesQuad() elif self.element_type == "pent": self.GetEdgesPent() elif self.element_type == "tet": self.GetEdgesTet() elif self.element_type == "hex": self.GetEdgesHex() else: raise ValueError('Type of element not understood') return self.all_edges def GetBoundaryEdges(self): assert self.element_type is not None if self.element_type == "tri": self.GetBoundaryEdgesTri() elif self.element_type == "quad": self.GetBoundaryEdgesQuad() elif self.element_type == "pent": self.GetBoundaryEdgesPent() elif self.element_type == "tet": self.GetBoundaryEdgesTet() elif self.element_type == "hex": self.GetBoundaryEdgesHex() else: raise ValueError('Type of element not understood') return self.edges def GetInteriorEdges(self): assert self.element_type is not None if self.element_type == "tri": self.GetInteriorEdgesTri() elif self.element_type == "quad": self.GetInteriorEdgesQuad() elif self.element_type == "pent": self.GetInteriorEdgesPent() elif self.element_type == "tet": self.GetInteriorEdgesTet() elif self.element_type == "hex": self.GetInteriorEdgesHex() else: raise ValueError('Type of element not understood') return self.interior_edges def GetFaces(self): assert self.element_type is not None if self.element_type == "tet": self.GetFacesTet() elif self.element_type == "hex": self.GetFacesHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.all_faces def GetBoundaryFaces(self): assert self.element_type is not None if self.element_type == "tet": self.GetBoundaryFacesTet() elif self.element_type == "hex": self.GetBoundaryFacesHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.faces def GetInteriorFaces(self): assert self.element_type is not None if self.element_type == "tet": self.GetInteriorFacesTet() elif self.element_type == "hex": self.GetInteriorFacesHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.interior_faces def GetElementsEdgeNumbering(self): assert self.element_type is not None if self.element_type == "tri": return self.GetElementsEdgeNumberingTri() elif self.element_type == "quad": return self.GetElementsEdgeNumberingQuad() else: raise ValueError('Type of element not understood') return self.edge_to_element def GetElementsWithBoundaryEdges(self): assert self.element_type is not None if self.element_type == "tri": return self.GetElementsWithBoundaryEdgesTri() elif self.element_type == "quad": return self.GetElementsWithBoundaryEdgesQuad() else: raise ValueError('Type of element not understood') return self.boundary_edge_to_element def GetElementsFaceNumbering(self): assert self.element_type is not None if self.element_type == "tet": return self.GetElementsFaceNumberingTet() elif self.element_type == "hex": return self.GetElementsFaceNumberingHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.face_to_element def GetElementsWithBoundaryFaces(self): assert self.element_type is not None if self.element_type == "tet": return self.GetElementsWithBoundaryFacesTet() elif self.element_type == "hex": return self.GetElementsWithBoundaryFacesHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.boundary_face_to_element @property def Bounds(self): """Returns bounds of a mesh i.e. the minimum and maximum coordinate values in every direction """ assert self.points is not None if self.points.shape[1] == 3: bounds = np.array([[np.min(self.points[:,0]), np.min(self.points[:,1]), np.min(self.points[:,2])], [np.max(self.points[:,0]), np.max(self.points[:,1]), np.max(self.points[:,2])]]) makezero(bounds) return bounds elif self.points.shape[1] == 2: bounds = np.array([[np.min(self.points[:,0]), np.min(self.points[:,1])], [np.max(self.points[:,0]), np.max(self.points[:,1])]]) makezero(bounds) return bounds elif self.points.shape[1] == 1: bounds = np.array([[np.min(self.points[:,0])], [np.max(self.points[:,0])]]) makezero(bounds) return bounds else: raise ValueError("Invalid dimension for mesh coordinates") def GetEdgesTri(self): """Find all edges of a triangular mesh. Sets all_edges property and returns it returns: arr: numpy ndarray of all edges""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_edges.shape[1]==2 and p > 1: pass else: return self.all_edges node_arranger = NodeArrangementTri(p-1)[0] # CHECK IF FACES ARE ALREADY AVAILABLE if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1 and self.all_edges.shape[1] == p+1: warn("Mesh edges seem to be already computed. I am going to recompute them") # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY edges = np.zeros((3*self.elements.shape[0],p+1),dtype=np.uint64) edges[:self.elements.shape[0],:] = self.elements[:,node_arranger[0,:]] edges[self.elements.shape[0]:2*self.elements.shape[0],:] = self.elements[:,node_arranger[1,:]] edges[2*self.elements.shape[0]:,:] = self.elements[:,node_arranger[2,:]] # REMOVE DUPLICATES edges, idx = unique2d(edges,consider_sort=True,order=False,return_index=True) edge_to_element = np.zeros((edges.shape[0],2),np.int64) edge_to_element[:,0] = idx % self.elements.shape[0] edge_to_element[:,1] = idx // self.elements.shape[0] self.edge_to_element = edge_to_element # DO NOT SET all_edges IF THE CALLER FUNCTION IS GetBoundaryEdgesTet import inspect curframe = inspect.currentframe() calframe = inspect.getouterframes(curframe, 2)[1][3] if calframe != "GetBoundaryEdgesTet": self.all_edges = edges return edges def GetBoundaryEdgesTri(self): """Find boundary edges (lines) of triangular mesh""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.edges,np.ndarray): if self.edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.edges.shape[1] == 2 and p > 1: pass else: return node_arranger = NodeArrangementTri(p-1)[0] # CONCATENATE ALL THE EDGES MADE FROM ELEMENTS all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]]),axis=0) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_edges,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY EDGES freqs_inv = itemfreq(inv) edges_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED self.edges = uniques[edges_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_edge_to_element = np.zeros((edges_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF EDGES all_edges_in_edges = in2d(all_edges,self.edges,consider_sort=True) all_edges_in_edges = np.where(all_edges_in_edges==True)[0] boundary_edge_to_element[:,0] = all_edges_in_edges % self.elements.shape[0] boundary_edge_to_element[:,1] = all_edges_in_edges // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.edges = self.elements[boundary_edge_to_element[:,0][:,None],node_arranger[boundary_edge_to_element[:,1],:]] self.edges = self.edges.astype(np.uint64) self.boundary_edge_to_element = boundary_edge_to_element return self.edges def GetInteriorEdgesTri(self): """Computes interior edges of a triangular mesh returns: interior_edges ndarray of interior edges edge_flags ndarray of edge flags: 0 for interior and 1 for boundary """ if not isinstance(self.all_edges,np.ndarray): self.GetEdgesTri() if not isinstance(self.edges,np.ndarray): self.GetBoundaryEdgesTri() sorted_all_edges = np.sort(self.all_edges,axis=1) sorted_boundary_edges = np.sort(self.edges,axis=1) x = [] for i in range(self.edges.shape[0]): current_sorted_boundary_edge = np.tile(sorted_boundary_edges[i,:], self.all_edges.shape[0]).reshape(self.all_edges.shape[0],self.all_edges.shape[1]) interior_edges = np.linalg.norm(current_sorted_boundary_edge - sorted_all_edges,axis=1) pos_interior_edges = np.where(interior_edges==0)[0] if pos_interior_edges.shape[0] != 0: x.append(pos_interior_edges) edge_aranger = np.arange(self.all_edges.shape[0]) edge_aranger = np.setdiff1d(edge_aranger,
np.array(x)
numpy.array
import numpy as np from prml.linear.classifier import Classifier from prml.rv.gaussian import Gaussian class LinearDiscriminantAnalyzer(Classifier): """ Linear discriminant analysis model """ def _fit(self, X, t, clip_min_norm=1e-10): self._check_input(X) self._check_target(t) self._check_binary(t) X0 = X[t == 0] X1 = X[t == 1] m0 = np.mean(X0, axis=0) m1 =
np.mean(X1, axis=0)
numpy.mean
#!/usr/bin/env python import argparse import sys parser = argparse.ArgumentParser(description="") parser.add_argument("--bam", "-s", help="input bam file + index mapping contigs to location wehre original PSVs were called") parser.add_argument("--psvs", "-p", nargs='+', help="List of vcf files describing the different PSVs, must have form, group.{\d+}.vcf", type=argparse.FileType('r')) parser.add_argument("--check", help="Add an input fasta file (ASM.assemblies.fasta) to check if the PSV values are correct", default = None) parser.add_argument("outfile",nargs="?", help="output table file", type=argparse.FileType('w'), default=sys.stdout) parser.add_argument('-d', action="store_true", default=False) args = parser.parse_args() import pysam import re import pandas as pd import numpy as np complement = {"A":"T", "T":"A", "G":"C", "C":"G", "N":"N"} def readPsvs(): dfs = [] for myfile in args.psvs: match = re.match(".+\.(\d+)\.vcf", myfile.name) assert match is not None group = int(match.group(1)) df = pd.read_table(myfile, comment="#", header = None) df = df[[0, 1, 3, 4]] df.columns = ["contig", "pos", "ref", "alt"] df["group"] = group # change from one to zero based indexing df["pos"] = df["pos"] - 1 df["group"] = group dfs.append(df) rtn = pd.concat(dfs) return(rtn) def readAlns(): samfile = pysam.AlignmentFile(args.bam) alns = {} for alnSeg in samfile.fetch(until_eof=True): qpos, rpos = zip(*alnSeg.get_aligned_pairs()) rpos = np.array(rpos) qpos =
np.array(qpos)
numpy.array
#!/usr/bin/env python # The MIT License (MIT) # # Copyright (c) 2016 <NAME>, National Institutes of Health / NINDS # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Script / command line tool for merging supervoxels into single labels that # were manually merged using the knossos standalone tool (annotation file). #import numpy as np import time import argparse import os from io import StringIO import zipfile import glob import numpy as np from scipy import ndimage as nd import scipy.ndimage.filters as filters from dpCubeIter import dpCubeIter from utils.typesh5 import emLabels from dpWriteh5 import dpWriteh5 from dpLoadh5 import dpLoadh5 class dpLabelMerger(emLabels): # Constants LIST_ARGS = dpLoadh5.LIST_ARGS + dpCubeIter.LIST_ARGS + ['segmentation_values'] # type to use for all processing operations PDTYPE = np.double def __init__(self, args): emLabels.__init__(self,args) # save the command line argument dict as a string out = StringIO(); print( vars(args), file=out ) self.arg_str = out.getvalue(); out.close() # xxx - meh, need to fix this if not self.data_type_out: self.data_type_out = self.data_type assert( len(self.fileprefixes) == 1 and len(self.filepaths) == 1 ) # prefix / path for h5 label inputs only self.segmentation_levels = len(self.segmentation_values) # print out all initialized variables in verbose mode if self.dpLabelMerger_verbose: print('dpLabelMerger, verbose mode:\n'); print(vars(self)) # copied this out of dpResample.py, but all dims resampled self.nresample_dims = 3 self.nslices = self.dsfactor**self.nresample_dims self.slices = [None]*self.nslices; f = self.dsfactor; ff = f*f for i in range(f): for j in range(f): for k in range(f): self.slices[i*ff + j*f + k] = np.s_[i::f,j::f,k::f] assert(self.contour_lvl >= 0 and self.contour_lvl < 1) # bad choice def doMerging(self): volume_init = False cur_volume = np.zeros((4,), dtype=np.uint32) W = np.ones(self.smooth, dtype=self.PDTYPE) / self.smooth.prod() # smoothing kernel for s in range(self.segmentation_levels): self.cubeIter = dpCubeIter.cubeIterGen(self.volume_range_beg,self.volume_range_end,self.overlap, self.cube_size, chunksize=self.chunksize, left_remainder_size=self.left_remainder_size, right_remainder_size=self.right_remainder_size, leave_edge=self.leave_edge) self.subgroups[-1] = self.segmentation_values[s] cur_volume[3] = s for self.volume_info,n in zip(self.cubeIter, range(self.cubeIter.volume_size)): cur_volume[:3], self.size, self.chunk, self.offset, suffixes, _, _, _, _ = self.volume_info self.srcfile = os.path.join(self.filepaths[0], self.fileprefixes[0] + suffixes[0] + '.h5') self.inith5() # only load superchunks that contain some object supervoxels ind = np.ravel_multi_index(cur_volume, self.volume_step_seg) if len(self.sc_to_objs[ind]) < 1: continue if self.dpLabelMerger_verbose: print('Merge in chunk %d %d %d, seglevel %d' % tuple(self.chunk.tolist() + [s])); t = time.time() self.readCubeToBuffers() cube = self.data_cube; cur_ncomps = self.data_attrs['types_nlabels'].sum() # xxx - writing to an hdf5 file in chunks or as a single volume from memory does not necessarily # need to be tied to dsfactor==1, can add another command-line option for this. if not volume_init: if self.dsfactor > 1: volume_init=True; f = self.dsfactor new_attrs = self.data_attrs # changed this to be added when raw hdf5 is created if 'factor' not in new_attrs: new_attrs['factor'] = np.ones((dpLoadh5.ND,),dtype=np.double) new_datasize = self.datasize.copy() if 'boundary' in new_attrs: # proxy for whether attrs is there at all # update the scale and compute new chunk/size/offset new_attrs['scale'] *= f; new_attrs['boundary'] //= f new_attrs['nchunks'] = np.ceil(new_attrs['nchunks'] / f).astype(np.int32) # this attribute is saved as downsample factor new_attrs['factor'] *= f; new_datasize //= f new_data = np.zeros(new_datasize, dtype=self.data_type_out) else: # initialize by just writing a small chunk of zeros self.inith5() self.data_attrs['types_nlabels'] = [self.nobjects] self.fillvalue = 0 # non-zero fill value not useful for merged "neurons" # xxx - this probably should be cleaned up, see comments in dpWriteh5.py orig_dataset = self.dataset; orig_subgroups = self.subgroups; orig_offset = self.offset self.writeCube(data=np.zeros((32,32,32), dtype=self.data_type_out)) # reopen the dataset and write to it dynamically below dset, group, h5file = self.createh5(self.outfile) # xxx - this probably should be cleaned up, see comments in dpWriteh5.py self.dataset = orig_dataset; self.subgroups = orig_subgroups; self.offset = orig_offset # much of this code copied from the label mesher, extract supervoxel and smooth # Pad data with zeros so that meshes are closed on the edges sizes = np.array(cube.shape); r = self.smooth.max() + 1; sz = sizes + 2*r; dataPad = np.zeros(sz, dtype=self.data_type); dataPad[r:sz[0]-r, r:sz[1]-r, r:sz[2]-r] = cube # get bounding boxes for all supervoxels in this volume svox_bnd = nd.measurements.find_objects(dataPad, cur_ncomps) for cobj in self.sc_to_objs[ind]: #self.mergelists[cobj] = {'ids':allids[:,0], 'scids':allids[:,1:5], 'inds':inds} cinds = np.nonzero(ind == self.mergelists[cobj]['inds'])[0] for j in cinds: cid = self.mergelists[cobj]['ids'][j] cur_bnd = svox_bnd[cid-1] imin = np.array([x.start for x in cur_bnd]); imax = np.array([x.stop-1 for x in cur_bnd]) # min and max coordinates of this seed within zero padded cube pmin = imin - r; pmax = imax + r; # min coordinates of this seed relative to original (non-padded cube) mins = pmin - r; rngs = pmax - pmin + 1 crpdpls = (dataPad[pmin[0]:pmax[0]+1,pmin[1]:pmax[1]+1, pmin[2]:pmax[2]+1] == cid).astype(self.PDTYPE) if W.size==0 or (W==1).all(): crpdplsSm = crpdpls else: crpdplsSm = filters.convolve(crpdpls, W, mode='reflect', cval=0.0, origin=0) # if smoothing results in nothing above contour level, use original without smoothing if (crpdplsSm > self.contour_lvl).any(): del crpdpls; crpdpls = crpdplsSm del crpdplsSm # save bounds relative to entire dataset bounds_beg = mins + self.dataset_index #bounds_end = mins + rngs - 1 + self.dataset_index; bounds_end = mins + rngs + self.dataset_index; # exclusive end, python-style if self.dsfactor > 1: # downsample the smoothed supervoxel and assign it in the new downsampled volume b = bounds_beg.copy(); b //= f # stupid integer arithmetic, need to add 1 if it's not a multiple of the ds factor e = b + (bounds_end-bounds_beg)//f + ((bounds_end-bounds_beg)%f != 0) new_data[b[0]:e[0],b[1]:e[1],b[2]:e[2]][crpdpls[self.slices[0]] > self.contour_lvl] = cobj else: # write non-downsampled directly to h5 output file b = bounds_beg; e = b + (bounds_end-bounds_beg) # this is hard-coded to write the dataset in F-order (normal convention). tmp =
np.transpose(dset[b[2]:e[2],b[1]:e[1],b[0]:e[0]], (2,1,0))
numpy.transpose
""" Test mesh operations """ import pytest import os import numpy as np import shutil import gzip import vtk from vtk.util.vtkConstants import VTK_TRIANGLE, VTK_LINE, VTK_VERTEX from brainspace.vtk_interface import wrap_vtk from brainspace.vtk_interface.wrappers import BSPolyData from brainspace.mesh import mesh_io as mio from brainspace.mesh import mesh_elements as me from brainspace.mesh import mesh_creation as mc from brainspace.mesh import mesh_operations as mop from brainspace.mesh import mesh_cluster as mcluster from brainspace.mesh import array_operations as aop parametrize = pytest.mark.parametrize try: import nibabel as nb except ImportError: nb = None def _generate_sphere(): s = vtk.vtkSphereSource() s.Update() return wrap_vtk(s.GetOutput()) @parametrize('ext', ['fs', 'asc', 'ply', 'vtp', 'vtk']) def test_io(ext): s = _generate_sphere() root_pth = os.path.dirname(__file__) io_pth = os.path.join(root_pth, 'test_sphere_io.{ext}').format(ext=ext) mio.write_surface(s, io_pth) s2 = mio.read_surface(io_pth) io_gz_pth = os.path.join(root_pth, 'test_sphere_io.{ext}.gz').format(ext=ext) with open(io_pth, 'rb') as f1: with gzip.open(io_gz_pth, 'wb') as f2: shutil.copyfileobj(f1, f2) s3 = mio.read_surface(io_gz_pth) assert np.allclose(s.Points, s2.Points) assert np.all(s.GetCells2D() == s2.GetCells2D()) assert np.allclose(s.Points, s3.Points) assert np.all(s.GetCells2D() == s3.GetCells2D()) os.remove(io_pth) os.remove(io_gz_pth) @pytest.mark.skipif(nb is None, reason="Requires nibabel") def test_io_nb(): s = _generate_sphere() root_pth = os.path.dirname(__file__) io_pth = os.path.join(root_pth, 'test_sphere_io.gii') mio.write_surface(s, io_pth) s2 = mio.read_surface(io_pth) assert np.allclose(s.Points, s2.Points) assert np.all(s.GetCells2D() == s2.GetCells2D()) os.remove(io_pth) def test_mesh_creation(): st = _generate_sphere() sl = mc.to_lines(st) sv = mc.to_vertex(st) # build polydata with points and triangle cells pd = mc.build_polydata(st.Points, cells=st.GetCells2D()) assert pd.n_points == st.n_points assert pd.n_cells == st.n_cells assert np.all(pd.cell_types == np.array([VTK_TRIANGLE])) assert isinstance(pd, BSPolyData) # build polydata with points vertices by default pd = mc.build_polydata(st.Points) assert pd.n_points == st.n_points assert pd.n_cells == 0 assert np.all(pd.cell_types == np.array([VTK_VERTEX])) assert isinstance(pd, BSPolyData) # build polydata with points vertices pd = mc.build_polydata(st.Points, cells=sv.GetCells2D()) assert pd.n_points == st.n_points assert pd.n_cells == st.n_points assert np.all(pd.cell_types == np.array([VTK_VERTEX])) assert isinstance(pd, BSPolyData) # build polydata with lines pd = mc.build_polydata(st.Points, cells=sl.GetCells2D()) assert pd.n_points == sl.n_points assert pd.n_cells == sl.n_cells assert np.all(pd.cell_types == np.array([VTK_LINE])) assert isinstance(pd, BSPolyData) @pytest.mark.xfail def test_drop_cells(): s = _generate_sphere() rs = np.random.RandomState(0) label_cells = rs.randint(0, 10, s.n_cells) cell_name = s.append_array(label_cells, at='c') n_cells = mop.drop_cells(s, cell_name, upp=3).n_cells assert n_cells == np.count_nonzero(label_cells > 3) def test_select_cells(): s = _generate_sphere() rs = np.random.RandomState(0) label_cells = rs.randint(0, 10, s.n_cells) cell_name = s.append_array(label_cells, at='c') n_cells = mop.select_cells(s, cell_name, low=0, upp=3).n_cells assert n_cells == np.count_nonzero(label_cells <= 3) def test_mask_cells(): s = _generate_sphere() rs = np.random.RandomState(0) label_cells = rs.randint(0, 10, s.n_cells) # Warns when array is boolean with pytest.warns(UserWarning): mask_cell_name = s.append_array(label_cells > 3, at='c') n_cells = mop.mask_cells(s, mask_cell_name).n_cells assert n_cells == np.count_nonzero(label_cells > 3) @pytest.mark.xfail def test_drop_points(): s = _generate_sphere() rs = np.random.RandomState(0) label_points = rs.randint(0, 10, s.n_points) point_name = s.append_array(label_points, at='p') # Warns cause number of selected points may not coincide with # selected points with pytest.warns(UserWarning): n_pts = mop.drop_points(s, point_name, low=0, upp=3).n_points assert n_pts <= s.n_points def test_select_points(): s = _generate_sphere() rs = np.random.RandomState(0) label_points = rs.randint(0, 10, s.n_points) point_name = s.append_array(label_points, at='p') with pytest.warns(UserWarning): n_pts = mop.select_points(s, point_name, low=0, upp=3).n_points assert n_pts <= s.n_points def test_mask_points(): s = _generate_sphere() rs = np.random.RandomState(0) label_points = rs.randint(0, 10, s.n_points) with pytest.warns(UserWarning): mask_point_name = s.append_array(label_points > 3, at='p') with pytest.warns(UserWarning): n_pts = mop.mask_points(s, mask_point_name).n_points assert n_pts <= s.n_points def test_mesh_elements(): s = _generate_sphere() ee = vtk.vtkExtractEdges() ee.SetInputData(s.VTKObject) ee.Update() ee = wrap_vtk(ee.GetOutput()) n_edges = ee.n_cells assert np.all(me.get_points(s) == s.Points) assert np.all(me.get_cells(s) == s.GetCells2D()) assert me.get_extent(s).shape == (3,) pc = me.get_point2cell_connectivity(s) assert pc.shape == (s.n_points, s.n_cells) assert pc.dtype == np.uint8 assert np.all(pc.sum(axis=0) == 3) cp = me.get_cell2point_connectivity(s) assert pc.dtype == np.uint8 assert (pc - cp.T).nnz == 0 adj = me.get_immediate_adjacency(s) assert adj.shape == (s.n_points, s.n_points) assert adj.dtype == np.uint8 assert adj.nnz == (2*n_edges + s.n_points) adj2 = me.get_immediate_adjacency(s, include_self=False) assert adj2.shape == (s.n_points, s.n_points) assert adj2.dtype == np.uint8 assert adj2.nnz == (2 * n_edges) radj = me.get_ring_adjacency(s) assert radj.dtype == np.uint8 assert (adj - radj).nnz == 0 radj2 = me.get_ring_adjacency(s, include_self=False) assert radj2.dtype == np.uint8 assert (adj2 - radj2).nnz == 0 radj3 = me.get_ring_adjacency(s, n_ring=2, include_self=False) assert radj3.dtype == np.uint8 assert (radj3 - adj2).nnz > 0 d = me.get_immediate_distance(s) assert d.shape == (s.n_points, s.n_points) assert d.dtype == np.float assert d.nnz == adj2.nnz d2 = me.get_immediate_distance(s, metric='sqeuclidean') d_sq = d.copy() d_sq.data **= 2 assert np.allclose(d_sq.A, d2.A) rd = me.get_ring_distance(s) assert rd.dtype == np.float assert np.allclose(d.A, rd.A) rd2 = me.get_ring_distance(s, n_ring=2) assert (rd2 - d).nnz > 0 assert me.get_cell_neighbors(s).shape == (s.n_cells, s.n_cells) assert me.get_edges(s).shape == (n_edges, 2) assert me.get_edge_length(s).shape == (n_edges,) assert me.get_boundary_points(s).size == 0 assert me.get_boundary_edges(s).size == 0 assert me.get_boundary_cells(s).size == 0 def test_mesh_cluster(): s = _generate_sphere() cl_size = 10 nc = s.n_points // cl_size cl, cc = mcluster.cluster_points(s, n_clusters=nc, random_state=0) assert np.all(cl > 0) assert np.unique(cl).size == nc assert np.unique(cl).size == np.unique(cc).size - 1 cl2 = mcluster.cluster_points(s, n_clusters=nc, with_centers=False, random_state=0) assert np.all(cl == cl2) cl3, _ = mcluster.cluster_points(s, n_clusters=cl_size, is_size=True, random_state=0) assert np.all(cl == cl3) cl4, cc4 = mcluster.cluster_points(s, n_clusters=nc, approach='ward', random_state=0) assert np.all(cl4 > 0) assert np.unique(cl4).size == nc assert np.unique(cl4).size == np.unique(cc4).size - 1 sp = mcluster.sample_points_clustering(s, random_state=0) assert np.count_nonzero(sp) == int(s.n_points * 0.1) sp2 = mcluster.sample_points_clustering(s, keep=0.2, approach='ward', random_state=0) assert np.count_nonzero(sp2) == int(s.n_points * 0.2) def test_array_operations(): s = _generate_sphere() # Cell area area = aop.compute_cell_area(s) assert isinstance(area, np.ndarray) assert area.shape == (s.n_cells, ) s2 = aop.compute_cell_area(s, append=True, key='CellArea') assert s is s2 assert np.allclose(s2.CellData['CellArea'], area) # Cell centers centers = aop.compute_cell_center(s) assert isinstance(centers, np.ndarray) assert centers.shape == (s.n_cells, 3) s2 = aop.compute_cell_center(s, append=True, key='CellCenter') assert s is s2 assert np.allclose(s2.CellData['CellCenter'], centers) # Adjacent cells n_adj = aop.get_n_adjacent_cells(s) assert isinstance(n_adj, np.ndarray) assert n_adj.shape == (s.n_points,) s2 = aop.get_n_adjacent_cells(s, append=True, key='NAdjCells') assert s is s2 assert np.all(s2.PointData['NAdjCells'] == n_adj) # map cell data to point data area2 = aop.map_celldata_to_pointdata(s, area) area3 = aop.map_celldata_to_pointdata(s, 'CellArea', red_func='mean') assert area.dtype == area2.dtype assert area.dtype == area3.dtype assert np.allclose(area2, area3) area4 = aop.map_celldata_to_pointdata(s, 'CellArea', red_func='mean', dtype=np.float32) assert area4.dtype == np.float32 for op in ['sum', 'mean', 'mode', 'one_third', 'min', 'max']: ap = aop.map_celldata_to_pointdata(s, 'CellArea', red_func=op) assert ap.shape == (s.n_points,) name = 'CellArea_{}'.format(op) s2 = aop.map_celldata_to_pointdata(s, 'CellArea', red_func=op, append=True, key=name) assert np.allclose(s2.PointData[name], ap) # map point data to cell data fc = aop.map_pointdata_to_celldata(s, n_adj) fc2 = aop.map_pointdata_to_celldata(s, 'NAdjCells', red_func='mean') assert fc.dtype == fc2.dtype assert fc.dtype == fc2.dtype assert np.allclose(fc, fc2) fc3 = aop.map_pointdata_to_celldata(s, 'NAdjCells', red_func='mean', dtype=np.float32) assert fc3.dtype == np.float32 for op in ['sum', 'mean', 'mode', 'one_third', 'min', 'max']: ac = aop.map_pointdata_to_celldata(s, 'NAdjCells', red_func=op) assert ac.shape == (s.n_cells,) name = 'NAdjCells_{}'.format(op) s2 = aop.map_pointdata_to_celldata(s, 'NAdjCells', red_func=op, append=True, key=name) assert np.allclose(s2.CellData[name], ac) # Point area area = aop.compute_point_area(s) assert isinstance(area, np.ndarray) assert area.shape == (s.n_points, ) s2 = aop.compute_point_area(s, append=True, key='PointArea') assert s is s2 assert np.allclose(s2.PointData['PointArea'], area) s2 = aop.compute_point_area(s, cell_area='CellArea', append=True, key='PointArea2') assert s is s2 assert np.allclose(s2.PointData['PointArea2'], area) # Connected components cc = mop.get_connected_components(s) assert cc.shape == (s.n_points, ) assert np.unique(cc).size == 1 s2 = mop.get_connected_components(s, append=True, key='components') assert s is s2 assert np.all(cc == s2.PointData['components']) # labeling border labeling = (s.Points[:, 0] > s.Points[:, 0].mean()).astype(int) s.append_array(labeling, name='parc', at='p') border = aop.get_labeling_border(s, labeling) assert border.shape == (s.n_points, ) assert np.unique(border).size == 2 border2 = aop.get_labeling_border(s, 'parc') assert np.all(border == border2) # parcellation centroids cent = aop.get_parcellation_centroids(s, labeling, non_centroid=2) assert cent.shape == (s.n_points,) assert np.unique(cent).size == 3 assert np.count_nonzero(cent == 0) == 1 assert np.count_nonzero(cent == 1) == 1 assert
np.count_nonzero(cent == 2)
numpy.count_nonzero
# Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions used by generate_graph.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import hashlib import itertools import numpy as np def gen_is_edge_fn(bits): """Generate a boolean function for the edge connectivity. Given a bitstring FEDCBA and a 4x4 matrix, the generated matrix is [[0, A, B, D], [0, 0, C, E], [0, 0, 0, F], [0, 0, 0, 0]] Note that this function is agnostic to the actual matrix dimension due to order in which elements are filled out (column-major, starting from least significant bit). For example, the same FEDCBA bitstring (0-padded) on a 5x5 matrix is [[0, A, B, D, 0], [0, 0, C, E, 0], [0, 0, 0, F, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] Args: bits: integer which will be interpreted as a bit mask. Returns: vectorized function that returns True when an edge is present. """ def is_edge(x, y): """Is there an edge from x to y (0-indexed)?""" if x >= y: return 0 # Map x, y to index into bit string index = x + (y * (y - 1) // 2) return (bits >> index) % 2 == 1 return np.vectorize(is_edge) def is_full_dag(matrix): """Full DAG == all vertices on a path from vert 0 to (V-1). i.e. no disconnected or "hanging" vertices. It is sufficient to check for: 1) no rows of 0 except for row V-1 (only output vertex has no out-edges) 2) no cols of 0 except for col 0 (only input vertex has no in-edges) Args: matrix: V x V upper-triangular adjacency matrix Returns: True if the there are no dangling vertices. """ shape = np.shape(matrix) rows = matrix[:shape[0] - 1, :] == 0 rows = np.all(rows, axis=1) # Any row with all 0 will be True rows_bad = np.any(rows) cols = matrix[:, 1:] == 0 cols = np.all(cols, axis=0) # Any col with all 0 will be True cols_bad = np.any(cols) return (not rows_bad) and (not cols_bad) def num_edges(matrix): """Computes number of edges in adjacency matrix.""" return np.sum(matrix) def hash_module(matrix, labeling): """Computes a graph-invariance MD5 hash of the matrix and label pair. Args: matrix: np.ndarray square upper-triangular adjacency matrix. labeling: list of int labels of length equal to both dimensions of matrix. Returns: MD5 hash of the matrix and labeling. """ vertices = np.shape(matrix)[0] in_edges = np.sum(matrix, axis=0).tolist() out_edges = np.sum(matrix, axis=1).tolist() assert len(in_edges) == len(out_edges) == len(labeling) hashes = list(zip(out_edges, in_edges, labeling)) hashes = [hashlib.md5(str(h).encode('utf-8')).hexdigest() for h in hashes] # Computing this up to the diameter is probably sufficient but since the # operation is fast, it is okay to repeat more times. for _ in range(vertices): new_hashes = [] for v in range(vertices): in_neighbors = [hashes[w] for w in range(vertices) if matrix[w, v]] out_neighbors = [hashes[w] for w in range(vertices) if matrix[v, w]] new_hashes.append(hashlib.md5( (''.join(sorted(in_neighbors)) + '|' + ''.join(sorted(out_neighbors)) + '|' + hashes[v]).encode('utf-8')).hexdigest()) hashes = new_hashes fingerprint = hashlib.md5(str(sorted(hashes)).encode('utf-8')).hexdigest() return fingerprint def permute_graph(graph, label, permutation): """Permutes the graph and labels based on permutation. Args: graph: np.ndarray adjacency matrix. label: list of labels of same length as graph dimensions. permutation: a permutation list of ints of same length as graph dimensions. Returns: np.ndarray where vertex permutation[v] is vertex v from the original graph """ # vertex permutation[v] in new graph is vertex v in the old graph forward_perm = zip(permutation, list(range(len(permutation)))) inverse_perm = [x[1] for x in sorted(forward_perm)] edge_fn = lambda x, y: graph[inverse_perm[x], inverse_perm[y]] == 1 new_matrix = np.fromfunction(np.vectorize(edge_fn), (len(label), len(label)), dtype=np.int8) new_label = [label[inverse_perm[i]] for i in range(len(label))] return new_matrix, new_label def is_isomorphic(graph1, graph2): """Exhaustively checks if 2 graphs are isomorphic.""" matrix1, label1 = np.array(graph1[0]), graph1[1] matrix2, label2 = np.array(graph2[0]), graph2[1] assert
np.shape(matrix1)
numpy.shape
#!/usr/bin/env python # -*- coding: utf-8 -*- # imports import numpy as np import numpy.linalg as npla import scipy as sp import matplotlib.pyplot as plt def identity_vf(M, N, RM=None, RN=None): """Get vector field for the identity transformation. This returns the vector field (tau_u, tau_v) corresponding to the identity transformation, which maps the image plane to itself. For more details on these vector fields, see the doc for affine_to_vf inputs: -------- M : int vertical (number of rows) size of image plane being worked with N : int horizontal (number of cols) size of image plane being worked with RM : int (optional) number of points in the M direction desired. by default, this is M, giving the identity transformation. when a number other than M is provided, this corresponds to a resampling in the vertical direction. (we put this operation in this function because it is so naturally related) RN : int (optional) number of points in the N direction desired. by default, this is N, giving the identity transformation. when a number other than N is provided, this corresponds to a resampling in the horizontal direction. (we put this operation in this function because it is so naturally related) outputs: ------- eu : numpy.ndarray (size (M, N)) horizontal component of vector field corresponding to (I, 0) ev : numpy.ndarray (size (M, N)) vertical component of vector field corresponding to (I, 0) """ if RM is None: RM = M if RN is None: RN = N m_vec = np.linspace(0, M-1, RM) n_vec = np.linspace(0, N-1, RN) eu = np.dot(m_vec[:,np.newaxis], np.ones(RN)[:,np.newaxis].T) ev = np.dot(np.ones(RM)[:,np.newaxis], n_vec[:,np.newaxis].T) return (eu, ev) def get_default_pgd_dict(**kwargs): """Get default parameter dictionary for proximal gradient descent solvers Valid key-value pairs are: init_pt = function with two arguments (m, n), two return values (numpy arrays of size (m, n)) initial iterate to start GD at, represented as a function: must be a function with two arguments (m, n), the first of which represents image height and the second of which represents image width; and must return a tuple of two numpy arrays, each of size m, n, corresponding to the initial deformation field center : numpy array of shape (2,) Denotes an optional (set to np.array([0,0]) by default) center coordinate to use when solving the parametric version of the problem (parametric = True below). All affine transformations computed then have the form A * ( [i,j] - center ) + center + b, where A may have more structure if certain values of motion_model is set. This kind of reparameterization does not make a difference in the nonparametric version of the problem, so nothing is implemented for this case. sigma : float (positive) Bandwidth parameter in the gaussian filter used for the cost smoothing. (larger -> smaller cutoff frequency, i.e. more aggressive filtering) See gaussian_filter_2d sigma0 : float (positive) Bandwidth parameter in the gaussian filter used for complementary smoothing in registration_l2_spike. (larger -> smaller cutoff frequency, i.e. more aggressive filtering) See gaussian_filter_2d sigma_scene : float (positive) Bandwidth parameter in the gaussian filter used in scene smoothing in registration_l2_bbg. (larger -> smaller cutoff frequency, i.e. more aggressive filtering) See gaussian_filter_2d window : NoneType or numpy array of size (m, n) Either None, if no window is to be used, or an array of size (m, n) (same as image size), denoting the cost window function to be applied (l2 error on residual is filtered, then windowed, before computing). NOTE: current implementation makes window independent of any setting of the parameter center specified above max_iter : int Maximum number of iterations to run PGD for tol : float (positive) Minimum relative tolerance before exiting optimization: optimization stops if the absolute difference between the loss at successive iterations is below this threshold. step : float (positive) Step size. Currently using constant-step gradient descent lam : float (positive) Regularization weight (multiplicative constant on the regularization term in the loss) use_nesterov : bool Whether or not to use Nesterov accelerated gradient descent use_restarting : bool Whether or not to use adaptive restarted Nesterov accelerated gradient descent. Speeds things up significantly, but maybe does not work well out of the box with proximal iteration motion_model : string (default 'nonparametric') Sets the motion model that the registration algorithm will use (i.e. what constraints are enforced on the transformation vector field). Values that are implemented are: 'translation' transformation vector field is constrained to be translational (a pixel shift of the input). 2-dimensional. 'rigid' transformation vector field is constrained to be a rigid motion / a euclidean transformation (i.e. a combination of a positively-oriented rotation and a translation). 3-dimensional. 'similarity' transformation vector field is constrained to be a similarity transformation (i.e. a combination of a global dilation and a translation). 4-dimensional. 'affine' transformation vector field is constrained to be an affine translation (i.e. a combination of a linear map and a translation). 6-dimensional. 'nonparametric' transformation vector field is allowed to be completely general, but regularization is added to the gradient descent solver via a complexity penalty, and the solver runs proximal gradient descent instead. (see e.g. entry for lambda for more info on associated parameters). gamma : float (min 0, max 1) Nesterov accelerated GD momentum parameter. 0 corresponds to the "usual" Nesterov AGD. 1 corresponds to "vanilla" GD. The optimal value for a given problem is the reciprocal condition number. Setting this to 1 is implemented differently from setting use_nesterov to False (the algorithm is the same; but the former is slower) theta : float initial momentum term weight; typically 1 precondition : bool Whether or not to use a preconditioner (divide by some scalars on each component of the gradient) for the A and b gradients in parametric motion models (see motion_model).. epoch_len : int (positive) Length of an epoch; used for printing status messages quiet : bool If True, nothing will be printed while optimizing. record_movie : bool If True, a "movie" gets created from the optimization trajectory and logged to disk (see movie_fn param). Requires moviepy to be installed (easy with conda-forge). Potentially requires a ton of memory to store all the frames (all iterates) movie_fn : string If record_movie is True, this gives the location on disk where the movie will be saved movie_fps : int If record_movie is True, this gives the fps of the output movie. window_pad_size : int If record_movie is true, denotes the thickness of the border designating the window to be output in the movie frame_printing_stride : int If record_movie is true, denotes the interval at which log information will be written to the movie (every frame_printing_stride frames, log info is written; the actual movie fps is set by movie_fps above) font_size : int If record_movie is true, denotes the font size used for printing logging information to the output window. Set smaller for smaller-size images. NOTE: No value checking is implemented right now. Inputs: -------- kwargs : any provided key-value pairs will be added to the parameter dictionary, replacing any defaults they overlap with Outputs: -------- param_dict : dict dict of parameters to be used for a proximal gd solver. Pass these to e.g. nonparametric_registration or similar solvers. """ param_dict = {} # Problem parameters: filter bandwidths, etc param_dict['sigma'] = 3 param_dict['sigma_scene'] = 1.5 param_dict['sigma0'] = 1 param_dict['init_pt'] = lambda m, n: identity_vf(m, n) param_dict['motion_model'] = 'nonparametric' param_dict['window'] = None param_dict['center'] = np.zeros((2,)) # Solver parameters: tolerances, stopping conditions, step size, etc param_dict['max_iter'] = int(1e4) param_dict['tol'] = 1e-4 param_dict['step'] = 1 param_dict['lam'] = 1 param_dict['use_nesterov'] = False param_dict['use_restarting'] = False param_dict['gamma'] = 0 param_dict['theta'] = 1 param_dict['precondition'] = True # Logging parameters param_dict['epoch_len'] = 50 param_dict['quiet'] = False param_dict['record_movie'] = False param_dict['movie_fn'] = '' param_dict['movie_fps'] = 30 param_dict['window_pad_size'] = 5 param_dict['frame_printing_stride'] = 10 # 3 times per second param_dict['font_size'] = 30 param_dict['movie_gt'] = None param_dict['movie_proc_func'] = None # Legacy/compatibility stuff param_dict['parametric'] = False param_dict['translation_mode'] = False param_dict['rigid_motion_mode'] = False param_dict['similarity_transform_mode'] = False # Add user-provided params for arg in kwargs.keys(): param_dict[arg] = kwargs[arg] return param_dict def affine_to_vf(A, b, M, N): """Given (A, b), return associated vector field on M x N image plane An affine transformation is parameterized by an invertible matrix A and a vector b, and sends a 2D vector x to the 2D vector A*x + b. In the image context, x lies in the M by N image plane. This function takes the pair (A, b), and returns the associated vector field (tau_u, tau_v): here tau_u and tau_v are M by N matrices such that (tau_u)_{ij} = (1st row of A) * [i, j] + b_1, and (tau_v)_{ij} = (2nd row of A) * [i, j] + b_2. The matrices thus represent how the affine transformation (A, b) deforms the sampled image plane. Thus in general tau_u and tau_v have entries that may not be contained in the M by N image plane and may not be integers. These issues of boundary effects and interpolation effects are to be handled by other functions inputs: -------- A : numpy.ndarray (size (2, 2)) GL(2) part of affine transformation to apply b : numpy.ndarray (size (2,)) translation part of affine transformation to apply M : int vertical (number of rows) size of image plane being worked with N : int horizontal (number of cols) size of image plane being worked with outputs: ------- tau_u : numpy.ndarray (size (M, N)) horizontal component of vector field corresponding to (A, b) tau_v : numpy.ndarray (size (M, N)) vertical component of vector field corresponding to (A, b) """ # Do it with broadcasting tricks (dunno if it's faster) A0 = A[:,0] A1 = A[:,1] eu = np.dot(np.arange(M)[:,np.newaxis], np.ones(N)[:,np.newaxis].T) ev = np.dot(np.ones(M)[:,np.newaxis], np.arange(N)[:,np.newaxis].T) tau = A0[np.newaxis, np.newaxis, :] * eu[..., np.newaxis] + \ A1[np.newaxis, np.newaxis, :] * ev[..., np.newaxis] + \ b[np.newaxis, np.newaxis, :] * np.ones((M, N, 1)) return (tau[:,:,0], tau[:,:,1]) def vf_to_affine(tau_u, tau_v, ctr): """Get affine transformation corresponding to a vector field. General vector fields need not correspond to a particular affine transformation. In our formulation, we parameterize affine transforms as tau_u = a * (m-ctr[0] * \One)\One\\adj + b * \One (n - ctr[1]*\One)\\adj + (c + ctr[0]) * \One\One\\adj, and similarly for tau_v. We use the fact that this parameterization is used here to recover the parameters of the affine transform using simple summing/differencing. We need ctr as an input because the translation parameter is ambiguous without knowing the center. However, we can always recover the parameters of the transformation with respect to any fixed center (say, ctr = zero). In general, if one provides ctr=np.zeros((2,)) to this function, it is a left inverse of affine_to_vf called with the correct M, N parameters. inputs: -------- tau_u, tau_v : M by N numpy arrays u and v (resp.) components of the transformation field. ctr : (2,) shape numpy array center parameter that the transform was computed with. see center option in registration_l2. translation parameter is ambiguous without knowing the center. outputs: -------- A : (2,2) numpy array The A matrix corresponding to the affine transform. Follows our conventions for how we compute with vector fields in determining how the entries of A are determined b : (2,) shape numpy array The translation parameter corresponding to the affine transform. Follows standard coordinates on the image plane (as elsewhere). """ M, N = tau_u.shape a00 = tau_u[1, 0] - tau_u[0, 0] a01 = tau_u[0, 1] - tau_u[0, 0] a10 = tau_v[1, 0] - tau_v[0, 0] a11 = tau_v[0, 1] - tau_v[0, 0] A = np.array([[a00, a01], [a10, a11]]) u_sum = np.sum(tau_u) v_sum = np.sum(tau_v) m_sum = np.sum(np.arange(M) - ctr[0] * np.ones((M,))) n_sum = np.sum(np.arange(N) - ctr[1] * np.ones((N,))) b0 = (u_sum - a00 * m_sum * N - a01 * M * n_sum) / M / N - ctr[0] b1 = (v_sum - a10 * m_sum * N - a11 * M * n_sum) / M / N - ctr[1] b = np.array([b0, b1]) return A, b def registration_l2_exp(Y, X, W, Om, center, transform_mode, optim_vars, param_dict=get_default_pgd_dict(), visualize=False): """ This is yet another version of the cost-smoothed motif detection, in which we also infer a (constant) background around the motif Inputs: Y -- input image X -- motif, embedded into an image of the same size as the target image Om -- support of the motif transform_mode -- 'affine', 'similarity', 'euclidean', 'translation' Outputs: same as usual """ from time import perf_counter vecnorm_2 = lambda A: np.linalg.norm( A.ravel(), 2 ) m, n, c = Y.shape # Gradient descent parameters MAX_ITER = param_dict['max_iter'] TOL = param_dict['tol'] step = param_dict['step'] if transform_mode == 'affine': [A, b] = optim_vars elif transform_mode == 'similarity': [dil, phi, b] = optim_vars A = dil * np.array([[np.cos(phi), -np.sin(phi)], [np.sin(phi), np.cos(phi)]]) elif transform_mode == 'euclidean': [phi, b] = optim_vars A = np.array([[np.cos(phi), -np.sin(phi)], [np.sin(phi), np.cos(phi)]]) elif transform_mode == 'translation': [b] = optim_vars A = np.eye(2) else: raise ValueError('Wrong transform mode.') # initialization (here, affine motion mode) corr = np.dot(np.eye(2) - A, center) tau_u, tau_v = affine_to_vf(A, b + corr, m, n) # External smoothing: calculate gaussian weights g = gaussian_filter_2d(m,n,sigma_u=param_dict['sigma']) g = g / np.sum(g) h = gaussian_filter_2d(m,n,sigma_u=5*param_dict['sigma']) h = h / np.sum(h) # Calculate initial error error = np.inf * np.ones( (MAX_ITER,) ) Rvals = np.zeros( (MAX_ITER,) ) # initial interpolated image and error cur_Y = image_interpolation_bicubic(Y, tau_u, tau_v ) # initialize the background beta0 = cconv_fourier(h[...,np.newaxis], cur_Y - X) beta = cconv_fourier(h[...,np.newaxis], beta0) cur_X = np.zeros((m,n,c)) cur_X = (1-Om)*beta + Om*X FWres = W * cconv_fourier(g[...,np.newaxis], cur_Y-cur_X) grad_A = np.zeros( (2,2) ) grad_b = np.zeros( (2,) ) m_vec = np.arange(m) - center[0] n_vec = np.arange(n) - center[1] if param_dict['use_nesterov'] is False: for idx in range(MAX_ITER): # Get the basic gradient ingredients Y_dot_u = dimage_interpolation_bicubic_dtau1(Y, tau_u, tau_v) Y_dot_v = dimage_interpolation_bicubic_dtau2(Y, tau_u, tau_v) # Get the "tau gradient" part. # All the translation-dependent parts of the cost can be handled # here, so that the parametric parts are just the same as always. dphi_dY = cconv_fourier(dsp_flip(g)[...,np.newaxis], FWres) tau_u_dot = np.sum(dphi_dY * Y_dot_u, -1) tau_v_dot = np.sum(dphi_dY * Y_dot_v, -1) # Get parametric part gradients # Convert to parametric gradients # Get row and col sums tau_u_dot_rowsum = np.sum(tau_u_dot, 1) tau_u_dot_colsum = np.sum(tau_u_dot, 0) tau_v_dot_rowsum = np.sum(tau_v_dot, 1) tau_v_dot_colsum = np.sum(tau_v_dot, 0) # Put derivs # These need to be correctly localized to the region of interest grad_A[0, 0] = np.dot(tau_u_dot_rowsum, m_vec) grad_A[1, 0] = np.dot(tau_v_dot_rowsum, m_vec) grad_A[0, 1] = np.dot(tau_u_dot_colsum, n_vec) grad_A[1, 1] = np.dot(tau_v_dot_colsum, n_vec) grad_b[0] = np.sum(tau_u_dot_rowsum) grad_b[1] = np.sum(tau_v_dot_rowsum) # Precondition for crab body motif grad_A /= 100 dphi_dbeta0 = -cconv_fourier( dsp_flip(h)[...,np.newaxis], (1-Om) * dphi_dY ) # Now update parameters grad_norm = np.sqrt(npla.norm(grad_A.ravel(),2)**2 + npla.norm(grad_b,ord=2)**2) #phi = phi - step * grad_phi / 86 if idx > 5: if transform_mode == 'affine': A = A - step * grad_A b = b - step * grad_b elif transform_mode == 'similarity': grad_dil, grad_phi, grad_b = l2err_sim_grad(dil, phi, grad_A, grad_b) dil = dil - step * grad_dil * 0.1 phi = phi - step * grad_phi b = b - step * grad_b A = dil * np.array([[np.cos(phi), -np.sin(phi)], [np.sin(phi), np.cos(phi)]]) elif transform_mode == 'euclidean': grad_phi, grad_b = l2err_se_grad(phi, grad_A, grad_b) phi = phi - step * grad_phi b = b - step * grad_b A = np.array([[np.cos(phi), -np.sin(phi)], [np.sin(phi), np.cos(phi)]]) elif transform_mode == 'translation': b = b - step * grad_b A = np.eye(2) beta0 = beta0 - 25 * step * dphi_dbeta0 corr = np.dot(np.eye(2) - A, center) tau_u, tau_v = affine_to_vf(A, b + corr, m, n) # Bookkeeping (losses and exit check) cur_Y = image_interpolation_bicubic(Y, tau_u, tau_v ) beta = cconv_fourier(h[...,np.newaxis], beta0) cur_X = np.zeros((m,n,c)) cur_X = (1-Om)*beta + Om*X FWres = W * cconv_fourier(g[...,np.newaxis], cur_Y-cur_X) error[idx] = .5 * np.sum(FWres ** 2) cur_X_wd = cur_X * Om for ic in range(3): cur_X_wd[:,:,ic] -= np.mean(cur_X_wd[:,:,ic][cur_X_wd[:,:,ic] > 0]) cur_Y_wd = cur_Y * Om for ic in range(3): cur_Y_wd[:,:,ic] -= np.mean(cur_Y_wd[:,:,ic][cur_Y_wd[:,:,ic] > 0]) Rvals[idx] = np.sum(Om * cur_X_wd * cur_Y_wd) / ( vecnorm_2(Om * cur_X_wd) * vecnorm_2(Om * cur_Y_wd) ) if idx > 0 and error[idx] > error[idx-1]: # print('Nonmontone, cutting step') step = step / 2 else: step = step * 1.01 cur_Y_disp = cur_Y.copy() cur_Y_disp[:,:,1] = Om[:,:,1] cur_Y_disp[:,:,2] = Om[:,:,2] loopStop = perf_counter() if grad_norm < TOL: if param_dict['quiet'] is False: print(f'Met objective at iteration {idx}, ' 'exiting...') break if (idx % param_dict['epoch_len']) == 0: if param_dict['quiet'] is False: print('iter {:d} objective {:.4e} correlation {:.4f}'.format(idx, error[idx], Rvals[idx])) if visualize is True: if (idx % 10) == 0: if param_dict['quiet'] is False: plt.imshow(cur_Y_disp) plt.show() # This next block of code is for Nesterov accelerated GD. else: raise NotImplementedError('Test function only implements vanilla GD') if transform_mode == 'affine': optim_vars_new = [A, b] elif transform_mode == 'similarity': optim_vars_new = [dil, phi, b] elif transform_mode == 'euclidean': optim_vars_new = [phi, b] elif transform_mode == 'translation': optim_vars_new = [b] return tau_u, tau_v, optim_vars_new, error, Rvals def dilate_support(Om,sigma): M = Om.shape[0] N = Om.shape[1] psi = gaussian_filter_2d(M,N,sigma_u=sigma) delta = np.exp(-2) * ((2.0*np.pi*sigma) ** -.5) Om_tilde = cconv_fourier(psi[...,np.newaxis],Om) for i in range(M): for j in range(N): if Om_tilde[i,j,0] < delta: Om_tilde[i,j,0] = 0 Om_tilde[i,j,1] = 0 Om_tilde[i,j,2] = 0 else: Om_tilde[i,j,0] = 1 Om_tilde[i,j,1] = 1 Om_tilde[i,j,2] = 1 return Om_tilde def rotation_mat(theta): sin = np.sin(theta) cos = np.cos(theta) mat = np.array([[cos, -sin], [sin, cos]]) return mat def l2err_se_grad(phi, grad_A, grad_b): """ Calculate loss gradient in SE registration prob using aff gradient This gradient is for the parametric version of the problem, with the parameterization in terms of the special euclidean group (oriented rigid motions of the plane). It wraps l2err_aff_grad, since chain rule lets us easily calculate this problem's gradient using the affine problem's gradient. Implementation ideas: - for ease of implementation, require the current angle phi as an input, although it could probably be determined from tau_u and tau_v in general. Inputs: phi : angle parameter of matrix part of current rigid motion iterate. grad_A : gradient of the cost with respect to A (matrix parameter of affine transform) (output from l2err_aff_grad) grad_b : gradient of the cost with respect to b (translation parameter of affine transform) (output from l2err_aff_grad) Outputs: grad_phi : gradient of the cost with respect to phi (angular parameter of rotational part of special euclidean transform: grad_b : gradient of the cost with respect to b (translation parameter of rigid motion) """ # rigid motion derivative matrix G = np.array([[-np.sin(phi), -np.cos(phi)], [np.cos(phi), -np.sin(phi)]]) # Put derivatives grad_phi = np.sum(G * grad_A) return grad_phi, grad_b def l2err_sim_grad(dil, phi, grad_A, grad_b): """ Calculate loss gradient in similarity xform registration prob This gradient is for the parametric version of the problem, with the parameterization in terms of the similarity transformations (rigid motions with the rotation multiplied by a scale parameter). It wraps l2err_aff_grad, since chain rule lets us easily calculate this problem's gradient using the affine problem's gradient. Implementation ideas: - for ease of implementation, require the current angle phi as an input, although it could probably be determined from tau_u and tau_v in general. Inputs: dil : dilation (scale) parameter of matrix part of current similarity transform iterate. phi : angle parameter of matrix part of current rigid motion iterate. grad_A : gradient of the cost with respect to A (matrix parameter of affine transform) (output from l2err_aff_grad) grad_b : gradient of the cost with respect to b (translation parameter of affine transform) (output from l2err_aff_grad) Outputs: grad_phi : gradient of the cost with respect to dil (dilation/scale parameter of similarity transform) grad_phi : gradient of the cost with respect to phi (angular parameter of rotational part of special euclidean transform: grad_b : gradient of the cost with respect to b (translation parameter of rigid motion) """ # rigid motion matrix G = np.array([[np.cos(phi), -np.sin(phi)], [np.sin(phi), np.cos(phi)]]) # rigid motion derivative matrix Gdot = np.array([[-np.sin(phi), -np.cos(phi)], [np.cos(phi), -np.sin(phi)]]) # Put derivatives grad_dil = np.sum(G * grad_A) grad_phi = dil * np.sum(Gdot * grad_A) return grad_dil, grad_phi, grad_b def apply_random_transform( X0, Om0, c, mode, s_dist, phi_dist, theta_dist, b_dist, return_params=True ): N0 = X0.shape[0] N1 = X0.shape[1] C = X0.shape[2] tf_params = sample_random_transform( mode, s_dist, phi_dist, theta_dist, b_dist ) A = tf_params[0] b = tf_params[1] # apply the transformation corr = np.dot(np.eye(2) - A, c) (tau_u, tau_v) = affine_to_vf(A, b + corr, N0, N1) X = image_interpolation_bicubic(X0, tau_u, tau_v) Om = image_interpolation_bicubic(Om0, tau_u, tau_v) if return_params is False: return X, Om else: return X, Om, tf_params def sample_random_transform( mode, s_dist, phi_dist, theta_dist, b_dist ): s_min = s_dist[0] s_max = s_dist[1] phi_min = phi_dist[0] phi_max = phi_dist[1] theta_min = theta_dist[0] theta_max = theta_dist[1] b_min = b_dist[0] b_max = b_dist[1] b = np.zeros((2,)) b[0] = np.random.uniform(b_min,b_max) b[1] = np.random.uniform(b_min,b_max) if mode == 'affine': s1 = np.random.uniform(s_min,s_max) s2 = np.random.uniform(s_min,s_max) phi =
np.random.uniform(phi_min,phi_max)
numpy.random.uniform
# <NAME> code for the project of the module "Programming and scripting" # Data visualization and parameters import csv import numpy as np import matplotlib.pyplot as mpl from scipy import stats # to calculate the mode print() print('sep_len sep_wid pet_len pet_wid (cm)') print() with open('data/iris.csv', newline='') as csvFile: for line in csvFile: line = line.replace(',', ' ') #removes comma separating the numbers print(' ' + line[:3]+ ' ' + line[4:7]+ ' ' + line[8:11]+ ' ' + line[12:15]) # This line prints in groups of 3 positions because the 4th value is excluded. # F.i. the first instruction prints the positions 0, 1st and 2nd but 3rd position (the white space) is excluded data = np.genfromtxt('data/iris.csv', delimiter = ',') # defining VARIABLES # column variables col1 = data[:,0] col2 = data[:,1] col3 = data[:,2] col4 = data[:,3] # flower class variables setSL = data[0:50,0] setSW = data[0:50,1] setPL = data[0:50,2] setPW = data[0:50,3] verSL = data[51:100,0] verSW = data[51:100,1] verPL = data[51:100,2] verPW = data[51:100,3] virSL = data[101:150,0] virSW = data[101:150,1] virPL = data[101:150,2] virPW = data[101:150,3] # Parameters from the file ingnoring flower classes. Means: meancol1 = np.mean(col1) meancol2 = np.mean(col2) meancol3 = np.mean(col3) meancol4 = np.mean(col4) print('sep_len sep_wid pet_len pet_wid (cm)') print() print("1) PARAMETERS taken out of the file data IGNORING the flower classes:") print() print("MEANS (cm)") print(' '+ '{0:.2f}'.format(meancol1) + " " + '{0:.2f}'.format(meancol2) + " " + '{0:.2f}'.format(meancol3) + " " + '{0:.2f}'.format(meancol4)) # Medians mediancol1 = np.median(col1) mediancol2 = np.median(col2) mediancol3 = np.median(col3) mediancol4 = np.median(col4) print() print("MEDIANS (cm)") print(' '+ '{0:.2f}'.format(mediancol1) + " " + '{0:.2f}'.format(mediancol2) + " " + '{0:.2f}'.format(mediancol3) + " " + '{0:.2f}'.format(mediancol4)) print() # modes modecol1 = stats.mode(col1) modecol2 = stats.mode(col2) modecol3 = stats.mode(col3) modecol4 = stats.mode(col4) print('MODES (cm) (sep_len sep_wid pet_len pet_wid)') # The second attribute, count, is the number of times it occurs in the data set. print("", modecol1, "\n", modecol2, "\n", modecol3, "\n", modecol4) print() # maximums maxCol1= np.amax(col1) maxCol2= np.amax(col2) maxCol3= np.amax(col3) maxCol4= np.amax(col4) print('MAXIMUMS (cm)') print(" ", maxCol1, " ", maxCol2, " ", maxCol3, " ", maxCol4) print() print(' sep_len sep_wid pet_len pet_wid (cm)') print() # minimums minCol1= np.amin(col1) minCol2= np.amin(col2) minCol3= np.amin(col3) minCol4= np.amin(col4) print('MINIMUMS (cm)') print(" ", minCol1, " ", minCol2, " ", minCol3, " ", minCol4) print() # standard deviation stdcol1 = np.std(col1) stdcol2 = np.std(col2) stdcol3 = np.std(col3) stdcol4 = np.std(col4) print("STANDARD DEVIATIONS (cm)") print(' '+ '{0:.2f}'.format(stdcol1) + " " + '{0:.2f}'.format(stdcol2) + " " + '{0:.2f}'.format(stdcol3) + " " + '{0:.2f}'.format(stdcol4)) print() # correlation coefficient between leaf length and width corCcol1_2 = np.corrcoef(col1, col2)[1,0] # [1,0] added to obtain just one value corCcol3_4 = np.corrcoef(col3, col4)[1,0] print('CORRELATION COEFFICITENT') print(' - Between sepal length and sepal width', '{0:.2f}'.format(corCcol1_2)) print(' - Between petal length and petal width', '{0:.2f}'.format(corCcol3_4)) print() print() print("2) PARAMETERS taken out of the file data CONSIDERING the flower classes:") # means by flower class: sepal length meanSetSL= np.mean(setSL) meanVerSL= np.mean(verSL) meanVirSL= np.mean(virSL) # means sepal width meanSetSW= np.mean(setSW) meanVerSW= np.mean(verSW) meanVirSW= np.mean(virSW) # means petal length meanSetPL= np.mean(setPL) meanVerPL= np.mean(verPL) meanVirPL= np.mean(virPL) # means petal width meanSetPW= np.mean(setPW) meanVerPW= np.mean(verPW) meanVirPW= np.mean(virPW) print() print('MEANS by flower class (cm)') print() print('<NAME>') print(' '+ '{0:.2f}'.format(meanSetSL) + " " + '{0:.2f}'.format(meanSetSW) + " " + '{0:.2f}'.format(meanSetPL) + " " + '{0:.2f}'.format(meanSetPW)) print('<NAME>') print(' '+ '{0:.2f}'.format(meanVerSL) + " " + '{0:.2f}'.format(meanVerSW) + " " + '{0:.2f}'.format(meanVerPL) + " " + '{0:.2f}'.format(meanVerPW)) print('<NAME>') print(' '+ '{0:.2f}'.format(meanVirSL) + " " + '{0:.2f}'.format(meanVirSW) + " " + '{0:.2f}'.format(meanVirPL) + " " + '{0:.2f}'.format(meanVirPW)) print() print(' sep_len sep_wid pet_len pet_wid (cm)') # medians by flower class: sepal length medianSetSL= np.median(setSL) medianVerSL= np.median(verSL) medianVirSL= np.median(virSL) # medians sepal width medianSetSW= np.median(setSW) medianVerSW= np.median(verSW) medianVirSW= np.median(virSW) # medians petal length medianSetPL= np.median(setPL) medianVerPL= np.median(verPL) medianVirPL= np.median(virPL) # medians petal width medianSetPW= np.median(setPW) medianVerPW= np.median(verPW) medianVirPW= np.median(virPW) print() print('MEDIANS by flower class (cm)') print() print('<NAME>') print(" ", medianSetSL, " ", medianSetSW, " ", medianSetPL, " ", medianSetPW) print('<NAME>') print(" ", medianVerSL, " ", medianVerSW, " ", medianVerPL, " ", medianVerPW) print('Iris Virginica') print(" ", medianVirSL, " ", medianVirSW, " ", medianVirPL, " ", medianVirPW) print() # modes by flower class: sepal length modeSetSL= stats.mode(setSL) modeVerSL= stats.mode(verSL) modeVirSL= stats.mode(virSL) # modes sepal width modeSetSW= stats.mode(setSW) modeVerSW= stats.mode(verSW) modeVirSW= stats.mode(virSW) # modes petal length modeSetPL= stats.mode(setPL) modeVerPL= stats.mode(verPL) modeVirPL= stats.mode(virPL) # modes petal width modeSetPW= stats.mode(setPW) modeVerPW= stats.mode(verPW) modeVirPW= stats.mode(virPW) print() print('MODES by flower class (cm) (sep_len sep_wid pet_len pet_wid)') # The second attribute, count, is the number of times it occurs in the data set. print() print('<NAME>') # The \n introduces a break line print("", modeSetSL, "\n", modeSetSW, "\n", modeSetPL, "\n", modeSetPW) print() print('<NAME>') print("", modeVerSL, "\n", modeVerSW, "\n", modeVerPL, "\n", modeVerPW) print() print('Iris Virginica') print("", modeVirSL, "\n", modeVirSW, "\n", modeVirPL, "\n", modeVirPW) print() # maximum values by flower class: sepal length maxSetSL= np.amax(setSL) maxVerSL= np.amax(verSL) maxVirSL= np.amax(virSL) # maximums sepal width maxSetSW= np.amax(setSW) maxVerSW= np.amax(verSW) maxVirSW= np.amax(virSW) # maximums petal length maxSetPL= np.amax(setPL) maxVerPL= np.amax(verPL) maxVirPL= np.amax(virPL) # maximums petal width maxSetPW= np.amax(setPW) maxVerPW= np.amax(verPW) maxVirPW= np.amax(virPW) print() print('MAXIMUMS by flower class (cm)') print() print('<NAME>') print(" ", maxSetSL, " ", maxSetSW, " ", maxSetPL, " ", maxSetPW) print('<NAME>') print(" ", maxVerSL, " ", maxVerSW, " ", maxVerPL, " ", maxVerPW) print('<NAME>') print(" ", maxVirSL, " ", maxVirSW, " ", maxVirPL, " ", maxVirPW) print() print(' sep_len sep_wid pet_len pet_wid (cm)') # minimum values by flower class: sepal length minSetSL= np.amin(setSL) minVerSL= np.amin(verSL) minVirSL= np.amin(virSL) # minimums sepal width minSetSW= np.amin(setSW) minVerSW= np.amin(verSW) minVirSW= np.amin(virSW) # minimums petal length minSetPL= np.amin(setPL) minVerPL= np.amin(verPL) minVirPL= np.amin(virPL) # minimums petal width minSetPW= np.amin(setPW) minVerPW= np.amin(verPW) minVirPW= np.amin(virPW) print() print('MINIMUMS by flower class (cm)') print() print('<NAME>') print(" ", minSetSL, " ", minSetSW, " ", minSetPL, " ", minSetPW) print('<NAME>') print(" ", minVerSL, " ", minVerSW, " ", minVerPL, " ", minVerPW) print('<NAME>') print(" ", minVirSL, " ", minVirSW, " ", minVirPL, " ", minVirPW) print() # standard deviations by flower class: sepal length stdSetSL= np.std(setSL) stdVerSL= np.std(verSL) stdVirSL= np.std(virSL) # standard deviations sepal width stdSetSW= np.std(setSW) stdVerSW= np.std(verSW) stdVirSW= np.std(virSW) # standard deviations petal length stdSetPL= np.std(setPL) stdVerPL= np.std(verPL) stdVirPL= np.std(virPL) # standard deviations petal width stdSetPW= np.std(setPW) stdVerPW= np.std(verPW) stdVirPW= np.std(virPW) print() print('STANDARD DEVIATIONS by flower class (cm)') print() print(' sep_len sep_wid pet_len pet_wid (cm)') print() print('<NAME>') print(' '+ '{0:.2f}'.format(stdSetSL) + " " + '{0:.2f}'.format(stdSetSW) + " " + '{0:.2f}'.format(stdSetPL) + " " + '{0:.2f}'.format(stdSetPW)) print('<NAME>icolor') print(' '+ '{0:.2f}'.format(stdVerSL) + " " + '{0:.2f}'.format(stdVerSW) + " " + '{0:.2f}'.format(stdVerPL) + " " + '{0:.2f}'.format(stdVerPW)) print('<NAME>') print(' '+ '{0:.2f}'.format(stdVirSL) + " " + '{0:.2f}'.format(stdVirSW) + " " + '{0:.2f}'.format(stdVirPL) + " " + '{0:.2f}'.format(stdVirPW)) print() # Correlation coefficient between length and width flower leaf setCorSepal = np.corrcoef(setSL, setSW)[1,0] setCorPetal = np.corrcoef(setPL, setPW)[1,0] verCorSepal =
np.corrcoef(verSL, verSW)
numpy.corrcoef
def selection_2(): # Library import import numpy import matplotlib import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec # Library version matplotlib_version = matplotlib.__version__ numpy_version = numpy.__version__ # Histo binning xBinning = numpy.linspace(-3.2,3.2,65,endpoint=True) # Creating data sequence: middle of each bin xData = numpy.array([-3.15,-3.05,-2.95,-2.85,-2.75,-2.65,-2.55,-2.45,-2.35,-2.25,-2.15,-2.05,-1.95,-1.85,-1.75,-1.65,-1.55,-1.45,-1.35,-1.25,-1.15,-1.05,-0.95,-0.85,-0.75,-0.65,-0.55,-0.45,-0.35,-0.25,-0.15,-0.05,0.05,0.15,0.25,0.35,0.45,0.55,0.65,0.75,0.85,0.95,1.05,1.15,1.25,1.35,1.45,1.55,1.65,1.75,1.85,1.95,2.05,2.15,2.25,2.35,2.45,2.55,2.65,2.75,2.85,2.95,3.05,3.15]) # Creating weights for histo: y3_PHI_0 y3_PHI_0_weights = numpy.array([1626.27534535,4878.82723604,6911.67091772,5691.96310871,4472.2552997,7318.23885405,4878.82723604,6505.09898138,6098.53104505,6911.67091772,7318.23885405,8944.5145994,5691.96310871,6098.53104505,6505.09898138,6098.53104505,6911.67091772,4065.68736336,5285.39517237,4878.82723604,7318.23885405,2845.98155435,5691.96310871,6505.09898138,5285.39517237,5691.96310871,8537.94666306,6098.53104505,4065.68736336,4065.68736336,6911.67091772,6505.09898138,7318.23885405,4472.2552997,6505.09898138,8944.5145994,7724.80679039,5285.39517237,6911.67091772,9757.65047207,7724.80679039,5285.39517237,7318.23885405,5691.96310871,6911.67091772,6098.53104505,7724.80679039,6911.67091772,5691.96310871,6098.53104505,7724.80679039,7724.80679039,8537.94666306,5691.96310871,6098.53104505,9351.08253574,6098.53104505,6505.09898138,7318.23885405,4878.82723604,8131.37472673,6911.67091772,9757.65047207,2439.41281802]) # Creating weights for histo: y3_PHI_1 y3_PHI_1_weights = numpy.array([1363.6550396,4772.7928386,5113.7048985,4772.7928386,5113.7048985,5795.5330183,4772.7928386,4090.9647188,7841.0173777,7500.1013178,8522.8454975,4431.8807787,5454.6209584,5113.7048985,5113.7048985,3750.0514589,4772.7928386,5454.6209584,5113.7048985,6477.3611381,4090.9647188,5795.5330183,6136.4490782,5795.5330183,3068.2237391,5454.6209584,4772.7928386,6477.3611381,8522.8454975,6136.4490782,4772.7928386,4772.7928386,4772.7928386,5795.5330183,5454.6209584,3409.137399,5795.5330183,5113.7048985,4431.8807787,4431.8807787,5113.7048985,8522.8454975,5113.7048985,2386.3964193,4431.8807787,4090.9647188,4772.7928386,5454.6209584,7500.1013178,3409.137399,5795.5330183,6818.273198,5454.6209584,4772.7928386,5795.5330183,6136.4490782,5113.7048985,5454.6209584,4431.8807787,5795.5330183,6136.4490782,7841.0173777,7500.1013178,2386.3964193]) # Creating weights for histo: y3_PHI_2 y3_PHI_2_weights = numpy.array([433.601879037,1052.01770652,1052.01770652,1208.39886289,1300.80563711,1123.10008669,995.15212238,1130.2080847,1236.83165496,1315.02203315,1101.77529264,1123.10008669,1115.99168867,1179.96567082,1023.58491445,895.636550142,1158.64127677,1144.42488074,1023.58491445,1350.56322323,1179.96567082,1194.18246686,1144.42488074,1073.34250057,1094.66729462,1236.83165496,1137.31648272,1187.07406884,1307.91403513,1222.61525892,1286.58924108,1101.77529264,1016.47651643,1137.31648272,1151.53287875,1286.58924108,1151.53287875,1194.18246686,1165.74927479,1101.77529264,1115.99168867,980.935326346,1151.53287875,1080.45049858,1165.74927479,1080.45049858,1151.53287875,1052.01770652,980.935326346,1052.01770652,1123.10008669,1059.12610453,1073.34250057,1108.88369065,1208.39886289,959.610932295,1215.50686091,1009.36851841,1165.74927479,1172.85767281,1059.12610453,973.827328329,1307.91403513,490.467863173]) # Creating weights for histo: y3_PHI_3 y3_PHI_3_weights =
numpy.array([37.914355132,125.188929964,110.881604254,112.312324825,107.304762826,105.874042255,103.727961399,130.196451963,105.874042255,104.443321684,113.743085396,105.15868197,98.7203994002,128.050371106,115.889166252,110.166243968,123.042809107,103.012601113,116.604526538,123.042809107,118.035247109,122.327448822,106.589402541,124.473529678,114.458445681,109.450883683,117.319886823,106.589402541,100.866480257,104.443321684,117.319886823,118.035247109,110.881604254,99.4357596857,120.896728251,115.889166252,118.035247109,128.050371106,115.173805967,109.450883683,117.319886823,120.181367965,103.727961399,109.450883683,104.443321684,103.727961399,115.889166252,114.458445681,111.596964539,114.458445681,118.035247109,117.319886823,115.173805967,118.750607394,131.627212534,97.2896788292,106.589402541,134.488653676,107.304762826,127.335010821,110.881604254,116.604526538,120.181367965,57.2292228407]) # Creating a new Canvas fig = plt.figure(figsize=(12,6),dpi=80) frame = gridspec.GridSpec(1,1,right=0.7)
numpy.array
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning a 🤗 Transformers model for sequence classification on GLUE.""" import argparse import logging from neural_compressor.utils.logger import log import math import os import random import copy import datasets from datasets import load_dataset, load_metric import torch from torch.utils.data import TensorDataset, DataLoader import torch.distributed as dist from tqdm.auto import tqdm import numpy as np import transformers from transformers import ( AdamW, AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, PretrainedConfig, SchedulerType, default_data_collator, get_scheduler, set_seed, ) os.environ["CUDA_VISIBLE_DEVICES"] = "" logger = logging.getLogger(__name__) task_to_keys = { "cola": ("sentence", None), "mnli": ("premise", "hypothesis"), "mrpc": ("sentence1", "sentence2"), "qnli": ("question", "sentence"), "qqp": ("question1", "question2"), "rte": ("sentence1", "sentence2"), "sst2": ("sentence", None), "stsb": ("sentence1", "sentence2"), "wnli": ("sentence1", "sentence2"), } def parse_args(): parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task") parser.add_argument( "--task_name", type=str, default=None, help="The name of the glue task to train on.", choices=list(task_to_keys.keys()), ) parser.add_argument( "--train_file", type=str, default=None, help="A csv or a json file containing the training data." ) parser.add_argument( "--validation_file", type=str, default=None, help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_seq_length", type=int, default=128, help=( "The maximum total input sequence length after tokenization. Sequences longer than this will be truncated," " sequences shorter will be padded if `--pad_to_max_lengh` is passed." ), ) parser.add_argument( "--pad_to_max_length", action="store_true", help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.", ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=True, ) parser.add_argument( "--use_slow_tokenizer", action="store_true", help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).", ) parser.add_argument( "--batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument('--use_auth_token', action='store_true', help="use authentic token") parser.add_argument("--resume", type=str, default=None, help="Where to resume from the provided model.") parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument('--do_prune', action='store_true', help="prune model") parser.add_argument('--do_eval', action='store_true', help="evaluate model") parser.add_argument('--do_quantization', action='store_true', help="do quantization aware training on model") parser.add_argument('--do_distillation', action='store_true', help="do distillation with pre-trained teacher model") parser.add_argument("--prune_config", default='prune.yaml', help="pruning config") parser.add_argument("--quantization_config", default='qat.yaml', help="quantization config") parser.add_argument("--distillation_config", default='distillation.yaml', help="pruning config") parser.add_argument( "--teacher_model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models" " to be the teacher model.", required=True, ) parser.add_argument("--core_per_instance", type=int, default=-1, help="cores per instance.") parser.add_argument("--temperature", default=1, type=float, help='temperature parameter of distillation') parser.add_argument("--loss_types", default=['CE', 'KL'], type=str, nargs='+', help='loss types of distillation, should be a list of length 2, ' 'first for student targets loss, second for teacher student loss.') parser.add_argument("--loss_weights", default=[0.5, 0.5], type=float, nargs='+', help='loss weights of distillation, should be a list of length 2, ' 'and sum to 1.0, first for student targets loss weight, ' 'second for teacher student loss weight.') args = parser.parse_args() # Sanity checks if args.task_name is None and args.train_file is None and args.validation_file is None: raise ValueError("Need either a task name or a training/validation file.") else: if args.train_file is not None: extension = args.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if args.validation_file is not None: extension = args.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) return args def gather_results(predictions, gt): if rank != -1: pred_list = [predictions.clone() for _ in range(world)] if rank == 0 else [] gt_list = [gt.clone() for _ in range(world)] if rank == 0 else [] dist.gather(predictions, gather_list=pred_list) dist.gather(gt, gather_list=gt_list) return pred_list[0], gt_list[0] else: return predictions, gt def evaluation(model, eval_dataloader, metric): logger.info("***** Running eval *****") logger.info(f" Num examples = {len(eval_dataloader) }") model.eval() eval_dataloader = tqdm(eval_dataloader, desc="Evaluating") for step, batch in enumerate(eval_dataloader): outputs = model(**batch)['logits'] predictions = outputs.argmax(dim=-1) metric.add_batch( predictions=predictions, references=batch["labels"], ) eval_metric = metric.compute() logger.info(f"eval_metric : {eval_metric}") return eval_metric['accuracy'] def train(args, model, train_dataloader, lr_scheduler, criterion, optimizer, agent, eval_dataloader, metric): # Train! total_batch_size = args.batch_size * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataloader)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. completed_steps = 0 agent.pre_epoch_begin() model = agent.model.model for epoch in range(args.num_train_epochs): model.train() train_dataloader = tqdm(train_dataloader, desc="Training") agent.on_epoch_begin(epoch) for step, batch in enumerate(train_dataloader): agent.on_batch_begin(step) teacher_logits = None if 'teacher_logits' in batch: teacher_logits = batch['teacher_logits'] del batch['teacher_logits'] outputs = model(**batch) if criterion is None: loss = outputs.loss else: criterion.teacher_outputs = teacher_logits loss = criterion(outputs['logits'], batch["labels"]) loss = loss / args.gradient_accumulation_steps loss.backward() if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1: optimizer.step() agent.on_post_grad() lr_scheduler.step() optimizer.zero_grad() completed_steps += 1 agent.on_batch_end() if completed_steps >= args.max_train_steps: break agent.on_epoch_end() evaluation(model, eval_dataloader, metric) agent.post_epoch_end() def main(): args = parse_args() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named # label if at least two columns are provided. # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if args.task_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset("glue", args.task_name) else: # Loading the dataset from local csv or json file. data_files = {} if args.train_file is not None: data_files["train"] = args.train_file if args.validation_file is not None: data_files["validation"] = args.validation_file extension = (args.train_file if args.train_file is not None else args.valid_file).split(".")[-1] raw_datasets = load_dataset(extension, data_files=data_files) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels if args.task_name is not None: is_regression = args.task_name == "stsb" if not is_regression: label_list = raw_datasets["train"].features["label"].names num_labels = len(label_list) else: num_labels = 1 else: # Trying to have good defaults here, don't hesitate to tweak to your needs. is_regression = datasets["train"].features["label"].dtype in ["float32", "float64"] if is_regression: num_labels = 1 else: # A useful fast method: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique label_list = datasets["train"].unique("label") label_list.sort() # Let's sort it for determinism num_labels = len(label_list) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained(args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name, use_auth_token=args.use_auth_token) tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer, use_auth_token=args.use_auth_token) model = AutoModelForSequenceClassification.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, use_auth_token=args.use_auth_token ) if args.resume: try: model.load_state_dict(torch.load(args.resume)) logger.info('Resumed model from {}'.format(args.resume)) except: raise TypeError('Provided {} is not a valid checkpoint file, ' 'please provide .pt file'.format(args.resume)) # Preprocessing the datasets if args.task_name is not None: sentence1_key, sentence2_key = task_to_keys[args.task_name] else: # Again, we try to have some nice defaults but don't hesitate to tweak to your use case. non_label_column_names = [name for name in datasets["train"].column_names if name != "label"] if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names: sentence1_key, sentence2_key = "sentence1", "sentence2" else: if len(non_label_column_names) >= 2: sentence1_key, sentence2_key = non_label_column_names[:2] else: sentence1_key, sentence2_key = non_label_column_names[0], None # Some models have set the order of the labels to use, so let's make sure we do use it. label_to_id = None if ( model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id and args.task_name is not None and not is_regression ): # Some have all caps in their config, some don't. label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()} if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)): logger.info( f"The configuration of the model provided the following label correspondence: {label_name_to_id}. " "Using it!" ) label_to_id = {i: label_name_to_id[label_list[i]] for i in range(num_labels)} else: logger.warn( "Your model seems to have been trained with labels, but they don't match the dataset: ", f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}." "\nIgnoring the model labels as a result.", ) elif args.task_name is None: label_to_id = {v: i for i, v in enumerate(label_list)} padding = "max_length" if args.pad_to_max_length else False def preprocess_function(examples): # Tokenize the texts texts = ( (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) ) result = tokenizer(*texts, padding=padding, max_length=args.max_seq_length, truncation=True) if "label" in examples: if label_to_id is not None: # Map labels to IDs (not necessary for GLUE tasks) result["labels"] = [label_to_id[l] for l in examples["label"]] else: # In all cases, rename the column to labels because the model will expect that. result["labels"] = examples["label"] return result processed_datasets = raw_datasets.map( preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["validation_matched" if args.task_name == "mnli" else "validation"] # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # DataLoaders creation: if args.pad_to_max_length: # If padding was already done ot max length, we use the default data collator that will just convert everything # to tensors. data_collator = default_data_collator else: # Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=None) if args.do_distillation: teacher_config = AutoConfig.from_pretrained(args.teacher_model_name_or_path, \ num_labels=num_labels, finetuning_task=args.task_name) teacher_tokenizer = AutoTokenizer.from_pretrained(args.teacher_model_name_or_path, \ use_fast=not args.use_slow_tokenizer) assert teacher_tokenizer.vocab == tokenizer.vocab, \ 'teacher model and student model should have same tokenizer.' teacher_model = AutoModelForSequenceClassification.from_pretrained( args.teacher_model_name_or_path, from_tf=bool(".ckpt" in args.teacher_model_name_or_path), config=teacher_config, ) para_counter = lambda model:sum(p.numel() for p in model.parameters()) logger.info("***** Number of teacher model parameters: {:.2f}M *****".format(\ para_counter(teacher_model)/10**6)) logger.info("***** Number of student model parameters: {:.2f}M *****".format(\ para_counter(model)/10**6)) # get logits of teacher model if args.loss_weights[1] > 0: def get_logits(teacher_model, train_dataset): logger.info("***** Getting logits of teacher model *****") logger.info(f" Num examples = {len(train_dataset) }") teacher_model.eval() npy_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), '{}.{}.npy'.format(args.task_name, args.teacher_model_name_or_path.replace('/', '.'))) if os.path.exists(npy_file): teacher_logits = [x for x in np.load(npy_file)] else: train_dataloader = DataLoader(train_dataset, collate_fn=data_collator, \ batch_size=args.batch_size) train_dataloader = tqdm(train_dataloader, desc="Evaluating") teacher_logits = [] for step, batch in enumerate(train_dataloader): outputs = teacher_model(**batch) teacher_logits += [x for x in outputs['logits'].numpy()] np.save(npy_file,
np.array(teacher_logits)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed May 15 11:33:01 2019 @author: nikos """ import numpy as np import matplotlib.pyplot as plt import pandas as pd #import h5py from keras.preprocessing import image# for RGB images import os #import imageio from sklearn.model_selection import train_test_split import cv2# cv2.imread() for grayscale images import matplotlib.pyplot as plt from mpl_toolkits import axes_grid1 def add_colorbar(im, aspect=20, pad_fraction=0.5, **kwargs): """ Add a vertical color bar to an image plot. https://stackoverflow.com/questions/18195758/set-matplotlib-colorbar-size-to-match-graph """ divider = axes_grid1.make_axes_locatable(im.axes) width = axes_grid1.axes_size.AxesY(im.axes, aspect=1./aspect) pad = axes_grid1.axes_size.Fraction(pad_fraction, width) current_ax = plt.gca() cax = divider.append_axes("right", size=width, pad=pad) plt.sca(current_ax) return im.axes.figure.colorbar(im, cax=cax, **kwargs) #%% load the images img_folder = './data/BBBC010_v2_images' msk_folder = './data/BBBC010_v1_foreground' target_height = 400 target_width = 400 Nimages = 100#100 images, each image has 2 channels # load the filenames of all images # Note: delete the __MACOSX folder in the img_folder first img_filenames = np.array(sorted(os.listdir(img_folder)))#sort to alphabetical order assert len(img_filenames)==Nimages*2#2 channels wells = [f.split('_')[6] for f in img_filenames] wells = np.sort(
np.unique(wells)
numpy.unique
import os, sys, pickle, time, glob from gym import spaces import numpy as np import pybullet as p from datetime import datetime from .env import AssistiveEnv class ScratchItchEnv(AssistiveEnv): def __init__(self, robot_type='pr2', human_control=False, vr=False, new=False): self.participant = -1 self.gender = 'male' self.hipbone_to_mouth_height = 0.6 self.policy_name = '' self.replay = False self.replay_dir = None self.human_gains, self.waist_gains, self.human_forces, self.waist_forces = 0.09, 0.09, 1.0, 4.0 super(ScratchItchEnv, self).__init__(robot_type=robot_type, task='scratch_itch', human_control=human_control, vr=vr, new=new, frame_skip=5, time_step=0.02, action_robot_len=7, action_human_len=(10 if human_control else 0), obs_robot_len=30, obs_human_len=(34 if human_control else 0)) def setup(self, gender, participant, policy_name, hipbone_to_mouth_height): self.gender = gender self.participant = participant self.policy_name = policy_name if hipbone_to_mouth_height is None: self.hipbone_to_mouth_height = self.calc_hipbone_to_mouth_height() else: self.calc_hipbone_to_mouth_height() self.hipbone_to_mouth_height = hipbone_to_mouth_height def step(self, action): if self.replay: if self.last_sim_time is None: self.last_sim_time = time.time() for frame in range(self.frame_skip): p.restoreState(fileName=os.path.join(self.replay_dir, 'frame_%d.bullet' % (self.iteration*self.frame_skip + frame + 1))) # Slow down time so that the simulation matches real time self.slow_time() action = self.action_list[self.iteration] self.iteration += 1 else: if len(action) < self.action_robot_len + self.action_human_len and self.participant >= 0: self.free_move(robot_arm='left', gains=self.config('robot_gains'), forces=self.config('robot_forces')) obs = self._get_obs([0], [0, 0]) return obs, 0, False, dict() self.take_step(action, robot_arm='left', gains=self.config('robot_gains'), forces=self.config('robot_forces'), human_gains=0.05) self.action_list.append(action) if self.vr and self.participant >= 0: if self.iteration == 200: # End of simulation, save action_list with open(os.path.join(self.directory, 'actions.pkl'), 'wb') as f: pickle.dump(self.action_list, f) total_force_on_human, tool_force, tool_force_at_target, target_contact_pos = self.get_total_force() end_effector_velocity = np.linalg.norm(p.getLinkState(self.tool, 1, computeForwardKinematics=True, computeLinkVelocity=True, physicsClientId=self.id)[6]) if target_contact_pos is not None: target_contact_pos =
np.array(target_contact_pos)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 2020 @author: jmmauricio """ import numpy as np from pydae.tools import get_v,get_i,get_s import json from collections import namedtuple import numba class grid(object): def __init__(self,syst): #def bokeh_tools(data): self.syst = syst self.s_radio_scale = 0.01 self.s_radio_max = 20 self.s_radio_min = 1 with np.load('matrices.npz') as data: Y_primitive = data['Y_primitive'] A_conect = data['A_conect'] nodes_list = data['nodes_list'] node_sorter = data['node_sorter'] Y_vv = data['Y_vv'] Y_vi = data['Y_vi'] N_v = int(data['N_v']) self.nodes_list = nodes_list self.Y_primitive = Y_primitive self.A_conect = A_conect self.node_sorter = node_sorter self.Y_vv = Y_vv self.Y_vi = Y_vi self.N_v = N_v json_file = 'grid_data.json' json_file = json_file json_data = open(json_file).read().replace("'",'"') data = json.loads(json_data) self.buses = data['buses'] if 'transformers' in data: self.transformers = data['transformers'] else: self.transformers = [] self.lines = data['lines'] self.loads = data['loads'] if 'vscs' in data: self.vscs = data['vscs'] else: self.vscs = [] def dae2vi(self): ''' For obtaining line currents from node voltages after power flow is solved. Returns ------- None. ''' n2a = {'1':'a','2':'b','3':'c','4':'n'} a2n = {'a':1,'b':2,'c':3,'n':4} V_node_list = [] I_node_list = [0.0]*len(self.nodes_list) self.I_node_list = I_node_list for item in self.nodes_list: bus_name,phase_name = item.split('.') #i = get_i(self.syst,bus_name,phase_name=n2a[phase_name],i_type='phasor',dq_name='ri') #I_node_list += [i] v = get_v(self.syst,bus_name,phase_name=n2a[phase_name],v_type='phasor',dq_name='ri') V_node_list += [v] V_node = np.array(V_node_list).reshape(len(V_node_list),1) V_known = np.copy(V_node[:self.N_v]) V_unknown = np.copy(V_node[self.N_v:]) I_unknown = self.Y_vv @ V_known + self.Y_vi @ V_unknown #self.I_node = I_node self.V_node = V_node self.I_unknown = I_unknown self.I_known = np.array(I_node_list).reshape(len(I_node_list),1) self.I_node = np.vstack((self.I_unknown,self.I_known)) for load in self.loads: bus_name = load['bus'] if load['type'] == '3P+N': for ph in ['a','b','c','n']: idx = list(self.nodes_list).index(f"{load['bus']}.{a2n[ph]}") i_ = get_i(self.syst,'load_' + bus_name,phase_name=ph,i_type='phasor',dq_name='ri') self.I_node[idx] += i_ if load['type'] == '1P+N': ph = load['bus_nodes'][0] idx = list(self.nodes_list).index(f"{load['bus']}.{ph}") i_ = get_i(self.syst,'load_' + bus_name,phase_name=n2a[str(ph)],i_type='phasor',dq_name='ri') self.I_node[idx] += i_ ph = load['bus_nodes'][1] idx = list(self.nodes_list).index(f"{load['bus']}.{ph}") i_ = get_i(self.syst,'load_' + bus_name,phase_name=n2a[str(ph)],i_type='phasor',dq_name='ri') self.I_node[idx] += i_ for vsc in self.vscs: bus_name = vsc['bus_ac'] phases = ['a','b','c','n'] if vsc['type'] == 'ac3ph3wvdcq' or vsc['type'] == 'ac3ph3wpq': phases = ['a','b','c'] for ph in phases: idx = list(self.nodes_list).index(f"{vsc['bus_ac']}.{a2n[ph]}") i_ = get_i(self.syst,'vsc_' + bus_name,phase_name=ph,i_type='phasor',dq_name='ri') self.I_node[idx] += i_ if not vsc['type'] == 'ac3ph3wvdcq' or vsc['type'] == 'ac3ph3wpq': bus_name = vsc['bus_dc'] for ph in ['a','n']: idx = list(self.nodes_list).index(f"{vsc['bus_dc']}.{a2n[ph]}") i_ = get_i(self.syst,'vsc_' + bus_name,phase_name=ph,i_type='phasor',dq_name='r') self.I_node[idx] += i_ I_lines = self.Y_primitive @ self.A_conect.T @ self.V_node self.I_lines = I_lines def get_v(self): ''' Compute phase-neutral and phase-phase voltages from power flow solution and put values in buses dictionary. ''' res = {} V_sorted = [] I_sorted = [] S_sorted = [] start_node = 0 self.V_results = self.V_node # self.I_results = self.I_node V_sorted = self.V_node[self.node_sorter] I_sorted = self.I_node[self.node_sorter] nodes2string = ['v_an','v_bn','v_cn','v_gn'] for bus in self.buses: N_nodes = bus['N_nodes'] # for node in range(5): # bus_node = '{:s}.{:s}'.format(str(bus['bus']),str(node)) # if bus_node in self.nodes: # V = self.V_results[self.nodes.index(bus_node)][0] # V_sorted += [V] # nodes_in_bus += [node] # for node in range(5): # bus_node = '{:s}.{:s}'.format(str(bus['bus']),str(node)) # if bus_node in self.nodes: # I = self.I_results[self.nodes.index(bus_node)][0] # I_sorted += [I] if N_nodes==3: # if 3 phases v_ag = V_sorted[start_node+0,0] v_bg = V_sorted[start_node+1,0] v_cg = V_sorted[start_node+2,0] i_a = I_sorted[start_node+0,0] i_b = I_sorted[start_node+1,0] i_c = I_sorted[start_node+2,0] s_a = (v_ag)*np.conj(i_a) s_b = (v_bg)*np.conj(i_b) s_c = (v_cg)*np.conj(i_c) start_node += 3 bus.update({'v_an':np.abs(v_ag), 'v_bn':np.abs(v_bg), 'v_cn':np.abs(v_cg), 'v_ng':0.0}) bus.update({'deg_an':np.angle(v_ag, deg=True), 'deg_bn':np.angle(v_bg, deg=True), 'deg_cn':np.angle(v_cg, deg=True), 'deg_ng':
np.angle(0, deg=True)
numpy.angle
from pathlib import Path from numpy import arange, array, ceil, empty, floor, isnan, linspace, \ log10, meshgrid, nan, tile, transpose, where from numpy.ma import masked_where from matplotlib.pyplot import clf, close, cm, colorbar, figure, savefig, show from mpl_toolkits.basemap import Basemap from os.path import dirname, isdir, join, realpath from os import mkdir import pyapex, seaborn from scipy.interpolate import interp2d#, RectBivariateSpline # from pyigrf.pyigrf import GetIGRF from pyiri2016 import IRI2016 from pyiri2016 import IRI2016Profile from pyiri2016.iriweb import irisubgl, firisubl from timeutil import TimeUtilities # cwd = Path(__file__).parent DataFolder = cwd / 'data' class IRI2016_2DProf(IRI2016Profile): #def __init__(self): # pass #def _GetTitle(self): # IRI2016Profile()._GetTitle(__self__) def HeightVsTime(self, FIRI=False, hrlim=[0., 24.], hrstp=1.): self.option = 1 nhrstp = int((hrlim[1] + hrstp - hrlim[0]) / hrstp) + 1 hrbins = list(map(lambda x: hrlim[0] + float(x) * hrstp, range(nhrstp))) Ne = empty((nhrstp, self.numstp)) if FIRI: NeFIRI = empty((nhrstp, self.numstp)) Te = empty((nhrstp, self.numstp)) Ti = empty((nhrstp, self.numstp)) for i in range(nhrstp): self.hour = hrbins[i] self.HeiProfile() Ne[i, :] = self.a[0, range(self.numstp)] if FIRI: NeFIRI[i, :] = self.a[12, range(self.numstp)] Te[i, :] = self.a[3, range(self.numstp)] Ti[i, :] = self.a[2, range(self.numstp)] # self._GetTitle() altbins = arange(self.vbeg, self.vend + self.vstp, self.vstp) self.data2D = {'alt' : altbins, 'hour' : hrbins, \ 'Ne' : Ne, 'Te' : Te, 'Ti' : Ti, \ 'title1' : self.title1, 'title2' : self.title2} if FIRI: self.FIRI2D = {'alt' : altbins, 'hour' : hrbins, \ 'Ne' : NeFIRI, \ 'title1' : self.title1, 'title2' : self.title2} # # End of 'HeightVsTime' ##### def LatVsLon(self, lonlim=[-180., 180.], lonstp=20.): self.option = 2 nlonstp = int((lonlim[1] + lonstp - lonlim[0]) / lonstp) + 1 lonbins = list(map(lambda x: lonlim[0] + float(x) * lonstp, range(nlonstp))) NmF2 = empty((nlonstp, self.numstp)) hmF2 = empty((nlonstp, self.numstp)) B0 = empty((nlonstp, self.numstp)) dip = empty((nlonstp, self.numstp)) for i in range(nlonstp): self.lon = lonbins[i] self.HeiProfile() NmF2[i, :] = self.b[0, range(self.numstp)] hmF2[i, :] = self.b[1, range(self.numstp)] B0[i, :] = self.b[9, range(self.numstp)] dip[i, :] = self.b[24, range(self.numstp)] latbins = arange(self.vbeg, self.vend + self.vstp, self.vstp) self.data2D = {'lat' : latbins, 'lon' : lonbins, \ 'NmF2' : NmF2, 'hmF2' : hmF2, 'B0' : B0, 'dip' : dip, \ 'title' : self.title3} # # End of 'LatVsLon' ##### def LatVsFL(self, date=[2003, 11, 21], FIRI=False, IGRF=False, time=[23, 15, 0], \ gc=[-77.76, -11.95], \ hlim=[80., 200.], hstp=1., mlatlim=[-10., 10.], mlatstp=.1): # # INPUTS # # Date year, month, day = date # Time hour, minute, second = time # Geog. Coord. dlon, dlat = gc # hlim -> Height range at equator, in km # hstp -> height resolution at equator, in km # mlatlim -> Geom. latitude range, in degrees # mlatstp -> Geom. latitude resolution, in degrees # ### doy = TimeUtilities().CalcDOY(year, month, day) date2 = year + doy / (365 + 1 if TimeUtilities().IsLeapYear else 0) # f = figure(figsize=(16,6)) # pn = f.add_subplot(111) self.coordl, self.qdcoordl = [], [] for h in arange(hlim[0], hlim[1] + hstp, hstp): gc, qc = pyapex.ApexFL().getFL(date=date2, dlon=dlon, dlat=dlat, \ hateq=h, mlatRange=mlatlim, mlatSTP=mlatstp) # x, y, z = gc['lat'], gc['alt'], gc['lon'] # ind = where(y < hlim[0]) # if len(ind) > 0: x[ind], y[ind], z[ind] = nan, nan, nan # pn.plot(x, y) self.coordl.append([gc['lon'], gc['alt'], gc['lat']]) self.qdcoordl.append([qc['lon'], gc['alt'], qc['lat']]) # pn.invert_xaxis() # show() jf = IRI2016().Switches() jmag = 0 mmdd = int(month * 100) + day hour2 = hour + minute / 60 + second / 3600 self.coordl = array(self.coordl) self.qdcoordl = array(self.qdcoordl) # nfl -> No. of field-line (or height) # nc -> No. of coord. (0 -> lon, 1 -> alt, 2 -> lat) # np -> No. of points per field-line nfl, nc, np = self.coordl.shape self.ne, self.te =
tile(nan, (np, nfl))
numpy.tile
""" fitting.py Created by <NAME> on 2017-05-19. """ import os import glob import inspect from collections import OrderedDict import numpy as np import astropy.io.fits as pyfits import astropy.units as u from astropy.cosmology import Planck15 import astropy.constants as const from . import utils #from .model import BeamCutout from .utils import GRISM_COLORS # Minimum redshift where IGM is applied IGM_MINZ = 3.4 # blue edge of G800L # Default parameters for drizzled line map PLINE = {'kernel': 'point', 'pixfrac': 0.2, 'pixscale': 0.1, 'size': 8, 'wcs': None} # IGM from eazy-py try: import eazy.igm IGM = eazy.igm.Inoue14() except: IGM = None def run_all_parallel(id, get_output_data=False, **kwargs): import numpy as np from grizli.fitting import run_all from grizli import multifit import time import traceback t0 = time.time() print('Run {0}'.format(id)) args = np.load('fit_args.npy')[0] args['verbose'] = False for k in kwargs: args[k] = kwargs[k] fp = open('{0}_{1:05d}.log_par'.format(args['group_name'], id),'w') fp.write('{0}_{1:05d}: {2}\n'.format(args['group_name'], id, time.ctime())) fp.close() try: #args['zr'] = [0.7, 1.0] #mb = multifit.MultiBeam('j100025+021651_{0:05d}.beams.fits'.format(id)) out = run_all(id, **args) if get_output_data: return out status=1 except: status=-1 trace = traceback.format_exc(limit=2)#, file=fp) if args['verbose']: print(trace) t1 = time.time() return id, status, t1-t0 def run_all(id, t0=None, t1=None, fwhm=1200, zr=[0.65, 1.6], dz=[0.004, 0.0002], fitter='nnls', group_name='grism', fit_stacks=True, only_stacks=False, prior=None, fcontam=0.2, pline=PLINE, mask_sn_limit=3, fit_only_beams=False, fit_beams=True, root='*', fit_trace_shift=False, phot=None, phot_obj=None, verbose=True, scale_photometry=False, show_beams=True, scale_on_stacked_1d=True, overlap_threshold=5, MW_EBV=0., sys_err=0.03, get_dict=False, bad_pa_threshold=1.6, units1d='flam', redshift_only=False, line_size=1.6, use_psf=False, get_line_width=False, sed_args={'bin':1, 'xlim':[0.3, 9]}, get_ir_psfs=True, min_mask=0.01, min_sens=0.08, **kwargs): """Run the full procedure 1) Load MultiBeam and stack files 2) ... tbd fwhm=1200; zr=[0.65, 1.6]; dz=[0.004, 0.0002]; group_name='grism'; fit_stacks=True; prior=None; fcontam=0.2; mask_sn_limit=3; fit_beams=True; root='' """ import glob import grizli.multifit from grizli.stack import StackFitter from grizli.multifit import MultiBeam if get_dict: frame = inspect.currentframe() args = inspect.getargvalues(frame).locals for k in ['id', 'get_dict', 'frame', 'glob', 'grizli', 'StackFitter', 'MultiBeam']: if k in args: args.pop(k) return args mb_files = glob.glob('{0}_{1:05d}.beams.fits'.format(root, id)) st_files = glob.glob('{0}_{1:05d}.stack.fits'.format(root, id)) if not only_stacks: mb = MultiBeam(mb_files, fcontam=fcontam, group_name=group_name, MW_EBV=MW_EBV, sys_err=sys_err, verbose=verbose, psf=use_psf, min_mask=min_mask, min_sens=min_sens) # Check for PAs with unflagged contamination or otherwise discrepant # fit out = mb.check_for_bad_PAs(chi2_threshold=bad_pa_threshold, poly_order=1, reinit=True, fit_background=True) fit_log, keep_dict, has_bad = out if has_bad: if verbose: print('\nHas bad PA! Final list: {0}\n{1}'.format(keep_dict, fit_log)) hdu, fig = mb.drizzle_grisms_and_PAs(fcontam=0.5, flambda=False, kernel='point', size=32) fig.savefig('{0}_{1:05d}.fix.stack.png'.format(group_name, id)) good_PAs = [] for k in keep_dict: good_PAs.extend(keep_dict[k]) else: good_PAs = None # All good else: good_PAs = None # All good redshift_only=True # can't drizzle line maps from stacks if fit_only_beams: st = None else: st = StackFitter(st_files, fit_stacks=fit_stacks, group_name=group_name, fcontam=fcontam, overlap_threshold=overlap_threshold, MW_EBV=MW_EBV, verbose=verbose, sys_err=sys_err, PAs=good_PAs, chi2_threshold=bad_pa_threshold) st.initialize_masked_arrays() if only_stacks: mb = st if not only_stacks: if fit_trace_shift: b = mb.beams[0] b.compute_model() sn_lim = fit_trace_shift*1 if (np.max((b.model/b.grism['ERR'])[b.fit_mask.reshape(b.sh)]) > sn_lim) | (sn_lim > 100): shift, _ = mb.fit_trace_shift(tol=1.e-3, verbose=verbose, split_groups=True) mb.initialize_masked_arrays() ## Get photometry from phot_obj if (phot is None) & (phot_obj is not None): phot_i, ii, dd = phot_obj.get_phot_dict(mb.ra, mb.dec) if dd < 0.5*u.arcsec: phot = phot_i if phot is not None: if phot == 'vizier': ### Get photometry from Vizier catalogs vizier_catalog = list(utils.VIZIER_BANDS.keys()) phot = utils.get_Vizier_photometry(mb.ra, mb.dec, verbose=verbose, vizier_catalog=vizier_catalog) if phot is not None: zgrid = utils.log_zgrid(zr=zr, dz=0.005) phot['tempfilt'] = utils.generate_tempfilt(t0, phot['filters'], zgrid=zgrid, MW_EBV=MW_EBV) if phot is not None: if st is not None: st.set_photometry(**phot, min_err=sys_err) mb.set_photometry(**phot, min_err=sys_err) if t0 is None: t0 = utils.load_templates(line_complexes=True, fsps_templates=True, fwhm=fwhm) if t1 is None: t1 = utils.load_templates(line_complexes=False, fsps_templates=True, fwhm=fwhm) # Fit on stacked spectra or individual beams if fit_only_beams: fit_obj = mb else: fit_obj = st ### Do scaling now with direct spectrum function if (scale_photometry > 0) & (phot is not None): try: scl = mb.scale_to_photometry(z=0, method='lm', templates=t0, order=scale_photometry*1-1) except: scl = [10.] if hasattr(scl,'status'): if scl.status > 0: print('scale_to_photometry: [{0}]'.format(', '.join(['{0:.2f}'.format(x_i) for x_i in scl.x]))) mb.pscale = scl.x if st is not None: st.pscale = scl.x # First pass fit = fit_obj.xfit_redshift(templates=t0, zr=zr, dz=dz, prior=prior, fitter=fitter, verbose=verbose) fit_hdu = pyfits.table_to_hdu(fit) fit_hdu.header['EXTNAME'] = 'ZFIT_STACK' if hasattr(fit_obj, 'pscale'): fit_hdu.header['PSCALEN'] = (len(fit_obj.pscale)-1, 'PSCALE order') for i, p in enumerate(fit_obj.pscale): fit_hdu.header['PSCALE{0}'.format(i)] = (p, 'PSCALE parameter {0}'.format(i)) # Add photometry information if (fit_obj.Nphot > 0) & hasattr(fit_obj, 'photom_filters'): h = fit_hdu.header h['NPHOT'] = fit_obj.Nphot, 'Number of photometry filters' h['PHOTSRC'] = fit_obj.photom_source, 'Source of the photometry' for i in range(len(fit_obj.photom_filters)): h['PHOTN{0:03d}'.format(i)] = fit_obj.photom_filters[i].name.split()[0], 'Filter {0} name'.format(i) h['PHOTL{0:03d}'.format(i)] = fit_obj.photom_pivot[i], 'Filter {0} pivot wavelength'.format(i) h['PHOTF{0:03d}'.format(i)] = fit_obj.photom_flam[i], 'Filter {0} flux flam'.format(i) h['PHOTE{0:03d}'.format(i)] = fit_obj.photom_eflam[i], 'Filter {0} err flam'.format(i) # # Second pass if rescaling spectrum to photometry # if scale_photometry: # scl = mb.scale_to_photometry(z=fit.meta['z_map'][0], method='lm', templates=t0, order=scale_photometry*1-1) # if scl.status > 0: # mb.pscale = scl.x # if st is not None: # st.pscale = scl.x # # fit = fit_obj.xfit_redshift(templates=t0, zr=zr, dz=dz, prior=prior, fitter=fitter, verbose=verbose) # fit_hdu = pyfits.table_to_hdu(fit) # fit_hdu.header['EXTNAME'] = 'ZFIT_STACK' # Zoom-in fit with individual beams if fit_beams: #z0 = fit.meta['Z50'][0] z0 = fit.meta['z_map'][0] #width = np.maximum(3*fit.meta['ZWIDTH1'][0], 3*0.001*(1+z0)) width = 20*0.001*(1+z0) mb_zr = z0 + width*np.array([-1,1]) mb_fit = mb.xfit_redshift(templates=t0, zr=mb_zr, dz=[0.001, 0.0002], prior=prior, fitter=fitter, verbose=verbose) mb_fit_hdu = pyfits.table_to_hdu(mb_fit) mb_fit_hdu.header['EXTNAME'] = 'ZFIT_BEAM' else: mb_fit = fit #### Get best-fit template tfit = mb.template_at_z(z=mb_fit.meta['z_map'][0], templates=t1, fit_background=True, fitter=fitter) # Redrizzle? ... testing if False: hdu, fig = mb.drizzle_grisms_and_PAs(fcontam=fcontam, flambda=False, size=48, scale=1., kernel='point', pixfrac=0.1, zfit=tfit) # Fit covariance cov_hdu = pyfits.ImageHDU(data=tfit['covar'], name='COVAR') Next = mb_fit.meta['N'] cov_hdu.header['N'] = Next # Line EWs & fluxes coeffs_clip = tfit['coeffs'][mb.N:] covar_clip = tfit['covar'][mb.N:,mb.N:] lineEW = utils.compute_equivalent_widths(t1, coeffs_clip, covar_clip, max_R=5000, Ndraw=1000, z=tfit['z']) for ik, key in enumerate(lineEW): for j in range(3): if not np.isfinite(lineEW[key][j]): lineEW[key][j] = -1.e30 cov_hdu.header['FLUX_{0:03d}'.format(ik)] = tfit['cfit'][key][0], '{0} line flux; erg / (s cm2)'.format(key.strip('line ')) cov_hdu.header['ERR_{0:03d}'.format(ik)] = tfit['cfit'][key][1], '{0} line uncertainty; erg / (s cm2)'.format(key.strip('line ')) cov_hdu.header['EW16_{0:03d}'.format(ik)] = lineEW[key][0], 'Rest-frame {0} EW, 16th percentile; Angstrom'.format(key.strip('line ')) cov_hdu.header['EW50_{0:03d}'.format(ik)] = lineEW[key][1], 'Rest-frame {0} EW, 50th percentile; Angstrom'.format(key.strip('line ')) cov_hdu.header['EW84_{0:03d}'.format(ik)] = lineEW[key][2], 'Rest-frame {0} EW, 84th percentile; Angstrom'.format(key.strip('line ')) cov_hdu.header['EWHW_{0:03d}'.format(ik)] = (lineEW[key][2]-lineEW[key][0])/2, 'Rest-frame {0} EW, 1-sigma half-width; Angstrom'.format(key.strip('line ')) # Velocity width if get_line_width: if phot is not None: mb.unset_photometry() vel_width_res = mb.fit_line_width(z0=tfit['z'], bl=1.2, nl=1.2) if verbose: print('Velocity width: BL/NL = {0:.0f}/{1:.0f}, z={2:.4f}'.format(vel_width_res[0]*1000, vel_width_res[1]*1000, vel_width_res[2])) fit_hdu.header['VEL_BL'] = vel_width_res[0]*1000, 'Broad line FWHM' fit_hdu.header['VEL_NL'] = vel_width_res[1]*1000, 'Narrow line FWHM' fit_hdu.header['VEL_Z'] = vel_width_res[2], 'Line width, best redshift' fit_hdu.header['VEL_NFEV'] = vel_width_res[3], 'Line width, NFEV' fit_hdu.header['VEL_FLAG'] = vel_width_res[4], 'Line width, NFEV' if phot is not None: mb.set_photometry(**phot) # Best-fit template itself tfit_sp = utils.GTable() for ik, key in enumerate(tfit['cfit']): for save in [tfit_sp.meta]: save['CVAL{0:03d}'.format(ik)] = tfit['cfit'][key][0], 'Coefficient for {0}'.format(key) save['CERR{0:03d}'.format(ik)] = tfit['cfit'][key][1], 'Uncertainty for {0}'.format(key) save['CNAME{0:03d}'.format(ik)] = key, 'Template name' tfit_sp['wave'] = tfit['cont1d'].wave tfit_sp['continuum'] = tfit['cont1d'].flux tfit_sp['full'] = tfit['line1d'].flux tfit_sp['wave'].unit = tfit['cont1d'].waveunits tfit_sp['continuum'].unit = tfit['cont1d'].fluxunits tfit_sp['full'].unit = tfit['line1d'].fluxunits tfit_hdu = pyfits.table_to_hdu(tfit_sp) tfit_hdu.header['EXTNAME'] = 'TEMPL' # Make the plot fig = mb.xmake_fit_plot(mb_fit, tfit, show_beams=show_beams, scale_on_stacked_1d=scale_on_stacked_1d) # Add prior if prior is not None: fig.axes[0].plot(prior[0], np.log10(prior[1]), color='#1f77b4', alpha=0.5) # Add stack fit to the existing plot fig.axes[0].plot(fit['zgrid'], np.log10(fit['pdf']), color='0.5', alpha=0.5) fig.axes[0].set_xlim(fit['zgrid'].min(), fit['zgrid'].max()) if phot is not None: fig.axes[1].errorbar(mb.photom_pivot/1.e4, mb.photom_flam/1.e-19, mb.photom_eflam/1.e-19, marker='s', alpha=0.5, color='k', linestyle='None') #fig.axes[1].plot(tfit['line1d'].wave/1.e4, tfit['line1d'].flux/1.e-19, color='k', alpha=0.2, zorder=100) # Save the figure fig.savefig('{0}_{1:05d}.full.png'.format(group_name, id)) if redshift_only: return mb, st, fit, tfit, None # Make the line maps if pline is None: pzfit, pspec2, pline = grizli.multifit.get_redshift_fit_defaults() line_hdu = mb.drizzle_fit_lines(tfit, pline, force_line=utils.DEFAULT_LINE_LIST, save_fits=False, mask_lines=True, mask_sn_limit=mask_sn_limit, verbose=verbose, get_ir_psfs=get_ir_psfs) # Add beam exposure times exptime = mb.compute_exptime() for k in exptime: line_hdu[0].header['T_{0}'.format(k)] = (exptime[k], 'Total exposure time [s]') line_hdu.insert(1, fit_hdu) line_hdu.insert(2, cov_hdu) if fit_beams: line_hdu.insert(2, mb_fit_hdu) line_hdu.insert(3, tfit_hdu) line_hdu.writeto('{0}_{1:05d}.full.fits'.format(group_name, id), clobber=True, output_verify='fix') # 1D spectrum oned_hdul = mb.oned_spectrum_to_hdu(tfit=tfit, bin=1, outputfile='{0}_{1:05d}.1D.fits'.format(group_name, id))#, units=units1d) ###### # Show the drizzled lines and direct image cutout, which are # extensions `DSCI`, `LINE`, etc. s, si = 1, line_size s = 4.e-19/np.max([beam.beam.total_flux for beam in mb.beams]) s = np.clip(s, 0.25, 4) full_line_list = ['Lya', 'OII', 'Hb', 'OIII', 'Ha', 'SII', 'SIII'] fig = show_drizzled_lines(line_hdu, size_arcsec=si, cmap='plasma_r', scale=s, dscale=s, full_line_list=full_line_list) fig.savefig('{0}_{1:05d}.line.png'.format(group_name, id)) if phot is not None: out = mb, st, fit, tfit, line_hdu if 'pz' in phot: full_sed_plot(mb, tfit, zfit=fit, photometry_pz=phot['pz'], **sed_args) else: full_sed_plot(mb, tfit, zfit=fit, **sed_args) return mb, st, fit, tfit, line_hdu ################################### def full_sed_plot(mb, tfit, zfit=None, bin=1, minor=0.1, save='png', sed_resolution=180, photometry_pz=None, zspec=None, spectrum_steps=False, xlim=[0.3, 9], **kwargs): """ Make a separate plot showing photometry and the spectrum """ #import seaborn as sns import prospect.utils.smoothing import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator import matplotlib.gridspec as gridspec #mpl_colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] mpl_colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] # sns_colors = colors = sns.color_palette("cubehelix", 8) ### seaborn cubehelix colors sns_colors = colors = [(0.1036, 0.094, 0.206), (0.0825, 0.272, 0.307), (0.1700, 0.436, 0.223), (0.4587, 0.480, 0.199), (0.7576, 0.476, 0.437), (0.8299, 0.563, 0.776), (0.7638, 0.757, 0.949), (0.8106, 0.921, 0.937)] # Best-fit #mb = out[0] #zfit = out[2] #tfit = out[3] t1 = tfit['templates'] best_model = mb.get_flat_model([tfit['line1d'].wave, tfit['line1d'].flux]) flat_model = mb.get_flat_model([tfit['line1d'].wave, tfit['line1d'].flux*0+1]) bg = mb.get_flat_background(tfit['coeffs']) sp = mb.optimal_extract(mb.scif[mb.fit_mask][:-mb.Nphot] - bg, bin=bin)#['G141'] spm = mb.optimal_extract(best_model, bin=bin)#['G141'] spf = mb.optimal_extract(flat_model, bin=bin)#['G141'] # Photometry A_phot = mb._interpolate_photometry(z=tfit['z'], templates=t1) A_model = A_phot.T.dot(tfit['coeffs']) photom_mask = mb.photom_eflam > -98 ########## # Figure if True: if zfit is not None: fig = plt.figure(figsize=[11, 9./3]) gs = gridspec.GridSpec(1,3, width_ratios=[1,1.5,1]) ax1 = fig.add_subplot(gs[0]) ax2 = fig.add_subplot(gs[1]) ax3 = fig.add_subplot(gs[2]) else: fig = plt.figure(figsize=[9, 9./3]) gs = gridspec.GridSpec(1,2, width_ratios=[1,1.5]) ax1 = fig.add_subplot(gs[0]) ax2 = fig.add_subplot(gs[1]) else: gs = None fig = plt.figure(figsize=[9, 9./3]) ax1 = fig.add_subplot(131) ax2 = fig.add_subplot(132) ax3 = fig.add_subplot(133) # Photometry SED ax1.errorbar(np.log10(mb.photom_pivot[photom_mask]/1.e4), mb.photom_flam[photom_mask]/1.e-19, mb.photom_eflam[photom_mask]/1.e-19, color='k', alpha=0.6, marker='s', linestyle='None', zorder=30) sm = prospect.utils.smoothing.smoothspec(tfit['line1d'].wave, tfit['line1d'].flux, resolution=sed_resolution, smoothtype='R') #nsigma=10, inres=10) ax1.scatter(np.log10(mb.photom_pivot[photom_mask]/1.e4), A_model/1.e-19, color='w', marker='s', s=80, zorder=10) ax1.scatter(np.log10(mb.photom_pivot[photom_mask]/1.e4), A_model/1.e-19, color=sns_colors[4], marker='s', s=20, zorder=11) yl1 = ax1.get_ylim() ax1.plot(np.log10(tfit['line1d'].wave/1.e4), sm/1.e-19, color=sns_colors[4], linewidth=1, zorder=0) #ax1.grid() ax1.set_xlabel(r'$\lambda$ / $\mu$m') ax2.set_xlabel(r'$\lambda$ / $\mu$m') # Spectrum ymax, ymin = -1e30, 1e30 for g in sp: sn = sp[g]['flux']/sp[g]['err'] clip = sn > 3 clip = spf[g]['flux'] > 0.2*spf[g]['flux'].max() try: scale = mb.compute_scale_array(mb.pscale, sp[g]['wave']) except: scale = 1 ax2.errorbar(sp[g]['wave'][clip]/1.e4, (sp[g]['flux']/spf[g]['flux']/scale)[clip]/1.e-19, (sp[g]['err']/spf[g]['flux']/scale)[clip]/1.e-19, marker='.', color='k', alpha=0.5, linestyle='None', elinewidth=0.5, zorder=11) if spectrum_steps: ax2.plot(sp[g]['wave']/1.e4, spm[g]['flux']/spf[g]['flux']/1.e-19, color=sns_colors[4], linewidth=2, alpha=0.8, zorder=10, linestyle='steps-mid') else: ax2.plot(sp[g]['wave']/1.e4, spm[g]['flux']/spf[g]['flux']/1.e-19, color=sns_colors[4], linewidth=2, alpha=0.8, zorder=10, marker='.') ymax = np.maximum(ymax, (spm[g]['flux']/spf[g]['flux']/1.e-19)[clip].max()) ymin = np.minimum(ymin, (spm[g]['flux']/spf[g]['flux']/1.e-19)[clip].min()) ax1.errorbar(np.log10(sp[g]['wave'][clip]/1.e4), (sp[g]['flux']/spf[g]['flux']/scale)[clip]/1.e-19, (sp[g]['err']/spf[g]['flux']/scale)[clip]/1.e-19, marker='.', color='k', alpha=0.2, linestyle='None', elinewidth=0.5, zorder=-100) xl, yl = ax2.get_xlim(), ax2.get_ylim() yl = (ymin-0.3*ymax, 1.3*ymax) # SED x range if xlim is None: okphot = (mb.photom_eflam > 0) xlim = [np.minimum(xl[0]*0.7, 0.7*mb.photom_pivot[okphot].min()/1.e4), np.maximum(xl[1]/0.7, mb.photom_pivot[okphot].max()/1.e4/0.7)] ax1.set_xlim(np.log10(xlim[0]), np.log10(xlim[1])) ticks = np.array([0.5, 1, 2, 4, 8]) ticks = ticks[(ticks >= xlim[0]) & (ticks <= xlim[1])] ax1.set_xticks(np.log10(ticks)) ax1.set_xticklabels(ticks) # Back to spectrum ax2.scatter((mb.photom_pivot[photom_mask]/1.e4), A_model/1.e-19, color='w', marker='s', s=80, zorder=11) ax2.scatter((mb.photom_pivot[photom_mask]/1.e4), A_model/1.e-19, color=sns_colors[4], marker='s', s=20, zorder=12) ax2.errorbar(mb.photom_pivot[photom_mask]/1.e4, mb.photom_flam[photom_mask]/1.e-19, mb.photom_eflam[photom_mask]/1.e-19, color='k', alpha=0.6, marker='s', linestyle='None', zorder=20) ax2.set_xlim(xl); ax2.set_ylim(yl) ax2.set_yticklabels([]) #ax2.set_xticks(np.arange(1.1, 1.8, 0.1)) #ax2.set_xticklabels([1.1, '', 1.3, '', 1.5, '', 1.7]) ax2.xaxis.set_minor_locator(MultipleLocator(minor)) ax2.xaxis.set_major_locator(MultipleLocator(minor*2)) # Show spectrum range on SED panel xb, yb = np.array([0, 1, 1, 0, 0]), np.array([0, 0, 1, 1, 0]) ax1.plot(
np.log10(xl[0]+xb*(xl[1]-xl[0]))
numpy.log10
from matplotlib.ticker import MultipleLocator, FormatStrFormatter, MaxNLocator import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import interp1d from scipy.optimize import curve_fit def decompress_gain(Sweep_Array, loop, metadata,Compression_Calibration_Index = -1, Show_Plot = True, Verbose = True): ''' Assumes the two lowest input powers of the power sweep are not gain compressed, thus cannot be used if the two lowest powers are gain compressed. ''' Sweep_Array_Record_Index = loop.index V = Sweep_Array['Heater_Voltage'][Sweep_Array_Record_Index] Fs = Sweep_Array['Fstart'][Sweep_Array_Record_Index] P = Sweep_Array['Pinput_dB'][Sweep_Array_Record_Index] Sweep_Array = np.extract((Sweep_Array['Heater_Voltage'] == V) & ( Sweep_Array['Fstart']==Fs) , Sweep_Array) num_sweep_powers = Sweep_Array['Pinput_dB'].shape[0] if num_sweep_powers <= 4: print('Number of sweep powers, {0}, is insufficient to perform gain decompression.'.format(num_sweep_powers)) return #else: # print('Performing gain decompression on {0} sweep powers.'.format(num_sweep_powers)) Pin = np.power(10, Sweep_Array['Pinput_dB']/10.0) #mW, Probe Power #ChooseCompression calobration data from Power Sweep Data. #It is the S21(Compression_Calibration_Index) for every sweep power compression_calibration_data = np.power(np.abs(Sweep_Array['S21'][:,Compression_Calibration_Index]),2) #Pout/Pin, # alternatively : np.average(Sweep_Array['S21'][:,Compression_Calibration_Index:Compression_Calibration_Index+n],axis = 1) #average over n freq points. Pout = compression_calibration_data*Pin # calculated_power_gain is power gain calculated from the slope of the two smallest input powers in Pin values, indices = np.unique(Pin, return_index=True) min_index,min_plus_index = indices[:2] # When Pin = 0, 0 != Pout = Pin*gaain. There is an offset, i.e. a y-intercept, b, such at y = m*x+b. Next, we find m. calculated_power_gain = (Pout[min_plus_index] - Pout[min_index])/(Pin[min_plus_index ]-Pin[min_index]) #Pout_ideal is the output power assuming linear gain Pout_ideal = lambda p_in: calculated_power_gain*(p_in-Pin[0]) + Pout[0] Probe_Power_Mag = np.power(10,Sweep_Array[Sweep_Array_Record_Index]['Pinput_dB']/10) #-- Substitute for input power S21 = Sweep_Array[Sweep_Array_Record_Index]['S21'] S21_Pout = np.power(np.abs(S21),2)*Probe_Power_Mag # create interpolation funcation to what Pin would be at an arbitrary Pout decompression_function = interp1d(Pout,Pin,kind = 'linear') # for polynomial to Pout vs Pin curve and use this to extrapolate values where Pout in not in interpolation domain def decompression_function_fit(pout, a,b,c): return a*np.power(pout,2)+b*pout+c popt,pcov = curve_fit(decompression_function_fit, Pout, Pin) decompression_function_extrap = lambda pout : decompression_function_fit(pout,popt[0],popt[1],popt[2]) def decompress_element(z): z_Pout = np.power(
np.abs(z)
numpy.abs
from bs4 import BeautifulSoup import re from os import listdir from os.path import isfile, join import numpy as np from scipy.optimize import curve_fit # Initialise some arrays for analyses later exam_difficulties = [] master_questions_arr = [] # Allow user to choose which folder to ultimately extract converted pdf->html files from. yn = input("methods (y) or spec (n): ") if yn.lower() == "y": folder = 'Methods-Exams' else: folder = 'Spec-Exams' allPDFs = [f for f in listdir(folder) if isfile(join(folder, f))] #Get list of files in spec-exams folder for file in range(0,len(allPDFs)): #Setup Variables code = data = open(folder+"/"+allPDFs[file], encoding="utf8") html = code.read() allQuestions = [] allTables = [] allH3 = [] # # EXTRACT DATA AND FILTER DATA # soup = BeautifulSoup(html, "html.parser") tabletag = soup.body.findAll('table') exam_id = soup.findAll('title')[0].text #Info about this exam #print(exam_id) #required funciton def hasNumbers(inputString): return any(char.isdigit() for char in inputString) #filter tables for table in tabletag: if table.text.find("Marks") != -1: allTables.append(table) # Identify questions for i in range(2,6): h3tag = soup.body.findAll('h'+str(i)) for h3 in h3tag: if h3.text.find("Question") != -1 and hasNumbers(h3.text): allH3.append(h3) if len(allH3) > 0: break # # ACCOUNT FOR POSSIBLE HOLES IN THE DATA # if len(allH3) != len(allTables): #ONLY IF THERE IS NO 'One-to-one' RELATIONSHIP (else the data has holes) indexes_of_elements = [] #array to store 'positions' of each element in html # Fill array of positions for titles for i in range(0,len(allH3)): if html.count(allH3[i].text) > 1: if html.strip().find(allH3[i].text+"</h3") != -1: indexes_of_elements.append([html.strip().find(allH3[i].text+"</h3"),"h3"]) elif html.strip().find(allH3[i].text+"</a") != -1: indexes_of_elements.append([html.strip().find(allH3[i].text+"</a"),"h3"]) elif html.strip().find(allH3[i].text+"</h4") != -1: indexes_of_elements.append([html.strip().find(allH3[i].text+"</h4"),"h3"]) elif html.strip().find(allH3[i].text+"</h2") != -1: indexes_of_elements.append([html.strip().find(allH3[i].text+"</h2"),"h3"]) elif html.count(allH3[i].text) == 1: indexes_of_elements.append([html.strip().find(allH3[i].text),"h3"]) previous_search_s = indexes_of_elements[0][0] index1 = 0 # Fill array of positions for tables while index1 != -1: index1 = html.strip().find("<table",previous_search_s) #the left point if index1 != -1: indexes_of_elements.append([index1, "table"]) previous_search_s = index1+1 #Sort by order of appearance indexes_of_elements = sorted(indexes_of_elements,key=lambda x: x[0]) running_index = 0 output = [] #Iterate with a running index to find inconsistencies in the data for i in range(0,len(indexes_of_elements)): #print(indexes_of_elements[i][1] + " ----- " + str(indexes_of_elements[i][0]) + " ------- " + html[indexes_of_elements[i][0]:indexes_of_elements[i][0]+20]) if indexes_of_elements[i][1] == "table": running_index = running_index - 1 output.append("T") elif indexes_of_elements[i][1] != "table": running_index = running_index + 1 output.append("H") if running_index == -1: #Mismatch has occured, input a dummy title output[len(output)-1] = "E" output.append("T") running_index = 0 elif running_index == 2: #Mismatch has occured, input a dummy title output[len(output)-1] = "M" output.append("H") running_index = 1 #Create one-to-one relationship array j1=0 j2=0 #print(output) for i in range(1, len(output)+1): if i % 2 == 0: #Every H-T pair if output[i-2] != "E" and output[i-1] != "M": #print(j1,len(allH3),j2,len(allTables)) allQuestions.append([allH3[j1].text,allTables[j2]]) j1+=1 j2+=1 elif output[i-2] == "E": try: allQuestions.append(["Missing (between " + allH3[j1-1].text + " and " + allH3[j1].text + ")",allTables[j2]]) except: allQuestions.append(["Missing (Unknown location)",allTables[j2]]) j2+=1 elif output[i-1] == "M": allQuestions.append([allH3[j1].text,"Missing"]) j1+=1 else: for i in range(0, len(allH3)): allQuestions.append([allH3[i].text,allTables[i]]) #print(str(len(allQuestions)) + " Questions. From Hardest-Easiest:") #print the length (i.e-#of questions) # #DATA MANIPULATION # #Calculate difficulty ratings for i in range(0, len(allQuestions)): if allQuestions[i][1] != "Missing": marks = int(allQuestions[i][1].text.split('A')[0].strip()[-1]) try: marks = int(allQuestions[i][1].text.split('A')[0].strip()[-1]) data = [] table = allQuestions[i][1] rows = table.find_all('tr') for row in rows: cols = row.find_all('td') cols = [ele.text.strip() for ele in cols] data.append([ele for ele in cols if ele]) # Get rid of empty values percentages = data[1] average = 0 mark = 0 for j in range(1,marks+2): average += (int(percentages[j])/100)*mark mark += 1 diff = average/marks allQuestions[i].append(diff) except: try: avg = float(re.findall("\d\.\d", allQuestions[i][1].text)[0]) diff = avg/marks allQuestions[i].append(diff) except: try: avg = float(allQuestions[i][1].text[len(allQuestions[i][1].text)-1:len(allQuestions[i][1].text)]) diff = avg/marks if diff <= 1: allQuestions[i].append(diff) else: print("error" + 1) except: avg = -1 else: allQuestions[i].append(-2) #Sort allQuestions list by difficulty #allQuestions = sorted(allQuestions,key=lambda x: x[2]) sum_diff = 0 #Add exam year to allQuestions and display questions for i in range(0, len(allQuestions)): allQuestions[i].append(exam_id) #print(allQuestions[i][0], "-", allQuestions[i][2]) sum_diff += allQuestions[i][2] master_questions_arr.append(allQuestions[i]) avgDiff = sum_diff/len(allQuestions) exam_difficulties.append([avgDiff,exam_id]) #print("Overall Difficulty: ", avgDiff) master_questions_arr = sorted(master_questions_arr,key=lambda x: x[2]) #Sort all questions by difficulty print("Loaded " + str(len(master_questions_arr)) + " total questions from " + str(len(exam_difficulties)) + " exams.") user = input("Do you want questions with missing tables to be displayed? (y/n): ") #Display ALL QUESTIONS: for question in master_questions_arr: if question[2] == -2: #Lost data if user.lower() == "y": print(question[0], "-", "MISSING TABULAR DATA", " from: ", question[3]) elif question[2] == -1 or question[2] > 1: #Edge Case print(question[0], " - EXTREME EDGE CASE, from: ", question[3]) elif question[2] >= 0 and question[2] <= 1: print(question[0], "-", question[2], " from: ", question[3]) #Display difficulty distribution graph import csv import matplotlib.pyplot as plt import numpy as np average_list = [] for question in master_questions_arr: if question[2] > 0 and question[2] <= 1: average_list.append(question[2]) plt.hist(average_list, bins = 10) plt.show() np.mean(average_list)
np.median(average_list)
numpy.median
# *-* encoding: utf-8 *-* # Unit tests for ppn functions from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest import numpy as np import tensorflow as tf from faster_particles.ppn_utils import generate_anchors, \ top_R_pixels, clip_pixels, \ compute_positives_ppn1, compute_positives_ppn2, assign_gt_pixels, \ include_gt_pixels, predicted_pixels, crop_pool_layer, \ all_combinations, slice_rois, \ nms_step, nms def generate_anchors_np(im_shape, repeat=1): dim = len(im_shape) anchors = np.indices(im_shape).transpose(tuple(range(1, dim+1)) + (0,)) anchors = anchors + 0.5 anchors = np.reshape(anchors, (-1, dim)) return np.repeat(anchors, repeat, axis=0) def clip_pixels_np(pixels, im_shape): """ pixels shape: [None, 2] Clip pixels (x, y) to [0, im_shape[0]) x [0, im_shape[1]) """ dim = len(im_shape) for i in range(dim): pixels[:, i] = np.clip(pixels[:, i], 0, im_shape[i]) return pixels class Test(unittest.TestCase): def generate_anchors(self, im_shape, repeat): anchors_np = generate_anchors_np(im_shape, repeat=repeat) with tf.Session(): anchors_tf = generate_anchors(im_shape, repeat=repeat) return np.array_equal(anchors_tf, anchors_np) def test_generate_anchors_2d(self): im_shape = (2, 2) repeat = 3 return self.generate_anchors(im_shape, repeat) def test_generate_anchors_3d(self): im_shape = (2, 2, 2) repeat = 3 return self.generate_anchors(im_shape, repeat) def clip_pixels(self, im_shape, proposals_np): pixels_np = clip_pixels_np(proposals_np, im_shape) with tf.Session() as sess: proposals = tf.constant(proposals_np, dtype=tf.float32) pixels = clip_pixels(proposals, im_shape) pixels_tf = sess.run(pixels) return np.allclose(pixels_np, pixels_tf) def test_clip_pixels_2d(self): im_shape = (3, 3) proposals_np = np.array([[-0.5, 1.0], [0.01, 3.4], [2.5, 2.99]]) return self.clip_pixels(im_shape, proposals_np) def test_clip_pixels_3d(self): im_shape = (2, 2, 2) proposals_np = np.random.rand(5, 3)*4-1 return self.clip_pixels(im_shape, proposals_np) def top_R_pixels(self, R, threshold, proposals_np, scores_np): threshold_indices = np.nonzero(scores_np > threshold) scores_np = scores_np[threshold_indices] proposals_np = proposals_np[threshold_indices] sorted_indices = np.argsort(scores_np) roi_scores_np = scores_np[sorted_indices][::-1][:R] rois_np = proposals_np[sorted_indices][::-1][:R] with tf.Session() as sess: proposals = tf.constant(proposals_np, dtype=tf.float32) scores = tf.constant(scores_np, dtype=tf.float32) rois, roi_scores = top_R_pixels(proposals, scores, R=R, threshold=threshold) rois_tf, roi_scores_tf = sess.run([rois, roi_scores]) return np.allclose(rois_tf, rois_np) and np.allclose(roi_scores_np, roi_scores_tf) def test_top_R_pixels_2d(self): R = 3 threshold = 0.5 # Shape N*N x 2 proposals_np = np.array([[0.0, 1.0], [0.5, 0.7], [0.3, 0.88], [-0.2, 0.76], [0.23, 0.47], [0.33, 0.56], [0.0, 0.4], [-0.6, 0.3], [0.27, -0.98]]) # Shape N*N x 1 scores_np = np.array([0.1, 0.5, 0.7, 0.45, 0.65, 0.01, 0.78, 0.98, 0.72]) return self.top_R_pixels(R, threshold, proposals_np, scores_np) def test_top_R_pixels_3d(self): R = 3 threshold = 0.5 # shape N*N x 3 proposals_np = np.array([[0.0, 1.0, 0.3], [0.87, 0.1, -0.34], [0.45, 0.68, 0.09], [0.34, 0.21, -0.6], [0.12, -0.4, 0.8], [0.48, 0.43, -0.79], [0.89, 0.05, -0.02], [0.9, 0.04, 1.0]]) # shape N*N x 1 scores_np = np.array([0.1, 0.5, 0.7, 0.45, 0.65, 0.01, 0.78, 0.98]) return self.top_R_pixels(R, threshold, proposals_np, scores_np) def predicted_pixels(self, im_shape, repeat, rpn_cls_prob_np, rpn_bbox_pred_np): dim = len(im_shape) anchors_np = generate_anchors_np(im_shape, repeat=repeat) scores = rpn_cls_prob_np[..., 1:] roi_scores_np = np.reshape(scores, (-1, scores.shape[-1])) anchors_np = np.reshape(anchors_np, (-1,) + (rpn_cls_prob_np.shape[1],) * dim + (dim,)) proposals = anchors_np + rpn_bbox_pred_np proposals = np.reshape(proposals, (-1, dim)) # clip predicted pixels to the image proposals = clip_pixels_np(proposals, im_shape) # FIXME np function rois_np = proposals.astype(float) with tf.Session() as sess: anchors_tf = generate_anchors(im_shape, repeat=repeat) rpn_cls_prob_tf = tf.constant(rpn_cls_prob_np, dtype=tf.float32) rpn_bbox_pred_tf = tf.constant(rpn_bbox_pred_np, dtype=tf.float32) rois, roi_scores = predicted_pixels(rpn_cls_prob_tf, rpn_bbox_pred_tf, anchors_tf, im_shape) rois_tf, roi_scores_tf = sess.run([rois, roi_scores]) return np.allclose(rois_tf, rois_np) and np.allclose(roi_scores_tf, roi_scores_np) def test_predicted_pixels1_2d(self): # for PPN1 im_shape = (2, 2) repeat = 1 # Shape [None, N, N, n] where n = 2 (background/signal) rpn_cls_prob_np = np.array([[[[0.1, 0.9], [0.3, 0.7]], [[0.5, 0.5], [0.8, 0.2]]]]) # Shape [None, N, N, 2] rpn_bbox_pred_np = np.array([[[[0.1, 0.1], [0.5, 0.2]], [[0.9, -0.5], [0.1, -0.4]]]]) return self.predicted_pixels(im_shape, repeat, rpn_cls_prob_np, rpn_bbox_pred_np) def test_predicted_pixels1_3d(self): im_shape = (2, 2, 2) repeat = 1 rpn_cls_prob_np = np.random.rand(1, 2, 2, 2, 2) rpn_bbox_pred_np = np.random.rand(1, 2, 2, 2, 3)*2-1 return self.predicted_pixels(im_shape, repeat, rpn_cls_prob_np, rpn_bbox_pred_np) def test_predicted_pixels2_2d(self): # for PPN2 im_shape = (2, 2) repeat = 1 # Shape [None, N, N, n] where n = num_classes rpn_cls_prob_np = np.array([[[[0.1, 0.8, 0.1], [0.3, 0.65, 0.05]], [[0.5, 0.02, 0.48], [0.8, 0.18, 0.02]]]]) # Shape [None, N, N, 2] rpn_bbox_pred_np = np.array([[[[0.1, 0.1], [0.5, 0.2]], [[0.9, -0.5], [0.1, -0.4]]]]) return self.predicted_pixels(im_shape, repeat, rpn_cls_prob_np, rpn_bbox_pred_np) def test_predicted_pixels2_3d(self): im_shape = (2, 2, 2) repeat = 1 rpn_cls_prob_np = np.random.rand(1, 2, 2, 2, 3) rpn_bbox_pred_np = np.random.rand(1, 2, 2, 2, 3)*2-1 return self.predicted_pixels(im_shape, repeat, rpn_cls_prob_np, rpn_bbox_pred_np) def include_gt_pixels(self, rois_np, gt_pixels_np, dim1, dim2): dim = gt_pixels_np.shape[-1] # convert to F3 coordinates gt_pixels_coord =
np.floor(gt_pixels_np / dim1)
numpy.floor
import numpy as np from torchvision import datasets, transforms import cv2 as cv import torch import matplotlib.pyplot as plt import scipy.io as sio def batch_tensor_to_3dti(data, lift_dim=6): dts = [] for k in range(data.shape[0]): img = data[k, 0, :, :].numpy() dti_img = img_to_3dti(img, lift_dim) dts.append(dti_img) tensor_dti_img = torch.tensor(dts, dtype=torch.float32) return tensor_dti_img def img_to_3dti(img, lift_dim): dim = img.shape[0] w = 0.3 dt =
np.zeros([3, 3, dim, dim, lift_dim])
numpy.zeros
import matplotlib.pyplot as plt from matplotlib.colors import TwoSlopeNorm import numpy as np import einops import xarray as xr from climart.data_loading.constants import get_coordinates def set_labels_and_ticks(ax, title: str = "", xlabel: str = "", ylabel: str = "", xlabel_fontsize: int = 10, ylabel_fontsize: int = 14, xlim=None, ylim=None, xticks=None, yticks=None, title_fontsize: int = None, xticks_fontsize: int = None, yticks_fontsize: int = None, xtick_labels=None, ytick_labels=None, logscale_y: bool = False, show: bool = True, grid: bool = True, legend: bool = True, legend_loc='best', legend_prop=10, full_screen: bool = False, tight_layout: bool = True, save_to: str = None ): ax.set_title(title, fontsize=title_fontsize) ax.set_xlabel(xlabel, fontsize=xlabel_fontsize) ax.set_ylabel(ylabel, fontsize=ylabel_fontsize) ax.set_xlim(xlim) ax.set_ylim(ylim) if xticks is not None: ax.set_xticks(xticks) if xtick_labels is not None: ax.set_xticklabels(xtick_labels) if xticks_fontsize: for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(xticks_fontsize) # tick.label.set_rotation('vertical') if logscale_y: ax.set_yscale('log') if yticks is not None: ax.set_yticks(yticks) if ytick_labels is not None: ax.set_yticklabels(ytick_labels) if yticks_fontsize: for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(yticks_fontsize) if grid: ax.grid() if legend: ax.legend(loc=legend_loc, prop={'size': legend_prop}) #if full_screen else ax.legend(loc=legend_loc) if tight_layout: plt.tight_layout() if save_to is not None: if full_screen: mng = plt.get_current_fig_manager() mng.full_screen_toggle() plt.savefig(save_to, bbox_inches='tight') if full_screen: mng.full_screen_toggle() if show: plt.show() class RollingCmaps: def __init__(self, unique_keys: list, pos_cmaps: list = None, max_key_occurence: int = 5): if pos_cmaps is None: pos_cmaps = ['Greens', 'Oranges', 'Blues', 'Greys', 'Purples'] pos_cmaps = [plt.get_cmap(cmap) for cmap in pos_cmaps] self.cmaps = {key: pos_cmaps[i] for i, key in enumerate(unique_keys)} self.pos_per_cmap = {key: 0.75 for key in unique_keys} # lower makes lines too white self.max_key_occurence = max_key_occurence def __getitem__(self, key): color = self.cmaps[key](self.pos_per_cmap[key] / self.max_key_occurence) # [self.pos_per_cmap[key]] self.pos_per_cmap[key] += 1 return color class RollingLineFormats: def __init__(self, unique_keys: list, pos_markers: list = None, cmap = None, linewidth: float = 4 ): print(unique_keys) if pos_markers is None: pos_markers = ['-', '--', ':', '-', '-.'] if cmap is None: cmap = plt.get_cmap('viridis') cs = ['#1f77b4', '#ff7f0e', '#2ca02c', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#d62728', '#bcbd22', '#17becf'] # cs = plt.rcParams['axes.prop_cycle'].by_key()['color'] self.pos_markers = pos_markers # self.cmaps = {key: cmap(i/len(unique_keys)) for i, key in enumerate(unique_keys)} self.cmaps = {key: cs[i] for i, key in enumerate(unique_keys)} self.pos_per_key = {key: 0 for key in unique_keys} # lower makes lines too white self.lws = {key: linewidth for key in unique_keys} def __getitem__(self, key): cur_i = self.pos_per_key[key] lw = self.lws[key] line_format = self.pos_markers[cur_i] # [self.pos_per_cmap[key]] self.pos_per_key[key] += 1 self.lws[key] = max(1, lw - 1) return line_format, dict(c=self.cmaps[key], linewidth=lw) def plot_groups(xaxis_key, metric='Test/MAE', ax=None, show: bool = True, **kwargs): if not ax: fig, ax = plt.subplots() # 1 for key, group in kwargs.items(): group.plot(xaxis_key, metric, yerr='std', label=key, ax=ax) set_labels_and_ticks( ax, xlabel='Used training points', ylabel=metric, show=show ) def height_errors(Ytrue: np.ndarray, preds: np.ndarray, height_ticks=None, xlabel='', ylabel='height', fill_between=True, show=True): """ Plot MAE and MBE as a function of the height/pressure :param Ytrue: :param preds: :param height_ticks: must have same shape as Ytrue.shape[1] :param show: :return: """ n_samples, n_levels = Ytrue.shape diff = Ytrue - preds abs_diff = np.abs(diff) levelwise_MBE = np.mean(diff, axis=0) levelwise_MAE = np.mean(abs_diff, axis=0) levelwise_MBE_std = np.std(diff, axis=0) levelwise_MAE_std = np.std(abs_diff, axis=0) # Plotting plotting_kwargs = {'yticks': height_ticks, 'ylabel': ylabel, 'show': show, "fill_between": fill_between} yaxis = np.arange(n_levels) figMBE = height_plot(yaxis, levelwise_MBE, levelwise_MBE_std, xlabel=xlabel + ' MBE', **plotting_kwargs) figMAE = height_plot(yaxis, levelwise_MAE, levelwise_MAE_std, xlabel=xlabel + ' MAE', **plotting_kwargs) if show: plt.show() return figMAE, figMBE def height_plot(yaxis, line, std, yticks=None, ylabel=None, xlabel=None, show=False, fill_between=True): fig, ax = plt.subplots(1) if "mbe" in xlabel.lower(): # to better see the bias ax.plot(np.zeros(yaxis.shape), yaxis, '--', color='grey') p = ax.plot(line, yaxis, '-', linewidth=3) if fill_between: ax.fill_betweenx(yaxis, line - std, line + std, alpha=0.2) else: ax.plot(line - std, yaxis, '--', color=p[0].get_color(), linewidth=1.5) ax.plot(line + std, yaxis, '--', color=p[0].get_color(), linewidth=1.5) xlim = [0, ax.get_xlim()[1]] if 'mae' in xlabel.lower() or 'rmse' in xlabel.lower() else None set_labels_and_ticks(ax=ax, xlabel=xlabel, xlim=xlim, yticks=yaxis, ytick_labels=yticks, ylabel=ylabel, show=show) return fig def level_errors(Y_true, Y_preds, epoch): errors = np.mean((Y_true - Y_preds), axis=0) colours = ['red' if x < 0 else 'green' for x in errors] index = np.arange(0, len(colours), 1) # Draw plot lev_fig = plt.figure(figsize=(14, 14), dpi=80) plt.hlines(y=index, xmin=0, xmax=errors) for x, y, tex in zip(errors, index, errors): t = plt.text(x, y, round(tex, 2), horizontalalignment='right' if x < 0 else 'left', verticalalignment='center', fontdict={'color': 'red' if x < 0 else 'green', 'size': 10}) # Styling plt.yticks(index, ['Level: ' + str(z) for z in index], fontsize=12) plt.title(f'Average Level-wise error for epoch: {epoch}', fontdict={'size': 20}) plt.grid(linestyle='--', alpha=0.5) plt.xlim(-5, 5) return lev_fig def profile_errors(Y_true, Y_preds, plot_profiles=200, var_name=None, data_dir: str = None, error_type='mean', plot_type='scatter', set_seed=False, title=""): coords_data = get_coordinates(data_dir) lat = list(coords_data.get_index('lat')) lon = list(coords_data.get_index('lon')) total_profiles, n_levels = Y_true.shape if set_seed: # To get the same profiles everytime np.random.seed(7) errors = np.abs(Y_true - Y_preds) # print(errors.shape, Y_true.shape, total_profiles / 8192) if plot_type.lower() == 'scatter': latitude = [] longitude = [] for i in lat: for j in lon: latitude.append(i) longitude.append(j) lat_var = np.array(latitude) lon_var = np.array(longitude) n_times = int(total_profiles / 8192) indices = np.arange(0, total_profiles) indices_train = np.random.choice(total_profiles, total_profiles - plot_profiles, replace=False) indices_rest =
np.setxor1d(indices_train, indices, assume_unique=True)
numpy.setxor1d
import numpy as np class Prototype_Selector: def __init__(self, data_x, datalabel_y, M = 10): """ :param data_x: :param datalabel_y: :param test_x: :param testlabel_y: """ self.x_train = np.array(data_x) self.y_train = np.array(datalabel_y) self.M = M self.bbag = None self.gratios = None def k_mean_cluster_return_centroid(self, population, centroid_number=10): """ returns centroids from population """ from sklearn.cluster import KMeans original_shape = np.array(population).shape X =
np.array(population)
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- import pandas as pd from datetime import datetime, timedelta import numpy as np from mpl_toolkits.axes_grid1 import host_subplot import mpl_toolkits.axisartist as AA import matplotlib import matplotlib.pyplot as plt import matplotlib.ticker as tck import matplotlib.font_manager as fm import math as m import itertools from matplotlib import dates import itertools import datetime #----------------------------------------------------------------------------- # Rutas para guardar --------------------------------------------------------- prop = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Heavy.otf' ) prop_1 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Book.otf') prop_2 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Black.otf') ##----------------------------------------Método 1 radiación al tope de la atmosfera-----------------------------------------## ##---CALCULO DE LA DECLINACION SOLAR---## J = np.arange(1, 366, 1) g = 2*m.pi*(J-1)/365 d = (0.006918 - 0.399912*np.cos(g) + 0.070257*np.sin(g) - 0.006758*np.cos(2*g) + 0.000907*np.sin(2*g) - 0.002697*np.cos(3*g) + 0.00148*np.sin(3*g)+ 0.000907*np.sin(2*g) - 0.002697*np.cos(3*g) + 0.00148*np.sin(3*g)) dd = list(itertools.chain.from_iterable(itertools.repeat(x, 24) for x in d)) ##---CALCULO DEL ANGULO HORARIO---## def daterange(start_date, end_date): delta = timedelta(hours=1) while start_date < end_date: yield start_date start_date += delta ##---Ecuación del tiempo---## B = 2*m.pi*(J-81)/365 ET = 9.87*np.sin(2*B)-7.53*np.cos(B)-1.5*
np.cos(B)
numpy.cos
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Dec 29 14:20:43 2016 Updated 26/5/17 @author: robin """ ##Extends NISTScrape.py and SVRtest.py import numpy as np import matplotlib.pyplot as plt import pickle from scipy.optimize import minimize from scipy import misc from PIL import Image from datetime import datetime ##Uses SVR model obtained by collecting data from NIST for variation in ##Carbon loading and Pt loading at energy of 32.5keV model_filename = 'SVR_model_Ion.sav' #Base directory global C_scale C_scale = 0 #Percent loss ie 0.7 loss, 70% less, 30% remaining in CCL from CO2 measurements cyclenum = "BOL" baseDir = r"E:\processed\Cell29\CL_Analysis\\" + cyclenum + "\\" #Output filenames IonImage = cyclenum + "_I_Load.tif" PtImage = cyclenum + "_Pt_Load.tif" CImage = cyclenum + "_C_Load.tif" DensityImage = cyclenum + "_Density.tif" TotalLoadImage = cyclenum + "_TotalLoad.tif" MattenImage = cyclenum + "_Matten.tif" PorosityImage = cyclenum + "_Porosity.tif" ##------------Initialization-------------## #Load images Timage = misc.imread(baseDir + cyclenum + "_thickness.tif") #Thickness_map16 Gimage = misc.imread(baseDir + cyclenum + "_MAX.tif") #BOL_avg_flat #Pixel size um pix = 1.53 #Sub of area if necessary T = Timage#[400:500, 400:500] #Timage G = Gimage#[400:500, 400:500] #Gimage #Cmap = Cmapimage[400:500, 400:500] #Ptmap = Ptmapimage[400:500, 400:500] #Imap = Imapimage[400:500, 400:500] #Thickness Calibration 49.6um 2^16 - 1 from 16bitGS to thickness value #calib = 49.6/((2**16)-1) # load the SVR model from disk loaded_model = pickle.load(open(model_filename, 'rb')) #Calibration curve for GSV calc only ##Updated for MAX GSV mcal = 2390.5 #Max bcal = 22974 #BOL expected values for 50/50 C/Pt 23wt% Ionomer wt_exp_Ion = 23 wt_exp_Pt = (100-wt_exp_Ion)*0.5 wt_exp_C = 100 - wt_exp_Ion - wt_exp_Pt load_exp_C = 0.4 load_exp_Pt = 0.4 load_exp_Ion = (wt_exp_Ion/wt_exp_Pt)*load_exp_Pt #Molar masses M_C = 12 M_Pt = 195 M_Ion = 544 M_water = 18 MM = np.array([M_C,M_Pt,M_Ion,1]) #Density of particles Cp = 2.266 Ptp = 21.45 Ip = 1.8 #Volume cm^3 vox = (pix**3)*0.000000000001 #Array initialization Matten_array = np.zeros((T.shape[0],T.shape[1]), dtype=float) C_load_array = np.zeros((T.shape[0],T.shape[1]), dtype=float) Pt_load_array = np.zeros((T.shape[0],T.shape[1]), dtype=float) Ion_load_array = np.zeros((T.shape[0],T.shape[1]), dtype=float) Density_array = np.zeros((T.shape[0],T.shape[1]), dtype=float) TotalLoad_array = np.zeros((T.shape[0],T.shape[1]), dtype=float) Porosity_array =
np.zeros((T.shape[0],T.shape[1]), dtype=float)
numpy.zeros
import matplotlib.pyplot as plt import numpy as np funcs = [np.sum,np.prod,np.max] inputs = [np.random.rand(i) for i in 10**
np.arange(5)
numpy.arange
import eigenBot import datetime as dt import pandas as pd import numpy as np import matplotlib.pyplot as plt # Set constants startTime = dt.datetime(2012, 1, 1) endTime = dt.datetime(2013, 12, 31) prices = pd.DataFrame() if __name__ == "__main__": config, tickers = eigenBot.loadConfig() numTicks = 1 for tick in tickers: prices[tick] = eigenBot.getTickerQuotes(config, tick, startTime, endTime) returns = prices.pct_change() # print("Data:\n", prices.head()) # print("Percent Change:\n", returns.head()) returns = returns.iloc[1:, :] # Remove first row of NA's training_period = 30 in_sample = returns.iloc[:(returns.shape[0]-training_period), :].copy() # Save the tickers tickList = returns.columns.copy() # Set up plotting covariance_matrix = in_sample.cov() D, S = np.linalg.eigh(covariance_matrix) eigenportfolio_1 = S[:,-1] / np.sum(S[:,-1]) # Normalize to sum to 1 eigenportfolio_2 = S[:,-2] / np.sum(S[:,-2]) # Normalize to sum to 1 # Setup Portfolios eigenportfolio = pd.DataFrame(data= eigenportfolio_1, columns = ['Investment Weight'], index = tickers) eigenportfolio2 = pd.DataFrame(data= eigenportfolio_2, columns = ['Investment Weight'], index = tickers) # Plot # f = plt.figure() # ax = plt.subplot(121) # eigenportfolio.plot(kind='bar', ax=ax, legend=False) # plt.title("Max E.V. Eigenportfolio") # ax = plt.subplot(122) # eigenportfolio2.plot(kind='bar', ax=ax, legend=False) # plt.title("2nd E.V. Eigenportfolio") # plt.show() in_sample_ind =
np.arange(0, (returns.shape[0]-training_period+1))
numpy.arange
import numpy as np import torch # ColorHandPose3DNetwork - Network for estimating 3D Hand Pose from a single RGB Image # Copyright (C) 2017 <NAME> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. class EvalUtil: """ Util class for evaluation networks. """ def __init__(self, num_kp=21): # init empty data storage self.data = list() self.num_kp = num_kp for _ in range(num_kp): self.data.append(list()) def empty(self): count = 0 for i in range(self.num_kp): count += len(self.data[i]) return count == 0 def feed(self, keypoint_gt, keypoint_pred, keypoint_vis=None): """ Used to feed data to the class. Stores the euclidean distance between gt and pred, when it is visible. """ if isinstance(keypoint_gt, torch.Tensor): keypoint_gt = keypoint_gt.detach().cpu().numpy() if isinstance(keypoint_pred, torch.Tensor): keypoint_pred = keypoint_pred.detach().cpu().numpy() keypoint_gt = np.squeeze(keypoint_gt) keypoint_pred = np.squeeze(keypoint_pred) if keypoint_vis is None: keypoint_vis = np.ones_like(keypoint_gt[:, 0]) keypoint_vis =
np.squeeze(keypoint_vis)
numpy.squeeze
#!/usr/bin/python # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests of the various reporter store implementations.""" from collections import OrderedDict import hypothesis.strategies as st import numpy as np from hypothesis import given import pytest import tests.uv.util.test_init as ti import uv.reporter.store as rs @given(st.dictionaries(st.text(min_size=1), st.integers())) def test_lambda_reporter(m): # once we push all values into the store we expect metric => singleton. wrapped = {k: [v] for k, v in m.items()} double_wrapped = {k: [v, v] for k, v in m.items()} # make a memory reporter and a paired reader. mem = rs.MemoryReporter() reader = mem.reader() # these lambda reporters write to the backing memory store. r_reporter = rs.LambdaReporter(report=mem.report) ra_reporter = rs.LambdaReporter(report_all=mem.report_all) # report it ALL and check that everything made it in. ra_reporter.report_all(0, m) assert reader.read_all(m.keys()) == wrapped # now use ra_reporter's report method, which should delegate to report_all: for k, v in m.items(): ra_reporter.report(0, k, v) # now we should have two copies for each key. assert reader.read_all(m.keys()) == double_wrapped # clear and confirm that everything is empty: mem.clear() assert reader.read_all(m.keys()) == {k: [] for k in m.keys()} # do the same thing again, but using the report interface this time. for k, v in m.items(): r_reporter.report(0, k, v) assert reader.read_all(m.keys()) == wrapped # same thing as before, we check the report_all implementation when we only # supply a report function. r_reporter.report_all(0, m) assert reader.read_all(m.keys()) == double_wrapped def test_lambda_reporter_errors(): """The close function works, and you have to supply all required args.""" # You have to supply a report or report_all fn. with pytest.raises(ValueError): rs.LambdaReporter() def explode(): raise IOError("Don't close me!") report = rs.LambdaReporter(report=lambda _: None, close=explode) with pytest.raises(IOError): report.close() def test_logging_reporter(): """Check that the LoggingReporter actually logs out properly.""" mem = ti.MemFile() reporter = rs.LoggingReporter(file=mem) # reporter handles non-native types like float32 just fine. reporter.report(0, "a", np.float32(1)) # compound logging. m = OrderedDict([("a", 2), ("b", "cake")]) reporter.report_all(1, m) # all items have been logged out. assert mem.items() == [ 'Step 0: a = 1.000', '\n', 'Step 1: a = 2.000, b = cake', '\n' ] def test_logging_reporter_types(): mem = ti.MemFile() reporter = rs.LoggingReporter(file=mem) v =
np.array([1, 2, 3])
numpy.array
import numpy as np import matplotlib.pyplot as plt import sys import os from base import * def load_baseline(): fname = 'results.txt' res = dict() with open(fname, 'rt') as f: f.readline() for line in f: a = line.split() res[a[0]] = [float(i.split('+')[0]) for i in a[1:]] return res def load_wer(name): with open(name, 'rt') as f: for line in f: if line.split(): labels = line.split() break values = dict() for line in f: a = line.split() for i, v in enumerate(a): try: v = float(v) label = labels[i] except: label = 'epoch' v = float(v[5:]) if label not in values: values[label] = [] values[label].append(v) return values # workdirs = ['.', # '/mnt/workspace2/wangbin/server12_work/TRF-NN-tensorflow/egs/ptb_chime4test/local', # '/mnt/workspace/wangbin/server9_work/TRF-NN-tensorflow/egs/ptb_chime4test/local'] workdirs = ['.'] def search_file(name): for workdir in workdirs: s = os.path.join(workdir, name) if wb.exists(s): print('load %s' % s) return s raise TypeError('Can not find file: %s' % name) logs = [ 'train1000/crf/crf_blstm_cnn_we100_ce100_c2wrnn_dropout0.5_adam', 'train1000/trf_noise1.0_blstm_cnn_we200_ce100_c2wrnn', 'train5000/crf/crf_blstm_cnn_we100_ce100_c2wrnn_dropout0.5_adam', 'train5000/trf_noise1.0_blstm_cnn_we200_ce100_c2wrnn' ] baseline_name = ['KN5_00000'] colors = ['r', 'g', 'b', 'k', 'c', 'y'] baseline = wb.FRes('../full/results.txt') def smooth(a, width=100): b =
np.array(a)
numpy.array
import os import copy import glob import numpy as np from gains import Absorber import corner from utils import (fit_2d_gmm, vcomplex, nested_ddict, make_ellipses, baselines_2_ants, find_outliers_2d_mincov, find_outliers_2d_dbscan, find_outliers_dbscan, fit_kde, fit_2d_kde, hdi_of_mcmc, hdi_of_sample, bc_endpoint, ants_2_baselines) import matplotlib from uv_data import UVData from from_fits import create_model_from_fits_file from model import Model from spydiff import import_difmap_model, modelfit_difmap from spydiff import modelfit_difmap matplotlib.use('Agg') label_size = 12 matplotlib.rcParams['xtick.labelsize'] = label_size matplotlib.rcParams['ytick.labelsize'] = label_size def xy_2_rtheta(params): flux, x, y = params[:3] r = np.sqrt(x ** 2 + y ** 2) theta = np.rad2deg(np.arctan(x / y)) result = [flux, r, theta] try: result.extend(params[3:]) except IndexError: pass return result def boot_ci(boot_images, original_image, cred_mass=0.68, kind=None): """ Calculate bootstrap CI. :param boot_images: Iterable of 2D numpy arrays with bootstrapped images. :param original_image: 2D numpy array with original image. :param kind: (optional) Type of CI. "asym", "bc" or None. If ``None`` than symmetric one. (default: ``None``) :return: Two numpy arrays with low and high CI borders for each pixel. """ images_cube = np.dstack(boot_images) boot_ci = np.zeros(np.shape(images_cube[:, :, 0])) mean_boot = np.zeros(np.shape(images_cube[:, :, 0])) hdi_0 = np.zeros(np.shape(images_cube[:, :, 0])) hdi_1 = np.zeros(np.shape(images_cube[:, :, 0])) hdi_low = np.zeros(np.shape(images_cube[:, :, 0])) hdi_high = np.zeros(np.shape(images_cube[:, :, 0])) alpha = 1 - cred_mass print("calculating CI intervals") if kind == "bc": for (x, y), value in np.ndenumerate(boot_ci): hdi_low[x, y] = bc_endpoint(images_cube[x, y, :], original_image[x, y], alpha/2.) hdi_high[x, y] = bc_endpoint(images_cube[x, y, :], original_image[x, y], 1-alpha/2.) else: for (x, y), value in np.ndenumerate(boot_ci): hdi = hdi_of_sample(images_cube[x, y, :], cred_mass=cred_mass) boot_ci[x, y] = hdi[1] - hdi[0] hdi_0[x, y] = hdi[0] hdi_1[x, y] = hdi[1] mean_boot[x, y] = np.mean(images_cube[x, y, :]) if kind == 'asym': hdi_low = original_image - (mean_boot - hdi_0) hdi_high = original_image + hdi_1 - mean_boot else: hdi_low = original_image - boot_ci / 2. hdi_high = original_image + boot_ci / 2. return hdi_low, hdi_high def analyze_bootstrap_samples(dfm_model_fname, booted_mdl_paths, dfm_model_dir=None, plot_comps=None, plot_file=None, txt_file=None, cred_mass=0.68, coordinates='xy', out_samples_path=None, limits=None, fig=None): """ Plot bootstrap distribution of model component parameters. :param dfm_model_fname: File name of original difmap model. :param booted_mdl_paths: Iterable of paths to bootstrapped difmap models. :param dfm_model_dir: (optional) Directory with original difmap model. If ``None`` then CWD. (default: ``None``) :param plot_comps: (optional) Iterable of components number to plot on same plot. If ``None`` then plot parameter distributions of all components. :param plot_file: (optional) File to save picture. If ``None`` then don't save picture. (default: ``None``) :param txt_file: (optional) File to save credible intervals for parameters. If ``None`` then don't save credible intervals. (default: ``None``) :param cred_mass: (optional) Value of credible interval mass. Float in range (0., 1.). (default: ``0.68``) :param coordinates: (optional) Type of coordinates to use. ``xy`` or ``rtheta``. (default: ``xy``) """ n_boot = len(booted_mdl_paths) # Get params of initial model used for bootstrap comps_orig = import_difmap_model(dfm_model_fname, dfm_model_dir) comps_params0 = {i: [] for i in range(len(comps_orig))} for i, comp in enumerate(comps_orig): # FIXME: Move (x, y) <-> (r, theta) mapping to ``Component`` if coordinates == 'xy': params = comp.p elif coordinates == 'rtheta': params = xy_2_rtheta(comp.p) else: raise Exception comps_params0[i].extend(list(params)) # Load bootstrap models comps_params = {i: [] for i in range(len(comps_orig))} for booted_mdl_path in booted_mdl_paths: path, booted_mdl_file = os.path.split(booted_mdl_path) comps = import_difmap_model(booted_mdl_file, path) for i, comp in enumerate(comps): # FIXME: Move (x, y) <-> (r, theta) mapping to ``Component`` if coordinates == 'xy': params = comp.p elif coordinates == 'rtheta': params = xy_2_rtheta(comp.p) else: raise Exception comps_params[i].extend(list(params)) comps_to_plot = [comps_orig[k] for k in plot_comps] # (#boot, #parameters) boot_data = np.hstack(np.array(comps_params[i]).reshape((n_boot, comps_orig[i].size)) for i in plot_comps) # Save all bootstrap samples to file optionally if out_samples_path: boot_data_all = np.hstack(np.array(comps_params[i]).reshape((n_boot, comps_orig[i].size)) for i in range(len(comps_orig))) np.savetxt(out_samples_path, boot_data_all) # Optionally plot figure = None if plot_file: if corner: lens = list(np.cumsum([comp.size for comp in comps_orig])) lens.insert(0, 0) labels = list() for comp in comps_to_plot: for lab in np.array(comp._parnames)[~comp._fixed]: # FIXME: Move (x, y) <-> (r, theta) mapping to ``Component`` if coordinates == 'rtheta': if lab == 'x': lab = 'r' if lab == 'y': lab = 'theta' elif coordinates == 'xy': pass else: raise Exception labels.append(r'' + '$' + lab + '$') try: n = sum([c.size for c in comps_to_plot]) if fig is None: fig, axes = matplotlib.pyplot.subplots(nrows=n, ncols=n) fig.set_size_inches(16.5, 16.5) corner.corner(boot_data, labels=labels, plot_contours=True, plot_datapoints=False, color='gray', levels=[0.68,0.95], # smooth=0.5, # bins=20, # fill_contours=True, # range=limits, truths=np.hstack([comps_params0[i] for i in plot_comps]), title_kwargs={"fontsize": 14}, label_kwargs={"fontsize": 14}, quantiles=[0.16, 0.5, 0.84], fig=fig, # show_titles=True, hist_kwargs={'normed': True, 'histtype': 'step', 'stacked': True, 'ls': 'solid'}, title_fmt=".4f", max_n_ticks=3) # figure.gca().annotate("Components {}".format(plot_comps), # xy=(0.5, 1.0), # xycoords="figure fraction", # xytext=(0, -5), # textcoords="offset points", ha="center", # va="top") # figure.savefig(plot_file, format='eps', dpi=600) except (ValueError, RuntimeError) as e: with open(plot_file + '_failed_plot', 'w'): print("Failed to plot... ValueError") else: print("Install ``corner`` for corner-plots") if txt_file: # Print credible intervals fn = open(txt_file, 'w') fn.write("# parameter original.value low.boot high.boot mean.boot" " median.boot (mean-low).boot (high-mean).boot\n") recorded = 0 for i in plot_comps: comp = comps_orig[i] for j in range(comp.size): low, high, mean, median = hdi_of_mcmc(boot_data[:, recorded+j], cred_mass=cred_mass, return_mean_median=True) # FIXME: Move (x, y) <-> (r, theta) mapping to ``Component`` parnames = comp._parnames if coordinates == 'xy': params = comp.p elif coordinates == 'rtheta': params = xy_2_rtheta(comp.p) parnames[1] = 'r' parnames[2] = 'theta' else: raise Exception fn.write("{:<4} {:.6f} {:.6f} {:.6f} {:.6f} {:.6f} {:.6f}" " {:.6f}".format(parnames[j], params[j], low, high, mean, median, abs(median - low), abs(high - median))) fn.write("\n") recorded += (j + 1) fn.close() return fig # TODO: Check that numbering of bootstrapped data and their models is OK def bootstrap_uvfits_with_difmap_model(uv_fits_path, dfm_model_path, nonparametric=False, use_kde=True, use_v=False, n_boot=100, stokes='I', boot_dir=None, recenter=True, clean_after=True, out_txt_file='txt.txt', out_plot_file='plot.png', pairs=False, niter=100, bootstrapped_uv_fits=None, additional_noise=None, out_rchisq_file=None): dfm_model_dir, dfm_model_fname = os.path.split(dfm_model_path) comps = import_difmap_model(dfm_model_fname, dfm_model_dir) if boot_dir is None: boot_dir = os.getcwd() if bootstrapped_uv_fits is None: uvdata = UVData(uv_fits_path) model = Model(stokes=stokes) model.add_components(*comps) boot = CleanBootstrap([model], uvdata, additional_noise=additional_noise) os.chdir(boot_dir) boot.run(nonparametric=nonparametric, use_kde=use_kde, recenter=recenter, use_v=use_v, n=n_boot, pairs=pairs) bootstrapped_uv_fits = sorted(glob.glob(os.path.join(boot_dir, 'bootstrapped_data*.fits'))) out_rchisq = list() for j, bootstrapped_fits in enumerate(bootstrapped_uv_fits): rchisq = modelfit_difmap(bootstrapped_fits, dfm_model_fname, 'mdl_booted_{}.mdl'.format(j), path=boot_dir, mdl_path=dfm_model_dir, out_path=boot_dir, niter=niter, show_difmap_output=True) out_rchisq.append(rchisq) print("Finished modelfit of {}th bootstrapped data with with" " RChiSq = {}".format(j, rchisq)) if out_rchisq_file is not None: np.savetxt(out_rchisq_file, np.array(out_rchisq)) booted_mdl_paths = glob.glob(os.path.join(boot_dir, 'mdl_booted*')) fig = analyze_bootstrap_samples(dfm_model_fname, booted_mdl_paths, dfm_model_dir, plot_comps=range(len(comps)), plot_file=out_plot_file, txt_file=out_txt_file) # Clean if clean_after: for file_ in bootstrapped_uv_fits: os.unlink(file_) for file_ in booted_mdl_paths: os.unlink(file_) return fig def create_random_D_dict(uvdata, sigma_D): """ Create dictionary with random D-terms for each antenna/IF/polarization. :param uvdata: Instance of ``UVData`` to generate D-terms. :param sigma_D: D-terms residual noise or mapping from antenna names to residual D-term std. :return: Dictionary with keys [antenna name][integer of IF]["R"/"L"] """ import collections d_dict = dict() for ant in list(uvdata.antenna_mapping.values()): d_dict[ant] = dict() for band in range(uvdata.nif): d_dict[ant][band] = dict() for pol in ("R", "L"): # Generating two random complex numbers near (0, 0) if isinstance(sigma_D, collections.Mapping): rands = np.random.normal(loc=0, scale=sigma_D[ant], size=2) else: rands = np.random.normal(loc=0, scale=sigma_D, size=2) d_dict[ant][band][pol] = rands[0]+1j*rands[1] return d_dict # TODO: Workaround if no antenna/pol/IF informtation is available from dict def create_const_amp_D_dict(uvdata, amp_D, per_antenna=True): """ Create dictionary with random D-terms for each antenna/IF/polarization. :param uvdata: Instance of ``UVData`` to generate D-terms. :param amp_D: D-terms amplitude. Float or mappable with keys [antenna] or [antenna][pol][IF] (depending on ``per_antenna``) and values - residual D-term amplitude. :param per_antenna: (optional) Boolean. If ``amp_D`` mapping from antenna to Ds or full (IF/pol)? (default: ``True``) :return: Dictionary with keys [antenna name][integer of IF]["R"/"L"] and values - D-terms. """ import collections d_dict = dict() for ant in list(uvdata.antenna_mapping.values()): d_dict[ant] = dict() for band in range(uvdata.nif): d_dict[ant][band] = dict() for pol in ("R", "L"): # Generating random complex number near (0, 0) phase = np.random.uniform(-np.pi, np.pi, size=1)[0] if isinstance(amp_D, collections.Mapping): if per_antenna: amp = amp_D[ant] else: amp = amp_D[ant][pol][band] else: amp = amp_D d_dict[ant][band][pol] = amp*(np.cos(phase)+1j*np.sin(phase)) return d_dict def create_const_D_dict(uvdata, amp_D, phase_D): """ Create dictionary with random D-terms for each antenna/IF/polarization. :param uvdata: Instance of ``UVData`` to generate D-terms. :param amp_D: D-terms amplitude. :return: Dictionary with keys [antenna name][integer of IF]["R"/"L"] """ d_dict = dict() for baseline in uvdata.baselines: print(baseline) ant1, ant2 = baselines_2_ants([baseline]) antname1 = uvdata.antenna_mapping[ant1] antname2 = uvdata.antenna_mapping[ant2] d_dict[antname1] = dict() d_dict[antname2] = dict() for band in range(uvdata.nif): d_dict[antname1][band] = dict() d_dict[antname2][band] = dict() for pol in ("R", "L"): # Generating random complex number near (0, 0) d_dict[antname1][band][pol] = amp_D*(np.cos(phase_D)+1j*np.sin(phase_D)) d_dict[antname2][band][pol] = amp_D*(np.cos(phase_D)+1j*np.sin(phase_D)) return d_dict # TODO: Add 0.632-estimate of extra-sample error. class Bootstrap(object): """ Basic class for bootstrapping data using specified model. :param models: Iterable of ``Model`` subclass instances that represent model used for bootstrapping.. There should be only one (or zero) model for each stokes parameter. If there are two, say I-stokes models, then sum them firstly using ``Model.__add__``. :param uvdata: Instance of ``UVData`` class. """ def __init__(self, models, uvdata): self.models = models self.model_stokes = [model.stokes for model in models] self.data = uvdata self.model_data = copy.deepcopy(uvdata) self.model_data.substitute(models) self.residuals = self.get_residuals() self.noise_residuals = None # Dictionary with keys - baseline, #IF, #Stokes and values - instances # of ``sklearn.neighbors.KernelDensity`` class fitted on the residuals # (Re&Im) of key baselines self._residuals_fits = nested_ddict() # Dictionary with keys - baseline, #IF, #Stokes and values - instances # of ``sklearn.neighbors.KernelDensity`` class fitted on the residuals # (Re&Im) of key baselines self._residuals_fits_2d = nested_ddict() # Dictionary with keys - baseline, #scan, #IF, #Stokes and values - # instances of ``sklearn.neighbors.KernelDensity`` class fitted on the # residuals (Re&Im) self._residuals_fits_scans = nested_ddict() # Dictionary with keys - baselines & values - tuples with centers of # real & imag residuals for that baseline self._residuals_centers = nested_ddict() self._residuals_centers_scans = nested_ddict() # Dictionary with keys - baseline, #IF, #Stokes and value - boolean # numpy array with outliers self._residuals_outliers = nested_ddict() # Dictionary with keys - baseline, #scan, #IF, #Stokes and value - # boolean numpy array with outliers self._residuals_outliers_scans = nested_ddict() def get_residuals(self): """ Implements different residuals calculation. :return: Residuals between model and data. """ raise NotImplementedError def plot_residuals_trio(self, outname, split_scans=True, freq_average=False, IF=None, stokes=['RR']): if IF is None: IF = range(self.residuals.nif) if stokes is None: stokes = range(self.residuals.nstokes) else: stokes_list = list() for stoke in stokes: print("Parsing {}".format(stoke)) print(self.residuals.stokes) stokes_list.append(self.residuals.stokes.index(stoke)) stokes = stokes_list print("Plotting IFs {}".format(IF)) print("Plotting Stokes {}".format(stokes)) for baseline in self.residuals.baselines: print(baseline) ant1, ant2 = baselines_2_ants([baseline]) if split_scans: try: for i, indxs in enumerate(self.residuals._indxs_baselines_scans[baseline]): # Complex (#, #IF, #stokes) data = self.residuals.uvdata[indxs] # weights = self.residuals.weights[indxs] if freq_average: raise NotImplementedError # # FIXME: Aberage w/o outliers # # Complex (#, #stokes) # data = np.mean(data, axis=1) # for stoke in stokes: # # Complex 1D array to plot # data_ = data[:, stoke] # fig, axes = matplotlib.pyplot.subplots(nrows=2, # ncols=2) # matplotlib.pyplot.rcParams.update({'axes.titlesize': # 'small'}) # axes[1, 0].plot(data_.real, data_.imag, '.k') # axes[1, 0].axvline(0.0, lw=0.2, color='g') # axes[1, 0].axhline(0.0, lw=0.2, color='g') # axes[0, 0].hist(data_.real, bins=10, # label="Re {}-{}".format(ant1, ant2), # color="#4682b4") # legend = axes[0, 0].legend(fontsize='small') # axes[0, 0].axvline(0.0, lw=1, color='g') # axes[1, 1].hist(data_.imag, bins=10, color="#4682b4", # orientation='horizontal', # label="Im {}-{}".format(ant1, ant2)) # legend = axes[1, 1].legend(fontsize='small') # axes[1, 1].axhline(0.0, lw=1, color='g') # fig.savefig("res_2d_bl{}_st{}_scan_{}".format(baseline, stoke, i), # bbox_inches='tight', dpi=400) # matplotlib.pyplot.close() else: for IF_ in IF: for stoke in stokes: # Complex 1D array to plot data_ = data[:, IF_, stoke] # weigths_ = weights[:, IF_, stoke] # data_pw = data_[weigths_ > 0] data_pw = data_[self.residuals._pw_indxs[indxs, IF_, stokes]] data_nw = data_[self.residuals._nw_indxs[indxs, IF_, stokes]] data_out = data_pw[self._residuals_outliers_scans[baseline][i][IF_][stoke]] # data_nw = data_[weigths_ <= 0] fig, axes = matplotlib.pyplot.subplots(nrows=2, ncols=2) matplotlib.pyplot.rcParams.update({'axes.titlesize': 'small'}) axes[1, 0].plot(data_.real, data_.imag, '.k') axes[1, 0].plot(data_nw.real, data_nw.imag, '.', color='orange') axes[1, 0].plot(data_out.real, data_out.imag, '.r') try: x_c, y_c = self._residuals_centers_scans[baseline][i][IF_][stoke] axes[1, 0].plot(x_c, y_c, '.y') except ValueError: x_c, y_c = 0., 0. axes[1, 0].axvline(0.0, lw=0.2, color='g') axes[1, 0].axhline(0.0, lw=0.2, color='g') axes[0, 0].hist(data_.real, bins=10, label="Re " "{}-{}".format(ant1, ant2), color="#4682b4", histtype='stepfilled', alpha=0.3, normed=True) try: clf_re = self._residuals_fits_scans[baseline][i][IF_][stoke][0] sample = np.linspace(np.min(data_.real) - x_c, np.max(data_.real) - x_c, 1000) pdf = np.exp(clf_re.score_samples(sample[:, np.newaxis])) axes[0, 0].plot(sample + x_c, pdf, color='blue', alpha=0.5, lw=2, label='kde') # ``AttributeError`` when no ``clf`` for that # baseline, IF, Stokes except (ValueError, AttributeError): pass legend = axes[0, 0].legend(fontsize='small') axes[0, 0].axvline(0.0, lw=1, color='g') axes[1, 1].hist(data_.imag, bins=10, color="#4682b4", orientation='horizontal', histtype='stepfilled', alpha=0.3, normed=True, label="Im " "{}-{}".format(ant1, ant2)) try: clf_im = self._residuals_fits_scans[baseline][i][IF_][stoke][1] sample = np.linspace(np.min(data_.imag) + y_c, np.max(data_.imag) + y_c, 1000) pdf = np.exp(clf_im.score_samples(sample[:, np.newaxis])) axes[1, 1].plot(pdf, sample - y_c, color='blue', alpha=0.5, lw=2, label='kde') # ``AttributeError`` when no ``clf`` for that # baseline, IF, Stokes except (ValueError, AttributeError): pass legend = axes[1, 1].legend(fontsize='small') axes[1, 1].axhline(0.0, lw=1, color='g') fig.savefig("{}_ant1_{}_ant2_{}_stokes_{}_IF_{}_scan_{}.png".format(outname, ant1, ant2, self.residuals.stokes[stoke], IF_, i), bbox_inches='tight', dpi=400) matplotlib.pyplot.close() # If ``self.residuals._indxs_baselines_scans[baseline] = None`` except TypeError: continue else: indxs = self.residuals._indxs_baselines[baseline] # Complex (#, #IF, #stokes) data = self.residuals.uvdata[indxs] # weights = self.residuals.weights[indxs] if freq_average: raise NotImplementedError else: for IF_ in IF: for stoke in stokes: print("Stokes {}".format(stoke)) # Complex 1D array to plot data_ = data[:, IF_, stoke] # weigths_ = weights[:, IF_, stoke] # data_pw = data_[weigths_ > 0] data_pw = data_[self.residuals._pw_indxs[indxs, IF_, stoke]] data_nw = data_[self.residuals._nw_indxs[indxs, IF_, stoke]] data_out = data_pw[self._residuals_outliers[baseline][IF_][stoke]] # data_nw = data_[weigths_ <= 0] fig, axes = matplotlib.pyplot.subplots(nrows=2, ncols=2) matplotlib.pyplot.rcParams.update({'axes.titlesize': 'small'}) axes[1, 0].plot(data_.real, data_.imag, '.k') axes[1, 0].plot(data_out.real, data_out.imag, '.r') axes[1, 0].plot(data_nw.real, data_nw.imag, '.', color='orange') try: x_c, y_c = self._residuals_centers[baseline][IF_][stoke] axes[1, 0].plot(x_c, y_c, '.y') except ValueError: x_c, y_c = 0., 0. axes[1, 0].axvline(0.0, lw=0.2, color='g') axes[1, 0].axhline(0.0, lw=0.2, color='g') axes[0, 0].hist(data_.real, bins=20, label="Re {}-{}".format(ant1, ant2), color="#4682b4", histtype='stepfilled', alpha=0.3, normed=True) try: clf_re = self._residuals_fits[baseline][IF_][stoke][0] sample = np.linspace(np.min(data_.real) - x_c, np.max(data_.real) - x_c, 1000) pdf = np.exp(clf_re.score_samples(sample[:, np.newaxis])) axes[0, 0].plot(sample + x_c, pdf, color='blue', alpha=0.5, lw=2, label='kde') # ``AttributeError`` when no ``clf`` for that # baseline, IF, Stokes except (ValueError, AttributeError): pass legend = axes[0, 0].legend(fontsize='small') axes[0, 0].axvline(0.0, lw=1, color='g') axes[1, 1].hist(data_.imag, bins=20, color="#4682b4", orientation='horizontal', histtype='stepfilled', alpha=0.3, normed=True, label="Im {}-{}".format(ant1, ant2)) try: clf_im = self._residuals_fits[baseline][IF_][stoke][1] sample = np.linspace(np.min(data_.imag) + y_c, np.max(data_.imag) + y_c, 1000) pdf = np.exp(clf_im.score_samples(sample[:, np.newaxis])) axes[1, 1].plot(pdf, sample - y_c, color='blue', alpha=0.5, lw=2, label='kde') # ``AttributeError`` when no ``clf`` for that # baseline, IF, Stokes except (ValueError, AttributeError): pass legend = axes[1, 1].legend(fontsize='small') axes[1, 1].axhline(0.0, lw=1, color='g') fig.savefig("{}_ant1_{}_ant2_{}_stokes_{}_IF_{}.png".format(outname, ant1, ant2, self.residuals.stokes[stoke], IF_), bbox_inches='tight', dpi=400) matplotlib.pyplot.close() def find_outliers_in_residuals(self, split_scans=False): """ Method that search outliers in residuals :param split_scans: Boolean. Find outliers on each scan separately? """ print("Searching for outliers in residuals...") for baseline in self.residuals.baselines: indxs = self.residuals._indxs_baselines[baseline] baseline_data = self.residuals.uvdata[indxs] # If searching outliers in baseline data if not split_scans: for if_ in range(baseline_data.shape[1]): for stokes in range(baseline_data.shape[2]): # Complex array with visibilities for given baseline, # #IF, Stokes data = baseline_data[:, if_, stokes] # weigths = self.residuals.weights[indxs, if_, stokes] # Use only valid data with positive weight data_pw = data[self.residuals._pw_indxs[indxs, if_, stokes]] data_nw = data[self.residuals._nw_indxs[indxs, if_, stokes]] print("NW {}".format(np.count_nonzero(data_nw))) # If data are zeros if not np.any(data_pw): continue print("Baseline {}, IF {}, Stokes {}".format(baseline, if_, stokes)) outliers_re = find_outliers_dbscan(data_pw.real, 1., 5) outliers_im = find_outliers_dbscan(data_pw.imag, 1., 5) outliers_1d = np.logical_or(outliers_re, outliers_im) outliers_2d = find_outliers_2d_dbscan(data_pw, 1.5, 5) self._residuals_outliers[baseline][if_][stokes] =\ np.logical_or(outliers_1d, outliers_2d) # If searching outliers on each scan else: # Searching each scan on current baseline # FIXME: Use zero centers for shitty scans? if self.residuals.scans_bl[baseline] is None: continue for i, scan_indxs in enumerate(self.residuals.scans_bl[baseline]): scan_uvdata = self.residuals.uvdata[scan_indxs] for if_ in range(scan_uvdata.shape[1]): for stokes in range(scan_uvdata.shape[2]): # Complex array with visibilities for given # baseline, #scan, #IF, Stokes data = scan_uvdata[:, if_, stokes] # weigths = self.residuals.weights[scan_indxs, if_, # stokes] # Use only valid data with positive weight data_pw = data[self.residuals._pw_indxs[scan_indxs, if_, stokes]] data_nw = data[self.residuals._nw_indxs[scan_indxs, if_, stokes]] print("NW {}".format(np.count_nonzero(data_nw))) # If data are zeros if not np.any(data_pw): continue print("Baseline {}, scan {}, IF {}," \ " Stokes {}".format(baseline, i, if_, stokes)) outliers_re = find_outliers_dbscan(data_pw.real, 1., 5) outliers_im = find_outliers_dbscan(data_pw.imag, 1., 5) outliers_1d = np.logical_or(outliers_re, outliers_im) outliers_2d = find_outliers_2d_dbscan(data_pw, 1.5, 5) self._residuals_outliers_scans[baseline][i][if_][stokes] = \ np.logical_or(outliers_1d, outliers_2d) # TODO: Use only data without outliers def find_residuals_centers(self, split_scans): """ Calculate centers of residuals for each baseline[/scan]/IF/stokes. """ print("Finding centers") for baseline in self.residuals.baselines: # Find centers for baselines only if not split_scans: indxs = self.residuals._indxs_baselines[baseline] baseline_data = self.residuals.uvdata[indxs] for if_ in range(baseline_data.shape[1]): for stokes in range(baseline_data.shape[2]): data = baseline_data[:, if_, stokes] # weigths = self.residuals.weights[indxs, if_, stokes] # Use only valid data with positive weight # data_pw = data[weigths > 0] data_pw = data[self.residuals._pw_indxs[indxs, if_, stokes]] # data_nw = data[self.residuals._nw_indxs[indxs, if_, stokes]] # If data are zeros if not np.any(data_pw): continue print("Baseline {}, IF {}, Stokes {}".format(baseline, if_, stokes)) outliers = self._residuals_outliers[baseline][if_][stokes] x_c = np.sum(data_pw.real[~outliers]) / np.count_nonzero(~outliers) y_c = np.sum(data_pw.imag[~outliers]) / np.count_nonzero(~outliers) print("Center: ({:.4f}, {:.4f})".format(x_c, y_c)) self._residuals_centers[baseline][if_][stokes] = (x_c, y_c) # Find residuals centers on each scan else: # Searching each scan on current baseline # FIXME: Use zero centers for shitty scans? if self.residuals.scans_bl[baseline] is None: continue for i, scan_indxs in enumerate(self.residuals.scans_bl[baseline]): scan_uvdata = self.residuals.uvdata[scan_indxs] for if_ in range(scan_uvdata.shape[1]): for stokes in range(scan_uvdata.shape[2]): data = scan_uvdata[:, if_, stokes] # weigths = self.residuals.weights[scan_indxs, if_, # stokes] # Use only valid data with positive weight # data_pw = data[weigths > 0] data_pw = data[self.residuals._pw_indxs[scan_indxs, if_, stokes]] # If data are zeros if not np.any(data_pw): continue print("Baseline {}, #scan {}, IF {}," \ " Stokes {}".format(baseline, i, if_, stokes)) outliers = self._residuals_outliers_scans[baseline][i][if_][stokes] x_c = np.sum(data_pw.real[~outliers]) / np.count_nonzero(~outliers) y_c = np.sum(data_pw.imag[~outliers]) / np.count_nonzero(~outliers) print("Center: ({:.4f}, {:.4f})".format(x_c, y_c)) self._residuals_centers_scans[baseline][i][if_][stokes] = (x_c, y_c) # FIXME: Use real Stokes parameters as keys. def fit_residuals_gmm(self): """ Fit residuals with Gaussian Mixture Model. :note: At each baseline residuals are fitted with Gaussian Mixture Model where number of mixture components is chosen based on BIC. """ for baseline in self.residuals.baselines: baseline_data, _ = \ self.residuals._choose_uvdata(baselines=[baseline]) for if_ in range(baseline_data.shape[1]): for stokes in range(baseline_data.shape[2]): data = baseline_data[:, if_, stokes] # If data are zeros if not np.any(data): continue print("Baseline {}, IF {}, Stokes {}".format(baseline, if_, stokes)) print("Shape: {}".format(baseline_data.shape)) try: clf = fit_2d_gmm(data) # This occurs when baseline has 1 point only except ValueError: continue self._residuals_fits[baseline][if_][stokes] = clf # FIXME: Use real Stokes parameters as keys. def fit_residuals_kde(self, split_scans, combine_scans, recenter): """ Fit residuals with Gaussian Kernel Density. :param split_scans: Boolean. Fit to each scan of baseline independently? :param combine_scans: Boolean. Combine re-centered scans on each baseline before fit? :param recenter: Boolean. Recenter residuals before fit? :note: At each baseline/scan residuals are fitted with Kernel Density Model. """ print("Fitting residuals") if combine_scans: raise NotImplementedError for baseline in self.residuals.baselines: # If fitting baseline data if not split_scans: indxs = self.residuals._indxs_baselines[baseline] baseline_data = self.residuals.uvdata[indxs] for if_ in range(baseline_data.shape[1]): for stokes in range(baseline_data.shape[2]): data = baseline_data[:, if_, stokes] # weigths = self.residuals.weights[indxs, if_, stokes] # Use only valid data with positive weight # data_pw = data[weigths > 0] data_pw = data[self.residuals._pw_indxs[indxs, if_, stokes]] # If data are zeros if not np.any(data_pw): continue # Don't count outliers data_pw = data_pw[~self._residuals_outliers[baseline][if_][stokes]] print("Baseline {}, IF {}, Stokes {}".format(baseline, if_, stokes)) if recenter: x_c, y_c = self._residuals_centers[baseline][if_][stokes] data_pw -= x_c + 1j * y_c try: clf_re = fit_kde(data_pw.real) clf_im = fit_kde(data_pw.imag) # This occurs when baseline has 1 point only except ValueError: continue self._residuals_fits[baseline][if_][stokes] = (clf_re, clf_im) # If fitting each scan independently else: if self.residuals.scans_bl[baseline] is None: continue for i, scan_indxs in enumerate(self.residuals.scans_bl[baseline]): scan_uvdata = self.residuals.uvdata[scan_indxs] for if_ in range(scan_uvdata.shape[1]): for stokes in range(scan_uvdata.shape[2]): data = scan_uvdata[:, if_, stokes] # weigths = self.residuals.weights[scan_indxs, if_, stokes] # Use only valid data with positive weight # data_pw = data[weigths > 0] data_pw = data[self.residuals._pw_indxs[scan_indxs, if_, stokes]] # If data are zeros if not np.any(data_pw): continue # Don't count outliers data_pw = data_pw[~self._residuals_outliers_scans[baseline][i][if_][stokes]] print("Baseline {}, Scan {}, IF {}, Stokes" \ " {}".format(baseline, i, if_, stokes)) if recenter: x_c, y_c = self._residuals_centers_scans[baseline][i][if_][stokes] data_pw -= x_c - 1j * y_c try: clf_re = fit_kde(data_pw.real) clf_im = fit_kde(data_pw.imag) # This occurs when scan has 1 point only except ValueError: continue self._residuals_fits_scans[baseline][i][if_][stokes] = (clf_re, clf_im) # # FIXME: Use real Stokes parameters as keys. # def fit_residuals_kde_2d(self, split_scans, combine_scans, recenter): # """ # Fit residuals with Gaussian Kernel Density. # :param split_scans: # Boolean. Fit to each scan of baseline independently? # :param combine_scans: # Boolean. Combine re-centered scans on each baseline before fit? # :param recenter: # Boolean. Recenter residuals before fit? # :note: # At each baseline/scan residuals are fitted with Kernel Density # Model. # """ # print "Fitting residuals" # if combine_scans: # raise NotImplementedError # for baseline in self.residuals.baselines: # # If fitting baseline data # if not split_scans: # indxs = self.residuals._indxs_baselines[baseline] # baseline_data = self.residuals.uvdata[indxs] # for if_ in range(baseline_data.shape[1]): # for stokes in range(baseline_data.shape[2]): # data = baseline_data[:, if_, stokes] # # weigths = self.residuals.weights[indxs, if_, stokes] # # Use only valid data with positive weight # # data_pw = data[weigths > 0] # data_pw = data[self.residuals._pw_indxs[indxs, if_, stokes]] # # If data are zeros # if not np.any(data_pw): # continue # # Don't count outliers # data_pw = data_pw[~self._residuals_outliers[baseline][if_][stokes]] # print "Baseline {}, IF {}, Stokes {}".format(baseline, if_, # stokes) # if recenter: # x_c, y_c = self._residuals_centers[baseline][if_][stokes] # data_pw -= x_c - 1j * y_c # try: # clf = fit_2d_kde(data_pw) # # This occurs when baseline has 1 point only # except ValueError: # continue # self._residuals_fits[baseline][if_][stokes] = clf # # If fitting each scan independently # else: # if self.residuals.scans_bl[baseline] is None: # continue # for i, scan_indxs in enumerate(self.residuals.scans_bl[baseline]): # scan_uvdata = self.residuals.uvdata[scan_indxs] # for if_ in range(scan_uvdata.shape[1]): # for stokes in range(scan_uvdata.shape[2]): # data = scan_uvdata[:, if_, stokes] # # weigths = self.residuals.weights[scan_indxs, if_, stokes] # # Use only valid data with positive weight # # data_pw = data[weigths > 0] # data_pw = data[self.residuals._pw_indxs[scan_indxs, if_, stokes]] # # If data are zeros # if not np.any(data_pw): # continue # # Don't count outliers # data_pw = data_pw[~self._residuals_outliers_scans[baseline][i][if_][stokes]] # print "Baseline {}, Scan {}, IF {}, Stokes" \ # " {}".format(baseline, i, if_, stokes) # if recenter: # x_c, y_c = self._residuals_centers_scans[baseline][i][if_][stokes] # data_pw -= x_c - 1j * y_c # try: # clf = fit_2d_kde(data_pw) # # This occurs when scan has 1 point only # except ValueError: # continue # self._residuals_fits_scans[baseline][i][if_][stokes] = clf_re def get_residuals_noise(self, split_scans, use_V): """ Estimate noise of the residuals using stokes V or successive differences approach. For each baseline or even scan. :param split_scans: Boolean. Estimate noise std for each baseline scan individually? :param use_V: Boolean. Use Stokes V visibilities to estimate noise std? :return: Dictionary with keys - baseline numbers & values - arrays of shape ([#scans], #IF, #stokes). First dimension is #scans if option ``split_scans=True`` is used. """ # Dictionary with keys - baseline numbers & values - arrays of shape # ([#scans], #IF, [#stokes]). It means (#scans, #IF) if # ``split_scans=True`` & ``use_V=True``, (#IF, #stokes) if # ``split_scans=False`` & ``use_V=False`` etc. noise_residuals = self.residuals.noise(split_scans=split_scans, use_V=use_V) print("Getting noise residuals ", noise_residuals) # To make ``noise_residuals`` shape ([#scans], #IF, #stokes) for # ``use_V=True`` option. if use_V: nstokes = self.residuals.nstokes for key, value in noise_residuals.items(): print("key", key) print("value", np.shape(value)) shape = list(np.shape(value)) shape.extend([nstokes]) value = np.tile(value, nstokes) value = value.reshape(shape) noise_residuals[key] = value return noise_residuals def plot_residuals(self, save_file, vis_range=None, ticks=None, stokes='I'): """ Plot histograms of the residuals. :param save_file: File to save plot. :param vis_range: (optional) Iterable of min & max range for plotting residuals Re & Im. Eg. ``[-0.15, 0.15]``. If ``None`` then choose one from data. (default: ``None``) :param ticks: (optional) Iterable of X-axis ticks to plot. Eg. ``[-0.1, 0.1]``. If ``None`` then choose one from data. (default: ``None``) :param stokes: Stokes parameter to plot. (default: ``I``) """ uvdata_r = self.residuals nrows = int(np.ceil(np.sqrt(2. * len(uvdata_r.baselines)))) # Optionally choose range & ticks if vis_range is None: res = uvdata_r._choose_uvdata(stokes=stokes, freq_average=True) range_ = min(abs(np.array([max(res.real), max(res.imag), min(res.real), min(res.imag)]))) range_ = float("{:.3f}".format(range_)) vis_range = [-range_, range_] print("vis_range", vis_range) if ticks is None: tick = min(abs(np.array(vis_range))) tick = float("{:.3f}".format(tick / 2.)) ticks = [-tick, tick] print("ticks", ticks) fig, axes = matplotlib.pyplot.subplots(nrows=nrows, ncols=nrows, sharex=True, sharey=True) fig.set_size_inches(18.5, 18.5) matplotlib.pyplot.rcParams.update({'axes.titlesize': 'small'}) i, j = 0, 0 for baseline in uvdata_r.baselines: try: res = uvdata_r._choose_uvdata(baselines=[baseline], freq_average=True, stokes=stokes) bins = min([10, np.sqrt(len(res.imag))]) ant1, ant2 = baselines_2_ants([baseline]) axes[i, j].hist(res.real, range=vis_range, color="#4682b4", label="Re {}-{}".format(ant1, ant2)) axes[i, j].axvline(0.0, lw=1, color='r') axes[i, j].set_xticks(ticks) legend = axes[i, j].legend(fontsize='small') j += 1 # Plot first row first if j // nrows > 0: # Then second row, etc... i += 1 j = 0 bins = min([10, np.sqrt(len(res.imag))]) axes[i, j].hist(res.imag, range=vis_range, color="#4682b4", label="Im {}-{}".format(ant1, ant2)) legend = axes[i, j].legend(fontsize='small') axes[i, j].axvline(0.0, lw=1, color='r') axes[i, j].set_xticks(ticks) j += 1 # Plot first row first if j // nrows > 0: # Then second row, etc... i += 1 j = 0 except IndexError: break fig.savefig("{}".format(save_file), bbox_inches='tight', dpi=400) matplotlib.pyplot.close() def plot_residuals_2d(self, vis_range=None, ticks=None): """ Plot 2D distribution of complex residuals. :param vis_range: (optional) Iterable of min & max range for plotting residuals Re & Im. Eg. ``[-0.15, 0.15]``. If ``None`` then choose one from data. (default: ``None``) :param ticks: (optional) Iterable of X-axis ticks to plot. Eg. ``[-0.1, 0.1]``. If ``None`` then choose one from data. (default: ``None``) """ uvdata_r = self.residuals for baseline in uvdata_r.baselines: # n_if = self._residuals_fits[baseline] # n_stokes = self._residuals_fits[baseline] nrows = 4 fig, axes = matplotlib.pyplot.subplots(nrows=4, ncols=4, sharex=True, sharey=True) i, j = 0, 0 fig.set_size_inches(18.5, 18.5) matplotlib.pyplot.rcParams.update({'axes.titlesize': 'small'}) n_if = len(self._residuals_fits[baseline].keys()) for if_ in self._residuals_fits[baseline].keys(): n_stokes = len([val for val in self._residuals_fits[baseline][if_].values() if val is not None]) for stoke in self._residuals_fits[baseline][if_].keys(): stoke_par = uvdata_r.stokes[stoke] try: clf = self._residuals_fits[baseline][if_][stoke] if clf is None: # No fitted residuals for this IF/Stokes continue res = uvdata_r._choose_uvdata(baselines=[baseline], IF=if_+1, stokes=stoke_par)[0][:, 0] print("Baseline {}, IF {}, Stokes {}".format(baseline, if_, stoke)) print("Shape: {}".format(res.shape)) re = res.real im = res.imag reim = np.vstack((re, im)).T y = clf.predict(reim) for i_mix in range(clf.n_components): color = "rgbyk"[i_mix] re_ = re[np.where(y == i_mix)] im_ = im[np.where(y == i_mix)] axes[i, j].scatter(re_, im_, color=color) make_ellipses(clf, axes[i, j]) # axes[i, j].set_xticks(ticks) # axes[i, j].set_xlim(vis_range) # axes[i, j].set_ylim(vis_range) # axes[i, j].set_xticks(ticks) # axes[i, j].set_yticks(ticks) j += 1 # Plot first row first if j // nrows > 0: # Then second row, etc... i += 1 j = 0 except IndexError: break fig.savefig("res_2d_{}_{}_{}".format(baseline, if_, stoke), bbox_inches='tight', dpi=400) matplotlib.pyplot.close() def resample(self, outname, nonparametric, split_scans, recenter, use_kde, use_v, combine_scans): """ Sample from residuals with replacement or sample from normal random noise fitted to residuals and add samples to model to form n bootstrap samples of data. :param outname: Output file name to save bootstrapped data. :param nonparametric (optional): If ``True`` then use actual residuals between model and data. If ``False`` then use gaussian noise fitted to actual residuals for parametric bootstrapping. (default: ``False``) :return: Just save bootstrapped data to file with specified ``outname``. """ raise NotImplementedError # FIXME: Implement arbitrary output directory for bootstrapped data def run(self, n, nonparametric, split_scans, recenter, use_kde, use_v, combine_scans, outname=['bootstrapped_data', '.FITS'], pairs=False): """ Generate ``n`` data sets. :note: Several steps are made before re-sampling ``n`` times: * First, outliers are found for each baseline or even scan (using DBSCAN clustering algorithm). * Centers of the residuals for each baselines or optionally scans (when ``split_scans=True``) are found excluding outliers. * In parametric bootstrap (when ``nonparameteric=False``) noise density estimates for each baseline/scan are maid using ``sklearn.neighbors.KernelDensity`` fits to Re & Im re-centered visibility data with gaussian kernel and bandwidth optimized by ``sklearn.grid_search.GridSearchCV`` with 5-fold CV. This is when ``use_kde=True``. Otherwise residuals are supposed to be distributed with gaussian density and it's std is estimated directly. Then, in parametric bootstrap re-sampling is maid by adding samples from fitted KDE (for ``use_kde=True``) or zero-mean Gaussian distribution with std of the residuals to model visibility data ``n`` times. In non-parametric case re-sampling is maid by sampling with replacement from re-centered residuals (with outliers excluded). """ # Find outliers in baseline/scan data if not split_scans: if not self._residuals_outliers: print("Finding outliers in baseline's data...") self.find_outliers_in_residuals(split_scans=False) else: print("Already found outliers in baseline's data...") else: if not self._residuals_centers_scans: print("Finding outliers in scan's data...") self.find_outliers_in_residuals(split_scans=True) else: print("Already found outliers in scan's data...") # Find residuals centers if recenter: self.find_residuals_centers(split_scans=split_scans) if not pairs: # Fit residuals for parametric case if not nonparametric: # Using KDE estimate of residuals density if use_kde: print("Using parametric bootstrap") if not split_scans and not self._residuals_fits: print("Fitting residuals with KDE for each" \ " baseline/IF/Stokes...") self.fit_residuals_kde(split_scans=split_scans, combine_scans=combine_scans, recenter=recenter) if split_scans and not self._residuals_fits_scans: print("Fitting residuals with KDE for each" \ " baseline/scan/IF/Stokes...") self.fit_residuals_kde(split_scans=split_scans, combine_scans=combine_scans, recenter=recenter) if not split_scans and self._residuals_fits: print("Residuals were already fitted with KDE on each" \ " baseline/IF/Stokes") if split_scans and self._residuals_fits_scans: print("Residuals were already fitted with KDE on each" \ " baseline/scan/IF/Stokes") # Use parametric gaussian estimate of residuals density else: # FIXME: This is needed only for cycle after!!! self.fit_residuals_kde(split_scans=split_scans, combine_scans=combine_scans, recenter=recenter) print("only for cycle") if not self.noise_residuals: print("Estimating gaussian STDs on each baseline[/scan]...") self.noise_residuals = self.get_residuals_noise(split_scans, use_v) else: print("Gaussian STDs for each baseline[/scan] are already" \ " estimated") # Resampling is done in subclasses for i in range(n): outname_ = outname[0] + '_' + str(i + 1).zfill(3) + outname[1] self.resample(outname=outname_, nonparametric=nonparametric, split_scans=split_scans, recenter=recenter, use_kde=use_kde, use_v=use_v, combine_scans=combine_scans, pairs=pairs) class CleanBootstrap(Bootstrap): """ Class that implements bootstrapping of uv-data using model and residuals between data and model. Data are self-calibrated visibilities. :param models: Iterable of ``Model`` subclass instances that represent model used for bootstrapping. There should be only one (or zero) model for each stokes parameter. If there are two, say I-stokes models, then sum them firstly using ``Model.__add__``. :param data: Path to FITS-file with uv-data (self-calibrated or not). """ def __init__(self, models, uvdata, sigma_ampl_scale=None, additional_noise=None, sigma_dterms=None, sigma_evpa=None): """ :param sigma_ampl_scale: Uncertainty of the overall flux calibration. :param additional_noise: Sigma of the additional noise added to all baselines/IFs/Stokes. I don't remember why i did that. :param sigma_dterms: RMS of the residual D-terms. This is not the way how D-terms must be accounted for in bootstrap. It's just MC-estimate of the corresponding error. :param sigma_evpa: RMS of the EVPA calibration. """ super(CleanBootstrap, self).__init__(models, uvdata) self.sigma_ampl_scale = sigma_ampl_scale self.additional_noise = additional_noise if sigma_dterms is not None and 'I' not in self.model_stokes: raise Exception("To account for D-terms error we need Stokes I to be" " present in ``models``!") if sigma_dterms is not None: self._d_dict = create_random_D_dict(self.data, sigma_dterms) self.sigma_dterms = sigma_dterms self.sigma_evpa = sigma_evpa def get_residuals(self): return self.data - self.model_data def resample_baseline_pairs(self, baseline, copy_of_model_data): # Boolean array that defines indexes of current baseline data baseline_indxs = self.data._indxs_baselines[baseline] # FIXME: Here iterate over keys with not None values for if_ in range(self.data.nif): for stokes in range(self.data.nstokes): baseline_indxs_ = baseline_indxs.copy() # Boolean array that defines indexes of outliers in indexes of # current baseline data outliers = self._residuals_outliers[baseline][if_][stokes] pw_indxs = self.data._pw_indxs[baseline_indxs, if_, stokes] # If some Stokes parameter has no outliers calculation - pass it if isinstance(outliers, dict): continue # Baseline indexes of inliers indxs =
np.where(baseline_indxs_)
numpy.where
from sklearn.model_selection import KFold from sklearn.utils import shuffle from sklearn import preprocessing import pandas as pd import numpy as np def KFold_df(df, folds=3): # kf = KFold(n_splits=folds) # df = shuffle(df) # # for train, test in kf.split(df.index): # trainData = df.iloc[train] # testData = df.iloc[test] # yield trainData, testData trainData = df.iloc[:-1] testData = df.iloc[-1:] yield trainData, testData def normalize(df): min_max_scaler = preprocessing.MinMaxScaler() np_scaled = min_max_scaler.fit_transform(df) df_normalized = pd.DataFrame(np_scaled, columns=df.columns, index=df.index) lst_col = df.columns[-1] df_normalized[lst_col] = df[lst_col] return df_normalized def mre_calc(y_predict, y_actual): mre = [] for predict, actual in zip(y_predict, y_actual): if actual == 0: if predict == 0: mre.append(0) elif abs(predict) <= 1: mre.append(1) else: mre.append(round(abs(predict - actual)+1 / (actual+1), 3)) else: mre.append(round(abs(predict - actual) / (actual), 3)) mMRE =
np.median(mre)
numpy.median
#!/usr/bin python3 import numpy as np import scipy as sp import casadi as ca import pathlib import os import copy import shutil import pdb import warnings from datetime import datetime import matplotlib import matplotlib.pyplot as plt from typing import List, Dict from DGSQP.types import VehicleState, VehiclePrediction from DGSQP.dynamics.dynamics_models import CasadiDecoupledMultiAgentDynamicsModel from DGSQP.solvers.abstract_solver import AbstractSolver from DGSQP.solvers.solver_types import IBRParams class IBR(AbstractSolver): def __init__(self, joint_dynamics: CasadiDecoupledMultiAgentDynamicsModel, costs: List[List[ca.Function]], agent_constraints: List[ca.Function], shared_constraints: List[ca.Function], bounds: Dict[str, VehicleState], params=IBRParams()): self.joint_dynamics = joint_dynamics self.M = self.joint_dynamics.n_a self.N = params.N self.line_search_iters = params.line_search_iters self.ibr_iters = params.ibr_iters self.verbose = params.verbose self.code_gen = params.code_gen self.jit = params.jit self.opt_flag = params.opt_flag self.solver_name = params.solver_name if params.solver_dir is not None: self.solver_dir = os.path.join(params.solver_dir, self.solver_name) if not params.enable_jacobians: jac_opts = dict(enable_fd=False, enable_jacobian=False, enable_forward=False, enable_reverse=False) else: jac_opts = dict() if self.code_gen: if self.jit: self.options = dict(jit=True, jit_name=self.solver_name, compiler='shell', jit_options=dict(compiler='gcc', flags=['-%s' % self.opt_flag], verbose=self.verbose), **jac_opts) else: self.options = dict(jit=False, **jac_opts) self.c_file_name = self.solver_name + '.c' self.so_file_name = self.solver_name + '.so' if params.solver_dir is not None: self.solver_dir = pathlib.Path(params.solver_dir).expanduser().joinpath(self.solver_name) else: self.options = dict(jit=False, **jac_opts) self.num_qa_d = [int(self.joint_dynamics.dynamics_models[a].n_q) for a in range(self.M)] self.num_ua_d = [int(self.joint_dynamics.dynamics_models[a].n_u) for a in range(self.M)] self.num_ua_el = [int(self.N*self.joint_dynamics.dynamics_models[a].n_u) for a in range(self.M)] # The costs should be a dict of casadi functions with keys 'stage' and 'terminal' if len(costs) != self.M: raise ValueError('Number of agents: %i, but %i cost functions were provided' % (self.M, len(costs))) self.costs_sym = costs # The constraints should be a list (of length N+1) of casadi functions such that constraints[i] <= 0 # if len(constraints) != self.N+1: # raise ValueError('Horizon length: %i, but %i constraint functions were provided' % (self.N+1, len(constraints))) self.constraints_sym = agent_constraints self.shared_constraints_sym = shared_constraints # Process box constraints self.state_ub, self.state_lb, self.input_ub, self.input_lb = [], [], [], [] self.state_ub_idxs, self.state_lb_idxs, self.input_ub_idxs, self.input_lb_idxs = [], [], [], [] for a in range(self.M): su, iu = self.joint_dynamics.dynamics_models[a].state2qu(bounds['ub'][a]) sl, il = self.joint_dynamics.dynamics_models[a].state2qu(bounds['lb'][a]) self.state_ub.append(su) self.state_lb.append(sl) self.input_ub.append(iu) self.input_lb.append(il) self.state_ub_idxs.append(np.where(su < np.inf)[0]) self.state_lb_idxs.append(np.where(sl > -np.inf)[0]) self.input_ub_idxs.append(np.where(iu < np.inf)[0]) self.input_lb_idxs.append(np.where(il > -np.inf)[0]) self.n_ca = [[0 for _ in range(self.N+1)] for _ in range(self.M)] self.n_cbr = [[0 for _ in range(self.N+1)] for _ in range(self.M)] self.n_cs = [0 for _ in range(self.N+1)] self.n_c = [0 for _ in range(self.N+1)] self.state_input_predictions = [VehiclePrediction() for _ in range(self.M)] self.n_u = self.joint_dynamics.n_u self.n_q = self.joint_dynamics.n_q # Convergence tolerance for SQP self.p_tol = params.p_tol self.d_tol = params.d_tol self.alpha = 0.3 self.use_ps = params.use_ps self.debug_plot = params.debug_plot self.pause_on_plot = params.pause_on_plot self.local_pos = params.local_pos if self.debug_plot: matplotlib.use('TkAgg') plt.ion() self.fig = plt.figure(figsize=(10,5)) self.ax_xy = self.fig.add_subplot(1,2,1) self.ax_a = self.fig.add_subplot(2,2,2) self.ax_s = self.fig.add_subplot(2,2,4) # self.joint_dynamics.dynamics_models[0].track.remove_phase_out() self.joint_dynamics.dynamics_models[0].track.plot_map(self.ax_xy, close_loop=False) self.colors = ['b', 'g', 'r', 'm', 'c'] self.l_xy, self.l_a, self.l_s = [], [], [] for i in range(self.M): self.l_xy.append(self.ax_xy.plot([], [], f'{self.colors[i]}o')[0]) self.l_a.append(self.ax_a.plot([], [], f'-{self.colors[i]}o')[0]) self.l_s.append(self.ax_s.plot([], [], f'-{self.colors[i]}o')[0]) self.ax_a.set_ylabel('accel') self.ax_s.set_ylabel('steering') self.fig.canvas.draw() self.fig.canvas.flush_events() self.q_pred = np.zeros((self.N+1, self.n_q)) self.u_pred = np.zeros((self.N, self.n_u)) self.q_new = np.zeros((self.N+1, self.n_q)) self.u_new = np.zeros((self.N+1, self.n_u)) self.debug = False self.u_prev = np.zeros(self.n_u) if params.solver_dir: self._load_solver() else: self._build_solver() self.u_ws = [np.zeros((self.N, self.num_ua_d[a])) for a in range(self.M)] if self.use_ps and self.alpha > 0: self.l_ws = [np.zeros(np.sum(self.n_c)) if a == 0 else np.zeros(np.sum(self.n_cbr[a])) for a in range(self.M)] else: self.l_ws = [np.zeros(np.sum(self.n_cbr[a])) for a in range(self.M)] self.l_pred = copy.copy(self.l_ws) self.initialized = True def initialize(self): pass def set_warm_start(self, u_ws: np.ndarray, l_ws: np.ndarray = None): self.u_ws = u_ws if l_ws is None: if self.use_ps and self.alpha > 0: self.l_ws = [np.zeros(np.sum(self.n_c)) if a == 0 else np.zeros(np.sum(self.n_cbr[a])) for a in range(self.M)] else: self.l_ws = [np.zeros(np.sum(self.n_cbr[a])) for a in range(self.M)] else: self.l_ws = l_ws def step(self, states: List[VehicleState], env_state=None): info = self.solve(states) self.joint_dynamics.qu2state(states, None, self.u_pred[0]) self.joint_dynamics.qu2prediction(self.state_input_predictions, self.q_pred, self.u_pred) for q in self.state_input_predictions: q.t = states[0].t self.u_prev = self.u_pred[0] u_ws = np.vstack((self.u_pred[1:], self.u_pred[-1])) u = [] for a in range(self.M): si = int(np.sum(self.num_ua_d[:a])) ei = si + int(self.num_ua_d[a]) u.append(u_ws[:,si:ei].ravel()) self.set_warm_start(u) return info def solve(self, states: List[VehicleState]): solve_info = {} solve_start = datetime.now() u_i = [] for a in range(self.M): u_i.append(self.u_ws[a].ravel()) l_i = copy.copy(self.l_ws) x0 = self.joint_dynamics.state2q(states) up = copy.copy(self.u_prev) u_im1 = copy.copy(u_i) if self.verbose: J = self.f_J(np.concatenate(u_i), x0, up) print(f'ego cost: {J[0]}, tar cost: {J[1]}') if self.debug_plot: self._update_debug_plot(u_i, x0, up) if self.pause_on_plot: pdb.set_trace() ibr_converged = False ibr_it = 0 iter_sols = [] while True: ibr_it_start = datetime.now() iter_sols.append(u_i) if self.verbose: print('===================================================') print(f'IBR iteration: {ibr_it}') cond = None for a in range(self.M): # for a in range(self.M-1, -1, -1): # if ibr_it == 0 or not self.use_ps: if self.use_ps and a == 0 and self.alpha > 0: # Compute policy gradient Duo_ubr_v = [] for b in range(self.M): if b != a: uo = np.concatenate([u_i[c] for c in range(self.M) if c != b]) try: Duo_ubr = self.f_Duo_ubr[b](u_i[b], l_i[b], uo, x0, up).toarray() Duo_ubr_v.append(Duo_ubr.ravel(order='F')) except Exception as e: print(e) pdb.set_trace() p = np.concatenate((x0, up, np.concatenate(u_i), np.concatenate(Duo_ubr_v), np.array([self.alpha]))) solver_args = {} solver_args['x0'] = u_i[a] solver_args['lam_g0'] = l_i[a] solver_args['lbx'] = -np.inf*np.ones(self.N*self.num_ua_d[a]) solver_args['ubx'] = np.inf*np.ones(self.N*self.num_ua_d[a]) solver_args['lbg'] = -np.inf*np.ones(np.sum(self.n_c)) solver_args['ubg'] = np.zeros(np.sum(self.n_c)) solver_args['p'] = p sol = self.ps_br_solvers[a](**solver_args) if self.verbose: print(self.ps_br_solvers[a].stats()['return_status']) if self.ps_br_solvers[a].stats()['success'] or self.ps_br_solvers[a].stats()['return_status'] == 'Maximum_Iterations_Exceeded': u_i[a] = sol['x'].toarray().squeeze() l_i[a] = sol['lam_g'].toarray().squeeze() else: pdb.set_trace() # G_i[a] = self.f_Dua_Lps[a](np.concatenate(u_i), l_i[a], np.concatenate(u_im1), g, x0, up) else: uo = np.concatenate([u_i[b] for b in range(self.M) if b != a]) p = np.concatenate((x0, up, uo)) solver_args = {} solver_args['x0'] = u_i[a] solver_args['lam_g0'] = l_i[a] solver_args['lbx'] = -np.inf*np.ones(self.N*self.num_ua_d[a]) solver_args['ubx'] = np.inf*np.ones(self.N*self.num_ua_d[a]) solver_args['lbg'] = -np.inf*np.ones(np.sum(self.n_cbr[a])) solver_args['ubg'] = np.zeros(np.sum(self.n_cbr[a])) solver_args['p'] = p sol = self.br_solvers[a](**solver_args) if self.verbose: print(self.br_solvers[a].stats()['return_status']) if self.br_solvers[a].stats()['success'] or self.br_solvers[a].stats()['return_status'] == 'Maximum_Iterations_Exceeded': u_i[a] = sol['x'].toarray().squeeze() l_i[a] = sol['lam_g'].toarray().squeeze() else: pdb.set_trace() if self.debug_plot: u_bar = copy.deepcopy(u_i) if self.use_ps and a == 0 and self.alpha > 0: u_bar[1] += Duo_ubr @ (u_bar[0] - u_im1[0]) self._update_debug_plot(u_bar, x0, up) if self.pause_on_plot: pdb.set_trace() du = [np.linalg.norm(u_i[a]-u_im1[a]) for a in range(self.M)] if self.verbose: print('Delta strategy:', du) if np.amax(du) < self.p_tol: ibr_converged = True if self.verbose: print('IBR converged') break u_im1 = copy.deepcopy(u_i) ibr_it_dur = (datetime.now()-ibr_it_start).total_seconds() if self.verbose: print(f'IBR iteration {ibr_it} time: {ibr_it_dur}') # print(f'SQP step size primal: {ps:.4e}, dual: {ds:.4e}') # print('SQP iterate: ', u) print('===================================================') if self.verbose: J = self.f_J(np.concatenate(u_i), x0, up) print(f'ego cost: {J[0]}, tar cost: {J[1]}') ibr_it += 1 if ibr_it >= self.ibr_iters: if self.verbose: print('Max IBR iterations reached') break x_bar = np.array(self.f_state_rollout(np.concatenate(u_i), x0)).squeeze() u_bar = [] for a in range(self.M): u_bar.append(u_i[a].reshape((self.N, self.num_ua_d[a]))) self.q_pred = x_bar self.u_pred = np.hstack(u_bar) self.l_pred = l_i solve_dur = (datetime.now()-solve_start).total_seconds() print(f'Solve time: {solve_dur}') J = self.f_J(np.concatenate(u_i), x0, up) print(f'ego cost: {J[0]}, tar cost: {J[1]}') solve_info['time'] = solve_dur solve_info['num_iters'] = ibr_it solve_info['status'] = ibr_converged solve_info['cost'] = J solve_info['cond'] = cond solve_info['iter_sols'] = iter_sols if self.debug_plot: plt.ioff() return solve_info def solve_br(self, state: List[VehicleState], agent_id: int, params: np.ndarray): if not self.initialized: raise(RuntimeError('NL MPC controller is not initialized, run NL_MPC.initialize() before calling NL_MPC.solve()')) x = self.joint_dynamics.state2q(state) n_u = self.num_ua_d[agent_id] if self.u_ws[agent_id] is None: warnings.warn('Initial guess of open loop input sequence not provided, using zeros') self.u_ws[agent_id] = np.zeros((self.N, n_u)) # Construct initial guess for the decision variables and the runtime problem data p = np.concatenate((x, self.u_prev, *params)) solver_args = {} solver_args['x0'] = self.u_ws[agent_id].ravel() solver_args['lbx'] = -np.inf*np.ones(self.N*n_u) solver_args['ubx'] = np.inf*np.ones(self.N*n_u) solver_args['lbg'] = -np.inf*np.ones(np.sum(self.n_cbr[agent_id])) solver_args['ubg'] = np.zeros(np.sum(self.n_cbr[agent_id])) solver_args['p'] = p # if self.lam_g_ws is not None: # solver_args['lam_g0'] = self.lam_g_ws sol = self.br_solvers[agent_id](**solver_args) if self.br_solvers[agent_id].stats()['success']: # Unpack solution u_sol = sol['x'].toarray().squeeze() u_joint = [] i = 0 for a in range(self.M): if a == agent_id: u_joint.append(u_sol) else: u_joint.append(params[i]) i += 1 x_pred = np.array(self.f_state_rollout(np.concatenate(u_joint), x)).squeeze() u_pred = np.reshape(u_sol, (self.N, n_u)) # slack_sol = sol['x'][(self.n_q+self.n_u)*self.N:] # lam_g_ws = sol['lam_g'].toarray() self.x_pred = x_pred self.u_pred = u_pred else: u_joint = [] i = 0 for a in range(self.M): if a == agent_id: u_joint.append(self.u_pred[-1]) else: u_joint.append(params[i][-self.num_ua_d[a]:]) i += 1 self.x_pred = np.vstack((x, self.x_pred[2:], self.joint_dynamics.fd(self.x_pred[-1], np.concatenate(u_joint)).toarray().squeeze())) self.u_pred = np.vstack((self.u_pred[1:], self.u_pred[-1])) # lam_g_ws = np.zeros(np.sum(self.n_ca[agent_id])) return {'status': self.br_solvers[agent_id].stats()['success'], 'stats': self.br_solvers[agent_id].stats(), 'sol': sol} def _evaluate_br(self, u, l, x0, up): u = np.concatenate(u) c = [ca.vertcat(*self.f_Cbr[a](u, x0, up)).toarray().squeeze() for a in range(self.M)] G = [self.f_Dua_Lbr[a](u, l[a], x0, up).toarray().squeeze() for a in range(self.M)] return c, G def _evaluate_ps(self, u, l, x0, up): u = np.concatenate(u) c = ca.vertcat(*self.f_C(u, x0, up)).toarray().squeeze() # G = [self.f_Dua_Lps[a](u, l[a], um, g, x0, up).toarray().squeeze() for a in range(self.M)] return c def _build_solver(self): # Build best response OCPs # Put optimal control problem in batch form x_ph = [ca.MX.sym('x_ph_0', self.n_q)] # Initial state # u_0, ..., u_N-1, u_-1 u_ph = [[ca.MX.sym(f'u{a}_ph_{k}', self.num_ua_d[a]) for k in range(self.N+1)] for a in range(self.M)] # Agent inputs ua_ph = [ca.vertcat(*u_ph[a][:-1]) for a in range(self.M)] # [u_0^1, ..., u_{N-1}^1, u_0^2, ..., u_{N-1}^2] uk_ph = [ca.vertcat(*[u_ph[a][k] for a in range(self.M)]) for k in range(self.N+1)] # [[u_0^1, u_0^2], ..., [u_{N-1}^1, u_{N-1}^2]] for k in range(self.N): x_ph.append(self.joint_dynamics.fd(x_ph[k], uk_ph[k])) self.f_state_rollout = ca.Function('f_state_rollout', [ca.vertcat(*ua_ph), x_ph[0]], x_ph, self.options) # Agent cost functions J = [ca.DM.zeros(1) for _ in range(self.M)] for a in range(self.M): for k in range(self.N): J[a] += self.costs_sym[a][k](x_ph[k], u_ph[a][k], u_ph[a][k-1]) J[a] += self.costs_sym[a][-1](x_ph[-1]) self.f_J = ca.Function('f_J', [ca.vertcat(*ua_ph), x_ph[0], uk_ph[-1]], J, self.options) Cs = [[] for _ in range(self.N+1)] # Shared constraints Ca = [[[] for _ in range(self.N+1)] for _ in range(self.M)] # Agent specific constraints for k in range(self.N): # Add shared constraints if self.shared_constraints_sym[k] is not None: Cs[k].append(self.shared_constraints_sym[k](x_ph[k], uk_ph[k], uk_ph[k-1])) if len(Cs[k]) > 0: Cs[k] = ca.vertcat(*Cs[k]) self.n_cs[k] = Cs[k].shape[0] else: Cs[k] = ca.DM() # Add agent constraints for a in range(self.M): if self.constraints_sym[a][k] is not None: Ca[a][k].append(self.constraints_sym[a][k](x_ph[k], u_ph[a][k], u_ph[a][k-1])) # Add agent box constraints if len(self.input_ub_idxs[a]) > 0: Ca[a][k].append(u_ph[a][k][self.input_ub_idxs[a]] - self.input_ub[a][self.input_ub_idxs[a]]) if len(self.input_lb_idxs[a]) > 0: Ca[a][k].append(self.input_lb[a][self.input_lb_idxs[a]] - u_ph[a][k][self.input_lb_idxs[a]]) if k > 0: if len(self.state_ub_idxs[a]) > 0: Ca[a][k].append(x_ph[k][self.state_ub_idxs[a]+int(
np.sum(self.num_qa_d[:a])
numpy.sum
"""Plotting methods.""" from collections import Counter from itertools import cycle from itertools import islice import os import pickle import sys import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator from matplotlib.ticker import FormatStrFormatter from matplotlib.ticker import LinearLocator from matplotlib.ticker import MaxNLocator from matplotlib.ticker import AutoMinorLocator import numpy as np import pandas as pd import seaborn as sns import six from .helpers import identify_peaks from .helpers import load_pickle from .helpers import millify from .helpers import round_to_nearest from .helpers import set_xrotation __FRAME_COLORS__ = ["#1b9e77", "#d95f02", "#7570b3"] __FRAME_COLORS__ = ["#fc8d62", "#66c2a5", "#8da0cb"] DPI = 300 def setup_plot(): """Setup plotting defaults""" plt.rcParams["savefig.dpi"] = 120 plt.rcParams["figure.dpi"] = 120 plt.rcParams["figure.autolayout"] = False plt.rcParams["figure.figsize"] = 12, 8 plt.rcParams["axes.labelsize"] = 18 plt.rcParams["axes.titlesize"] = 20 plt.rcParams["font.size"] = 10 plt.rcParams["lines.linewidth"] = 2.0 plt.rcParams["lines.markersize"] = 8 plt.rcParams["legend.fontsize"] = 14 sns.set_style("white") sns.set_context("paper", font_scale=2) def setup_axis(ax, axis="x", majorticks=5, minorticks=1, xrotation=45, yrotation=0): """Setup axes defaults Parameters ---------- ax : matplotlib.Axes axis : str Setup 'x' or 'y' axis majorticks : int Length of interval between two major ticks minorticks : int Length of interval between two major ticks xrotation : int Rotate x axis labels by xrotation degrees yrotation : int Rotate x axis labels by xrotation degrees """ major_locator = MultipleLocator(majorticks) major_formatter = FormatStrFormatter("%d") minor_locator = MultipleLocator(minorticks) if axis == "x": ax.xaxis.set_major_locator(major_locator) ax.xaxis.set_major_formatter(major_formatter) ax.xaxis.set_minor_locator(minor_locator) elif axis == "y": ax.yaxis.set_major_locator(major_locator) ax.yaxis.set_major_formatter(major_formatter) ax.yaxis.set_minor_locator(minor_locator) elif axis == "both": setup_axis(ax, "x", majorticks, minorticks, xrotation, yrotation) setup_axis(ax, "y", majorticks, minorticks, xrotation, yrotation) ax.yaxis.set_major_locator(MaxNLocator(integer=True)) # ax.yaxis.set_minor_locator(AutoMinorLocator())#integer=True)) ax.tick_params(which="major", width=2, length=10) ax.tick_params(which="minor", width=1, length=6) ax.tick_params(axis="x", labelrotation=xrotation) ax.tick_params(axis="y", labelrotation=yrotation) # ax.yaxis.set_major_locator(LinearLocator(10)) # ax.yaxis.set_minor_locator(LinearLocator(10)) # set_xrotation(ax, xrotation) def plot_read_length_dist( read_lengths, ax=None, millify_labels=True, input_is_stream=False, title=None, saveto=None, ascii=False, **kwargs ): """Plot read length distribution. Parameters ---------- read_lengths : array_like Array of read lengths ax : matplotlib.Axes Axis object millify_labels : bool True if labels should be formatted to read millions/trillions etc input_is_stream : bool True if input is sent through stdin saveto : str Path to save output file to (<filename>.png/<filename>.pdf) """ if input_is_stream: counter = {} for line in read_lengths: splitted = list([int(x) for x in line.strip().split("\t")]) counter[splitted[0]] = splitted[1] read_lengths = Counter(counter) elif isinstance(read_lengths, six.string_types): if ".pickle" in str(read_lengths): # Try opening as a pickle first read_lengths = load_pickle(read_lengths) elif isinstance(read_lengths, pd.Series): pass else: # Some random encoding error try: read_lengths = pd.read_table(read_lengths) read_lengths = pd.Series( read_lengths["count"].tolist(), index=read_lengths.read_length.tolist(), ) except KeyError: pass fig = None if ax is None: fig, ax = plt.subplots() else: fig = ax.get_figure() if "majorticks" not in kwargs: kwargs["majorticks"] = 5 if "minorticks" not in kwargs: kwargs["minorticks"] = 1 if "xrotation" not in kwargs: kwargs["xrotation"] = 0 if isinstance(read_lengths, Counter) or isinstance(read_lengths, pd.Series): read_lengths = pd.Series(read_lengths) read_lengths_counts = read_lengths.values else: read_lengths = pd.Series(read_lengths) read_lengths_counts = read_lengths.value_counts().sort_index() ax.set_ylim( min(read_lengths_counts), round_to_nearest(max(read_lengths_counts), 5) + 0.5 ) ax.set_xlim( min(read_lengths.index) - 0.5, round_to_nearest(max(read_lengths.index), 10) + 0.5, ) ax.bar(read_lengths.index, read_lengths_counts) setup_axis(ax, **kwargs) reads_total = millify(read_lengths_counts.sum()) if title: ax.set_title("{}\n Total reads = {}".format(title, reads_total)) else: ax.set_title("Total reads = {}".format(reads_total)) if millify_labels: ax.set_yticklabels(list([millify(x) for x in ax.get_yticks()])) # sns.despine(trim=True, offset=20) if saveto: fig.tight_layout() if ".dat" in saveto: fig.savefig(saveto, format="png", dpi=DPI) else: fig.savefig(saveto, dpi=DPI) if ascii: import gnuplotlib as gp sys.stdout.write(os.linesep) gp.plot( (read_lengths.index, read_lengths.values, {"with": "boxes"}), terminal="dumb 160, 40", unset="grid", ) sys.stdout.write(os.linesep) return ax, fig def plot_framewise_counts( counts, frames_to_plot="all", ax=None, title=None, millify_labels=False, position_range=None, saveto=None, ascii=False, input_is_stream=False, **kwargs ): """Plot framewise distribution of reads. Parameters ---------- counts : Series A series with position as index and value as counts frames_to_plot : str or range A comma seaprated list of frames to highlight or a range ax : matplotlib.Axes Default none saveto : str Path to save output file to (<filename>.png/<filename>.pdf) """ # setup_plot() if input_is_stream: counts_counter = {} for line in counts: splitted = list([int(x) for x in line.strip().split("\t")]) counts_counter[splitted[0]] = splitted[1] counts = Counter(counts_counter) elif isinstance(counts, six.string_types): try: # Try opening as a pickle first counts = load_pickle(counts) except KeyError: pass if isinstance(counts, Counter): counts = pd.Series(counts) # TODO if isinstance(frames_to_plot, six.string_types) and frames_to_plot != "all": frames_to_plot = list([int(x) for x in frames_to_plot.rstrip().split(",")]) if isinstance(position_range, six.string_types): splitted = list([int(x) for x in position_range.strip().split(":")]) position_range = list(range(splitted[0], splitted[1] + 1)) if position_range: counts = counts[list(position_range)] fig = None if ax is None: fig, ax = plt.subplots() else: fig = ax.get_figure() if "majorticks" not in kwargs: kwargs["majorticks"] = 10 if "minorticks" not in kwargs: kwargs["minorticks"] = 5 if "xrotation" not in kwargs: kwargs["xrotation"] = 90 setup_axis(ax, **kwargs) ax.set_ylabel("Number of reads") # ax.set_xlim( # min(counts.index) - 0.6, # round_to_nearest(max(counts.index), 10) + 0.6) barlist = ax.bar(counts.index, counts.values) barplot_colors = list(islice(cycle(__FRAME_COLORS__), None, len(counts.index))) for index, cbar in enumerate(barlist): cbar.set_color(barplot_colors[index]) ax.legend( (barlist[0], barlist[1], barlist[2]), ("Frame 1", "Frame 2", "Frame 3"), bbox_to_anchor=(0.0, 1.02, 1.0, 0.102), loc=3, ncol=3, mode="expand", borderaxespad=0.0, ) if title: ax.set_title(title) if millify_labels: ax.set_yticklabels(list([millify(x) for x in ax.get_yticks()])) if ascii: sys.stdout.write(os.linesep) import gnuplotlib as gp gp.plot( np.array(counts.index.tolist()), np.array(counts.values.tolist()), _with="boxes", # 'points pointtype 0', terminal="dumb 200,40", unset="grid", ) sys.stdout.write(os.linesep) set_xrotation(ax, kwargs["xrotation"]) fig.tight_layout() if saveto: fig.tight_layout() fig.savefig(saveto, dpi=DPI) return ax def plot_read_counts( counts, ax=None, marker=None, color="royalblue", title=None, label=None, millify_labels=False, identify_peak=True, saveto=None, position_range=None, ascii=False, input_is_stream=False, ylabel="Normalized RPF density", **kwargs ): """Plot RPF density aro und start/stop codons. Parameters ---------- counts : Series/Counter A series with coordinates as index and counts as values ax : matplotlib.Axes Axis to create object on marker : string 'o'/'x' color : string Line color label : string Label (useful only if plotting multiple objects on same axes) millify_labels : bool True if labels should be formatted to read millions/trillions etc saveto : str Path to save output file to (<filename>.png/<filename>.pdf) """ # setup_plot() if input_is_stream: counts_counter = {} for line in counts: splitted = list([int(x) for x in line.strip().split("\t")]) counts_counter[splitted[0]] = splitted[1] counts = Counter(counts_counter) elif isinstance(counts, six.string_types): try: # Try opening as a pickle first counts = load_pickle(counts) except IndexError: counts_pd = pd.read_table(counts) counts = pd.Series( counts_pd["count"].tolist(), index=counts_pd["position"].tolist() ) except KeyError: pass if not isinstance(counts, pd.Series): counts = pd.Series(counts) if isinstance(position_range, six.string_types): splitted = list([int(x) for x in position_range.strip().split(":")]) position_range = np.arange(splitted[0], splitted[1] + 1) if position_range is not None: counts = counts[position_range] fig = None if ax is None: fig, ax = plt.subplots() else: fig = ax.get_figure() if "majorticks" not in kwargs: kwargs["majorticks"] = 10 if "minorticks" not in kwargs: kwargs["minorticks"] = 5 if "xrotation" not in kwargs: kwargs["xrotation"] = 0 if "yrotation" not in kwargs: kwargs["yrotation"] = 0 if not marker: ax.plot( counts.index, counts.values, color=color, linewidth=1, markersize=1.5, label=label, ) else: ax.plot( counts.index, counts.values, color=color, marker="o", linewidth=1, markersize=1.5, label=label, ) # ax.set_xlim(round_to_nearest(ax.get_xlim()[0], 50) - 0.6, # round_to_nearest(ax.get_xlim()[1], 50) + 0.6) peak = None if identify_peak: peak = identify_peaks(counts) ax.axvline(x=peak, color="r", linestyle="dashed") ax.text(peak + 0.5, ax.get_ylim()[1] * 0.9, "{}".format(peak), color="r") if millify_labels: ax.set_yticklabels(list([millify(x) for x in ax.get_yticks()])) setup_axis(ax, **kwargs) ax.set_xlim( round_to_nearest(min(counts.index), 10) - 1, round_to_nearest(max(counts.index), 10) + 1, ) if ylabel: ax.set_ylabel(ylabel) if title: ax.set_title(title) # sns.despine(trim=True, offset=10) if saveto: fig.tight_layout() fig.savefig(saveto, dpi=DPI) if ascii: sys.stdout.write(os.linesep) import gnuplotlib as gp gp.plot( np.array(counts.index.tolist()), np.array(counts.values.tolist()), _with="lines", # 'points pointtype 0', terminal="dumb 200,40", unset="grid", ) sys.stdout.write(os.linesep) return ax, fig, peak def plot_featurewise_barplot( utr5_counts, cds_counts, utr3_counts, ax=None, saveto=None, **kwargs ): """Plot barplots for 5'UTR/CDS/3'UTR counts. Parameters ---------- utr5_counts : int or dict Total number of reads in 5'UTR region or alternatively a dictionary/series with genes as key and 5'UTR counts as values cds_counts : int or dict Total number of reads in CDs region or alternatively a dictionary/series with genes as key and CDS counts as values utr3_counts : int or dict Total number of reads in 3'UTR region or alternatively a dictionary/series with genes as key and 3'UTR counts as values saveto : str Path to save output file to (<filename>.png/<filename>.pdf) """ fig = None if ax is None: fig, ax = plt.subplots() else: fig = ax.get_figure() barlist = ax.bar([0, 1, 2], [utr5_counts, cds_counts, utr3_counts]) barlist[0].set_color("#1b9e77") barlist[1].set_color("#d95f02") barlist[2].set_color("#7570b3") ax.set_xticks([0, 1, 2]) ax.set_xticklabels(["5'UTR", "CDS", "3'UTR"]) max_counts = np.max(np.hstack([utr5_counts, cds_counts, utr3_counts])) setup_axis( ax=ax, axis="y", majorticks=max_counts // 10, minorticks=max_counts // 20 ) ax.set_ylabel("# RPFs") # sns.despine(trim=True, offset=10) if saveto: fig.tight_layout() fig.savefig(saveto, dpi=DPI) return ax, fig def create_wavelet(data, ax): import pycwt as wavelet t = data.index N = len(data.index) p = np.polyfit(data.index, data, 1) data_notrend = data - np.polyval(p, data.index) std = data_notrend.std() # Standard deviation var = std ** 2 # Variance data_normalized = data_notrend / std # Normalized dataset mother = wavelet.Morlet(6) dt = 1 s0 = 2 * dt # Starting scale, in this case 2 * 0.25 years = 6 months dj = 1 / 12 # Twelve sub-octaves per octaves J = 7 / dj # Seven powers of two with dj sub-octaves alpha, _, _ = wavelet.ar1(data) # Lag-1 autocorrelation for red noise wave, scales, freqs, coi, fft, fftfreqs = wavelet.cwt( data_normalized, dt=dt, dj=dj, s0=s0, J=J, wavelet=mother ) iwave = wavelet.icwt(wave, scales, dt, dj, mother) * std power = (np.abs(wave)) ** 2 fft_power = np.abs(fft) ** 2 period = 1 / freqs power /= scales[:, None] signif, fft_theor = wavelet.significance( 1.0, dt, scales, 0, alpha, significance_level=0.95, wavelet=mother ) sig95 = np.ones([1, N]) * signif[:, None] sig95 = power / sig95 glbl_power = power.mean(axis=1) dof = N - scales # Correction for padding at edges glbl_signif, tmp = wavelet.significance( var, dt, scales, 1, alpha, significance_level=0.95, dof=dof, wavelet=mother ) levels = [0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16] ax.contourf( t, np.log2(period),
np.log2(power)
numpy.log2
#!/usr/bin/env python """ This file is part of IMSIS Licensed under the MIT license: http://www.opensource.org/licenses/MIT-license This module contains image processing methods """ import os import sys import cv2 as cv import matplotlib.gridspec as gridspec import numpy as np import scipy.misc from matplotlib import pyplot as plt import numpy.random as random from matplotlib.colors import hsv_to_rgb from datetime import datetime class Image(object): @staticmethod def load(filename, verbose=True): """Load image Supported file formats: PNG, TIF, BMP note: by default images are converted to grayscale (8bit gray), conversion to 8 bit can be disabled. :Parameters: filename, gray=True, verbose=False :Returns: image """ img = None if (os.path.isfile(filename)): img = cv.imread(filename, -1) if (verbose == True): print("load file ", filename, img.shape, img.dtype) else: print('Error, file does not exist. ', filename) sys.exit() try: q = img.shape except: print('Error, File could not be read. ', filename) sys.exit() return img @staticmethod def crop_rectangle(img, rect): """Crop an image using rectangle shape as input [(x0,y0),(x1,y1)] :Parameters: image, rectangle :Returns: image """ if len(rect) > 0: out = Image.crop(img, rect[0][0], rect[0][1], rect[1][0], rect[1][1]) else: print("Error: rectangle not defined.") out = img return out @staticmethod def crop(img, x0, y0, x1, y1): """Crop an image using pixels at x0,y0,x1,y1 :Parameters: image, x0, y0, x1, y1 :Returns: image """ res = img[y0:y1, x0:x1] # Crop from y0:y1,x0:x1 # print("Cropped region: (" , x0,y0,x1,y1,")") return res @staticmethod def crop_percentage(img, scale=1.0): """Crop an image centered :Parameters: image, scale=1.0 :Returns: image """ center_x, center_y = img.shape[1] / 2, img.shape[0] / 2 width_scaled, height_scaled = img.shape[1] * scale, img.shape[0] * scale left_x, right_x = center_x - width_scaled / 2, center_x + width_scaled / 2 top_y, bottom_y = center_y - height_scaled / 2, center_y + height_scaled / 2 img_cropped = img[int(top_y):int(bottom_y), int(left_x):int(right_x)] return img_cropped @staticmethod def resize(img, factor=0.5): """Resize image :Parameters: image, factor :Returns: image """ small = cv.resize(img, (0, 0), fx=factor, fy=factor) return small @staticmethod def _blur_edge(img, d=31): """blur edge :Parameters: image, d :Returns: image """ h, w = img.shape[:2] img_pad = cv.copyMakeBorder(img, d, d, d, d, cv.BORDER_WRAP) img_blur = cv.GaussianBlur(img_pad, (2 * d + 1, 2 * d + 1), -1)[d:-d, d:-d] y, x = np.indices((h, w)) dist = np.dstack([x, w - x - 1, y, h - y - 1]).min(-1) w = np.minimum(np.float32(dist) / d, 1.0) return img * w + img_blur * (1 - w) @staticmethod def _motion_kernel(angle, d, sz=65): """determine motion kernel value :Parameters: angle, d, size :Returns: kernel """ kern = np.ones((1, d), np.float32) c, s = np.cos(angle), np.sin(angle) A = np.float32([[c, -s, 0], [s, c, 0]]) sz2 = sz // 2 A[:, 2] = (sz2, sz2) - np.dot(A[:, :2], ((d - 1) * 0.5, 0)) kern = cv.warpAffine(kern, A, (sz, sz), flags=cv2.INTER_CUBIC) return kern @staticmethod def _defocus_kernel(d, sz=65): """determine defocus kernel value :Parameters: d, size :Returns: kernel """ kern = np.zeros((sz, sz), np.uint8) cv.circle(kern, (sz, sz), d, 255, -1, cv.LINE_AA, shift=1) kern = np.float32(kern) / 255.0 return kern @staticmethod def _image_stats(image): # compute the mean and standard deviation of each channel (l, a, b) = cv.split(image) (lMean, lStd) = (l.mean(), l.std()) (aMean, aStd) = (a.mean(), a.std()) (bMean, bStd) = (b.mean(), b.std()) # return the color statistics return (lMean, lStd, aMean, aStd, bMean, bStd) @staticmethod def save(img, fn): """Save image (PNG,TIF) :Parameters: image, filename """ try: if (os.path.dirname(fn)): os.makedirs(os.path.dirname(fn), exist_ok=True) #mkdir if not empty cv.imwrite(fn, img) print("file saved. ", fn) except: print("Error: cannot save file {}".format(fn)) @staticmethod def save_withuniquetimestamp(img): """Save PNG image with unique timestamp. :Parameters: image """ path = "./output/" os.makedirs(os.path.dirname(path), exist_ok=True) sttime = datetime.now().strftime('Image_%Y%m%d%H%M%S') fn = path + sttime + '.png' print("file saved. ", fn) cv.imwrite(fn, img) ''' @staticmethod def PSNR(img1, img2): """Return peaksignal to noise ratio :Parameters: image1, image2 :Returns: float """ mse = np.mean((img1 - img2) ** 2) if mse == 0: return 100 PIXEL_MAX = 255.0 # print(np.sqrt(mse)) n = np.sqrt(mse) # n=255/3.525 return 20 * np.log10(PIXEL_MAX / n) ''' # implemented twice remove the 2nd one @staticmethod def cut(img, center=[0, 0], size=[0, 0]): """return a image cut out :Parameters: image, center=[0, 0], size=[0, 0] :Returns: image """ x0 = center[0] - round(size[0] * 0.5) x1 = center[0] + round(size[0] * 0.5) y0 = center[1] - round(size[1] * 0.5) y1 = center[1] + round(size[1] * 0.5) if x0 < 0: x0 = 0 if y0 < 0: y0 = 0 template = Image.crop(img, int(x0), int(y0), int(x1), int(y1)) return template @staticmethod def _multipleof2(number): """Rounds the given number to the nearest multiple of two.""" remainder = number % 2 if remainder > 1: number += (2 - remainder) else: number -= remainder return int(number) @staticmethod def subtract(img0, img1): """subtract 2 images :Parameters: image1, image2 :Returns: image """ out = cv.subtract(img0, img1) return out ''' @staticmethod def add(img0, img1): """add 2 images :Parameters: image1, image2 :Returns: image """ out = cv.addWeighted(img0, 0.5, img1, 0.5, 0.0) return out ''' @staticmethod def add(img0, img1, alpha=0.5): """add 2 images weighted (default alpha=0.5) :Parameters: image1, image2, alpha :Returns: image """ a = img0 b = img1 beta = 1 - alpha out = cv.addWeighted(a, alpha, b, beta, gamma) return out @staticmethod def new(height, width): """Create a new blank image :Parameters: height,width :Returns: image """ img = np.zeros((height, width), np.uint8) return img @staticmethod def gaussiankernel(kernlen=21, nsig=3): """returns a 2D gaussian kernel :Parameters: kernelsize, nsig :Returns: image """ x = np.linspace(-nsig, nsig, kernlen + 1) kern1d = np.diff(st.norm.cdf(x)) kern2d = np.outer(kern1d, kern1d) return kern2d / kern2d.sum() @staticmethod def info(img): """get image properties :Parameters: img """ print(img.shape) print(img.size) print(img.dtype) @staticmethod def unique_colours(image): """get number of unique colors in an image :Parameters: img """ print(image.shape) if (len(image.shape) == 3): out = len(np.unique(image.reshape(-1, image.shape[2]), axis=0)) # b, g, r = cv.split(image) # out_in_32U_2D = np.int32(b) << 16 + np.int32(g) << 8 + np.int32(r) # bit wise shift 8 for each channel. # out_in_32U_1D = out_in_32U_2D.reshape(-1) # convert to 1D # np.unique(out_in_32U_1D) # out = len(np.unique(out_in_32U_1D)) else: out_in_32U_2D = np.int32(image) # bit wise shift 8 for each channel. out_in_32U_1D = out_in_32U_2D.reshape(-1) # convert to 1D np.unique(out_in_32U_1D) out = len(np.unique(out_in_32U_1D)) print(out) return out @staticmethod def video_to_imagesondisk(file_in='video.avi', path_out='images'): """video to image :Parameters: video_filename :Returns: images """ video_file = file_in output_folder = path_out vidcap = cv.VideoCapture(video_file) success, image = vidcap.read() count = 0 success = True while success: fn = output_folder + "/" + "frame%d.png" % count cv.imwrite(fn, image) # save frame as JPEG file success, image = vidcap.read() print('Read a new frame: ', success, fn) count += 1 print("ready.") @staticmethod def imagesfromdisk_to_video(path_in, file_out='video.avi', framerate=15): """images from file to video :Parameters: path with list of frames :Returns: video """ image_folder = path_in video_name = file_out output_folder = "output" fn = image_folder + "/" + output_folder + "/" print(fn) os.makedirs(os.path.dirname(fn), exist_ok=True) images = [img for img in os.listdir(image_folder) if (img.endswith(".tif") or img.endswith(".png"))] frame = cv.imread(os.path.join(image_folder, images[0])) height, width, layers = frame.shape video = cv.VideoWriter(fn + video_name, 0, framerate, (width, height)) for image in images: video.write(cv.imread(os.path.join(image_folder, image))) cv.destroyAllWindows() video.release() ''' @staticmethod def zoom(image0, factor=2): """ zoom image, resize with factor n, crop in center to same size as original image :Parameters: image0, zoom factor :Returns: image """ h = image0.shape[0] w = image0.shape[1] img = Image.resize(image0,factor) x0 = int(factor*w/4) y0 = int(factor*h/4) x1 = x0+w y1 = y0+h print(x0,y0,x1,y1,w,h,img.shape[0],img.shape[1]) img = Image.crop(img,x0,y0,x1,y1) return img ''' @staticmethod def zoom(image0, factor=2, cx=0.5, cy=0.5): """ zoom image, resize with factor n, crop in center to same size as original image :Parameters: image0, zoom factor :Returns: image """ h = image0.shape[0] w = image0.shape[1] img = Image.resize(image0, factor) x0 = int(factor * w * cx * 0.5) y0 = int(factor * h * cy * 0.5) x1 = x0 + w y1 = y0 + h # print(x0, y0, x1, y1, w, h, img.shape[0], img.shape[1]) img = Image.crop(img, x0, y0, x1, y1) return img class Process: @staticmethod def directionalsharpness(img, ksize=-1): """ DirectionalSharpness Measure sharnpess in X and Y seperately Note: Negative slopes are missed when converting to unaryint8, therefore convert to float :Parameters: image, kernel :Returns: gradientx , gradienty, gradientxy, theta """ sobelx64f = cv.Sobel(img, cv.CV_64F, 1, 0, ksize=ksize) sobely64f = cv.Sobel(img, cv.CV_64F, 0, 1, ksize=ksize) grad = np.power(np.power(sobelx64f, 2.0) + np.power(sobely64f, 2.0), 0.5) theta = np.arctan2(sobely64f, sobelx64f) Gx = np.absolute(sobelx64f) Gy = np.absolute(sobely64f) mx = cv.mean(Gx)[0] my = cv.mean(Gy)[0] return mx, my, grad, theta @staticmethod def gradient_image(img, kx=11, ky=3): """Create a gradient image Method used: gradient by bi-directional sobel filter :Parameters: image, blurkernelx, blurkernely :Returns: image """ # Calculate gradient gx = cv.Sobel(img, cv.CV_32F, 1, 0, ksize=1) gy = cv.Sobel(img, cv.CV_32F, 0, 1, ksize=1) # mag, angle = cv.cartToPolar(gx, gy, angleInDegrees=True) blurredgx = cv.GaussianBlur(gx, (kx, ky), 1) blurredgy = cv.GaussianBlur(gy, (kx, ky), 1) mag, angle = cv.cartToPolar(blurredgx, blurredgy) return mag, angle @staticmethod def gradient_image_nonmaxsuppressed(img, blur=5, threshold=40): """Apply non maximum suppressed gradient filter sequence threshold not used?? :Parameters: image, blur=5, threshold=40 :Returns: image, angle """ def nonmaxsuppression(im, grad): # Non-maximum suppression gradSup = grad.copy() for r in range(im.shape[0]): for c in range(im.shape[1]): # Suppress pixels at the image edge if r == 0 or r == im.shape[0] - 1 or c == 0 or c == im.shape[1] - 1: gradSup[r, c] = 0 continue tq = thetaQ[r, c] % 4 if tq == 0: # 0 is E-W (horizontal) if grad[r, c] <= grad[r, c - 1] or grad[r, c] <= grad[r, c + 1]: gradSup[r, c] = 0 if tq == 1: # 1 is NE-SW if grad[r, c] <= grad[r - 1, c + 1] or grad[r, c] <= grad[r + 1, c - 1]: gradSup[r, c] = 0 if tq == 2: # 2 is N-S (vertical) if grad[r, c] <= grad[r - 1, c] or grad[r, c] <= grad[r + 1, c]: gradSup[r, c] = 0 if tq == 3: # 3 is NW-SE if grad[r, c] <= grad[r - 1, c - 1] or grad[r, c] <= grad[r + 1, c + 1]: gradSup[r, c] = 0 return gradSup img = Image.Convert.toGray(img) im = np.array(img, dtype=float) # Convert to float to prevent clipping values # Gaussian Blur im2 = cv.GaussianBlur(im, (blur, blur), 0) # Find gradients im3h = cv.filter2D(im2, -1, np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])) im3v = cv.filter2D(im2, -1, np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]])) # Get gradient and direction grad = np.power(np.power(im3h, 2.0) + np.power(im3v, 2.0), 0.5) theta = np.arctan2(im3v, im3h) thetaQ = (np.round(theta * (5.0 / np.pi)) + 5) % 5 # Quantize direction gradSup = nonmaxsuppression(im, grad) return gradSup, thetaQ @staticmethod def nonlocalmeans(img, h=10, templatewindowsize=7, searchwindowsize=21): """Apply a non-local-means filter with filtering strength (h), template windowsize (blocksize), searchwindowsize :Parameters: image, h=10, templatewindowsize=7, searchwindowsize=21 :Returns: image """ # img = cv.pyrDown(img) dst = cv.fastNlMeansDenoising(img, None, h, templatewindowsize, searchwindowsize) return dst @staticmethod def deconvolution_wiener(img, d=3, noise=11): """Apply Wiener deconvolution grayscale images only :Parameters: image, d, noise :Returns: kernel """ img = Image.Convert.toGray(img) noise = 10 ** (-0.1 * noise) img = np.float32(img) / 255.0 IMG = cv.dft(img, flags=cv.DFT_COMPLEX_OUTPUT) psf = Image._defocus_kernel(d) psf /= psf.sum() psf_pad = np.zeros_like(img) kh, kw = psf.shape psf_pad[:kh, :kw] = psf PSF = cv.dft(psf_pad, flags=cv.DFT_COMPLEX_OUTPUT, nonzeroRows=kh) PSF2 = (PSF ** 2).sum(-1) iPSF = PSF / (PSF2 + noise)[..., np.newaxis] RES = cv.mulSpectrums(IMG, iPSF, 0) res = cv.idft(RES, flags=cv.DFT_SCALE | cv.DFT_REAL_OUTPUT) res = np.roll(res, -kh // 2, 0) res = np.roll(res, -kw // 2, 1) return res @staticmethod def median(image, kernel=5): """Apply a median filter :Parameters: image :Returns: image """ out = cv.medianBlur(image, kernel) return out @staticmethod def cannyedge_auto(image, sigma=0.33): """Apply a Canny Edge filter automatically :Parameters: image, sigma :Returns: image """ # compute the median of the single channel pixel intensities v = np.median(image) # apply automatic Canny edge detection using the computed median lower = int(max(0, (1.0 - sigma) * v)) upper = int(min(255, (1.0 + sigma) * v)) edged = cv.Canny(image, lower, upper) return edged # smooth, threshold @staticmethod def gaussian_blur(img, smooth=3): """Gaussian blur image with kernel n :Parameters: image, kernel :Returns: image """ # img = cv.pyrDown(img) imout = cv.GaussianBlur(img, (smooth, smooth), 0) return imout @staticmethod def unsharp_mask(img, kernel_size=5, sigma=1.0, amount=1.0, threshold=0): """Unsharp mask filter :Parameters: image, kernel_size=5, sigma=1.0, amount=1.0, threshold=0 :Returns: image """ blurred = cv.GaussianBlur(img, (5, 5), sigma) sharpened = float(amount + 1) * img - float(amount) * blurred sharpened = np.maximum(sharpened, np.zeros(sharpened.shape)) sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape)) sharpened = sharpened.round().astype(np.uint8) if threshold > 0: low_contrast_mask = np.absolute(img - blurred) < threshold np.copyto(sharpened, img, where=low_contrast_mask) return sharpened @staticmethod def FFT(img): """Apply a fourier transform generate a discrete fourier transform shift matrix and a magnitude spectrum image for viewing :Parameters: image :Returns: dft_shift, specimage """ # img = Image.Convert.toGray(img) # do dft saving as complex output dft = np.fft.fft2(img, axes=(0, 1)) # apply shift of origin to center of image dft_shift = np.fft.fftshift(dft) mag = np.abs(dft_shift) spec = np.log(mag) / 20 # magnitude_spectrum[np.isneginf(magnitude_spectrum)] = 0 return dft_shift, spec @staticmethod def IFFT(fft_img): """Apply an inverse fourier transform :Parameters: image_fft :Returns: image """ back_ishift = np.fft.ifftshift(fft_img) img_back = np.fft.ifft2(back_ishift, axes=(0, 1)) img_back = np.abs(img_back).clip(0, 255).astype(np.uint8) return img_back @staticmethod def FD_bandpass_filter(img, D0=5, w=10, bptype=0): gray = Image.Convert.toGray(img) kernel = Image.FilterKernels.ideal_bandpass_kernel(gray, D0, w) if bptype == 1: kernel = Image.FilterKernels.gaussian_bandpass_kernel(gray, D0, w) elif bptype == 2: kernel = Image.FilterKernels.butterworth_bandpass_kernel(gray, D0, w) gray = np.float64(gray) gray_fft = np.fft.fft2(gray) gray_fftshift = np.fft.fftshift(gray_fft) dst_filtered = np.multiply(kernel, gray_fftshift) dst_ifftshift = np.fft.ifftshift(dst_filtered) dst_ifft = np.fft.ifft2(dst_ifftshift) dst = np.abs(np.real(dst_ifft)) dst = np.clip(dst, 0, 255) out = np.uint8(dst) return out, kernel ''' def FFT_highpass(img, maskradius=8, maskblur=19): dft = np.fft.fft2(img, axes=(0, 1)) dft_shift = np.fft.fftshift(dft) mag = np.abs(dft_shift) spec = np.log(mag) / 20 radius = maskradius mask = np.zeros_like(img, dtype=np.float32) cy = mask.shape[0] // 2 cx = mask.shape[1] // 2 cv.circle(mask, (cx, cy), radius, (1, 1, 1), -1)[0] mask = 1 - mask mask = 1 + 0.5 * mask # high boost filter (sharpening) = 1 + fraction of high pass filter if maskblur > 0: mask2 = cv.GaussianBlur(mask, (maskblur, maskblur), 0) dft_shift_masked2 = np.multiply(dft_shift, mask2) back_ishift_masked2 = np.fft.ifftshift(dft_shift_masked2) img_filtered2 = np.fft.ifft2(back_ishift_masked2, axes=(0, 1)) out = np.abs(img_filtered2).clip(0, 255).astype(np.uint8) else: dft_shift_masked = np.multiply(dft_shift, mask) back_ishift_masked = np.fft.ifftshift(dft_shift_masked) img_filtered = np.fft.ifft2(back_ishift_masked, axes=(0, 1)) out = np.abs(img_filtered).clip(0, 255).astype(np.uint8) mask2= mask return out, mask2 def FFT_lowpass(img, maskradius=8, maskblur=19): dft = np.fft.fft2(img, axes=(0, 1)) dft_shift = np.fft.fftshift(dft) mag = np.abs(dft_shift) spec = np.log(mag) / 20 radius = maskradius mask = np.zeros_like(img, dtype=np.float32) cy = mask.shape[0] // 2 cx = mask.shape[1] // 2 cv.circle(mask, (cx, cy), radius, (255, 255, 255), -1)[0] if maskblur > 0: mask2 = cv.GaussianBlur(mask, (maskblur, maskblur), 0) dft_shift_masked2 = np.multiply(dft_shift, mask2)/ 255 back_ishift_masked2 = np.fft.ifftshift(dft_shift_masked2) img_filtered2 = np.fft.ifft2(back_ishift_masked2, axes=(0, 1)) out = np.abs(img_filtered2).clip(0, 255).astype(np.uint8) else: dft_shift_masked = np.multiply(dft_shift, mask)/ 255 back_ishift_masked = np.fft.ifftshift(dft_shift_masked) img_filtered = np.fft.ifft2(back_ishift_masked, axes=(0, 1)) out = np.abs(img_filtered).clip(0, 255).astype(np.uint8) mask2 = mask return out,mask2 ''' ''' @staticmethod def FFT_lowpass(img, radius=16, lpType=2, n=2): """Lowpass filter in frequency domain radius kernel size lpType: 0-ideal, 1 butterworth, 2 gaussian :Parameters: image, radius, lptype, n :Returns: image, mask """ def createLPFilter(shape, center, radius, lpType=2, n=2): rows, cols = shape[:2] r, c = np.mgrid[0:rows:1, 0:cols:1] c -= center[0] r -= center[1] d = np.power(c, 2.0) + np.power(r, 2.0) lpFilter_matrix = np.zeros((rows, cols), np.float32) if lpType == 0: # ideal low-pass filter lpFilter = np.copy(d) lpFilter[lpFilter < pow(radius, 2.0)] = 1 lpFilter[lpFilter >= pow(radius, 2.0)] = 0 elif lpType == 1: # Butterworth low-pass filter lpFilter = 1.0 / (1 + np.power(np.sqrt(d) / radius, 2 * n)) elif lpType == 2: # Gaussian low pass filter lpFilter = np.exp(-d / (2 * pow(radius, 2.0))) lpFilter_matrix[:, :] = lpFilter return lpFilter_matrix dft_shift, imgfft = Image.Process.FFT(img) cy = dft_shift.shape[0] // 2 cx = dft_shift.shape[1] // 2 mask = createLPFilter(dft_shift.shape, (cx, cy), radius=radius, lpType=lpType, n=n) if len(img.shape) == 3: mask = Image.Convert.toRGB(mask) ifft = np.multiply(dft_shift, mask) out = Image.Process.IFFT(ifft) return out, mask @staticmethod def FFT_highpass(img, radius=16, lpType=2, n=2): """Highpass filter in frequency domain radius kernel size lpType: 0-ideal, 1 butterworth, 2 gaussian :Parameters: image, radius, lptype, n :Returns: image, mask """ def createHPFilter(shape, center, radius, lpType=2, n=2): rows, cols = shape[:2] r, c = np.mgrid[0:rows:1, 0:cols:1] c -= center[0] r -= center[1] d = np.power(c, 2.0) + np.power(r, 2.0) lpFilter_matrix = np.zeros((rows, cols), np.float32) if lpType == 0: # Ideal high pass filter lpFilter = np.copy(d) lpFilter[lpFilter < pow(radius, 2.0)] = 0 lpFilter[lpFilter >= pow(radius, 2.0)] = 1 elif lpType == 1: # Butterworth Highpass Filters lpFilter = 1.0 - 1.0 / (1 + np.power(np.sqrt(d) / radius, 2 * n)) elif lpType == 2: # Gaussian Highpass Filter lpFilter = 1.0 - np.exp(-d / (2 * pow(radius, 2.0))) lpFilter_matrix[:, :] = lpFilter return lpFilter_matrix dft_shift, imgfft = Image.Process.FFT(img) cy = dft_shift.shape[0] // 2 cx = dft_shift.shape[1] // 2 mask = createHPFilter(dft_shift.shape, (cx, cy), radius=radius, lpType=lpType, n=n) if len(img.shape) == 3: mask = Image.Convert.toRGB(mask) ifft = np.multiply(dft_shift, mask) out = Image.Process.IFFT(ifft) return out, mask @staticmethod def FFT_bandpass(img, bandcenter=32, bandwidth=16, lpType=2, n=2): """Bandpass filter in frequency domain radius kernel size lpType: 0-ideal, 1 butterworth, 2 gaussian :Parameters: image, bandcenter, bandwidth, lptype, n :Returns: image, mask """ def createBPFilter(shape, center, bandCenter, bandWidth, lpType=2, n=2): rows, cols = shape[:2] r, c = np.mgrid[0:rows:1, 0:cols:1] c -= center[0] r -= center[1] d = np.sqrt(np.power(c, 2.0) + np.power(r, 2.0)) lpFilter_matrix = np.zeros((rows,cols), np.float32) if lpType == 0: # Ideal bandpass filter lpFilter = np.copy(d) lpFilter[:, :] = 1 lpFilter[d > (bandCenter + bandWidth / 2)] = 0 lpFilter[d < (bandCenter - bandWidth / 2)] = 0 elif lpType == 1: # Butterworth bandpass filter if bandCenter ==0: bandCenter=1 lpFilter = 1.0 - 1.0 / (1 + np.power(d * bandWidth / (d - pow(bandCenter, 2)), 2 * n)) elif lpType == 2: # Gaussian bandpass filter if bandWidth ==0: bandWidth=1 lpFilter = np.exp(-pow((d - pow(bandCenter, 2)) / (d * bandWidth), 2)) lpFilter_matrix[:, :] = lpFilter return lpFilter_matrix dft_shift, imgfft = Image.Process.FFT(img) cy = dft_shift.shape[0] // 2 cx = dft_shift.shape[1] // 2 mask = createBPFilter(dft_shift.shape, (cx, cy), bandCenter=bandcenter, bandWidth=bandwidth, lpType=lpType, n=n) if len(img.shape) == 3: mask = Image.Convert.toRGB(mask) #print(mask.dtype,dft_shift.dtype) ifft = np.multiply(dft_shift, mask) out = Image.Process.IFFT(ifft) return out, mask @staticmethod def FFT_bandstop(img, bandcenter=32, bandwidth=16, lpType=2, n=2): """Bandstop filter in frequency domain radius kernel size lpType: 0-ideal, 1 butterworth, 2 gaussian :Parameters: image, bandcenter, bandwidth, lptype, n :Returns: image, mask """ def createBRFilter(shape, center, bandCenter, bandWidth, lpType=2, n=2): rows, cols = shape[:2] r, c = np.mgrid[0:rows:1, 0:cols:1] c -= center[0] r -= center[1] d = np.sqrt(np.power(c, 2.0) + np.power(r, 2.0)) lpFilter_matrix = np.zeros((rows, cols), np.float32) if lpType == 0: # Ideal band stop filter lpFilter = np.copy(d) lpFilter[:, :] = 0 lpFilter[d > (bandCenter + bandWidth / 2)] = 1 lpFilter[d < (bandCenter - bandWidth / 2)] = 1 elif lpType == 1: # Butterworth band stop filter lpFilter = 1.0 / (1 + np.power(d * bandWidth / (d - pow(bandCenter, 2)), 2 * n)) elif lpType == 2: # Gaussian band stop filter lpFilter = 1 - np.exp(-pow((d - pow(bandCenter, 2)) / (d * bandWidth), 2)) lpFilter_matrix[:, :] = lpFilter return lpFilter_matrix dft_shift, imgfft = Image.Process.FFT(img) cy = dft_shift.shape[0] // 2 cx = dft_shift.shape[1] // 2 mask = createBRFilter(dft_shift.shape, (cx, cy), bandCenter=bandcenter, bandWidth=bandwidth, lpType=lpType, n=n) if len(img.shape) == 3: mask = Image.Convert.toRGB(mask) ifft = np.multiply(dft_shift, mask) out = Image.Process.IFFT(ifft) return out, mask ''' def pencilsketch(img): """Apply a pencil sketch filter to a grayscale image :Parameters: image :Returns: image """ def dodgeV2(image, mask): return cv.divide(image, 255 - mask, scale=256) def burnV2(image, mask): return 255 - cv.divide(255 - image, 255 - mask, scale=256) img_gray_inv = 255 - img img_blur = cv.GaussianBlur(img_gray_inv, ksize=(21, 21), sigmaX=0, sigmaY=0) out = dodgeV2(img, img_blur) return out def sepia(img): """Apply sepia filter :Parameters: image :Returns: image """ res = img.copy() res = cv.cvtColor(res, cv.COLOR_BGR2RGB) # converting to RGB as sepia matrix is for RGB res = np.array(res, dtype=np.float64) res = cv.transform(res, np.matrix([[0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131]])) res[np.where(res > 255)] = 255 # clipping values greater than 255 to 255 res = np.array(res, dtype=np.uint8) res = cv.cvtColor(res, cv.COLOR_RGB2BGR) return res @staticmethod def gaussian_noise(img, prob=0.25): """ Add gaussian noise :Parameters: image, sigma=0.25 :Returns: image """ noise_img = img.astype(np.float) stddev = prob * 100.0 noise = np.random.randn(*img.shape) * stddev noise_img += noise noise_img = np.clip(noise_img, 0, 255).astype(np.uint8) return noise_img @staticmethod def salt_and_pepper_noise(image, prob=0.01): """Add salt and pepper noise :Parameters: image, sigma=0.01 :Returns: image """ output = np.zeros(image.shape, np.uint8) thres = 1 - prob for i in range(image.shape[0]): for j in range(image.shape[1]): rdn = random.random() if rdn < prob: output[i][j] = 0 elif rdn > thres: output[i][j] = 255 else: output[i][j] = image[i][j] return output @staticmethod def poisson_noise(img, prob=0.25): """ Induce poisson noise :Parameters: image, lambda=0.25 :Returns: image """ # Noise range from 0 to 100 """ seed = 42 data = np.float32(img / 255) #convert to float to add poisson noise np.random.seed(seed=seed) out = np.random.poisson(data * 256) / 256. out = np.uint8(out*255) out = np.clip(out, 0, 255).astype(np.uint8) #convert back to UINT8 """ # data = np.float32(img) #convert to float to add poisson noise data = img.astype(np.float) noise = prob # peak = 256.0-noise*(256-32) peak = 256.0 - noise * (256) # print(noise,peak) noise_image = np.random.poisson(data / 255.0 * peak) / peak * 255 out = np.clip(noise_image, 0, 255).astype(np.uint8) return out @staticmethod def k_means(image, k=3): """ k_means clustering :Parameters: image, k=3 :Returns: image """ pixel_vals = image.reshape((-1, 3)) pixel_vals = np.float32(pixel_vals) criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 100, 0.85) retval, labels, centers = cv.kmeans(pixel_vals, k, None, criteria, 10, cv.KMEANS_RANDOM_CENTERS) centers = np.uint8(centers) segmented_data = centers[labels.flatten()] segmented_image = segmented_data.reshape((image.shape)) return segmented_image class Falsecolor: @staticmethod def falsecolor_jet(img): """False color jet :Parameters: image :Returns: image """ im_color = cv.applyColorMap(img, cv.COLORMAP_JET) return im_color @staticmethod def falsecolor_rainbow(img): """False color rainbow :Parameters: image :Returns: image """ im_color = cv.applyColorMap(img, cv.COLORMAP_RAINBOW) return im_color @staticmethod def falsecolor_transfer(source, target): """ convert RGB to LAB color space :Parameters: source_image, target_image :Returns: image """ # convert the images from the RGB to L*ab* color space, being # sure to utilizing the floating point data type (note: OpenCV # expects floats to be 32-bit, so use that instead of 64-bit) source = cv.cvtColor(source, cv.COLOR_GRAY2BGR) target = cv.cvtColor(target, cv.COLOR_GRAY2BGR) source = cv.cvtColor(source, cv.COLOR_BGR2LAB).astype("float32") target = cv.cvtColor(target, cv.COLOR_BGR2LAB).astype("float32") # compute color statistics for the source and target images (lMeanSrc, lStdSrc, aMeanSrc, aStdSrc, bMeanSrc, bStdSrc) = _image_stats(source) (lMeanTar, lStdTar, aMeanTar, aStdTar, bMeanTar, bStdTar) = _image_stats(target) # subtract the means from the target image (l, a, b) = cv.split(target) l -= lMeanTar a -= aMeanTar b -= bMeanTar # scale by the standard deviations l = (lStdTar / lStdSrc) * l a = (aStdTar / aStdSrc) * a b = (bStdTar / bStdSrc) * b # add in the source mean l += lMeanSrc a += aMeanSrc b += bMeanSrc # clip the pixel intensities to [0, 255] if they fall outside # this range l = np.clip(l, 0, 255) a = np.clip(a, 0, 255) b = np.clip(b, 0, 255) # merge the channels together and convert back to the RGB color # space, being sure to utilize the 8-bit unsigned integer data # type transfer = cv.merge([l, a, b]) transfer = cv.cvtColor(transfer.astype("uint8"), cv.COLOR_LAB2BGR) # return the color transferred image return transfer @staticmethod def falsecolor_merge2channels(img0, img1): """Merge 2 images using 2 colors :Parameters: image1, image2 :Returns: image """ img0 = Image.Convert.toGray(img0) img1 = Image.Convert.toGray(img1) img0 = Image.Adjust.histostretch_clahe(img0) img1 = Image.Adjust.histostretch_clahe(img1) img0 = cv.cvtColor(img0, cv.COLOR_GRAY2BGR) img1 = cv.cvtColor(img1, cv.COLOR_GRAY2BGR) r0, g0, b0 = cv.split(img0) r1, g1, b1 = cv.split(img1) img3 = cv.merge([b1, g1, r0]) return img3 @staticmethod def falsecolor_merge3channels(img0, img1, img2): """Merge 3 images using 3 colors :Parameters: image1, image2, image3 :Returns: image """ img0 = Image.Adjust.histostretch_clahe(img0) img1 = Image.Adjust.histostretch_clahe(img1) img2 = Image.Adjust.histostretch_clahe(img2) img0 = cv.cvtColor(img0, cv.COLOR_GRAY2BGR) img1 = cv.cvtColor(img1, cv.COLOR_GRAY2BGR) img2 = cv.cvtColor(img2, cv.COLOR_GRAY2BGR) r0, g0, b0 = cv.split(img0) r1, g1, b1 = cv.split(img1) r2, g2, b2 = cv.split(img2) img3 = cv.merge([b2, g1, r0]) return img3 class Adjust: @staticmethod def invert(img): """Invert image :Parameters: image :Returns: image """ img2 = cv.bitwise_not(img) return img2 @staticmethod def squared_and_bin(img): """First make image squared followed by binning to 256 pixels :Parameters: image :Returns: image """ img0 = Image.Tools.squared(img, leadingaxislargest=False) scale = 256 / img0.shape[1] img0 = cv.resize(img0, None, None, scale, scale, interpolation=cv.INTER_AREA) return img0 @staticmethod def bin(img, shrinkfactor=2): """bin image with shrinkfactor (default shrinkfactor= 2) :Parameters: image, shrinkfactor :Returns: image """ scale = 1 / shrinkfactor img0 = cv.resize(img, None, None, scale, scale, interpolation=cv.INTER_AREA) return img0 @staticmethod def histogram(img): """create histogram of an image as an image :Parameters: image :Output: histogram image """ w = img.shape[1] h = img.shape[0] if (img.dtype == np.uint8): rng = 256 else: rng = 65535 # bitdepth = img.dtype hist, bins = np.histogram(img.flatten(), 256, [0, rng]) cdf = hist.cumsum() cdf_normalized = cdf * hist.max() / cdf.max() # this line not necessary. fig = plt.figure() plt.plot(cdf_normalized, color='b') plt.hist(img.flatten(), 256, [0, rng], color='0.30') plt.axis("off") # turns off axes fig.tight_layout() fig.canvas.draw() image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) out = image_from_plot.reshape(fig.canvas.get_width_height()[::-1] + (3,)) plt.close() # cv.imwrite("test.png",out) return out @staticmethod def histostretch_clahe(img): """Apply a CLAHE (Contrast Limited Adaptive Histogram Equalization) filter on a grayscale image supports 8 and 16 bit images. :Parameters: image :Returns: image """ # img = cv.pyrDown(img) if (len(img.shape) < 3): clahe = cv.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) cl1 = clahe.apply(img) img = cl1 else: clahe = cv.createCLAHE(clipLimit=3., tileGridSize=(8, 8)) lab = cv.cvtColor(img, cv.COLOR_BGR2LAB) # convert from BGR to LAB color space l, a, b = cv.split(lab) # split on 3 different channels l2 = clahe.apply(l) # apply CLAHE to the L-channel lab = cv.merge((l2, a, b)) # merge channels img = cv.cvtColor(lab, cv.COLOR_LAB2BGR) # convert from LAB to BGR return img ''' @staticmethod def histostretch_equalized(img): """Apply a equalize histogram filter (8-bit images only!) :Parameters: image :Returns: image """ # img = cv.pyrDown(img) equ = cv.equalizeHist(img) return equ ''' @staticmethod def histostretch_equalized(img): """Apply a equalize histogram filter 8 and 16 bit :Parameters: image :Returns: image #https://github.com/torywalker/histogram-equalizer/blob/master/HistogramEqualization.ipynb """ def get_histogram(image, bins): # array with size of bins, set to zeros histogram = np.zeros(bins) # loop through pixels and sum up counts of pixels for pixel in image: histogram[pixel] += 1 # return our final result return histogram # create our cumulative sum function def cumsum(a): a = iter(a) b = [next(a)] for i in a: b.append(b[-1] + i) return np.array(b) if (img.dtype == np.uint16): flat = img.flatten() hist = get_histogram(flat, 65536) # plt.plot(hist) # cs = cumsum(hist) # re-normalize cumsum values to be between 0-255 # numerator & denomenator nj = (cs - cs.min()) * 65535 N = cs.max() - cs.min() # re-normalize the cdf cs = nj / N cs = cs.astype('uint16') img_new = cs[flat] # plt.hist(img_new, bins=65536) # plt.show(block=True) img_new = np.reshape(img_new, img.shape) else: if len(img.shape) == 2: img_new = cv.equalizeHist(img) else: img_yuv = cv.cvtColor(img, cv.COLOR_BGR2YUV) # equalize the histogram of the Y channel img_yuv[:, :, 0] = cv.equalizeHist(img_yuv[:, :, 0]) # convert the YUV image back to RGB format img_new = cv.cvtColor(img_yuv, cv.COLOR_YUV2BGR) return img_new @staticmethod def histostretch_normalize(img): """Normalize histogram 8bit between 0 and 255 16bit between 0 and 65535 :Parameters: image :Returns: image """ # img = cv.pyrDown(img) if (img.dtype == np.uint16): norm = cv.normalize(img, None, alpha=0, beta=65535, norm_type=cv.NORM_MINMAX, dtype=cv.CV_16U) else: norm = cv.normalize(img, None, alpha=0, beta=255, norm_type=cv.NORM_MINMAX, dtype=cv.CV_8U) return norm # smooth, threshold @staticmethod def threshold(img, thresh=128): """Applies a fixed-level threshold to each array element. [0-255] :Parameters: image, threshold :Returns: image """ ret, imout = cv.threshold(img, thresh, 255, cv.THRESH_BINARY) return imout @staticmethod def normalize(img): """Normalize image. [0-255] :Parameters: image :Returns: image """ imout = cv.normalize(img, None, alpha=0, beta=255, norm_type=cv.NORM_MINMAX, dtype=cv.CV_64F) return imout @staticmethod def thresholdrange(img, threshmin=128, threshmax=255): """threshold image between min and max value :Parameters: image, thresholdmin, thresholdmax :Returns: image """ imout = cv.inRange(img, threshmin, threshmax) return imout @staticmethod def threshold_otsu(img): """Applies an automatic threshold using the Otsu method for thresholding :Parameters: image :Returns: image """ ret, imout = cv.threshold(img, 0, 255, cv.THRESH_OTSU) return imout @staticmethod def adjust_contrast_brightness(img, contrast=0, brightness=0): """adjust contrast and brightness contrast range: -127..127 brightness range: -255..255 :Parameters: image :Returns: image """ table = np.array([i * (contrast / 127 + 1) - contrast + brightness for i in range(0, 256)]).clip(0, 255).astype( 'uint8') # if len(img.shape) == 3: # out = cv.LUT(img, table)[:, :, np.newaxis] # else: out = cv.LUT(img, table) return out @staticmethod def adjust_gamma(image, gamma=1.0): """adjust gamma [0..3.0], default = 1 gamma cannot be 0 :Parameters: image, gamma=1.0 :Returns: image """ invGamma = 1.0 / gamma table = np.array([((i / 255.0) ** invGamma) * 255 for i in np.arange(0, 256)]).astype("uint8") # apply gamma correction using the lookup table return cv.LUT(image, table) @staticmethod def adjust_HSV(img, hval, sval, vval): """adjust Hue [0..179], Saturation [-255..255], lightness [-255..255] :Parameters: image, hue, saturation, lightness :Returns: image """ img = Image.Convert.toRGB(img) # changing channels for nicer image hsv = Image.Convert.BGRtoHSV(img) h = hsv[:, :, 0] s = hsv[:, :, 1] v = hsv[:, :, 2] h = np.where(h <= 255.0 - hval, h + hval, 255) if (sval > 0): s = np.where(s <= 255.0 - sval, s + sval, 255) else: s = (s * ((255.0 + sval) / 255.0)) if (vval > 0): v = np.where(v <= 255.0 - vval, v + vval, 255) else: v = v * ((255.0 + vval) / 255.0) hsv[:, :, 0] = h hsv[:, :, 1] = s hsv[:, :, 2] = v img1 = Image.Convert.HSVtoBGR(hsv) return img1 @staticmethod def adjust_HSL(img, hval, sval, lval): """adjust Hue [0..179], Saturation [0..255], lightness [0..255] The definition HSL is most commonly used, occasionly this is called HLS :Parameters: image, hue, saturation, lightness :Returns: image """ img = Image.Convert.toRGB(img) # changing channels for nicer image hls = cv.cvtColor(img, cv.COLOR_RGB2HLS) h = hls[:, :, 0] l = hls[:, :, 1] s = hls[:, :, 2] h = np.where(h <= 255.0 - hval, h + hval, 255) if (sval > 0): s = np.where(s <= 255.0 - sval, s + sval, 255) else: s = (s * ((255.0 + sval) / 255.0)) if (lval > 0): l = np.where(l <= 255.0 - lval, l + lval, 255) else: l = l * ((255.0 + lval) / 255.0) hls[:, :, 0] = h hls[:, :, 1] = l hls[:, :, 2] = s img1 = cv.cvtColor(hls, cv.COLOR_HLS2RGB) return img1 @staticmethod def adjust_auto_whitebalance(img): """auto whitebalance https://stackoverflow.com/questions/46390779/automatic-white-balancing-with-grayworld-assumption :Parameters: image, temperature :Returns: image """ result = cv.cvtColor(img, cv.COLOR_BGR2LAB) avg_a = np.average(result[:, :, 1]) avg_b = np.average(result[:, :, 2]) result[:, :, 1] = result[:, :, 1] - ((avg_a - 128) * (result[:, :, 0] / 255.0) * 1.1) result[:, :, 2] = result[:, :, 2] - ((avg_b - 128) * (result[:, :, 0] / 255.0) * 1.1) result = cv.cvtColor(result, cv.COLOR_LAB2BGR) return result class Transform: @staticmethod def flip_horizontal(img): """Flip image horizontal :Parameters: image :Returns: image """ horizontal_img = cv.flip(img, 0) return horizontal_img @staticmethod def flip_vertical(img): """Flip image vertical :Parameters: image :Returns: image """ vertical_img = cv.flip(img, 1) return vertical_img @staticmethod def translate(img, shiftx, shifty): """Shift image n x and y pixels :Parameters: image, shiftx, shifty :Returns: image """ w = img.shape[1] h = img.shape[0] M = np.float32([[1, 0, shiftx], [0, 1, shifty]]) img2 = cv.warpAffine(img, M, (w, h)) return img2 @staticmethod def rotate(image, angle): """Rotate image :Parameters: image, angle :Returns: image """ image_center = tuple(np.array(image.shape[1::-1]) / 2) rot_mat = cv.getRotationMatrix2D(image_center, angle, 1.0) result = cv.warpAffine(image, rot_mat, image.shape[1::-1], flags=cv.INTER_LINEAR) return result class Binary: @staticmethod def skeletonize(img): """skeletonize a thresholded image. :Parameters: image :Returns: image """ size = np.size(img) skel = np.zeros(img.shape, np.uint8) element = cv.getStructuringElement(cv.MORPH_CROSS, (3, 3)) done = False while (not done): eroded = cv.erode(img, element) temp = cv.dilate(eroded, element) temp = cv.subtract(img, temp) skel = cv.bitwise_or(skel, temp) img = eroded.copy() zeros = size - cv.countNonZero(img) if zeros == size: done = True return skel # Zhang-Suen Thinning Algorithm - https://github.com/linbojin/Skeletonization-by-Zhang-Suen-Thinning-Algorithm # note: slow filter @staticmethod def thinning(img): """Applies the Zhang-Suen thinning algorithm. :Parameters: image :Returns: image """ def neighbours(x, y, img): "Return 8-neighbours of image point P1(x,y), in a clockwise order" img = img x_1, y_1, x1, y1 = x - 1, y - 1, x + 1, y + 1 return [img[x_1][y], img[x_1][y1], img[x][y1], img[x1][y1], # P2,P3,P4,P5 img[x1][y], img[x1][y_1], img[x][y_1], img[x_1][y_1]] # P6,P7,P8,P9 def transitions(neighbours): "No. of 0,1 patterns (transitions from 0 to 1) in the ordered sequence" n = neighbours + neighbours[0:1] # P2, P3, ... , P8, P9, P2 return sum((n1, n2) == (0, 1) for n1, n2 in zip(n, n[1:])) # (P2,P3), (P3,P4), ... , (P8,P9), (P9,P2) ret, imout = cv.threshold(img, 0, 255, cv.THRESH_OTSU) img = img < ret # must set object region as 1, background region as 0 ! print("the Zhang-Suen Thinning Algorithm") img_Thinned = img.copy() # deepcopy to protect the original img changing1 = changing2 = 1 # the points to be removed (set as 0) while changing1 or changing2: # iterates until no further changes occur in the img # Step 1 changing1 = [] rows, columns = img_Thinned.shape # x for rows, y for columns for x in range(1, rows - 1): # No. of rows for y in range(1, columns - 1): # No. of columns P2, P3, P4, P5, P6, P7, P8, P9 = n = neighbours(x, y, img_Thinned) if (img_Thinned[x][y] == 1 and # Condition 0: Point P1 in the object regions 2 <= sum(n) <= 6 and # Condition 1: 2<= N(P1) <= 6 transitions(n) == 1 and # Condition 2: S(P1)=1 P2 * P4 * P6 == 0 and # Condition 3 P4 * P6 * P8 == 0): # Condition 4 changing1.append((x, y)) for x, y in changing1: img_Thinned[x][y] = 0 # Step 2 changing2 = [] for x in range(1, rows - 1): for y in range(1, columns - 1): P2, P3, P4, P5, P6, P7, P8, P9 = n = neighbours(x, y, img_Thinned) if (img_Thinned[x][y] == 1 and # Condition 0 2 <= sum(n) <= 6 and # Condition 1 transitions(n) == 1 and # Condition 2 P2 * P4 * P8 == 0 and # Condition 3 P2 * P6 * P8 == 0): # Condition 4 changing2.append((x, y)) for x, y in changing2: img_Thinned[x][y] = 0 return img_Thinned @staticmethod def morphology_erode(img, kernel=5): """Morphology filter - erode :Parameters: image, kernel :Returns: image """ kerneln = np.ones((kernel, kernel), np.uint8) erosion = cv.erode(img, kerneln, iterations=1) return erosion @staticmethod def morphology_dilate(img, kernel=5): """Morphology filter - dilate :Parameters: image, kernel :Returns: image """ kerneln = np.ones((kernel, kernel), np.uint8) dilation = cv.dilate(img, kerneln, iterations=1) return dilation @staticmethod def morphology_open(img, kernel=5): """Morphology filter - open :Parameters: image, kernel :Returns: image """ kerneln = np.ones((kernel, kernel), np.uint8) opening = cv.morphologyEx(img, cv.MORPH_OPEN, kerneln) return opening @staticmethod def morphology_close(img, kernel=5): """Morphology filter - close :Parameters: image, kernel :Returns: image """ kerneln = np.ones((kernel, kernel), np.uint8) opening = cv.morphologyEx(img, cv.MORPH_CLOSE, kerneln) return opening @staticmethod def morphology_fillholes(im_in): """Morphology filter - fillholes :Parameters: image, kernel :Returns: image """ im_floodfill = im_in.copy() # Mask used to flood filling. # Notice the size needs to be 2 pixels than the image. h, w = im_in.shape[:2] mask = np.zeros((h + 2, w + 2), np.uint8) # Floodfill from point (0, 0) cv.floodFill(im_floodfill, mask, (0, 0), 255) # Invert floodfilled image im_floodfill_inv = cv.bitwise_not(im_floodfill) # Combine the two images to get the foreground. im_out = im_in | im_floodfill_inv return im_in, im_floodfill, im_floodfill_inv, im_out @staticmethod def remove_isolated_pixels(img0): """Remove isolated pixels in an image :Parameters: image :Returns: image """ input_image = cv.threshold(img0, 254, 255, cv.THRESH_BINARY)[1] input_image_comp = cv.bitwise_not(input_image) # could just use 255-img kernel1 = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]], np.uint8) kernel2 = np.array([[1, 1, 1], [1, 0, 1], [1, 1, 1]], np.uint8) hitormiss1 = cv.morphologyEx(input_image, cv.MORPH_ERODE, kernel1) hitormiss2 = cv.morphologyEx(input_image_comp, cv.MORPH_ERODE, kernel2) hitormiss = cv.bitwise_and(hitormiss1, hitormiss2) hitormiss_comp = cv.bitwise_not(hitormiss) # could just use 255-img del_isolated = cv.bitwise_and(input_image, input_image, mask=hitormiss_comp) return del_isolated @staticmethod def remove_islands(img0, min_size=150): """Remove islands in an image :Parameters: image, min_size=150 :Returns: image """ # find all your connected components (white blobs in your image) nb_components, output, stats, centroids = cv.connectedComponentsWithStats(img0, connectivity=8) # connectedComponentswithStats yields every seperated component with information on each of them, such as size # the following part is just taking out the background which is also considered a component, but most of the time we don't want that. sizes = stats[1:, -1] nb_components = nb_components - 1 # minimum size of features we want to keep (number of pixels) # here, it's a fixed value, but you can set it as you want, eg the mean of the sizes or whatever # your answer image img2 = np.zeros((output.shape)) # for every component in the image, you keep it only if it's above min_size for i in range(0, nb_components): if sizes[i] >= min_size: img2[output == i + 1] = 255 return img2 class Convert: @staticmethod def to8bit(img): """Convert to 8 bit image :Parameters: image :Returns: image """ if (img.dtype == np.uint16): img1 = (img / 256).astype('uint8') # updated this one on 20191216 for 16 bit imaging else: img1 = (img).astype('uint8') # img1 = img.astype('uint8') # 16bit to 8bit return img1 @staticmethod def to16bit(img): """Convert to 16 bit image :Parameters: image :Returns: image """ if (img.dtype == np.uint8): img1 = (img * 256).astype('uint16') # updated this one on 20191216 for 16 bit imaging else: img1 = (img).astype('uint16') # img1 = img.astype('uint8') # 16bit to 8bit return img1 @staticmethod def toRGB(img): """Convert grayscale to RGB image :Parameters: image :Returns: image """ img1 = img channels = len(img.shape) if (channels != 3): img1 = cv.cvtColor(img, cv.COLOR_GRAY2BGR) # print('Image converted from Grayscale to RGB') return img1 @staticmethod def toGray(img): """Convert RGB to color grayscale image :Parameters: image :Returns: image """ img1 = img channels = len(img.shape) if (channels > 2): img1 = cv.cvtColor(img, cv.COLOR_RGB2GRAY) # print('Image converted from RGB to Grayscale') return img1 @staticmethod def BGRtoRGB(img): """Convert BGR to RGB :Parameters: image :Returns: image """ img1 = img channels = len(img.shape) if (channels > 2): b, g, r = cv.split(img) # get b,g,r img1 = cv.merge([r, g, b]) # switch it to rgb (OpenCV uses BGR) return img1 @staticmethod def RGBtoBGR(img): """Convert RGB to BGR :Parameters: image :Returns: image """ img1 = img channels = len(img.shape) if (channels > 2): r, g, b = cv.split(img) # get b,g,r img1 = cv.merge([b, g, r]) # switch it to rgb (OpenCV uses BGR) return img1 @staticmethod def BGRtoHSV(img): """Convert BGR to HSV :Parameters: image :Returns: image """ img1 = cv.cvtColor(img, cv.COLOR_BGR2HSV) return img1 @staticmethod def HSVtoBGR(img): """Convert HSV to BGR :Parameters: image :Returns: image """ img1 = cv.cvtColor(img, cv.COLOR_HSV2BGR) return img1 @staticmethod def binarytogray(img): """Convert binary image to grayscale (dtype=bool -> dtype=uint8) :Parameters: image :Returns: image """ img = img.astype('uint8') * 255 return img class FilterKernels: @staticmethod def ideal_lowpass_kernel(img, radius=32): rows, cols = img.shape[:2] r, c = np.mgrid[0:rows:1, 0:cols:1] c -= int(cols / 2) r -= int(rows / 2) d = np.power(c, 2.0) + np.power(r, 2.0) kernel_matrix = np.zeros((rows, cols), np.float32) kernel = np.copy(d) kernel[kernel < pow(radius, 2.0)] = 1 kernel[kernel >= pow(radius, 2.0)] = 0 kernel_matrix[:, :] = kernel return kernel_matrix @staticmethod def gaussian_lowpass_kernel(img, radius=32): rows, cols = img.shape[:2] r, c = np.mgrid[0:rows:1, 0:cols:1] c -= int(cols / 2) r -= int(rows / 2) d = np.power(c, 2.0) + np.power(r, 2.0) kernel_matrix = np.zeros((rows, cols), np.float32) kernel = np.exp(-d / (2 * pow(radius, 2.0))) kernel_matrix[:, :] = kernel return kernel_matrix @staticmethod def butterworth_lowpass_kernel(img, radius=32, n=2): rows, cols = img.shape[:2] r, c = np.mgrid[0:rows:1, 0:cols:1] c -= int(cols / 2) r -= int(rows / 2) d = np.power(c, 2.0) + np.power(r, 2.0) kernel_matrix = np.zeros((rows, cols), np.float32) kernel = 1.0 / (1 + np.power(np.sqrt(d) / radius, 2 * n)) kernel_matrix[:, :] = kernel return kernel_matrix @staticmethod def ideal_bandpass_kernel(img, D0=32, w=9): rows, cols = img.shape crow, ccol = int(rows / 2), int(cols / 2) mask = np.ones((rows, cols), np.uint8) for i in range(0, rows): for j in range(0, cols): d = np.sqrt(pow(i - crow, 2) + pow(j - ccol, 2)) if D0 - w / 2 < d < D0 + w / 2: mask[i, j] = 1 else: mask[i, j] = 0 kernel = mask return kernel @staticmethod def ideal_bandstop_kernel(img, D0=32, W=9): kernel = 1.0 - Image.FilterKernels.ideal_bandpass_kernel(img, D0, W) return kernel @staticmethod def gaussian_bandstop_kernel(img, D0=32, W=9): r, c = img.shape[1], img.shape[0] u = np.arange(r) v = np.arange(c) u, v = np.meshgrid(u, v) low_pass = np.sqrt((u - r / 2) ** 2 + (v - c / 2) ** 2) kernel = 1.0 - np.exp(-0.5 * (((low_pass ** 2 - D0 ** 2) / (low_pass * W + 1.0e-5)) ** 2)) return kernel @staticmethod def gaussian_bandpass_kernel(img, D0=32, W=9): assert img.ndim == 2 # kernel = Image.FilterKernels.gaussian_bandstop_kernel(img, D0, W) kernel = 1.0 - Image.FilterKernels.gaussian_bandstop_kernel(img, D0, W) return kernel @staticmethod def butterworth_bandstop_kernel(img, D0=32, W=9, n=1): r, c = img.shape[1], img.shape[0] u = np.arange(r) v = np.arange(c) u, v = np.meshgrid(u, v) low_pass = np.sqrt((u - r / 2) ** 2 + (v - c / 2) ** 2) kernel = (1 / (1 + ((low_pass * W) / (low_pass ** 2 - D0 ** 2)) ** (2 * n))) return kernel def butterworth_bandpass_kernel(img, D0=5, W=10): kernel = 1.0 - Image.FilterKernels.butterworth_bandstop_kernel(img, D0, W) return kernel ''' def convert_kernel_to_image(kernel): out = np.dstack((kernel, np.zeros(kernel.shape[:-1]))) return out ''' class Tools: # combined sequences @staticmethod def image_with_2_closeups(img, t_size=[0.2, 0.2], t_center1=[0.3, 0.3], t_center2=[0.6, 0.6]): """image with 2 closeups, the output is a color image. :Parameters: image, t_size=[0.2, 0.2], t_center1=[0.3, 0.3], t_center2=[0.6, 0.6] :Returns: image """ w = img.shape[1] h = img.shape[0] rgb = Image.Convert.toRGB(img) xt0 = Image._multipleof2((t_center1[0] - t_size[0] * 0.5) * w) yt0 = Image._multipleof2((t_center1[1] - t_size[1] * 0.5) * h) xt1 = Image._multipleof2((t_center1[0] + t_size[0] * 0.5) * w) yt1 = Image._multipleof2((t_center1[1] + t_size[1] * 0.5) * h) # rgb = img template1 = Image.crop(rgb, xt0, yt0, xt1, yt1) w3 = np.abs(xt0 - xt1) h3 = np.abs(yt0 - yt1) xt0b = Image._multipleof2((t_center2[0] - t_size[0] * 0.5) * w) yt0b = Image._multipleof2((t_center2[1] - t_size[1] * 0.5) * h) # rgb = img template2 = Image.crop(rgb, xt0b, yt0b, xt0b + w3, yt0b + h3) wt = template1.shape[1] ht = template1.shape[0] scalefactor = (w * 0.5) / wt template1b = Image.resize(template1, scalefactor) # print(template1b.shape) wt2 = template1b.shape[1] ht2 = template1b.shape[0] template2b = Image.resize(template2, scalefactor) # print(template2b.shape) # print(w,h) # print(wt2,ht2) output = np.zeros((h + ht2, w, 3), np.uint8) print(output.shape) print(rgb.shape) print(template1b.shape) print(template2b.shape) output[0:h, 0:w] = rgb output[h:h + ht2, 0:wt2] = template1b output[h:h + ht2, wt2:w] = template2b output = cv.rectangle(output, (xt0, yt0), (xt1, yt1), (33, 145, 237), 3) output = cv.rectangle(output, (xt0b, yt0b), (xt0b + w3, yt0b + h3), (240, 167, 41), 3) output = cv.rectangle(output, (wt2 + 3, h), (w - 2, h + ht2 - 3), (240, 167, 41), 3) output = cv.rectangle(output, (0 + 2, h), (wt2 - 2, h + ht2 - 3), (33, 145, 237), 3) return output @staticmethod def anaglyph(img0, img1): """Create a anaglyph from 2 images (stereo image) :Parameters: image1, image2 :Returns: image """ matrices = { 'true': [[0.299, 0.587, 0.114, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0.299, 0.587, 0.114]], 'mono': [[0.299, 0.587, 0.114, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0.299, 0.587, 0.114, 0.299, 0.587, 0.114]], 'color': [[1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 1]], 'halfcolor': [[0.299, 0.587, 0.114, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 1]], 'optimized': [[0, 0.7, 0.3, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 1]], } # img1 = translate_image(img1,8,0) width = img0.shape[0] height = img0.shape[1] leftImage = cv.cvtColor(img0, cv.COLOR_GRAY2BGR) rightImage = cv.cvtColor(img1, cv.COLOR_GRAY2BGR) m = matrices['optimized'] result = np.zeros((img0.shape[0], img0.shape[1], 3), np.uint8) # split the left and right images into separate blue, green and red images lb, lg, lr = cv.split(np.asarray(leftImage[:, :])) rb, rg, rr = cv.split(np.asarray(rightImage[:, :])) resultArray = np.asarray(result[:, :]) resultArray[:, :, 0] = lb * m[0][6] + lg * m[0][7] + lr * m[0][8] + rb * m[1][6] + rg * m[1][7] + rr * m[1][ 8] resultArray[:, :, 1] = lb * m[0][3] + lg * m[0][4] + lr * m[0][5] + rb * m[1][3] + rg * m[1][4] + rr * m[1][ 5] resultArray[:, :, 2] = lb * m[0][0] + lg * m[0][1] + lr * m[0][2] + rb * m[1][0] + rg * m[1][1] + rr * m[1][ 2] return result @staticmethod def image2patches(img, patchsize, overlappx=0, verbose=False): """ Convert single image to a list of patches. The size of a patch is determined by patchsize, be aware of rounding incase image width or height cannot be divided through the patchsize. Works both for color and grayscale images. overlap in pixels (default overlap=0) :Parameters: image, rows, cols :Returns: image_list """ h0, w0 = img.shape[0], img.shape[1] # determine number of steps (rows and columns cols = int(np.round(w0 / patchsize, 0)) rows = int(np.round(h0 / patchsize, 0)) if (cols < 1): cols = 1 if (rows < 1): rows = 1 h0_size = int(h0 / rows + 0.5) w0_size = int(w0 / cols + 0.5) # add black border to image bordersize = int(overlappx) # require bordersize of the patches channels = len(img.shape) if (channels == 3): # color image base_size = h0 + bordersize * 2, w0 + bordersize * 2, 3 base = np.zeros((base_size), np.uint8) else: base_size = h0 + bordersize * 2, w0 + bordersize * 2 base = np.zeros((base_size), np.uint8) # base = np.zeros(base_size, dtype=np.uint8) base[bordersize:h0 + bordersize, bordersize:w0 + bordersize] = img # this works # make patches with overlap patches = [] for row in range(rows): for col in range(cols): yc = int((row + 0.5) * h0_size) + bordersize xc = int((col + 0.5) * w0_size) + bordersize x0 = int(xc - (w0_size * 0.5) - bordersize) y0 = int(yc - (h0_size * 0.5) - bordersize) x1 = int(xc + (w0_size * 0.5) + bordersize) y1 = int(yc + (h0_size * 0.5) + bordersize) patch = base[y0:y1, x0:x1] patches.append(patch) if verbose == True: print( "image2patches: patches {}, source_width {}, source_height {},rows {}, columns {}, output: patches,cols".format( len(patches), w0, h0, rows, cols)) return patches, cols @staticmethod def patches2image(images, cols=5, overlappx=0, whitebackground=True, verbose=False): """ Stitch a list of image patches to a single image. The number of columns determines the next line. Works both for color and grayscale images. overlap in pixels (default overlap=0) Other definitions often used for this process: image montage or image stitching when cols is set to 0 rows and cols will be equal. :Parameters: imagelist, cols=5, overlap_perc=0, whitebackground=True :Returns: image """ if (cols == 0): cols = int(np.math.sqrt(len(images))) rows = cols if verbose == True: print('patches2image equal rows and columns') else: if (cols > len(images)): cols = len(images) rows = int(len(images) / cols) if (rows * cols) < len(images): cols = cols + (len(images) - (rows * cols)) # number of total images should be correct maxwidth = max(image.shape[1] for image in images) maxheight = max(image.shape[0] for image in images) gap = int(-overlappx * 2.) # maxwidth = maxwidth # maxheight = maxheight height = maxheight * rows + (gap * (rows - 1)) width = maxwidth * cols + (gap * (cols - 1)) # output = np.zeros((height, width), np.uint8) if verbose == True: print( "patches2image images {}, new_width {}, new_height {}, rows {}, cols {}, gap {}".format(len(images), width, height, rows, cols, gap)) channels = len(images[0].shape) if (channels == 3): # color image output = np.zeros((height, width, 3), np.uint8) else: output = np.zeros((height, width), np.uint8) if (whitebackground == True): cv.bitwise_not(output, output) x = 0 y = 0 for image in images: # image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # changing image to grayscale h, w = image.shape[0], image.shape[1] output[(y * h + gap * y):((y + 1) * h + gap * y), (x * w + gap * x):((x + 1) * w + gap * x)] = image x += 1 if (x > (cols - 1)): x = 0 y += 1 # out = cv2.cvtColor(output, cv2.COLOR_GRAY2RGB) # and back h4, w4 = output.shape[0], output.shape[1] out = output[overlappx:h4 - overlappx, overlappx:w4 - overlappx] return out @staticmethod def patches2disk(folder, patches): """ Save list of patches to disk :Parameters: path patches """ for t in range(0, len(patches)): cv.imwrite(os.path.join(folder, "patch_{0}.png".format(t)), patches[t]) @staticmethod def create_hsv_map(): """ generate a HSV Map pattern :Parameters: - :Returns: image """ V, H = np.mgrid[0:1:100j, 0:1:300j] S = np.ones_like(V) HSV = np.dstack((H, S, V)) out = hsv_to_rgb(HSV) # plt.imshow(out) # out = Image.Convert.HSVtoBGR(np.float32(HSV)) # out = Image.Convert.BGRtoRGB(out) return out @staticmethod def create_checkerboard(rows_num=10, columns_num=10, block_size=30, base_col=(255, 255, 255)): """ generate a checkerboard pattern :Parameters: rows, columns, blocksize, base color :Returns: image """ base_color = tuple(map(int, base_col)) block_size = block_size * 4 image_width = block_size * columns_num image_height = block_size * rows_num inv_color = tuple(255 - val for val in base_color), checker_board = np.zeros((image_height, image_width, 3), np.uint8) color_row = 0 color_column = 0 for i in range(0, image_height, block_size): color_row = not color_row color_column = color_row for j in range(0, image_width, block_size): checker_board[i:i + block_size, j:j + block_size] = base_color if color_column else inv_color color_column = not color_column return checker_board @staticmethod def fisheye_calibrate(imagelist): """ find fisheye correction values from multiple images containing the checkerboard :Parameters: imagelist :Returns: image """ # https://medium.com/@kennethjiang/calibrate-fisheye-lens-using-opencv-333b05afa0b0 CHECKERBOARD = (10, 10) subpix_criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.1) calibration_flags = cv.fisheye.CALIB_RECOMPUTE_EXTRINSIC + cv.fisheye.CALIB_CHECK_COND + cv.fisheye.CALIB_FIX_SKEW objp = np.zeros((1, CHECKERBOARD[0] * CHECKERBOARD[1], 3), np.float32) objp[0, :, :2] = np.mgrid[0:CHECKERBOARD[0], 0:CHECKERBOARD[1]].T.reshape(-1, 2) _img_shape = None objpoints = [] # 3d point in real world space imgpoints = [] # 2d points in image plane. for img in imagelist: _img_shape = img.shape[:2] gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # Find the chess board corners ret, corners = cv.findChessboardCorners(gray, CHECKERBOARD, cv.CALIB_CB_ADAPTIVE_THRESH + cv.CALIB_CB_FAST_CHECK + cv.CALIB_CB_NORMALIZE_IMAGE) # If found, add object points, image points (after refining them) if ret == True: objpoints.append(objp) cv.cornerSubPix(gray, corners, (3, 3), (-1, -1), subpix_criteria) imgpoints.append(corners) N_OK = len(objpoints) K = np.zeros((3, 3)) D = np.zeros((4, 1)) rvecs = [
np.zeros((1, 1, 3), dtype=np.float64)
numpy.zeros
from numpy import *#载入numpy库 import numpy as np import operator#载入operator模块 from os import listdir#从os模块导入listdir,可以给出给定目录文件名 from sklearn.neighbors import KNeighborsClassifier as kNN#载入sklearn库 def createDataSet():#建立数据集 group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) labels=['A','A','B','B'] return group,labels def classify0(inX,dataSet,labels,k):#该函数为简单kNN分类器 #首先计算已知类别数据集与当前点的距离 dataSetSize=dataSet.shape[0] #读取数据集的行数,并把行数放到dataSetSize里,shape[]用来读取矩阵的行列数,shape[1]表示读取列数 diffMat=tile(inX,(dataSetSize,1))-dataSet #tile(inX,(dataSetSize,1))复制比较向量inX,tile的功能是告诉inX需要复制多少遍,这 #里复制成(dataSetSize行,一列)目的是把inX转化成与数据集相同大小,再与数据集矩阵相减,形成的差值矩阵存放在diffMat里 sqDiffMat=diffMat**2#注意这里是把矩阵李的各个元素依次平方,如([-1,-1.1],[-1,-1])执行该操作后为([1,1.21],[1,1]) sqDistances=sqDiffMat.sum(axis=1)#实现计算计算结果,axis表矩阵每一行元素相加,如([1,1.21],[1,1]),执行该操作后为(2.21,2) distances=sqDistances**0.5#开根号 #按照距离递增次序排序 sortedDisIndicies=distances.argsort()#使用argsort排序,返回从小到大到“顺序值” #如{2,4,1}返回{1,2,0},依次为其顺序到索引 classCount={}#新建一个字典,用于计数 #选取与当前点距离最小的k个点 for i in range(k):#按顺序对标签进行计数 voteIlabel=labels[sortedDisIndicies[i]]#按照之前排序值依次对标签进行计数 classCount[voteIlabel]=classCount.get(voteIlabel,0)+1#对字典进行抓取,此时字典是空的 #所以没有标签,现在將一个标签作为key,value就是label出现次数,因为数组从0开始,但计数从1 #开始,故需要加1 sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True) #返回一个列表按照第二个元素降序排列 return sortedClassCount[0][0]#返回出现次数最多到label值,即为当前点的预测分类 def file2matrix(filename):#將文本记录转化为转化为Numpy矩阵 fr=open(filename)#打开文件,存到fr里 arrayOLines=fr.readlines()#按行读取,并存到arrOlines里 numberOfLines=len(arrayOLines)#读取其行数 returnMat=zeros((numberOfLines,3))#建立文本文件行数,3列的矩阵,以后整理的文件存在这里面 classLabelVector=[]#建立一个单列矩阵,存储其类 index=0#索引值先清0 #按行读取文本,并依次给其贴标签 for line in arrayOLines: line=line.strip()#將文本每一行首尾的空格去掉 listFromLine=line.split('\t')#矩阵中,每遇到一个'\t',便依次將这一部分赋给一个元素 returnMat[index,:]=listFromLine[0:3]#將每一行的前三个元素依次赋予之前预留矩阵空间 #classLabelVector.append(int(float(listFromLine[-1]))) #对于每行最后一列,按照其值的不同,来给单列矩阵赋值 if(listFromLine[-1]=='largeDoses'): classLabelVector.append(3) elif listFromLine[-1]=='smallDoses': classLabelVector.append(2) elif listFromLine[-1]=='didntLike': classLabelVector.append(1) index+=1#每执行一次,便向下一行再循环 return returnMat,classLabelVector#返回两个矩阵,一个是三个特征组成的特征矩阵,另一个为类矩阵 def autoNorm(dataSet):#对每个特征进行归一化处理 minVals=dataSet.min(0)#取数据集最大值 maxVals=dataSet.max(0)#取数据集最小值 ranges=maxVals-minVals#取差值即为范围 normDataSet=zeros(np.shape(dataSet))#建立一个新0矩阵,其行数列数与数据集一致,处理后数据存这里 m=dataSet.shape[0]#读取数据集行数 normDataSet=dataSet-
np.tile(minVals,(m,1))
numpy.tile
import os import json import numpy as np from scipy.stats import truncnorm from .light_action import TrafficLightAction, Acceleration from .light_state import TrafficLightState from .light_observation import TrafficLightObservation from .light_data import TrafficLightData, Belief from .util import Acceleration, LightColor from .util import max_distance, state_to_color_index, calculate_trunc_norm_prob from .util import MIN_DISTANCE_OBS, MAX_DISTANCE_OBS, MIN_WAVELENGTH_OBS, MAX_WAVELENGTH_OBS, INDEX_TO_ACTION from pomdpy.pomdp import model from pomdpy.discrete_pomdp import DiscreteActionPool from pomdpy.discrete_pomdp import DiscreteObservationPool class TrafficLightModel(model.Model): def __init__(self, problem_name="TrafficLight"): super().__init__(problem_name) self.num_actions = len(Acceleration) path = os.path.join(*__name__.split('.')[:-1], "config.json") with open(path, "rt") as fp: self.config = json.load(fp) self.init_speed = self.config["init_speed"] def start_scenario(self): position = self.config["init_position"] speed = self.config["init_speed"] light = self.config["init_light"] return TrafficLightState(position, speed, light) ''' --------- Abstract Methods --------- ''' def is_terminal(self, state): return state.position >= self.road_length + self.intersection_length def sample_an_init_state(self): random_position = np.random.randint(self.config["road_length"] // 2) speed = self.init_speed random_light = np.random.randint(sum(self.config["light_cycle"])) return TrafficLightState(random_position, speed, random_light) def create_observation_pool(self, solver): return DiscreteObservationPool(solver) def sample_state_uninformed(self): random_position = np.random.randint(self.config["road_length"] // 2) random_speed = np.random.randint(self.config["speed_limit"]) random_light = np.random.randint(sum(self.config["light_cycle"])) return TrafficLightState(random_position, random_speed, random_light) def sample_state_informed(self, belief): return belief.sample_particle() def get_all_states(self): states = [] for position in range(len(self.road_length)): for speed in range(self.max_speed): for light in range(sum(self.light_cycle)): states.append(TrafficLightState(position, speed, light)) return states def get_all_actions(self): return [TrafficLightAction(index) for index in INDEX_TO_ACTION] def get_all_observations(self): observations = [] for distance_measurement in range(MIN_DISTANCE_OBS, MAX_DISTANCE_OBS + 1): for wavelength_measurement in range(MIN_WAVELENGTH_OBS, MAX_WAVELENGTH_OBS + 1): for speed in range(self.config["max_speed"] + 1): observations.append(TrafficLightObservation((distance_measurement, wavelength_measurement, speed))) return observations def get_legal_actions(self, state): legal_actions = [] for index in INDEX_TO_ACTION: if state.speed + INDEX_TO_ACTION[index] >= 0 and state.speed + INDEX_TO_ACTION[index] <= self.config["max_speed"]: legal_actions.append(TrafficLightAction(index)) return legal_actions def is_valid(self, state): return state.position >= 0 and state.speed >= 0 def reset_for_simulation(self): self.start_scenario() def reset_for_epoch(self): self.start_scenario() def update(self, sim_data): pass def get_max_undiscounted_return(self): return 10 @staticmethod def state_transition(state, action): speed = state.speed + action position = state.position + speed light = (state.light) + 1 % sum(self.config["light_cycle"]) new_state = TrafficLightState(position, speed, light) @staticmethod def get_transition_matrix(): """ |A| x |S| x |S'| matrix, for tiger problem this is 3 x 2 x 2 :return: """ action_state_state_combos = [] for action in self.get_all_actions(): state_state_combos = [] for state in self.get_all_states(): transition_state = state_transition(state, action) state_combos = [] for state in self.get_all_states(): value = 1 if state == transition_state else 0 state_combos.append(value) state_state_combos.append(np.array(state_combos)) action_state_combos.append(np.array(state_state_combos)) return np.array(action_state_combos) @staticmethod def get_observation_matrix(): """ |A| x |S| x |O| matrix :return: """ observations = [] for action in self.get_all_actions(): for state in self.get_all_states(): state_obs_probs = [] color = state_to_color_index(state) observation_probs = [] for observation in self.get_all_observations(): if state.speed + INDEX_TO_ACTION(action.index) != observation.speed: observation_probs.append(0) continue color_mean = self.config["color_means"][color] color_std = self.config["color_stdev"] color_probab = calculate_trunc_norm_prob(observation.wavelength_observed, color_mean, color_std, MIN_WAVELENGTH_OBS, MAX_WAVELENGTH_OBS) dist_mean = state.position dist_std = self.config["distance_stdev"] distance_probab = calculate_trunc_norm_prob(observation.distance_observed, dist_mean, dist_std, MIN_DISTANCE_OBS, MAX_DISTANCE_OBS) observation_probs.append(color_probab * distance_probab) state_obs_probs.append(np.array(observation_probs)) observations.append(np.array(state_obs_probs)) return
np.array(observations)
numpy.array
# -*- coding: utf-8 -*- """ Created on Sun Feb 23 17:53:56 2020 @author: Leonard.<EMAIL> """ import numpy as _np import copy as _copy class Field: """ Lightpipes Field object, containing the field data and meta parameters as well as helper functions to change data formats etc. """ @classmethod def begin(cls, grid_size, wavelength, N): """ Initialize a new field object with the given parameters. This method is preferred over direct calling of constructor. Parameters ---------- grid_size : float [m] physical size of the square grid wavelength : float [m] physical wavelength N : int number of grid points in each dimension (square) Returns ------- The initialized Field object. """ inst = cls(None, grid_size, wavelength, N) return inst @classmethod def copy(cls, Fin): """ Create a copy of the input field with identical values but no common references to numpy fields etc. Parameters ---------- Fin : Field Input field to copy/clone Returns ------- A new Field object with identical values as Fin. """ return _copy.deepcopy(Fin) @classmethod def shallowcopy(cls, Fin): """ Create a shallow copy of the input field, i.e. the parameters are cloned but the reference to the numpy field is the same! This may be useful if a function (e.g. Fresnel) returns a copied field anyways, so a deep copy like Field.copy() would be redundant. Parameters ---------- Fin : Field Input field to copy (common reference to .field!) Returns ------- A new Field object with identical values as Fin and common reference to .field """ return _copy.copy(Fin) def __init__(self, Fin=None, grid_size=1.0, wavelength=1.0, N=0): """Private, use class method factories instead.""" if Fin is None: if not N: raise ValueError('Cannot create zero size field (N=0)') Fin = _np.ones((N,N),dtype=complex) else: Fin = _np.asarray(Fin, dtype=complex) self._field = Fin self._lam = wavelength self._siz = grid_size self._int1 = 0 #remembers PipFFT direction self._curvature = 0.0 #remembers field curvature or 0.0 for normal def _get_grid_size(self): """Get or set the grid size in [m].""" return self._siz def _set_grid_size(self, gridsize): self._siz = gridsize grid_size = property(_get_grid_size, _set_grid_size) siz = grid_size def _get_wavelength(self): """Get or set the wavelength of the field. All units in [m].""" return self._lam def _set_wavelength(self, wavelength): self._lam = wavelength wavelength = property(_get_wavelength, _set_wavelength) lam = wavelength @property def grid_dimension(self): return self._field.shape[0] #assert square N = grid_dimension @property def grid_step(self): """Distance in [m] between 2 grid points""" return self.siz/self.N dx = grid_step @property def field(self): """Get the complex E-field.""" return self._field @field.setter def field(self, field): """The field must be a complex 2d square numpy array. """ field = _np.asarray(field, dtype=complex) #will not create a new instance if already good self._field = field @property def xvalues(self): """ Return a 1d numpy array of the cartesian X coordinates for the pixels of the field. Following the matplotlib.pyplot.imshow convention: - positive shift in x is right - positive shift in y is down - coords define pixel center, so extent will be [xmin-1/2dx, xmax+1/2dx] For an odd number of pixels this puts a pixel in the center as expected for an even number, the "mid" pixel shifts right and down by 1 Returns ------- A 1d numpy array of each pixels center x-coordinate """ w = self.N cx = int(w/2) xvals = self.dx * _np.arange(-cx, (w-cx)) return xvals @property def yvalues(self): """ Return a 1d numpy array of the cartesian Y coordinates for the pixels of the field. Following the matplotlib.pyplot.imshow convention: - positive shift in x is right - positive shift in y is down - coords define pixel center, so extent will be [xmin-1/2dx, xmax+1/2dx] For an odd number of pixels this puts a pixel in the center as expected for an even number, the "mid" pixel shifts right and down by 1 Returns ------- A 1d numpy array of each pixels center y-coordinate """ h = self.N cy = int(h/2) yvals = self.dx * _np.arange(-cy, (h-cy)) return yvals @property def mgrid_cartesian(self): """Return a meshgrid tuple (Y, X) of cartesian coordinates for each pixel of the field. Following the matplotlib.pyplot.imshow convention: - positive shift in x is right - positive shift in y is down - coords define pixel center, so extent will be [xmin-1/2dx, xmax+1/2dx] For an odd number of pixels this puts a pixel in the center as expected for an even number, the "mid" pixel shifts right and down by 1 """ """LightPipes manual/ examples Matlab and Python version: plotting the Intensity with imshow() yields coord sys: positive shift in x is right positive shift in y is down!! -> stick to this convention where possible Adapted from matplotlib.imshow convention: coords define pixel center, so extent will be xmin-1/2dx, xmax+1/2dx For an odd number of pixels this puts a pixel in the center as expected for an even number, the "mid" pixel shifts right and down by 1 """ h, w = self.N, self.N cy, cx = int(h/2), int(w/2) Y, X = _np.mgrid[:h, :w] Y = (Y-cy)*self.dx X = (X-cx)*self.dx return (Y, X) @property def mgrid_Rsquared(self): """Return a meshgrid of radius R**2 in polar coordinates for each pixel in the field.""" Y, X = self.mgrid_cartesian return X**2+Y**2 @property def mgrid_R(self): """Return a meshgrid of radius R in polar coordinates for each pixel in the field.""" #often phi might not be required, no need to calc it return
_np.sqrt(self.mgrid_Rsquared)
numpy.sqrt
# coding=utf-8 # Copyright 2018 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tf_agents.bandits.agents.neural_linucb_agent.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl.testing import parameterized import numpy as np import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import import tensorflow_probability as tfp from tf_agents.bandits.agents import neural_linucb_agent from tf_agents.bandits.agents import utils as bandit_utils from tf_agents.bandits.drivers import driver_utils from tf_agents.bandits.networks import global_and_arm_feature_network from tf_agents.bandits.policies import policy_utilities from tf_agents.bandits.specs import utils as bandit_spec_utils from tf_agents.networks import network from tf_agents.specs import tensor_spec from tf_agents.trajectories import policy_step from tf_agents.trajectories import time_step from tf_agents.utils import common from tensorflow.python.framework import test_util # pylint: disable=g-direct-tensorflow-import # TF internal tfd = tfp.distributions class DummyNet(network.Network): def __init__(self, observation_spec, encoding_dim=10): super(DummyNet, self).__init__( observation_spec, state_spec=(), name='DummyNet') context_dim = observation_spec.shape[0] # Store custom layers that can be serialized through the Checkpointable API. self._dummy_layers = [ tf.keras.layers.Dense( encoding_dim, kernel_initializer=tf.compat.v1.initializers.constant( np.ones([context_dim, encoding_dim])), bias_initializer=tf.compat.v1.initializers.constant( np.zeros([encoding_dim]))) ] def call(self, inputs, step_type=None, network_state=()): del step_type inputs = tf.cast(inputs, tf.float32) for layer in self._dummy_layers: inputs = layer(inputs) return inputs, network_state def test_cases(): return parameterized.named_parameters( { 'testcase_name': '_batch1_contextdim10', 'batch_size': 1, 'context_dim': 10, }, { 'testcase_name': '_batch4_contextdim5', 'batch_size': 4, 'context_dim': 5, }) def _get_initial_and_final_steps(batch_size, context_dim): observation = np.array(range(batch_size * context_dim)).reshape( [batch_size, context_dim]) reward = np.random.uniform(0.0, 1.0, [batch_size]) initial_step = time_step.TimeStep( tf.constant( time_step.StepType.FIRST, dtype=tf.int32, shape=[batch_size], name='step_type'), tf.constant(0.0, dtype=tf.float32, shape=[batch_size], name='reward'), tf.constant(1.0, dtype=tf.float32, shape=[batch_size], name='discount'), tf.constant(observation, dtype=tf.float32, shape=[batch_size, context_dim], name='observation')) final_step = time_step.TimeStep( tf.constant( time_step.StepType.LAST, dtype=tf.int32, shape=[batch_size], name='step_type'), tf.constant(reward, dtype=tf.float32, shape=[batch_size], name='reward'), tf.constant(1.0, dtype=tf.float32, shape=[batch_size], name='discount'), tf.constant(observation + 100.0, dtype=tf.float32, shape=[batch_size, context_dim], name='observation')) return initial_step, final_step def _get_initial_and_final_steps_with_action_mask(batch_size, context_dim, num_actions=None): observation = np.array(range(batch_size * context_dim)).reshape( [batch_size, context_dim]) observation = tf.constant(observation, dtype=tf.float32) mask = 1 - tf.eye(batch_size, num_columns=num_actions, dtype=tf.int32) reward = np.random.uniform(0.0, 1.0, [batch_size]) initial_step = time_step.TimeStep( tf.constant( time_step.StepType.FIRST, dtype=tf.int32, shape=[batch_size], name='step_type'), tf.constant(0.0, dtype=tf.float32, shape=[batch_size], name='reward'), tf.constant(1.0, dtype=tf.float32, shape=[batch_size], name='discount'), (observation, mask)) final_step = time_step.TimeStep( tf.constant( time_step.StepType.LAST, dtype=tf.int32, shape=[batch_size], name='step_type'), tf.constant(reward, dtype=tf.float32, shape=[batch_size], name='reward'), tf.constant(1.0, dtype=tf.float32, shape=[batch_size], name='discount'), (observation + 100.0, mask)) return initial_step, final_step def _get_action_step(action): return policy_step.PolicyStep( action=tf.convert_to_tensor(action), info=policy_utilities.PolicyInfo()) def _get_experience(initial_step, action_step, final_step): single_experience = driver_utils.trajectory_for_bandit( initial_step, action_step, final_step) # Adds a 'time' dimension. return tf.nest.map_structure( lambda x: tf.expand_dims(tf.convert_to_tensor(x), 1), single_experience) @test_util.run_all_in_graph_and_eager_modes class NeuralLinUCBAgentTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super(NeuralLinUCBAgentTest, self).setUp() tf.compat.v1.enable_resource_variables() @test_cases() def testInitializeAgentNumTrainSteps0(self, batch_size, context_dim): num_actions = 5 observation_spec = tensor_spec.TensorSpec([context_dim], tf.float32) time_step_spec = time_step.time_step_spec(observation_spec) action_spec = tensor_spec.BoundedTensorSpec( dtype=tf.int32, shape=(), minimum=0, maximum=num_actions - 1) encoder = DummyNet(observation_spec) agent = neural_linucb_agent.NeuralLinUCBAgent( time_step_spec=time_step_spec, action_spec=action_spec, encoding_network=encoder, encoding_network_num_train_steps=0, encoding_dim=10, optimizer=None) self.evaluate(agent.initialize()) @test_cases() def testInitializeAgentNumTrainSteps10(self, batch_size, context_dim): num_actions = 5 observation_spec = tensor_spec.TensorSpec([context_dim], tf.float32) time_step_spec = time_step.time_step_spec(observation_spec) action_spec = tensor_spec.BoundedTensorSpec( dtype=tf.int32, shape=(), minimum=0, maximum=num_actions - 1) encoder = DummyNet(observation_spec) agent = neural_linucb_agent.NeuralLinUCBAgent( time_step_spec=time_step_spec, action_spec=action_spec, encoding_network=encoder, encoding_network_num_train_steps=10, encoding_dim=10, optimizer=None) self.evaluate(agent.initialize()) @test_cases() def testNeuralLinUCBUpdateNumTrainSteps0(self, batch_size=1, context_dim=10): """Check NeuralLinUCBAgent updates when behaving like LinUCB.""" # Construct a `Trajectory` for the given action, observation, reward. num_actions = 5 initial_step, final_step = _get_initial_and_final_steps( batch_size, context_dim) action = np.random.randint(num_actions, size=batch_size, dtype=np.int32) action_step = _get_action_step(action) experience = _get_experience(initial_step, action_step, final_step) # Construct an agent and perform the update. observation_spec = tensor_spec.TensorSpec([context_dim], tf.float32) time_step_spec = time_step.time_step_spec(observation_spec) action_spec = tensor_spec.BoundedTensorSpec( dtype=tf.int32, shape=(), minimum=0, maximum=num_actions - 1) encoder = DummyNet(observation_spec) encoding_dim = 10 agent = neural_linucb_agent.NeuralLinUCBAgent( time_step_spec=time_step_spec, action_spec=action_spec, encoding_network=encoder, encoding_network_num_train_steps=0, encoding_dim=encoding_dim, optimizer=tf.compat.v1.train.AdamOptimizer(learning_rate=1e-2)) loss_info = agent.train(experience) self.evaluate(agent.initialize()) self.evaluate(tf.compat.v1.global_variables_initializer()) self.evaluate(loss_info) final_a = self.evaluate(agent.cov_matrix) final_b = self.evaluate(agent.data_vector) # Compute the expected updated estimates. observations_list = tf.dynamic_partition( data=tf.reshape(tf.cast(experience.observation, tf.float64), [batch_size, context_dim]), partitions=tf.convert_to_tensor(action), num_partitions=num_actions) rewards_list = tf.dynamic_partition( data=tf.reshape(tf.cast(experience.reward, tf.float64), [batch_size]), partitions=tf.convert_to_tensor(action), num_partitions=num_actions) expected_a_updated_list = [] expected_b_updated_list = [] for _, (observations_for_arm, rewards_for_arm) in enumerate(zip( observations_list, rewards_list)): encoded_observations_for_arm, _ = encoder(observations_for_arm) encoded_observations_for_arm = tf.cast( encoded_observations_for_arm, dtype=tf.float64) num_samples_for_arm_current = tf.cast( tf.shape(rewards_for_arm)[0], tf.float64) num_samples_for_arm_total = num_samples_for_arm_current # pylint: disable=cell-var-from-loop def true_fn(): a_new = tf.matmul( encoded_observations_for_arm, encoded_observations_for_arm, transpose_a=True) b_new = bandit_utils.sum_reward_weighted_observations( rewards_for_arm, encoded_observations_for_arm) return a_new, b_new def false_fn(): return (tf.zeros([encoding_dim, encoding_dim], dtype=tf.float64), tf.zeros([encoding_dim], dtype=tf.float64)) a_new, b_new = tf.cond( tf.squeeze(num_samples_for_arm_total) > 0, true_fn, false_fn) expected_a_updated_list.append(self.evaluate(a_new)) expected_b_updated_list.append(self.evaluate(b_new)) # Check that the actual updated estimates match the expectations. self.assertAllClose(expected_a_updated_list, final_a) self.assertAllClose(expected_b_updated_list, final_b) @test_cases() def testNeuralLinUCBUpdateDistributed(self, batch_size=1, context_dim=10): """Same as above but with distributed LinUCB updates.""" # Construct a `Trajectory` for the given action, observation, reward. num_actions = 5 initial_step, final_step = _get_initial_and_final_steps( batch_size, context_dim) action = np.random.randint(num_actions, size=batch_size, dtype=np.int32) action_step = _get_action_step(action) experience = _get_experience(initial_step, action_step, final_step) # Construct an agent and perform the update. observation_spec = tensor_spec.TensorSpec([context_dim], tf.float32) time_step_spec = time_step.time_step_spec(observation_spec) action_spec = tensor_spec.BoundedTensorSpec( dtype=tf.int32, shape=(), minimum=0, maximum=num_actions - 1) encoder = DummyNet(observation_spec) encoding_dim = 10 agent = neural_linucb_agent.NeuralLinUCBAgent( time_step_spec=time_step_spec, action_spec=action_spec, encoding_network=encoder, encoding_network_num_train_steps=0, encoding_dim=encoding_dim, optimizer=tf.compat.v1.train.AdamOptimizer(learning_rate=1e-2)) self.evaluate(agent.initialize()) self.evaluate(tf.compat.v1.global_variables_initializer()) # Call the distributed LinUCB training instead of agent.train(). train_fn = common.function_in_tf1()( agent.compute_loss_using_linucb_distributed) reward = tf.cast(experience.reward, agent._dtype) loss_info = train_fn( experience.observation, action, reward, weights=None) self.evaluate(loss_info) final_a = self.evaluate(agent.cov_matrix) final_b = self.evaluate(agent.data_vector) # Compute the expected updated estimates. observations_list = tf.dynamic_partition( data=tf.reshape(tf.cast(experience.observation, tf.float64), [batch_size, context_dim]), partitions=tf.convert_to_tensor(action), num_partitions=num_actions) rewards_list = tf.dynamic_partition( data=tf.reshape(tf.cast(experience.reward, tf.float64), [batch_size]), partitions=tf.convert_to_tensor(action), num_partitions=num_actions) expected_a_updated_list = [] expected_b_updated_list = [] for _, (observations_for_arm, rewards_for_arm) in enumerate(zip( observations_list, rewards_list)): encoded_observations_for_arm, _ = encoder(observations_for_arm) encoded_observations_for_arm = tf.cast( encoded_observations_for_arm, dtype=tf.float64) num_samples_for_arm_current = tf.cast( tf.shape(rewards_for_arm)[0], tf.float64) num_samples_for_arm_total = num_samples_for_arm_current # pylint: disable=cell-var-from-loop def true_fn(): a_new = tf.matmul( encoded_observations_for_arm, encoded_observations_for_arm, transpose_a=True) b_new = bandit_utils.sum_reward_weighted_observations( rewards_for_arm, encoded_observations_for_arm) return a_new, b_new def false_fn(): return (tf.zeros([encoding_dim, encoding_dim], dtype=tf.float64), tf.zeros([encoding_dim], dtype=tf.float64)) a_new, b_new = tf.cond( tf.squeeze(num_samples_for_arm_total) > 0, true_fn, false_fn) expected_a_updated_list.append(self.evaluate(a_new)) expected_b_updated_list.append(self.evaluate(b_new)) # Check that the actual updated estimates match the expectations. self.assertAllClose(expected_a_updated_list, final_a) self.assertAllClose(expected_b_updated_list, final_b) @test_cases() def testNeuralLinUCBUpdateNumTrainSteps10(self, batch_size=1, context_dim=10): """Check NeuralLinUCBAgent updates when behaving like eps-greedy.""" # Construct a `Trajectory` for the given action, observation, reward. num_actions = 5 initial_step, final_step = _get_initial_and_final_steps( batch_size, context_dim) action = np.random.randint(num_actions, size=batch_size, dtype=np.int32) action_step = _get_action_step(action) experience = _get_experience(initial_step, action_step, final_step) # Construct an agent and perform the update. observation_spec = tensor_spec.TensorSpec([context_dim], tf.float32) time_step_spec = time_step.time_step_spec(observation_spec) action_spec = tensor_spec.BoundedTensorSpec( dtype=tf.int32, shape=(), minimum=0, maximum=num_actions - 1) encoder = DummyNet(observation_spec) encoding_dim = 10 variable_collection = neural_linucb_agent.NeuralLinUCBVariableCollection( num_actions, encoding_dim) agent = neural_linucb_agent.NeuralLinUCBAgent( time_step_spec=time_step_spec, action_spec=action_spec, encoding_network=encoder, encoding_network_num_train_steps=10, encoding_dim=encoding_dim, variable_collection=variable_collection, optimizer=tf.compat.v1.train.AdamOptimizer(learning_rate=0.001)) loss_info, _ = agent.train(experience) self.evaluate(agent.initialize()) self.evaluate(tf.compat.v1.global_variables_initializer()) loss_value = self.evaluate(loss_info) self.assertGreater(loss_value, 0.0) @test_cases() def testNeuralLinUCBUpdateNumTrainSteps10MaskedActions( self, batch_size=1, context_dim=10): """Check updates when behaving like eps-greedy and using masked actions.""" # Construct a `Trajectory` for the given action, observation, reward. num_actions = 5 initial_step, final_step = _get_initial_and_final_steps_with_action_mask( batch_size, context_dim, num_actions) action = np.random.randint(num_actions, size=batch_size, dtype=np.int32) action_step = _get_action_step(action) experience = _get_experience(initial_step, action_step, final_step) # Construct an agent and perform the update. observation_spec = (tensor_spec.TensorSpec([context_dim], tf.float32), tensor_spec.TensorSpec([num_actions], tf.int32)) time_step_spec = time_step.time_step_spec(observation_spec) action_spec = tensor_spec.BoundedTensorSpec( dtype=tf.int32, shape=(), minimum=0, maximum=num_actions - 1) encoder = DummyNet(observation_spec[0]) encoding_dim = 10 agent = neural_linucb_agent.NeuralLinUCBAgent( time_step_spec=time_step_spec, action_spec=action_spec, encoding_network=encoder, encoding_network_num_train_steps=10, encoding_dim=encoding_dim, optimizer=tf.compat.v1.train.AdamOptimizer(learning_rate=0.001), observation_and_action_constraint_splitter=lambda x: (x[0], x[1])) loss_info, _ = agent.train(experience) self.evaluate(agent.initialize()) self.evaluate(tf.compat.v1.global_variables_initializer()) loss_value = self.evaluate(loss_info) self.assertGreater(loss_value, 0.0) def testInitializeRestoreVariableCollection(self): if not tf.executing_eagerly(): self.skipTest('Test only works in eager mode.') num_actions = 5 encoding_dim = 7 variable_collection = neural_linucb_agent.NeuralLinUCBVariableCollection( num_actions=num_actions, encoding_dim=encoding_dim) self.evaluate(tf.compat.v1.global_variables_initializer()) self.evaluate(variable_collection.num_samples_list) checkpoint = tf.train.Checkpoint(variable_collection=variable_collection) checkpoint_dir = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_dir, 'checkpoint') checkpoint.save(file_prefix=checkpoint_prefix) variable_collection.actions_from_reward_layer.assign(False) latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir) checkpoint_load_status = checkpoint.restore(latest_checkpoint) self.evaluate(checkpoint_load_status.initialize_or_restore()) self.assertEqual( self.evaluate(variable_collection.actions_from_reward_layer), True) def testTrainPerArmAgentWithMask(self): num_actions = 5 obs_spec = bandit_spec_utils.create_per_arm_observation_spec( 2, 3, num_actions, add_action_mask=True) time_step_spec = time_step.time_step_spec(obs_spec) action_spec = tensor_spec.BoundedTensorSpec( dtype=tf.int32, shape=(), minimum=0, maximum=num_actions - 1) encoding_dim = 10 encoder = ( global_and_arm_feature_network.create_feed_forward_common_tower_network( obs_spec[0], (4, 3), (3, 4), (4, 2), encoding_dim)) agent = neural_linucb_agent.NeuralLinUCBAgent( time_step_spec=time_step_spec, action_spec=action_spec, encoding_network=encoder, encoding_network_num_train_steps=10, encoding_dim=encoding_dim, observation_and_action_constraint_splitter=lambda x: (x[0], x[1]), accepts_per_arm_features=True, optimizer=tf.compat.v1.train.AdamOptimizer(learning_rate=0.001)) observations = ({ bandit_spec_utils.GLOBAL_FEATURE_KEY: tf.constant([[1, 2], [3, 4]], dtype=tf.float32), bandit_spec_utils.PER_ARM_FEATURE_KEY: tf.cast( tf.reshape(tf.range(30), shape=[2, 5, 3]), dtype=tf.float32) }, tf.ones(shape=(2, num_actions), dtype=tf.int32)) actions =
np.array([0, 3], dtype=np.int32)
numpy.array
# coding=utf-8 """ audfprint_match.py Fingerprint matching code for audfprint 2014-05-26 <NAME> <EMAIL> """ from __future__ import division, print_function import os import time import psutil # import matplotlib.pyplot as plt # import librosa # import librosa.display import numpy as np # import scipy.signal import audfprint_analyze # for localtest and illustrate # import audio_read def process_info(): rss = usrtime = 0 p = psutil.Process(os.getpid()) if os.name == 'nt': rss = p.memory_info()[0] usrtime = p.cpu_times()[0] else: rss = p.get_memory_info()[0] usrtime = p.get_cpu_times()[0] return rss, usrtime def log(message): """ log info with stats """ print('%s physmem=%s utime=%s %s' % (time.ctime(), process_info())) def encpowerof2(val): """ Return N s.t. 2^N >= val """ return int(np.ceil(np.log(max(1, val)) /
np.log(2)
numpy.log
""" dict_sbmat module Helper functions to deal with sparse block matrices using a dictionary with index tuples as keys. This is beneficial e.g. in assembling coupled circuit/FEM systems in the matrix level. E.g. if you have sparse matrices A B C D and you want to create a sparse block matrix like [[A, 0, 0], [0, B, C], [0,-D, 0]] you can do the following: > sm = {} > sm[(0,0)] = A > sm[(1,1)] = B > sm[(1,2)] = C > sm[(2,1)] = -D Inspect the block structure with print_blocks > dict_tools.print_blocks(sm) Create a scipy bmat with tolist > S = scipy.sparse.bmat(dict_tools.tolist(sm)) Pick subblocks corresponding to the block indices of the resulting sparse matrix with 'submat' and 'mk_selector_builder'. To e.g. pick blocks S11 = [[A]] S12 = [[0,0]] S21 = [[0], [0]] S22 = [[B,C], [-D,0]] use > builder = mk_selector_builder(sm) > P11,Q11 = builder([0],[0]) > S11 = P11*S*Q11 > P12,Q12 = builder([0], [1,2]) > S12 = P12*S*P12 > P21,Q21 = builder([1,2], [0]) > S21 = P21*S*Q21 > P22,Q22 = builder([1,2], [1,2]) > S22 = P22*S*Q22 At first this seems terribly inefficient, but it really isn't. Using the sparse linear algebra * to pick rows and columnt sacrifices some memory but is extremely simple to use and e.g. utilizes the sparsity patterns of all matrices efficiently. """ import numpy as np import scipy.sparse as sps from itertools import product def tolist(dmat): """ Convert dmat to a list format [[A,None,...], ...] where empty blocks are filled with None. This can be given as an input to scipy.sparse.bmat """ inds = np.array(list(dmat.keys())) nrows = np.max(inds[:,0])+1 ncols = np.max(inds[:,1])+1 return [[dmat.get((row,col),None) for col in range(0,ncols)] for row in range(0,nrows)] def print_blocks(dmat): inds = np.array(list(dmat.keys())) xdim =
np.max(inds[:,0])
numpy.max
import numpy as np import cv2 import torch import torchvision.transforms as transforms def skew(x): return np.array([[0, -x[2], x[1]], [x[2], 0, -x[0]], [-x[1], x[0], 0]]) def compute_fundamental_from_poses(K_src, K_dst, T_src, T_dst): T_src2dst = T_dst.dot(np.linalg.inv(T_src)) R = T_src2dst[:3, :3] t = T_src2dst[:3, 3] tx = skew(t) E = np.dot(tx, R) return np.linalg.inv(K_dst).T.dot(E).dot(np.linalg.inv(K_src)) def detect_keypoints(im, detector, num_kpts=10000): gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) if detector == 'sift': sift = cv2.xfeatures2d.SIFT_create(nfeatures=num_kpts) kpts = sift.detect(gray) elif detector == 'orb': orb = cv2.ORB_create(nfeatures=num_kpts) kpts = orb.detect(gray) else: raise NotImplementedError('Unknown keypoint detector.') return kpts def extract_feats(im, kpts, feature_type, model=None): if feature_type == 'sift': sift = cv2.xfeatures2d.SIFT_create() kpts, feats = sift.compute(im, kpts) elif feature_type == 'orb': orb = cv2.ORB_create() kpts, feats = orb.compute(im, kpts) elif feature_type == 'caps': assert model is not None transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ]) kpts =
np.array([[kp.pt[0], kp.pt[1]] for kp in kpts])
numpy.array
import numpy as np import pytest import gbpy.pad_dump_file as pad import gbpy.util_funcs as uf import byxtal.lattice as gbl @pytest.mark.parametrize('filename0, element, num_GBregion, actual_min_z_gbreg, actual_max_z_gbreg,' 'actual_w_bottom_SC, actual_w_top_SC', [("tests/data/dump_2", "Al", 51, -3.06795, 1.44512, 116.85, 118.462)]) # ("tests/data/dump_1", "Al", 138, -2.811127714, 2.811127714, 94, 91.5), def test_GB_finder(filename0, element, num_GBregion, actual_min_z_gbreg, actual_max_z_gbreg, actual_w_bottom_SC, actual_w_top_SC): l1 = gbl.Lattice(str(element)) data = uf.compute_ovito_data(filename0) non_p = uf.identify_pbc(data) GbRegion, GbIndex, GbWidth, w_bottom_SC, w_top_SC = pad.GB_finder(data, l1, non_p, 'ptm', '.1') assert np.abs((actual_w_bottom_SC - w_bottom_SC)/actual_w_bottom_SC) < .5 assert np.abs((actual_w_top_SC - w_top_SC)/actual_w_top_SC) < .5 assert np.abs(GbRegion[0] - actual_min_z_gbreg) < 1e-3 assert np.abs(GbRegion[1] - actual_max_z_gbreg) < 1e-3 assert
np.shape(GbIndex)
numpy.shape
# Copyright (c) 2020, <NAME>, Honda Research Institute Europe GmbH, and # Technical University of Darmstadt. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of <NAME>, Honda Research Institute Europe GmbH, # or Technical University of Darmstadt, nor the names of its contributors may # be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL <NAME>, HONDA RESEARCH INSTITUTE EUROPE GMBH, # OR TECHNICAL UNIVERSITY OF DARMSTADT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER # IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ This script yields the values for the illustrative example in .. seealso:: [1] <NAME>, <NAME>, <NAME>, "Assessing Transferability from Simulation to Reality for Reinforcement Learning", PAMI, 2021 """ import os import os.path as osp import numpy as np from matplotlib import pyplot as plt from scipy import special import pyrado from pyrado import set_seed from pyrado.environments.one_step.catapult import CatapultExample from pyrado.plotting.curve import draw_curve_from_data from pyrado.utils.argparser import get_argparser def calc_E_n_Jhat(n, th): r""" Calculate $E_\\xi[ \hat{J}_n(\theta) ]$ approximated by $sum_{i=1}^n p(\\xi_i) \hat{J}_n(\theta)$. :param n: number of domains $n$ to approximate the expectation :param th: (arbitrary) policy parameter, might be estimated using n domain parameters, but does not have to be :return: approximation of $E_\\xi[ \hat{J}_n(\theta) ]$ """ E_n_Jhat_th = 0 for i in range(n + 1): # i is the number of Venus draws binom_coeff = special.binom(n, i) E_n_Jhat_th += binom_coeff * pow(psi, i) * pow(1 - psi, n - i) * env.est_expec_return(th, n - i, i) return E_n_Jhat_th def calc_E_n_Jhat_th_opt(n): r""" Calculate $E_\\xi[ \hat{J}_n(\theta^*) ]$ approximated by $sum_{i=1}^n p(\\xi_i) \hat{J}_n(\theta^*)$. :param n: number of domains $n$ to approximate the expectation :return: approximation of $E_\\xi[ \hat{J}_n(\theta^*) ]$ """ E_n_Jhat_th_opt = 0 for i in range(n + 1): # i is the number of Venus draws binom_coeff = special.binom(n, i) E_n_Jhat_th_opt += binom_coeff * pow(psi, i) * pow(1 - psi, n - i) * env.opt_est_expec_return(n - i, i) return E_n_Jhat_th_opt def check_E_n_Jhat(th_n_opt, n): """ Check the influence of the number of domains $n$ used for the expectation operator. :param th_n_opt: optimal policy parameter determined from n domains :param n: number of domains $n$ used for determining the policy parameters """ # "Manual" expectation using n=3 domain parameters E_3_Jhat_n_opt = ( 1 * pow(psi, 3) * env.est_expec_return(th_n_opt, 0, 3) + 3 * pow(psi, 2) * pow(1 - psi, 1) * env.est_expec_return(th_n_opt, 1, 2) + 3 * pow(psi, 1) * pow(1 - psi, 2) * env.est_expec_return(th_n_opt, 2, 1) + 1 * pow(1 - psi, 3) * env.est_expec_return(th_n_opt, 3, 0) ) print(f"E_3_Jhat_{n}_opt: {E_3_Jhat_n_opt}") # Expectation using n=50 domain parameters E_3_Jhat_n_opt = calc_E_n_Jhat(3, th_n_opt) print(f"E_3_Jhat_{n}_opt: {E_3_Jhat_n_opt}") # Expectation using n=50 domain parameters E_50_Jhat_n_opt = calc_E_n_Jhat(50, th_n_opt) print(f"E_50_Jhat_{n}_opt: {E_50_Jhat_n_opt}") # Expectation using n=500 domain parameters E_500_Jhat_n_opt = calc_E_n_Jhat(500, th_n_opt) print(f"E_500_Jhat_{n}_opt: {E_500_Jhat_n_opt}") if __name__ == "__main__": # Parse command line arguments args = get_argparser().parse_args() # Set up the example ex_dir = osp.join(pyrado.EVAL_DIR, "illustrative_example") env = CatapultExample(m=1.0, g_M=3.71, k_M=1000.0, x_M=0.5, g_V=8.87, k_V=3000.0, x_V=1.5) psi = 0.7 # true probability of drawing Venus num_samples = 100 num_iter = 30 noise_th_scale = 0.15 set_seed(args.seed) fig_size = tuple([0.75 * x for x in pyrado.figsize_thesis_1percol_18to10]) th_true_opt = env.opt_policy_param(1 - psi, psi) # true probabilities instead of counts J_true_opt = env.opt_est_expec_return(1 - psi, psi) # true probabilities instead of counts print(f"th_true_opt: {th_true_opt}") print(f"J_true_opt: {J_true_opt}\n") # Initialize containers n_M_hist = np.empty((num_samples, num_iter)) n_V_hist = np.empty((num_samples, num_iter)) th_n_opt_hist = np.empty((num_samples, num_iter)) th_c_hist = np.empty((num_samples, num_iter)) Jhat_th_n_opt_hist = np.empty((num_samples, num_iter)) Jhat_th_c_hist = np.empty((num_samples, num_iter)) Jhat_th_true_opt_hist = np.empty((num_samples, num_iter)) G_n_hist = np.empty((num_samples, num_iter)) G_true_hist = np.empty((num_samples, num_iter)) b_Jhat_n_hist = np.empty((num_samples, num_iter)) for s in range(num_samples): for n in range(1, num_iter + 1): n_V = np.random.binomial(n, psi) # perform n Bernoulli trials n_M = n - n_V n_M_hist[s, n - 1], n_V_hist[s, n - 1] = n_M, n_V # Compute the optimal policy parameters th_n_opt = env.opt_policy_param(n_M, n_V) th_n_opt_hist[s, n - 1] = th_n_opt if args.verbose: print(f"th_{n}_opt: {th_n_opt}") # Compute the estimated optimal objective function value for the n domains Jhat_th_n_opt = env.opt_est_expec_return(n_M, n_V) Jhat_th_n_opt_hist[s, n - 1] = Jhat_th_n_opt if args.verbose: print(f"Jhat_{n}_opt: {Jhat_th_n_opt}") Jhat_n_opt_check = env.est_expec_return(th_n_opt, n_M, n_V) assert abs(Jhat_th_n_opt - Jhat_n_opt_check) < 1e-8 # Check if E_\xi[max_\theta \hat{J}_n(\theta)] == max_\theta \hat{J}_n(\theta) if args.verbose: check_E_n_Jhat(th_n_opt, n) # Compute the estimated objective function value for the tur optimum Jhat_th_true_opt = env.est_expec_return(th_true_opt, n_M, n_V) Jhat_th_true_opt_hist[s, n - 1] = Jhat_th_true_opt # Create (arbitrary) candidate solutions noise_th = float(np.random.randn(1) * noise_th_scale) # parameter noise th_c = th_true_opt + noise_th # G_n > G_true (it should be like this) # th_c = th_n_opt + noise_th # G_n < G_true (it should not be like this) th_c_hist[s, n - 1] = th_c Jhat_th_c = env.est_expec_return(th_c, n_M, n_V) Jhat_th_c_hist[s, n - 1] = Jhat_th_c # Estimated optimality gap \hat{G}_n(\theta^c) G_n = Jhat_th_n_opt - Jhat_th_c G_n_hist[s, n - 1] = G_n if args.verbose: print(f"G_{n}(th_c):\t\t{G_n}") # True optimality gap G(\theta^c) (use true probabilities instead of counts) G_true = J_true_opt - env.est_expec_return(th_c, 1 - psi, psi) G_true_hist[s, n - 1] = G_true if args.verbose: print(f"G_true(th_c):\t{G_true}") # Compute the simulation optimization bias b[\hat{J}_n] b_Jhat_n = calc_E_n_Jhat_th_opt(n) - J_true_opt b_Jhat_n_hist[s, n - 1] = b_Jhat_n if args.verbose: print(f"b_Jhat_{n}:\t\t{b_Jhat_n}\n") print(f"At the last iteration (n={num_iter})") print(f"mean G_n: {np.mean(G_n_hist, axis=0)[-1]}") print(f"mean G_true: {np.mean(G_true_hist, axis=0)[-1]}") print(f"mean b_Jhat_n: {np.mean(b_Jhat_n_hist, axis=0)[-1]}\n") # Plot os.makedirs(ex_dir, exist_ok=True) fig_n, ax = plt.subplots(1, figsize=fig_size, constrained_layout=True) draw_curve_from_data( "ci_on_mean", ax, n_M_hist,
np.arange(1, num_iter + 1)
numpy.arange
import os import argparse import torch from torch import nn import torch.backends.cudnn as cudnn from torch.utils.data.distributed import DistributedSampler from torch.utils.data import DataLoader import numpy as np from dataset import potsdam, label_to_RGB from seg_metric import SegmentationMetric import cv2 from mutil_scale_test import MultiEvalModule import logging import warnings def get_world_size(): if not torch.distributed.is_initialized(): return 1 return torch.distributed.get_world_size() def get_rank(): if not torch.distributed.is_initialized(): return 0 return torch.distributed.get_rank() def reduce_tensor(inp): """ Reduce the loss from all processes so that process with rank 0 has the averaged results. """ world_size = get_world_size() if world_size < 2: return inp with torch.no_grad(): reduced_inp = inp torch.distributed.reduce(reduced_inp, dst=0) return reduced_inp class params(): def __init__(self, args2): if args2.dataset in ['potsdam', 'vaihingen']: self.number_of_classes = 6 models = args2.models if models == 'HRNet_32': "hrnet32" self.STAGE2 = {'NUM_MODULES': 1, 'NUM_BRANCHES': 2, 'NUM_BLOCKS': [4, 4], 'NUM_CHANNELS': [32, 64], 'BLOCK': 'BASIC', 'FUSE_METHOD': 'SUM'} self.STAGE3 = {'NUM_MODULES': 4, 'NUM_BRANCHES': 3, 'NUM_BLOCKS': [4, 4, 4], 'NUM_CHANNELS': [32, 64, 128], 'BLOCK': 'BASIC', 'FUSE_METHOD': 'SUM'} self.STAGE4 = {'NUM_MODULES': 3, 'NUM_BRANCHES': 4, 'NUM_BLOCKS': [4, 4, 4, 4], 'NUM_CHANNELS': [32, 64, 128, 256], 'BLOCK': 'BASIC', 'FUSE_METHOD': 'SUM'} elif models == 'HRNet_48': self.STAGE2 = {'NUM_MODULES': 1, 'NUM_BRANCHES': 2, 'NUM_BLOCKS': [4, 4], 'NUM_CHANNELS': [32, 64], 'BLOCK': 'BASIC', 'FUSE_METHOD': 'SUM'} self.STAGE3 = {'NUM_MODULES': 4, 'NUM_BRANCHES': 3, 'NUM_BLOCKS': [4, 4, 4], 'NUM_CHANNELS': [32, 64, 128], 'BLOCK': 'BASIC', 'FUSE_METHOD': 'SUM'} self.STAGE4 = {'NUM_MODULES': 3, 'NUM_BRANCHES': 4, 'NUM_BLOCKS': [4, 4, 4, 4], 'NUM_CHANNELS': [32, 64, 128, 256], 'BLOCK': 'BASIC', 'FUSE_METHOD': 'SUM'} def parse_args(): parser = argparse.ArgumentParser(description='Train segmentation network') parser.add_argument("--dataset", type=str, default='vaihingen', choices=['potsdam', 'vaihingen']) parser.add_argument("--val_batchsize", type=int, default=16) parser.add_argument("--crop_size", type=int, nargs='+', default=[512, 512], help='H, W') parser.add_argument("--models", type=str, default='danet', choices=['danet', 'bisenetv2', 'pspnet', 'segbase', 'swinT', 'deeplabv3', 'fcn', 'fpn', 'unet', 'resT']) parser.add_argument("--head", type=str, default='uperhead') parser.add_argument("--use_edge", type=int, default=0) parser.add_argument("--save_dir", type=str, default='work_dir') parser.add_argument("--base_dir", type=str, default='./') parser.add_argument("--information", type=str, default='RS') parser.add_argument("--local_rank", type=int, default=0) parser.add_argument("--save_gpu_memory", type=int, default=0) parser.add_argument('opts', help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER) args2 = parser.parse_args() return args2 def get_model(): models = args2.models if models == 'swinT': print(models, args2.head) else: print(models) if args2.dataset in ['potsdam', 'vaihingen']: nclass = 6 assert models in ['danet', 'bisenetv2', 'pspnet', 'segbase', 'swinT', 'deeplabv3', 'fcn', 'fpn', 'unet', 'resT'] if models == 'danet': from models.danet import DANet model = DANet(nclass=nclass, backbone='resnet50', pretrained_base=False) if models == 'bisenetv2': from models.bisenetv2 import BiSeNetV2 model = BiSeNetV2(nclass=nclass) if models == 'pspnet': from models.pspnet import PSPNet model = PSPNet(nclass=nclass, backbone='resnet50', pretrained_base=False) if models == 'segbase': from models.segbase import SegBase model = SegBase(nclass=nclass, backbone='resnet50', pretrained_base=False) if models == 'swinT': from models.swinT import swin_tiny as swinT if args2.use_edge: model = swinT(nclass=nclass, pretrained=False, aux=True, head=args2.head, edge_aux=args2.use_edge) else: model = swinT(nclass=nclass, pretrained=False, aux=True, head=args2.head) if models == 'resT': from models.resT import rest_tiny as resT if args2.use_edge: model = resT(nclass=nclass, pretrained=False, aux=True, head=args2.head, edge_aux=args2.use_edge) else: model = resT(nclass=nclass, pretrained=False, aux=True, head=args2.head) if models == 'deeplabv3': from models.deeplabv3 import DeepLabV3 model = DeepLabV3(nclass=nclass, backbone='resnet50', pretrained_base=False) if models == 'fcn': from models.fcn import FCN16s model = FCN16s(nclass=nclass) if models == 'fpn': from models.fpn import FPN model = FPN(nclass=nclass) if models == 'unet': from models.unet import UNet model = UNet(nclass=nclass) model = nn.SyncBatchNorm.convert_sync_batchnorm(model) model = model.to(device) model = nn.parallel.DistributedDataParallel( model, device_ids=[args2.local_rank], output_device=args2.local_rank, find_unused_parameters=True) return model args2 = parse_args() args = params(args2) cudnn.benchmark = True cudnn.deterministic = False cudnn.enabled = True distributed = True device = torch.device(('cuda:{}').format(args2.local_rank)) if distributed: torch.cuda.set_device(args2.local_rank) torch.distributed.init_process_group( backend="nccl", init_method="env://", ) data_dir = os.path.join(args2.base_dir, 'data') potsdam_val = potsdam(base_dir=data_dir, train=False, dataset=args2.dataset, crop_szie=args2.crop_size) if distributed: val_sampler = DistributedSampler(potsdam_val) else: val_sampler = None dataloader_val = DataLoader( potsdam_val, batch_size=args2.val_batchsize, shuffle=False, num_workers=4, pin_memory=True, sampler=val_sampler) potsdam_val_full = potsdam(base_dir=data_dir, train=False, dataset=args2.dataset, crop_szie=args2.crop_size, val_full_img=True) if distributed: full_val_sampler = DistributedSampler(potsdam_val_full) else: full_val_sampler = None dataloader_val_full = DataLoader( potsdam_val_full, batch_size=1, shuffle=False, num_workers=4, pin_memory=True, sampler=full_val_sampler) def val(model, weight_path): if args2.dataset in ['potsdam', 'vaihingen']: nclasses = 6 model.eval() metric = SegmentationMetric(numClass=nclasses) with torch.no_grad(): model_state_file = weight_path if os.path.isfile(model_state_file): print('loading checkpoint successfully') logging.info("=> loading checkpoint '{}'".format(model_state_file)) checkpoint = torch.load(model_state_file, map_location=lambda storage, loc: storage) checkpoint = {k: v for k, v in checkpoint.items() if not 'loss' in k} checkpoint = {k.replace('model.', ''): v for k, v in checkpoint.items()} model.load_state_dict(checkpoint) else: warnings.warn('weight is not existed !!!"') for i, sample in enumerate(dataloader_val): images, labels = sample['image'], sample['label'] images = images.cuda() labels = labels.long().squeeze(1) logits = model(images) print("test:{}/{}".format(i, len(dataloader_val))) logits = logits.argmax(dim=1) logits = logits.cpu().detach().numpy() labels = labels.cpu().detach().numpy() metric.addBatch(logits, labels) result_count(metric) def mutil_scale_val(model, weight_path, object_path): if args2.dataset in ['potsdam', 'vaihingen']: nclasses = 6 model = MultiEvalModule(model, nclass=nclasses, flip=True, scales=[0.5, 0.75, 1.0, 1.25, 1.5], save_gpu_memory=args2.save_gpu_memory, crop_size=args2.crop_size, stride_rate=1/2, get_batch=args2.val_batchsize) model.eval() metric = SegmentationMetric(nclasses) with torch.no_grad(): model_state_file = weight_path if os.path.isfile(model_state_file): print('loading checkpoint successfully') logging.info("=> loading checkpoint '{}'".format(model_state_file)) checkpoint = torch.load(model_state_file, map_location=lambda storage, loc: storage) if 'state_dict' in checkpoint: checkpoint = checkpoint['state_dict'] elif 'model' in checkpoint: checkpoint = checkpoint['model'] else: checkpoint = checkpoint checkpoint = {k: v for k, v in checkpoint.items() if not 'n_averaged' in k} checkpoint = {k.replace('model.', 'module.'): v for k, v in checkpoint.items()} model.load_state_dict(checkpoint) else: warnings.warn('weight is not existed !!!"') for i, sample in enumerate(dataloader_val_full): images, labels, names = sample['image'], sample['label'], sample['name'] images = images.cuda() labels = labels.long().squeeze(1) logits = model(images) print("test:{}/{}".format(i, len(dataloader_val_full))) logits = logits.argmax(dim=1) logits = logits.cpu().detach().numpy() labels = labels.cpu().detach().numpy() metric.addBatch(logits, labels) vis_logits = label_to_RGB(logits.squeeze())[:, :, ::-1] save_path = os.path.join(object_path, 'outputs', names[0] + '.png') cv2.imwrite(save_path, vis_logits) result_count(metric) def result_count(metric): iou = metric.IntersectionOverUnion() miou = np.nanmean(iou[0:5]) acc = metric.Accuracy() f1 = metric.F1() mf1 = np.nanmean(f1[0:5]) precision = metric.Precision() mprecision = np.nanmean(precision[0:5]) recall = metric.Recall() mrecall = np.nanmean(recall[0:5]) iou = reduce_tensor(torch.from_numpy(np.array(iou)).to(device) / get_world_size()).cpu().numpy() miou = reduce_tensor(torch.from_numpy(np.array(miou)).to(device) / get_world_size()).cpu().numpy() acc = reduce_tensor(torch.from_numpy(np.array(acc)).to(device) / get_world_size()).cpu().numpy() f1 = reduce_tensor(torch.from_numpy(np.array(f1)).to(device) / get_world_size()).cpu().numpy() mf1 = reduce_tensor(torch.from_numpy(np.array(mf1)).to(device) / get_world_size()).cpu().numpy() precision = reduce_tensor(torch.from_numpy(
np.array(precision)
numpy.array
""" @author: jens @modifiers: hyatt, neergaard Migrated from inf_hypnodensity on 12/6/2019 """ import pickle import numpy as np import pywt # wavelet entropy import itertools # for extracting feature combinations import os # for opening os files for pickle. from inf_tools import softmax class HypnodensityFeatures(object): # <-- extract_features num_features = 489 def __init__(self, app_config): self.config = app_config # Dictionaries, keyed by model names self.meanV = {} # Standard deviation of features. self.stdV = {} # range is calculated as difference between 15th and 85th percentile - this was previously the "scaleV". self.rangeV = {} self.medianV = {} try: self.selected = app_config.narco_prediction_selected_features except: self.selected = [] # [1, 11, 16, 22, 25, 41, 43, 49, 64, 65, 86, 87, 103, 119, 140, 147, 149, 166, 196, 201, 202, 220, 244, 245, 261, 276, 289, 296, 299, 390, 405, 450, 467, 468, 470, 474, 476, 477] self.scale_path = app_config.hypnodensity_scale_path # 'scaling' # self.select_features_path = appConfig.hypnodensity_select_features_path # self.select_features_pickle_name = appConfig.hypnodensity_select_features_pickle_name # 'narcoFeatureSelect.p' def extract(self, hyp): eps = 1e-10 features = np.zeros([24 + 31 * 15]) hyp = hyp[~np.isnan(hyp[:, 0]), :] # or np.invert(np.isnan(hyp[:, 0]) # k = [i for i, v in enumerate(hyp[:, 0]) if np.isnan(v)] # hyp[k[0] - 2:k[-1] + 2, :] j = -1 for i in range(5): for comb in itertools.combinations([0, 1, 2, 3, 4], i + 1): # 31 iterations and 15 features per iteration j += 1 dat = np.prod(hyp[:, comb], axis=1) ** (1 / float(len(comb))) features[j * 15] = np.log(np.mean(dat) + eps) features[j * 15 + 1] = -np.log(1 - np.max(dat)) moving_av = np.convolve(dat, np.ones(10), mode='valid') features[j * 15 + 2] = np.mean(np.abs(np.diff(moving_av))) # diff of raw data # features[j * 15 + 2] = np.mean(np.abs(np.diff(dat))) # Alex's next version: moving average may smooth the transitions out too much - removing a hyper-parameter features[j * 15 + 3] = self.wavelet_entropy(dat) # Shannon entropy - check if it is used as a feature - was not selected. rate = np.cumsum(dat) / np.sum(dat) # check at which point of the study the percentage of this combination of sleep stages is reached. try: I1 = (i for i, v in enumerate(rate) if v > 0.05).__next__() except StopIteration: I1 = len(hyp) features[j * 15 + 4] = np.log(I1 * 2 + eps) try: I2 = (i for i, v in enumerate(rate) if v > 0.1).__next__() except StopIteration: I2 = len(hyp) features[j * 15 + 5] = np.log(I2 * 2 + eps) try: I3 = (i for i, v in enumerate(rate) if v > 0.3).__next__() except StopIteration: I3 = len(hyp) features[j * 15 + 6] = np.log(I3 * 2 + eps) try: I4 = (i for i, v in enumerate(rate) if v > 0.5).__next__() # I4 = next(i for i, v in enumerate(rate) if v > 0.5) # for when we have to update python except StopIteration: I4 = len(hyp) features[j * 15 + 7] =
np.log(I4 * 2 + eps)
numpy.log
import sys from pathlib import Path import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker import codecs DPI = 300 FIGSIZE = (12,4) FONTSIZE_LABELS = 16 LINEWIDTH = 1 TICKINDEX_MAJOR_X = 10 TICKINDEX_MINOR_X = TICKINDEX_MAJOR_X / 5 # TICKINDEX_MAJOR_Y = 1 # TICKINDEX_MINOR_Y = TICKINDEX_MAJOR_Y / 5 COLORS = dict(bg_blue='#0B3C5D', bg_red='#B82601', bg_green='#1c6b0a', bg_lightblue='#328CC1', bg_darkblue='#062F4F', bg_yellow='#D9B310', bg_darkred='#984B43', bg_bordeaux='#76323F', bg_olivegreen='#626E60', bg_yellowgrey='#AB987A', bg_brownorange='#C09F80') COLOR = COLORS["bg_blue"] def ras_to_csv_converter_plotter(ras_files): for e in ras_files: filename = e.stem print(f"\t{filename}") tt, int_exp = [], [] with codecs.open(e, 'r', 'charmap') as f: lines = f.readlines() for i in range(0, len(lines)): if '*RAS_INT_START' in lines[i]: start = i + 1 elif '*RAS_INT_END' in lines[i]: end = i for i in range(start, end): tt.append(float(lines[i].split()[0])) int_exp.append(float(lines[i].split()[1])) tt, int_exp = np.array(tt), np.array(int_exp) tt_int_exp = np.column_stack((tt, int_exp))
np.savetxt(f"csv/{filename}.csv", tt_int_exp, delimiter=",", fmt="%.3f")
numpy.savetxt
# -*- coding: utf-8 -*- #try: # from Numeric import * #except ImportError: from numpy import * import copy import numpy outerproduct = outer PI2 = pi*2.0 # for debuging set a seed #random.seed(42) def make_vec(l): return array(l, "d") def scal_prod(v1, v2): return sum(v1*v2,axis=-1) def length(v): return sqrt(sum(v*v),axis=-1) def norm(v1): return sqrt(scal_prod(v1,v1)) def normalize(v1): n = norm(v1) if isscalar(n): if isclose(n,0): return v1 else: return v1/n else: return v1/n[:,newaxis] def angle(v1, v2): _nv1 = normalize(v1) _nv2 = normalize(v2) d = scal_prod(_nv1, _nv2) if d < -1.0: d=-1.0 if d > 1.0 : d= 1.0 return arccos(d) def project(v1, v2): _nv2 = normalize(v2) l = scal_prod(v1, _nv2) return _nv2*l def cross_prod(a, b): return array( [a[1]*b[2] - a[2]*b[1], \ a[2]*b[0] - a[0]*b[2], \ a[0]*b[1] - a[1]*b[0]], "d") def rotmat(v, theta): Q = array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]], "d") Q *= sin(theta) uut = outerproduct(v,v) Q += (identity(3,"d") - uut)*cos(theta) Q += uut return Q def rotate(xyz, v, theta): return dot(xyz, transpose(rotmat(v, theta))) def rotmat_from_euler(euler): R = zeros([3,3],"d") sa = sin(euler[0]) ca = cos(euler[0]) sb = sin(euler[1]) cb = cos(euler[1]) sg = sin(euler[2]) cg = cos(euler[2]) R[0, 0] = cb * cg R[1, 0] = cb * sg R[2, 0] = -sb R[0, 1] = -ca * sg + sa * sb * cg R[1, 1] = ca * cg + sa * sb * sg R[2, 1] = sa * cb R[0, 2] = sa * sg + ca * sb * cg R[1, 2] = -sa * cg + ca * sb * sg R[2, 2] = ca * cb return R def rotate_by_euler(xyz, euler): return dot(xyz, transpose(rotmat_from_euler(euler))) def random_quat(): rand = random.random(3) r1 = sqrt(1.0 - rand[0]) r2 = sqrt(rand[0]) t1 = PI2 * rand[1] t2 = PI2 * rand[2] return array([cos(t2)*r2, sin(t1)*r1, cos(t1)*r1, sin(t2)*r2]) def rotation_quat(triple): # with an input of three numbers between zero and one we scan the rotational space in an equal fashion t0 = triple[0] if t0>1.0:t0=1.0 if t0<0.0:t0=0.0 r1 = sqrt(1.0 - t0) r2 = sqrt(t0) t1 = PI2 * (triple[1]%1.0) t2 = PI2 * (triple[2]%1.0) return array([cos(t2)*r2, sin(t1)*r1, cos(t1)*r1, sin(t2)*r2]) def quat_to_mat(quat): q = array(quat, copy=True) n = dot(q, q) if n < 1.0e-15: return identity(3) q *= sqrt(2.0 / n) q = outer(q, q) return array([ [1.0-q[2, 2]-q[3, 3], q[1, 2]-q[3, 0], q[1, 3]+q[2, 0]], [ q[1, 2]+q[3, 0], 1.0-q[1, 1]-q[3, 3], q[2, 3]-q[1, 0]], [ q[1, 3]-q[2, 0], q[2, 3]+q[1, 0], 1.0-q[1, 1]-q[2, 2]]]) def apply_mat(m,v): return dot(v,m) def rotate_by_triple(xyz, triple): rotmat = quat_to_mat(rotation_quat(triple)) return dot(xyz, rotmat) def rotate_random(v): return apply_mat(quat_to_mat(random_quat()),v) def moi2(rs, ms=None): """Moment of inertia""" if ms is None: ms = numpy.ones(len(rs)) else: ms = numpy.asarray(ms) rs = numpy.asarray(rs) N = rs.shape[1] # Matrix is symmetric, so inner/outer loop doesn't matter return [[(ms*rs[:,i]*rs[:,j]).sum()/ms.sum() for i in range(N)] for j in range(N)] def moi(rs,ms=None): if ms is None: ms = numpy.ones(len(rs)) else: ms = numpy.asarray(ms) rs = numpy.asarray(rs) Ixx = (ms* (rs[:,1]*rs[:,1] + rs[:,2]*rs[:,2])).sum() Iyy = (ms* (rs[:,0]*rs[:,0] + rs[:,2]*rs[:,2])).sum() Izz = (ms* (rs[:,0]*rs[:,0] + rs[:,1]*rs[:,1])).sum() Ixy =-(ms* rs[:,0] * rs[:,1]).sum() Ixz =-(ms* rs[:,0] * rs[:,2]).sum() Iyz =-(ms* rs[:,1] * rs[:,2]).sum() I = [[Ixx,Ixy,Ixy],[Ixy,Iyy,Iyz],[Ixz,Iyz,Izz]] return numpy.array(I)/ms.sum() def pax(rs,ms=None): if ms is None: ms = numpy.ones(len(rs)) else: ms = numpy.asarray(ms) rs = numpy.asarray(rs) I = moi(rs,ms=ms) #print(I) eigval, eigvec = numpy.linalg.eigh(I) return eigval,eigvec def align_pax(xyz,masses=None): eigval,eigvec = pax(xyz,ms=masses) eigorder = numpy.argsort(eigval) rotmat = eigvec[:,eigorder] # sort the column vectors in the order of the eigenvalues to have largest on x, second largest on y, ... return apply_mat(rotmat,xyz) def align_bond_to(m,bond,align_xyz): """ (JK) align a bond to match the direction of the vector given by 'align_xyz' bond (list of integers, len()=2) """ dxyz = m.xyz[bond[1]] - m.xyz[bond[0]] import scipy.optimize as opt def pen(rot,x1,x2): x2t = x2.copy() x2t = rotate_by_triple(x2t,rot%1.0) ''' calculate the angle between the vecotrs and return it''' return numpy.arccos(numpy.dot(x1,x2t)/numpy.linalg.norm(x1)/numpy.linalg.norm(x2t))**2.0 t0 = numpy.array([0.5,0.5,0.5]) o = opt.minimize(pen,t0,args=(dxyz,align_xyz),method='SLSQP',) m.set_xyz(rotate_by_triple(m.xyz,o.x % 1.0)) return o def rec_walk_bond(m,ind,inds=[]): for i,c in enumerate(m.conn[ind]): if inds.count(c) == 0: inds.append(c) inds = rec_walk_bond(m,c,inds=inds) else: pass return inds def rotate_around_bond(m,atom1,atom2,degrees=5.0): """Rotates the xyz coordinates by n degrees around the distance vector between two atoms let the situation be X-1-2-3-4-Y, either X,1 or Y,4 will be rotated accordingly Arguments: mol {molsys.mol} -- the mol obect to apply the operation atom1 {integer} -- atom index 1 atom2 {integer} -- atom index 2 Keyword Arguments: degrees {float} -- rotation in degrees (default: {5.0}) """ ### detect the atoms that are subject to the rotation ### rhs #import pdb; pdb.set_trace() inds = sorted(rec_walk_bond(m,atom1,[atom2])) #print inds xyz = m.xyz xyz1 = xyz[atom1,:] xyz2 = xyz[atom2,:] vect = (xyz2-xyz1) vect /= numpy.linalg.norm(vect) a,n1,n2,n3 =
numpy.deg2rad(degrees)
numpy.deg2rad
from __future__ import division, print_function, absolute_import import os from os.path import join as pjoin, isdir import getpass import time import struct import hashlib import warnings from ...tmpdirs import InTemporaryDirectory from nose.tools import assert_true import numpy as np from numpy.testing import assert_equal, assert_raises, dec, assert_allclose from .. import (read_geometry, read_morph_data, read_annot, read_label, write_geometry, write_morph_data, write_annot) from ..io import _pack_rgb from ...tests.nibabel_data import get_nibabel_data, needs_nibabel_data from ...fileslice import strided_scalar from ...testing import clear_and_catch_warnings DATA_SDIR = 'fsaverage' have_freesurfer = False if 'SUBJECTS_DIR' in os.environ: # May have Freesurfer installed with data data_path = pjoin(os.environ["SUBJECTS_DIR"], DATA_SDIR) have_freesurfer = isdir(data_path) else: # May have nibabel test data submodule checked out nib_data = get_nibabel_data() if nib_data != '': data_path = pjoin(nib_data, 'nitest-freesurfer', DATA_SDIR) have_freesurfer = isdir(data_path) freesurfer_test = dec.skipif( not have_freesurfer, 'cannot find freesurfer {0} directory'.format(DATA_SDIR)) def _hash_file_content(fname): hasher = hashlib.md5() with open(fname, 'rb') as afile: buf = afile.read() hasher.update(buf) return hasher.hexdigest() @freesurfer_test def test_geometry(): """Test IO of .surf""" surf_path = pjoin(data_path, "surf", "%s.%s" % ("lh", "inflated")) coords, faces = read_geometry(surf_path) assert_equal(0, faces.min()) assert_equal(coords.shape[0], faces.max() + 1) surf_path = pjoin(data_path, "surf", "%s.%s" % ("lh", "sphere")) coords, faces, volume_info, create_stamp = read_geometry( surf_path, read_metadata=True, read_stamp=True) assert_equal(0, faces.min()) assert_equal(coords.shape[0], faces.max() + 1) assert_equal(9, len(volume_info)) assert_equal([2, 0, 20], volume_info['head']) assert_equal(u'created by greve on Thu Jun 8 19:17:51 2006', create_stamp) # Test equivalence of freesurfer- and nibabel-generated triangular files # with respect to read_geometry() with InTemporaryDirectory(): surf_path = 'test' create_stamp = "created by %s on %s" % (getpass.getuser(), time.ctime()) volume_info['cras'] = [1., 2., 3.] write_geometry(surf_path, coords, faces, create_stamp, volume_info) coords2, faces2, volume_info2 = \ read_geometry(surf_path, read_metadata=True) for key in ('xras', 'yras', 'zras', 'cras'): assert_allclose(volume_info2[key], volume_info[key], rtol=1e-7, atol=1e-30) assert_equal(volume_info2['cras'], volume_info['cras']) with open(surf_path, 'rb') as fobj: np.fromfile(fobj, ">u1", 3) read_create_stamp = fobj.readline().decode().rstrip('\n') # now write an incomplete file write_geometry(surf_path, coords, faces) with clear_and_catch_warnings() as w: warnings.filterwarnings('always', category=DeprecationWarning) read_geometry(surf_path, read_metadata=True) assert_true(any('volume information contained' in str(ww.message) for ww in w)) assert_true(any('extension code' in str(ww.message) for ww in w)) volume_info['head'] = [1, 2] with clear_and_catch_warnings() as w: write_geometry(surf_path, coords, faces, create_stamp, volume_info) assert_true(any('Unknown extension' in str(ww.message) for ww in w)) volume_info['a'] = 0 assert_raises(ValueError, write_geometry, surf_path, coords, faces, create_stamp, volume_info) assert_equal(create_stamp, read_create_stamp) np.testing.assert_array_equal(coords, coords2) np.testing.assert_array_equal(faces, faces2) # Validate byte ordering coords_swapped = coords.byteswap().newbyteorder() faces_swapped = faces.byteswap().newbyteorder() np.testing.assert_array_equal(coords_swapped, coords) np.testing.assert_array_equal(faces_swapped, faces) @freesurfer_test @needs_nibabel_data('nitest-freesurfer') def test_quad_geometry(): """Test IO of freesurfer quad files.""" new_quad = pjoin(get_nibabel_data(), 'nitest-freesurfer', 'subjects', 'bert', 'surf', 'lh.inflated.nofix') coords, faces = read_geometry(new_quad) assert_equal(0, faces.min()) assert_equal(coords.shape[0], faces.max() + 1) with InTemporaryDirectory(): new_path = 'test' write_geometry(new_path, coords, faces) coords2, faces2 = read_geometry(new_path) assert_equal(coords, coords2) assert_equal(faces, faces2) @freesurfer_test def test_morph_data(): """Test IO of morphometry data file (eg. curvature).""" curv_path = pjoin(data_path, "surf", "%s.%s" % ("lh", "curv")) curv = read_morph_data(curv_path) assert_true(-1.0 < curv.min() < 0) assert_true(0 < curv.max() < 1.0) with InTemporaryDirectory(): new_path = 'test' write_morph_data(new_path, curv) curv2 = read_morph_data(new_path) assert_equal(curv2, curv) def test_write_morph_data(): """Test write_morph_data edge cases""" values = np.arange(20, dtype='>f4') okay_shapes = [(20,), (20, 1), (20, 1, 1), (1, 20)] bad_shapes = [(10, 2), (1, 1, 20, 1, 1)] big_num = np.iinfo('i4').max + 1 with InTemporaryDirectory(): for shape in okay_shapes: write_morph_data('test.curv', values.reshape(shape)) # Check ordering is preserved, regardless of shape assert_equal(values, read_morph_data('test.curv')) assert_raises(ValueError, write_morph_data, 'test.curv', np.zeros(shape), big_num) # Windows 32-bit overflows Python int if np.dtype(np.int) != np.dtype(np.int32): assert_raises(ValueError, write_morph_data, 'test.curv', strided_scalar((big_num,))) for shape in bad_shapes: assert_raises(ValueError, write_morph_data, 'test.curv', values.reshape(shape)) @freesurfer_test def test_annot(): """Test IO of .annot against freesurfer example data.""" annots = ['aparc', 'aparc.a2005s'] for a in annots: annot_path = pjoin(data_path, "label", "%s.%s.annot" % ("lh", a)) hash_ = _hash_file_content(annot_path) labels, ctab, names = read_annot(annot_path) assert_true(labels.shape == (163842, )) assert_true(ctab.shape == (len(names), 5)) labels_orig = None if a == 'aparc': labels_orig, _, _ = read_annot(annot_path, orig_ids=True) np.testing.assert_array_equal(labels == -1, labels_orig == 0) # Handle different version of fsaverage if hash_ == 'bf0b488994657435cdddac5f107d21e8': assert_true(np.sum(labels_orig == 0) == 13887) elif hash_ == 'd4f5b7cbc2ed363ac6fcf89e19353504': assert_true(np.sum(labels_orig == 1639705) == 13327) else: raise RuntimeError("Unknown freesurfer file. Please report " "the problem to the maintainer of nibabel.") # Test equivalence of freesurfer- and nibabel-generated annot files # with respect to read_annot() with InTemporaryDirectory(): annot_path = 'test' write_annot(annot_path, labels, ctab, names) labels2, ctab2, names2 = read_annot(annot_path) if labels_orig is not None: labels_orig_2, _, _ = read_annot(annot_path, orig_ids=True) np.testing.assert_array_equal(labels, labels2) if labels_orig is not None: np.testing.assert_array_equal(labels_orig, labels_orig_2) np.testing.assert_array_equal(ctab, ctab2) assert_equal(names, names2) def test_read_write_annot(): """Test generating .annot file and reading it back.""" # This annot file will store a LUT for a mesh made of 10 vertices, with # 3 colours in the LUT. nvertices = 10 nlabels = 3 names = ['label {}'.format(l) for l in range(1, nlabels + 1)] # randomly generate a label for each vertex, making sure # that at least one of each label value is present. Label # values are in the range (0, nlabels-1) - they are used # as indices into the lookup table (generated below). labels = list(range(nlabels)) + \ list(np.random.randint(0, nlabels, nvertices - nlabels)) labels = np.array(labels, dtype=np.int32) np.random.shuffle(labels) # Generate some random colours for the LUT rgbal = np.zeros((nlabels, 5), dtype=np.int32) rgbal[:, :4] = np.random.randint(0, 255, (nlabels, 4)) # But make sure we have at least one large alpha, to make sure that when # it is packed into a signed 32 bit int, it results in a negative value # for the annotation value. rgbal[0, 3] = 255 # Generate the annotation values for each LUT entry rgbal[:, 4] = (rgbal[:, 0] + rgbal[:, 1] * (2 ** 8) + rgbal[:, 2] * (2 ** 16)) annot_path = 'c.annot' with InTemporaryDirectory(): write_annot(annot_path, labels, rgbal, names, fill_ctab=False) labels2, rgbal2, names2 = read_annot(annot_path) names2 = [n.decode('ascii') for n in names2] assert np.all(np.isclose(rgbal2, rgbal)) assert np.all(np.isclose(labels2, labels)) assert names2 == names def test_write_annot_fill_ctab(): """Test the `fill_ctab` parameter to :func:`.write_annot`. """ nvertices = 10 nlabels = 3 names = ['label {}'.format(l) for l in range(1, nlabels + 1)] labels = list(range(nlabels)) + \ list(np.random.randint(0, nlabels, nvertices - nlabels)) labels = np.array(labels, dtype=np.int32)
np.random.shuffle(labels)
numpy.random.shuffle
""" Module: LMR_verify_gridPRCP.py Purpose: Generates spatial verification statistics of LMR gridded precipitation against various gridded historical instrumental precipitation datasets and precipitation from reanalyses. Originator: <NAME>, U. of Washington, March 2016 Revisions: """ import matplotlib # need to do this backend when running remotely or to suppress figures interactively matplotlib.use('Agg') # generic imports import numpy as np import glob, os, sys, calendar from datetime import datetime, timedelta from netCDF4 import Dataset, date2num, num2date import mpl_toolkits.basemap as bm import matplotlib.pyplot as plt from matplotlib import ticker from spharm import Spharmt, getspecindx, regrid # LMR specific imports sys.path.append('../') from LMR_utils import global_hemispheric_means, assimilated_proxies, coefficient_efficiency from load_gridded_data import read_gridded_data_CMIP5_model from LMR_plot_support import * # change default value of latlon kwarg to True. bm.latlon_default = True ################################## # START: set user parameters here ################################## # option to suppress figures iplot = True iplot_individual_years = False # centered time mean (nya must be odd! 3 = 3 yr mean; 5 = 5 year mean; etc 0 = none) nya = 0 # option to print figures fsave = True #fsave = False # set paths, the filename for plots, and global plotting preferences # override datadir #datadir_output = './data/' #datadir_output = '/home/disk/kalman2/wperkins/LMR_output/archive' datadir_output = '/home/disk/kalman3/rtardif/LMR/output' #datadir_output = '/home/disk/ekman4/rtardif/LMR/output' #datadir_output = '/home/disk/kalman3/hakim/LMR' # Directories where precip and reanalysis data can be found datadir_precip = '/home/disk/kalman3/rtardif/LMR/data/verification' datadir_reanl = '/home/disk/kalman3/rtardif/LMR/data/model' # file specification # # current datasets # --- #nexp = 'production_gis_ccsm4_pagesall_0.75' #nexp = 'production_mlost_ccsm4_pagesall_0.75' #nexp = 'production_cru_ccsm4_pagesall_0.75' #nexp = 'production_mlost_era20c_pagesall_0.75' #nexp = 'production_mlost_era20cm_pagesall_0.75' # --- nexp = 'test' # --- # perform verification using all recon. MC realizations ( MCset = None ) # or over a custom selection ( MCset = (begin,end) ) # ex. MCset = (0,0) -> only the first MC run # MCset = (0,10) -> the first 11 MC runs (from 0 to 10 inclusively) # MCset = (80,100) -> the 80th to 100th MC runs (21 realizations) MCset = None #MCset = (0,10) # Definition of variables to verify # kind name variable long name bounds units mult. factor verif_dict = \ { 'pr_sfc_Amon' : ('anom', 'PRCP', 'Precipitation',-400.0,400.0,'(mm/yr)',1.0), \ } # time range for verification (in years CE) #trange = [1979,2000] #works for nya = 0 trange = [1880,2000] #works for nya = 0 #trange = [1900,2000] #works for nya = 0 #trange = [1885,1995] #works for nya = 5 #trange = [1890,1990] #works for nya = 10 # reference period over which mean is calculated & subtracted # from all datasets (in years CE) # NOTE: GPCP and CMAP data cover the 1979-2015 period ref_period = [1979, 1999] valid_frac = 0.0 # number of contours for plots nlevs = 21 # plot alpha transparency alpha = 0.5 # set the default size of the figure in inches. ['figure.figsize'] = width, height; # aspect ratio appears preserved on smallest of the two plt.rcParams['figure.figsize'] = 10, 10 # that's default image size for this interactive session plt.rcParams['axes.linewidth'] = 2.0 # set the value globally plt.rcParams['font.weight'] = 'bold' # set the font weight globally plt.rcParams['font.size'] = 11 # set the font size globally #plt.rc('text', usetex=True) plt.rc('text', usetex=False) ################################## # END: set user parameters here ################################## verif_vars = list(verif_dict.keys()) workdir = datadir_output + '/' + nexp print('working directory = ' + workdir) print('\n getting file system information...\n') # get number of mc realizations from directory count # RT: modified way to determine list of directories with mc realizations # get a listing of the iteration directories dirs = glob.glob(workdir+"/r*") # selecting the MC iterations to keep if MCset: dirset = dirs[MCset[0]:MCset[1]+1] else: dirset = dirs mcdir = [item.split('/')[-1] for item in dirset] niters = len(mcdir) print('mcdir:' + str(mcdir)) print('niters = ' + str(niters)) # Loop over verif. variables for var in verif_vars: # read ensemble mean data print('\n reading LMR ensemble-mean data...\n') first = True k = -1 for dir in mcdir: k = k + 1 ensfiln = workdir + '/' + dir + '/ensemble_mean_'+var+'.npz' npzfile = np.load(ensfiln) print(dir, ':', npzfile.files) tmp = npzfile['xam'] print('shape of tmp: ' + str(np.shape(tmp))) if first: first = False recon_times = npzfile['years'] LMR_time = np.array(list(map(int,recon_times))) lat = npzfile['lat'] lon = npzfile['lon'] nlat = npzfile['nlat'] nlon = npzfile['nlon'] lat2 = np.reshape(lat,(nlat,nlon)) lon2 = np.reshape(lon,(nlat,nlon)) years = npzfile['years'] nyrs = len(years) xam = np.zeros([nyrs,np.shape(tmp)[1],np.shape(tmp)[2]]) xam_all = np.zeros([niters,nyrs,np.shape(tmp)[1],np.shape(tmp)[2]]) xam = xam + tmp xam_all[k,:,:,:] = tmp # this is the sample mean computed with low-memory accumulation xam = xam/len(mcdir) # this is the sample mean computed with numpy on all data xam_check = xam_all.mean(0) # check.. max_err = np.max(np.max(np.max(xam_check - xam))) if max_err > 1e-4: print('max error = ' + str(max_err)) raise Exception('sample mean does not match what is in the ensemble files!') # sample variance xam_var = xam_all.var(0) print(np.shape(xam_var)) print('\n shape of the ensemble array: ' + str(np.shape(xam_all)) +'\n') print('\n shape of the ensemble-mean array: ' + str(np.shape(xam)) +'\n') # Convert units to match verif dataset: from kg m-2 s-1 to mm (per year) rho = 1000.0 for y in range(nyrs): if calendar.isleap(int(years[y])): xam[y,:,:] = 1000.*xam[y,:,:]*366.*86400./rho else: xam[y,:,:] = 1000.*xam[y,:,:]*365.*86400./rho ################################################################# # BEGIN: load verification data # ################################################################# print('\nloading verification data...\n') # GPCP ---------------------------------------------------------- infile = datadir_precip+'/'+'GPCP/'+'GPCPv2.2_precip.mon.mean.nc' verif_data = Dataset(infile,'r') # Time time = verif_data.variables['time'] time_obj = num2date(time[:],units=time.units) time_yrs = np.asarray([time_obj[k].year for k in range(len(time_obj))]) yrs_range = list(set(time_yrs)) # lat/lon verif_lat = verif_data.variables['lat'][:] verif_lon = verif_data.variables['lon'][:] nlat_GPCP = len(verif_lat) nlon_GPCP = len(verif_lon) lon_GPCP, lat_GPCP = np.meshgrid(verif_lon, verif_lat) # Precip verif_precip_monthly = verif_data.variables['precip'][:] [ntime,nlon_v,nlat_v] = verif_precip_monthly.shape # convert mm/day monthly data to mm/year yearly data GPCP_time = np.zeros(shape=len(yrs_range),dtype=np.int) GPCP = np.zeros(shape=[len(yrs_range),nlat_GPCP,nlon_GPCP]) i = 0 for yr in yrs_range: GPCP_time[i] = int(yr) inds = np.where(time_yrs == yr)[0] if calendar.isleap(yr): nbdays = 366. else: nbdays = 365. accum = np.zeros(shape=[nlat_GPCP, nlon_GPCP]) for k in range(len(inds)): days_in_month = calendar.monthrange(time_obj[inds[k]].year, time_obj[inds[k]].month)[1] accum = accum + verif_precip_monthly[inds[k],:,:]*days_in_month GPCP[i,:,:] = accum # precip in mm i = i + 1 # CMAP ---------------------------------------------------------- infile = datadir_precip+'/'+'CMAP/'+'CMAP_enhanced_precip.mon.mean.nc' verif_data = Dataset(infile,'r') # Time time = verif_data.variables['time'] time_obj = num2date(time[:],units=time.units) time_yrs = np.asarray([time_obj[k].year for k in range(len(time_obj))]) yrs_range = list(set(time_yrs)) # lat/lon verif_lat = verif_data.variables['lat'][:] verif_lon = verif_data.variables['lon'][:] nlat_CMAP = len(verif_lat) nlon_CMAP = len(verif_lon) lon_CMAP, lat_CMAP = np.meshgrid(verif_lon, verif_lat) # Precip verif_precip_monthly = verif_data.variables['precip'][:] [ntime,nlon_v,nlat_v] = verif_precip_monthly.shape # convert mm/day monthly data to mm/year yearly data CMAP_time = np.zeros(shape=len(yrs_range),dtype=np.int) CMAP = np.zeros(shape=[len(yrs_range),nlat_CMAP,nlon_CMAP]) i = 0 for yr in yrs_range: CMAP_time[i] = int(yr) inds = np.where(time_yrs == yr)[0] if calendar.isleap(yr): nbdays = 366. else: nbdays = 365. accum = np.zeros(shape=[nlat_CMAP, nlon_CMAP]) for k in range(len(inds)): days_in_month = calendar.monthrange(time_obj[inds[k]].year, time_obj[inds[k]].month)[1] accum = accum + verif_precip_monthly[inds[k],:,:]*days_in_month CMAP[i,:,:] = accum # precip in mm i = i + 1 # ---------- # Reanalyses # ---------- # Define month sequence for the calendar year # (argument needed in upload of reanalysis data) annual = list(range(1,13)) # 20th Century reanalysis (TCR) --------------------------------- vardict = {var: verif_dict[var][0]} vardef = var datadir = datadir_reanl +'/20cr' datafile = vardef +'_20CR_185101-201112.nc' dd = read_gridded_data_CMIP5_model(datadir,datafile,vardict,outtimeavg=annual, anom_ref=ref_period) rtime = dd[vardef]['years'] TCR_time = np.array([d.year for d in rtime]) lats = dd[vardef]['lat'] lons = dd[vardef]['lon'] latshape = lats.shape lonshape = lons.shape if len(latshape) == 2 & len(lonshape) == 2: # stored in 2D arrays lat_TCR = np.unique(lats) lon_TCR = np.unique(lons) nlat_TCR, = lat_TCR.shape nlon_TCR, = lon_TCR.shape else: # stored in 1D arrays lon_TCR = lons lat_TCR = lats nlat_TCR = len(lat_TCR) nlon_TCR = len(lon_TCR) lon2_TCR, lat2_TCR = np.meshgrid(lon_TCR, lat_TCR) TCRfull = dd[vardef]['value'] + dd[vardef]['climo'] # Full field TCR = dd[vardef]['value'] # Anomalies # Conversion from kg m-2 s-1 rho = 1000.0 i = 0 for y in TCR_time: if calendar.isleap(y): TCRfull[i,:,:] = 1000.*TCRfull[i,:,:]*366.*86400./rho TCR[i,:,:] = 1000.*TCR[i,:,:]*366.*86400./rho else: TCRfull[i,:,:] = 1000.*TCRfull[i,:,:]*365.*86400./rho TCR[i,:,:] = 1000.*TCR[i,:,:]*365.*86400./rho i = i + 1 # ERA 20th Century reanalysis (ERA20C) --------------------------------- vardict = {var: verif_dict[var][0]} vardef = var datadir = datadir_reanl +'/era20c' datafile = vardef +'_ERA20C_190001-201012.nc' dd = read_gridded_data_CMIP5_model(datadir,datafile,vardict,outtimeavg=annual, anom_ref=ref_period) rtime = dd[vardef]['years'] ERA_time = np.array([d.year for d in rtime]) lats = dd[vardef]['lat'] lons = dd[vardef]['lon'] latshape = lats.shape lonshape = lons.shape if len(latshape) == 2 & len(lonshape) == 2: # stored in 2D arrays lat_ERA = np.unique(lats) lon_ERA = np.unique(lons) nlat_ERA, = lat_ERA.shape nlon_ERA, = lon_ERA.shape else: # stored in 1D arrays lon_ERA = lons lat_ERA = lats nlat_ERA = len(lat_ERA) nlon_ERA = len(lon_ERA) lon2_ERA, lat2_ERA = np.meshgrid(lon_ERA, lat_ERA) ERAfull = dd[vardef]['value'] + dd[vardef]['climo'] # Full field ERA = dd[vardef]['value'] # Anomalies # Conversion from kg m-2 s-1 rho = 1000.0 i = 0 for y in ERA_time: if calendar.isleap(y): ERAfull[i,:,:] = 1000.*ERAfull[i,:,:]*366.*86400./rho ERA[i,:,:] = 1000.*ERA[i,:,:]*366.*86400./rho else: ERAfull[i,:,:] = 1000.*ERAfull[i,:,:]*365.*86400./rho ERA[i,:,:] = 1000.*ERA[i,:,:]*365.*86400./rho i = i + 1 # Plots of precipitation climatologies --- # Climatology (annual accumulation) GPCP_climo = np.nanmean(GPCP, axis=0) CMAP_climo = np.nanmean(CMAP, axis=0) TCR_climo = np.nanmean(TCRfull, axis=0) ERA_climo = np.nanmean(ERAfull, axis=0) fig = plt.figure() ax = fig.add_subplot(2,2,1) fmin = 0; fmax = 4000; nflevs=41 LMR_plotter(GPCP_climo,lat_GPCP,lon_GPCP,'Reds',nflevs,vmin=fmin,vmax=fmax,extend='max') plt.title( 'GPCP '+'orig. grid'+' '+verif_dict[var][1]+' '+verif_dict[var][5]+' '+'climo.', fontweight='bold') plt.clim(fmin,fmax) ax = fig.add_subplot(2,2,2) fmin = 0; fmax = 4000; nflevs=41 LMR_plotter(CMAP_climo,lat_CMAP,lon_CMAP,'Reds',nflevs,vmin=fmin,vmax=fmax,extend='max') plt.title( 'CMAP '+'orig. grid'+' '+verif_dict[var][1]+' '+verif_dict[var][5]+' '+'climo.', fontweight='bold') plt.clim(fmin,fmax) ax = fig.add_subplot(2,2,3) fmin = 0; fmax = 4000; nflevs=41 LMR_plotter(TCR_climo,lat2_TCR,lon2_TCR,'Reds',nflevs,vmin=fmin,vmax=fmax,extend='max') plt.title( '20CR-V2 '+'orig. grid'+' '+verif_dict[var][1]+' '+verif_dict[var][5]+' '+'climo.', fontweight='bold') plt.clim(fmin,fmax) ax = fig.add_subplot(2,2,4) fmin = 0; fmax = 4000; nflevs=41 LMR_plotter(ERA_climo,lat2_ERA,lon2_ERA,'Reds',nflevs,vmin=fmin,vmax=fmax,extend='max') plt.title( 'ERA20C '+'orig. grid'+' '+verif_dict[var][1]+' '+verif_dict[var][5]+' '+'climo.', fontweight='bold') plt.clim(fmin,fmax) fig.tight_layout() plt.savefig('GPCP_CMAP_20CR_ERA_climo.png') plt.close() ############################################################### # END: load verification data # ############################################################### # ---------------------------------------------------------- # Adjust so that all anomaly data pertain to the mean over a # common user-defined reference period (e.g. 20th century) # ---------------------------------------------------------- print('Re-center on %s-%s period' % (str(ref_period[0]), str(ref_period[1]))) stime = ref_period[0] etime = ref_period[1] # LMR LMR = xam smatch, ematch = find_date_indices(LMR_time,stime,etime) LMR = LMR - np.mean(LMR[smatch:ematch,:,:],axis=0) # verif smatch, ematch = find_date_indices(GPCP_time,stime,etime) GPCP = GPCP - np.mean(GPCP[smatch:ematch,:,:],axis=0) smatch, ematch = find_date_indices(CMAP_time,stime,etime) CMAP = CMAP - np.mean(CMAP[smatch:ematch,:,:],axis=0) smatch, ematch = find_date_indices(TCR_time,stime,etime) TCR = TCR - np.mean(TCR[smatch:ematch,:,:],axis=0) smatch, ematch = find_date_indices(ERA_time,stime,etime) ERA = ERA - np.mean(ERA[smatch:ematch,:,:],axis=0) print('GPCP : Global: mean=', np.nanmean(GPCP), ' , std-dev=', np.nanstd(GPCP)) print('CMAP : Global: mean=', np.nanmean(CMAP), ' , std-dev=', np.nanstd(CMAP)) print('TCR : Global: mean=', np.nanmean(TCR), ' , std-dev=', np.nanstd(TCR)) print('ERA : Global: mean=', np.nanmean(ERA), ' , std-dev=', np.nanstd(ERA)) print('LMR : Global: mean=', np.nanmean(LMR), ' , std-dev=', np.nanstd(LMR)) # ----------------------------------- # Regridding the data for comparisons # ----------------------------------- print('\n regridding data to a common grid...\n') iplot_loc= False #iplot_loc= True # create instance of the spherical harmonics object for each grid specob_lmr = Spharmt(nlon,nlat,gridtype='regular',legfunc='computed') specob_gpcp = Spharmt(nlon_GPCP,nlat_GPCP,gridtype='regular',legfunc='computed') specob_cmap = Spharmt(nlon_CMAP,nlat_CMAP,gridtype='regular',legfunc='computed') specob_tcr = Spharmt(nlon_TCR,nlat_TCR,gridtype='regular',legfunc='computed') specob_era = Spharmt(nlon_ERA,nlat_ERA,gridtype='regular',legfunc='computed') # truncate to a lower resolution grid (common:21, 42, 62, 63, 85, 106, 255, 382, 799) ntrunc_new = 42 # T42 ifix = np.remainder(ntrunc_new,2.0).astype(int) nlat_new = ntrunc_new + ifix nlon_new = int(nlat_new*1.5) # lat, lon grid in the truncated space dlat = 90./((nlat_new-1)/2.) dlon = 360./nlon_new veclat = np.arange(-90.,90.+dlat,dlat) veclon = np.arange(0.,360.,dlon) blank = np.zeros([nlat_new,nlon_new]) lat2_new = (veclat + blank.T).T lon2_new = (veclon + blank) # create instance of the spherical harmonics object for the new grid specob_new = Spharmt(nlon_new,nlat_new,gridtype='regular',legfunc='computed') lmr_trunc = np.zeros([nyrs,nlat_new,nlon_new]) print('lmr_trunc shape: ' + str(np.shape(lmr_trunc))) # loop over years of interest and transform...specify trange at top of file iw = 0 if nya > 0: iw = (nya-1)/2 cyears = list(range(trange[0],trange[1])) lg_csave = np.zeros([len(cyears)]) lc_csave = np.zeros([len(cyears)]) lt_csave = np.zeros([len(cyears)]) le_csave = np.zeros([len(cyears)]) gc_csave = np.zeros([len(cyears)]) gt_csave = np.zeros([len(cyears)]) ge_csave = np.zeros([len(cyears)]) te_csave = np.zeros([len(cyears)]) lmr_allyears = np.zeros([len(cyears),nlat_new,nlon_new]) gpcp_allyears = np.zeros([len(cyears),nlat_new,nlon_new]) cmap_allyears = np.zeros([len(cyears),nlat_new,nlon_new]) tcr_allyears = np.zeros([len(cyears),nlat_new,nlon_new]) era_allyears = np.zeros([len(cyears),nlat_new,nlon_new]) lmr_zm = np.zeros([len(cyears),nlat_new]) gpcp_zm = np.zeros([len(cyears),nlat_new]) cmap_zm = np.zeros([len(cyears),nlat_new]) tcr_zm = np.zeros([len(cyears),nlat_new]) era_zm = np.zeros([len(cyears),nlat_new]) k = -1 for yr in cyears: k = k + 1 LMR_smatch, LMR_ematch = find_date_indices(LMR_time,yr-iw,yr+iw+1) GPCP_smatch, GPCP_ematch = find_date_indices(GPCP_time,yr-iw,yr+iw+1) CMAP_smatch, CMAP_ematch = find_date_indices(CMAP_time,yr-iw,yr+iw+1) TCR_smatch, TCR_ematch = find_date_indices(TCR_time,yr-iw,yr+iw+1) ERA_smatch, ERA_ematch = find_date_indices(ERA_time,yr-iw,yr+iw+1) print('------------------------------------------------------------------------') print('working on year... %5s' %(str(yr))) print(' %5s LMR index = %5s : LMR year = %5s' %(str(yr), str(LMR_smatch), str(LMR_time[LMR_smatch]))) if GPCP_smatch: print(' %5s GPCP index = %5s : GPCP year = %5s' %(str(yr), str(GPCP_smatch), str(GPCP_time[GPCP_smatch]))) if CMAP_smatch: print(' %5s CMAP index = %5s : CMAP year = %5s' %(str(yr), str(CMAP_smatch), str(CMAP_time[CMAP_smatch]))) if TCR_smatch: print(' %5s TCP index = %5s : TCR year = %5s' %(str(yr), str(TCR_smatch), str(TCR_time[TCR_smatch]))) if ERA_smatch: print(' %5s ERA index = %5s : ERA year = %5s' %(str(yr), str(ERA_smatch), str(ERA_time[ERA_smatch]))) # LMR pdata_lmr = np.mean(LMR[LMR_smatch:LMR_ematch,:,:],0) lmr_trunc = regrid(specob_lmr, specob_new, pdata_lmr, ntrunc=nlat_new-1, smooth=None) # GPCP if GPCP_smatch and GPCP_ematch: pdata_gpcp = np.mean(GPCP[GPCP_smatch:GPCP_ematch,:,:],0) else: pdata_gpcp = np.zeros(shape=[nlat_GPCP,nlon_GPCP]) pdata_gpcp.fill(np.nan) # regrid on LMR grid if np.isnan(pdata_gpcp).all(): gpcp_trunc = np.zeros(shape=[nlat_new,nlon_new]) gpcp_trunc.fill(np.nan) else: gpcp_trunc = regrid(specob_gpcp, specob_new, pdata_gpcp, ntrunc=nlat_new-1, smooth=None) # CMAP if CMAP_smatch and CMAP_ematch: pdata_cmap = np.mean(CMAP[CMAP_smatch:CMAP_ematch,:,:],0) else: pdata_cmap = np.zeros(shape=[nlat_CMAP,nlon_CMAP]) pdata_cmap.fill(np.nan) # regrid on LMR grid if np.isnan(pdata_cmap).all(): cmap_trunc = np.zeros(shape=[nlat_new,nlon_new]) cmap_trunc.fill(np.nan) else: cmap_trunc = regrid(specob_cmap, specob_new, pdata_cmap, ntrunc=nlat_new-1, smooth=None) # TCR if TCR_smatch and TCR_ematch: pdata_tcr = np.mean(TCR[TCR_smatch:TCR_ematch,:,:],0) else: pdata_tcr = np.zeros(shape=[nlat_TCR,nlon_TCR]) pdata_tcr.fill(np.nan) # regrid on LMR grid if np.isnan(pdata_tcr).all(): tcr_trunc = np.zeros(shape=[nlat_new,nlon_new]) tcr_trunc.fill(np.nan) else: tcr_trunc = regrid(specob_tcr, specob_new, pdata_tcr, ntrunc=nlat_new-1, smooth=None) # ERA if ERA_smatch and ERA_ematch: pdata_era = np.mean(ERA[ERA_smatch:ERA_ematch,:,:],0) else: pdata_era = np.zeros(shape=[nlat_ERA,nlon_ERA]) pdata_era.fill(np.nan) # regrid on LMR grid if np.isnan(pdata_era).all(): era_trunc = np.zeros(shape=[nlat_new,nlon_new]) era_trunc.fill(np.nan) else: era_trunc = regrid(specob_era, specob_new, pdata_era, ntrunc=nlat_new-1, smooth=None) if iplot_individual_years: # Precipitation products comparison figures (annually-averaged anomaly fields) fmin = verif_dict[var][3]; fmax = verif_dict[var][4]; nflevs=41 fig = plt.figure() ax = fig.add_subplot(5,1,1) LMR_plotter(lmr_trunc*verif_dict[var][6],lat2_new,lon2_new,'bwr',nflevs,vmin=fmin,vmax=fmax,extend='both') plt.title('LMR '+'T'+str(nlat_new-ifix)+' '+verif_dict[var][1]+' anom. '+verif_dict[var][5]+' '+str(yr), fontweight='bold') plt.clim(fmin,fmax) ax = fig.add_subplot(5,1,2) LMR_plotter(gpcp_trunc*verif_dict[var][6],lat2_new,lon2_new,'bwr',nflevs,vmin=fmin,vmax=fmax,extend='both') plt.title('GPCP '+'T'+str(nlat_new-ifix)+' '+verif_dict[var][1]+' anom. '+verif_dict[var][5]+' '+str(yr), fontweight='bold') #LMR_plotter(pdata_gpcp*verif_dict[var][6],lat_GPCP,lon_GPCP,'bwr',nflevs,vmin=fmin,vmax=fmax,extend='both') #plt.title( 'GPCP '+'orig. grid'+' '+verif_dict[var][1]+' anom. '+verif_dict[var][5]+' '+str(yr), fontweight='bold') plt.clim(fmin,fmax) ax = fig.add_subplot(5,1,3) LMR_plotter(cmap_trunc*verif_dict[var][6],lat2_new,lon2_new,'bwr',nflevs,vmin=fmin,vmax=fmax,extend='both') plt.title('CMAP '+'T'+str(nlat_new-ifix)+' '+verif_dict[var][1]+' anom. '+verif_dict[var][5]+' '+str(yr), fontweight='bold') #LMR_plotter(pdata_cmap*verif_dict[var][6],lat_GPCP,lon_GPCP,'bwr',nflevs,vmin=fmin,vmax=fmax,extend='both') #plt.title( 'CMAP '+'orig. grid'+' '+verif_dict[var][1]+' anom. '+verif_dict[var][5]+' '+str(yr), fontweight='bold') plt.clim(fmin,fmax) ax = fig.add_subplot(5,1,4) LMR_plotter(tcr_trunc*verif_dict[var][6],lat2_new,lon2_new,'bwr',nflevs,vmin=fmin,vmax=fmax,extend='both') plt.title('20CR-V2 '+'T'+str(nlat_new-ifix)+' '+verif_dict[var][1]+' anom. '+verif_dict[var][5]+' '+str(yr), fontweight='bold') #LMR_plotter(pdata_tcr*verif_dict[var][6],lat_TCR,lon_TCR,'bwr',nflevs,vmin=fmin,vmax=fmax,extend='both') #plt.title( '20CR-V2 '+'orig. grid'+' '+verif_dict[var][1]+' anom. '+verif_dict[var][5]+' '+str(yr), fontweight='bold') plt.clim(fmin,fmax) ax = fig.add_subplot(5,1,5) LMR_plotter(era_trunc*verif_dict[var][6],lat2_new,lon2_new,'bwr',nflevs,vmin=fmin,vmax=fmax,extend='both') plt.title('ERA20C '+'T'+str(nlat_new-ifix)+' '+verif_dict[var][1]+' anom. '+verif_dict[var][5]+' '+str(yr), fontweight='bold') #LMR_plotter(pdata_era*verif_dict[var][6],lat_ERA,lon_ERA,'bwr',nflevs,vmin=fmin,vmax=fmax,extend='both') #plt.title( 'ERA20C '+'orig. grid'+' '+verif_dict[var][1]+' anom. '+verif_dict[var][5]+' '+str(yr), fontweight='bold') plt.clim(fmin,fmax) fig.tight_layout() plt.savefig(nexp+'_LMR_GPCP_CMAP_TCR_ERA_'+verif_dict[var][1]+'anom_'+str(yr)+'.png') plt.close() # save the full grids lmr_allyears[k,:,:] = lmr_trunc gpcp_allyears[k,:,:] = gpcp_trunc cmap_allyears[k,:,:] = cmap_trunc tcr_allyears[k,:,:] = tcr_trunc era_allyears[k,:,:] = era_trunc # ----------------------- # zonal-mean verification # ----------------------- # LMR lmr_zm[k,:] = np.mean(lmr_trunc,1) # GPCP fracok = np.sum(np.isfinite(gpcp_trunc),axis=1,dtype=np.float16)/float(nlon_GPCP) boolok = np.where(fracok >= valid_frac) boolnotok = np.where(fracok < valid_frac) for i in boolok: gpcp_zm[k,i] = np.nanmean(gpcp_trunc[i,:],axis=1) gpcp_zm[k,boolnotok] = np.NAN # CMAP fracok = np.sum(np.isfinite(cmap_trunc),axis=1,dtype=np.float16)/float(nlon_CMAP) boolok = np.where(fracok >= valid_frac) boolnotok = np.where(fracok < valid_frac) for i in boolok: cmap_zm[k,i] = np.nanmean(cmap_trunc[i,:],axis=1) cmap_zm[k,boolnotok] = np.NAN # TCR tcr_zm[k,:] = np.mean(tcr_trunc,1) # ERA era_zm[k,:] = np.mean(era_trunc,1) if iplot_loc: ncints = 30 cmap = 'bwr' nticks = 6 # number of ticks on the colorbar # set contours based on GPCP maxabs = np.nanmax(np.abs(gpcp_trunc)) # round the contour interval, and then set limits to fit dc = np.round(maxabs*2/ncints,2) cl = dc*ncints/2. cints = np.linspace(-cl,cl,ncints,endpoint=True) # compare LMR with GPCP, CMAP, TCR and ERA fig = plt.figure() ax = fig.add_subplot(3,2,1) m1 = bm.Basemap(projection='robin',lon_0=0) # maxabs = np.nanmax(np.abs(lmr_trunc)) cs = m1.contourf(lon2_new,lat2_new,lmr_trunc,cints,cmap=plt.get_cmap(cmap),vmin=-maxabs,vmax=maxabs) m1.drawcoastlines() cb = m1.colorbar(cs) tick_locator = ticker.MaxNLocator(nbins=nticks) cb.locator = tick_locator cb.ax.yaxis.set_major_locator(matplotlib.ticker.AutoLocator()) cb.update_ticks() ax.set_title('LMR '+verif_dict[var][1]+' '+str(ntrunc_new) + ' ' + str(yr)) ax = fig.add_subplot(3,2,3) m2 = bm.Basemap(projection='robin',lon_0=0) # maxabs = np.nanmax(np.abs(gpcp_trunc)) cs = m2.contourf(lon2_new,lat2_new,gpcp_trunc,cints,cmap=plt.get_cmap(cmap),vmin=-maxabs,vmax=maxabs) m2.drawcoastlines() cb = m1.colorbar(cs) tick_locator = ticker.MaxNLocator(nbins=nticks) cb.locator = tick_locator cb.ax.yaxis.set_major_locator(matplotlib.ticker.AutoLocator()) cb.update_ticks() ax.set_title('GPCP '+verif_dict[var][1]+' '+str(ntrunc_new) + ' ' + str(yr)) ax = fig.add_subplot(3,2,4) m3 = bm.Basemap(projection='robin',lon_0=0) # maxabs = np.nanmax(np.abs(cmap_trunc)) cs = m3.contourf(lon2_new,lat2_new,cmap_trunc,cints,cmap=plt.get_cmap(cmap),vmin=-maxabs,vmax=maxabs) m3.drawcoastlines() cb = m1.colorbar(cs) tick_locator = ticker.MaxNLocator(nbins=nticks) cb.locator = tick_locator cb.ax.yaxis.set_major_locator(matplotlib.ticker.AutoLocator()) cb.update_ticks() ax.set_title('CMAP '+verif_dict[var][1]+' '+str(ntrunc_new) + ' ' + str(yr)) ax = fig.add_subplot(3,2,5) m3 = bm.Basemap(projection='robin',lon_0=0) # maxabs = np.nanmax(np.abs(tcr_trunc)) cs = m3.contourf(lon2_new,lat2_new,tcr_trunc,cints,cmap=plt.get_cmap(cmap),vmin=-maxabs,vmax=maxabs) m3.drawcoastlines() cb = m1.colorbar(cs) tick_locator = ticker.MaxNLocator(nbins=nticks) cb.locator = tick_locator cb.ax.yaxis.set_major_locator(matplotlib.ticker.AutoLocator()) cb.update_ticks() ax.set_title('20CR-V2 '+verif_dict[var][1]+' '+str(ntrunc_new) + ' ' + str(yr)) ax = fig.add_subplot(3,2,6) m3 = bm.Basemap(projection='robin',lon_0=0) # maxabs = np.nanmax(np.abs(era_trunc)) cs = m3.contourf(lon2_new,lat2_new,era_trunc,cints,cmap=plt.get_cmap(cmap),vmin=-maxabs,vmax=maxabs) m3.drawcoastlines() cb = m1.colorbar(cs) tick_locator = ticker.MaxNLocator(nbins=nticks) cb.locator = tick_locator cb.ax.yaxis.set_major_locator(matplotlib.ticker.AutoLocator()) cb.update_ticks() ax.set_title('ERA20C '+verif_dict[var][1]+' '+str(ntrunc_new) + ' ' + str(yr)) plt.clim(-maxabs,maxabs) # get these numbers by adjusting the figure interactively!!! plt.subplots_adjust(left=0.05, bottom=0.45, right=0.95, top=0.95, wspace=0.1, hspace=0.0) # plt.tight_layout(pad=0.3) fig.suptitle(verif_dict[var][1] + ' for ' +str(nya) +' year centered average') # anomaly correlation lmrvec = np.reshape(lmr_trunc,(1,nlat_new*nlon_new)) gpcpvec = np.reshape(gpcp_trunc,(1,nlat_new*nlon_new)) cmapvec = np.reshape(cmap_trunc,(1,nlat_new*nlon_new)) tcrvec = np.reshape(tcr_trunc,(1,nlat_new*nlon_new)) eravec = np.reshape(era_trunc,(1,nlat_new*nlon_new)) # lmr <-> gpcp indok = np.isfinite(gpcpvec); nbok = np.sum(indok); nball = gpcpvec.shape[1] ratio = float(nbok)/float(nball) if ratio > valid_frac: lg_csave[k] =
np.corrcoef(lmrvec[indok],gpcpvec[indok])
numpy.corrcoef
import numpy as np import cv2 import imutils import argparse import os from tensorflow import keras from imutils import contours from skimage.filters import threshold_local from src.sudoku import * from src.image_search import processing, sort from src.model_prediction import model_prediction def main(): # !! Select image path !! path = "assets/samples/sample1.jpg" # !! Load Model !! model = keras.models.load_model('model/model_tf.h5') # Load board board = grid_operator(path, model) # Solve it... test() solve_all([(board)], None, 0.0) # Generate grid with given numers using AI def grid_operator(image, model): # Filter contours and fix lines, output --> grid sudoku_rows, row, gray = sort(image) # Define local variables board, pos_iD = [], 0 for row in sudoku_rows: for c in row: mask = np.zeros(gray.shape, dtype=np.uint8) cv2.drawContours(mask, [c], -1, (255, 255, 255), -1) # Extract out the object and place into output image image =
np.zeros_like(gray)
numpy.zeros_like
# -*- coding: utf-8 -*- import fire from tqdm import tqdm from arena_util import load_json from arena_util import write_json from arena_util import remove_seen from arena_util import most_popular import numpy as np class MostPopular: def _generate_answers(self, train, questions,song_meta): song_infos = {} for t in train: song_infos[t['id']]=[song_meta[a] for a in t['songs']] plylst_list = {} for plylst, songs in song_infos.items(): plylst_list[plylst] = songs2vec(songs) answers = [] for q in tqdm(questions): answers.append({ "id": q["id"], "songs": remove_seen(q["songs"], song_mp)[:100], "tags": remove_seen(q["tags"], tag_mp)[:10], }) return answers def run(self, train_fname, question_fname, song_meta_fname): print("Loading train file...") train = load_json(train_fname) print("Loading question file...") questions = load_json(question_fname) print("Loading song_meta file...") song_meta = load_json(song_meta_fname) print("Writing answers...") answers = self._generate_answers(train, questions, song_meta) write_json(answers, "results/results.json") def one_hot_encode(song): song_vec = np.zeros(30) for genre in song['song_gn_gnr_basket']: try: song_vec[int(int(genre[2:])/100)-1] = 1 except: pass #print("error in : ",genre) return song_vec def normalize(v): #norm = np.linalg.norm(v) norm = np.sum(v) if norm == 0: return v return v / norm def songs2vec(songs): plylst_vec_list = np.zeros(30) for i in range(len(songs)): plylst_vec_list += one_hot_encode(songs[i]) if
np.linalg.norm(plylst_vec_list)
numpy.linalg.norm
# -*- coding: utf-8 -*- """ Pitch Spelling using the ps13 algorithm. References ---------- """ import numpy as np from collections import namedtuple __all__ = ['estimate_spelling'] ChromamorpheticPitch = namedtuple('ChromamorpheticPitch', 'chromatic_pitch morphetic_pitch') STEPS = np.array(['A', 'B', 'C', 'D', 'E', 'F', 'G']) UND_CHROMA = np.array([0, 2, 3, 5, 7, 8, 10], dtype=np.int) ALTER = np.array(['n', '#', 'b']) def estimate_spelling(note_array, method='ps13s1', *args, **kwargs): """Estimate pitch spelling using the ps13 algorithm [4]_, [5]_. Parameters ---------- note_array : structured array Array with score information method : str (default 'ps13s1') Pitch spelling algorithm. More methods will be added. *args positional arguments for the algorithm specified in `method`. **kwargs Keyword arguments for the algorithm specified in `method`. Returns ------- spelling : structured array Array with pitch spellings. The fields are 'step', 'alter' and 'octave' References ---------- .. [4] <NAME>. (2006). "The ps13 Pitch Spelling Algorithm". Journal of New Music Research, 35(2):121. .. [5] <NAME>. (2019). "RecurSIA-RRT: Recursive translatable point-set pattern discovery with removal of redundant translators". 12th International Workshop on Machine Learning and Music. Würzburg, Germany. """ if method == 'ps13s1': ps = ps13s1 step, alter, octave = ps(note_array, *args, **kwargs) spelling = np.empty(len(step), dtype=[('step', 'U1'), ('alter', np.int), ('octave', np.int)]) spelling['step'] = step spelling['alter'] = alter spelling['octave'] = octave return spelling def ps13s1(note_array, K_pre=10, K_post=40): """ ps13s1 Pitch Spelling Algorithm """ pitch_sort_idx = note_array['pitch'].argsort() onset_sort_idx = np.argsort(note_array[pitch_sort_idx]['onset'], kind='mergesort') sort_idx = pitch_sort_idx[onset_sort_idx] re_idx = sort_idx.argsort() # o_idx[sort_idx] sorted_ocp = np.column_stack( (note_array[sort_idx]['onset'], chromatic_pitch_from_midi(note_array[sort_idx]['pitch']))) n = len(sorted_ocp) # ChromaList chroma_array = compute_chroma_array(sorted_ocp=sorted_ocp) # ChromaVectorList chroma_vector_array = compute_chroma_vector_array(chroma_array=chroma_array, K_pre=K_pre, K_post=K_post) morph_array = compute_morph_array(chroma_array=chroma_array, chroma_vector_array=chroma_vector_array) morphetic_pitch = compute_morphetic_pitch(sorted_ocp, morph_array) step, alter, octave = p2pn(sorted_ocp[:, 1], morphetic_pitch.reshape(-1, )) # sort back pitch names step = step[re_idx] alter = alter[re_idx] octave = octave[re_idx] return step, alter, octave def chromatic_pitch_from_midi(midi_pitch): return midi_pitch - 21 def chroma_from_chromatic_pitch(chromatic_pitch): return np.mod(chromatic_pitch, 12) def pitch_class_from_chroma(chroma): return np.mod(chroma - 3, 12) def compute_chroma_array(sorted_ocp): return chroma_from_chromatic_pitch(sorted_ocp[:, 1]).astype(np.int) def compute_chroma_vector_array(chroma_array, K_pre, K_post): """ Computes the chroma frequency distribution within the context surrounding each note. """ n = len(chroma_array) chroma_vector = np.zeros(12, dtype=np.int) for i in range(np.minimum(n, K_post)): chroma_vector[chroma_array[i]] = 1 + chroma_vector[chroma_array[i]] chroma_vector_list = [chroma_vector.copy()] for i in range(1, n): if i + K_post <= n: chroma_vector[chroma_array[i + K_post - 1]] = 1 + chroma_vector[chroma_array[i + K_post - 1]] if i - K_pre > 0: chroma_vector[chroma_array[i - K_pre - 1]] = chroma_vector[chroma_array[i - K_pre - 1]] - 1 chroma_vector_list.append(chroma_vector.copy()) return np.array(chroma_vector_list) def compute_morph_array(chroma_array, chroma_vector_array): n = len(chroma_array) # Line 1: Initialize morph array morph_array = np.empty(n, dtype=np.int) # Compute m0 # Line 2 init_morph = np.array([0, 1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 6], dtype=np.int) # Line 3 c0 = chroma_array[0] # Line 4 m0 = init_morph[c0] # Line 5 morph_int = np.array([0, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6], dtype=np.int) # Lines 6-8 tonic_morph_for_tonic_chroma = np.mod(m0 - morph_int[np.mod(c0 - np.arange(12), 12)], 7) # Line 10 tonic_chroma_set_for_morph = [[] for i in range(7)] # Line 11 morph_strength = np.zeros(7, dtype=np.int) # Line 12 for j in range(n): # Lines 13-15 (skipped line 9, since we do not need to # initialize morph_for_tonic_chroma) morph_for_tonic_chroma = np.mod(morph_int[np.mod(chroma_array[j] -
np.arange(12)
numpy.arange
# -*- coding: utf-8 -*- """This module implements the ITKrMM algorithm. """ import time import logging import functools import multiprocessing as mp import numpy as np import numpy.random as rd import numpy.linalg as lin import scipy.sparse as sps from ..tools.dico_learning import forward_patch_transform,\ inverse_patch_transform, CLS_init from ..tools import PCA from ..tools import sec2str from ..tools import metrics _logger = logging.getLogger(__name__) class Dico_Learning_Executer: """Class to define execute dictionary learning algorithms. The following class is a common code for most dictionary learning methods. It performs the following tasks: * reshapes the data in patch format, * performs low-rank component estimation, * starts the dictionary learning method, * reshape output data, * handle CLS initialization to speed-up computation. Attributes ---------- Y: (m, n) or (m, n, l) numpy array The input data. Y_PCA: (m, n) or (m, n, PCA_th) numpy array The input data in PCA space. Its value is Y if Y is 2D. mask: (m, n) numpy array The acquisition mask. P: int The width (or height) of the patch. K: int The dictionary dimension. This dictionary is composed of L low-rank components and K-L non-low-rank components. L: int The number of low rank components to learn. S: int The code sparsity level. Nit_lr: int The number of iterations for the low rank estimation. Nit: int The number of iterations. CLS_init: dico CLS initialization inofrmation. verbose: bool The verbose parameter. Default is True. mean_std: 2-tuple Tuple of size 2 which contains the data mean and std. data: (N, D) numpy array The Y data in patch format. N (resp. D) is the number of voxels per patch (resp. patches). mdata: (N, D) numpy array The mask in patch format. N (resp. D) is the number of voxels per patch (resp. patches). init: (N, L) numpy array The low-rank estimation initialization in patch format. N is the number of voxels per patch. init: (N, K-L) numpy array The dictionary-learning initialization in patch format. N is the number of voxels per patch. PCA_operator: PcaHandler object The PCA operator. Note ---- The algorithm can be initialized with CLS as soon as :code:`CLS_init` is not None. In this case, :code:`CLS_init` should be a dictionary containing the required :code:`Lambda` key and eventually the CLS :code:`init` optional argument. """ def __init__(self, Y, mask=None, P=5, K=None, L=1, S=None, Nit_lr=10, Nit=40, init_lr=None, init=None, CLS_init=None, PCA_transform=True, PCA_th='auto', verbose=True): """Dico_Learning_Executer __init__ function. Arguments --------- Y: (m, n) or (m, n, l) numpy array The input data. mask: optional, None, (m, n) numpy array The acquisition mask. Default is None for full sampling. P: optional, int The width (or height) of the patch. Default is 5. K: optional, int The dictionary dimension. Default is 2*P**2-1. L: optional, int The number of low rank components to learn. Default is 1. S: optional, int The code sparsity level. Default is P-L. This should be lower than K-L. Nit_lr: optional, int The number of iterations for the low rank estimation. Default is 10. Nit: optional, int The number of iterations. Default is 40. init_lr: optional, (N, L) numpy array Initialization for low-rank component. N is the number of voxel in a patch. Default is random initialization. init: optional, (N, K-L) numpy array Initialization for dictionary learning. N is the number of voxel in a patch. Default is random initialization. CLS_init: optional, dico CLS initialization infrmation. See Note for details. Default is None. PCA_transform: optional, bool Enables the PCA transformation if True, otherwise, no PCA transformation is processed. Default is True. PCA_th: optional, int, str The desired data dimension after dimension reduction. Possible values are 'auto' for automatic choice, 'max' for maximum value and an int value for user value. Default is 'auto'. verbose: bool The verbose parameter. Default is True. Note ---- The algorithm can be initialized with CLS as soon as :code:`CLS_init` is not None. In this case, :code:`CLS_init` should be a dictionary containing the required :code:`Lambda` key and eventually the CLS :code:`init` optional argument. """ self.Y = Y if mask is None: mask = np.ones(Y.shape[:2]) self.mask = mask self.P = P self.K = K if K is not None else 2*P**2-1 self.L = L self.S = S if S is not None else P-L self.Nit = Nit self.Nit_lr = Nit_lr self.CLS_init = CLS_init self.verbose = verbose if CLS_init is not None and Y.ndim != 3: _logger.warning( 'Dico learning will not be initialized with CLS as input data ' 'is not 3D. Random init used.') if (S > P**2 and Y.ndim == 2) or ( S > P**2*Y.shape[-1] and Y.ndim == 3): raise ValueError('S input is smaller than the patch size.') # Perform PCA if Y is 3D if self.Y.ndim == 3: PCA_operator = PCA.PcaHandler( Y, mask, PCA_transform=PCA_transform, PCA_th=PCA_th, verbose=verbose) Y_PCA, PCA_th = PCA_operator.Y_PCA, PCA_operator.PCA_th self.PCA_operator = PCA_operator if CLS_init is not None and 'init' in CLS_init: self.CLS_init['init'] = PCA_operator.direct( self.CLS_init['init']) else: Y_PCA = Y.copy() self.PCA_operator = None # Normalize and center Y_m, Y_std = Y_PCA.mean(), Y_PCA.std() Y_PCA = (Y_PCA - Y_m)/Y_std if CLS_init is not None and 'init' in CLS_init: self.CLS_init['init'] = (self.CLS_init['init'] - Y_m)/Y_std self.mean_std = (Y_m, Y_std) self.Y_PCA = Y_PCA # Prepare data obs_mask = mask if Y.ndim == 2 else np.tile( mask[:, :, np.newaxis], [1, 1, Y_PCA.shape[2]]) # Observation self.data = forward_patch_transform(Y_PCA * obs_mask, self.P) # Mask self.mdata = forward_patch_transform(obs_mask, self.P) self.data *= self.mdata # Initialization if init_lr is None: self.init_lr = np.squeeze(rd.randn(self.data.shape[0], self.L)) else: self.init_lr = init_lr if init is None: self.init = rd.randn(self.data.shape[0], self.K - self.L) else: self.init = init def execute(self, method='ITKrMM'): """Executes dico learning restoration. Arguments --------- method: str The method to use, which can be 'ITKrMM' or 'wKSVD'. Default is 'ITKrMM'. Returns ------- (m, n) or (m, n, l) numpy array Restored data. dict Aditional informations. See Notes. Note ---- The output information keys are: - 'time': Execution time in seconds. - 'lrc': low rank component. - 'dico': Estimated dictionary. - 'E': Evolution of the error. """ # Welcome message if self.verbose: print("-- {} reconstruction algorithm --".format(method)) start = time.time() # If CLS init, get init dico and lrc if self.CLS_init is not None and self.Y.ndim == 3: if self.verbose: print('Learning low rank component and init with CLS...') lrc, dico_init = self.get_CLS_init() self.init_lr = lrc self.init = dico_init else: # Otherwise, we should estimate the low-rank component. if self.verbose: print('Learning low rank component...') if self.L > 0: local_init = self.init_lr if self.L > 1 else \ self.init_lr[:, None] lrc = np.zeros((self.data.shape[0], self.L)) for cnt in range(self.L): lrc_init = local_init[:, cnt] if cnt > 0: lrc_init -= lrc[:, :cnt] @ lrc[:, :cnt].T @ lrc_init lrc_init /= np.linalg.norm(lrc_init) lrc[:, cnt] = rec_lratom( self.data, self.mdata, lrc[:, :cnt] if cnt > 0 else None, self.Nit_lr, lrc_init) else: lrc = None # # Learn Dictionary # if self.verbose: print('Learning dictionary...'.format(method)) # Remove lrc and ensures othogonality of input dico initialization. if self.L > 1: self.init -= lrc @ lrc.T @ self.init self.init = self.init @ np.diag(1 / lin.norm(self.init, axis=0)) # Call reconstruction algo params = { 'data': self.data, 'masks': self.mdata, 'K': self.K, 'S': self.S, 'lrc': lrc, 'Nit': self.Nit, 'init': self.init, 'verbose': self.verbose} if method == 'ITKrMM': dico_hat, info = itkrmm_core(**params) elif method == 'wKSVD': dico_hat, info = wKSVD_core(**params, preserve_DC=True) else: raise ValueError( 'Unknown method parameter for Dico_Learning_Executer object') # # Reconstruct data # Xhat = self.dico_to_data(dico_hat) # Reshape output dico p = self.P shape_dico = (self.K, p, p) if self.Y.ndim == 2 else ( self.K, p, p, self.Y_PCA.shape[-1]) dico = dico_hat.T.reshape(shape_dico) # Manage output info dt = time.time() - start InfoOut = {'dico': dico, 'time': dt} if self.CLS_init is not None: dico_CLS = np.hstack((self.init_lr, self.init)) InfoOut['CLS_init'] = dico_CLS.T.reshape(shape_dico) if self.PCA_operator is not None: PCA_info = { 'H': self.PCA_operator.H, 'PCA_th': self.PCA_operator.PCA_th, 'Ym': np.squeeze(self.PCA_operator.Ym[0, 0, :]) } InfoOut['PCA_info'] = PCA_info if self.verbose: print( "Done in {}.\n---".format(sec2str.sec2str(dt))) return Xhat, InfoOut def dico_to_data(self, dico): """Estimate reconstructed data based on the provided dictionary. Arguments --------- dico: (P**2, K) or (P**2*l, K) numpy array The estimated dictionary. Returns ------- (m, n) or (m, n, l) numpy array The reconstructed data """ # Recontruct data from dico and coeffs. coeffs = OMPm(dico.T, self.data.T, self.S, self.mdata.T) outpatches = sps.csc_matrix.dot(dico, (coeffs.T).tocsc()) # Transform from patches to data. Xhat = inverse_patch_transform(outpatches, self.Y_PCA.shape) Xhat = Xhat * self.mean_std[1] + self.mean_std[0] if self.Y.ndim == 3: Xhat = self.PCA_operator.inverse(Xhat) return Xhat def get_CLS_init(self): """Computes the initialization with CLS. Returns ------- (N, L) numpy array Low-rank component estimation. N is the number of voxels in a patch. (N, K-L) numpy array Dictionary initialization. N is the number of voxels in a patch. """ # Get initialization dictionary D, C, Xhat, InfoOut = CLS_init( self.Y_PCA, mask=self.mask, P=self.P, K=self.K - self.L, S=self.S, PCA_transform=False, verbose=self.verbose, **self.CLS_init) # Get low rank component CLS_data = forward_patch_transform(Xhat, self.P) Uec, _, _ = np.linalg.svd(CLS_data) init_lr = Uec[:, :self.L] dico_init = D.T return init_lr, dico_init def ITKrMM(Y, mask=None, P=5, K=None, L=1, S=None, Nit_lr=10, Nit=40, init_lr=None, init=None, CLS_init=None, PCA_transform=True, PCA_th='auto', verbose=True): """ITKrMM restoration algorithm. Arguments --------- Y: (m, n) or (m, n, l) numpy array The input data. mask: optional, None or (m, n) numpy array The acquisition mask. Default is None for full sampling. P: optional, int The width (or height) of the patch. Default is 5. K: optional, int The dictionary dimension. Default is 128. L: optional, int The number of low rank components to learn. Default is 1. S: optional, int The code sparsity level. Default is 20. Nit_lr: optional, int The number of iterations for the low rank estimation. Default is 10. Nit: optional, int The number of iterations. Default is 40. init: (P**2, K+L) or (P**2*l, K+L) numpy array Initialization dictionary. CLS_init: optional, dico CLS initialization inofrmation. See Notes for details. Default is None. xref: optional, (m, n) or (m, n, l) numpy array Reference image to compute error evolution. Default is None for input Y data. verbose: optional, bool The verbose parameter. Default is True. PCA_transform: optional, bool Enables the PCA transformation if True, otherwise, no PCA transformation is processed. Default is True. PCA_th: optional, int, str The desired data dimension after dimension reduction. Possible values are 'auto' for automatic choice, 'max' for maximum value and an int value for user value. Default is 'auto'. Returns ------- (m, n) or (m, n, l) numpy array Restored data. dict Aditional informations. See Notes. Notes ----- The algorithm can be initialized with CLS as soon as :code:`CLS_init` is not None. In this case, :code:`CLS_init` should be a dictionary containing the required :code:`Lambda` key and eventually the :code:`init` optional argument. The output information keys are: * :code:`time`: Execution time in seconds. * :code:`lrc`: low rank component. * :code:`dico`: Estimated dictionary. * :code:`E`: Evolution of the error. """ obj = Dico_Learning_Executer( Y, mask, P, K, L, S, Nit_lr, Nit, init_lr, init, CLS_init, PCA_transform, PCA_th, verbose) return obj.execute(method='ITKrMM') def wKSVD(Y, mask=None, P=5, K=None, L=1, S=None, Nit_lr=10, Nit=40, init_lr=None, init=None, CLS_init=None, PCA_transform=True, PCA_th='auto', verbose=True): """wKSVD restoration algorithm. Arguments --------- Y: (m, n) or (m, n, l) numpy array The input data. mask: optional, None or (m, n) numpy array The acquisition mask. Default is None for full sampling. P: optional, int The width (or height) of the patch. Default is 5. K: optional, int The dictionary dimension. Default is 128. L: optional, int The number of low rank components to learn. Default is 1. S: optional, int The code sparsity level. Default is 20. Nit_lr: optional, int The number of iterations for the low rank estimation. Default is 10. Nit: optional, int The number of iterations. Default is 40. init: (P**2, K+L) or (P**2*l, K+L) numpy array Initialization dictionary. CLS_init: optional, dico CLS initialization inofrmation. See Notes for details. Default is None. xref: optional, (m, n) or (m, n, l) numpy array Reference image to compute error evolution. Default is None for input Y data. verbose: optional, bool The verbose parameter. Default is True. PCA_transform: optional, bool Enables the PCA transformation if True, otherwise, no PCA transformation is processed. Default is True. PCA_th: optional, int, str The desired data dimension after dimension reduction. Possible values are 'auto' for automatic choice, 'max' for maximum value and an int value for user value. Default is 'auto'. Returns ------- (m, n) or (m, n, l) numpy array Restored data. dict Aditional informations. See Notes. Notes ----- The algorithm can be initialized with CLS as soon as :code:`CLS_init` is not None. In this case, :code:`CLS_init` should be a dictionary containing the required :code:`Lambda` key and eventually the :code:`init` optional argument. The output information keys are: * :code:`time`: Execution time in seconds. * :code:`lrc`: low rank component. * :code:`dico`: Estimated dictionary. * :code:`E`: Evolution of the error. """ obj = Dico_Learning_Executer( Y, mask, P, K, L, S, Nit_lr, Nit, init_lr, init, CLS_init, PCA_transform, PCA_th, verbose) return obj.execute(method='wKSVD') def rec_lratom(data, masks=None, lrc=None, Nit=10, inatom=None, verbose=True): """Recover new low rank atom equivalent to itkrmm with K = S = 1. Arguments --------- data: (d, N) numpy array The (corrupted) training signals as its columns. masks: (d, N) numpy array Mask data as its columns. masks(.,.) in {0,1}. Default is masks = 1. lrc: (d, n) numpy array Orthobasis for already recovered low rank component. Default is None. Nit: int Number of iterations. Default is 10. inatom: (d, ) numpy array Initialisation that should be normalized. Default is None for random. verbose: bool If verbose is True, information is sent to the output. Default is True. Returns ------- atom: (d, ) numpy array Estimated low rank component. """ d, N = data.shape if masks is None: masks = np.ones((d, N)) data = data*masks # Safeguard # Create random initial point if needed or check input initialization is # normalized. if inatom is None: inatom = np.random.randn(d) inatom = inatom/np.linalg.norm(inatom) # if lrc is not None: # If lrc has 1 dimension, one should add a dimension to have correct # L. if lrc.ndim == 1: lrc = lrc[:, np.newaxis] L = lrc.shape[1] # Remove low rank component from initial atom and re-normalize. inatom = inatom - lrc @ lrc.T @ inatom inatom = inatom/np.linalg.norm(inatom) # Project data into orthogonal of lrc # start = time.time() for n in range(N): lrcMn = lrc * np.tile(masks[:, n][:, np.newaxis], [1, L]) data[:, n] -= lrcMn @ np.linalg.pinv(lrcMn) @ data[:, n] # if verbose: # print('Elapsed time: {}'.format( # sec2str.sec2str(time.time()-start))) # # Start estimation atom_k = inatom for it in range(Nit): ip = atom_k.T.dot(data) maskw = np.sum(masks, 1) if lrc is None: atom_kp1 = data @ np.sign(ip).T else: atom_kp1 = np.zeros(atom_k.shape) for n in range(N): # The masked basis of the current low-rank space. lrcplus = np.concatenate( (lrc, atom_k[:, np.newaxis]), axis=1) * np.tile(masks[:, n][:, np.newaxis], [1, L+1]) # The data is projected into the orthogonal space of lrcplus. resn = data[:, n] - \ lrcplus @ np.linalg.pinv(lrcplus) @ data[:, n] # The masked current estimated lrc. atom_k_mm = atom_k * masks[:, n] # Calculate incremented atom_kp1. atom_kp1 += \ np.sign(ip[n]) * resn + \ np.abs(ip[n])*atom_k_mm/np.sum(atom_k_mm**2) # Normalize with mask score. if maskw.min() > 0: atom_kp1 /= maskw else: atom_kp1 /= (maskw + 1e-2) # Remove previous low rank components from current estimate. if lrc is not None: atom_kp1 -= lrc @ lrc.T @ atom_kp1 # Re-normalize current estimation atom_kp1 /= np.linalg.norm(atom_kp1) # Update atom_k = atom_kp1 return atom_k def OMPm(D, X, S, Masks=None): r"""Masked OMP. This is a modified version of OMP to account for corruptions in the signal. Consider some input data :math:`\mathbf{X}` (whose shape is (N, P) where N is the number of signals) which are masked by :math:`\mathbf{M}`. Given an input dictionary :math:`\mathbf{D}` of shape (K, P), this algorithm returns the optimal sparse :math:`\hat{\mathbf{A}}` matrix such that: .. math:: \gdef \A {\mathbf{A}} \gdef \M {\mathbf{M}} \gdef \X {\mathbf{X}} \gdef \D {\mathbf{D}} \begin{aligned} \hat{\A} &= \arg\min_\A \frac{1}{2}||\M\X - \M(\A\D)||_F^2\\ &s.t. \max_k||\A_{k,:}||_{0} \leq S \end{aligned} A slightly different modification of Masked OMP is available in "Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing," the book written by <NAME> in 2010. Arguments --------- D: (K, P) numpy array The dictionary. Its rows MUST be normalized, i.e. their norm must be 1. X: (N, P) numpy array The masked signals to represent. S: int The max. number of coefficients for each signal. Masks: optional, (N, P) numpy array or None The sampling masks that should be 1 if sampled and 0 otherwise. Default is None for full sampling. Returns ------- (N, K) sparse coo_matrix array sparse coefficient matrix. """ # Get some dimensions N = X.shape[0] # # of pixels in atoms P = X.shape[1] # # of signals K = D.shape[0] # # of atoms if Masks is None: Masks = np.ones((N, P)) # Prepare the tables that will be used to create output sparse matrix. iTab = np.zeros(N*S) jTab = np.zeros(N*S) dataTab = np.zeros(N*S) Ncomp = 0 # Count the number of nnz elements for output. for k in range(N): # Local mask and signal # k x = X[k, :] m = Masks[k, :] xm = x*m # Masked data # Masked atoms Dm = D * np.tile(m[np.newaxis, :], [K, 1]) # Normalization of available masked atoms scale = np.linalg.norm(Dm, axis=1) nz = np.flatnonzero(scale > 1e-3 / np.sqrt(N)) scale[nz] = 1/scale[nz] # Initialize residuals residual = xm # Initialize the sequence of atom indexes indx = np.zeros(S, dtype=int) for j in range(S): # Projection of the residual into dico proj = scale * (Dm @ residual) # Search max scalar product indx[j] = np.argmax(np.abs(proj)) # Update residual a = np.linalg.pinv(Dm[indx[:j+1], :].T) @ xm residual = xm - Dm[indx[:j+1], :].T @ a # In case of small residual, break if np.linalg.norm(residual)**2 < 1e-6: break iTab[Ncomp:Ncomp+j+1] = k * np.ones(j+1) jTab[Ncomp:Ncomp+j+1] = indx[:j+1] dataTab[Ncomp:Ncomp+j+1] = a Ncomp += j+1 # Build sparse output as scipy.sparse.coo_matrix return sps.coo_matrix((dataTab, (iTab, jTab)), shape=(N, K)) def _itkrmm_multi(n, lrc, data, masks, L): """ """ lrcMn = lrc * np.tile(masks[:, n][:, np.newaxis], [1, L]) return lrcMn @ np.linalg.pinv(lrcMn) @ data[:, n] def itkrmm_core( data, masks=None, K=None, S=1, lrc=None, Nit=50, init=None, verbose=True, parent=None): """Iterative Thresholding and K residual Means masked. Arguments --------- data: (d, N) numpy array The (corrupted) training signals as its columns. masks: optional, None, (d, N) numpy array The masks as its columns. masks(.,.) in {0,1}. Default is None for full sampling. K: optional, None or int Dictionary size. Default is None for d. S: optional, int Desired or estimated sparsity level of the signals. Default is 1. lrc: optional, None or (d, L) numpy array Orthobasis for low rank component. Default is None. Nit: optional, int Number of iterations. Default is 50. init: optional, None or (d, K-L) numpy array Initialisation, unit norm column matrix. Here, L is the number of low rank components. Default is None for random. verbose: optional, optional, bool The verbose parameter. Default is True. parent: optional, None or Dico_Learning_Executer object The Dico_Learning_Executer object that called this function. If this is not None, the SNR between initial true data (given throught the `xref`argument of Dico_Learning_Executer) and the currently reconstructed data will be computed for each iteration. As this means one more OMPm per iteration, this is quite longer. Default is None for faster code and non-SNR output. Returns ------- (d, K) numpy array Estimated dictionary dictionary Output information. See Note. Note ---- The output dictionary contains the following keys. * `time` (float): Execution time in seconds. * 'SNR' (None, (Nit, ) array): Evolution of the SNR across the iterations in case `parent`is not None. """ # d is patch size, N is # of patches. d, N = data.shape if masks is None: masks = np.ones(data.shape) data = data*masks # safeguard if K is None: K = data.shape[0] if lrc is not None: L = 1 if lrc.ndim == 1 else lrc.shape[1] K = K - L if N < K-1: _logger.warning( 'Less training signals than atoms: trivial solution is data.') return data, None if init is not None and not np.array_equal(init.shape,
np.array([d, K])
numpy.array
##~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~## ## ## ## This file forms part of the Badlands surface processes modelling application. ## ## ## ## For full license and copyright information, please refer to the LICENSE.md file ## ## located at the project root, or contact the authors. ## ## ## ##~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~## """ This module defines the **erodibility** and **thickness** of previously defined stratigraphic layers. """ import os import glob import time import h5py import numpy import pandas from scipy import interpolate from scipy.spatial import cKDTree class eroMesh: """ This class builds the erodibility and thickness of underlying initial stratigraphic layers. Args: layNb: total number of erosion stratigraphic layers eroMap: erodibility map for each erosion stratigraphic layers eroVal: erodibility value for each erosion stratigraphic layers eroTop: erodibility value for reworked sediment thickMap: thickness map for each erosion stratigraphic layers thickVal: thickness value for each erosion stratigraphic layers xyTIN: numpy float-type array containing the coordinates for each nodes in the TIN (in m) regX: numpy array containing the X-coordinates of the regular input grid. regY: numpy array containing the Y-coordinates of the regular input grid. bPts: boundary points for the TIN. ePts: boundary points for the regular grid. folder: name of the output folder. rfolder: restart folder. rstep: restart step. """ def __init__( self, layNb, eroMap, eroVal, eroTop, thickMap, thickVal, xyTIN, regX, regY, bPts, ePts, folder, rfolder=None, rstep=0, ): self.regX = regX self.regY = regY self.layNb = layNb + 1 nbPts = len(xyTIN[:, 0]) self.folder = folder # Build erosion layers # If we restart a simulation if rstep > 0: if os.path.exists(rfolder): folder = rfolder + "/h5/" else: raise ValueError( "The restart folder is missing or the given path is incorrect." ) df = h5py.File("%s/h5/erolay.time%s.hdf5" % (rfolder, rstep), "r") self.thickness = numpy.array((df["/elayDepth"])) self.Ke = numpy.array((df["/elayKe"])) # Get erodibility from erosive layer thicknesses self.erodibility = numpy.zeros(nbPts) for k in range(self.layNb): existIDs = numpy.where( numpy.logical_and( self.thickness[:, k] > 0.0, self.erodibility[:] == 0.0 ) )[0] self.erodibility[existIDs] = self.Ke[existIDs, k] if len(numpy.where(self.erodibility == 0)[0]) == 0: break # Build the underlying erodibility mesh and associated thicknesses else: # Initial top layer (id=0) is for reworked sediment (freshly deposited) self.thickness = numpy.zeros((nbPts, self.layNb), dtype=float) self.Ke = numpy.zeros((nbPts, self.layNb), dtype=float) self.thickness[:, 0] = 0 self.Ke[:, 0] = eroTop # Define inside area kdtree inTree = cKDTree(xyTIN[bPts : ePts + bPts, :]) dist, inID = inTree.query(xyTIN[:bPts, :], k=1) inID += bPts # Loop through the underlying layers for l in range(1, self.layNb): # Uniform erodibility value if eroMap[l - 1] == None: self.Ke[:, l] = eroVal[l - 1] # Erodibility map else: eMap = pandas.read_csv( str(eroMap[l - 1]), sep=r"\s+", engine="c", header=None, na_filter=False, dtype=numpy.float, low_memory=False, ) reMap = numpy.reshape( eMap.values, (len(self.regX), len(self.regY)), order="F" ) self.Ke[bPts:, l] = interpolate.interpn( (self.regX, self.regY), reMap, xyTIN[bPts:, :], method="nearest" ) # Assign boundary nodes tmpK = self.Ke[bPts:, l] self.Ke[:bPts, l] = tmpK[inID] # Uniform thickness value if thickMap[l - 1] == None: self.thickness[:, l] = thickVal[l - 1] # Thickness map else: tMap = pandas.read_csv( str(thickMap[l - 1]), sep=r"\s+", engine="c", header=None, na_filter=False, dtype=numpy.float, low_memory=False, ) rtMap = numpy.reshape( tMap.values, (len(self.regX), len(self.regY)), order="F" ) self.thickness[bPts:, l] = interpolate.interpn( (self.regX, self.regY), rtMap, xyTIN[bPts:, :], method="linear" ) # Assign boundary nodes tmpH = self.thickness[bPts:, l] self.thickness[:bPts, l] = tmpH[inID] # Define active layer erodibility self.erodibility = numpy.zeros(nbPts) for l in range(1, self.layNb): # Get erodibility coefficients from active underlying layers tmpIDs = numpy.where( numpy.logical_and( self.thickness[:, l] > 0.0, self.erodibility[:] == 0.0 ) )[0] self.erodibility[tmpIDs] = self.Ke[tmpIDs, l] if len(numpy.where(self.erodibility == 0)[0]) == 0: break # Bottom layer is supposed to be infinitely thick self.thickness[:, self.layNb - 1] += 1.0e6 return def getErodibility(self, cumThick): """ Get the erodibility values for the surface based on underlying erosive stratigraphic layer. Args: cumThick: numpy float-type array containing the cumulative erosion/deposition of the nodes in the TIN """ # Update deposition depIDs = numpy.where(cumThick >= 0.0)[0] self.thickness[depIDs, 0] += cumThick[depIDs] # Update erosion eroIDs = numpy.where(cumThick < 0.0)[0] if len(eroIDs) > 0: for k in range(self.layNb): # Update thickness for remaining layers eIDs = numpy.where( numpy.logical_and( self.thickness[eroIDs, k] > 0.0, self.thickness[eroIDs, k] >= -cumThick[eroIDs], ) )[0] if len(eIDs) > 0: self.thickness[eroIDs[eIDs], k] += cumThick[eroIDs[eIDs]] cumThick[eroIDs[eIDs]] = 0.0 # Nullify eroded layer thicknesses and update erosion values eIDs = numpy.where( numpy.logical_and( self.thickness[eroIDs, k] > 0.0, cumThick[eroIDs] < 0.0 ) )[0] if len(eIDs) > 0: cumThick[eroIDs[eIDs]] += self.thickness[eroIDs[eIDs], k] self.thickness[eroIDs[eIDs], k] = 0.0 # Ensure non-negative values tmpIDs = numpy.where(self.thickness[:, k] < 0.0)[0] if len(tmpIDs) > 0: self.thickness[tmpIDs, k] = 0.0 if len(
numpy.where(cumThick < 0)
numpy.where
import sys import os import numpy as np import nibabel as nib import vnmrjpy as vj import warnings import matplotlib.pyplot as plt class KspaceMaker(): """Class to build the k-space from the raw fid data based on procpar. Raw fid_data is numpy.ndarray(blocks, traces * np) format. Should be untangled based on 'seqcon' or 'seqfil' parameters. seqcon chars refer to (echo, slice, Pe1, Pe2, Pe3) Should support compressed sensing In case of Compressed sensing the reduced kspace is filled with zeros to reach the intended final shape Leave rest of reconstruction to other classes/functions INPUT: fid data = np.ndarra([blocks, np*traces]) fid header procpar METHODS: make(): return kspace = nump.ndarray\ ([rcvrs, phase, read, slice, echo*time]) """ def __init__(self, fid_data, fidheader, procpar, verbose=False): """Reads procpar""" def _get_arrayed_AP(p): """check for arrayed pars in procpar Return: dictionary {par : array_length} """ AP_dict = {} for par in ['tr', 'te', 'fa']: pass return AP_dict self.p = vj.io.ProcparReader(procpar).read() self.fid_header = fidheader self.rcvrs = str(self.p['rcvrs']).count('y') self.arrayed_AP = _get_arrayed_AP(self.p) apptype = self.p['apptype'] self.config = vj.config self.verbose = verbose self.procpar = procpar # decoding skipint parameter # TODO # final kspace shape from config file self.dest_shape = (vj.config['rcvr_dim'],\ vj.config['pe_dim'],\ vj.config['ro_dim'],\ vj.config['slc_dim'],\ vj.config['et_dim']) self.pre_kspace = np.vectorize(complex)(fid_data[:,0::2],\ fid_data[:,1::2]) self.pre_kspace = np.array(self.pre_kspace,dtype='complex64') # check for arrayed parameters, save the length for later self.array_length = vj.util.calc_array_length(fid_data.shape,procpar) self.blocks = fid_data.shape[0] // self.array_length if verbose: print('Making k-space for '+ str(apptype)+' '+str(self.p['seqfil'])+\ ' seqcon: '+str(self.p['seqcon'])) def print_fid_header(self): for item in self.fhdr.keys(): print(str('{} : {}').format(item, self.fhdr[item])) def make(self): """Build k-space from fid data Return: kspace=numpy.ndarray([rcvrs,phase,readout,slice,echo/time]) """ def _is_interleaved(ppdict): res = (int(ppdict['sliceorder']) == 1) return res def _is_evenslices(ppdict): try: res = (int(ppdict['ns']) % 2 == 0) except: res = (int(ppdict['pss']) % 2 == 0) return res def make_im2D(): """Child method of 'make', provides the same as vnmrj im2Drecon""" p = self.p rcvrs = int(p['rcvrs'].count('y')) (read, phase, slices) = (int(p['np'])//2, \ int(p['nv']), \ int(p['ns'])) shiftaxis = (self.config['pe_dim'],self.config['ro_dim']) if 'ne' in p.keys(): echo = int(p['ne']) else: echo = 1 time = 1 finalshape = (rcvrs, phase, read, slices,echo*time*self.array_length) final_kspace = np.zeros(finalshape,dtype='complex64') for i in range(self.array_length): kspace = self.pre_kspace[i*self.blocks:(i+1)*self.blocks,...] if p['seqcon'] == 'nccnn': shape = (self.rcvrs, phase, slices, echo*time, read) kspace = np.reshape(kspace, shape, order='C') kspace = np.moveaxis(kspace, [0,1,4,2,3], self.dest_shape) elif p['seqcon'] == 'nscnn': raise(Exception('not implemented')) elif p['seqcon'] == 'ncsnn': preshape = (self.rcvrs, phase, slices*echo*time*read) shape = (self.rcvrs, phase, slices, echo*time, read) kspace = np.reshape(kspace, preshape, order='F') kspace = np.reshape(kspace, shape, order='C') kspace = np.moveaxis(kspace, [0,1,4,2,3], self.dest_shape) elif p['seqcon'] == 'ccsnn': preshape = (self.rcvrs, phase, slices*echo*time*read) shape = (self.rcvrs, phase, slices, echo*time, read) kspace = np.reshape(kspace, preshape, order='F') kspace = np.reshape(kspace, shape, order='C') kspace = np.moveaxis(kspace, [0,1,4,2,3], self.dest_shape) else: raise(Exception('Not implemented yet')) if _is_interleaved(p): # 1 if interleaved slices if _is_evenslices(p): c = np.zeros(kspace.shape, dtype='complex64') c[...,0::2,:] = kspace[...,:slices//2,:] c[...,1::2,:] = kspace[...,slices//2:,:] kspace = c else: c = np.zeros(kspace.shape, dtype='complex64') c[...,0::2,:] = kspace[...,:(slices+1)//2,:] c[...,1::2,:] = kspace[...,(slices-1)//2+1:,:] kspace = c final_kspace[...,i*echo*time:(i+1)*echo*time] = kspace self.kspace = final_kspace return final_kspace def make_im2Dcs(): """ These (*cs) are compressed sensing variants """ def decode_skipint_2D(skipint): pass raise(Exception('not implemented')) def make_im2Depi(): p = self.p kspace = self.pre_kspace print(kspace.shape) nseg = p['nseg'] kzero = int(p['kzero']) images = int(p['images']) # repetitions time = images if p['navigator'] == 'y': pluspe = 1 + int(p['nnav']) # navigator echo + unused else: pluspe = 1 # unused only print('images {}'.format(images)) print('nseg {}'.format(nseg)) print('ns {}'.format(p['ns'])) if p['pro'] != 0: (read, phase, slices) = (int(p['nread']), \ int(p['nphase']), \ int(p['ns'])) else: (read, phase, slices) = (int(p['nread'])//2, \ int(p['nphase']), \ int(p['ns'])) if p['seqcon'] == 'ncnnn': preshape = (self.rcvrs, phase+pluspe, slices, time, read) print(kspace.size) tmp = np.zeros(preshape) print(tmp.size) kspace = np.reshape(kspace, preshape, order='c') def make_im2Depics(): raise(Exception('not implemented')) def make_im2Dfse(): warnings.warn('May not work correctly') kspace = self.pre_kspace p = self.p petab = vj.util.getpetab(self.procpar,is_procpar=True) nseg = int(p['nseg']) # seqgments etl = int(p['etl']) # echo train length kzero = int(p['kzero']) images = int(p['images']) # repetitions (read, phase, slices) = (int(p['np'])//2, \ int(p['nv']), \ int(p['ns'])) shiftaxis = (self.config['pe_dim'],self.config['ro_dim']) echo = 1 time = images phase_sort_order = np.reshape(np.array(petab),petab.size,order='C') # shift to positive phase_sort_order = phase_sort_order + phase_sort_order.size//2-1 if p['seqcon'] == 'nccnn': #TODO check for images > 1 preshape = (self.rcvrs, phase//etl, slices, echo*time, etl, read) shape = (self.rcvrs, echo*time, slices, phase, read) kspace = np.reshape(kspace, preshape, order='C') kspace = np.swapaxes(kspace,1,3) kspace = np.reshape(kspace, shape, order='C') # shape is [rcvrs, phase, slices, echo*time, read] kspace = np.swapaxes(kspace,1,3) kspace_fin = np.zeros_like(kspace) kspace_fin[:,phase_sort_order,:,:,:] = kspace kspace_fin = np.moveaxis(kspace_fin, [0,1,4,2,3], self.dest_shape) kspace = kspace_fin else: raise(Exception('not implemented')) if _is_interleaved(p): # 1 if interleaved slices if _is_evenslices(p): c = np.zeros(kspace.shape, dtype='complex64') c[...,0::2,:] = kspace[...,:slices//2,:] c[...,1::2,:] = kspace[...,slices//2:,:] kspace = c else: c = np.zeros(kspace.shape, dtype='complex64') c[...,0::2,:] = kspace[...,:(slices+1)//2,:] c[...,1::2,:] = kspace[...,(slices-1)//2+1:,:] kspace = c self.kspace = kspace return kspace def make_im2Dfsecs(): raise(Exception('not implemented')) def make_im3D(): kspace = self.pre_kspace p = self.p (read, phase, phase2) = (int(p['np'])//2, \ int(p['nv']), \ int(p['nv2'])) shiftaxis = (self.config['pe_dim'],\ self.config['ro_dim'],\ self.config['pe2_dim']) if 'ne' in p.keys(): echo = int(p['ne']) else: echo = 1 time = 1 if p['seqcon'] == 'nccsn': preshape = (self.rcvrs,phase2,phase*echo*time*read) shape = (self.rcvrs,phase2,phase,echo*time,read) kspace = np.reshape(kspace,preshape,order='F') kspace = np.reshape(kspace,shape,order='C') kspace = np.moveaxis(kspace, [0,2,4,1,3], self.dest_shape) kspace = np.flip(kspace,axis=3) if p['seqcon'] == 'ncccn': preshape = (self.rcvrs,phase2,phase*echo*time*read) shape = (self.rcvrs,phase,phase2,echo*time,read) kspace = np.reshape(kspace,preshape,order='F') kspace = np.reshape(kspace,shape,order='C') kspace = np.moveaxis(kspace, [0,2,4,1,3], self.dest_shape) if p['seqcon'] == 'cccsn': preshape = (self.rcvrs,phase2,phase*echo*time*read) shape = (self.rcvrs,phase,phase2,echo*time,read) kspace =
np.reshape(kspace,preshape,order='F')
numpy.reshape
import numpy as np from scipy.io import wavfile import random import glob import time import museval ''' # FAST BSS TESTBED Version 0.1.0: timer_start(self): timer_value(self): timer_suspend(self): timer_resume(self): wavs_to_matrix_S(self, folder_address, duration, source_number): generate_matrix_A(self, S, mixing_type="random", max_min=(1, 0.01), mu_sigma=(0, 1)): generate_matrix_S_A_X(self, folder_address, wav_range, source_number, mixing_type="random", max_min=(1, 0.01), mu_sigma=(0, 1)): fast_psnr(self, S, hat_S): bss_evaluation(self, S, hat_S, type='fast_psnr'): # Basic definition: S: Source signals. shape = (source_number, time_slots_number) X: Mixed source signals. shape = (source_number, time_slots_number) A: Mixing matrix. shape = (source_number, source_number) B: Separation matrix. shape = (source_number, source_number) hat_S: Estimated source signals durch ICA algorithms. shape = (source_number, time_slots_number) # Notes: X = A @ S S = B @ X B = A ^ -1 ''' class PyFastbssTestbed: def __init__(self): self.timer_start_time = 0 self.timer_suspend_time = 0 def timer_start(self): ''' # timer_start(self): # Usage: Start the timer ''' self.timer_start_time = time.time() def timer_value(self): ''' # timer_value(self): # Usage: Get the current time # Output: The current value (i.e. time) of the timer ''' return 1000*(time.time()-self.timer_start_time) def timer_suspend(self): ''' # timer_suspend(self): # Usage: Suspend the timer ''' self.timer_suspend_time = time.time() def timer_resume(self): ''' # timer_resume(self): # Usage: Resume the timer ''' print("suspend: ", time.time() - self.timer_suspend_time) self.timer_start_time = self.timer_start_time + \ time.time() - self.timer_suspend_time def wavs_to_matrix_S(self, folder_address, duration, source_number): ''' # wavs_to_matrix_S(self, folder_address, duration, source_number): # Usage: Input the wav files to generate the source signal matrix S # Parameters: folder_address: Define folder adress, in which the *.wav files exist. The wav files must have only 1 channel. duration: The duration of the output original signals, i.e. the whole time domain of the output matrix S source number: The number of the source signals in matrix S # Output: Matrix S. The shape of the S is (source number, time slots number), the wav files are randomly selected to generate the matrix S. ''' wav_path = folder_address + '/*.wav' wav_filenames = glob.glob(wav_path) random_indexs = random.sample(range(len(wav_filenames)), source_number) S = [] for i in range(source_number): sample_rate, _s = wavfile.read(wav_filenames[random_indexs[i]]) wav_length = np.shape(_s)[-1] wav_range = int(duration*sample_rate) if wav_range > wav_length: raise ValueError('Error - wav_to_S : The wav_range too big !') wav_start = int(0.5*wav_length) - int(0.5*wav_range) wav_stop = int(0.5*wav_length) + int(0.5*wav_range) _single_source = _s[wav_start:wav_stop] _single_source = _single_source / np.mean(abs(_single_source)) S.append(_single_source) return np.asarray(S) def generate_matrix_A(self, S, mixing_type="random", max_min=(1, 0.01), mu_sigma=(0, 1)): ''' # generate_matrix_A(self, S, mixing_type="random", max_min=(1,0.01), mu_sigma=(0,1)): # Usage: Generate the mixing matrix A according to the size of the source signal matrix S # Parameters: mixing_type: 'random': The value of a_i_j are in interval (minimum_value, minimum_value) randomly distributed 'normal': The value of a_i_j (i==j) are equal to 1. The value of a_i_j (i!=j) are normal distributed, the distribution correspond with N(mu,sigma) normal distirbution, where the mu is the average value of the a_i,j (i!=j) , and the sigma is the variance of the a_i_j (i!=j). max_min: max_min = (minimum_value, minimum_value), are used when the mixing_type is 'random' mu_sigma: mu_sigma = (mu, sigma), are used when the mix_type is 'normal' # Output: Mixing matrix A. ''' source_number = np.shape(S)[0] A = np.zeros([source_number, source_number]) if source_number < 2: raise ValueError( 'Error - mixing matrix : The number of the sources must more than 1!') if mixing_type == "random": A = np.ones((source_number, source_number), np.float) for i in range(source_number): for j in range(source_number): if i != j: A[i, j] = max_min[1] + \ (max_min[0]-max_min[1])*random.random() elif mixing_type == "normal": for i in range(source_number): for j in range(source_number): _random_number = abs(np.random.normal( mu_sigma[0], mu_sigma[1], 1)) while(_random_number >= 0.99): _random_number = abs(np.random.normal( mu_sigma[0], mu_sigma[1], 1)) A[i, j] = _random_number for i in range(source_number): A[i, i] = 1 return A def generate_matrix_S_A_X(self, folder_address, wav_range, source_number, mixing_type="random", max_min=(1, 0.01), mu_sigma=(0, 1)): ''' # generate_matrix_S_A_X(self, folder_address, wav_range, source_number, # mixing_type="random", max_min=(1, 0.01), mu_sigma=(0, 1)): # Usage: Generate the mixing matrix S,A,X according to the size of the source signal matrix S # Parameters: folder_address: Define folder adress, in which the *.wav files exist. The wav files must have only 1 channel. duration: The duration of the output original signals, i.e. the whole time domain of the output matrix S source number: The number of the source signals in matrix S mixing_type: 'random': The value of a_i_j are in interval (minimum_value, minimum_value) randomly distributed 'normal': The value of a_i_j (i==j) are equal to 1. The value of a_i_j (i!=j) are normal distributed, the distribution correspond with N(mu,sigma) normal distirbution, where the mu is the average value of the a_i,j (i!=j) , and the sigma is the variance of the a_i_j (i!=j). max_min: max_min = (minimum_value, minimum_value), are used when the mixing_type is 'random' mu_sigma: mu_sigma = (mu, sigma), are used when the mix_type is 'normal' # Output: Matrix S, A, X. The shape of the S and X are (source number, time slots number), the shape of A is (time slots number, time slots number), the wav files are randomly selected to generate the matrix S, A, X. ''' S = self.wavs_to_matrix_S(folder_address, wav_range, source_number) A = self.generate_matrix_A(S, mixing_type, max_min, mu_sigma) X = np.dot(A, S) return S, A, X def fast_psnr(self, S, hat_S): ''' # fast_psnr(self, S, hat_S): # Usage: Calculate the psnr of the estimated source signals (matrix hat_S) # Parameters: S: Reference source signal (matrix S) hat_S: Estimated source signal (matrix hat_S) # Output: The mean value of psnr of each sources ''' original_hat_S = hat_S S = np.dot(np.diag(1/(np.max(abs(S), axis=1))), S) hat_S = np.dot(np.diag(1/(np.max(abs(hat_S), axis=1))), hat_S) amplitude_signal = 0 amplitude_noise = 0 sorted_hat_S = [] for _source in S: _differences = [] for _hat_source in hat_S: _differences.append( np.sum(np.abs(np.abs(_source)-np.abs(_hat_source)))) _row_index = int(np.argmin(_differences)) sorted_hat_S.append(original_hat_S[_row_index]) amplitude_noise += np.min(_differences) amplitude_signal += np.sum(np.abs(_source)) if amplitude_noise == 0: raise ValueError('Error - SNR : No noise exists!') SNR = 20 *
np.log10(amplitude_signal / amplitude_noise)
numpy.log10
# Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## """Compute minibatch blobs for training a RetinaNet network.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np import logging import utils.boxes as box_utils import roi_data.data_utils as data_utils from core.config import cfg logger = logging.getLogger(__name__) def get_retinanet_blob_names(is_training=True): """ Returns blob names in the order in which they are read by the data loader. """ # im_info: (height, width, image scale) blob_names = ['im_info'] assert cfg.FPN.FPN_ON, "RetinaNet uses FPN for dense detection" # Same format as RPN blobs, but one per FPN level if is_training: blob_names += ['roidb', 'retnet_fg_num', 'retnet_bg_num'] for lvl in range(cfg.FPN.RPN_MIN_LEVEL, cfg.FPN.RPN_MAX_LEVEL + 1): suffix = 'fpn{}'.format(lvl) blob_names += [ 'retnet_cls_labels_' + suffix, 'retnet_roi_bbox_targets_' + suffix, 'retnet_bbox_inside_weights_wide_' + suffix, ] return blob_names def add_retinanet_blobs(blobs, im_scales, roidb, image_width, image_height): """Add RetinaNet blobs.""" # RetinaNet is applied to many feature levels, as in the FPN paper k_max, k_min = cfg.FPN.RPN_MAX_LEVEL, cfg.FPN.RPN_MIN_LEVEL scales_per_octave = cfg.RETINANET.SCALES_PER_OCTAVE num_aspect_ratios = len(cfg.RETINANET.ASPECT_RATIOS) aspect_ratios = cfg.RETINANET.ASPECT_RATIOS anchor_scale = cfg.RETINANET.ANCHOR_SCALE # get anchors from all levels for all scales/aspect ratios foas = [] for lvl in range(k_min, k_max + 1): stride = 2. ** lvl for octave in range(scales_per_octave): octave_scale = 2 ** (octave / float(scales_per_octave)) for idx in range(num_aspect_ratios): anchor_sizes = (stride * octave_scale * anchor_scale,) anchor_aspect_ratios = (aspect_ratios[idx],) foa = data_utils.get_field_of_anchors( stride, anchor_sizes, anchor_aspect_ratios, octave, idx) foas.append(foa) all_anchors = np.concatenate([f.field_of_anchors for f in foas]) blobs['retnet_fg_num'], blobs['retnet_bg_num'] = 0.0, 0.0 for im_i, entry in enumerate(roidb): scale = im_scales[im_i] im_height = np.round(entry['height'] * scale) im_width = np.round(entry['width'] * scale) gt_inds = np.where( (entry['gt_classes'] > 0) & (entry['is_crowd'] == 0))[0] assert len(gt_inds) > 0, \ 'Empty ground truth empty for image is not allowed. Please check.' gt_rois = entry['boxes'][gt_inds, :] * scale gt_classes = entry['gt_classes'][gt_inds] im_info = np.array([[im_height, im_width, scale]], dtype=np.float32) blobs['im_info'].append(im_info) retinanet_blobs, fg_num, bg_num = _get_retinanet_blobs( foas, all_anchors, gt_rois, gt_classes, image_width, image_height) for i, foa in enumerate(foas): for k, v in retinanet_blobs[i].items(): level = int(np.log2(foa.stride)) key = '{}_fpn{}'.format(k, level) blobs[key].append(v) blobs['retnet_fg_num'] += fg_num blobs['retnet_bg_num'] += bg_num blobs['retnet_fg_num'] = blobs['retnet_fg_num'].astype(np.float32) blobs['retnet_bg_num'] = blobs['retnet_bg_num'].astype(np.float32) N = len(roidb) for k, v in blobs.items(): if isinstance(v, list) and len(v) > 0: # compute number of anchors A = int(len(v) / N) # for the cls branch labels [per fpn level], # we have blobs['retnet_cls_labels_fpn{}'] as a list until this step # and length of this list is N x A where # N = num_images, A = num_anchors for example, N = 2, A = 9 # Each element of the list has the shape 1 x 1 x H x W where H, W are # spatial dimension of curret fpn lvl. Let a{i} denote the element # corresponding to anchor i [9 anchors total] in the list. # The elements in the list are in order [[a0, ..., a9], [a0, ..., a9]] # however the network will make predictions like 2 x (9 * 80) x H x W # so we first concatenate the elements of each image to a numpy array # and then concatenate the two images to get the 2 x 9 x H x W if k.find('retnet_cls_labels') >= 0 \ or k.find('retnet_roi_bbox_targets') >= 0: tmp = [] # concat anchors within an image for i in range(0, len(v), A): tmp.append(np.concatenate(v[i: i + A], axis=1)) # concat images blobs[k] =
np.concatenate(tmp, axis=0)
numpy.concatenate
import logging import numpy as np import xobjects as xo import xtrack.linear_normal_form as lnf import xpart as xp # To get the right Particles class depending on pyheatail interface state logger = logging.getLogger(__name__) def _check_lengths(**kwargs): length = None for nn, xx in kwargs.items(): if hasattr(xx, "__iter__"): if hasattr(xx, 'shape') and len(xx.shape) == 0: continue if length is None: length = len(xx) else: if length != len(xx): raise ValueError(f"invalid length len({nn})={len(xx)}") if 'num_particles' in kwargs.keys(): num_particles = kwargs['num_particles'] if num_particles is not None and length is None: length = num_particles if num_particles is not None and length != num_particles: raise ValueError( f"num_particles={num_particles} is inconsistent with array length") if length is None: length = 1 return length def build_particles(_context=None, _buffer=None, _offset=None, _capacity=None, mode=None, particle_ref=None, num_particles=None, x=None, px=None, y=None, py=None, zeta=None, delta=None, x_norm=None, px_norm=None, y_norm=None, py_norm=None, tracker=None, at_element=None, match_at_s=None, particle_on_co=None, R_matrix=None, scale_with_transverse_norm_emitt=None, weight=None, particles_class=None, co_search_settings=None, steps_r_matrix=None, matrix_responsiveness_tol=None, matrix_stability_tol=None, symplectify=False, ): """ Function to create particle objects from arrays containing physical or normalized coordinates. Arguments: - mode: choose between: - `set`: reference quantities including mass0, q0, p0c, gamma0, etc. are taken from the provided reference particle. Particles coordinates are set according to the provided input x, px, y, py, zeta, delta (zero is assumed as default for these variables). - `shift`: reference quantities including mass0, q0, p0c, gamma0, etc. are taken from the provided reference particle. Particles coordinates are set from the reference particles and shifted according to the provided input x, px, y, py, zeta, delta (zero is assumed as default for these variables). - `normalized_transverse`: reference quantities including mass0, q0, p0c, gamma0, etc. are taken from the provided reference particle. The longitudinal coordinates are set according to the provided input `zeta`, `delta` (zero is assumed as default value for these variable`. The transverse coordinates are computed from normalized values `x_norm`, `px_norm`, `y_norm`, `py_norm` using the closed-orbit information and the linear transfer map obtained from the `tracker` or provided by the user. The default mode is `set`. `normalized_transverse` is used if any of x_norm, px_norm, y_norm, pynorm is provided. - particle_ref: particle object defining the reference quantities (mass0, 0, p0c, gamma0, etc.). Its coordinates (x, py, y, py, zeta, delta) are ignored unless `mode`='shift' is selected. - num_particles: Number of particles to be generated (used if provided coordinates are all scalar) - x: x coordinate of the particles (default is 0). - px: px coordinate of the particles (default is 0). - y: y coordinate of the particles (default is 0). - py: py coordinate of the particles (default is 0). - zeta: zeta coordinate of the particles (default is 0). - delta: delta coordinate of the particles (default is 0). - x_norm: transverse normalized coordinate x (in sigmas) used in combination with the one turn matrix R_matrix and with the transverse emittances provided in the argument `scale_with_transverse_norm_emitt` to generate x, px, y, py (x, px, y, py cannot be provided if x_norm, px_norm, y_norm, py_norm are provided). - x_norm: transverse normalized coordinate x (in sigmas). - px_norm: transverse normalized coordinate px (in sigmas). - y_norm: transverse normalized coordinate y (in sigmas). - py_norm: transverse normalized coordinate py (in sigmas). - tracker: tracker object used to find the closed orbit and the one-turn matrix. - particle_on_co: Particle on closed orbit - R_matrix: 6x6 matrix defining the linearized one-turn map to be used for the transformation of the normalized coordinates into physical space. - scale_with_transverse_norm_emitt: Tuple of two elements defining the transverse normalized emittances used to rescale the provided transverse normalized coordinates (x, px, y, py). - weight: weights to be assigned to the particles. - at_element: location within the line at which particles are generated. It can be an index or an element name. It can be given only if `at_tracker` is provided and `transverse_mode` is "normalized". - match_at_s: s coordinate of a location in the drifts downstream the specified `at_element` at which the particles are generated before being backdrifted to the location specified by `at_element`. No active element can be present in between. - _context: xobjects context in which the particle object is allocated. """ assert mode in [None, 'set', 'shift', 'normalized_transverse'] Particles = xp.Particles # To get the right Particles class depending on pyheatail interface state if particles_class is not None: raise NotImplementedError if (particle_ref is not None and particle_on_co is not None): raise ValueError("`particle_ref` and `particle_on_co`" " cannot be provided at the same time") if particle_on_co is None and particle_ref is None: if tracker is not None: particle_ref = tracker.particle_ref if particle_ref is None: assert particle_on_co is not None, ( "`particle_ref` or `particle_on_co` must be provided!") particle_ref = particle_on_co if not isinstance(particle_ref._buffer.context, xo.ContextCpu): particle_ref = particle_ref.copy(_context=xo.ContextCpu()) # Move other input parameters to cpu if needed # Generated by: # for nn in 'x px y py zeta delta x_norm px_norm y_norm py_norm'.split(): # print(f'{nn} = ({nn}.get() if hasattr({nn}, "get") else {nn})') x = (x.get() if hasattr(x, "get") else x) px = (px.get() if hasattr(px, "get") else px) y = (y.get() if hasattr(y, "get") else y) py = (py.get() if hasattr(py, "get") else py) zeta = (zeta.get() if hasattr(zeta, "get") else zeta) delta = (delta.get() if hasattr(delta, "get") else delta) x_norm = (x_norm.get() if hasattr(x_norm, "get") else x_norm) px_norm = (px_norm.get() if hasattr(px_norm, "get") else px_norm) y_norm = (y_norm.get() if hasattr(y_norm, "get") else y_norm) py_norm = (py_norm.get() if hasattr(py_norm, "get") else py_norm) if tracker is not None and tracker.iscollective: logger.warning('Ignoring collective elements in particles generation.') tracker = tracker._supertracker if tracker is not None: if matrix_responsiveness_tol is None: matrix_responsiveness_tol = tracker.matrix_responsiveness_tol if matrix_stability_tol is None: matrix_stability_tol = tracker.matrix_stability_tol if matrix_responsiveness_tol is None: matrix_responsiveness_tol=lnf.DEFAULT_MATRIX_RESPONSIVENESS_TOL if matrix_stability_tol is None: matrix_stability_tol=lnf.DEFAULT_MATRIX_STABILITY_TOL if zeta is None: zeta = 0 if delta is None: delta = 0 if (x_norm is not None or px_norm is not None or y_norm is not None or py_norm is not None): assert (x is None and px is None and y is None and py is None) if mode is None: mode = 'normalized_transverse' else: assert mode == 'normalized_transverse' if mode is None: mode = 'set' if mode == 'normalized_transverse': if x_norm is None: x_norm = 0 if px_norm is None: px_norm = 0 if y_norm is None: y_norm = 0 if py_norm is None: py_norm = 0 else: if x is None: x = 0 if px is None: px = 0 if y is None: y = 0 if py is None: py = 0 assert particle_ref._capacity == 1 ref_dict = { 'q0': particle_ref.q0, 'mass0': particle_ref.mass0, 'p0c': particle_ref.p0c[0], 'gamma0': particle_ref.gamma0[0], 'beta0': particle_ref.beta0[0], } part_dict = ref_dict.copy() if at_element is not None or match_at_s is not None: # Only this case is covered if not starting at element 0 assert tracker is not None assert mode == 'normalized_transverse' if isinstance(at_element, str): at_element = tracker.line.element_names.index(at_element) if match_at_s is not None: import xtrack as xt assert at_element is not None, ( 'If `match_at_s` is provided, `at_element` needs to be provided and' 'needs to correspond to the corresponding element in the sequence' ) # Match at a position where there is no marker and backtrack to the previous marker expected_at_element = np.where(np.array( tracker.line.get_s_elements())<=match_at_s)[0][-1] assert at_element == expected_at_element or ( at_element < expected_at_element and all([isinstance(tracker.line.element_dict[nn], xt.Drift) for nn in tracker.line.element_names[at_element:expected_at_element]])), ( "`match_at_s` can only be placed in the drifts upstream of the " "specified `at_element`. No active element can be present in between." ) (tracker_rmat, _ ) = xt.twiss_from_tracker._build_auxiliary_tracker_with_extra_markers( tracker=tracker, at_s=[match_at_s], marker_prefix='xpart_rmat_') at_element_tracker_rmat = tracker_rmat.line.element_names.index( 'xpart_rmat_0') else: tracker_rmat = tracker at_element_tracker_rmat = at_element if mode == 'normalized_transverse': if particle_on_co is None: assert tracker is not None particle_on_co = tracker.find_closed_orbit( particle_co_guess=Particles( x=0, px=0, y=0, py=0, zeta=0, delta=0., **ref_dict), co_search_settings=co_search_settings) else: assert particle_on_co._capacity == 1 if not isinstance(particle_on_co._buffer.context, xo.ContextCpu): particle_on_co = particle_on_co.copy(_context=xo.ContextCpu()) assert particle_on_co.at_element[0] == 0 assert particle_on_co.s[0] == 0 assert particle_on_co.state[0] == 1 if at_element_tracker_rmat is not None: # Match in a different position of the line assert at_element_tracker_rmat > 0 part_co_ctx = particle_on_co.copy(_context=tracker_rmat._buffer.context) tracker_rmat.track(part_co_ctx, num_elements=at_element_tracker_rmat) particle_on_co = part_co_ctx.copy(_context=xo.ContextCpu()) if R_matrix is None: # R matrix at location defined by particle_on_co.at_element R_matrix = tracker_rmat.compute_one_turn_matrix_finite_differences( particle_on_co=particle_on_co, steps_r_matrix=steps_r_matrix) num_particles = _check_lengths(num_particles=num_particles, zeta=zeta, delta=delta, x_norm=x_norm, px_norm=px_norm, y_norm=y_norm, py_norm=py_norm) if scale_with_transverse_norm_emitt is not None: assert len(scale_with_transverse_norm_emitt) == 2 nemitt_x = scale_with_transverse_norm_emitt[0] nemitt_y = scale_with_transverse_norm_emitt[1] gemitt_x = nemitt_x/particle_ref.beta0/particle_ref.gamma0 gemitt_y = nemitt_y/particle_ref.beta0/particle_ref.gamma0 x_norm_scaled = np.sqrt(gemitt_x) * x_norm px_norm_scaled = np.sqrt(gemitt_x) * px_norm y_norm_scaled = np.sqrt(gemitt_y) * y_norm py_norm_scaled = np.sqrt(gemitt_y) * py_norm else: x_norm_scaled = x_norm px_norm_scaled = px_norm y_norm_scaled = y_norm py_norm_scaled = py_norm WW, WWinv, Rot = lnf.compute_linear_normal_form(R_matrix, symplectify=symplectify, responsiveness_tol=matrix_responsiveness_tol, stability_tol=matrix_stability_tol) # Transform long. coordinates to normalized space XX_long = np.zeros(shape=(6, num_particles), dtype=np.float64) XX_long[4, :] = zeta - particle_on_co.zeta XX_long[5, :] = delta - particle_on_co.delta XX_norm_scaled = np.dot(WWinv, XX_long) XX_norm_scaled[0, :] = x_norm_scaled XX_norm_scaled[1, :] = px_norm_scaled XX_norm_scaled[2, :] = y_norm_scaled XX_norm_scaled[3, :] = py_norm_scaled # Transform to physical coordinates XX = np.dot(WW, XX_norm_scaled) XX[0, :] += particle_on_co.x XX[1, :] += particle_on_co.px XX[2, :] += particle_on_co.y XX[3, :] += particle_on_co.py XX[4, :] += particle_on_co.zeta XX[5, :] += particle_on_co.delta elif mode == 'set': if R_matrix is not None: logger.warning('R_matrix provided but not used in this mode!') num_particles = _check_lengths(num_particles=num_particles, zeta=zeta, delta=delta, x=x, px=px, y=y, py=py) XX = np.zeros(shape=(6, num_particles), dtype=np.float64) XX[0, :] = x XX[1, :] = px XX[2, :] = y XX[3, :] = py XX[4, :] = zeta XX[5, :] = delta elif mode == "shift": if R_matrix is not None: logger.warning('R_matrix provided but not used in this mode!') num_particles = _check_lengths(num_particles=num_particles, zeta=zeta, delta=delta, x=x, px=px, y=y, py=py) XX =
np.zeros(shape=(6, num_particles), dtype=np.float64)
numpy.zeros
import tensorflow as tf def prune(before,after,p): global c f=after-before for i in [0,2,4,6]: # ct=np.count_nonzero(f[i]) # print(ct) updates=f[i] all_=abs(updates).flatten() all_=all_[all_!=0] l=int(len(all_)*p) k=max(np.partition(all_,l)[:l]) updates[abs(updates)<=k]=int(0) f[i]=updates # print(ct-np.count_nonzero(f[i])) # print("---") # print("###") return f+before def disp(t): for i in t: print(i.shape) print("-") def kmeans(f): x=f.flatten() y=x.reshape(-1,1) clusters_n = 128 iteration_n = 100 points = tf.constant(y) centroids = tf.Variable(tf.slice(tf.random_shuffle(points), [0, 0], [clusters_n, -1])) points_expanded = tf.expand_dims(points, 0) centroids_expanded = tf.expand_dims(centroids, 1) distances = tf.reduce_sum(tf.square(tf.subtract(points_expanded, centroids_expanded)), 2) assignments = tf.argmin(distances, 0) means = [] for c in range(clusters_n): means.append(tf.reduce_mean( tf.gather(points, tf.reshape( tf.where( tf.equal(assignments, c) ),[1,-1]) ),reduction_indices=[1])) new_centroids = tf.concat(means, 0) update_centroids = tf.assign(centroids, new_centroids) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for step in range(iteration_n): [_, centroid_values, points_values, assignment_values] = sess.run([update_centroids, centroids, points, assignments]) return centroid_values def call_kmeans(before,after): f=after-before # Layer 6 c=kmeans(f[6]) # print(np.count_nonzero(f[6])) c = c[~
np.isnan(c)
numpy.isnan
import numpy as np import pandas as pd from joblib import Parallel, delayed from argparse import ArgumentParser from os import path from time import time from utils import trj2blocks # MDAnalysis import MDAnalysis as mda from MDAnalysis.analysis.distances import distance_array def parse(): '''Parse command line arguments. Returns: Namespace object containing input arguments. ''' parser = ArgumentParser(description='MDTools: Local structure index') parser.add_argument('-i', '--input', required=True, type=str, help='Input .xyz file') parser.add_argument('-n', '--n_cpu', required=True, type=int, help='Number of CPUs for parallel processing') parser.add_argument('-c', '--cell_vectors', required=True, type=float, help='Lattice vectors in angstroms (a, b, c)', nargs=3) parser.add_argument('-nb', '--n_bins', required=True, type=int, help='Number of bins') return parser.parse_args() def lsi(u, block): '''Computes local structure index (LSI). Args: u: MDAnalysis Universe object containing trajectory. block: Range of frames composing block. Returns: Local structure index and heights of each oxygen. ''' # Select oxygen atoms oxygen = u.select_atoms('name O') # Initialize OO distance array rOO = np.zeros((len(oxygen), len(oxygen))) lsindex = [] height = [] for i, ts in enumerate(u.trajectory[block.start:block.stop]): print('Processing blocks %.1f%%' % (100*i/len(block)), end='\r') # Compute OO distance array distance_array(oxygen.positions, oxygen.positions, box=u.dimensions, result=rOO) # Loop over oxygen atoms for j, pos in enumerate(oxygen.positions): # Sort OO distance r = np.sort(rOO[j]) # Consider all OO distances less than 3.7 angstrom delta = r[np.roll((r > 0)*(r < 3.7), 1)]-r[(r > 0)*(r < 3.7)] # Get mean and evaluate LSI as mean of squared differences to mean ave = np.mean(delta) lsindex.append(np.sum((delta-ave)**2)/len(delta)) # Store height of oxygen height.append(pos[2]) return np.vstack((lsindex, height)).T def main(): args = parse() input = args.input n_jobs = args.n_cpu n_bins = args.n_bins a, b, c = args.cell_vectors CURRENT_PATH = path.dirname(path.realpath(__file__)) DATA_PATH = path.normpath(path.join(CURRENT_PATH, path.dirname(input))) base = path.splitext(path.basename(input))[0] # Initialize universe (time step 0.5 fs) u = mda.Universe(input, dt=5e-4) u.add_TopologyAttr('charges') u.dimensions =
np.array([a, b, c, 90, 90, 90])
numpy.array
import time import os import arcade import argparse import gym from gym import spaces import swarm_env import numpy as np import random import sys sys.path.insert(0, '..') from objects import SwarmSimulator # Running experiment 22 in standalone file. def experiment_runner(SWARM_SIZE = 15, ARENA_WIDTH = 600, ARENA_HEIGHT = 600, name_of_experiment = time.time(), INPUT_TIME = 300, GRID_X = 40, GRID_Y = 40, disaster_size = 1, disaster_location = 'random', operator_size = 1, operator_location = 'random', reliability = (100, 101), unreliability_percentage = 0, moving_disaster = False, communication_noise = 0, alpha = 10, normal_command = None, command_period = 0, constant_repulsion = False, operator_vision_radius = 150, communication_range = 8, vision_range = 2, velocity_weight_coef = 0.01, boundary_repulsion = 1, aging_factor = 0.9999, gp = False, gp_step = 50, maze = None, through_walls = True, rl_sim = None): ########### q-learning parameter setup ############# max_steps_per_episode = 10 # Steps allowed in a single episode. learning_rate = 0.1 # alpha in bellman. discount_rate = 0.99 # gamma in bellman for discount. # Epsilon greedy policy vars. exploration_rate = 1 # To set exploration (1 means 100% exploration) max_exploration_rate = 1 # How large can exploration be. min_exploration_rate = 0.01 # How small can exploration be. exploration_decay_rate = 0.001 # decay rate for exploration. rewards_all_episodes = [] # Saving all scores in rewards. gym_swarm_env = gym.make('humanswarm-v0', maze_size=GRID_X) # Creating the environment for swarm learning. gym_swarm_env.action_space = np.zeros((GRID_X, GRID_Y)) q_table = np.zeros((gym_swarm_env.observation_space.n , gym_swarm_env.action_space.size)) # Creating q-table for measuring score. action = np.zeros((gym_swarm_env.action_space.size)) print('\n') print("===== Reinforcement Parameters =====") print("# Discount rate: " + str(discount_rate)) print("# Learning rate: " + str(learning_rate)) print("# Max steps per iteration: " + str(max_steps_per_episode)) print("# Max exploration rate: " + str(max_exploration_rate)) print("# Min exploration rate: " + str(min_exploration_rate)) print("# Exploration decay rate: " + str(exploration_decay_rate)) print("# Algorithm: " + str(rl_sim)) print("# State space size: " + str(gym_swarm_env.observation_space.n)) print("# Action space size: " + str(gym_swarm_env.action_space.size)) print("# Q-table size: " + str(q_table.shape)) print("====================================") print('\n') # Implemeting Q-learning algorithm. done = False state = gym_swarm_env.reset() s_list = [] for step in range(max_steps_per_episode): print('\n' + "============ start of step " + str(step) + " =============") """ In this loop we will set up exploration-exploitation trade-off, Taking new action, Updating Q-table, Setting new state, Adding new reward. """ # Simulation functions sim = SwarmSimulator(ARENA_WIDTH, ARENA_HEIGHT, name_of_experiment, SWARM_SIZE, INPUT_TIME, GRID_X, GRID_Y, rl_sim) sim.setup(disaster_size, disaster_location, operator_size, operator_location, reliability[0], reliability[1], unreliability_percentage, moving_disaster, communication_noise, alpha, normal_command, command_period, constant_repulsion, operator_vision_radius, communication_range, vision_range, velocity_weight_coef, boundary_repulsion, aging_factor, gp, gp_step, maze, through_walls) if (not os.path.isdir('../outputs/' + name_of_experiment)): os.mkdir('../outputs/' + name_of_experiment) if (not os.path.isdir('../outputs/' + name_of_experiment + '/step_' + str(step))): os.mkdir('../outputs/' + name_of_experiment + '/step_' + str(step)) if (not os.path.isdir('../outputs/' + name_of_experiment + '/step_' + str(step) + '/data')): os.mkdir('../outputs/' + name_of_experiment + '/step_' + str(step) + '/data') if (not os.path.isdir('../outputs/' + name_of_experiment + '/step_' + str(step) + '/data' + '/results')): os.mkdir('../outputs/' + name_of_experiment + '/step_' + str(step) + '/data' + '/results') sim.directory = str('../outputs/' + name_of_experiment + '/data/results/'+ str(time.time())) while os.path.isdir(sim.directory): sim.directory = str('../outputs/' + name_of_experiment + '/step_'+ str(step) + '/data/results/' + str(time.time())) sim.directory = str('../outputs/' + name_of_experiment + '/step_'+ str(step) + '/data/results/'+ str(time.time())) while os.path.isdir(sim.directory): sim.directory = str('../outputs/' + name_of_experiment + '/step_'+ str(step) + '/data/results/' + str(time.time())) directory = sim.directory os.mkdir(directory) sim.log_setup(directory) # Adding new RL parameters to log # with open(directory + "/log_setup.txt", "a") as file: file.write('\n') file.write('REINFORCEMENT LEARNING INFO:' + '\n') file.write(' -- DISCOUNT RATE: ' + str(discount_rate) + '\n') file.write(' -- LEARNING RATE: ' + str(learning_rate) + '\n') file.write(' -- MAX STEPS PER ITERATION: ' + str(max_steps_per_episode) + '\n') file.write(' -- MAX EXPLORATION RATE: ' + str(max_exploration_rate) + '\n') file.write(' -- MIN EXPLORATION RATE: ' + str(min_exploration_rate) + '\n') file.write(' -- EXPLORATION DECAY RATE: ' + str(exploration_decay_rate) + '\n') file.write(' -- ALGORITHM: ' + str(rl_sim) + '\n') file.write(' -- STATE SPACE SIZE: ' + str(gym_swarm_env.observation_space.n) + '\n') file.write(' -- ACTION SPACE SIZE: ' + str(gym_swarm_env.action_space.size) + '\n') file.write(' -- Q-TABLE SIZE: ' + str(q_table.shape) + '\n') arcade.run() ######################## ##### Exploration and explotation block. #### exploration_rate_threshold = random.uniform(0, 1) # Setting a random number that will be compared to exploration_rate. if exploration_rate_threshold > exploration_rate: i, j = np.unravel_index(np.argmax(q_table[state, :]), q_table.shape) print ("i ", i, " , j ", j) #action = (i, j) # Choosing the action that had the highest q-value in q-table. action = i*GRID_X + j # Choosing the action that had the highest q-value in q-table. #print (action) #exit(0) else: i = random.randint(0, GRID_X - 1) j = random.randint(0, GRID_Y - 1) action = i*GRID_X + j # Sample an action randomly to explore. ##### Exploration and explotation block. #### ##### Taking appropriate action after choosing the action. #### new_state, reward, done, info, operator_cm = gym_swarm_env.step(action, sim.operator_list[0], GRID_X, GRID_Y) # Returns a tuple contaning the new state, the reward for this action, the end status of action, some additional info. sim.operator_list[0].confidence_map = operator_cm # Updating q-table values q_table[state, action]=q_table[state, action] * (1 - learning_rate) + \ learning_rate * (reward + discount_rate *
np.max(q_table[new_state, :])
numpy.max
import sys import typing import numpy as np def main() -> typing.NoReturn: n = int(input()) a = np.array( sys.stdin.read().split(), dtype=np.int64, ).reshape(n, 5).sum(axis=1) print(
np.sum(a < 20)
numpy.sum
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #CSPP Data below elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_inst/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_wfp/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'corrected_dissolved_oxygen' var_list[2].name = 'seawater_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_inst/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_wfp/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3A-FLORTD104/streamed/flort_d_data_record' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/04-FLNTUA103/recovered_inst/dpc_flnturtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/03-FLCDRA103/recovered_wfp/dpc_flcdrtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2B-PHSENA108/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3C-PARADA102/streamed/parad_sa_sample' var_list[0].name = 'time' var_list[1].name = 'par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3D-SPKIRA102/streamed/spkir_data_record' var_list[0].name = 'time' var_list[1].name = 'spkir_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4A-NUTNRA102/streamed/nutnr_a_sample' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4F-PCO2WA102/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4B-VELPTD106/streamed/velpt_velocity_data' var_list[0].name = 'time' var_list[1].name = 'velpt_d_eastward_velocity' var_list[2].name = 'velpt_d_northward_velocity' var_list[3].name = 'velpt_d_upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[9].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' var_list[9].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_inst/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_wfp/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'DOSTA' and method == 'Streamed': #uframe_dataset_name = 'CE04OSPS/PC01B/4A-DOSTAD109/streamed/ctdpf_optode_sample' uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'seawater_pressure' #also use this for the '4A-DOSTAD109/streamed/ctdpf_optode_sample' stream var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4B-PHSENA106/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4D-PCO2WA105/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #Coastal Pioneer CSM Data Streams elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #WAVSS elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data =
np.array([])
numpy.array
import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.stats import norm import statsmodels.api as sm import statsmodels.formula.api as smf from statsmodels.genmod.families import links from tabulate import tabulate from zepid.calc.utils import (risk_ci, incidence_rate_ci, risk_ratio, risk_difference, number_needed_to_treat, odds_ratio, incidence_rate_difference, incidence_rate_ratio, sensitivity, specificity) ######################################################################################################### # Measures of effect / association ######################################################################################################### class RiskRatio: r"""Estimate of Risk Ratio with a (1-alpha)*100% Confidence interval from a pandas DataFrame. Missing data is ignored. Exposure categories should be mutually exclusive Risk ratio is calculated from .. math:: RR = \frac{\Pr(Y|A=1)}{\Pr(Y|A=0)} Risk ratio standard error is .. math:: SE = \left(\frac{1}{a} - \frac{1}{a + b} + \frac{1}{c} - \frac{1}{c + d}\right)^{\frac{1}{2}} Note ---- Outcome must be coded as (1: yes, 0:no). Only works supports binary outcomes Parameters ------------ reference : integer, optional Reference category for comparisons. Default reference category is 0 alpha : float, optional Alpha value to calculate two-sided Wald confidence intervals. Default is 95% confidence interval Examples -------- Calculate the risk ratio in a data set >>> from zepid import RiskRatio, load_sample_data >>> df = load_sample_data(False) >>> rr = RiskRatio() >>> rr.fit(df, exposure='art', outcome='dead') >>> rr.summary() Calculate the risk ratio with exposure of '1' as the reference category >>> rr = RiskRatio(reference=1) >>> rr.fit(df, exposure='art', outcome='dead') >>> rr.summary() Generate a plot of the calculated risk ratio(s) >>> import matplotlib.pyplot as plt >>> rr = RiskRatio() >>> rr.fit(df, exposure='art', outcome='dead') >>> rr.plot() >>> plt.show() """ def __init__(self, reference=0, alpha=0.05): self.reference = reference self.alpha = alpha self.risks = [] self.risk_ratio = [] self.results = None self._a_list = [] self._b_list = [] self._c = None self._d = None self._labels = [] self._fit = False self._missing_e = None self._missing_d = None self._missing_ed = None def fit(self, df, exposure, outcome): """Calculates the Risk Ratio given a data set Parameters ------------ df : DataFrame Pandas dataframe containing variables of interest exposure : string Column name of exposure variable outcome : string Column name of outcome variable. Must be coded as binary (0,1) where 1 is the outcome of interest """ # Setting up holders for results risk_lcl = [] risk_ucl = [] risk_sd = [] rr_lcl = [] rr_ucl = [] rr_sd = [] # Getting unique values and dropping reference vals = set(df[exposure].dropna().unique()) vals.remove(self.reference) self._c = df.loc[(df[exposure] == self.reference) & (df[outcome] == 1)].shape[0] self._d = df.loc[(df[exposure] == self.reference) & (df[outcome] == 0)].shape[0] self._labels.append('Ref:'+str(self.reference)) ri, lr, ur, sd, *_ = risk_ci(events=self._c, total=(self._c + self._d), alpha=self.alpha) self.risks.append(ri) risk_lcl.append(lr) risk_ucl.append(ur) risk_sd.append(sd) self.risk_ratio.append(1) rr_lcl.append(None) rr_ucl.append(None) rr_sd.append(None) # Going through all the values for i in vals: self._labels.append(str(i)) a = df.loc[(df[exposure] == i) & (df[outcome] == 1)].shape[0] self._a_list.append(a) b = df.loc[(df[exposure] == i) & (df[outcome] == 0)].shape[0] self._b_list.append(b) ri, lr, ur, sd, *_ = risk_ci(events=a, total=(a+b), alpha=self.alpha) self.risks.append(ri) risk_lcl.append(lr) risk_ucl.append(ur) risk_sd.append(sd) em, lcl, ucl, sd, *_ = risk_ratio(a=a, b=b, c=self._c, d=self._d, alpha=self.alpha) self.risk_ratio.append(em) rr_lcl.append(lcl) rr_ucl.append(ucl) rr_sd.append(sd) # Getting the extent of missing data self._missing_ed = df.loc[(df[exposure].isnull()) & (df[outcome].isnull())].shape[0] self._missing_e = df.loc[df[exposure].isnull()].shape[0] - self._missing_ed self._missing_d = df.loc[df[outcome].isnull()].shape[0] - self._missing_ed # Setting up results rf = pd.DataFrame(index=self._labels) rf['Risk'] = self.risks rf['SD(Risk)'] = risk_sd rf['Risk_LCL'] = risk_lcl rf['Risk_UCL'] = risk_ucl rf['RiskRatio'] = self.risk_ratio rf['SD(RR)'] = rr_sd rf['RR_LCL'] = rr_lcl rf['RR_UCL'] = rr_ucl rf['CLR'] = rf['RR_UCL'] / rf['RR_LCL'] self.results = rf self._fit = True def summary(self, decimal=3): """Prints the summary results Parameters ------------ decimal : integer, optional Decimal points to display. Default is 3 """ if self._fit is False: raise ValueError('fit() function must be completed before results can be obtained') for a, b, l in zip(self._a_list, self._b_list, self._labels): print('Comparison:'+str(self.reference)+' to '+self._labels[self._labels.index(l)+1]) print(tabulate([['E=1', a, b], ['E=0', self._c, self._d]], headers=['', 'D=1', 'D=0'], tablefmt='grid'), '\n') print('======================================================================') print(' Risk Ratio ') print('======================================================================') print(self.results[['Risk', 'SD(Risk)', 'Risk_LCL', 'Risk_UCL']].round(decimals=decimal)) print('----------------------------------------------------------------------') print(self.results[['RiskRatio', 'SD(RR)', 'RR_LCL', 'RR_UCL']].round(decimals=decimal)) print('----------------------------------------------------------------------') print('Missing E: ', self._missing_e) print('Missing D: ', self._missing_d) print('Missing E&D: ', self._missing_ed) print('======================================================================') def plot(self, measure='risk_ratio', scale='linear', center=1, **errorbar_kwargs): """Plot the risk ratios or the risks along with their corresponding confidence intervals. This option is an alternative to `summary()`, which displays results in a table format. Parameters ---------- measure : str, optional Whether to display risk ratios or risks. Default is to display the risk ratio. Options are; * 'risk_ratio' : display risk ratios * 'risk' : display risks scale : str, optional Scale for the x-axis. Default is a linear scale. A log-scale can be requested by setting scale='log' center : str, optional Sets a reference line. For the risk ratio, the reference line defaults to 1. For risks, no reference line is displayed. errorbar_kwargs: add additional kwargs to be passed to the plotting function ``matplotlib.errorbar``. See defaults here: https://matplotlib.org/api/_as_gen/matplotlib.pyplot.errorbar.html Returns ------- matplotlib axes """ if measure == 'risk_ratio': ax = _plotter(estimate=self.results['RiskRatio'], lcl=self.results['RR_LCL'], ucl=self.results['RR_UCL'], labels=self.results.index, center=center, **errorbar_kwargs) if scale == 'log': ax.set_xscale('log') ax.set_title('Risk Ratio') elif measure == 'risk': ax = _plotter(estimate=self.results['Risk'], lcl=self.results['Risk_LCL'], ucl=self.results['Risk_UCL'], labels=self.results.index, center=np.nan, **errorbar_kwargs) ax.set_title('Risk') ax.set_xlim([0, 1]) else: raise ValueError('Must specify either "risk_ratio" or "risk" for plots') return ax class RiskDifference: r"""Estimate of Risk Difference with a (1-alpha)*100% Confidence interval from a pandas DataFrame. Missing data is ignored. Exposure categories should be mutually exclusive Risk difference is calculated as .. math:: RD = \Pr(Y|A=1) - \Pr(Y|A=0) Risk difference standard error is calculated as .. math:: SE = \left(\frac{R_1 \times (1 - R_1)}{a+b} + \frac{R_0 \times (1-R_0)}{c+d}\right)^{\frac{1}{2}} In addition to confidence intervals, the Frechet bounds are calculated as well. These probability bounds are useful for a comparison. Within these bounds, the true causal risk difference in the sample must live. The only assumptions these bounds require are no measurement error, causal consistency, no selection bias, and any missing data is MCAR. These bounds are always unit width (width of one), but they do not require any assumptions regarding confounding / conditional exchangeability. They are calculated via the following formula .. math:: Lower = \Pr(Y|A=a)\Pr(A=a) - \Pr(Y|A \ne a)\Pr(A \ne a) - \Pr(A=a)\\ Upper = \Pr(Y|A=a)\Pr(A=a) + \Pr(A \ne a) - \Pr(Y|A \ne a)\Pr(A \ne a) For further details on these bounds, see the references Note ---- Outcome must be coded as (1: yes, 0:no). Only supports binary outcomes Parameters ------------ reference : integer, optional -reference category for comparisons. Default reference category is 0 alpha : float, optional -Alpha value to calculate two-sided Wald confidence intervals. Default is 95% confidence interval References ---------- Cole SR et al. (2019) Nonparametric Bounds for the Risk Function. American Journal of Epidemiology. 188(4), 632-636 Examples -------- Calculate the risk difference in a data set >>> from zepid import RiskDifference, load_sample_data >>> df = load_sample_data(False) >>> rd = RiskDifference() >>> rd.fit(df, exposure='art', outcome='dead') >>> rd.summary() Calculate the risk difference with exposure of '1' as the reference category >>> rd = RiskDifference(reference=1) >>> rd.fit(df, exposure='art', outcome='dead') >>> rd.summary() Generate a plot of the calculated risk difference(s) >>> import matplotlib.pyplot as plt >>> rd = RiskDifference() >>> rd.fit(df, exposure='art', outcome='dead') >>> rd.plot() >>> plt.show() """ def __init__(self, reference=0, alpha=0.05): self.reference = reference self.alpha = alpha self.risks = [] self.risk_difference = [] self.results = None self._a_list = [] self._b_list = [] self._c = None self._d = None self._labels = [] self._fit = False self._missing_e = None self._missing_d = None self._missing_ed = None self.n = None def fit(self, df, exposure, outcome): """Calculates the Risk Difference Parameters ------------ df : DataFrame Pandas dataframe containing variables of interest exposure : string Column name of exposure variable outcome : string Column name of outcome variable. Must be coded as binary (0,1) where 1 is the outcome of interest """ n = df.dropna(subset=[exposure, outcome]).shape[0] # Setting up holders for results risk_lcl = [] risk_ucl = [] risk_sd = [] rd_lcl = [] rd_ucl = [] rd_sd = [] fr_lower = [] fr_upper = [] # Getting unique values and dropping reference vals = set(df[exposure].dropna().unique()) vals.remove(self.reference) self._c = df.loc[(df[exposure] == self.reference) & (df[outcome] == 1)].shape[0] self._d = df.loc[(df[exposure] == self.reference) & (df[outcome] == 0)].shape[0] self._labels.append('Ref:' + str(self.reference)) ri, lr, ur, sd, *_ = risk_ci(events=self._c, total=(self._c + self._d), alpha=self.alpha) self.risks.append(ri) risk_lcl.append(lr) risk_ucl.append(ur) risk_sd.append(sd) self.risk_difference.append(0) rd_lcl.append(None) rd_ucl.append(None) rd_sd.append(None) fr_lower.append(None) fr_upper.append(None) # Going through all the values for i in vals: self._labels.append(str(i)) a = df.loc[(df[exposure] == i) & (df[outcome] == 1)].shape[0] self._a_list.append(a) b = df.loc[(df[exposure] == i) & (df[outcome] == 0)].shape[0] self._b_list.append(b) ri, lr, ur, sd, *_ = risk_ci(events=a, total=(a + b), alpha=self.alpha) self.risks.append(ri) risk_lcl.append(lr) risk_ucl.append(ur) risk_sd.append(sd) em, lcl, ucl, sd, *_ = risk_difference(a=a, b=b, c=self._c, d=self._d, alpha=self.alpha) self.risk_difference.append(em) rd_lcl.append(lcl) rd_ucl.append(ucl) rd_sd.append(sd) fr_lower.append(ri*((a+b)/n) - (1-ri)*(1 - (a+b)/n) - ((a+b)/n)) fr_upper.append(ri*((a+b)/n) + (1 - (a+b)/n) - (1-ri)*(1 - (a+b)/n)) # Getting the extent of missing data self._missing_ed = df.loc[(df[exposure].isnull()) & (df[outcome].isnull())].shape[0] self._missing_e = df.loc[df[exposure].isnull()].shape[0] - self._missing_ed self._missing_d = df.loc[df[outcome].isnull()].shape[0] - self._missing_ed self.n = n # Setting up results rf = pd.DataFrame(index=self._labels) rf['Risk'] = self.risks rf['SD(Risk)'] = risk_sd rf['Risk_LCL'] = risk_lcl rf['Risk_UCL'] = risk_ucl rf['RiskDifference'] = self.risk_difference rf['SD(RD)'] = rd_sd rf['RD_LCL'] = rd_lcl rf['RD_UCL'] = rd_ucl rf['CLD'] = rf['RD_UCL'] - rf['RD_LCL'] rf['LowerBound'] = fr_lower rf['UpperBound'] = fr_upper self.results = rf self._fit = True def summary(self, decimal=3): """Prints the summary results Parameters ------------ decimal : integer, optional Decimal points to display. Default is 3 """ if self._fit is False: raise ValueError('fit() function must be completed before results can be obtained') for a, b, l in zip(self._a_list, self._b_list, self._labels): print('Comparison:'+str(self.reference)+' to '+self._labels[self._labels.index(l)+1]) print(tabulate([['E=1', a, b], ['E=0', self._c, self._d]], headers=['', 'D=1', 'D=0'], tablefmt='grid'), '\n') print('======================================================================') print(' Risk Difference ') print('======================================================================') print(self.results[['Risk', 'SD(Risk)', 'Risk_LCL', 'Risk_UCL']].round(decimals=decimal)) print('----------------------------------------------------------------------') print(self.results[['RiskDifference', 'SD(RD)', 'RD_LCL', 'RD_UCL']].round(decimals=decimal)) print('----------------------------------------------------------------------') print(self.results[['RiskDifference', 'CLD', 'LowerBound', 'UpperBound']].round(decimals=decimal)) print('----------------------------------------------------------------------') print('Missing E: ', self._missing_e) print('Missing D: ', self._missing_d) print('Missing E&D: ', self._missing_ed) print('======================================================================') def plot(self, measure='risk_difference', center=0, **errorbar_kwargs): """Plot the risk differences or the risks along with their corresponding confidence intervals. This option is an alternative to `summary()`, which displays results in a table format. Parameters ---------- measure : str, optional Whether to display risk differences or risks. Default is to display the risk difference. Options are; * 'risk_difference' : display risk differences * 'risk' : display risks center : str, optional Sets a reference line. For the risk difference, the reference line defaults to 0. For risks, no reference line is displayed. errorbar_kwargs: add additional kwargs to be passed to the plotting function ``matplotlib.errorbar``. See defaults here: https://matplotlib.org/api/_as_gen/matplotlib.pyplot.errorbar.html Returns ------- matplotlib axes """ if measure == 'risk_difference': ax = _plotter(estimate=self.results['RiskDifference'], lcl=self.results['RD_LCL'], ucl=self.results['RD_UCL'], labels=self.results.index, center=center, **errorbar_kwargs) ax.set_title('Risk Difference') elif measure == 'risk': ax = _plotter(estimate=self.results['Risk'], lcl=self.results['Risk_LCL'], ucl=self.results['Risk_UCL'], labels=self.results.index, center=np.nan, **errorbar_kwargs) ax.set_title('Risk') ax.set_xlim([0, 1]) else: raise ValueError('Must specify either "risk_difference" or "risk" for plots') return ax class NNT: r"""Estimates of Number Needed to Treat. NNT (1-alpha)*100% confidence interval presentation is based on Altman, DG (BMJ 1998). Missing data is ignored Number needed to treat is calculated as .. math:: NNT = \frac{1}{RD} Risk difference the corresponding confidence intervals come from .. math:: RD = \Pr(Y|A=1) - \Pr(Y|A=0) Risk difference standard error is calculated as .. math:: SE = \left(\frac{R_1 \times (1 - R_1)}{a+b} + \frac{R_0 \times (1-R_0)}{c+d}\right)^{\frac{1}{2}} Note ---- Outcome must be coded as (1: yes, 0:no). Only works for binary outcomes Parameters ------------ reference : integer, optional Reference category for comparisons. Default reference category is 0 alpha : float, optional Alpha value to calculate two-sided Wald confidence intervals. Default is 95% confidence interval Examples -------- Calculate the number needed to treat in a data set >>> from zepid import NNT, load_sample_data >>> df = load_sample_data(False) >>> nnt = NNT() >>> nnt.fit(df, exposure='art', outcome='dead') >>> nnt.summary() Calculate the number needed to treat with '1' as the reference category >>> nnt = NNT(reference=1) >>> nnt.fit(df, exposure='art', outcome='dead') >>> nnt.summary() """ def __init__(self, reference=0, alpha=0.05): self.reference = reference self.alpha = alpha self.number_needed_to_treat = [] self.results = None self._a_list = [] self._b_list = [] self._c = None self._d = None self._labels = [] self._fit = False self._missing_e = None self._missing_d = None self._missing_ed = None def fit(self, df, exposure, outcome): """Calculates the NNT Parameters ------------ df : DataFrame Pandas dataframe containing variables of interest exposure : string Column name of exposure variable outcome : string Column name of outcome variable. Must be coded as binary (0,1) where 1 is the outcome of interest """ # Setting up holders for results nnt_lcl = [] nnt_ucl = [] nnt_sd = [] # Getting unique values and dropping reference vals = set(df[exposure].dropna().unique()) vals.remove(self.reference) self._c = df.loc[(df[exposure] == self.reference) & (df[outcome] == 1)].shape[0] self._d = df.loc[(df[exposure] == self.reference) & (df[outcome] == 0)].shape[0] self._labels.append('Ref:' + str(self.reference)) self.number_needed_to_treat.append(np.inf) nnt_lcl.append(None) nnt_ucl.append(None) nnt_sd.append(None) # Going through all the values for i in vals: self._labels.append(str(i)) a = df.loc[(df[exposure] == i) & (df[outcome] == 1)].shape[0] self._a_list.append(a) b = df.loc[(df[exposure] == i) & (df[outcome] == 0)].shape[0] self._b_list.append(b) em, lcl, ucl, sd, *_ = number_needed_to_treat(a=a, b=b, c=self._c, d=self._d, alpha=self.alpha) self.number_needed_to_treat.append(em) nnt_lcl.append(lcl) nnt_ucl.append(ucl) nnt_sd.append(sd) # Getting the extent of missing data self._missing_ed = df.loc[(df[exposure].isnull()) & (df[outcome].isnull())].shape[0] self._missing_e = df.loc[df[exposure].isnull()].shape[0] - self._missing_ed self._missing_d = df.loc[df[outcome].isnull()].shape[0] - self._missing_ed # Setting up results rf = pd.DataFrame(index=self._labels) rf['NNT'] = self.number_needed_to_treat rf['SD(RD)'] = nnt_sd rf['NNT_LCL'] = nnt_lcl rf['NNT_UCL'] = nnt_ucl self.results = rf self._fit = True def summary(self, decimal=3): """Prints the summary results Parameters ------------ decimal : integer, optional Decimal points to display. Default is 3 """ if self._fit is False: raise ValueError('fit() function must be completed before results can be obtained') for i, r in self.results.iterrows(): if i == self._labels[0]: pass else: print('======================================================================') print(' Number Needed to Treat/Harm ') print('======================================================================') if r['NNT'] == np.inf: print('Number Needed to Treat = infinite') else: if r['NNT'] > 0: print('Number Needed to Harm: ', round(abs(r['NNT']), decimal)) if r['NNT'] < 0: print('Number Needed to Treat: ', round(abs(r['NNT']), decimal)) print('----------------------------------------------------------------------') print(str(round(100 * (1 - self.alpha), 1)) + '% two-sided CI: ') if r['NNT_LCL'] < 0 < r['NNT_UCL']: print('NNT ', round(abs(r['NNT_LCL']), decimal), 'to infinity to NNH ', round(abs(r['NNT_UCL']), decimal)) elif 0 < r['NNT_LCL']: print('NNT ', round(abs(r['NNT_LCL']), decimal), ' to ', round(abs(r['NNT_UCL']), decimal)) else: print('NNH ', round(abs(r['NNT_LCL']), decimal), ' to ', round(abs(r['NNT_UCL']), decimal)) print('----------------------------------------------------------------------') print('Missing E: ', self._missing_e) print('Missing D: ', self._missing_d) print('Missing E&D: ', self._missing_ed) print('======================================================================') class OddsRatio: r"""Estimates of Odds Ratio with a (1-alpha)*100% Confidence interval. Missing data is ignored Odds ratio is calculated from .. math:: OR = \frac{\Pr(Y|A=1)}{1 - \Pr(Y|A=1)} / \frac{\Pr(Y|A=0)}{1 - \Pr(Y|A=0)} Odds ratio standard error is .. math:: SE = \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right)^{\frac{1}{2}} Note ---- Outcome must be coded as (1: yes, 0:no). Only works for binary outcomes Parameters --------------- reference : integer, optional Reference category for comparisons. Default reference category is 0 alpha : float, optional Alpha value to calculate two-sided Wald confidence intervals. Default is 95% confidence interval Examples -------- Calculate the odds ratio in a data set >>> from zepid import OddsRatio, load_sample_data >>> df = load_sample_data(False) >>> ort = OddsRatio() >>> ort.fit(df, exposure='art', outcome='dead') >>> ort.summary() Calculate the odds ratio with exposure of '1' as the reference category >>> ort = OddsRatio(reference=1) >>> ort.fit(df, exposure='art', outcome='dead') >>> ort.summary() Generate a plot of the calculated odds ratio(s) >>> import matplotlib.pyplot as plt >>> ort = OddsRatio() >>> ort.fit(df, exposure='art', outcome='dead') >>> ort.plot() >>> plt.show() """ def __init__(self, reference=0, alpha=0.05): self.reference = reference self.alpha = alpha self.odds_ratio = [] self.results = None self._a_list = [] self._b_list = [] self._c = None self._d = None self._labels = [] self._fit = False self._missing_e = None self._missing_d = None self._missing_ed = None def fit(self, df, exposure, outcome): """Calculates the Odds Ratio Parameters --------------- df : DataFrame Pandas dataframe containing variables of interest exposure : string Column name of exposure variable outcome : string Column name of outcome variable. Must be coded as binary (0,1) where 1 is the outcome of interest """ # Setting up holders for results odr_lcl = [] odr_ucl = [] odr_sd = [] # Getting unique values and dropping reference vals = set(df[exposure].dropna().unique()) vals.remove(self.reference) self._c = df.loc[(df[exposure] == self.reference) & (df[outcome] == 1)].shape[0] self._d = df.loc[(df[exposure] == self.reference) & (df[outcome] == 0)].shape[0] self._labels.append('Ref:'+str(self.reference)) self.odds_ratio.append(1) odr_lcl.append(None) odr_ucl.append(None) odr_sd.append(None) # Going through all the values for i in vals: self._labels.append(str(i)) a = df.loc[(df[exposure] == i) & (df[outcome] == 1)].shape[0] self._a_list.append(a) b = df.loc[(df[exposure] == i) & (df[outcome] == 0)].shape[0] self._b_list.append(b) em, lcl, ucl, sd, *_ = odds_ratio(a=a, b=b, c=self._c, d=self._d, alpha=self.alpha) self.odds_ratio.append(em) odr_lcl.append(lcl) odr_ucl.append(ucl) odr_sd.append(sd) # Getting the extent of missing data self._missing_ed = df.loc[(df[exposure].isnull()) & (df[outcome].isnull())].shape[0] self._missing_e = df.loc[df[exposure].isnull()].shape[0] - self._missing_ed self._missing_d = df.loc[df[outcome].isnull()].shape[0] - self._missing_ed # Setting up results rf = pd.DataFrame(index=self._labels) rf['OddsRatio'] = self.odds_ratio rf['SD(OR)'] = odr_sd rf['OR_LCL'] = odr_lcl rf['OR_UCL'] = odr_ucl rf['CLR'] = rf['OR_UCL'] / rf['OR_LCL'] self.results = rf self._fit = True def summary(self, decimal=3): """Prints the summary results Parameters --------------- decimal : integer, optional Decimal points to display. Default is 3 """ if self._fit is False: raise ValueError('fit() function must be completed before results can be obtained') for a, b, l in zip(self._a_list, self._b_list, self._labels): print('Comparison:'+str(self.reference)+' to '+self._labels[self._labels.index(l)+1]) print(tabulate([['E=1', a, b], ['E=0', self._c, self._d]], headers=['', 'D=1', 'D=0'], tablefmt='grid'), '\n') print('======================================================================') print(' Odds Ratio ') print('======================================================================') print(self.results[['OddsRatio', 'SD(OR)', 'OR_LCL', 'OR_UCL']].round(decimals=decimal)) print('----------------------------------------------------------------------') print('Missing E: ', self._missing_e) print('Missing D: ', self._missing_d) print('Missing E&D: ', self._missing_ed) print('======================================================================') def plot(self, scale='linear', center=1, **errorbar_kwargs): """Plot the odds ratios along with their corresponding confidence intervals. This option is an alternative to `summary()`, which displays results in a table format. Parameters ---------- scale : str, optional Scale for the x-axis. Default is a linear scale. A log-scale can be requested by setting scale='log' center : str, optional Sets a reference line. The reference line defaults to 1. errorbar_kwargs: add additional kwargs to be passed to the plotting function ``matplotlib.errorbar``. See defaults here: https://matplotlib.org/api/_as_gen/matplotlib.pyplot.errorbar.html Returns ------- matplotlib axes """ ax = _plotter(estimate=self.results['OddsRatio'], lcl=self.results['OR_LCL'], ucl=self.results['OR_UCL'], labels=self.results.index, center=center, **errorbar_kwargs) if scale == 'log': ax.set_xscale('log') ax.set_title('Odds Ratio') return ax class IncidenceRateRatio: r"""Estimates of Incidence Rate Ratio with a (1-alpha)*100% Confidence interval. Missing data is ignored Incidence rate ratio is calculated from .. math:: IR = \frac{a}{t_1} / \frac{c}{t_0} Incidence rate ratio standard error is .. math:: SE = \left(\frac{1}{a} + \frac{1}{c}\right)^{\frac{1}{2}} Note ---- Outcome must be coded as (1: yes, 0:no). Only works for binary outcomes Parameters ------------------ reference : integer, optional Reference category for comparisons. Default reference category is 0 alpha : float, optional Alpha value to calculate two-sided Wald confidence intervals. Default is 95% confidence interval Examples -------- Calculate the incidence rate ratio in a data set >>> from zepid import IncidenceRateRatio, load_sample_data >>> df = load_sample_data(False) >>> irr = IncidenceRateRatio() >>> irr.fit(df, exposure='art', outcome='dead', time='t') >>> irr.summary() Calculate the incidence rate ratio with exposure of '1' as the reference category >>> irr = IncidenceRateRatio(reference=1) >>> irr.fit(df, exposure='art', outcome='dead', time='t') >>> irr.summary() Generate a plot of the calculated incidence rate ratio(s) >>> import matplotlib.pyplot as plt >>> irr = IncidenceRateRatio() >>> irr.fit(df, exposure='art', outcome='dead', time='t') >>> irr.plot() >>> plt.show() """ def __init__(self, reference=0, alpha=0.05): self.reference = reference self.alpha = alpha self.incidence_rate = [] self.incidence_rate_ratio = [] self.results = None self._a_list = [] self._a_time_list = [] self._c = None self._c_time = None self._labels = [] self._fit = False self._missing_e = None self._missing_d = None self._missing_ed = None self._missing_t = None def fit(self, df, exposure, outcome, time): """Calculate the Incidence Rate Ratio Parameters ------------------ df : DataFrame Pandas dataframe containing variables of interest exposure : string Column name of exposure variable outcome : string Column name of outcome variable. Must be coded as binary (0,1) where 1 is the outcome of interest time : string Column name of time contributed """ # Setting up holders for results ir_lcl = [] ir_ucl = [] ir_sd = [] irr_lcl = [] irr_ucl = [] irr_sd = [] # Getting unique values and dropping reference vals = set(df[exposure].dropna().unique()) vals.remove(self.reference) self._c = df.loc[(df[exposure] == self.reference) & (df[outcome] == 1)].shape[0] self._c_time = df.loc[df[exposure] == self.reference][time].sum() self._labels.append('Ref:'+str(self.reference)) ri, lr, ur, sd, *_ = incidence_rate_ci(events=self._c, time=self._c_time, alpha=self.alpha) self.incidence_rate.append(ri) ir_lcl.append(lr) ir_ucl.append(ur) ir_sd.append(sd) self.incidence_rate_ratio.append(1) irr_lcl.append(None) irr_ucl.append(None) irr_sd.append(None) # Going through all the values for i in vals: self._labels.append(str(i)) a = df.loc[(df[exposure] == i) & (df[outcome] == 1)].shape[0] self._a_list.append(a) a_t = df.loc[df[exposure] == i][time].sum() self._a_time_list.append(a_t) ri, lr, ur, sd, *_ = incidence_rate_ci(events=a, time=a_t, alpha=self.alpha) self.incidence_rate.append(ri) ir_lcl.append(lr) ir_ucl.append(ur) ir_sd.append(sd) em, lcl, ucl, sd, *_ = incidence_rate_ratio(a=a, t1=a_t, c=self._c, t2=self._c_time, alpha=self.alpha) self.incidence_rate_ratio.append(em) irr_lcl.append(lcl) irr_ucl.append(ucl) irr_sd.append(sd) # Getting the extent of missing data self._missing_ed = df.loc[(df[exposure].isnull()) & (df[outcome].isnull())].shape[0] self._missing_e = df.loc[df[exposure].isnull()].shape[0] - self._missing_ed self._missing_d = df.loc[df[outcome].isnull()].shape[0] - self._missing_ed self._missing_t = df.loc[df[time].isnull()].shape[0] # Setting up results rf = pd.DataFrame(index=self._labels) rf['IncRate'] = self.incidence_rate rf['SD(IncRate)'] = ir_sd rf['IncRate_LCL'] = ir_lcl rf['IncRate_UCL'] = ir_ucl rf['IncRateRatio'] = self.incidence_rate_ratio rf['SD(IRR)'] = irr_sd rf['IRR_LCL'] = irr_lcl rf['IRR_UCL'] = irr_ucl rf['CLR'] = rf['IRR_UCL'] / rf['IRR_LCL'] self.results = rf self._fit = True def summary(self, decimal=3): """Prints the summary results Parameters ------------------ decimal : integer, optional Decimal points to display. Default is 3 """ if self._fit is False: raise ValueError('fit() function must be completed before results can be obtained') for a, a_t, l in zip(self._a_list, self._a_time_list, self._labels): print('Comparison:'+str(self.reference)+' to '+self._labels[self._labels.index(l)+1]) print(tabulate([['E=1', a, a_t], ['E=0', self._c, self._c_time]], headers=['', 'D=1', 'Person-time'], tablefmt='grid'), '\n') print('======================================================================') print(' Incidence Rate Ratio ') print('======================================================================') print(self.results[['IncRate', 'SD(IncRate)', 'IncRate_LCL', 'IncRate_UCL']].round(decimals=decimal)) print('----------------------------------------------------------------------') print(self.results[['IncRateRatio', 'SD(IRR)', 'IRR_LCL', 'IRR_UCL']].round(decimals=decimal)) print('----------------------------------------------------------------------') print('Missing E: ', self._missing_e) print('Missing D: ', self._missing_d) print('Missing E&D: ', self._missing_ed) print('Missing T: ', self._missing_t) print('======================================================================') def plot(self, measure='incidence_rate_ratio', scale='linear', center=1, **errorbar_kwargs): """Plot the risk ratios or the risks along with their corresponding confidence intervals. This option is an alternative to `summary()`, which displays results in a table format. Parameters ---------- measure : str, optional Whether to display incidence rate ratios or incidence rates. Default is to display the incidence rate ratio. Options are; * 'incidence_rate_ratio' : display incidence rate ratios * 'incidence_rate' : display incidence rates scale : str, optional Scale for the x-axis. Default is a linear scale. A log-scale can be requested by setting scale='log' center : str, optional Sets a reference line. For the incidence rate ratio, the reference line defaults to 1. For incidence rates, no reference line is displayed. errorbar_kwargs: add additional kwargs to be passed to the plotting function ``matplotlib.errorbar``. See defaults here: https://matplotlib.org/api/_as_gen/matplotlib.pyplot.errorbar.html Returns ------- matplotlib axes """ if measure == 'incidence_rate_ratio': ax = _plotter(estimate=self.results['IncRateRatio'], lcl=self.results['IRR_LCL'], ucl=self.results['IRR_UCL'], labels=self.results.index, center=center, **errorbar_kwargs) if scale == 'log': ax.set_xscale('log') ax.set_title('Incidence Rate Ratio') elif measure == 'incidence_rate': ax = _plotter(estimate=self.results['IncRate'], lcl=self.results['IncRate_LCL'], ucl=self.results['IncRate_UCL'], labels=self.results.index, center=np.nan, **errorbar_kwargs) ax.set_title('Incidence Rate') ax.set_xlim([0, 1]) else: raise ValueError('Must specify either "incidence_rate_ratio" or "incidence_rate" for plots') return ax class IncidenceRateDifference: r"""Estimates of Incidence Rate Difference with a (1-alpha)*100% Confidence interval. Missing data is ignored. Incidence rate difference is calculated from .. math:: ID = \frac{a}{t_1} - \frac{c}{t_0} Incidence rate difference standard error is .. math:: SE = \left(\frac{a}{t_1^2} + \frac{c}{t_0^2}\right)^{\frac{1}{2}} Note ---- Outcome must be coded as (1: yes, 0:no). Only works for binary outcomes Parameters ---------------- reference : integer, optional Reference category for comparisons. Default reference category is 0 alpha : float, optional Alpha value to calculate two-sided Wald confidence intervals. Default is 95% confidence interval Examples -------- Calculate the incidence rate difference in a data set >>> from zepid import IncidenceRateDifference, load_sample_data >>> df = load_sample_data(False) >>> ird = IncidenceRateDifference() >>> ird.fit(df, exposure='art', outcome='dead', time='t') >>> ird.summary() Calculate the incidence rate difference with exposure of '1' as the reference category >>> ird = IncidenceRateDifference(reference=1) >>> ird.fit(df, exposure='art', outcome='dead', time='t') >>> ird.summary() Generate a plot of the calculated incidence rate difference(s) >>> import matplotlib.pyplot as plt >>> ird = IncidenceRateDifference() >>> ird.fit(df, exposure='art', outcome='dead', time='t') >>> ird.plot() >>> plt.show() """ def __init__(self, reference=0, alpha=0.05): self.reference = reference self.alpha = alpha self.incidence_rate = [] self.incidence_rate_difference = [] self.results = None self._a_list = [] self._a_time_list = [] self._c = None self._c_time = None self._labels = [] self._fit = False self._missing_e = None self._missing_d = None self._missing_ed = None self._missing_t = None def fit(self, df, exposure, outcome, time): """Calculates the Incidence Rate Difference Parameters ---------------- df : DataFrame Pandas dataframe containing variables of interest exposure : str Column name of exposure variable outcome : str Column name of outcome variable. Must be coded as binary (0,1) where 1 is the outcome of interest time : str Column name of time variable """ # Setting up holders for results ir_lcl = [] ir_ucl = [] ir_sd = [] ird_lcl = [] ird_ucl = [] ird_sd = [] # Getting unique values and dropping reference vals = set(df[exposure].dropna().unique()) vals.remove(self.reference) self._c = df.loc[(df[exposure] == self.reference) & (df[outcome] == 1)].shape[0] self._c_time = df.loc[df[exposure] == self.reference][time].sum() self._labels.append('Ref:'+str(self.reference)) ri, lr, ur, sd, *_ = incidence_rate_ci(events=self._c, time=self._c_time, alpha=self.alpha) self.incidence_rate.append(ri) ir_lcl.append(lr) ir_ucl.append(ur) ir_sd.append(sd) self.incidence_rate_difference.append(0) ird_lcl.append(None) ird_ucl.append(None) ird_sd.append(None) # Going through all the values for i in vals: self._labels.append(str(i)) a = df.loc[(df[exposure] == i) & (df[outcome] == 1)].shape[0] self._a_list.append(a) a_t = df.loc[df[exposure] == i][time].sum() self._a_time_list.append(a_t) ri, lr, ur, sd, *_ = incidence_rate_ci(events=a, time=a_t, alpha=self.alpha) self.incidence_rate.append(ri) ir_lcl.append(lr) ir_ucl.append(ur) ir_sd.append(sd) em, lcl, ucl, sd, *_ = incidence_rate_difference(a=a, t1=a_t, c=self._c, t2=self._c_time, alpha=self.alpha) self.incidence_rate_difference.append(em) ird_lcl.append(lcl) ird_ucl.append(ucl) ird_sd.append(sd) # Getting the extent of missing data self._missing_ed = df.loc[(df[exposure].isnull()) & (df[outcome].isnull())].shape[0] self._missing_e = df.loc[df[exposure].isnull()].shape[0] - self._missing_ed self._missing_d = df.loc[df[outcome].isnull()].shape[0] - self._missing_ed self._missing_t = df.loc[df[time].isnull()].shape[0] # Setting up results rf = pd.DataFrame(index=self._labels) rf['IncRate'] = self.incidence_rate rf['SD(IncRate)'] = ir_sd rf['IncRate_LCL'] = ir_lcl rf['IncRate_UCL'] = ir_ucl rf['IncRateDiff'] = self.incidence_rate_difference rf['SD(IRD)'] = ird_sd rf['IRD_LCL'] = ird_lcl rf['IRD_UCL'] = ird_ucl rf['CLD'] = rf['IRD_UCL'] - rf['IRD_LCL'] self.results = rf self._fit = True def summary(self, decimal=3): """Prints the summary results Parameters ---------------- decimal : integer, optional Decimal places to display. Default is 3 """ if self._fit is False: raise ValueError('fit() function must be completed before results can be obtained') for a, a_t, l in zip(self._a_list, self._a_time_list, self._labels): print('Comparison:'+str(self.reference)+' to '+self._labels[self._labels.index(l)+1]) print(tabulate([['E=1', a, a_t], ['E=0', self._c, self._c_time]], headers=['', 'D=1', 'Person-time'], tablefmt='grid'), '\n') print('======================================================================') print(' Incidence Rate Difference ') print('======================================================================') print(self.results[['IncRate', 'SD(IncRate)', 'IncRate_LCL', 'IncRate_UCL']].round(decimals=decimal)) print('----------------------------------------------------------------------') print(self.results[['IncRateDiff', 'SD(IRD)', 'IRD_LCL', 'IRD_UCL']].round(decimals=decimal)) print('----------------------------------------------------------------------') print('Missing E: ', self._missing_e) print('Missing D: ', self._missing_d) print('Missing E&D: ', self._missing_ed) print('Missing T: ', self._missing_t) print('======================================================================') def plot(self, measure='incidence_rate_difference', center=0, **errorbar_kwargs): """Plot the incidence rate differences or the incidence rates along with their corresponding confidence intervals. This option is an alternative to summary(), which displays results in a table format. Parameters ---------- measure : str, optional Whether to display incidence rate ratios or incidence rates. Default is to display the incidence rate differences. Options are; * 'incidence_rate_difference' : display incidence rate differences * 'incidence_rate' : display incidence rates center : str, optional Sets a reference line. For the incidence rate difference, the reference line defaults to 0. For incidence rates, no reference line is displayed. errorbar_kwargs: add additional kwargs to be passed to the plotting function ``matplotlib.errorbar``. See defaults here: https://matplotlib.org/api/_as_gen/matplotlib.pyplot.errorbar.html Returns ------- matplotlib axes """ if measure == 'incidence_rate_difference': ax = _plotter(estimate=self.results['IncRateDiff'], lcl=self.results['IRD_LCL'], ucl=self.results['IRD_UCL'], labels=self.results.index, center=center, **errorbar_kwargs) ax.set_title('Incidence Rate Difference') elif measure == 'incidence_rate': ax = _plotter(estimate=self.results['IncRate'], lcl=self.results['IncRate_LCL'], ucl=self.results['IncRate_UCL'], labels=self.results.index, center=np.nan, **errorbar_kwargs) ax.set_title('Incidence Rate') ax.set_xlim([0, 1]) else: raise ValueError('Must specify either "incidence_rate_difference" or "incidence_rate" for plots') return ax def _plotter(estimate, lcl, ucl, labels, center=0, **errorbar_kwargs): """ Plot functionality to be used by all the measure classes. Internal functional for all the other plotting functionalities. The main function is matplotlib.errorbar, see defaults here: https://matplotlib.org/api/_as_gen/matplotlib.pyplot.errorbar.html """ ypoints = np.arange(len(labels)) ax = plt.gca() errorbar_kwargs.setdefault('fmt', 'o') errorbar_kwargs.setdefault('color', 'k') absolute_errors_from_estimate = np.abs(estimate.values -
np.vstack((lcl, ucl))
numpy.vstack
""" N phase calculation engine (c) <NAME>, 2018 """ import numpy as np from scipy.sparse.linalg import spsolve from scipy.sparse import csc_matrix, hstack, vstack from scipy.sparse.linalg import factorized from scipy.sparse.linalg import splu def gauss_seidel_power_flow(Vbus, Sbus, Ibus, Ybus, P0, Q0, exp_p, exp_q, V0, A, B, C, pq, pv, tol, max_iter, verbose=False): """ Gauss-Seidel power flow :param Vbus: Bus voltage complex vector :param Sbus: Bus complex power injections vector :param Ibus: Bus complex current injections vector :param Ybus: Nodal admittance matrix (complex and sparse) :param P0: Exponential load parameter P0 :param Q0: Exponential load parameter Q0 :param exp_p: Exponential load parameter exp_p :param exp_q: Exponential load parameter exp_q :param V0: Exponential load parameter V0 :param A: Polynomial load parameter A :param B: Polynomial load parameter B :param C: Polynomial load parameter C :param pq: list of pq marked nodes :param pv: list of pv marked nodes :param tol: tolerance of the solution :param max_iter: Maximum number of iterations :return: Voltage vector (solution), converged?, power error """ factor = 0.9 V = Vbus.copy() Vm = np.abs(V) # compute error mis = V * np.conj(Ybus * V - Ibus) - Sbus F = np.r_[mis[pv].real, mis[pq].real, mis[pq].imag] error = np.linalg.norm(F, np.Inf) # check convergence converged = error < tol # Gauss-Seidel iter_ = 0 while not converged and iter_ < max_iter: # compute the exponential load model injection Vm = np.abs(V) Pexp = P0 / (np.power(V0, exp_p)) * np.power(Vm, exp_p) Qexp = Q0 / (np.power(V0, exp_q)) * np.power(Vm, exp_q) Sexp = Pexp + 1j * Qexp # compute the polynomial load model Spoly = A + B * Vm + C * np.power(Vm, 2.0) for k in pq: V[k] += factor * (np.conj((Sbus[k] - Sexp[k] - Spoly[k]) / V[k] + Ibus[k]) - Ybus[k, :] * V) / Ybus[k, k] # compute the voltage for k in pv: # get the reactive power Q = (V[k] * np.conj(Ybus[k, :] * V - Ibus[k])).imag # compose the new complex power Sbus[k] = Sbus[k].real + 1j * Q # compute the voltage V[k] += factor * (np.conj((Sbus[k] - Sexp[k] - Spoly[k]) / V[k]) - Ybus[k, :] * V) / Ybus[k, k] # correct the voltage with the specified module of the voltage V[k] *= Vm[k] / np.abs(V[k]) # compute error Scalc = V * np.conj(Ybus * V - Ibus) # computed nodal power mis = Scalc - (Sbus - Sexp - Spoly) # power mismatch F = np.r_[mis[pv].real, mis[pq].real, mis[pq].imag] # array of particular mismatch values error = np.linalg.norm(F, np.Inf) # infinite norm of the mismatch vector # check convergence converged = error < tol iter_ += 1 if verbose: print('V: iter:', iter_, 'err:', error) print(np.abs(V)) return V, converged, error def jacobian(Ybus, Vbus, Ibus, pq, pvpq): """ Computes the system Jacobian matrix Args: Ybus: Admittance matrix Vbus: Array of nodal voltages Ibus: Array of nodal current injections pq: Array with the indices of the PQ buses pvpq: Array with the indices of the PV and PQ buses in that precise order Returns: The system Jacobian matrix """ ib = range(len(Vbus)) Ibus = Ybus * Vbus - Ibus diagV = csc_matrix((Vbus, (ib, ib))) diagIbus = csc_matrix((Ibus, (ib, ib))) diagVnorm = csc_matrix((Vbus / np.abs(Vbus), (ib, ib))) dS_dVm = diagV * np.conj(Ybus * diagVnorm) + np.conj(diagIbus) * diagVnorm dS_dVa = 1j * diagV * np.conj(diagIbus - Ybus * diagV) J11 = dS_dVa[np.array([pvpq]).T, pvpq].real J12 = dS_dVm[np.array([pvpq]).T, pq].real J21 = dS_dVa[np.array([pq]).T, pvpq].imag J22 = dS_dVm[np.array([pq]).T, pq].imag J = vstack([hstack([J11, J12]), hstack([J21, J22])], format="csr") return J def newton_raphson_power_flow(Vbus, Sbus, Ibus, Ybus, P0, Q0, exp_p, exp_q, V0, A, B, C, pq, pv, tol, max_iter, verbose=False): """ Solves the power flow using a full Newton's method with the Iwamoto optimal step factor. Args: Vbus: Array of nodal voltages (initial solution) Sbus: Array of nodal power injections Ibus: Array of nodal current injections Ybus: Admittance matrix P0: Exponential load parameter P0 Q0: Exponential load parameter Q0 exp_p: Exponential load parameter exp_p exp_q: Exponential load parameter exp_q V0: Exponential load parameter V0 A: Polynomial load parameter A B: Polynomial load parameter B C: Polynomial load parameter C pv: Array with the indices of the PV buses pq: Array with the indices of the PQ buses tol: Tolerance max_it: Maximum number of iterations robust: Boolean variable for the use of the Iwamoto optimal step factor. Returns: Voltage solution, converged?, error, calculated power injections @author: <NAME> (PSERC Cornell) @Author: <NAME> """ # initialize converged = 0 iter_ = 0 V = Vbus Va = np.angle(V) Vm = np.abs(V) dVa =
np.zeros_like(Va)
numpy.zeros_like
from __future__ import absolute_import, print_function, division import os import numpy as np import unittest import theano from theano import config, function, tensor from theano.compat import PY3 from theano.misc.pkl_utils import CompatUnpickler from theano.sandbox import multinomial from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams import theano.tests.unittest_tools as utt from .config import mode_with_gpu from ..multinomial import (GPUAMultinomialFromUniform, GPUAChoiceFromUniform) def test_multinomial_output_dtype(): # This tests the MultinomialFromUniform Op directly, not going through the # multinomial() call in GPU random generation. p = tensor.fmatrix() u = tensor.fvector() for dtype in ['int64', 'float32', 'float16', 'float64', 'int32', 'auto']: m = theano.sandbox.multinomial.MultinomialFromUniform(dtype)(p, u) # the m*2 allows the multinomial to reuse output f = function([p, u], m * 2, allow_input_downcast=True, mode=mode_with_gpu) assert any([type(node.op) is GPUAMultinomialFromUniform for node in f.maker.fgraph.toposort()]) # test that both first and second samples can be drawn utt.assert_allclose(f([[1, 0], [0, 1]], [.1, .1]), [[2, 0], [0, 2]]) # test that both second labels can be drawn r = f([[.2, .8], [.3, .7]], [.31, .31]) utt.assert_allclose(r, [[0, 2], [0, 2]]) # test that both first labels can be drawn r = f([[.2, .8], [.3, .7]], [.21, .21]) utt.assert_allclose(r, [[0, 2], [2, 0]]) # change the size to make sure output gets reallocated ok # and also make sure that the GPU version doesn't screw up the # transposed-ness r = f([[.2, .8]], [.25]) utt.assert_allclose(r, [[0, 2]]) def test_multinomial_input_dtype(): # This tests the MultinomialFromUniform Op directly, not going through the # multinomial() call in GPU random generation. for idtype in ['float32', 'float16', 'float64']: for odtype in ['float32', 'float16', 'float64', 'int32']: p = tensor.matrix('p', idtype) u = tensor.vector('u', idtype) # p = tensor.dmatrix('p') # u = tensor.dvector('u') m = theano.sandbox.multinomial.MultinomialFromUniform(odtype)(p, u) # the m*2 allows the multinomial to reuse output f = function([p, u], m * 2, allow_input_downcast=True, mode=mode_with_gpu) assert any([type(node.op) is GPUAMultinomialFromUniform for node in f.maker.fgraph.toposort()]) # test that both first and second samples can be drawn utt.assert_allclose(f([[1, 0], [0, 1]], [.1, .1]), [[2, 0], [0, 2]]) # test that both second labels can be drawn r = f([[.2, .8], [.3, .7]], [.31, .31]) utt.assert_allclose(r, [[0, 2], [0, 2]]) # test that both first labels can be drawn r = f([[.2, .8], [.3, .7]], [.21, .21]) utt.assert_allclose(r, [[0, 2], [2, 0]]) # change the size to make sure output gets reallocated ok # and also make sure that the GPU version doesn't screw up the # transposed-ness r = f([[.2, .8]], [.25]) utt.assert_allclose(r, [[0, 2]]) # TODO: check a bigger example (make sure blocking on GPU is handled correctly) def test_multinomial_large(): # DEBUG_MODE will test this on GPU p = tensor.fmatrix() u = tensor.fvector() m = theano.sandbox.multinomial.MultinomialFromUniform('auto')(p, u) f = function([p, u], m * 2, allow_input_downcast=True, mode=mode_with_gpu) assert any([type(node.op) is GPUAMultinomialFromUniform for node in f.maker.fgraph.toposort()]) pval = np.arange(10000 * 4, dtype='float32').reshape((10000, 4)) + 0.1 pval = pval / pval.sum(axis=1)[:, None] uval = np.ones_like(pval[:, 0]) * 0.5 mval = f(pval, uval) assert mval.shape == pval.shape if config.cast_policy == 'custom': assert mval.dtype == pval.dtype elif config.cast_policy == 'numpy+floatX': assert mval.dtype == config.floatX elif config.cast_policy == 'numpy': assert mval.dtype == 'float64' else: raise NotImplementedError(config.cast_policy) utt.assert_allclose(mval.sum(axis=1), 2) asdf = np.asarray([0, 0, 2, 0]) + 0 * pval utt.assert_allclose(mval, asdf) # broadcast over all rows def test_gpu_opt_dtypes(): # Test if the returned samples are of the datatype specified for dtype in ['uint32', 'float32', 'int64', 'float64']: p = tensor.fmatrix() u = tensor.fvector() m = theano.sandbox.multinomial.MultinomialFromUniform(dtype)(p, u) f = function([p, u], m, allow_input_downcast=True, mode=mode_with_gpu) assert any([type(node.op) is GPUAMultinomialFromUniform for node in f.maker.fgraph.toposort()]) pval = np.arange(10000 * 4, dtype='float32').reshape((10000, 4)) + 0.1 pval = pval / pval.sum(axis=1)[:, None] uval = np.ones_like(pval[:, 0]) * 0.5 samples = f(pval, uval) assert samples.dtype == dtype, "%s != %s" % (samples.dtype, dtype) def test_gpu_opt(): # Does have some overlap with test_multinomial_0 # We test the case where we put the op on the gpu when the output # is moved to the gpu. p = tensor.fmatrix() u = tensor.fvector() m = theano.sandbox.multinomial.MultinomialFromUniform('auto')(p, u) assert m.dtype == 'float32', m.dtype f = function([p, u], m, allow_input_downcast=True, mode=mode_with_gpu) assert any([type(node.op) is GPUAMultinomialFromUniform for node in f.maker.fgraph.toposort()]) pval = np.arange(10000 * 4, dtype='float32').reshape((10000, 4)) + 0.1 pval = pval / pval.sum(axis=1)[:, None] uval = np.ones_like(pval[:, 0]) * 0.5 f(pval, uval) # Test with a row, it was failing in the past. r = tensor.frow() m = theano.sandbox.multinomial.MultinomialFromUniform('auto')(r, u) assert m.dtype == 'float32', m.dtype f = function([r, u], m, allow_input_downcast=True, mode=mode_with_gpu) assert any([type(node.op) is GPUAMultinomialFromUniform for node in f.maker.fgraph.toposort()]) pval = np.arange(1 * 4, dtype='float32').reshape((1, 4)) + 0.1 pval = pval / pval.sum(axis=1)[:, None] uval = np.ones_like(pval[:, 0]) * 0.5 f(pval, uval) class test_OP_wor(unittest.TestCase): def test_select_distinct(self): # Tests that ChoiceFromUniform always selects distinct elements p = tensor.fmatrix() u = tensor.fvector() n = tensor.iscalar() m = multinomial.ChoiceFromUniform(odtype='auto')(p, u, n) f = function([p, u, n], m, allow_input_downcast=True) n_elements = 1000 all_indices = range(n_elements) np.random.seed(12345) for i in [5, 10, 50, 100, 500, n_elements]: uni = np.random.rand(i).astype(config.floatX) pvals = np.random.randint(1, 100, (1, n_elements)).astype(config.floatX) pvals /= pvals.sum(1) res = f(pvals, uni, i) res = np.squeeze(res) assert len(res) == i, res assert np.all(np.in1d(np.unique(res), all_indices)), res def test_fail_select_alot(self): # Tests that ChoiceFromUniform fails when asked to sample more # elements than the actual number of elements p = tensor.fmatrix() u = tensor.fvector() n = tensor.iscalar() m = multinomial.ChoiceFromUniform(odtype='auto')(p, u, n) f = function([p, u, n], m, allow_input_downcast=True) n_elements = 100 n_selected = 200 np.random.seed(12345) uni = np.random.rand(n_selected).astype(config.floatX) pvals = np.random.randint(1, 100, (1, n_elements)).astype(config.floatX) pvals /= pvals.sum(1) self.assertRaises(ValueError, f, pvals, uni, n_selected) def test_select_proportional_to_weight(self): # Tests that ChoiceFromUniform selects elements, on average, # proportional to the their probabilities p = tensor.fmatrix() u = tensor.fvector() n = tensor.iscalar() m = multinomial.ChoiceFromUniform(odtype='auto')(p, u, n) f = function([p, u, n], m, allow_input_downcast=True) n_elements = 100 n_selected = 10 mean_rtol = 0.0005 np.random.seed(12345) pvals = np.random.randint(1, 100, (1, n_elements)).astype(config.floatX) pvals /= pvals.sum(1) avg_pvals = np.zeros((n_elements,), dtype=config.floatX) for rep in range(10000): uni = np.random.rand(n_selected).astype(config.floatX) res = f(pvals, uni, n_selected) res = np.squeeze(res) avg_pvals[res] += 1 avg_pvals /= avg_pvals.sum() avg_diff = np.mean(abs(avg_pvals - pvals)) assert avg_diff < mean_rtol, avg_diff class test_function_wor(unittest.TestCase): def test_select_distinct(self): # Tests that multinomial_wo_replacement always selects distinct elements th_rng = RandomStreams(12345) p = tensor.fmatrix() n = tensor.iscalar() m = th_rng.multinomial_wo_replacement(pvals=p, n=n) f = function([p, n], m, allow_input_downcast=True) n_elements = 1000 all_indices = range(n_elements) np.random.seed(12345) for i in [5, 10, 50, 100, 500, n_elements]: pvals = np.random.randint(1, 100, (1, n_elements)).astype(config.floatX) pvals /= pvals.sum(1) res = f(pvals, i) res = np.squeeze(res) assert len(res) == i assert np.all(np.in1d(np.unique(res), all_indices)), res def test_fail_select_alot(self): # Tests that multinomial_wo_replacement fails when asked to sample more # elements than the actual number of elements th_rng = RandomStreams(12345) p = tensor.fmatrix() n = tensor.iscalar() m = th_rng.multinomial_wo_replacement(pvals=p, n=n) f = function([p, n], m, allow_input_downcast=True) n_elements = 100 n_selected = 200 np.random.seed(12345) pvals = np.random.randint(1, 100, (1, n_elements)).astype(config.floatX) pvals /= pvals.sum(1) self.assertRaises(ValueError, f, pvals, n_selected) def test_select_proportional_to_weight(self): # Tests that multinomial_wo_replacement selects elements, on average, # proportional to the their probabilities th_rng = RandomStreams(12345) p = tensor.fmatrix() n = tensor.iscalar() m = th_rng.multinomial_wo_replacement(pvals=p, n=n) f = function([p, n], m, allow_input_downcast=True) n_elements = 100 n_selected = 10 mean_rtol = 0.0005 np.random.seed(12345) pvals = np.random.randint(1, 100, (1, n_elements)).astype(config.floatX) pvals /= pvals.sum(1) avg_pvals = np.zeros((n_elements,), dtype=config.floatX) for rep in range(10000): res = f(pvals, n_selected) res = np.squeeze(res) avg_pvals[res] += 1 avg_pvals /= avg_pvals.sum() avg_diff = np.mean(abs(avg_pvals - pvals)) assert avg_diff < mean_rtol def test_gpu_opt_wor(): # We test the case where we put the op on the gpu when the output # is moved to the gpu. p = tensor.fmatrix() u = tensor.fvector() n = tensor.iscalar() for replace in [False, True]: m = multinomial.ChoiceFromUniform(odtype='auto', replace=replace)(p, u, n) assert m.dtype == 'int64', m.dtype f = function([p, u, n], m, allow_input_downcast=True, mode=mode_with_gpu) assert any([type(node.op) is GPUAChoiceFromUniform for node in f.maker.fgraph.toposort()]) n_samples = 3 pval = np.arange(10000 * 4, dtype='float32').reshape((10000, 4)) + 0.1 pval = pval / pval.sum(axis=1)[:, None] uval = np.ones(pval.shape[0] * n_samples) * 0.5 f(pval, uval, n_samples) # Test with a row, it was failing in the past. r = tensor.frow() m = multinomial.ChoiceFromUniform('auto', replace=replace)(r, u, n) assert m.dtype == 'int64', m.dtype f = function([r, u, n], m, allow_input_downcast=True, mode=mode_with_gpu) assert any([type(node.op) is GPUAChoiceFromUniform for node in f.maker.fgraph.toposort()]) pval = np.arange(1 * 4, dtype='float32').reshape((1, 4)) + 0.1 pval = pval / pval.sum(axis=1)[:, None] uval =
np.ones_like(pval[:, 0])
numpy.ones_like
# from positive import * # # Return the min and max limits of an 1D array # def lim(x): # # Import useful bit # from numpy import array,ndarray # if not isinstance(x,ndarray): # x = array(x) # # Columate input. # z = x.reshape((x.size,)) # # Return min and max as list # return array([min(z),max(z)]) + (0 if len(z)==1 else array([-1e-20,1e-20])) # Function to produce array of color vectors def rgb( N, # offset = None, # speed = None, # plot = False, # shift = None, # jet = False, # reverse = False, # weights = None, # grayscale = None, # verbose = None ): # ''' Function to produce array of color vectors. ''' # from numpy import array,pi,sin,arange,linspace,amax,mean,sqrt # If bad first intput, let the people know. if not isinstance( N, int ): msg = 'First input must be '+cyan('int')+'.' raise ValueError(msg) # if offset is None: offset = pi/4.0 # if speed is None: speed = 2.0 # if shift is None: shift = 0 # if jet: offset = -pi/2.1 shift = pi/2.0 # if weights is None: t_range = linspace(1,0,N) else: if len(weights)==N: t_range = array(weights) t_range /= 1 if 0==amax(t_range) else amax(t_range) else: error('weights must be of length N','rgb') # if reverse: t_range = linspace(1,0,N) else: t_range = linspace(0,1,N) # r = array([ 1, 0, 0 ]) g = array([ 0, 1, 0 ]) b = array([ 0, 0, 1 ]) # clr = [] w = pi/2.0 for t in t_range: # if not grayscale: R = r*sin( w*t + shift ) G = g*sin( w*t*speed + offset + shift ) B = b*sin( w*t + pi/2 + shift ) else: R = r*t G = g*t B = b*t # Ensure that all color vectors have a mean that is the golden ratio (less than one) V = abs(R+G+B) if not grayscale: V /= mean(V)*0.5*(1+sqrt(5)) # But make sure that all values are bounded by one V = array([ min(v,1) for v in V ]) # Add color vector to output clr.append( V ) # if plot: # from matplotlib import pyplot as p # fig = p.figure() fig.set_facecolor("white") # for k in range(N): p.plot( array([0,1]), (k+1.0)*array([1,1])/N, linewidth=20, color = clr[k] ) # p.axis('equal') p.axis('off') # p.ylim([-1.0/N,1.0+1.0/N]) p.show() # return array(clr) # Plot 2d surface and related scatter points def splot( domain, scalar_range, domain2=None, scalar_range2=None, kind=None, ms=60, cbfs=16, color_scatter=True, verbose=True): '''Plot 2d surface and related scatter points ''' # Import usefult things from matplotlib.pyplot import figure,plot,scatter,xlabel,ylabel,savefig,imshow,colorbar,gca from numpy import linspace,meshgrid,array,angle,unwrap from positive.maths import sunwrap from matplotlib import cm # plot_scatter = (domain2 is not None) and (scalar_range2 is not None) # fig = figure( figsize=2*array([4,2.8]) ) clrmap = cm.coolwarm # # Z = abs(SR) if kind=='amp' else angle(SR) # Z = abs(scalar_range) if kind=='amp' else scalar_range # Z = sunwrap(angle(scalar_range)) if kind=='phase' else scalar_range if kind=='amp': Z = abs(scalar_range) elif kind=='phase': Z = sunwrap(angle(scalar_range)) else: Z = scalar_range # norm = cm.colors.Normalize(vmax=1.1*Z.max(), vmin=Z.min()) # Plot scatter of second dataset if plot_scatter: # if color_scatter: mkr = 'o' else: mkr = 's' # Set marker size mkr_size = ms # Scatter the outline of domain points scatter( domain2[:,0], domain2[:,1], mkr_size + 5, color='k', alpha=0.6 if color_scatter else 0.333, marker=mkr, facecolors='none' if color_scatter else 'none' ) # Scatter the location of domain points and color by value if color_scatter: Z_ = abs(scalar_range2) if kind=='amp' else sunwrap(angle(scalar_range2)) scatter( domain2[:,0],domain2[:,1], mkr_size, c=Z_, marker='o', cmap=clrmap, norm=norm, edgecolors='none' ) # extent = (domain[:,0].min(),domain[:,0].max(),domain[:,1].min(),domain[:,1].max()) im = imshow(Z, extent=extent, aspect='auto', cmap=clrmap, origin='lower', norm=norm ) # cb = colorbar() cb_range = linspace(Z.min(),Z.max(),5) cb.set_ticks( cb_range ) cb.set_ticklabels( [ '%1.3f'%k for k in cb_range ] ) cb.ax.tick_params(labelsize=cbfs) # return gca() # def sYlm_mollweide_plot(l,m,ax=None,title=None,N=100,form=None,s=-2,colorbar_shrink=0.68): ''' Plot spin weighted spherical harmonic. ''' # from matplotlib.pyplot import subplots,gca,gcf,figure,colorbar,draw from numpy import array,pi,linspace,meshgrid # Coordinate arrays for the graphical representation x = linspace(-pi, pi, N) y = linspace(-pi/2, pi/2, N/2) X, Y = meshgrid(x, y) # Spherical coordinate arrays derived from x, y theta = pi/2 - y phi = x.copy() # if form in (None,'r','re','real'): SYLM_fun = lambda S,L,M,TH,PH: sYlm(S,L,M,TH,PH).real.T title = r'$\Re(_{%i}Y_{%i%i})$'%(s,l,m) elif form in ('i','im','imag'): SYLM_fun = lambda S,L,M,TH,PH: sYlm(S,L,M,TH,PH).imag.T title = r'$\Im(_{%i}Y_{%i%i})$'%(s,l,m) elif form in ('a','ab','abs'): SYLM_fun = lambda S,L,M,TH,PH: abs(sYlm(S,L,M,TH,PH)).T title = r'$|_{%i}Y_{%i%i}|$'%(s,l,m) elif form in ('+','plus'): SYLM_fun = lambda S,L,M,TH,PH: ( sYlm(S,L,M,TH,PH) + sYlm(S,L,-M,TH,PH) ).real.T title = r'$ _{%i}Y^{+}_{%i%i} = \Re \; \left[ \sum_{m\in \{%i,%i\}} \, _{%i} Y_{%i m} \; \right] $'%(s,l,m,m,-m,s,l,) elif form in ('x','cross'): SYLM_fun = lambda S,L,M,TH,PH: ( sYlm(S,L,M,TH,PH) + sYlm(S,L,-M,TH,PH) ).imag.T title = r'$ _{%i}Y^{\times}_{%i%i} = \Im \; \left[ \sum_{m\in \{%i,%i\}} \, _{%i} Y_{%i m} \; \right] $'%(s,l,m,m,-m,s,l,) # Z = SYLM_fun( -2,l,m,theta,phi ) xlabels = ['$210^\circ$', '$240^\circ$','$270^\circ$','$300^\circ$','$330^\circ$', '$0^\circ$', '$30^\circ$', '$60^\circ$', '$90^\circ$','$120^\circ$', '$150^\circ$'] ylabels = ['$165^\circ$', '$150^\circ$', '$135^\circ$', '$120^\circ$', '$105^\circ$', '$90^\circ$', '$75^\circ$', '$60^\circ$', '$45^\circ$','$30^\circ$','$15^\circ$'] # if ax is None: fig, ax = subplots(subplot_kw=dict(projection='mollweide'), figsize= 1*array([10,8]) ) # im = ax.pcolormesh(X,Y,Z) ax.set_xticklabels(xlabels, fontsize=14) ax.set_yticklabels(ylabels, fontsize=14) # ax.set_title( title, fontsize=20) ax.set_xlabel(r'$\phi$', fontsize=20) ax.set_ylabel(r'$\theta$', fontsize=20) ax.grid() colorbar(im, ax=ax, orientation='horizontal',shrink=colorbar_shrink,label=title) gcf().canvas.draw_idle() # def plot3Dpoint(ax,vec,label,note,marker='o',s=40,color='g',mfc='none',va='bottom',ha='right',la=0.8,ts=16,normalize=True): '''Plot 3D point''' # Import usefuls from numpy import linalg # Plot 3D point foo = vec/ ( ( linalg.norm(vec) if linalg.norm(vec) else 1.0 ) if normalize else 1 ) ax.scatter( foo[0], foo[1], foo[2], label=label, color=color, marker=marker, s=s, facecolor=mfc,zorder=-80 ) ax.text(foo[0], foo[1], foo[2],note,alpha=la,verticalalignment=va,ha=ha,size=ts) # Plot a 3d meshed sphere def plot_3d_mesh_sphere(ax=None,nth=30,nph=30,r=1,color='k',lw=1,alpha=0.1,axes_on=True,axes_alpha=0.35,view=None): # from numpy import sin,cos,linspace,ones_like,array,pi from mpl_toolkits.mplot3d import Axes3D from matplotlib.pyplot import figure,plot,figaspect,text,axis # if view is None: view = (30,-60) # if ax is None: fig = figure( figsize=4*figaspect(1) ) ax = fig.add_subplot(111,projection='3d') # See: https://github.com/matplotlib/matplotlib/issues/17172#issuecomment-634964954 ax.set_box_aspect((1, 1, 1)) axis('square') ax.set_xlim([-r,r]) ax.set_ylim([-r,r]) ax.set_zlim([-r,r]) axis('off') # th_ = linspace(0,pi,nth) ph_ = linspace(0,2*pi,nph) # for th in th_: x = r*sin(th)*cos(ph_) y = r*sin(th)*sin(ph_) z = r*cos(th)*ones_like(ph_) plot(x,y,z,color=color,alpha=alpha,lw=lw) # for ph in ph_[:-1]: x = r*sin(th_)*cos(ph) y = r*sin(th_)*sin(ph) z = r*cos(th_) plot(x,y,z,color=color,alpha=alpha,lw=lw) # if axes_on: # for ph in [ 0, pi, pi/2, 3*pi/2 ]: x = r*sin(th_)*cos(ph) y = r*sin(th_)*sin(ph) z = r*cos(th_) plot(x,y,z,color='k',alpha=axes_alpha,lw=lw,ls='--') # for th in [ pi/2 ]: x = r*sin(th)*cos(ph_) y = r*sin(th)*sin(ph_) z = r*cos(th)*
ones_like(ph_)
numpy.ones_like
import os import sys import time import pdb import gc import numpy as np import faiss import argparse import resource import benchmark.datasets from benchmark.datasets import DATASETS from benchmark.plotting import eval_range_search #################################################################### # Index building functions #################################################################### def two_level_clustering(xt, nc1, nc2, clustering_niter=25, spherical=False): d = xt.shape[1] print(f"2-level clustering of {xt.shape} nb clusters = {nc1}*{nc2} = {nc1*nc2}") print("perform coarse training") km = faiss.Kmeans( d, nc1, verbose=True, niter=clustering_niter, max_points_per_centroid=2000, spherical=spherical ) km.train(xt) print() # coarse centroids centroids1 = km.centroids print("assigning the training set") t0 = time.time() _, assign1 = km.assign(xt) bc = np.bincount(assign1, minlength=nc1) print(f"done in {time.time() - t0:.2f} s. Sizes of clusters {min(bc)}-{max(bc)}") o = assign1.argsort() del km # train sub-clusters i0 = 0 c2 = [] t0 = time.time() for c1 in range(nc1): print(f"[{time.time() - t0:.2f} s] training sub-cluster {c1}/{nc1}\r", end="", flush=True) i1 = i0 + bc[c1] subset = o[i0:i1] assert np.all(assign1[subset] == c1) km = faiss.Kmeans(d, nc2, spherical=spherical) xtsub = xt[subset] km.train(xtsub) c2.append(km.centroids) i0 = i1 print(f"done in {time.time() - t0:.2f} s") return np.vstack(c2) def unwind_index_ivf(index): if isinstance(index, faiss.IndexPreTransform): assert index.chain.size() == 1 vt = faiss.downcast_VectorTransform(index.chain.at(0)) index_ivf, vt2 = unwind_index_ivf(faiss.downcast_index(index.index)) assert vt2 is None return index_ivf, vt if hasattr(faiss, "IndexRefine") and isinstance(index, faiss.IndexRefine): return unwind_index_ivf(faiss.downcast_index(index.base_index)) if isinstance(index, faiss.IndexIVF): return index, None else: return None, None def build_index(args, ds): nq, d = ds.nq, ds.d nb, d = ds.nq, ds.d if args.buildthreads == -1: print("Build-time number of threads:", faiss.omp_get_max_threads()) else: print("Set build-time number of threads:", args.buildthreads) faiss.omp_set_num_threads(args.buildthreads) metric_type = ( faiss.METRIC_L2 if ds.distance() == "euclidean" else faiss.METRIC_INNER_PRODUCT if ds.distance() in ("ip", "angular") else 1/0 ) print("metric type", metric_type) index = faiss.index_factory(d, args.indexkey, metric_type) index_ivf, vec_transform = unwind_index_ivf(index) if vec_transform is None: vec_transform = lambda x: x else: vec_transform = faiss.downcast_VectorTransform(vec_transform) if args.by_residual != -1: by_residual = args.by_residual == 1 print("setting by_residual = ", by_residual) index_ivf.by_residual # check if field exists index_ivf.by_residual = by_residual if index_ivf: print("Update add-time parameters") # adjust default parameters used at add time for quantizers # because otherwise the assignment is inaccurate quantizer = faiss.downcast_index(index_ivf.quantizer) if isinstance(quantizer, faiss.IndexRefine): print(" update quantizer k_factor=", quantizer.k_factor, end=" -> ") quantizer.k_factor = 32 if index_ivf.nlist < 1e6 else 64 print(quantizer.k_factor) base_index = faiss.downcast_index(quantizer.base_index) if isinstance(base_index, faiss.IndexIVF): print(" update quantizer nprobe=", base_index.nprobe, end=" -> ") base_index.nprobe = ( 16 if base_index.nlist < 1e5 else 32 if base_index.nlist < 4e6 else 64) print(base_index.nprobe) elif isinstance(quantizer, faiss.IndexHNSW): print(" update quantizer efSearch=", quantizer.hnsw.efSearch, end=" -> ") if args.quantizer_add_efSearch > 0: quantizer.hnsw.efSearch = args.quantizer_add_efSearch else: quantizer.hnsw.efSearch = 40 if index_ivf.nlist < 4e6 else 64 print(quantizer.hnsw.efSearch) if args.quantizer_efConstruction != -1: print(" update quantizer efConstruction=", quantizer.hnsw.efConstruction, end=" -> ") quantizer.hnsw.efConstruction = args.quantizer_efConstruction print(quantizer.hnsw.efConstruction) index.verbose = True if index_ivf: index_ivf.verbose = True index_ivf.quantizer.verbose = True index_ivf.cp.verbose = True maxtrain = args.maxtrain if maxtrain == 0: if 'IMI' in args.indexkey: maxtrain = int(256 * 2 ** (np.log2(index_ivf.nlist) / 2)) elif index_ivf: maxtrain = 50 * index_ivf.nlist else: # just guess... maxtrain = 256 * 100 maxtrain = max(maxtrain, 256 * 100) print("setting maxtrain to %d" % maxtrain) # train on dataset print(f"getting first {maxtrain} dataset vectors for training") xt2 = next(ds.get_dataset_iterator(bs=maxtrain)) print("train, size", xt2.shape) assert np.all(np.isfinite(xt2)) t0 = time.time() if (isinstance(vec_transform, faiss.OPQMatrix) and isinstance(index_ivf, faiss.IndexIVFPQFastScan)): print(" Forcing OPQ training PQ to PQ4") ref_pq = index_ivf.pq training_pq = faiss.ProductQuantizer( ref_pq.d, ref_pq.M, ref_pq.nbits ) vec_transform.pq vec_transform.pq = training_pq if args.clustering_niter >= 0: print(("setting nb of clustering iterations to %d" % args.clustering_niter)) index_ivf.cp.niter = args.clustering_niter train_index = None if args.train_on_gpu: print("add a training index on GPU") train_index = faiss.index_cpu_to_all_gpus( faiss.IndexFlatL2(index_ivf.d)) index_ivf.clustering_index = train_index if args.two_level_clustering: sqrt_nlist = int(np.sqrt(index_ivf.nlist)) assert sqrt_nlist ** 2 == index_ivf.nlist centroids_trainset = xt2 if isinstance(vec_transform, faiss.VectorTransform): print(" training vector transform") vec_transform.train(xt2) print(" transform trainset") centroids_trainset = vec_transform.apply_py(centroids_trainset) centroids = two_level_clustering( centroids_trainset, sqrt_nlist, sqrt_nlist, spherical=(metric_type == faiss.METRIC_INNER_PRODUCT) ) if not index_ivf.quantizer.is_trained: print(" training quantizer") index_ivf.quantizer.train(centroids) print(" add centroids to quantizer") index_ivf.quantizer.add(centroids) index.train(xt2) print(" Total train time %.3f s" % (time.time() - t0)) if train_index is not None: del train_index index_ivf.clustering_index = None gc.collect() print("adding") t0 = time.time() if args.add_bs == -1: index.add(sanitize(ds.get_database())) else: i0 = 0 nsplit = args.add_splits for sno in range(nsplit): print(f"============== SPLIT {sno}/{nsplit}") for xblock in ds.get_dataset_iterator(bs=args.add_bs, split=(nsplit, sno)): i1 = i0 + len(xblock) print(" adding %d:%d / %d [%.3f s, RSS %d kiB] " % ( i0, i1, ds.nb, time.time() - t0, faiss.get_mem_usage_kb())) index.add(xblock) i0 = i1 gc.collect() if sno == args.stop_at_split: print("stopping at split", sno) break print(" add in %.3f s" % (time.time() - t0)) if args.indexfile: print("storing", args.indexfile) faiss.write_index(index, args.indexfile) return index #################################################################### # Evaluation functions #################################################################### def compute_inter(a, b): nq, rank = a.shape ninter = sum( np.intersect1d(a[i, :rank], b[i, :rank]).size for i in range(nq) ) return ninter / a.size def knn_search_batched(index, xq, k, bs): D, I = [], [] for i0 in range(0, len(xq), bs): Di, Ii = index.search(xq[i0:i0 + bs], k) D.append(Di) I.append(Ii) return np.vstack(D), np.vstack(I) def eval_setting_knn(index, xq, gt, k=0, inter=False, min_time=3.0, query_bs=-1): nq = xq.shape[0] gt_I, gt_D = gt ivf_stats = faiss.cvar.indexIVF_stats ivf_stats.reset() nrun = 0 t0 = time.time() while True: if query_bs == -1: D, I = index.search(xq, k) else: D, I = knn_search_batched(index, xq, k, query_bs) nrun += 1 t1 = time.time() if t1 - t0 > min_time: break ms_per_query = ((t1 - t0) * 1000.0 / nq / nrun) if inter: rank = k inter_measure = compute_inter(gt_I[:, :rank], I[:, :rank]) print("%.4f" % inter_measure, end=' ') else: for rank in 1, 10, 100: n_ok = (I[:, :rank] == gt_I[:, :1]).sum() print("%.4f" % (n_ok / float(nq)), end=' ') print(" %9.5f " % ms_per_query, end=' ') if ivf_stats.search_time == 0: # happens for IVFPQFastScan where the stats are not logged by default print("%12d %5.2f " % (ivf_stats.ndis / nrun, 0.0), end=' ') else: pc_quantizer = ivf_stats.quantization_time / ivf_stats.search_time * 100 print("%12d %5.2f " % (ivf_stats.ndis / nrun, pc_quantizer), end=' ') print(nrun) def eval_setting_range(index, xq, gt, radius=0, inter=False, min_time=3.0, query_bs=-1): nq = xq.shape[0] gt_nres, gt_I, gt_D = gt gt_lims = np.zeros(nq + 1, dtype=int) gt_lims[1:] = np.cumsum(gt_nres) ivf_stats = faiss.cvar.indexIVF_stats ivf_stats.reset() nrun = 0 t0 = time.time() while True: if query_bs == -1: lims, D, I = index.range_search(xq, radius) else: raise NotImplemented nrun += 1 t1 = time.time() if t1 - t0 > min_time: break ms_per_query = ((t1 - t0) * 1000.0 / nq / nrun) ap = eval_range_search.compute_AP((gt_lims, gt_I, gt_D), (lims, I, D)) print("%.4f" % ap, end=' ') print(" %9.5f " % ms_per_query, end=' ') print("%12d %5d " % (ivf_stats.ndis / nrun, D.size), end=' ') print(nrun) def result_header(ds, args): # setup the Criterion object if ds.search_type() == "range": header = ( '%-40s AP time(ms/q) nb distances nb_res #runs' % "parameters" ) crit = None elif args.inter: print("Optimize for intersection @ ", args.k) crit = faiss.IntersectionCriterion(ds.nq, args.k) header = ( '%-40s inter@%3d time(ms/q) nb distances %%quantization #runs' % ("parameters", args.k) ) else: print("Optimize for 1-recall @ 1") crit = faiss.OneRecallAtRCriterion(ds.nq, 1) header = ( '%-40s R@1 R@10 R@100 time(ms/q) nb distances %%quantization #runs' % "parameters" ) return header, crit def op_compute_bounds(ps, ops, cno): # lower_bound_t = 0.0 # upper_bound_perf = 1.0 bounds = np.array([0, 1], dtype="float64") sp = faiss.swig_ptr for i in range(ops.all_pts.size()): ps.update_bounds(cno, ops.all_pts.at(i), sp(bounds[1:2]), sp(bounds[0:1])) # lower_bound_t, upper_bound_perf return bounds[0], bounds[1] def explore_parameter_space_range(index, xq, gt, ps, radius): """ exploration of the parameter space for range search, using the Average Precision as criterion """ n_experiments = ps.n_experiments n_comb = ps.n_combinations() min_time = ps.min_test_duration verbose = ps.verbose gt_nres, gt_I, gt_D = gt gt_lims = np.zeros(len(gt_nres) + 1, dtype=int) gt_lims[1:] = np.cumsum(gt_nres) gt = (gt_lims, gt_I, gt_D) ops = faiss.OperatingPoints() def run_1_experiment(cno): ps.set_index_parameters(index, cno) nrun = 0 t0 = time.time() while True: lims, D, I = index.range_search(xq, radius) nrun += 1 t1 = time.time() if t1 - t0 > min_time: break t_search = (t1 - t0) / nrun perf = eval_range_search.compute_AP(gt, (lims, I, D)) keep = ops.add(perf, t_search, ps.combination_name(cno), cno) return len(D), perf, t_search, nrun, keep if n_experiments == 0: # means exhaustive run for cno in range(n_comb): nres, perf, t_search, nrun, keep = run_1_experiment(cno) if verbose: print(" %d/%d: %s nres=%d perf=%.3f t=%.3f s %s" % ( cno, n_comb, ps.combination_name(cno), nres, perf, t_search, "*" if keep else "")) return ops n_experiments = min(n_experiments, n_comb) perm = np.zeros(n_experiments, int) # make sure the slowest and fastest experiment are run perm[0] = 0 perm[1] = n_comb - 1 rs = np.random.RandomState(1234) perm[2:] = 1 + rs.choice(n_comb - 2, n_experiments - 2, replace=False) for xp, cno in enumerate(perm): cno = int(cno) if verbose: print(" %d/%d: cno=%d %s " % ( xp, n_experiments, cno, ps.combination_name(cno)), end="", flush=True) # check if we can skip this experiment lower_bound_t, upper_bound_perf = op_compute_bounds(ps, ops, cno) best_t = ops.t_for_perf(upper_bound_perf) if verbose: print("bounds [perf<=%.3f t>=%.3f] " % ( upper_bound_perf, lower_bound_t), end="skip\n" if best_t <= lower_bound_t else " " ) if best_t <= lower_bound_t: continue nres, perf, t_search, nrun, keep = run_1_experiment(cno) if verbose: print(" nres %d perf %.3f t %.3f (%d %s) %s" % ( nres, perf, t_search, nrun, "runs" if nrun >= 2 else "run", "*" if keep else "")) return ops #################################################################### # Driver functions #################################################################### def run_experiments_searchparams(ds, index, args): """ Evaluate a predefined set of runtime parameters """ k = args.k xq = ds.get_queries() nq = len(xq) ps = faiss.ParameterSpace() ps.initialize(index) header, _ = result_header(ds, args) searchparams = args.searchparams print(f"Running evaluation on {len(searchparams)} searchparams") print(header) maxw = max(max(len(p) for p in searchparams), 40) for params in searchparams: ps.set_index_parameters(index, params) print(params.ljust(maxw), end=' ') sys.stdout.flush() if ds.search_type() == "knn": eval_setting_knn( index, xq, ds.get_groundtruth(k=args.k), k=args.k, inter=args.inter, min_time=args.min_test_duration, query_bs=args.query_bs ) else: eval_setting_range( index, xq, ds.get_groundtruth(k=args.k), radius=args.radius, inter=args.inter, min_time=args.min_test_duration, query_bs=args.query_bs ) def run_experiments_autotune(ds, index, args): """ Explore the space of parameters and keep Pareto-optimal ones. """ k = args.k xq = ds.get_queries() nq = len(xq) ps = faiss.ParameterSpace() ps.initialize(index) ps.n_experiments = args.n_autotune ps.min_test_duration = args.min_test_duration for kv in args.autotune_max: k, vmax = kv.split(':') vmax = float(vmax) print("limiting %s to %g" % (k, vmax)) pr = ps.add_range(k) values = faiss.vector_to_array(pr.values) values = np.array([v for v in values if v < vmax]) faiss.copy_array_to_vector(values, pr.values) for kv in args.autotune_range: k, vals = kv.split(':') vals = np.fromstring(vals, sep=',') print("setting %s to %s" % (k, vals)) pr = ps.add_range(k) faiss.copy_array_to_vector(vals, pr.values) header, crit = result_header(ds, args) # then we let Faiss find the optimal parameters by itself print("exploring operating points, %d threads" % faiss.omp_get_max_threads()); ps.display() t0 = time.time() if ds.search_type() == "knn": # by default, the criterion will request only 1 NN crit.nnn = args.k gt_I, gt_D = ds.get_groundtruth(k=args.k) crit.set_groundtruth(None, gt_I.astype('int64')) op = ps.explore(index, xq, crit) elif ds.search_type() == "range": op = explore_parameter_space_range( index, xq, ds.get_groundtruth(), ps, args.radius ) else: assert False print("Done in %.3f s, available OPs:" % (time.time() - t0)) op.display() print("Re-running evaluation on selected OPs") print(header) opv = op.optimal_pts maxw = max(max(len(opv.at(i).key) for i in range(opv.size())), 40) for i in range(opv.size()): opt = opv.at(i) ps.set_index_parameters(index, opt.key) print(opt.key.ljust(maxw), end=' ') sys.stdout.flush() if ds.search_type() == "knn": eval_setting_knn( index, xq, ds.get_groundtruth(k=args.k), k=args.k, inter=args.inter, min_time=args.min_test_duration ) else: eval_setting_range( index, xq, ds.get_groundtruth(k=args.k), radius=args.radius, inter=args.inter, min_time=args.min_test_duration ) class DatasetWrapInPairwiseQuantization: def __init__(self, ds, C): self.ds = ds self.C = C self.Cq = np.linalg.inv(C.T) # xb_pw = np.ascontiguousarray((C @ xb.T).T) # xq_pw = np.ascontiguousarray((Cq @ xq.T).T) # copy fields for name in "nb d nq dtype distance search_type get_groundtruth".split(): setattr(self, name, getattr(ds, name)) def get_dataset(self): return self.ds.get_dataset() @ self.C.T def get_queries(self): return self.ds.get_queries() @ self.Cq.T def get_dataset_iterator(self, bs=512, split=(1,0)): for xb in self.ds.get_dataset_iterator(bs=bs, split=split): yield xb @ self.C.T #################################################################### # Main #################################################################### def main(): parser = argparse.ArgumentParser() def aa(*args, **kwargs): group.add_argument(*args, **kwargs) group = parser.add_argument_group('What to do') aa('--build', default=False, action="store_true") aa('--search', default=False, action="store_true") aa('--prepare', default=False, action="store_true", help="call prepare() to download the dataset before computing") group = parser.add_argument_group('dataset options') aa('--dataset', choices=DATASETS.keys(), required=True) aa('--basedir', help="override basedir for dataset") aa('--pairwise_quantization', default="", help="load/store pairwise quantization matrix") aa('--query_bs', default=-1, type=int, help='perform queries in batches of this size') group = parser.add_argument_group('index construction') aa('--indexkey', default='HNSW32', help='index_factory type') aa('--by_residual', default=-1, type=int, help="set if index should use residuals (default=unchanged)") aa('--M0', default=-1, type=int, help='size of base level') aa('--maxtrain', default=0, type=int, help='maximum number of training points (0 to set automatically)') aa('--indexfile', default='', help='file to read or write index from') aa('--add_bs', default=100000, type=int, help='add elements index by batches of this size') aa('--add_splits', default=1, type=int, help="Do adds in this many splits (otherwise risk of OOM for large datasets)") aa('--stop_at_split', default=-1, type=int, help="stop at this split (for debugging)") aa('--no_precomputed_tables', action='store_true', default=False, help='disable precomputed tables (uses less memory)') aa('--clustering_niter', default=-1, type=int, help='number of clustering iterations (-1 = leave default)') aa('--two_level_clustering', action="store_true", default=False, help='perform a 2-level tree clustering') aa('--train_on_gpu', default=False, action='store_true', help='do training on GPU') aa('--quantizer_efConstruction', default=-1, type=int, help="override the efClustering of the quantizer") aa('--quantizer_add_efSearch', default=-1, type=int, help="override the efSearch of the quantizer at add time") aa('--buildthreads', default=-1, type=int, help='nb of threads to use at build time') group = parser.add_argument_group('searching') aa('--k', default=10, type=int, help='nb of nearest neighbors') aa('--radius', default=96237, type=float, help='radius for range search') aa('--inter', default=True, action='store_true', help='use intersection measure instead of 1-recall as metric') aa('--searchthreads', default=-1, type=int, help='nb of threads to use at search time') aa('--searchparams', nargs='+', default=['autotune'], help="search parameters to use (can be autotune or a list of params)") aa('--n_autotune', default=500, type=int, help="max nb of autotune experiments") aa('--autotune_max', default=[], nargs='*', help='set max value for autotune variables format "var:val" (exclusive)') aa('--autotune_range', default=[], nargs='*', help='set complete autotune range, format "var:val1,val2,..."') aa('--min_test_duration', default=3.0, type=float, help='run test at least for so long to avoid jitter') aa('--parallel_mode', default=-1, type=int, help="set search-time parallel mode for IVF indexes") group = parser.add_argument_group('computation options') aa("--maxRAM", default=-1, type=int, help="set max RSS in GB (avoid OOM crash)") args = parser.parse_args() print("args=", args) if args.basedir: print("setting datasets basedir to", args.basedir) benchmark.datasets.BASEDIR benchmark.datasets.BASEDIR = args.basedir if args.maxRAM > 0: print("setting max RSS to", args.maxRAM, "GiB") resource.setrlimit( resource.RLIMIT_DATA, (args.maxRAM * 1024 ** 3, resource.RLIM_INFINITY) ) os.system('echo -n "nb processors "; ' 'cat /proc/cpuinfo | grep ^processor | wc -l; ' 'cat /proc/cpuinfo | grep ^"model name" | tail -1') ds = DATASETS[args.dataset]() print(ds) nq, d = ds.nq, ds.d nb, d = ds.nq, ds.d if args.prepare: print("downloading dataset...") ds.prepare() print("dataset ready") if not (args.build or args.search): return if args.pairwise_quantization: if os.path.exists(args.pairwise_quantization): print("loading pairwise quantization matrix", args.pairwise_quantization) C =
np.load(args.pairwise_quantization)
numpy.load
import timeit from random import randrange from collections import OrderedDict import numpy as np def listCompre(sizeList): result = [x for x in range(sizeList)] return result def numpyList(sizeList): myList =
np.arange(sizeList)
numpy.arange
import matplotlib, zipfile matplotlib.use('agg') import sys, numpy as np, matplotlib.pyplot as plt, os, tools21cm as t2c, matplotlib.gridspec as gridspec from sklearn.metrics import matthews_corrcoef from glob import glob from tensorflow.keras.models import load_model from tqdm import tqdm from config.net_config import NetworkConfig from utils.other_utils import RotateCube from utils_network.metrics import iou, iou_loss, dice_coef, dice_coef_loss, balanced_cross_entropy, phi_coef from utils_network.prediction import SegUnet21cmPredict from myutils.utils import OrderNdimArray title_a = '\t\t _ _ _ _ _ \n\t\t| | | | \ | | | | \n\t\t| | | | \| | ___| |_ \n\t\t| | | | . ` |/ _ \ __|\n\t\t| |__| | |\ | __/ |_ \n\t\t \____/|_| \_|\___|\__|\n' title_b = ' _____ _ _ _ ___ __ \n| __ \ | (_) | | |__ \/_ | \n| |__) | __ ___ __| |_ ___| |_ ___ ) || | ___ _ __ ___ \n| ___/ `__/ _ \/ _` | |/ __| __/ __| / / | |/ __| `_ ` _ \ \n| | | | | __/ (_| | | (__| |_\__ \ / /_ | | (__| | | | | |\n|_| |_| \___|\__,_|_|\___|\__|___/ |____||_|\___|_| |_| |_|\n' print(title_a+'\n'+title_b) config_file = sys.argv[1] conf = PredictionConfig(config_file) PATH_OUT = conf.path_out PATH_INPUT = conf.path+conf.pred_data print(' PATH_INPUT = %s' %PATH_INPUT) if(PATH_INPUT[-3:] == 'zip'): ZIPFILE = True PATH_IN_ZIP = PATH_INPUT[PATH_INPUT.rfind('/')+1:-4]+'/' PATH_UNZIP = PATH_INPUT[:PATH_INPUT.rfind('/')+1] MAKE_PLOTS = True # load model avail_metrics = {'binary_accuracy':'binary_accuracy', 'iou':iou, 'dice_coef':dice_coef, 'iou_loss':iou_loss, 'dice_coef_loss':dice_coef_loss, 'phi_coef':phi_coef, 'mse':'mse', 'mae':'mae', 'binary_crossentropy':'binary_crossentropy', 'balanced_cross_entropy':balanced_cross_entropy} MODEL_EPOCH = conf.best_epoch METRICS = [avail_metrics[m] for m in np.append(conf.loss, conf.metrics)] cb = {func.__name__:func for func in METRICS if not isinstance(func, str)} model = load_model('%smodel-sem21cm_ep%d.h5' %(PATH_OUT+'checkpoints/', MODEL_EPOCH), custom_objects=cb) try: os.makedirs(PATH_OUT+'predictions') except: pass PATH_OUT += 'predictions/pred_tobs1200/' print(' PATH_OUTPUT = %s' %PATH_OUT) try: os.makedirs(PATH_OUT+'data') os.makedirs(PATH_OUT+'plots') except: pass if(os.path.exists('%sastro_data.txt' %PATH_OUT)): astr_data = np.loadtxt('%sastro_data.txt' %PATH_OUT, unpack=True) restarts = astr_data[6:].argmin(axis=1) if(all(int(np.mean(restarts)) == restarts)): restart = int(np.mean(restarts)) print(' Restart from idx=%d' %restart) else: ValueError(' Restart points does not match.') phicoef_seg, phicoef_err, phicoef_sp, xn_mask, xn_seg, xn_err, xn_sp, b0_true, b1_true, b2_true, b0_seg, b1_seg, b2_seg, b0_sp, b1_sp, b2_sp = astr_data[6:] astr_data = astr_data[:6] else: if(ZIPFILE): with zipfile.ZipFile(PATH_INPUT, 'r') as myzip: astr_data = np.loadtxt(myzip.open('%sastro_params.txt' %PATH_IN_ZIP), unpack=True) else: astr_data = np.loadtxt('%sastro_params.txt' %PATH_INPUT, unpack=True) restart = 0 phicoef_seg = np.zeros(astr_data.shape[1]) phicoef_err = np.zeros_like(phicoef_seg) phicoef_sp = np.zeros_like(phicoef_seg) xn_mask = np.zeros_like(phicoef_seg) xn_seg = np.zeros_like(phicoef_seg) xn_err = np.zeros_like(phicoef_seg) xn_sp = np.zeros_like(phicoef_sp) b0_true = np.zeros_like(phicoef_sp) b1_true = np.zeros_like(phicoef_sp) b2_true = np.zeros_like(phicoef_sp) b0_sp = np.zeros_like(phicoef_sp) b1_sp = np.zeros_like(phicoef_sp) b2_sp = np.zeros_like(phicoef_sp) b0_seg = np.zeros_like(phicoef_sp) b1_seg = np.zeros_like(phicoef_sp) b2_seg = np.zeros_like(phicoef_sp) params = {'HII_DIM':128, 'DIM':384, 'BOX_LEN':256} my_ext = [0, params['BOX_LEN'], 0, params['BOX_LEN']] zc = (astr_data[1,:] < 7.5) + (astr_data[1,:] > 8.3) c1 = (astr_data[5,:]<=0.25)*(astr_data[5,:]>=0.15)*zc c2 = (astr_data[5,:]<=0.55)*(astr_data[5,:]>=0.45)*zc c3 = (astr_data[5,:]<=0.75)*(astr_data[5,:]>=0.85)*zc indexes = astr_data[0,:] new_idx = indexes[c1+c2+c3].astype(int) #for i in tqdm(range(restart, astr_data.shape[1])): print(new_idx) for new_i in tqdm(range(3, new_idx.size)): i = new_idx[new_i] z = astr_data[1,i] zeta = astr_data[2,i] Rmfp = astr_data[3,i] Tvir = astr_data[4,i] xn = astr_data[5,i] #print('z = %.3f x_n =%.3f zeta = %.3f R_mfp = %.3f T_vir = %.3f' %(z, xn, zeta, Rmfp, Tvir)) if(ZIPFILE): with zipfile.ZipFile(PATH_INPUT, 'r') as myzip: f = myzip.extract(member='%simage_21cm_i%d.bin' %(PATH_IN_ZIP+'data/', i), path=PATH_UNZIP) dT3 = t2c.read_cbin(f) f = myzip.extract(member='%smask_21cm_i%d.bin' %(PATH_IN_ZIP+'data/', i), path=PATH_UNZIP) mask_xn = t2c.read_cbin(f) os.system('rm -r %s/' %(PATH_UNZIP+PATH_IN_ZIP)) else: dT3 = t2c.read_cbin('%simage_21cm_i%d.bin' %(PATH_INPUT+'data/', i)) mask_xn = t2c.read_cbin('%smask_21cm_i%d.bin' %(PATH_INPUT+'data/', i)) # Calculate Betti number b0_true[i] = t2c.betti0(data=mask_xn) b1_true[i] = t2c.betti1(data=mask_xn) b2_true[i] = t2c.betti2(data=mask_xn) xn_mask[i] = np.mean(mask_xn) plt.rcParams['font.size'] = 20 plt.rcParams['xtick.direction'] = 'in' plt.rcParams['ytick.direction'] = 'in' plt.rcParams['xtick.top'] = False plt.rcParams['ytick.right'] = False plt.rcParams['axes.linewidth'] = 1.2 ls = 22 # -------- predict with SegUnet 3D -------- print(' calculating predictioon for data i = %d...' %i) X_tta = SegUnet21cmPredict(unet=model, x=dT3, TTA=True) X_seg = np.round(np.mean(X_tta, axis=0)) X_seg_err = np.std(X_tta, axis=0) # calculate Matthew coef and mean neutral fraction phicoef_seg[i] = matthews_corrcoef(mask_xn.flatten(), X_seg.flatten()) xn_seg[i] = np.mean(X_seg) # calculate errors phicoef_tta = np.zeros(X_tta.shape[0]) xn_tta = np.zeros(X_tta.shape[0]) for k in tqdm(range(len(X_tta))): xn_tta[k] = np.mean(np.round(X_tta[k])) phicoef_tta[k] = matthews_corrcoef(mask_xn.flatten(), np.round(X_tta[k]).flatten()) xn_err[i] = np.std(xn_tta) phicoef_err[i] = np.std(phicoef_tta) # Calculate Betti number b0_seg[i] = t2c.betti0(data=X_seg) b1_seg[i] = t2c.betti1(data=X_seg) b2_seg[i] = t2c.betti2(data=X_seg) # -------------------------------------------- # -------- predict with Super-Pixel -------- labels = t2c.slic_cube(dT3.astype(dtype='float64'), n_segments=5000, compactness=0.1, max_iter=20, sigma=0, min_size_factor=0.5, max_size_factor=3, cmap=None) superpixel_map = t2c.superpixel_map(dT3, labels) X_sp = 1-t2c.stitch_superpixels(dT3, labels, bins='knuth', binary=True, on_superpixel_map=True) # calculate Matthew coef and mean neutral fraction phicoef_sp[i] = matthews_corrcoef(mask_xn.flatten(), X_sp.flatten()) xn_sp[i] = np.mean(X_sp) # Calculate Betti number b0_sp[i] = t2c.betti0(data=X_sp) b1_sp[i] = t2c.betti1(data=X_sp) b2_sp[i] = t2c.betti2(data=X_sp) # -------------------------------------------- if(i in new_idx and MAKE_PLOTS): plt.rcParams['xtick.direction'] = 'out' plt.rcParams['ytick.direction'] = 'out' plt.rcParams['figure.figsize'] = [20, 10] idx = params['HII_DIM']//2 # Plot visual comparison fig, axs = plt.subplots(figsize=(20,10), ncols=3, sharey=True, sharex=True) (ax0, ax1, ax2) = axs ax0.set_title('Super-Pixel ($r_{\phi}=%.3f$)' %phicoef_sp[i], size=ls) ax0.imshow(X_sp[:,:,idx], origin='lower', cmap='jet', extent=my_ext) ax0.contour(mask_xn[:,:,idx], colors='lime', levels=[0.5], extent=my_ext) ax0.set_xlabel('x [Mpc]'), ax0.set_ylabel('y [Mpc]') ax1.set_title('SegU-Net ($r_{\phi}=%.3f$)' %phicoef_seg[i], size=ls) ax1.imshow(X_seg[:,:,idx], origin='lower', cmap='jet', extent=my_ext) ax1.contour(mask_xn[:,:,idx], colors='lime', levels=[0.5], extent=my_ext) ax1.set_xlabel('x [Mpc]') ax2.set_title('SegUNet Pixel-Error', size=ls) im = plt.imshow(X_seg_err[:,:,idx], origin='lower', cmap='jet', extent=my_ext) fig.colorbar(im, label=r'$\sigma_{std}$', ax=ax2, pad=0.02, cax=fig.add_axes([0.905, 0.25, 0.02, 0.51])) ax2.set_xlabel('x [Mpc]') plt.subplots_adjust(hspace=0.1, wspace=0.01) for ax in axs.flat: ax.label_outer() plt.savefig('%svisual_comparison_i%d.png' %(PATH_OUT+'plots/', i), bbox_inches='tight'), plt.clf() # Plot BSD-MFP of the prediction mfp_pred_ml = t2c.bubble_stats.mfp(X_seg, xth=0.5, boxsize=params['BOX_LEN'], iterations=2000000, verbose=False, upper_lim=False, bins=None, r_min=None, r_max=None) mfp_pred_sp = t2c.bubble_stats.mfp(X_sp, xth=0.5, boxsize=params['BOX_LEN'], iterations=2000000, verbose=False, upper_lim=False, bins=None, r_min=None, r_max=None) mfp_true = t2c.bubble_stats.mfp(mask_xn, xth=0.5, boxsize=params['BOX_LEN'], iterations=2000000, verbose=False, upper_lim=False, bins=None, r_min=None, r_max=None) mfp_tta = np.zeros((X_tta.shape[0], 2, 128)) for j in tqdm(range(0, X_tta.shape[0])): mfp_pred_ml1, mfp_pred_ml2 = t2c.bubble_stats.mfp(np.round(X_tta[j]), xth=0.5, boxsize=params['BOX_LEN'], iterations=2000000, verbose=False, upper_lim=False, bins=None, r_min=None, r_max=None) mfp_tta[j,0] = mfp_pred_ml1 mfp_tta[j,1] = mfp_pred_ml2 plt.rcParams['xtick.direction'] = 'in' plt.rcParams['ytick.direction'] = 'in' compare_ml = (mfp_pred_ml[1]/mfp_true[1]) compare_ml_tta = (mfp_tta[:,1,:]/mfp_true[1]) compare_sp = (mfp_pred_sp[1]/mfp_true[1]) fig, ax0 = plt.subplots(figsize=(12, 9)) gs = gridspec.GridSpec(2, 1, height_ratios=[4, 1.8]) # set height ratios for sublots ax0 = plt.subplot(gs[0]) ax0.set_title('$z=%.3f$\t$x_n=%.3f$\t$r_{\phi}=%.3f$' %(z, xn_mask[i], phicoef_seg[i]), fontsize=ls) ax0.fill_between(mfp_pred_ml[0], np.min(mfp_tta[:,1,:], axis=0), np.max(mfp_tta[:,1,:], axis=0), color='tab:blue', alpha=0.2) ax0.loglog(mfp_pred_ml[0], mfp_pred_ml[1], '-', color='tab:blue', label='SegUNet', lw=2) ax0.loglog(mfp_pred_sp[0], mfp_pred_sp[1], '-', color='tab:orange', label='Super-Pixel', lw=2) ax0.loglog(mfp_true[0], mfp_true[1], 'k--', label='Ground true', lw=2) ax0.legend(loc=0, borderpad=0.5) ax0.tick_params(axis='both', length=7, width=1.2) ax0.tick_params(axis='both', which='minor', length=5, width=1.2) ax0.set_ylabel('RdP/dR', size=18), ax0.set_xlabel('R (Mpc)') ax1 = plt.subplot(gs[1], sharex=ax0) ax1.loglog(mfp_true[0], compare_ml, '-', lw=2) ax1.loglog(mfp_true[0], compare_sp, '-', lw=2) ax1.loglog(mfp_true[0], np.ones_like(mfp_true[0]), 'k--', lw=2) ax1.fill_between(mfp_true[0], np.min(compare_ml_tta, axis=0), np.max(compare_ml_tta, axis=0), color='tab:blue', alpha=0.2) ax1.tick_params(axis='both', length=7, width=1.2, labelsize=15) ax1.set_ylabel('difference (%)', size=15) ax1.set_xlabel('R (Mpc)', size=18) plt.setp(ax0.get_xticklabels(), visible=False) plt.subplots_adjust(hspace=0.0) ax1.tick_params(which='minor', axis='both', length=5, width=1.2) plt.savefig('%sbs_comparison_i%d.png' %(PATH_OUT+'plots/', i), bbox_inches='tight'), plt.clf() # Plot dimensioneless power spectra of the x field ps_true, ks_true = t2c.power_spectrum_1d(mask_xn, kbins=20, box_dims=256, binning='log') ps_pred_sp, ks_pred_sp = t2c.power_spectrum_1d(X_sp, kbins=20, box_dims=256, binning='log') ps_pred_ml, ks_pred_ml = t2c.power_spectrum_1d(X_seg, kbins=20, box_dims=256, binning='log') ps_tta = np.zeros((X_tta.shape[0],20)) for k in range(0,X_tta.shape[0]): ps_tta[k], ks_pred_ml = t2c.power_spectrum_1d(np.round(X_tta[k]), kbins=20, box_dims=256, binning='log') compare_ml = 100*(ps_pred_ml/ps_true - 1.) compare_ml_tta = 100*(ps_tta/ps_true - 1.) compare_sp = 100*(ps_pred_sp/ps_true - 1.) fig, ax = plt.subplots(figsize=(16, 12)) gs = gridspec.GridSpec(2, 1, height_ratios=[4, 1.8]) ax0 = plt.subplot(gs[0]) ax0.set_title('$z=%.3f$\t$x_n=%.3f$\t$r_{\phi}=%.3f$' %(z, xn_mask[i], phicoef_seg[i]), fontsize=ls) ax0.fill_between(ks_pred_ml, np.min(ps_tta*ks_pred_ml**3/2/np.pi**2, axis=0), np.max(ps_tta*ks_pred_ml**3/2/np.pi**2, axis=0), color='tab:blue', alpha=0.2) ax0.loglog(ks_pred_ml, ps_pred_ml*ks_pred_ml**3/2/np.pi**2, '-', color='tab:blue', label='SegUNet', lw=2) ax0.loglog(ks_pred_sp, ps_pred_sp*ks_pred_sp**3/2/np.pi**2, '-', color='tab:orange', label='Super-Pixel', lw=2) ax0.loglog(ks_true, ps_true*ks_true**3/2/np.pi**2, 'k--', label='Ground true', lw=2) ax0.set_yscale('log') ax1 = plt.subplot(gs[1], sharex=ax0) ax1.semilogx(ks_true, compare_ml, '-', lw=2) ax1.semilogx(ks_true, compare_sp, '-', lw=2) ax1.semilogx(ks_true, np.zeros_like(ks_true), 'k--', lw=2) ax1.fill_between(ks_true, np.min(compare_ml_tta, axis=0), np.max(compare_ml_tta, axis=0), color='tab:blue', alpha=0.2) ax1.tick_params(axis='both', length=7, width=1.2, labelsize=15) ax1.set_xlabel('k (Mpc$^{-1}$)'), ax0.set_ylabel('$\Delta^2_{xx}$') ax1.set_ylabel('difference (%)', size=15) ax0.tick_params(axis='both', length=10, width=1.2) ax0.tick_params(which='minor', axis='both', length=5, width=1.2) ax1.tick_params(which='minor', axis='both', length=5, width=1.2) ax0.legend(loc=0, borderpad=0.5) plt.setp(ax0.get_xticklabels(), visible=False) plt.subplots_adjust(hspace=0.0) plt.savefig('%sPk_comparison_i%d.png' %(PATH_OUT+'plots/', i), bbox_inches='tight'), plt.clf() ds_data = np.vstack((ks_true, np.vstack((ps_true*ks_true**3/2/np.pi**2, np.vstack((np.vstack((ps_pred_ml*ks_pred_ml**3/2/np.pi**2, np.vstack((np.min(ps_tta*ks_pred_ml**3/2/np.pi**2, axis=0), np.max(ps_tta*ks_pred_ml**3/2/np.pi**2, axis=0))))), ps_pred_sp*ks_pred_sp**3/2/np.pi**2)))))) bsd_data = np.vstack((mfp_true[0], np.vstack((mfp_true[1], np.vstack((np.vstack((mfp_pred_ml[1], np.vstack((np.min(mfp_tta[:,1,:], axis=0), np.max(mfp_tta[:,1,:], axis=0))))), mfp_pred_sp[1])))))) np.savetxt('%sds_data_i%d.txt' %(PATH_OUT+'data/', i), ds_data.T, fmt='%.6e', delimiter='\t', header='k [Mpc^-1]\tds_true\tds_seg_mean\tds_err_min\tds_err_max\tds_sp') np.savetxt('%sbsd_data_i%d.txt' %(PATH_OUT+'data/', i), bsd_data.T, fmt='%.6e', delimiter='\t', header='R [Mpc]\tbs_true\tbs_seg_mean\tb_err_min\tbs_err_max\tbs_sp') new_astr_data = np.vstack((astr_data, phicoef_seg)) new_astr_data = np.vstack((new_astr_data, phicoef_err)) new_astr_data = np.vstack((new_astr_data, phicoef_sp)) new_astr_data = np.vstack((new_astr_data, xn_mask)) new_astr_data = np.vstack((new_astr_data, xn_seg)) new_astr_data = np.vstack((new_astr_data, xn_err)) new_astr_data = np.vstack((new_astr_data, xn_sp)) new_astr_data = np.vstack((new_astr_data, b0_true)) new_astr_data = np.vstack((new_astr_data, b1_true)) new_astr_data = np.vstack((new_astr_data, b2_true)) new_astr_data = np.vstack((new_astr_data, b0_seg)) new_astr_data = np.vstack((new_astr_data, b1_seg)) new_astr_data = np.vstack((new_astr_data, b2_seg)) new_astr_data = np.vstack((new_astr_data, b0_sp)) new_astr_data = np.vstack((new_astr_data, b1_sp)) new_astr_data = np.vstack((new_astr_data, b2_sp)) np.savetxt('%sastro_data.txt' %(PATH_OUT), new_astr_data.T, fmt='%d\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d', header='i\tz\teff_f\tRmfp\tTvir\tx_n\tphi_ML\tphi_err phi_SP\txn_mask xn_seg\txn_err\txn_sp\tb0 true b1\tb2\tb0 ML\tb1\tb2\tb0 SP\tb1\tb2') np.savetxt('%sastro_data_sample.txt' %(PATH_OUT+'data/'), new_astr_data[:,new_idx].T, fmt='%d\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d', header='i\tz\teff_f\tRmfp\tTvir\tx_n\tphi_ML\tphi_err phi_SP\txn_mask xn_seg\txn_err\txn_sp\tb0 true b1\tb2\tb0 ML\tb1\tb2\tb0 SP\tb1\tb2') # Plot phi coeff plt.rcParams['font.size'] = 16 redshift, xfrac, phicoef_seg, phicoef_seg_err, phicoef_sp, xn_mask_true, xn_seg, xn_seg_err, xn_sp = OrderNdimArray(np.loadtxt(PATH_OUT+'astro_data.txt', unpack=True, usecols=(1,5,6,7,8,9,10,11,12)), 1) print('phi_coef = %.3f +/- %.3f\t(SegUnet)' %(np.mean(phicoef_seg), np.std(phicoef_seg))) print('phi_coef = %.3f\t\t(Superpixel)' %(np.mean(phicoef_sp))) fig, (ax0, ax1) = plt.subplots(ncols=2, figsize=(20,8)) #ax0.hlines(y=np.mean(phicoef_seg), xmin=0, xmax=1, ls='--', alpha=0.5) #ax0.fill_between(x=np.linspace(0, 1, 100), y1=np.mean(phicoef_seg)+np.std(phicoef_seg), y2=np.mean(phicoef_seg)-np.std(phicoef_seg), alpha=0.5, color='lightgray') # MCC SegUnet cm = matplotlib.cm.plasma sc = ax0.scatter(xfrac, phicoef_seg, c=redshift, vmin=7, vmax=9, s=25, cmap=cm, marker='.') norm = matplotlib.colors.Normalize(vmin=7, vmax=9, clip=True) mapper = matplotlib.cm.ScalarMappable(norm=norm, cmap=cm) redshift_color = np.array([(mapper.to_rgba(v)) for v in redshift]) for x, y, e, clr in zip(xfrac, phicoef_seg, phicoef_seg_err, redshift_color): ax0.errorbar(x, y, e, lw=1, marker='o', capsize=3, color=clr) ax0.set_xlim(xfrac.min()-0.02, xfrac.max()+0.02), ax0.set_xlabel(r'$x_i$') ax0.set_ylim(-0.02, 1.02), ax0.set_ylabel(r'$r_{\phi}$') fig.colorbar(sc, ax=ax0, pad=0.01, label=r'$z$') ax2 = ax0.twinx() ax2.hist(xfrac, np.linspace(0.09, 0.81, 15), density=True, histtype='step', color='tab:blue', alpha=0.5) ax2.axes.get_yaxis().set_visible(False) # MCC comparison ax1.hlines(y=np.mean(phicoef_seg), xmin=0, xmax=1, ls='--', alpha=0.5, color='tab:blue') ax1.hlines(y=np.mean(phicoef_sp), xmin=0, xmax=1, ls='--', alpha=0.5, color='tab:orange') new_x = np.linspace(xfrac.min(), xfrac.max(), 100) f1 = np.poly1d(np.polyfit(xfrac, phicoef_seg, 10)) ax1.plot(new_x, f1(new_x), label='SegUnet', color='tab:blue') f2 = np.poly1d(np.polyfit(xfrac, phicoef_sp, 10)) ax1.plot(new_x, f2(new_x), label='Super-Pixel', color='tab:orange') ax1.set_xlim(xfrac.min()-0.02, xfrac.max()+0.02), ax1.set_xlabel(r'$x_i$') ax1.set_ylim(-0.02, 1.02), ax1.set_ylabel(r'$r_{\phi}$') ax1.legend(loc=4) plt.savefig('%sphi_coef.png' %PATH_OUT, bbox_inches="tight"), plt.clf() # Plot correlation fig, (ax0, ax1) = plt.subplots(ncols=2) ax0.plot(xn_mask_true, xn_mask_true, 'k--') cm = matplotlib.cm.plasma sc = ax0.scatter(xn_mask_true, xn_seg, c=redshift, vmin=7, vmax=9, s=25, cmap=cm, marker='.') norm = matplotlib.colors.Normalize(vmin=7, vmax=9, clip=True) mapper = matplotlib.cm.ScalarMappable(norm=norm, cmap='plasma') redshift_color = np.array([(mapper.to_rgba(v)) for v in redshift]) for x, y, e, clr in zip(xn_mask_true, xn_seg, xn_seg_err, redshift_color): ax0.errorbar(x, y, e, lw=1, marker='o', capsize=3, color=clr) ax0.set_xlim(xn_mask_true.min()-0.02, xn_mask_true.max()+0.02), ax0.set_xlabel(r'$\rm x_{n,\,true}$') ax0.set_ylim(xn_mask_true.min()-0.02, xn_mask_true.max()+0.02), ax0.set_ylabel(r'$\rm x_{n,\,predict}$') fig.colorbar(sc, ax=ax0, pad=0.01, label=r'$z$') ax1.plot(xn_mask_true, xn_mask_true, 'k--', label='Ground True') ax1.scatter(xn_mask_true, xn_seg, color='tab:blue', marker='o', label='SegUnet') ax1.scatter(xn_mask_true, xn_sp, color='tab:orange', marker='o', label='Super-Pixel') ax1.set_xlim(xn_mask_true.min()-0.02, xn_mask_true.max()+0.02), ax1.set_xlabel(r'$\rm x_{n,\,true}$') ax1.set_ylim(xn_mask_true.min()-0.02, xn_mask_true.max()+0.02), ax1.set_ylabel(r'$\rm x_{n,\,predict}$') plt.legend(loc=4) plt.savefig('%scorr.png' %PATH_OUT, bbox_inches="tight"), plt.clf() # Betti numbers plot fig, (ax0, ax1, ax2) = plt.subplots(ncols=3, figsize=(23,5), sharex=True) h = np.histogram(xn_mask_true, np.linspace(1e-5, 1., 20), density=True) new_x = h[1][:-1]+0.5*(h[1][1:]-h[1][:-1]) # Betti 0 f_b0_true = np.array([np.mean(b0_true[(xn_mask_true < h[1][i+1]) * (xn_mask_true >= h[1][i])]) for i in range(h[1].size-1)]) ax0.plot(new_x, f_b0_true, 'k--', label='Ground True') f_b0_seg = np.array([np.mean(b0_seg[(xn_mask_true < h[1][i+1]) * (xn_mask_true >= h[1][i])]) for i in range(h[1].size-1)]) ax0.plot(new_x, f_b0_seg, label='SegUnet', color='tab:blue', marker='o') f_b0_sp = np.array([np.mean(b0_sp[(xn_mask_true < h[1][i+1]) * (xn_mask_true >= h[1][i])]) for i in range(h[1].size-1)]) ax0.plot(new_x, f_b0_sp, label='Super-Pixel', color='tab:orange', marker='o') ax0.legend(loc=1) ax0.set_xlabel(r'$\rm x^v_{HI}$', size=20), ax0.set_ylabel(r'$\rm\beta_0$', size=20) # Betti 1 f_b1_true = np.array([
np.mean(b1_true[(xn_mask_true < h[1][i+1]) * (xn_mask_true >= h[1][i])])
numpy.mean
# -*- coding: utf-8 -*- import unittest import numpy """ ******************************************************************************* Tests of the quantarhei.qm.LindbladForm class ******************************************************************************* """ from quantarhei.qm import LindbladForm from quantarhei.qm import ElectronicLindbladForm from quantarhei.qm import Operator from quantarhei.qm import SystemBathInteraction from quantarhei.qm import ReducedDensityMatrixPropagator from quantarhei.qm import ReducedDensityMatrix from quantarhei.qm import ProjectionOperator from quantarhei import Hamiltonian from quantarhei import energy_units from quantarhei import TimeAxis from quantarhei import eigenbasis_of, Manager class TestLindblad(unittest.TestCase): """Tests for the LindbladForm class """ def setUp(self,verbose=False): self.verbose = verbose # # Lindblad projection operators # K12 = numpy.array([[0.0, 1.0],[0.0, 0.0]],dtype=numpy.float) K21 = numpy.array([[0.0, 0.0],[1.0, 0.0]],dtype=numpy.float) KK12 = Operator(data=K12) KK21 = Operator(data=K21) self.KK12 = KK12 self.KK21 = KK21 # # Linbdlad rates # self.rates = (1.0/100.0, 1.0/200.0) # # System-bath interaction using operators and rates in site basis # self.sbi1 = SystemBathInteraction([KK12,KK21], rates=self.rates) self.sbi2 = SystemBathInteraction([KK12,KK21], rates=self.rates) # # Test Hamiltonians # with energy_units("1/cm"): h1 = [[100.0, 0.0],[0.0, 0.0]] h2 = [[100.0, 0.0],[0.0, 0.0]] self.H1 = Hamiltonian(data=h1) self.H2 = Hamiltonian(data=h2) h3 = [[100.0, 20.0],[20.0, 0.0]] self.H3 = Hamiltonian(data=h3) # less trivial Hamiltonian h4 = [[100.0, 200.0, 30.0 ], [200.0, 50.0, -100.0], [30.0, -100.0, 0.0 ]] self.H4 = Hamiltonian(data=h4) h4s = [[100.0, 0.0, 0.0 ], [0.0, 50.0, 0.0], [0.0, 0.0, 0.0 ]] self.H4s = Hamiltonian(data=h4s) # # Projection operators in eigenstate basis # with eigenbasis_of(self.H3): K_12 = ProjectionOperator(0, 1, dim=2) K_21 = ProjectionOperator(1, 0, dim=2) self.K_12 = K_12 self.K_21 = K_21 with eigenbasis_of(self.H4): Ke_12 = ProjectionOperator(0, 1, dim=3) Ke_21 = ProjectionOperator(1, 0, dim=3) Ke_23 = ProjectionOperator(1, 2, dim=3) Ke_32 = ProjectionOperator(2, 1, dim=3) Ks_12 = ProjectionOperator(0, 1, dim=3) Ks_21 = ProjectionOperator(1, 0, dim=3) Ks_23 = ProjectionOperator(1, 2, dim=3) Ks_32 = ProjectionOperator(2, 1, dim=3) self.rates4 = [1.0/100, 1.0/200, 1.0/150, 1.0/300] # # System-bath operators defined in exciton basis # self.sbi3 = SystemBathInteraction([K_12, K_21], rates=self.rates) self.sbi4e = SystemBathInteraction([Ke_12, Ke_21, Ke_23, Ke_32], rates=self.rates4) self.sbi4s = SystemBathInteraction([Ks_12, Ks_21, Ks_23, Ks_32], rates=self.rates4) def test_comparison_of_rates(self): """Testing that Lindblad tensor and rate matrix are compatible """ tensor = True # matrix = True dim = self.H1.dim KT = numpy.zeros((dim,dim), dtype=numpy.float64) KM = numpy.zeros((dim,dim), dtype=numpy.float64) if tensor: #print(self.H1) LT = LindbladForm(self.H1, self.sbi1, as_operators=False) for n in range(2): for m in range(2): #print(n,m,numpy.real(RT.data[n,n,m,m])) KT[n,m] = numpy.real(LT.data[n,n,m,m]) KM = numpy.zeros((dim,dim)) KM[0,0] = -self.rates[1] KM[1,1] = -self.rates[0] KM[0,1] = self.rates[0] KM[1,0] = self.rates[1] numpy.testing.assert_allclose(KT,KM, rtol=1.0e-2) def test_comparison_of_dynamics(self): """Testing site basis dynamics by Lindblad """ LT1 = LindbladForm(self.H1, self.sbi1, as_operators=True) LT2 = LindbladForm(self.H1, self.sbi1, as_operators=False) time = TimeAxis(0.0, 1000, 1.0) prop1 = ReducedDensityMatrixPropagator(time, self.H1, LT1) prop2 = ReducedDensityMatrixPropagator(time, self.H1, LT2) rho0 = ReducedDensityMatrix(dim=self.H1.dim) rho0.data[1,1] = 1.0 rhot1 = prop1.propagate(rho0) rhot2 = prop2.propagate(rho0) numpy.testing.assert_allclose(rhot1.data,rhot2.data) #, rtol=1.0e-2) def test_propagation_in_different_basis(self): """(LINDBLAD) Testing comparison of propagations in different bases """ LT1 = LindbladForm(self.H1, self.sbi1, as_operators=True) LT2 = LindbladForm(self.H1, self.sbi1, as_operators=False) time = TimeAxis(0.0, 1000, 1.0) prop1 = ReducedDensityMatrixPropagator(time, self.H1, LT1) prop2 = ReducedDensityMatrixPropagator(time, self.H1, LT2) rho0 = ReducedDensityMatrix(dim=self.H1.dim) rho0.data[1,1] = 1.0 with eigenbasis_of(self.H1): rhot1_e = prop1.propagate(rho0) with eigenbasis_of(self.H1): rhot2_e = prop2.propagate(rho0) rhot1_l = prop1.propagate(rho0) rhot2_l = prop2.propagate(rho0) numpy.testing.assert_allclose(rhot1_l.data, rhot1_e.data) numpy.testing.assert_allclose(rhot2_l.data, rhot2_e.data) numpy.testing.assert_allclose(rhot1_e.data, rhot2_e.data) #, rtol=1.0e-2) def test_transformation_in_different_basis(self): """(LINDBLAD) Testing transformations into different bases """ #Manager().warn_about_basis_change = True #Manager().warn_about_basis_changing_objects = True LT1 = LindbladForm(self.H1, self.sbi1, as_operators=True, name="LT1") LT2 = LindbladForm(self.H1, self.sbi1, as_operators=False, name="LT2") rho0 = ReducedDensityMatrix(dim=self.H1.dim, name="ahoj") with eigenbasis_of(self.H1): rho0.data[1,1] = 0.7 rho0.data[0,0] = 0.3 with eigenbasis_of(self.H1): rhot1_e = LT1.apply(rho0, copy=True) with eigenbasis_of(self.H1): rhot2_e = LT2.apply(rho0, copy=True) rhot1_l = LT1.apply(rho0, copy=True) rhot2_l = LT2.apply(rho0, copy=True) numpy.testing.assert_allclose(rhot1_l.data, rhot1_e.data) numpy.testing.assert_allclose(rhot2_l.data, rhot2_e.data) numpy.testing.assert_allclose(rhot1_e.data, rhot2_e.data) #, rtol=1.0e-2) def test_comparison_of_exciton_dynamics(self): """Testing exciton basis dynamics by Lindblad """ # site basis form to be compared with LT1 = LindbladForm(self.H1, self.sbi1, as_operators=True) # exciton basis forms LT13 = LindbladForm(self.H3, self.sbi3, as_operators=True) LT23 = LindbladForm(self.H3, self.sbi3, as_operators=False) LT4e = LindbladForm(self.H4, self.sbi4e, as_operators=True) LT4s = LindbladForm(self.H4s, self.sbi4s, as_operators=True) time = TimeAxis(0.0, 1000, 1.0) # # Propagators # prop0 = ReducedDensityMatrixPropagator(time, self.H1, LT1) prop1 = ReducedDensityMatrixPropagator(time, self.H3, LT13) prop2 = ReducedDensityMatrixPropagator(time, self.H3, LT23) prop4e = ReducedDensityMatrixPropagator(time, self.H4, LT4e) prop4s = ReducedDensityMatrixPropagator(time, self.H4s, LT4s) # # Initial conditions # rho0 = ReducedDensityMatrix(dim=self.H3.dim) rho0c = ReducedDensityMatrix(dim=self.H1.dim) # excitonic with eigenbasis_of(self.H3): rho0c.data[1,1] = 1.0 rho0.data[1,1] = 1.0 rho04e = ReducedDensityMatrix(dim=self.H4.dim) rho04s = ReducedDensityMatrix(dim=self.H4.dim) with eigenbasis_of(self.H4): rho04e.data[2,2] = 1.0 rho04s.data[2,2] = 1.0 # # Propagations # rhotc = prop0.propagate(rho0c) rhot1 = prop1.propagate(rho0) rhot2 = prop2.propagate(rho0) rhot4e = prop4e.propagate(rho04e) rhot4s = prop4s.propagate(rho04s) # propagation with operator- and tensor forms should be the same numpy.testing.assert_allclose(rhot1.data,rhot2.data) #, rtol=1.0e-2) # # Population time evolution by Lindblad is independent # of the level structure and basis, as long as I compare # populations in basis in which the Lindblad form was defined # P = numpy.zeros((2, time.length)) Pc = numpy.zeros((2, time.length)) P4e = numpy.zeros((3, time.length)) P4s = numpy.zeros((3, time.length)) with eigenbasis_of(self.H3): for i in range(time.length): P[0,i] = numpy.real(rhot1.data[i,0,0]) # population of exciton 0 P[1,i] = numpy.real(rhot1.data[i,1,1]) # population of exciton 1 for i in range(time.length): Pc[0,i] = numpy.real(rhotc.data[i,0,0]) # population of exciton 0 Pc[1,i] = numpy.real(rhotc.data[i,1,1]) # population of exciton 1 # we compare populations numpy.testing.assert_allclose(Pc,P) #, rtol=1.0e-2) with eigenbasis_of(self.H4): for i in range(time.length): P4e[0,i] = numpy.real(rhot4e.data[i,0,0]) # population of exciton 0 P4e[1,i] = numpy.real(rhot4e.data[i,1,1]) # population of exciton 1 P4e[2,i] =
numpy.real(rhot4e.data[i,2,2])
numpy.real
import os import time import pandas as pd import numpy as np from sys import platform import matplotlib as mpl if platform == "darwin": # OS X mpl.use('TkAgg') import matplotlib.pyplot as plt from datetime import datetime from github import Github from github import GithubException from services import gh_api LOWER_BOUND = 1.791759469228055 UPPER_BOUND = 42.40071186221785 TIMESTAMP_LOWER_BOUND = "2012-12-12 17:51:25" images_folder = "images-cache" csv_folder = "data/repositories-timeseries.csv" data = None ''' Create some plots that contains chronological data for a repository: - stars count - forks count - watchers count - contributors count - rating The intended dataframe is the one stored in: resources/repositories-timeseries.csv The np arrays can be composed of either four or five elements: - the first four are the historical data points of the repository - the fifth point is fetched via the github api; this can most likely fail due to: - error 404: the repository does not exist anymore - error 502: temporary github api problem - exceeded the api call limit Also fetches some recent commits, closed issues and open issues and plots them. Note: it is assumed that the repository name that is given as a input to the fuctions does actually exist in the dataframe (there is no problem if it does not exist on github) ''' def _get_stars_count(github_client, repository_name): ''' Get the Stars Count for a given repository ''' try: repo = github_client.get_repo(repository_name) count = repo.stargazers_count return count except GithubException as error: if error.status == 404: return None # most likely a 502 else: time.sleep(1) try: repo = github_client.get_repo(repository_name) count = repo.stargazers_count return count except GithubException as error: return None def _get_forks_count(github_client, repository_name): ''' Get the Forks Count for a given repository ''' try: repo = github_client.get_repo(repository_name) count = repo.forks_count return count except GithubException as error: if error.status == 404: return None # most likely a 502 else: time.sleep(1) try: repo = github_client.get_repo(repository_name) count = repo.forks_count return count except GithubException as error: return None def _get_watchers_count(github_client, repository_name): ''' Get the Watchers Count for a given repository ''' try: repo = github_client.get_repo(repository_name) count = repo.subscribers_count return count except GithubException as error: if error.status == 404: return None # most likely a 502 else: time.sleep(1) try: repo = github_client.get_repo(repository_name) count = repo.subscribers_count return count except GithubException as error: return None def _get_contributors_count(github_client, repository_name): ''' Get the Contributors Count for a given repository ''' try: repo = github_client.get_repo(repository_name) count = repo.get_contributors().totalCount return count except GithubException as error: if error.status == 404: return None # most likely a 502 else: time.sleep(1) try: repo = github_client.get_repo(repository_name) count = repo.get_contributors().totalCount return count except GithubException as error: return None def _get_rating(github_client, repository_name): ''' Determine the Rating for a given repository ''' try: repo = github_client.get_repo(repository_name) star_count = repo.stargazers_count fork_count = repo.forks_count contributor_count = repo.get_contributors().totalCount watchers_count = repo.subscribers_count open_issues = repo.get_issues(state = 'open').totalCount updated_timestamp = repo.updated_at upd_timestamp = (updated_timestamp - datetime.strptime(TIMESTAMP_LOWER_BOUND, '%Y-%m-%d %H:%M:%S')).days has_pages = 0 for branch in repo.get_branches(): if branch.name == "gh-pages": has_pages = 1 break rating = has_pages + int(repo.has_issues) + int(repo.has_wiki) - int(repo.fork) +\ np.log(star_count + 1) + np.log(fork_count + 1) + np.log(contributor_count + 1) +\ np.log(watchers_count + 1) - np.log(open_issues + 1) + np.log(upd_timestamp + 1) rating = (rating - LOWER_BOUND) / (UPPER_BOUND - LOWER_BOUND) rating = round(rating * 5, 2) if rating > 5: rating = 5 elif rating < 0: rating = 0 return rating except GithubException as error: if error.status == 404: return None # most likely a 502 else: time.sleep(1) try: repo = github_client.get_repo(repository_name) star_count = repo.stargazers_count fork_count = repo.forks_count contributor_count = repo.get_contributors().totalCount watchers_count = repo.subscribers_count open_issues = repo.get_issues(state = 'open').totalCount updated_timestamp = repo.updated_at upd_timestamp = (updated_timestamp - datetime.strptime(TIMESTAMP_LOWER_BOUND, '%Y-%m-%d %H:%M:%S')).days has_pages = 0 for branch in repo.get_branches(): if branch.name == "gh-pages": has_pages = 1 break rating = has_pages + int(repo.has_issues) + int(repo.has_wiki) - int(repo.fork) +\ np.log(star_count + 1) + np.log(fork_count + 1) + np.log(contributor_count + 1) +\ np.log(watchers_count + 1) - np.log(open_issues + 1) + np.log(upd_timestamp + 1) rating = (rating - LOWER_BOUND) / (UPPER_BOUND - LOWER_BOUND) rating = round(rating * 5, 2) if rating > 5: rating = 5 elif rating < 0: rating = 0 return rating except GithubException as error: return None def get_stars_count_timeseries(dataframe, github_client, repository_name): ''' Returns the Stars Count Timeseries for a given repository ''' # get the historical data timeseries = dataframe[dataframe["Name with Owner"] == repository_name]["Stars Count_1"].values timeseries = np.append(timeseries, dataframe[dataframe["Name with Owner"] == repository_name]["Stars Count_2"].values) timeseries = np.append(timeseries, dataframe[dataframe["Name with Owner"] == repository_name]["Stars Count_3"].values) timeseries = np.append(timeseries, dataframe[dataframe["Name with Owner"] == repository_name]["Stars Count_4"].values) try: # try to get the latest value from the repository via the github api stars_count = _get_stars_count(github_client, repository_name) if stars_count is not None: timeseries = np.append(timeseries, stars_count) # most likely due to a socket timeout caused by running out of github api calls except: pass return timeseries def get_forks_count_timeseries(dataframe, github_client, repository_name): ''' Returns the Forks Count Timeseries for a given repository ''' # get the historical data timeseries = dataframe[dataframe["Name with Owner"] == repository_name]["Forks Count_1"].values timeseries = np.append(timeseries, dataframe[dataframe["Name with Owner"] == repository_name]["Forks Count_2"].values) timeseries = np.append(timeseries, dataframe[dataframe["Name with Owner"] == repository_name]["Forks Count_3"].values) timeseries = np.append(timeseries, dataframe[dataframe["Name with Owner"] == repository_name]["Forks Count_4"].values) try: # try to get the latest value from the repository via the github api forks_count = _get_forks_count(github_client, repository_name) if forks_count is not None: timeseries =
np.append(timeseries, forks_count)
numpy.append
# This file is part of GridCal. # # GridCal is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # GridCal is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GridCal. If not, see <http://www.gnu.org/licenses/>. from scipy.sparse.linalg import spsolve import numpy as np from GridCal.Engine import compile_snapshot_circuit, SnapshotData, TransformerControlType, ConverterControlType, FileOpen import os import time from scipy.sparse import lil_matrix, diags import scipy.sparse as sp def determine_branch_indices(circuit: SnapshotData): """ This function fills in the lists of indices to control different magnitudes :param circuit: Instance of AcDcSnapshotCircuit :returns idx_sh, idx_qz, idx_vf, idx_vt, idx_qt VSC Control modes: in the paper's scheme: from -> DC to -> AC | Mode | const.1 | const.2 | type | ------------------------------------------------- | 1 | theta | Vac | I | | 2 | Pf | Qac | I | | 3 | Pf | Vac | I | ------------------------------------------------- | 4 | Vdc | Qac | II | | 5 | Vdc | Vac | II | ------------------------------------------------- | 6 | Vdc droop | Qac | III | | 7 | Vdc droop | Vac | III | ------------------------------------------------- Indices where each control goes: mismatch → | ∆Pf Qf Q@f Q@t ∆Qt variable → | Ɵsh Beq m m Beq Indices → | Ish Iqz Ivf Ivt Iqt ------------------------------------ VSC 1 | - 1 - 1 - | AC voltage control (voltage “to”) VSC 2 | 1 1 - - 1 | Active and reactive power control VSC 3 | 1 1 - 1 - | Active power and AC voltage control VSC 4 | - - 1 - 1 | Dc voltage and Reactive power flow control VSC 5 | - - - 1 1 | Ac and Dc voltage control ------------------------------------ Transformer 0| - - - - - | Fixed transformer Transformer 1| 1 - - - - | Phase shifter → controls power Transformer 2| - - 1 - - | Control the voltage at the “from” side Transformer 3| - - - 1 - | Control the voltage at the “to” side Transformer 4| 1 - 1 - - | Control the power flow and the voltage at the “from” side Transformer 5| 1 - - 1 - | Control the power flow and the voltage at the “to” side ------------------------------------ """ # indices in the global branch scheme iPfsh = list() # indices of the branches controlling Pf flow iQfma = list() iBeqz = list() # indices of the branches when forcing the Qf flow to zero (aka "the zero condition") iBeqv = list() # indices of the branches when controlling Vf iVtma = list() # indices of the branches when controlling Vt iQtma = list() # indices of the branches controlling the Qt flow iPfdp = list() iVscL = list() # indices of the converters for k, tpe in enumerate(circuit.branch_data.control_mode): if tpe == TransformerControlType.fixed: pass elif tpe == TransformerControlType.power: iPfsh.append(k) elif tpe == TransformerControlType.v_to: iVtma.append(k) elif tpe == TransformerControlType.power_v_to: iPfsh.append(k) iVtma.append(k) # VSC ---------------------------------------------------------------------------------------------------------- elif tpe == ConverterControlType.type_1_free: # 1a:Free iBeqz.append(k) iVscL.append(k) elif tpe == ConverterControlType.type_1_pf: # 1b:Pflow iPfsh.append(k) iBeqz.append(k) iVscL.append(k) elif tpe == ConverterControlType.type_1_qf: # 1c:Qflow iBeqz.append(k) iQtma.append(k) iVscL.append(k) elif tpe == ConverterControlType.type_1_vac: # 1d:Vac iBeqz.append(k) iVtma.append(k) iVscL.append(k) elif tpe == ConverterControlType.type_2_vdc: # 2a:Vdc iPfsh.append(k) iBeqv.append(k) iVscL.append(k) elif tpe == ConverterControlType.type_2_vdc_pf: # 2b:Vdc+Pflow iPfsh.append(k) iBeqv.append(k) iVscL.append(k) elif tpe == ConverterControlType.type_3: # 3a:Droop iPfsh.append(k) iBeqz.append(k) iPfdp.append(k) iVscL.append(k) elif tpe == ConverterControlType.type_4: # 4a:Droop-slack iPfdp.append(k) iVscL.append(k) elif tpe == 0: pass # required for the no-control case else: raise Exception('Unknown control type:' + str(tpe)) # FUBM- Saves the "from" bus identifier for Vf controlled by Beq # (Converters type II for Vdc control) VfBeqbus = circuit.F[iBeqv] # FUBM- Saves the "to" bus identifier for Vt controlled by ma # (Converters and Transformers) Vtmabus = circuit.T[iVtma] return iPfsh, iQfma, iBeqz, iBeqv, iVtma, iQtma, iPfdp, iVscL, VfBeqbus, Vtmabus def compute_converter_losses(V, It, F, alpha1, alpha2, alpha3, iVscL): """ Compute the converter losses according to the IEC 62751-2 :param V: :param It: :param F: :param alpha1: :param alpha2: :param alpha3: :param iVscL: :return: """ # FUBM- Standard IEC 62751-2 Ploss Correction for VSC losses Ivsc = np.abs(It[iVscL]) PLoss_IEC = alpha3[iVscL] * np.power(Ivsc, 2) PLoss_IEC += alpha2[iVscL] * np.power(Ivsc, 2) PLoss_IEC += alpha1[iVscL] # compute G-switch Gsw = np.zeros(len(F)) Gsw[iVscL] = PLoss_IEC / np.power(np.abs(V[F[iVscL]]), 2) # FUBM- VSC Gsw return Gsw def compile_y_acdc(branch_active, Cf, Ct, C_bus_shunt, shunt_admittance, shunt_active, ys, B, Sbase, m, theta, Beq, Gsw): """ Compile the admittance matrices using the variable elements :param branch_active: :param Cf: :param Ct: :param C_bus_shunt: :param shunt_admittance: :param shunt_active: :param ys: :param B: :param Sbase: :param m: array of tap modules (for all branches, regardless of their type) :param theta: array of tap angles (for all branches, regardless of their type) :param Beq: Array of equivalent susceptance :param Gsw: Array of branch (converter) losses :return: Ybus, Yf, Yt, tap """ # form the connectivity matrices with the states applied ------------------------------------------------------- br_states_diag = sp.diags(branch_active) Cf = br_states_diag * Cf Ct = br_states_diag * Ct # SHUNT -------------------------------------------------------------------------------------------------------- Yshunt_from_devices = C_bus_shunt * (shunt_admittance * shunt_active / Sbase) yshunt_f = Cf * Yshunt_from_devices yshunt_t = Ct * Yshunt_from_devices # form the admittance matrices --------------------------------------------------------------------------------- bc2 = 1j * B / 2 # shunt conductance # mp = circuit.k * m # k is already filled with the appropriate value for each type of branch tap = m * np.exp(1.0j * theta) """ Beq= stat .* branch(:, BEQ); %%FUBM- VSC Equivalent Reactor for absorbing or supplying reactive power and zero constraint in DC side Gsw= stat .* branch(:, GSW); %%FUBM- VSC Switching losses k2 = branch(:, K2); %%FUBM- VSC constant depending of how many levels does the VSC is simulating. Default k2 for branches = 1, Default k2 for VSC = sqrt(3)/2 Ytt = Ys + 1j*Bc/2; Yff = Gsw+( (Ytt+1j*Beq) ./ ((k2.^2).*tap .* conj(tap)) ); %%FUBM- FUBM formulation Yft = - Ys ./ ( k2.*conj(tap) ); %%FUBM- FUBM formulation Ytf = - Ys ./ ( k2.*tap ); """ # compose the primitives Yff = Gsw + (ys + bc2 + 1.0j * Beq + yshunt_f) / (m * m) Yft = -ys / np.conj(tap) Ytf = -ys / tap Ytt = ys + bc2 + yshunt_t # compose the matrices Yf = sp.diags(Yff) * Cf + sp.diags(Yft) * Ct Yt = sp.diags(Ytf) * Cf + sp.diags(Ytt) * Ct Ybus = sp.csc_matrix(Cf.T * Yf + Ct.T * Yt) return Ybus, Yf, Yt, tap def dSbus_dV(Ybus, V): """ Derivatives of the power injections w.r.t the voltage :param Ybus: Admittance matrix :param V: complex voltage arrays :return: dSbus_dVa, dSbus_dVm """ diagV = diags(V) diagVnorm = diags(V / np.abs(V)) Ibus = Ybus * V diagIbus = diags(Ibus) dSbus_dVa = 1j * diagV * np.conj(diagIbus - Ybus * diagV) # dSbus / dVa dSbus_dVm = diagV * np.conj(Ybus * diagVnorm) + np.conj(diagIbus) * diagVnorm # dSbus / dVm return dSbus_dVa, dSbus_dVm def dSbr_dV(Yf, Yt, V, F, T, Cf, Ct): """ Derivatives of the branch power w.r.t the branch voltage modules and angles :param Yf: Admittances matrix of the branches with the "from" buses :param Yt: Admittances matrix of the branches with the "to" buses :param V: Array of voltages :param F: Array of branch "from" bus indices :param T: Array of branch "to" bus indices :param Cf: Connectivity matrix of the branches with the "from" buses :param Ct: Connectivity matrix of the branches with the "to" buses :return: dSf_dVa, dSf_dVm, dSt_dVa, dSt_dVm """ Yfc = np.conj(Yf) Ytc = np.conj(Yt) Vc = np.conj(V) Ifc = Yfc * Vc # conjugate of "from" current Itc = Ytc * Vc # conjugate of "to" current diagIfc = diags(Ifc) diagItc = diags(Itc) Vf = V[F] Vt = V[T] diagVf = diags(Vf) diagVt = diags(Vt) diagVc = diags(Vc) Vnorm = V / np.abs(V) diagVnorm = diags(Vnorm) diagV = diags(V) CVf = Cf * diagV CVt = Ct * diagV CVnf = Cf * diagVnorm CVnt = Ct * diagVnorm dSf_dVa = 1j * (diagIfc * CVf - diagVf * Yfc * diagVc) dSf_dVm = diagVf * np.conj(Yf * diagVnorm) + diagIfc * CVnf dSt_dVa = 1j * (diagItc * CVt - diagVt * Ytc * diagVc) dSt_dVm = diagVt * np.conj(Yt * diagVnorm) + diagItc * CVnt return dSf_dVa, dSf_dVm, dSt_dVa, dSt_dVm def d_dsh(nb, nl, iPxsh, F, T, Ys, k2, tap, V): """ This function computes the derivatives of Sbus, Sf and St w.r.t. Ɵsh - dSbus_dPfsh, dSf_dPfsh, dSt_dPfsh -> if iPxsh=iPfsh - dSbus_dPfdp, dSf_dPfdp, dSt_dPfdp -> if iPxsh=iPfdp :param nb: number of buses :param nl: number of branches :param iPxsh: array of indices {iPfsh or iPfdp} :param F: Array of branch "from" bus indices :param T: Array of branch "to" bus indices :param Ys: Array of branch series admittances :param k2: Array of "k2" parameters :param tap: Array of branch complex taps (ma * exp(1j * theta_sh) :param V: Array of complex voltages :return: - dSbus_dPfsh, dSf_dPfsh, dSt_dPfsh -> if iPxsh=iPfsh - dSbus_dPfdp, dSf_dPfdp, dSt_dPfdp -> if iPxsh=iPfdp """ dSbus_dPxsh = lil_matrix((nb, len(iPxsh)), dtype=complex) dSf_dshx2 = lil_matrix((nl, len(iPxsh)), dtype=complex) dSt_dshx2 = lil_matrix((nl, len(iPxsh)), dtype=complex) for k, idx in enumerate(iPxsh): f = F[idx] t = T[idx] # Partials of Ytt, Yff, Yft and Ytf w.r.t. Ɵ shift ytt_dsh = 0.0 yff_dsh = 0.0 yft_dsh = -Ys[idx] / (-1j * k2[idx] * np.conj(tap[idx])) ytf_dsh = -Ys[idx] / (1j * k2[idx] * tap[idx]) # Partials of S w.r.t. Ɵ shift val_f = V[f] * np.conj(yft_dsh * V[t]) val_t = V[t] *
np.conj(ytf_dsh * V[f])
numpy.conj
# -*- coding: utf-8 -*- """ asdasdasdas """ import itertools import logging import matplotlib.cm as cm import matplotlib.pyplot as plt import numpy as np import random from sklearn.cluster import KMeans from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics import silhouette_samples, silhouette_score from sklearn.decomposition import PCA # Activates Verbose on all models. DEBUG = 0 # Name of the dataset directory. DATASET_PATH = 'documents/data.csv' # CSV FILE HAS 19924 ROWS AND 2209 COLUMNS # EACH ROW REPRESENTS A DOCUMENT def predict_kmedoids_labels(clusters, n): labels = labels = np.array([0 for x in range(n)]) for i, rows in clusters.items(): for j in rows: labels[j] = i return labels def kMedoids(data, k, tmax=100): # determine dimensions of distance matrix data m, n = data.shape if k > n: raise Exception('too many medoids') # randomly initialize an array of k medoid indices medoids = np.arange(n) np.random.shuffle(medoids) medoids = np.sort(medoids[:k]) # create a copy of the array of medoid indices new_medoids = np.copy(medoids) # initialize a dictionary to represent clusters clusters = {} for t in range(tmax): i = 0 taken_values = np.zeros(n) for kappa in medoids: clusters[i] = np.array([kappa]) taken_values[kappa] = 1 i += 1 # determine clusters, i. e. arrays of data indices J = np.argmin(data[:,medoids], axis=1) for kappa in range(k): neighbors = np.where(J==kappa)[0] if len(neighbors) > 1: clusters[kappa] = neighbors for i in clusters[kappa]: if taken_values[i] == 1 and i != medoids[kappa]: index = np.argwhere(clusters[kappa]==i) clusters[kappa] = np.delete(clusters[kappa], index) taken_values[i] = 1 # update cluster medoids for kappa in range(k): J = np.mean(data[np.ix_(clusters[kappa],clusters[kappa])],axis=1) j = np.argmin(J) new_medoids[kappa] = clusters[kappa][j] np.sort(new_medoids) # check for convergence if np.array_equal(medoids, new_medoids): break medoids = np.copy(new_medoids) else: # final update of cluster memberships J = np.argmin(data[:,medoids], axis=1) for kappa in range(k): clusters[kappa] =
np.where(J==kappa)
numpy.where
import argparse import os import numpy as np import pandas as pd from matplotlib.lines import Line2D from ovis.reporting.style import * from ovis.reporting.style import set_matplotlib_style from ovis.reporting.utils import smooth, update_labels, lighten from ovis.utils.utils import Header parser = argparse.ArgumentParser() parser.add_argument('--figure', default='left', help='[left, right]') parser.add_argument('--root', default='reports/', help='experiment directory') parser.add_argument('--exp', default='', type=str, help='experiment id [default use the exp name specified in the Readme.md]') parser.add_argument('--dataset', default='binmnist', type=str, help='dataset id') # keys parser.add_argument('--style_key', default='iw', help='style key') parser.add_argument('--metric', default='train:loss/L_k', help='metric to display') # plot config parser.add_argument('--desaturate', default=0.9, type=float, help='desaturate hue') parser.add_argument('--lighten', default=1., type=float, help='lighten hue') parser.add_argument('--alpha', default=0.9, type=float, help='opacity') parser.add_argument('--linewidth', default=1.2, type=float, help='line width') opt = parser.parse_args() # matplotlibg style set_matplotlib_style() plot_style = { 'linewidth': opt.linewidth, 'alpha': opt.alpha } # experiment directory default_exps = {'left': 'sigmoid-belief-network-inc=iwbound', 'right': 'sigmoid-belief-network-inc=iwrbound'} if opt.exp == '': root = os.path.join(opt.root, default_exps[opt.figure]) else: root = os.path.join(opt.root, opt.ex) # read data data = pd.read_csv(os.path.join(root, 'curves.csv')) filtered_data = data[data['dataset'] == opt.dataset] filtered_data = filtered_data[filtered_data['_key'] == opt.metric] print(data) # plot the figure figure = plt.figure(figsize=(PLOT_WIDTH, 1.3 * PLOT_HEIGHT), dpi=DPI) ax = plt.gca() # color hue_order = list(filtered_data['estimator'].unique()) palette = [ESTIMATOR_STYLE[h_key]['color'] for h_key in hue_order] palette = [sns.desaturate(c, opt.desaturate) for c in palette] palette = [lighten(c, opt.lighten) for c in palette] # linestyles & markers style_order = list(sorted(filtered_data[opt.style_key].unique())) line_styles = [":", "--", "-"] markers = ["x", "^", "o"] # draw with Header("Records"): for e, estimator in enumerate(hue_order): for s, style in enumerate(style_order): sub_df = filtered_data[(filtered_data['estimator'] == estimator) & (filtered_data[opt.style_key] == style)] sub_df = sub_df.groupby('step')['_value'].mean() x = sub_df.index.values y = sub_df.values color = palette[hue_order.index(estimator)] if len(y): y = smooth(y, window_len=15) plt.plot(x, y, color=color, linestyle=line_styles[s], **plot_style) idx = np.round(np.linspace(0, len(x) - 1, 6)).astype(int) print(f"{estimator} - {opt.style_key} = {style} : max. {opt.metric} = {max(y):.3f}") marker = markers[s] # marker = ESTIMATOR_STYLE[estimator]['marker'] plt.plot(x[idx], y[idx], color=color, linestyle="", marker=marker, markersize=5, alpha=0.9) # set axis labels ax.set_ylabel(opt.metric) update_labels(
np.array(ax)
numpy.array
"""Test for helper.py""" import pickle import numpy as np import pytest import torch from sklearn.datasets import make_classification class TestSliceDict: def assert_dicts_equal(self, d0, d1): assert d0.keys() == d1.keys() for key in d0.keys(): assert np.allclose(d0[key], d1[key]) @pytest.fixture def data(self): X, y = make_classification(100, 20, n_informative=10, random_state=0) return X.astype(np.float32), y @pytest.fixture(scope='session') def sldict_cls(self): from scripts.study_case.ID_12.skorch.helper import SliceDict return SliceDict @pytest.fixture def sldict(self, sldict_cls): return sldict_cls( f0=np.arange(4), f1=np.arange(12).reshape(4, 3), ) def test_init_inconsistent_shapes(self, sldict_cls): with pytest.raises(ValueError) as exc: sldict_cls(f0=np.ones((10, 5)), f1=np.ones((11, 5))) assert str(exc.value) == ( "Initialized with items of different lengths: 10, 11") @pytest.mark.parametrize('item', [ np.ones(4), np.ones((4, 1)), np.ones((4, 4)), np.ones((4, 10, 7)), np.ones((4, 1, 28, 28)), ]) def test_set_item_correct_shape(self, sldict, item): # does not raise sldict['f2'] = item @pytest.mark.parametrize('item', [ np.ones(3), np.ones((1, 100)), np.ones((5, 1000)), np.ones((1, 100, 10)), np.ones((28, 28, 1, 100)), ]) def test_set_item_incorrect_shape_raises(self, sldict, item): with pytest.raises(ValueError) as exc: sldict['f2'] = item assert str(exc.value) == ( "Cannot set array with shape[0] != 4") @pytest.mark.parametrize('key', [1, 1.2, (1, 2), [3]]) def test_set_item_incorrect_key_type(self, sldict, key): with pytest.raises(TypeError) as exc: sldict[key] = np.ones((100, 5)) assert str(exc.value).startswith("Key must be str, not <") @pytest.mark.parametrize('item', [ np.ones(3), np.ones((1, 100)), np.ones((5, 1000)), np.ones((1, 100, 10)), np.ones((28, 28, 1, 100)), ]) def test_update_incorrect_shape_raises(self, sldict, item): with pytest.raises(ValueError) as exc: sldict.update({'f2': item}) assert str(exc.value) == ( "Cannot set array with shape[0] != 4") @pytest.mark.parametrize('item', [123, 'hi', [1, 2, 3]]) def test_set_first_item_no_shape_raises(self, sldict_cls, item): with pytest.raises(AttributeError): sldict_cls(f0=item) @pytest.mark.parametrize('kwargs, expected', [ ({}, 0), (dict(a=np.zeros(12)), 12), (dict(a=np.zeros(12), b=np.ones((12, 5))), 12), (dict(a=np.ones((10, 1, 1)), b=np.ones((10, 10)), c=np.ones(10)), 10), ]) def test_len_and_shape(self, sldict_cls, kwargs, expected): sldict = sldict_cls(**kwargs) assert len(sldict) == expected assert sldict.shape == (expected,) def test_get_item_str_key(self, sldict_cls): sldict = sldict_cls(a=np.ones(5), b=np.zeros(5)) assert (sldict['a'] == np.ones(5)).all() assert (sldict['b'] == np.zeros(5)).all() @pytest.mark.parametrize('sl, expected', [ (slice(0, 1), {'f0': np.array([0]), 'f1': np.array([[0, 1, 2]])}), (slice(1, 2), {'f0': np.array([1]), 'f1':
np.array([[3, 4, 5]])
numpy.array
# This Python module is part of the PyRate software package. # # Copyright 2021 Geoscience Australia # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import resource from collections import namedtuple from typing import List, Dict, Tuple, Any from nptyping import NDArray, Float32, UInt16 import numpy as np import pyrate.constants as C from pyrate.core import mpiops from pyrate.core.shared import Ifg, join_dicts from pyrate.core.phase_closure.mst_closure import Edge, WeightedLoop from pyrate.core.logger import pyratelogger as log IndexedIfg = namedtuple('IndexedIfg', ['index', 'IfgPhase']) class IfgPhase: """ workaround class to only hold phase data for mpi SwigPyObject pickle error """ def __init__(self, phase_data): self.phase_data = phase_data def __create_ifg_edge_dict(ifg_files: List[str], params: dict) -> Dict[Edge, IndexedIfg]: """Returns a dictionary of indexed ifg 'edges'""" ifg_files.sort() ifgs = [Ifg(i) for i in ifg_files] def _func(ifg, index): ifg.open() ifg.nodata_value = params[C.NO_DATA_VALUE] ifg.convert_to_nans() ifg.convert_to_radians() idx_ifg = IndexedIfg(index, IfgPhase(ifg.phase_data)) return idx_ifg process_ifgs = mpiops.array_split(list(enumerate(ifgs))) ret_combined = {} for idx, _ifg in process_ifgs: ret_combined[Edge(_ifg.first, _ifg.second)] = _func(_ifg, idx) _ifg.close() ret_combined = join_dicts(mpiops.comm.allgather(ret_combined)) return ret_combined def sum_phase_closures(ifg_files: List[str], loops: List[WeightedLoop], params: dict) -> \ Tuple[NDArray[(Any, Any, Any), Float32], NDArray[(Any, Any, Any), UInt16], NDArray[(Any,), UInt16]]: """ Compute the closure sum for each pixel in each loop, and count the number of times a pixel contributes to a failed closure loop (where the summed closure is above/below the CLOSURE_THR threshold). :param ifg_files: list of ifg files :param loops: list of loops :param params: params dict :return: Tuple of closure, ifgs_breach_count, num_occurrences_each_ifg closure: summed closure for each loop. ifgs_breach_count: shape=(ifg.shape, n_ifgs) number of times a pixel in an ifg fails the closure check (i.e., has unwrapping error) in all loops under investigation. num_occurrences_each_ifg: frequency of ifg appearance in all loops. """ edge_to_indexed_ifgs = __create_ifg_edge_dict(ifg_files, params) ifgs = [v.IfgPhase for v in edge_to_indexed_ifgs.values()] n_ifgs = len(ifgs) if params[C.PARALLEL]: # rets = Parallel(n_jobs=params[cf.PROCESSES], verbose=joblib_log_level(cf.LOG_LEVEL))( # delayed(__compute_ifgs_breach_count)(ifg0, n_ifgs, weighted_loop, edge_to_indexed_ifgs, params) # for weighted_loop in loops # ) # for k, r in enumerate(rets): # closure_dict[k], ifgs_breach_count_dict[k] = r # TODO: enable multiprocessing - needs pickle error workaround closure = np.zeros(shape=(* ifgs[0].phase_data.shape, len(loops)), dtype=np.float32) ifgs_breach_count = np.zeros(shape=(ifgs[0].phase_data.shape + (n_ifgs,)), dtype=np.uint16) for k, weighted_loop in enumerate(loops): closure[:, :, k], ifgs_breach_count_l = __compute_ifgs_breach_count(weighted_loop, edge_to_indexed_ifgs, params) ifgs_breach_count += ifgs_breach_count_l else: process_loops = mpiops.array_split(loops) closure_process = np.zeros(shape=(* ifgs[0].phase_data.shape, len(process_loops)), dtype=np.float32) ifgs_breach_count_process = np.zeros(shape=(ifgs[0].phase_data.shape + (n_ifgs,)), dtype=np.uint16) for k, weighted_loop in enumerate(process_loops): closure_process[:, :, k], ifgs_breach_count_l = \ __compute_ifgs_breach_count(weighted_loop, edge_to_indexed_ifgs, params) ifgs_breach_count_process += ifgs_breach_count_l # process total_gb = mpiops.comm.allreduce(ifgs_breach_count_process.nbytes / 1e9, op=mpiops.MPI.SUM) log.debug(f"Memory usage to compute ifgs_breach_count_process was {total_gb} GB") log.debug(f"shape of ifgs_breach_count_process is {ifgs_breach_count_process.shape}") log.debug(f"dtype of ifgs_breach_count_process is {ifgs_breach_count_process.dtype}") total_gb = mpiops.comm.allreduce(closure_process.nbytes / 1e9, op=mpiops.MPI.SUM) log.debug(f"Memory usage to compute closure_process was {total_gb} GB") if mpiops.rank == 0: ifgs_breach_count = np.zeros(shape=(ifgs[0].phase_data.shape + (n_ifgs,)), dtype=np.uint16) # closure closure = np.zeros(shape=(* ifgs[0].phase_data.shape, len(loops)), dtype=np.float32) main_process_indices = mpiops.array_split(range(len(loops))).astype(np.uint16) closure[:, :, main_process_indices] = closure_process for rank in range(1, mpiops.size): rank_indices = mpiops.array_split(range(len(loops)), rank).astype(np.uint16) this_rank_closure = np.zeros(shape=(* ifgs[0].phase_data.shape, len(rank_indices)), dtype=np.float32) mpiops.comm.Recv(this_rank_closure, source=rank, tag=rank) closure[:, :, rank_indices] = this_rank_closure else: closure = None ifgs_breach_count = None mpiops.comm.Send(closure_process, dest=0, tag=mpiops.rank) if mpiops.MPI_INSTALLED: mpiops.comm.Reduce([ifgs_breach_count_process, mpiops.MPI.UINT16_T], [ifgs_breach_count, mpiops.MPI.UINT16_T], op=mpiops.MPI.SUM, root=0) # global else: ifgs_breach_count = mpiops.comm.reduce(ifgs_breach_count_process, op=mpiops.sum0_op, root=0) log.debug(f"successfully summed phase closure breach array") num_occurrences_each_ifg = None if mpiops.rank == 0: num_occurrences_each_ifg = _find_num_occurrences_each_ifg(loops, edge_to_indexed_ifgs, n_ifgs) return closure, ifgs_breach_count, num_occurrences_each_ifg def _find_num_occurrences_each_ifg(loops: List[WeightedLoop], edge_to_indexed_ifgs: Dict[Edge, IndexedIfg], n_ifgs: int) -> NDArray[(Any,), UInt16]: """find how many times each ifg appears in total in all loops""" num_occurrences_each_ifg = np.zeros(shape=n_ifgs, dtype=np.uint16) for weighted_loop in loops: for signed_edge in weighted_loop.loop: indexed_ifg = edge_to_indexed_ifgs[signed_edge.edge] ifg_index = indexed_ifg.index num_occurrences_each_ifg[ifg_index] += 1 return num_occurrences_each_ifg def __compute_ifgs_breach_count(weighted_loop: WeightedLoop, edge_to_indexed_ifgs: Dict[Edge, IndexedIfg], params: dict) \ -> Tuple[NDArray[(Any, Any), Float32], NDArray[(Any, Any, Any), UInt16]]: """Compute summed `closure` of each loop, and compute `ifgs_breach_count` for each pixel.""" n_ifgs = len(edge_to_indexed_ifgs) indexed_ifg = list(edge_to_indexed_ifgs.values())[0] ifg = indexed_ifg.IfgPhase closure_thr = params[C.CLOSURE_THR] * np.pi use_median = params[C.SUBTRACT_MEDIAN] closure = np.zeros(shape=ifg.phase_data.shape, dtype=np.float32) # initiate variable for check of unwrapping issues at the same pixels in all loops ifgs_breach_count = np.zeros(shape=(ifg.phase_data.shape + (n_ifgs,)), dtype=np.uint16) for signed_edge in weighted_loop.loop: indexed_ifg = edge_to_indexed_ifgs[signed_edge.edge] ifg = indexed_ifg.IfgPhase closure += signed_edge.sign * ifg.phase_data if use_median: closure -= np.nanmedian(closure) # optionally subtract the median closure phase # this will deal with nans in `closure`, i.e., nans are not selected in indices_breaching_threshold indices_breaching_threshold =
np.absolute(closure)
numpy.absolute
import numpy as np import pandas as pd import matplotlib.pyplot as plt import os class Series: def __init__(self): self.n = 0 self.series = {'1D':None, '2D':None, '3D':None} self.tmax = {'1D':0, '2D':0, '3D':0} self.labels = {'1D':None, '2D':None, '3D':None} self.task = '0' def __len__(self): return self.n def read(self, PATH): self.task = PATH[-5] series = pd.read_csv(PATH, header=None, sep="\n") series = series[0].str.split(';') dim_idx = series.map(lambda x: int(float(x[0]))) labels = PATH[:-9]+'ref'+self.task+'.txt' labels = pd.read_csv(os.path.join(labels), header=None, sep=';').drop(0, axis=1) self.n = len(series) for i, dim in enumerate(['1D', '2D', '3D']): self.labels[dim] = labels[dim_idx == i+1] self.tmax[dim] = max(series[dim_idx == i+1].map(lambda x:len(x[1:]))) if i == 0: self.series[dim] = series[dim_idx == i+1].map(lambda x:np.array(x[1:], dtype='float64')) else: self.series[dim] = series[dim_idx == i+1].map(lambda x:np.array(x[1:], dtype='float64').reshape(-1, i+1, order='F')) def differentiate(self, dim, d, thres): names = list(self.series.keys()) def get_weight_ffd(d, thres, lim): w, k = [1.], 1 ctr = 0 while True: w_ = -w[-1] / k * (d - k + 1) if abs(w_) < thres: break w.append(w_) k += 1 ctr += 1 if ctr == lim - 1: break w = np.array(w[::-1]).reshape(-1, 1) return w w = get_weight_ffd(d, thres, self.tmax[names[dim-1]]) def frac_diff_ffd(x, d, thres=1e-5): width = len(w) - 1 output = [] for i in range(width, len(x)): output.append(np.dot(w.T, x[i - width:i + 1])[0]) return np.array(output) def function(serie): if dim == 1: return frac_diff_ffd(serie, d=d, thres=thres) elif dim == 2: x = frac_diff_ffd(serie[:,0], d=d, thres=thres).reshape(-1, 1) y = frac_diff_ffd(serie[:,1], d=d, thres=thres).reshape(-1, 1) return
np.concatenate([x,y], axis=1)
numpy.concatenate
import numpy as np import matplotlib.pyplot as plt import h5py import scipy from PIL import Image from scipy import ndimage from lr_utils import load_dataset #load the data (cat/not-cat) train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset() index = 4 plt.imshow(train_set_x_orig[index]) print("y="+str(train_set_y[:, index])+ ", it's a '" + classes[
np.squeeze(train_set_y[:, index])
numpy.squeeze
# -*- coding: utf-8 -*- """ Created on Fri Apr 16 16:13:39 2021 @author: ruizca """ import matplotlib.pyplot as plt import numpy as np from astropy import units as u from astropy.coordinates import SkyCoord, FK5 from astropy.table import Table, unique, join from astropy.utils.console import color_print from astropy_healpix import HEALPix from matplotlib.collections import PatchCollection from matplotlib.colors import Normalize from matplotlib.patches import Polygon from mocpy import MOC from mocpy.mocpy import flatten_pixels from scipy.stats import median_abs_deviation from tqdm.auto import tqdm from .. import rapidxmm from .ecf import ECF plt.rc('font', family='serif') plt.rc('xtick', labelsize='x-small') plt.rc('ytick', labelsize='x-small') #plt.rc('text', usetex=True) plt.rcParams['mathtext.fontset'] = "stix" plt.rcParams['mathtext.rm'] = "STIXGeneral" plt.rcParams['font.family'] = "STIXGeneral" plt.rcParams["axes.formatter.use_mathtext"] = True # Numpy random number generator rng = np.random.default_rng() def get_neighbours(npixel, hp, level=5): # The central pixel is the first one # The output of hp.neighbours always follows the # same order, starting SW and rotating clockwise neighbours_level = [None] * (level + 1) neighbours_level[0] = [npixel] npixel_neighbours = [npixel] for i in range(1, level + 1): neighbours_level[i] = hp.neighbours(neighbours_level[i - 1]).flatten() npixel_neighbours += list(neighbours_level[i]) sorted_neighbours = Table() sorted_neighbours["npixel"] = npixel_neighbours sorted_neighbours["order"] = range(len(npixel_neighbours)) sorted_neighbours = unique(sorted_neighbours, keys=["npixel"]) sorted_neighbours.sort("order") return sorted_neighbours def get_bkg_npixels(src_center, nside, npixels=100): order = np.log2(nside).astype(int) bkg_moc_outer = MOC.from_cone(src_center.ra, src_center.dec, 120*u.arcsec, order) bkg_moc_inner = MOC.from_cone(src_center.ra, src_center.dec, 60*u.arcsec, order) bkg_moc = bkg_moc_outer.difference(bkg_moc_inner) bkg_npixels = flatten_pixels(bkg_moc._interval_set._intervals, order) return rng.choice(bkg_npixels, size=npixels, replace=False).tolist() def get_bkg_data(npixel, obsid, hp): src_center = hp.healpix_to_skycoord(npixel) bkg_npixels = get_bkg_npixels(src_center, hp.nside, npixels=100) bkg_data = rapidxmm.query_npixels( bkg_npixels, obstype="pointed", instrum="PN" ) mask = bkg_data["obsid"] == obsid bkg_data = bkg_data[mask] if len(bkg_data) < 15: bkg_data = None return bkg_data def stats_bootstrap(src, bkg, exp, eef, ecf, ac=None, nbkg=None, nsim=1000): # Calculate median and MAD for the stack using bootstraping nstack, npixels, nbands = src.shape cr = np.zeros((nsim, npixels, nbands)) cr_err =
np.zeros((nsim, npixels, nbands))
numpy.zeros
""" Proto Contains the following library code useful for prototyping robotic algorithms: - YAML - TIME - PROFILING - MATHS - LINEAR ALGEBRA - GEOMETRY - LIE - TRANSFORM - MATPLOTLIB - CV - DATASET - FILTER - STATE ESTIMATION - CALIBRATION - SIMULATION - UNITTESTS """ import os import sys import glob import math import time import copy import random import pickle import json import signal from datetime import datetime from pathlib import Path from enum import Enum from dataclasses import dataclass from collections import namedtuple from types import FunctionType from typing import Optional import cv2 import yaml import numpy as np import scipy import scipy.sparse import scipy.sparse.linalg import pandas import cProfile from pstats import Stats ############################################################################### # YAML ############################################################################### def load_yaml(yaml_path): """ Load YAML and return a named tuple """ assert yaml_path is not None assert yaml_path != "" # Load yaml_file yaml_data = None with open(yaml_path, "r") as stream: yaml_data = yaml.safe_load(stream) # Convert dict to named tuple data = json.dumps(yaml_data) # Python dict to json data = json.loads( data, object_hook=lambda d: namedtuple('X', d.keys())(*d.values())) return data ############################################################################### # TIME ############################################################################### def sec2ts(time_s): """ Convert time in seconds to timestamp """ return int(time_s * 1e9) def ts2sec(ts): """ Convert timestamp to seconds """ return ts * 1e-9 ############################################################################### # PROFILING ############################################################################### def profile_start(): """ Start profile """ prof = cProfile.Profile() prof.enable() return prof def profile_stop(prof, **kwargs): """ Stop profile """ key = kwargs.get('key', 'cumtime') N = kwargs.get('N', 10) stats = Stats(prof) stats.strip_dirs() stats.sort_stats(key).print_stats(N) ############################################################################### # MATHS ############################################################################### from math import pi from math import isclose from math import sqrt # from math import floor from math import cos from math import sin from math import tan from math import acos from math import atan def rmse(errors): """ Root Mean Squared Error """ return np.sqrt(np.mean(errors**2)) ############################################################################### # LINEAR ALGEBRA ############################################################################### from numpy import rad2deg from numpy import deg2rad from numpy import sinc from numpy import zeros from numpy import ones from numpy import eye from numpy import trace from numpy import diagonal as diag from numpy import cross from numpy.linalg import norm from numpy.linalg import inv from numpy.linalg import pinv from numpy.linalg import matrix_rank as rank from numpy.linalg import eig from numpy.linalg import svd from numpy.linalg import cholesky as chol def normalize(v): """ Normalize vector v """ n = np.linalg.norm(v) if n == 0: return v return v / n def full_rank(A): """ Check if matrix A is full rank """ return rank(A) == A.shape[0] def skew(vec): """ Form skew-symmetric matrix from vector `vec` """ assert vec.shape == (3,) or vec.shape == (3, 1) x, y, z = vec return np.array([[0.0, -z, y], [z, 0.0, -x], [-y, x, 0.0]]) def skew_inv(A): """ Form skew symmetric matrix vector """ assert A.shape == (3, 3) return np.array([A[2, 1], A[0, 2], A[1, 0]]) def fwdsubs(L, b): """ Solving a lower triangular system by forward-substitution Input matrix L is an n by n lower triangular matrix Input vector b is n by 1 Output vector x is the solution to the linear system L x = b """ assert L.shape[1] == b.shape[0] n = b.shape[0] x = zeros((n, 1)) for j in range(n): if L[j, j] == 0: raise RuntimeError('Matrix is singular!') x[j] = b[j] / L[j, j] b[j:n] = b[j:n] - L[j:n, j] * x[j] def bwdsubs(U, b): """ Solving an upper triangular system by back-substitution Input matrix U is an n by n upper triangular matrix Input vector b is n by 1 Output vector x is the solution to the linear system U x = b """ assert U.shape[1] == b.shape[0] n = b.shape[0] x = zeros((n, 1)) for j in range(n): if U[j, j] == 0: raise RuntimeError('Matrix is singular!') x[j] = b[j] / U(j, j) b[0:j] = b[0:j] - U[0:j, j] * x[j] def solve_svd(A, b): """ Solve Ax = b with SVD """ # compute svd of A U, s, Vh = svd(A) # U diag(s) Vh x = b <=> diag(s) Vh x = U.T b = c c = np.dot(U.T, b) # diag(s) Vh x = c <=> Vh x = diag(1/s) c = w (trivial inversion of a diagonal matrix) w = np.dot(np.diag(1 / s), c) # Vh x = w <=> x = Vh.H w (where .H stands for hermitian = conjugate transpose) x = np.dot(Vh.conj().T, w) return x def schurs_complement(H, g, m, r, precond=False): """ Shurs-complement """ assert H.shape[0] == (m + r) # H = [Hmm, Hmr # Hrm, Hrr]; Hmm = H[0:m, 0:m] Hmr = H[0:m, m:] Hrm = Hmr.T Hrr = H[m:, m:] # g = [gmm, grr] gmm = g[1:] grr = g[m:] # Precondition Hmm if precond: Hmm = 0.5 * (Hmm + Hmm.T) # Invert Hmm assert rank(Hmm) == Hmm.shape[0] (w, V) = eig(Hmm) W_inv = diag(1.0 / w) Hmm_inv = V * W_inv * V.T # Schurs complement H_marg = Hrr - Hrm * Hmm_inv * Hmr g_marg = grr - Hrm * Hmm_inv * gmm return (H_marg, g_marg) def is_pd(B): """Returns true when input is positive-definite, via Cholesky""" try: _ = chol(B) return True except np.linalg.LinAlgError: return False def nearest_pd(A): """Find the nearest positive-definite matrix to input A Python/Numpy port of <NAME>'s `nearestSPD` MATLAB code [1], which credits [2]. [1] https://www.mathworks.com/matlabcentral/fileexchange/42885-nearestspd [2] <NAME>, "Computing a nearest symmetric positive semidefinite matrix" (1988): https://doi.org/10.1016/0024-3795(88)90223-6 """ B = (A + A.T) / 2 _, s, V = svd(B) H = np.dot(V.T, np.dot(np.diag(s), V)) A2 = (B + H) / 2 A3 = (A2 + A2.T) / 2 if is_pd(A3): return A3 spacing = np.spacing(np.linalg.norm(A)) # The above is different from [1]. It appears that MATLAB's `chol` Cholesky # decomposition will accept matrixes with exactly 0-eigenvalue, whereas # Numpy's will not. So where [1] uses `eps(mineig)` (where `eps` is Matlab # for `np.spacing`), we use the above definition. CAVEAT: our `spacing` # will be much larger than [1]'s `eps(mineig)`, since `mineig` is usually on # the order of 1e-16, and `eps(1e-16)` is on the order of 1e-34, whereas # `spacing` will, for Gaussian random matrixes of small dimension, be on # othe order of 1e-16. In practice, both ways converge, as the unit test # below suggests. I = np.eye(A.shape[0]) k = 1 while not is_pd(A3): mineig = np.min(np.real(np.linalg.eigvals(A3))) A3 += I * (-mineig * k**2 + spacing) k += 1 return A3 def matrix_equal(A, B, tol=1e-8, verbose=False): """ Compare matrices `A` and `B` """ diff = A - B if len(diff.shape) == 1: for i in range(diff.shape[0]): if abs(diff[i]) > tol: if verbose: print("A - B:") print(diff) elif len(diff.shape) == 2: for i in range(diff.shape[0]): for j in range(diff.shape[1]): if abs(diff[i, j]) > tol: if verbose: print("A - B:") print(diff) return False return True def plot_compare_matrices(title_A, A, title_B, B): """ Plot compare matrices """ plt.matshow(A) plt.colorbar() plt.title(title_A) plt.matshow(B) plt.colorbar() plt.title(title_B) diff = A - B plt.matshow(diff) plt.colorbar() plt.title(f"{title_A} - {title_B}") print(f"max_coeff({title_A}): {np.max(np.max(A))}") print(f"max_coeff({title_B}): {np.max(np.max(B))}") print(f"min_coeff({title_A}): {np.min(np.min(A))}") print(f"min_coeff({title_B}): {np.min(np.min(B))}") print(f"max_diff: {np.max(np.max(np.abs(diff)))}") plt.show() def check_jacobian(jac_name, fdiff, jac, threshold, verbose=False): """ Check jacobians """ # Check if numerical diff is same as analytical jacobian if matrix_equal(fdiff, jac, threshold): if verbose: print(f"Check [{jac_name}] passed!") return True # Failed - print differences if verbose: fdiff_minus_jac = fdiff - jac print(f"Check [{jac_name}] failed!") print("-" * 60) print("J_fdiff - J:") print(np.round(fdiff_minus_jac, 4)) print() print("J_fdiff:") print(np.round(fdiff, 4)) print() print("J:") print(np.round(jac, 4)) print() print("-" * 60) return False ############################################################################### # GEOMETRY ############################################################################### def lerp(x0, x1, t): """ Linear interpolation """ return (1.0 - t) * x0 + t * x1 def lerp2d(p0, p1, t): """ Linear interpolation 2D """ assert len(p0) == 2 assert len(p1) == 2 assert t <= 1.0 and t >= 0.0 x = lerp(p0[0], p1[0], t) y = lerp(p0[1], p1[1], t) return np.array([x, y]) def lerp3d(p0, p1, t): """ Linear interpolation 3D """ assert len(p0) == 3 assert len(p1) == 3 assert t <= 1.0 and t >= 0.0 x = lerp(p0[0], p1[0], t) y = lerp(p0[1], p1[1], t) z = lerp(p0[2], p1[2], t) return np.array([x, y, z]) def circle(r, theta): """ Circle """ x = r * cos(theta) y = r * sin(theta) return np.array([x, y]) def sphere(rho, theta, phi): """ Sphere Args: rho (float): Sphere radius theta (float): longitude [rad] phi (float): Latitude [rad] Returns: Point on sphere """ x = rho * sin(theta) * cos(phi) y = rho * sin(theta) * sin(phi) z = rho * cos(theta) return np.array([x, y, z]) def circle_loss(c, x, y): """ Calculate the algebraic distance between the data points and the mean circle centered at c=(xc, yc) """ xc, yc = c # Euclidean dist from center (xc, yc) Ri = np.sqrt((x - xc)**2 + (y - yc)**2) return Ri - Ri.mean() def find_circle(x, y): """ Find the circle center and radius given (x, y) data points using least squares. Returns `(circle_center, circle_radius, residual)` """ x_m = np.mean(x) y_m = np.mean(y) center_init = x_m, y_m center, _ = scipy.optimize.leastsq(circle_loss, center_init, args=(x, y)) xc, yc = center radii = np.sqrt((x - xc)**2 + (y - yc)**2) radius = radii.mean() residual = np.sum((radii - radius)**2) return (center, radius, residual) def bresenham(p0, p1): """ Bresenham's line algorithm is a line drawing algorithm that determines the points of an n-dimensional raster that should be selected in order to form a close approximation to a straight line between two points. It is commonly used to draw line primitives in a bitmap image (e.g. on a computer screen), as it uses only integer addition, subtraction and bit shifting, all of which are very cheap operations in standard computer architectures. Args: p0 (np.array): Starting point (x, y) p1 (np.array): End point (x, y) Returns: A list of (x, y) intermediate points from p0 to p1. """ x0, y0 = p0 x1, y1 = p1 dx = abs(x1 - x0) dy = abs(y1 - y0) sx = 1.0 if x0 < x1 else -1.0 sy = 1.0 if y0 < y1 else -1.0 err = dx - dy line = [] while True: line.append([x0, y0]) if x0 == x1 and y0 == y1: return line e2 = 2 * err if e2 > -dy: # overshot in the y direction err = err - dy x0 = x0 + sx if e2 < dx: # overshot in the x direction err = err + dx y0 = y0 + sy ############################################################################### # LIE ############################################################################### def Exp(phi): """ Exponential Map """ assert phi.shape == (3,) or phi.shape == (3, 1) if norm(phi) < 1e-3: C = eye(3) + skew(phi) return C phi_norm = norm(phi) phi_skew = skew(phi) phi_skew_sq = phi_skew @ phi_skew C = eye(3) C += (sin(phi_norm) / phi_norm) * phi_skew C += ((1 - cos(phi_norm)) / phi_norm**2) * phi_skew_sq return C def Log(C): """ Logarithmic Map """ assert C.shape == (3, 3) # phi = acos((trace(C) - 1) / 2); # u = skew_inv(C - C') / (2 * sin(phi)); # rvec = phi * u; C00, C01, C02 = C[0, :] C10, C11, C12 = C[1, :] C20, C21, C22 = C[2, :] tr = np.trace(C) rvec = None if tr + 1.0 < 1e-10: if abs(C22 + 1.0) > 1.0e-5: x = np.array([C02, C12, 1.0 + C22]) rvec = (pi / np.sqrt(2.0 + 2.0 * C22)) @ x elif abs(C11 + 1.0) > 1.0e-5: x = np.array([C01, 1.0 + C11, C21]) rvec = (pi / np.sqrt(2.0 + 2.0 * C11)) @ x else: x = np.array([1.0 + C00, C10, C20]) rvec = (pi / np.sqrt(2.0 + 2.0 * C00)) @ x else: tr_3 = tr - 3.0 # always negative if tr_3 < -1e-7: theta = acos((tr - 1.0) / 2.0) magnitude = theta / (2.0 * sin(theta)) else: # when theta near 0, +-2pi, +-4pi, etc. (trace near 3.0) # use Taylor expansion: theta \approx 1/2-(t-3)/12 + O((t-3)^2) # see https://github.com/borglab/gtsam/issues/746 for details magnitude = 0.5 - tr_3 / 12.0 rvec = magnitude @ np.array([C21 - C12, C02 - C20, C10 - C01]) return rvec def Jr(theta): """ Right jacobian Forster, Christian, et al. "IMU preintegration on manifold for efficient visual-inertial maximum-a-posteriori estimation." Georgia Institute of Technology, 2015. [Page 2, Equation (8)] """ theta_norm = norm(theta) theta_norm_sq = theta_norm * theta_norm theta_norm_cube = theta_norm_sq * theta_norm theta_skew = skew(theta) theta_skew_sq = theta_skew @ theta_skew J = eye(3) J -= ((1 - cos(theta_norm)) / theta_norm_sq) * theta_skew J += (theta_norm - sin(theta_norm)) / (theta_norm_cube) * theta_skew_sq return J def Jr_inv(theta): """ Inverse right jacobian """ theta_norm = norm(theta) theta_norm_sq = theta_norm * theta_norm theta_skew = skew(theta) theta_skew_sq = theta_skew @ theta_skew A = 1.0 / theta_norm_sq B = (1 + cos(theta_norm)) / (2 * theta_norm * sin(theta_norm)) J = eye(3) J += 0.5 * theta_skew J += (A - B) * theta_skew_sq return J def boxplus(C, alpha): """ Box plus """ # C_updated = C [+] alpha C_updated = C * Exp(alpha) return C_updated def boxminus(C_a, C_b): """ Box minus """ # alpha = C_a [-] C_b alpha = Log(inv(C_b) * C_a) return alpha ############################################################################### # TRANSFORM ############################################################################### def homogeneous(p): """ Turn point `p` into its homogeneous form """ return np.array([*p, 1.0]) def dehomogeneous(hp): """ De-homogenize point `hp` into `p` """ return hp[0:3] def rotx(theta): """ Form rotation matrix around x axis """ row0 = [1.0, 0.0, 0.0] row1 = [0.0, cos(theta), -sin(theta)] row2 = [0.0, sin(theta), cos(theta)] return np.array([row0, row1, row2]) def roty(theta): """ Form rotation matrix around y axis """ row0 = [cos(theta), 0.0, sin(theta)] row1 = [0.0, 1.0, 0.0] row2 = [-sin(theta), 0.0, cos(theta)] return np.array([row0, row1, row2]) def rotz(theta): """ Form rotation matrix around z axis """ row0 = [cos(theta), -sin(theta), 0.0] row1 = [sin(theta), cos(theta), 0.0] row2 = [0.0, 0.0, 1.0] return np.array([row0, row1, row2]) def aa2quat(angle, axis): """ Convert angle-axis to quaternion Source: <NAME>. "Quaternion kinematics for the error-state Kalman filter." arXiv preprint arXiv:1711.02508 (2017). [Page 22, eq (101), "Quaternion and rotation vector"] """ ax, ay, az = axis qw = cos(angle / 2.0) qx = ax * sin(angle / 2.0) qy = ay * sin(angle / 2.0) qz = az * sin(angle / 2.0) return np.array([qw, qx, qy, qz]) def rvec2rot(rvec): """ Rotation vector to rotation matrix """ # If small rotation theta = sqrt(rvec @ rvec) # = norm(rvec), but faster eps = 1e-8 if theta < eps: return skew(rvec) # Convert rvec to rotation matrix rvec = rvec / theta x, y, z = rvec c = cos(theta) s = sin(theta) C = 1 - c xs = x * s ys = y * s zs = z * s xC = x * C yC = y * C zC = z * C xyC = x * yC yzC = y * zC zxC = z * xC row0 = [x * xC + c, xyC - zs, zxC + ys] row1 = [xyC + zs, y * yC + c, yzC - xs] row2 = [zxC - ys, yzC + xs, z * zC + c] return np.array([row0, row1, row2]) def vecs2axisangle(u, v): """ From 2 vectors form an axis-angle vector """ angle = math.acos(u.T * v) ax = normalize(np.cross(u, v)) return ax * angle def euler321(yaw, pitch, roll): """ Convert yaw, pitch, roll in radians to a 3x3 rotation matrix. Source: Kuipers, <NAME>. Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality. Princeton, N.J: Princeton University Press, 1999. Print. [Page 85-86, "The Aerospace Sequence"] """ psi = yaw theta = pitch phi = roll cpsi = cos(psi) spsi = sin(psi) ctheta = cos(theta) stheta = sin(theta) cphi = cos(phi) sphi = sin(phi) C11 = cpsi * ctheta C21 = spsi * ctheta C31 = -stheta C12 = cpsi * stheta * sphi - spsi * cphi C22 = spsi * stheta * sphi + cpsi * cphi C32 = ctheta * sphi C13 = cpsi * stheta * cphi + spsi * sphi C23 = spsi * stheta * cphi - cpsi * sphi C33 = ctheta * cphi return np.array([[C11, C12, C13], [C21, C22, C23], [C31, C32, C33]]) def euler2quat(yaw, pitch, roll): """ Convert yaw, pitch, roll in radians to a quaternion. Source: Kuipers, <NAME>. Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality. Princeton, N.J: Princeton University Press, 1999. Print. [Page 166-167, "Euler Angles to Quaternion"] """ psi = yaw # Yaw theta = pitch # Pitch phi = roll # Roll c_phi = cos(phi / 2.0) c_theta = cos(theta / 2.0) c_psi = cos(psi / 2.0) s_phi = sin(phi / 2.0) s_theta = sin(theta / 2.0) s_psi = sin(psi / 2.0) qw = c_psi * c_theta * c_phi + s_psi * s_theta * s_phi qx = c_psi * c_theta * s_phi - s_psi * s_theta * c_phi qy = c_psi * s_theta * c_phi + s_psi * c_theta * s_phi qz = s_psi * c_theta * c_phi - c_psi * s_theta * s_phi mag = sqrt(qw**2 + qx**2 + qy**2 + qz**2) return np.array([qw / mag, qx / mag, qy / mag, qz / mag]) def quat2euler(q): """ Convert quaternion to euler angles (yaw, pitch, roll). Source: Kuipers, <NAME>. Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality. Princeton, N.J: Princeton University Press, 1999. Print. [Page 168, "Quaternion to Euler Angles"] """ qw, qx, qy, qz = q m11 = (2 * qw**2) + (2 * qx**2) - 1 m12 = 2 * (qx * qy + qw * qz) m13 = 2 * qx * qz - 2 * qw * qy m23 = 2 * qy * qz + 2 * qw * qx m33 = (2 * qw**2) + (2 * qz**2) - 1 psi = math.atan2(m12, m11) theta = math.asin(-m13) phi = math.atan2(m23, m33) ypr = np.array([psi, theta, phi]) return ypr def quat2rot(q): """ Convert quaternion to 3x3 rotation matrix. Source: <NAME>. "A tutorial on se (3) transformation parameterizations and on-manifold optimization." University of Malaga, Tech. Rep 3 (2010): 6. [Page 18, Equation (2.20)] """ assert len(q) == 4 qw, qx, qy, qz = q qx2 = qx**2 qy2 = qy**2 qz2 = qz**2 qw2 = qw**2 # Homogeneous form C11 = qw2 + qx2 - qy2 - qz2 C12 = 2.0 * (qx * qy - qw * qz) C13 = 2.0 * (qx * qz + qw * qy) C21 = 2.0 * (qx * qy + qw * qz) C22 = qw2 - qx2 + qy2 - qz2 C23 = 2.0 * (qy * qz - qw * qx) C31 = 2.0 * (qx * qz - qw * qy) C32 = 2.0 * (qy * qz + qw * qx) C33 = qw2 - qx2 - qy2 + qz2 return np.array([[C11, C12, C13], [C21, C22, C23], [C31, C32, C33]]) def rot2euler(C): """ Convert 3x3 rotation matrix to euler angles (yaw, pitch, roll). """ assert C.shape == (3, 3) q = rot2quat(C) return quat2euler(q) def rot2quat(C): """ Convert 3x3 rotation matrix to quaternion. """ assert C.shape == (3, 3) m00 = C[0, 0] m01 = C[0, 1] m02 = C[0, 2] m10 = C[1, 0] m11 = C[1, 1] m12 = C[1, 2] m20 = C[2, 0] m21 = C[2, 1] m22 = C[2, 2] tr = m00 + m11 + m22 if tr > 0: S = sqrt(tr + 1.0) * 2.0 # S=4*qw qw = 0.25 * S qx = (m21 - m12) / S qy = (m02 - m20) / S qz = (m10 - m01) / S elif ((m00 > m11) and (m00 > m22)): S = sqrt(1.0 + m00 - m11 - m22) * 2.0 # S=4*qx qw = (m21 - m12) / S qx = 0.25 * S qy = (m01 + m10) / S qz = (m02 + m20) / S elif m11 > m22: S = sqrt(1.0 + m11 - m00 - m22) * 2.0 # S=4*qy qw = (m02 - m20) / S qx = (m01 + m10) / S qy = 0.25 * S qz = (m12 + m21) / S else: S = sqrt(1.0 + m22 - m00 - m11) * 2.0 # S=4*qz qw = (m10 - m01) / S qx = (m02 + m20) / S qy = (m12 + m21) / S qz = 0.25 * S return quat_normalize(np.array([qw, qx, qy, qz])) # QUATERNION ################################################################## def quat_norm(q): """ Returns norm of a quaternion """ qw, qx, qy, qz = q return sqrt(qw**2 + qx**2 + qy**2 + qz**2) def quat_normalize(q): """ Normalize quaternion """ n = quat_norm(q) qw, qx, qy, qz = q return np.array([qw / n, qx / n, qy / n, qz / n]) def quat_conj(q): """ Return conjugate quaternion """ qw, qx, qy, qz = q q_conj = np.array([qw, -qx, -qy, -qz]) return q_conj def quat_inv(q): """ Invert quaternion """ return quat_conj(q) def quat_left(q): """ Quaternion left product matrix """ qw, qx, qy, qz = q row0 = [qw, -qx, -qy, -qz] row1 = [qx, qw, -qz, qy] row2 = [qy, qz, qw, -qx] row3 = [qz, -qy, qx, qw] return np.array([row0, row1, row2, row3]) def quat_right(q): """ Quaternion right product matrix """ qw, qx, qy, qz = q row0 = [qw, -qx, -qy, -qz] row1 = [qx, qw, qz, -qy] row2 = [qy, -qz, qw, qx] row3 = [qz, qy, -qx, qw] return np.array([row0, row1, row2, row3]) def quat_lmul(p, q): """ Quaternion left multiply """ assert len(p) == 4 assert len(q) == 4 lprod = quat_left(p) return lprod @ q def quat_rmul(p, q): """ Quaternion right multiply """ assert len(p) == 4 assert len(q) == 4 rprod = quat_right(q) return rprod @ p def quat_mul(p, q): """ Quaternion multiply p * q """ return quat_lmul(p, q) def quat_omega(w): """ Quaternion omega matrix """ return np.block([[-1.0 * skew(w), w], [w.T, 0.0]]) def quat_delta(dalpha): """ Form quaternion from small angle rotation vector dalpha """ half_norm = 0.5 * norm(dalpha) scalar = cos(half_norm) vector = sinc(half_norm) * 0.5 * dalpha dqw = scalar dqx, dqy, dqz = vector dq = np.array([dqw, dqx, dqy, dqz]) return dq def quat_integrate(q_k, w, dt): """ <NAME>. "Quaternion kinematics for the error-state Kalman filter." arXiv preprint arXiv:1711.02508 (2017). [Section 4.6.1 Zeroth-order integration, p.47] """ w_norm = norm(w) q_scalar = 0.0 q_vec = np.array([0.0, 0.0, 0.0]) if w_norm > 1e-5: q_scalar = cos(w_norm * dt * 0.5) q_vec = w / w_norm * sin(w_norm * dt * 0.5) else: q_scalar = 1.0 q_vec = [0.0, 0.0, 0.0] q_kp1 = quat_mul(q_k, np.array([q_scalar, q_vec])) return q_kp1 def quat_slerp(q_i, q_j, t): """ Quaternion Slerp `q_i` and `q_j` with parameter `t` """ assert len(q_i) == 4 assert len(q_j) == 4 assert t >= 0.0 and t <= 1.0 # Compute the cosine of the angle between the two vectors. dot_result = q_i @ q_j # If the dot product is negative, slerp won't take # the shorter path. Note that q_j and -q_j are equivalent when # the negation is applied to all four components. Fix by # reversing one quaternion. if dot_result < 0.0: q_j = -q_j dot_result = -dot_result DOT_THRESHOLD = 0.9995 if dot_result > DOT_THRESHOLD: # If the inputs are too close for comfort, linearly interpolate # and normalize the result. return q_i + t * (q_j - q_i) # Since dot is in range [0, DOT_THRESHOLD], acos is safe theta_0 = acos(dot_result) # theta_0 = angle between input vectors theta = theta_0 * t # theta = angle between q_i and result sin_theta = sin(theta) # compute this value only once sin_theta_0 = sin(theta_0) # compute this value only once # == sin(theta_0 - theta) / sin(theta_0) s0 = cos(theta) - dot_result * sin_theta / sin_theta_0 s1 = sin_theta / sin_theta_0 return (s0 * q_i) + (s1 * q_j) # TF ########################################################################## def tf(rot, trans): """ Form 4x4 homogeneous transformation matrix from rotation `rot` and translation `trans`. Where the rotation component `rot` can be a rotation matrix or a quaternion. """ C = None if rot.shape == (4,) or rot.shape == (4, 1): C = quat2rot(rot) elif rot.shape == (3, 3): C = rot else: raise RuntimeError("Invalid rotation!") T = np.eye(4, 4) T[0:3, 0:3] = C T[0:3, 3] = trans return T def tf_rot(T): """ Return rotation matrix from 4x4 homogeneous transform """ assert T.shape == (4, 4) return T[0:3, 0:3] def tf_quat(T): """ Return quaternion from 4x4 homogeneous transform """ assert T.shape == (4, 4) return rot2quat(tf_rot(T)) def tf_trans(T): """ Return translation vector from 4x4 homogeneous transform """ assert T.shape == (4, 4) return T[0:3, 3] def tf_inv(T): """ Invert 4x4 homogeneous transform """ assert T.shape == (4, 4) return np.linalg.inv(T) def tf_point(T, p): """ Transform 3d point """ assert T.shape == (4, 4) assert p.shape == (3,) or p.shape == (3, 1) hpoint = np.array([p[0], p[1], p[2], 1.0]) return (T @ hpoint)[0:3] def tf_hpoint(T, hp): """ Transform 3d point """ assert T.shape == (4, 4) assert hp.shape == (4,) or hp.shape == (4, 1) return (T @ hp)[0:3] def tf_decompose(T): """ Decompose into rotation matrix and translation vector""" assert T.shape == (4, 4) C = tf_rot(T) r = tf_trans(T) return (C, r) def tf_lerp(pose_i, pose_j, t): """ Interpolate pose `pose_i` and `pose_j` with parameter `t` """ assert pose_i.shape == (4, 4) assert pose_j.shape == (4, 4) assert t >= 0.0 and t <= 1.0 # Decompose start pose r_i = tf_trans(pose_i) q_i = tf_quat(pose_i) # Decompose end pose r_j = tf_trans(pose_j) q_j = tf_quat(pose_j) # Interpolate translation and rotation r_lerp = lerp(r_i, r_j, t) q_lerp = quat_slerp(q_i, q_j, t) return tf(q_lerp, r_lerp) def tf_perturb(T, i, step_size): """ Perturb transformation matrix """ assert T.shape == (4, 4) assert i >= 0 and i <= 5 # Setup C = tf_rot(T) r = tf_trans(T) if i >= 0 and i <= 2: # Perturb translation r[i] += step_size elif i >= 3 and i <= 5: # Perturb rotation rvec = np.array([0.0, 0.0, 0.0]) rvec[i - 3] = step_size q = rot2quat(C) dq = quat_delta(rvec) q_diff = quat_mul(q, dq) q_diff = quat_normalize(q_diff) C = quat2rot(q_diff) return tf(C, r) def tf_update(T, dx): """ Update transformation matrix """ assert T.shape == (4, 4) q = tf_quat(T) r = tf_trans(T) dr = dx[0:3] dalpha = dx[3:6] dq = quat_delta(dalpha) return tf(quat_mul(q, dq), r + dr) ############################################################################### # MATPLOTLIB ############################################################################### import matplotlib.pylab as plt def plot_set_axes_equal(ax): """ Make axes of 3D plot have equal scale so that spheres appear as spheres, cubes as cubes, etc.. This is one possible solution to Matplotlib's ax.set_aspect('equal') and ax.axis('equal') not working for 3D. Input ax: a matplotlib axis, e.g., as output from plt.gca(). """ x_limits = ax.get_xlim3d() y_limits = ax.get_ylim3d() z_limits = ax.get_zlim3d() x_range = abs(x_limits[1] - x_limits[0]) x_middle = np.mean(x_limits) y_range = abs(y_limits[1] - y_limits[0]) y_middle = np.mean(y_limits) z_range = abs(z_limits[1] - z_limits[0]) z_middle = np.mean(z_limits) # The plot bounding box is a sphere in the sense of the infinity # norm, hence I call half the max range the plot radius. plot_radius = 0.5 * max([x_range, y_range, z_range]) ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius]) ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius]) ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius]) def plot_tf(ax, T, **kwargs): """ Plot 4x4 Homogeneous Transform Args: ax (matplotlib.axes.Axes): Plot axes object T (np.array): 4x4 homogeneous transform (i.e. Pose in the world frame) Keyword args: size (float): Size of the coordinate-axes linewidth (float): Thickness of the coordinate-axes name (str): Frame name name_offset (np.array or list): Position offset for displaying the frame's name fontsize (float): Frame font size fontweight (float): Frame font weight """ assert T.shape == (4, 4) size = kwargs.get('size', 1) # linewidth = kwargs.get('linewidth', 3) name = kwargs.get('name', None) name_offset = kwargs.get('name_offset', [0, 0, -0.01]) fontsize = kwargs.get('fontsize', 10) fontweight = kwargs.get('fontweight', 'bold') colors = kwargs.get('colors', ['r-', 'g-', 'b-']) origin = tf_trans(T) lx = tf_point(T, np.array([size, 0.0, 0.0])) ly = tf_point(T, np.array([0.0, size, 0.0])) lz = tf_point(T, np.array([0.0, 0.0, size])) # Draw x-axis px = [origin[0], lx[0]] py = [origin[1], lx[1]] pz = [origin[2], lx[2]] ax.plot(px, py, pz, colors[0]) # Draw y-axis px = [origin[0], ly[0]] py = [origin[1], ly[1]] pz = [origin[2], ly[2]] ax.plot(px, py, pz, colors[1]) # Draw z-axis px = [origin[0], lz[0]] py = [origin[1], lz[1]] pz = [origin[2], lz[2]] ax.plot(px, py, pz, colors[2]) # Draw label if name is not None: x = origin[0] + name_offset[0] y = origin[1] + name_offset[1] z = origin[2] + name_offset[2] ax.text(x, y, z, name, fontsize=fontsize, fontweight=fontweight) def plot_xyz(title, data, key_time, key_x, key_y, key_z, ylabel): """ Plot XYZ plot Args: title (str): Plot title data (Dict[str, pandas.DataFrame]): Plot data key_time (str): Dictionary key for timestamps key_x (str): Dictionary key x-axis key_y (str): Dictionary key y-axis key_z (str): Dictionary key z-axis ylabel (str): Y-axis label """ axis = ['x', 'y', 'z'] colors = ["r", "g", "b"] keys = [key_x, key_y, key_z] line_styles = ["--", "-", "x"] # Time time_data = {} for label, series_data in data.items(): ts0 = series_data[key_time][0] time_data[label] = ts2sec(series_data[key_time].to_numpy() - ts0) # Plot subplots plt.figure() for i in range(3): plt.subplot(3, 1, i + 1) for (label, series_data), line in zip(data.items(), line_styles): line_style = colors[i] + line x_data = time_data[label] y_data = series_data[keys[i]].to_numpy() plt.plot(x_data, y_data, line_style, label=label) plt.xlabel("Time [s]") plt.ylabel(ylabel) plt.legend(loc=0) plt.title(f"{title} in {axis[i]}-axis") plt.subplots_adjust(hspace=0.65) ############################################################################### # CV ############################################################################### # UTILS ####################################################################### def lookat(cam_pos, target_pos, **kwargs): """ Form look at matrix """ up_axis = kwargs.get('up_axis', np.array([0.0, -1.0, 0.0])) assert len(cam_pos) == 3 assert len(target_pos) == 3 assert len(up_axis) == 3 # Note: If we were using OpenGL the cam_dir would be the opposite direction, # since in OpenGL the camera forward is -z. In robotics however our camera is # +z forward. cam_z = normalize(target_pos - cam_pos) cam_x = normalize(cross(up_axis, cam_z)) cam_y = cross(cam_z, cam_x) T_WC = zeros((4, 4)) T_WC[0:3, 0] = cam_x.T T_WC[0:3, 1] = cam_y.T T_WC[0:3, 2] = cam_z.T T_WC[0:3, 3] = cam_pos T_WC[3, 3] = 1.0 return T_WC # GEOMETRY #################################################################### def linear_triangulation(P_i, P_j, z_i, z_j): """ Linear triangulation This function is used to triangulate a single 3D point observed by two camera frames (be it in time with the same camera, or two different cameras with known extrinsics). Args: P_i (np.array): First camera 3x4 projection matrix P_j (np.array): Second camera 3x4 projection matrix z_i (np.array): First keypoint measurement z_j (np.array): Second keypoint measurement Returns: p_Ci (np.array): 3D point w.r.t first camera """ # First three rows of P_i and P_j P1T_i = P_i[0, :] P2T_i = P_i[1, :] P3T_i = P_i[2, :] P1T_j = P_j[0, :] P2T_j = P_j[1, :] P3T_j = P_j[2, :] # Image point from the first and second frame x_i, y_i = z_i x_j, y_j = z_j # Form the A matrix of AX = 0 A = zeros((4, 4)) A[0, :] = x_i * P3T_i - P1T_i A[1, :] = y_i * P3T_i - P2T_i A[2, :] = x_j * P3T_j - P1T_j A[3, :] = y_j * P3T_j - P2T_j # Use SVD to solve AX = 0 (_, _, Vh) = svd(A.T @ A) hp = Vh.T[:, -1] # Get the best result from SVD (last column of V) hp = hp / hp[-1] # Normalize the homogeneous 3D point p = hp[0:3] # Return only the first three components (x, y, z) return p # PINHOLE ##################################################################### def focal_length(image_width, fov_deg): """ Estimated focal length based on `image_width` and field of fiew `fov_deg` in degrees. """ return (image_width / 2.0) / tan(deg2rad(fov_deg / 2.0)) def pinhole_K(params): """ Form camera matrix K """ fx, fy, cx, cy = params return np.array([[fx, 0.0, cx], [0.0, fy, cy], [0.0, 0.0, 1.0]]) def pinhole_P(params, T_WC): """ Form 3x4 projection matrix P """ K = pinhole_K(params) T_CW = inv(T_WC) C = tf_rot(T_CW) r = tf_trans(T_CW) P = zeros((3, 4)) P[0:3, 0:3] = C P[0:3, 3] = r P = K @ P return P def pinhole_project(proj_params, p_C): """ Project 3D point onto image plane using pinhole camera model """ assert len(proj_params) == 4 assert len(p_C) == 3 # Project x = np.array([p_C[0] / p_C[2], p_C[1] / p_C[2]]) # Scale and center fx, fy, cx, cy = proj_params z = np.array([fx * x[0] + cx, fy * x[1] + cy]) return z def pinhole_params_jacobian(x): """ Form pinhole parameter jacobian """ return np.array([[x[0], 0.0, 1.0, 0.0], [0.0, x[1], 0.0, 1.0]]) def pinhole_point_jacobian(proj_params): """ Form pinhole point jacobian """ fx, fy, _, _ = proj_params return np.array([[fx, 0.0], [0.0, fy]]) # RADTAN4 ##################################################################### def radtan4_distort(dist_params, p): """ Distort point with Radial-Tangential distortion """ assert len(dist_params) == 4 assert len(p) == 2 # Distortion parameters k1, k2, p1, p2 = dist_params # Point x, y = p # Apply radial distortion x2 = x * x y2 = y * y r2 = x2 + y2 r4 = r2 * r2 radial_factor = 1.0 + (k1 * r2) + (k2 * r4) x_dash = x * radial_factor y_dash = y * radial_factor # Apply tangential distortion xy = x * y x_ddash = x_dash + (2.0 * p1 * xy + p2 * (r2 + 2.0 * x2)) y_ddash = y_dash + (p1 * (r2 + 2.0 * y2) + 2.0 * p2 * xy) return np.array([x_ddash, y_ddash]) def radtan4_point_jacobian(dist_params, p): """ Radial-tangential point jacobian """ assert len(dist_params) == 4 assert len(p) == 2 # Distortion parameters k1, k2, p1, p2 = dist_params # Point x, y = p # Apply radial distortion x2 = x * x y2 = y * y r2 = x2 + y2 r4 = r2 * r2 # Point Jacobian # Let u = [x; y] normalized point # Let u' be the distorted u # The jacobian of u' w.r.t. u (or du'/du) is: J_point = zeros((2, 2)) J_point[0, 0] = k1 * r2 + k2 * r4 + 2.0 * p1 * y + 6.0 * p2 * x J_point[0, 0] += x * (2.0 * k1 * x + 4.0 * k2 * x * r2) + 1.0 J_point[1, 0] = 2.0 * p1 * x + 2.0 * p2 * y J_point[1, 0] += y * (2.0 * k1 * x + 4.0 * k2 * x * r2) J_point[0, 1] = J_point[1, 0] J_point[1, 1] = k1 * r2 + k2 * r4 + 6.0 * p1 * y + 2.0 * p2 * x J_point[1, 1] += y * (2.0 * k1 * y + 4.0 * k2 * y * r2) + 1.0 # Above is generated using sympy return J_point def radtan4_undistort(dist_params, p0): """ Un-distort point with Radial-Tangential distortion """ assert len(dist_params) == 4 assert len(p0) == 2 # Undistort p = p0 max_iter = 5 for _ in range(max_iter): # Error p_distorted = radtan4_distort(dist_params, p) J = radtan4_point_jacobian(dist_params, p) err = (p0 - p_distorted) # Update # dp = inv(J' * J) * J' * err dp = pinv(J) @ err p = p + dp # Check threshold if (err.T @ err) < 1e-15: break return p def radtan4_params_jacobian(dist_params, p): """ Radial-Tangential distortion parameter jacobian """ assert len(dist_params) == 4 assert len(p) == 2 # Point x, y = p # Setup x2 = x * x y2 = y * y xy = x * y r2 = x2 + y2 r4 = r2 * r2 # Params Jacobian J_params = zeros((2, 4)) J_params[0, 0] = x * r2 J_params[0, 1] = x * r4 J_params[0, 2] = 2.0 * xy J_params[0, 3] = 3.0 * x2 + y2 J_params[1, 0] = y * r2 J_params[1, 1] = y * r4 J_params[1, 2] = x2 + 3.0 * y2 J_params[1, 3] = 2.0 * xy return J_params # EQUI4 ####################################################################### def equi4_distort(dist_params, p): """ Distort point with Equi-distant distortion """ assert len(dist_params) == 4 assert len(p) == 2 # Distortion parameters k1, k2, k3, k4 = dist_params # Distort x, y = p r = sqrt(x * x + y * y) th = math.atan(r) th2 = th * th th4 = th2 * th2 th6 = th4 * th2 th8 = th4 * th4 thd = th * (1.0 + k1 * th2 + k2 * th4 + k3 * th6 + k4 * th8) s = thd / r x_dash = s * x y_dash = s * y return np.array([x_dash, y_dash]) def equi4_undistort(dist_params, p): """ Undistort point using Equi-distant distortion """ thd = sqrt(p(0) * p(0) + p[0] * p[0]) # Distortion parameters k1, k2, k3, k4 = dist_params th = thd # Initial guess for _ in range(20): th2 = th * th th4 = th2 * th2 th6 = th4 * th2 th8 = th4 * th4 th = thd / (1.0 + k1 * th2 + k2 * th4 + k3 * th6 + k4 * th8) scaling = tan(th) / thd return np.array([p[0] * scaling, p[1] * scaling]) def equi4_params_jacobian(dist_params, p): """ Equi-distant distortion params jacobian """ assert len(dist_params) == 4 assert len(p) == 2 # Jacobian x, y = p r = sqrt(x**2 + y**2) th = atan(r) J_params = zeros((2, 4)) J_params[0, 0] = x * th**3 / r J_params[0, 1] = x * th**5 / r J_params[0, 2] = x * th**7 / r J_params[0, 3] = x * th**9 / r J_params[1, 0] = y * th**3 / r J_params[1, 1] = y * th**5 / r J_params[1, 2] = y * th**7 / r J_params[1, 3] = y * th**9 / r return J_params def equi4_point_jacobian(dist_params, p): """ Equi-distant distortion point jacobian """ assert len(dist_params) == 4 assert len(p) == 2 # Distortion parameters k1, k2, k3, k4 = dist_params # Jacobian x, y = p r = sqrt(x**2 + y**2) th = math.atan(r) th2 = th**2 th4 = th**4 th6 = th**6 th8 = th**8 thd = th * (1.0 + k1 * th2 + k2 * th4 + k3 * th6 + k4 * th8) th_r = 1.0 / (r * r + 1.0) thd_th = 1.0 + 3.0 * k1 * th2 thd_th += 5.0 * k2 * th4 thd_th += 7.0 * k3 * th6 thd_th += 9.0 * k4 * th8 s = thd / r s_r = thd_th * th_r / r - thd / (r * r) r_x = 1.0 / r * x r_y = 1.0 / r * y J_point = zeros((2, 2)) J_point[0, 0] = s + x * s_r * r_x J_point[0, 1] = x * s_r * r_y J_point[1, 0] = y * s_r * r_x J_point[1, 1] = s + y * s_r * r_y return J_point # PINHOLE RADTAN4 ############################################################# def pinhole_radtan4_project(proj_params, dist_params, p_C): """ Pinhole + Radial-Tangential project """ assert len(proj_params) == 4 assert len(dist_params) == 4 assert len(p_C) == 3 # Project x = np.array([p_C[0] / p_C[2], p_C[1] / p_C[2]]) # Distort x_dist = radtan4_distort(dist_params, x) # Scale and center to image plane fx, fy, cx, cy = proj_params z = np.array([fx * x_dist[0] + cx, fy * x_dist[1] + cy]) return z def pinhole_radtan4_backproject(proj_params, dist_params, z): """ Pinhole + Radial-Tangential back-project """ assert len(proj_params) == 4 assert len(dist_params) == 4 assert len(z) == 2 # Convert image pixel coordinates to normalized retinal coordintes fx, fy, cx, cy = proj_params x = np.array([(z[0] - cx) / fx, (z[1] - cy) / fy, 1.0]) # Undistort x = radtan4_undistort(dist_params, x) # 3D ray p = np.array([x[0], x[1], 1.0]) return p def pinhole_radtan4_undistort(proj_params, dist_params, z): """ Pinhole + Radial-Tangential undistort """ assert len(proj_params) == 4 assert len(dist_params) == 4 assert len(z) == 2 # Back project and undistort fx, fy, cx, cy = proj_params p = np.array([(z[0] - cx) / fx, (z[1] - cy) / fy]) p_undist = radtan4_undistort(dist_params, p) # Project undistorted point to image plane return np.array([p_undist[0] * fx + cx, p_undist[1] * fy + cy]) def pinhole_radtan4_project_jacobian(proj_params, dist_params, p_C): """ Pinhole + Radial-Tangential project jacobian """ assert len(proj_params) == 4 assert len(dist_params) == 4 assert len(p_C) == 3 # Project 3D point x = np.array([p_C[0] / p_C[2], p_C[1] / p_C[2]]) # Jacobian J_proj = zeros((2, 3)) J_proj[0, :] = [1 / p_C[2], 0, -p_C[0] / p_C[2]**2] J_proj[1, :] = [0, 1 / p_C[2], -p_C[1] / p_C[2]**2] J_dist_point = radtan4_point_jacobian(dist_params, x) J_proj_point = pinhole_point_jacobian(proj_params) return J_proj_point @ J_dist_point @ J_proj def pinhole_radtan4_params_jacobian(proj_params, dist_params, p_C): """ Pinhole + Radial-Tangential params jacobian """ assert len(proj_params) == 4 assert len(dist_params) == 4 assert len(p_C) == 3 x = np.array([p_C[0] / p_C[2], p_C[1] / p_C[2]]) # Project 3D point x_dist = radtan4_distort(dist_params, x) # Distort point J_proj_point = pinhole_point_jacobian(proj_params) J_dist_params = radtan4_params_jacobian(dist_params, x) J = zeros((2, 8)) J[0:2, 0:4] = pinhole_params_jacobian(x_dist) J[0:2, 4:8] = J_proj_point @ J_dist_params return J # PINHOLE EQUI4 ############################################################### def pinhole_equi4_project(proj_params, dist_params, p_C): """ Pinhole + Equi-distant project """ assert len(proj_params) == 4 assert len(dist_params) == 4 assert len(p_C) == 3 # Project x = np.array([p_C[0] / p_C[2], p_C[1] / p_C[2]]) # Distort x_dist = equi4_distort(dist_params, x) # Scale and center to image plane fx, fy, cx, cy = proj_params z = np.array([fx * x_dist[0] + cx, fy * x_dist[1] + cy]) return z def pinhole_equi4_backproject(proj_params, dist_params, z): """ Pinhole + Equi-distant back-project """ assert len(proj_params) == 4 assert len(dist_params) == 4 assert len(z) == 2 # Convert image pixel coordinates to normalized retinal coordintes fx, fy, cx, cy = proj_params x = np.array([(z[0] - cx) / fx, (z[1] - cy) / fy, 1.0]) # Undistort x = equi4_undistort(dist_params, x) # 3D ray p = np.array([x[0], x[1], 1.0]) return p def pinhole_equi4_undistort(proj_params, dist_params, z): """ Pinhole + Equi-distant undistort """ assert len(proj_params) == 4 assert len(dist_params) == 4 assert len(z) == 2 # Back project and undistort fx, fy, cx, cy = proj_params p = np.array([(z[0] - cx) / fx, (z[1] - cy) / fy]) p_undist = equi4_undistort(dist_params, p) # Project undistorted point to image plane return np.array([p_undist[0] * fx + cx, p_undist[1] * fy + cy]) def pinhole_equi4_project_jacobian(proj_params, dist_params, p_C): """ Pinhole + Equi-distant project jacobian """ assert len(proj_params) == 4 assert len(dist_params) == 4 assert len(p_C) == 3 # Project 3D point x = np.array([p_C[0] / p_C[2], p_C[1] / p_C[2]]) # Jacobian J_proj = zeros((2, 3)) J_proj[0, :] = [1 / p_C[2], 0, -p_C[0] / p_C[2]**2] J_proj[1, :] = [0, 1 / p_C[2], -p_C[1] / p_C[2]**2] J_dist_point = equi4_point_jacobian(dist_params, x) J_proj_point = pinhole_point_jacobian(proj_params) return J_proj_point @ J_dist_point @ J_proj def pinhole_equi4_params_jacobian(proj_params, dist_params, p_C): """ Pinhole + Equi-distant params jacobian """ assert len(proj_params) == 4 assert len(dist_params) == 4 assert len(p_C) == 3 x = np.array([p_C[0] / p_C[2], p_C[1] / p_C[2]]) # Project 3D point x_dist = equi4_distort(dist_params, x) # Distort point J_proj_point = pinhole_point_jacobian(proj_params) J_dist_params = equi4_params_jacobian(dist_params, x) J = zeros((2, 8)) J[0:2, 0:4] = pinhole_params_jacobian(x_dist) J[0:2, 4:8] = J_proj_point @ J_dist_params return J # CAMERA GEOMETRY ############################################################# @dataclass class CameraGeometry: """ Camera Geometry """ cam_idx: int resolution: tuple proj_model: str dist_model: str proj_params_size: int dist_params_size: int project_fn: FunctionType backproject_fn: FunctionType undistort_fn: FunctionType J_proj_fn: FunctionType J_params_fn: FunctionType def get_proj_params_size(self): """ Return projection parameter size """ return self.proj_params_size def get_dist_params_size(self): """ Return distortion parameter size """ return self.dist_params_size def get_params_size(self): """ Return parameter size """ return self.get_proj_params_size() + self.get_dist_params_size() def proj_params(self, params): """ Extract projection parameters """ return params[:self.proj_params_size] def dist_params(self, params): """ Extract distortion parameters """ return params[-self.dist_params_size:] def project(self, params, p_C): """ Project point `p_C` with camera parameters `params` """ # Project proj_params = params[:self.proj_params_size] dist_params = params[-self.dist_params_size:] z = self.project_fn(proj_params, dist_params, p_C) # Make sure point is infront of camera if p_C[2] < 0.0: return False, z # Make sure image point is within image bounds x_ok = z[0] >= 0.0 and z[0] <= self.resolution[0] y_ok = z[1] >= 0.0 and z[1] <= self.resolution[1] if x_ok and y_ok: return True, z return False, z def backproject(self, params, z): """ Back-project image point `z` with camera parameters `params` """ proj_params = params[:self.proj_params_size] dist_params = params[-self.dist_params_size:] return self.project_fn(proj_params, dist_params, z) def undistort(self, params, z): """ Undistort image point `z` with camera parameters `params` """ proj_params = params[:self.proj_params_size] dist_params = params[-self.dist_params_size:] return self.undistort_fn(proj_params, dist_params, z) def J_proj(self, params, p_C): """ Form Jacobian w.r.t. p_C """ proj_params = params[:self.proj_params_size] dist_params = params[-self.dist_params_size:] return self.J_proj_fn(proj_params, dist_params, p_C) def J_params(self, params, p_C): """ Form Jacobian w.r.t. camera parameters """ proj_params = params[:self.proj_params_size] dist_params = params[-self.dist_params_size:] return self.J_params_fn(proj_params, dist_params, p_C) def pinhole_radtan4_setup(cam_idx, cam_res): """ Setup Pinhole + Radtan4 camera geometry """ return CameraGeometry( cam_idx, cam_res, "pinhole", "radtan4", 4, 4, pinhole_radtan4_project, pinhole_radtan4_backproject, pinhole_radtan4_undistort, pinhole_radtan4_project_jacobian, pinhole_radtan4_params_jacobian) def pinhole_equi4_setup(cam_idx, cam_res): """ Setup Pinhole + Equi camera geometry """ return CameraGeometry(cam_idx, cam_res, "pinhole", "equi4", 4, 4, pinhole_equi4_project, pinhole_equi4_backproject, pinhole_equi4_undistort, pinhole_equi4_project_jacobian, pinhole_equi4_params_jacobian) def camera_geometry_setup(cam_idx, cam_res, proj_model, dist_model): """ Setup camera geometry """ if proj_model == "pinhole" and dist_model == "radtan4": return pinhole_radtan4_setup(cam_idx, cam_res) elif proj_model == "pinhole" and dist_model == "equi4": return pinhole_equi4_setup(cam_idx, cam_res) else: raise RuntimeError(f"Unrecognized [{proj_model}]-[{dist_model}] combo!") ################################################################################ # DATASET ################################################################################ # TIMELINE###################################################################### @dataclass class CameraEvent: """ Camera Event """ ts: int cam_idx: int image: np.array @dataclass class ImuEvent: """ IMU Event """ ts: int imu_idx: int acc: np.array gyr: np.array @dataclass class Timeline: """ Timeline """ def __init__(self): self.data = {} def num_timestamps(self): """ Return number of timestamps """ return len(self.data) def num_events(self): """ Return number of events """ nb_events = 0 for _, events in self.data: nb_events += len(events) return nb_events def get_timestamps(self): """ Get timestamps """ return sorted(list(self.data.keys())) def add_event(self, ts, event): """ Add event """ if ts not in self.data: self.data[ts] = [event] else: self.data[ts].append(event) def get_events(self, ts): """ Get events """ return self.data[ts] # EUROC ######################################################################## class EurocSensor: """ Euroc Sensor """ def __init__(self, yaml_path): # Load yaml file config = load_yaml(yaml_path) # General sensor definitions. self.sensor_type = config.sensor_type self.comment = config.comment # Sensor extrinsics wrt. the body-frame. self.T_BS = np.array(config.T_BS.data).reshape((4, 4)) # Camera specific definitions. if config.sensor_type == "camera": self.rate_hz = config.rate_hz self.resolution = config.resolution self.camera_model = config.camera_model self.intrinsics = config.intrinsics self.distortion_model = config.distortion_model self.distortion_coefficients = config.distortion_coefficients elif config.sensor_type == "imu": self.rate_hz = config.rate_hz self.gyro_noise_density = config.gyroscope_noise_density self.gyro_random_walk = config.gyroscope_random_walk self.accel_noise_density = config.accelerometer_noise_density self.accel_random_walk = config.accelerometer_random_walk class EurocImuData: """ Euroc Imu data """ def __init__(self, data_dir): self.imu_dir = Path(data_dir, 'mav0', 'imu0') self.config = EurocSensor(Path(self.imu_dir, 'sensor.yaml')) self.timestamps = [] self.acc = {} self.gyr = {} # Load data df = pandas.read_csv(Path(self.imu_dir, 'data.csv')) df = df.rename(columns=lambda x: x.strip()) # -- Timestamp timestamps = df['#timestamp [ns]'].to_numpy() # -- Accelerometer measurement acc_x = df['a_RS_S_x [m s^-2]'].to_numpy() acc_y = df['a_RS_S_y [m s^-2]'].to_numpy() acc_z = df['a_RS_S_z [m s^-2]'].to_numpy() # -- Gyroscope measurement gyr_x = df['w_RS_S_x [rad s^-1]'].to_numpy() gyr_y = df['w_RS_S_y [rad s^-1]'].to_numpy() gyr_z = df['w_RS_S_z [rad s^-1]'].to_numpy() # -- Load for i, ts in enumerate(timestamps): self.timestamps.append(ts) self.acc[ts] = np.array([acc_x[i], acc_y[i], acc_z[i]]) self.gyr[ts] = np.array([gyr_x[i], gyr_y[i], gyr_z[i]]) class EurocCameraData: """ Euroc Camera data """ def __init__(self, data_dir, cam_idx): self.cam_idx = cam_idx self.cam_dir = Path(data_dir, 'mav0', 'cam' + str(cam_idx)) self.config = EurocSensor(Path(self.cam_dir, 'sensor.yaml')) self.timestamps = [] self.image_paths = {} # Load image paths cam_data_dir = str(Path(self.cam_dir, 'data', '*.png')) for img_file in sorted(glob.glob(cam_data_dir)): ts_str, _ = os.path.basename(img_file).split('.') ts = int(ts_str) self.timestamps.append(ts) self.image_paths[ts] = img_file def get_image_path_list(self): """ Return list of image paths """ return [img_path for _, img_path in self.image_paths] class EurocGroundTruth: """ Euroc ground truth """ def __init__(self, data_dir): self.timestamps = [] self.T_WB = {} self.v_WB = {} self.w_WB = {} self.a_WB = {} # Load data dir_name = 'state_groundtruth_estimate0' data_csv = Path(data_dir, 'mav0', dir_name, 'data.csv') df = pandas.read_csv(data_csv) df = df.rename(columns=lambda x: x.strip()) # -- Timestamp timestamps = df['#timestamp'].to_numpy() # -- Body pose in world frame rx_list = df['p_RS_R_x [m]'].to_numpy() ry_list = df['p_RS_R_y [m]'].to_numpy() rz_list = df['p_RS_R_z [m]'].to_numpy() qw_list = df['q_RS_w []'].to_numpy() qx_list = df['q_RS_x []'].to_numpy() qy_list = df['q_RS_y []'].to_numpy() qz_list = df['q_RS_z []'].to_numpy() # -- Body velocity in world frame vx_list = df['v_RS_R_x [m s^-1]'].to_numpy() vy_list = df['v_RS_R_y [m s^-1]'].to_numpy() vz_list = df['v_RS_R_z [m s^-1]'].to_numpy() # -- Add to class for i, ts in enumerate(timestamps): r_WB = np.array([rx_list[i], ry_list[i], rz_list[i]]) q_WB = np.array([qw_list[i], qx_list[i], qy_list[i], qz_list[i]]) v_WB = np.array([vx_list[i], vy_list[i], vz_list[i]]) self.timestamps.append(ts) self.T_WB[ts] = tf(q_WB, r_WB) self.v_WB[ts] = v_WB class EurocDataset: """ Euroc Dataset """ def __init__(self, data_path): # Data path self.data_path = data_path if os.path.isdir(data_path) is False: raise RuntimeError(f"Path {data_path} does not exist!") # Data self.imu0_data = EurocImuData(self.data_path) self.cam0_data = EurocCameraData(self.data_path, 0) self.cam1_data = EurocCameraData(self.data_path, 1) self.ground_truth = EurocGroundTruth(self.data_path) self.timeline = self._form_timeline() def _form_timeline(self): timeline = Timeline() # Form timeline # -- Add imu0 events for ts in self.imu0_data.timestamps: acc = self.imu0_data.acc[ts] gyr = self.imu0_data.gyr[ts] timeline.add_event(ts, ImuEvent(ts, 0, acc, gyr)) # -- Add cam0 events for ts, img_path in self.cam0_data.image_paths.items(): timeline.add_event(ts, CameraEvent(ts, 0, img_path)) # -- Add cam1 events for ts, img_path in self.cam1_data.image_paths.items(): timeline.add_event(ts, CameraEvent(ts, 1, img_path)) return timeline def get_camera_image(self, cam_idx, ts): """ Get camera image """ img_path = None if cam_idx == 0: img_path = self.cam0_data.image_paths[ts] elif cam_idx == 1: img_path = self.cam1_data.image_paths[ts] else: raise RuntimeError("cam_idx has to be 0 or 1") return cv2.imread(img_path, cv2.IMREAD_GRAYSCALE) def get_ground_truth_pose(self, ts): """ Get ground truth pose T_WB at timestamp `ts` """ # Pre-check if ts <= self.ground_truth.timestamps[0]: return None elif ts >= self.ground_truth.timestamps[-1]: return None # Loop throught timestamps for k, ground_truth_ts in enumerate(self.ground_truth.timestamps): if ts == ground_truth_ts: return self.ground_truth.T_WB[ts] elif self.ground_truth.timestamps[k] > ts: ts_i = self.ground_truth.timestamps[k - 1] ts_j = self.ground_truth.timestamps[k] alpha = float(ts_j - ts) / float(ts_j - ts_i) pose_i = self.ground_truth.T_WB[ts_i] pose_j = self.ground_truth.T_WB[ts_j] return tf_lerp(pose_i, pose_j, alpha) return None # KITTI ####################################################################### class KittiCameraData: """ KittiCameraDataset """ def __init__(self, cam_idx, seq_path): self.cam_idx = cam_idx self.seq_path = seq_path self.cam_path = Path(self.seq_path, "image_" + str(self.cam_idx).zfill(2)) self.img_dir = Path(self.cam_path, "data") self.img_paths = sorted(glob.glob(str(Path(self.img_dir, "*.png")))) class KittiRawDataset: """ KittiRawDataset """ def __init__(self, data_dir, date, seq, is_sync): # Paths self.data_dir = data_dir self.date = date self.seq = seq.zfill(4) self.sync = "sync" if is_sync else "extract" self.seq_name = "_".join([self.date, "drive", self.seq, self.sync]) self.seq_path = Path(self.data_dir, self.date, self.seq_name) # Camera data self.cam0_data = KittiCameraData(0, self.seq_path) self.cam1_data = KittiCameraData(1, self.seq_path) self.cam2_data = KittiCameraData(2, self.seq_path) self.cam3_data = KittiCameraData(3, self.seq_path) # Calibration calib_cam_to_cam_filepath = Path(self.data_dir, "calib_cam_to_cam.txt") calib_imu_to_velo_filepath = Path(self.data_dir, "calib_imu_to_velo.txt") calib_velo_to_cam_filepath = Path(self.data_dir, "calib_velo_to_cam.txt") self.calib_cam_to_cam = self._read_calib_file(calib_cam_to_cam_filepath) self.calib_imu_to_velo = self._read_calib_file(calib_imu_to_velo_filepath) self.calib_velo_to_cam = self._read_calib_file(calib_velo_to_cam_filepath) @classmethod def _read_calib_file(cls, fp): data = {} with open(fp, 'r') as f: for line in f.readlines(): key, value = line.split(':', 1) # The only non-float values in these files are dates, which # we don't care about anyway try: data[key] = np.array([float(x) for x in value.split()]) except ValueError: pass return data def nb_camera_images(self, cam_idx=0): """ Return number of camera images """ assert cam_idx >= 0 and cam_idx <= 3 if cam_idx == 0: return len(self.cam0_data.img_paths) elif cam_idx == 1: return len(self.cam1_data.img_paths) elif cam_idx == 2: return len(self.cam2_data.img_paths) elif cam_idx == 3: return len(self.cam3_data.img_paths) return None def get_velodyne_extrinsics(self): """ Get velodyne extrinsics """ # Form imu-velo extrinsics T_BV C_VB = self.calib_imu_to_velo['R'].reshape((3, 3)) r_VB = self.calib_imu_to_velo['T'] T_VB = tf(C_VB, r_VB) T_BV = inv(T_VB) return T_BV def get_camera_extrinsics(self, cam_idx): """ Get camera extrinsics T_BCi """ # Form imu-velo extrinsics T_VB C_VB = self.calib_imu_to_velo['R'].reshape((3, 3)) r_VB = self.calib_imu_to_velo['T'] T_VB = tf(C_VB, r_VB) # Form velo-cam extrinsics T_C0V C_C0V = self.calib_velo_to_cam['R'].reshape((3, 3)) r_C0V = self.calib_velo_to_cam['T'] T_C0V = tf(C_C0V, r_C0V) # Form cam-cam extrinsics T_CiC0 cam_str = str(cam_idx) C_CiC0 = self.calib_cam_to_cam['R_' + cam_str.zfill(2)].reshape((3, 3)) r_CiC0 = self.calib_cam_to_cam['T_' + cam_str.zfill(2)] T_CiC0 = tf(C_CiC0, r_CiC0) # Form camera extrinsics T_BC0 T_CiB = T_CiC0 @ T_C0V @ T_VB T_BCi = inv(T_CiB) return T_BCi def get_camera_image(self, cam_idx, **kwargs): """ Get camera image """ assert cam_idx >= 0 and cam_idx <= 3 imread_flag = kwargs.get('imread_flag', cv2.IMREAD_GRAYSCALE) img_idx = kwargs['index'] if cam_idx == 0: return cv2.imread(self.cam0_data.img_paths[img_idx], imread_flag) elif cam_idx == 1: return cv2.imread(self.cam1_data.img_paths[img_idx], imread_flag) elif cam_idx == 2: return cv2.imread(self.cam2_data.img_paths[img_idx], imread_flag) elif cam_idx == 3: return cv2.imread(self.cam3_data.img_paths[img_idx], imread_flag) return None def plot_frames(self): """ Plot Frames """ T_BV = self.get_velodyne_extrinsics() T_BC0 = self.get_camera_extrinsics(0) T_BC1 = self.get_camera_extrinsics(1) T_BC2 = self.get_camera_extrinsics(2) T_BC3 = self.get_camera_extrinsics(3) plt.figure() ax = plt.axes(projection='3d') plot_tf(ax, eye(4), size=0.1, name="imu") plot_tf(ax, T_BV, size=0.1, name="velo") plot_tf(ax, T_BC0, size=0.1, name="cam0") plot_tf(ax, T_BC1, size=0.1, name="cam1") plot_tf(ax, T_BC2, size=0.1, name="cam2") plot_tf(ax, T_BC3, size=0.1, name="cam3") ax.set_xlabel("x [m]") ax.set_ylabel("y [m]") ax.set_zlabel("z [m]") plot_set_axes_equal(ax) plt.show() ############################################################################### # FILTER ############################################################################### def compl_filter(gyro, accel, dt, roll, pitch): """ A simple complementary filter that uses `gyro` and `accel` measurements to estimate the attitude in `roll` and `pitch`. Where `dt` is the update rate of the `gyro` measurements in seconds. """ # Calculate pitch and roll using gyroscope wx, wy, _ = gyro gyro_roll = (wx * dt) + roll gyro_pitch = (wy * dt) + pitch # Calculate pitch and roll using accelerometer ax, ay, az = accel accel_roll = (atan(ay / sqrt(ax * ay + az * az))) * 180.0 / pi accel_pitch = (atan(ax / sqrt(ay * ay + az * az))) * 180.0 / pi # Complimentary filter pitch = (0.98 * gyro_pitch) + (0.02 * accel_pitch) roll = (0.98 * gyro_roll) + (0.02 * accel_roll) return (roll, pitch) ############################################################################### # STATE ESTIMATION ############################################################################### # STATE VARIABLES ############################################################# @dataclass class StateVariable: """ State variable """ ts: int var_type: str param: np.array parameterization: str min_dims: int fix: bool data: Optional[dict] = None param_id: int = None def set_param_id(self, pid): """ Set parameter id """ self.param_id = pid class StateVariableType(Enum): """ State Variable Type """ POSE = 1 EXTRINSICS = 2 FEATURE = 3 CAMERA = 4 SPEED_AND_BIASES = 5 class FeatureMeasurements: """ Feature measurements """ def __init__(self): self._init = False self._data = {} def initialized(self): """ Check if feature is initialized """ return self._init def has_overlap(self, ts): """ Check if feature has overlap at timestamp `ts` """ return len(self._data[ts]) > 1 def set_initialized(self): """ Set feature as initialized """ self._init = True def update(self, ts, cam_idx, z): """ Add feature measurement """ assert len(z) == 2 if ts not in self._data: self._data[ts] = {} self._data[ts][cam_idx] = z def get(self, ts, cam_idx): """ Get feature measurement """ return self._data[ts][cam_idx] def get_overlaps(self, ts): """ Get feature overlaps """ overlaps = [] for cam_idx, z in self._data[ts].items(): overlaps.append((cam_idx, z)) return overlaps def tf2pose(T): """ Form pose vector """ rx, ry, rz = tf_trans(T) qw, qx, qy, qz = tf_quat(T) return np.array([rx, ry, rz, qx, qy, qz, qw]) def pose2tf(pose_vec): """ Convert pose vector to transformation matrix """ rx, ry, rz = pose_vec[0:3] qx, qy, qz, qw = pose_vec[3:7] return tf(np.array([qw, qx, qy, qz]), np.array([rx, ry, rz])) def pose_setup(ts, param, **kwargs): """ Form pose state-variable """ fix = kwargs.get('fix', False) param = tf2pose(param) if param.shape == (4, 4) else param return StateVariable(ts, "pose", param, None, 6, fix) def extrinsics_setup(param, **kwargs): """ Form extrinsics state-variable """ fix = kwargs.get('fix', False) param = tf2pose(param) if param.shape == (4, 4) else param return StateVariable(None, "extrinsics", param, None, 6, fix) def camera_params_setup(cam_idx, res, proj_model, dist_model, param, **kwargs): """ Form camera parameters state-variable """ fix = kwargs.get('fix', False) data = camera_geometry_setup(cam_idx, res, proj_model, dist_model) return StateVariable(None, "camera", param, None, len(param), fix, data) def feature_setup(param, **kwargs): """ Form feature state-variable """ fix = kwargs.get('fix', False) data = FeatureMeasurements() return StateVariable(None, "feature", param, None, len(param), fix, data) def speed_biases_setup(ts, vel, ba, bg, **kwargs): """ Form speed and biases state-variable """ fix = kwargs.get('fix', False) param = np.block([vel, ba, bg]) return StateVariable(ts, "speed_and_biases", param, None, len(param), fix) def perturb_state_variable(sv, i, step_size): """ Perturb state variable """ if sv.var_type == "pose" or sv.var_type == "extrinsics": T = pose2tf(sv.param) T_dash = tf_perturb(T, i, step_size) sv.param = tf2pose(T_dash) else: sv.param[i] += step_size return sv def update_state_variable(sv, dx): """ Update state variable """ if sv.var_type == "pose" or sv.var_type == "extrinsics": T = pose2tf(sv.param) T_prime = tf_update(T, dx) sv.param = tf2pose(T_prime) else: sv.param += dx # FACTORS ###################################################################### class Factor: """ Factor """ def __init__(self, ftype, pids, z, covar): self.factor_id = None self.factor_type = ftype self.param_ids = pids self.measurement = z self.covar = covar self.sqrt_info = chol(inv(self.covar)).T def set_factor_id(self, fid): """ Set factor id """ self.factor_id = fid class PoseFactor(Factor): """ Pose Factor """ def __init__(self, pids, z, covar): assert len(pids) == 1 assert z.shape == (4, 4) assert covar.shape == (6, 6) Factor.__init__(self, "PoseFactor", pids, z, covar) def eval(self, params, **kwargs): """ Evaluate """ assert len(params) == 1 assert len(params[0]) == 7 # Measured pose T_meas = self.measurement q_meas = tf_quat(T_meas) r_meas = tf_trans(T_meas) # Estimated pose T_est = pose2tf(params[0]) q_est = tf_quat(T_est) r_est = tf_trans(T_est) # Form residuals (pose - pose_est) dr = r_meas - r_est dq = quat_mul(quat_inv(q_meas), q_est) dtheta = 2 * dq[1:4] r = self.sqrt_info @ np.block([dr, dtheta]) if kwargs.get('only_residuals', False): return r # Form jacobians J = zeros((6, 6)) J[0:3, 0:3] = -eye(3) J[3:6, 3:6] = quat_left(dq)[1:4, 1:4] J = self.sqrt_info @ J return (r, [J]) class MultiCameraBuffer: """ Multi-camera buffer """ def __init__(self, nb_cams=0): self.nb_cams = nb_cams self._ts = [] self._data = {} def reset(self): """ Reset buffer """ self._ts = [] self._data = {} def add(self, ts, cam_idx, data): """ Add camera event """ if self.nb_cams == 0: raise RuntimeError("MulitCameraBuffer not initialized yet!") self._ts.append(ts) self._data[cam_idx] = data def ready(self): """ Check whether buffer has all the camera frames ready """ if self.nb_cams == 0: raise RuntimeError("MulitCameraBuffer not initialized yet!") check_ts_same = (len(set(self._ts)) == 1) check_ts_len = (len(self._ts) == self.nb_cams) check_data = (len(self._data) == self.nb_cams) check_cam_indices = (len(set(self._data.keys())) == self.nb_cams) return check_ts_same and check_ts_len and check_data and check_cam_indices def get_camera_indices(self): """ Get camera indices """ return self._data.keys() def get_data(self): """ Get camera data """ if self.nb_cams is None: raise RuntimeError("MulitCameraBuffer not initialized yet!") return self._data class BAFactor(Factor): """ BA Factor """ def __init__(self, cam_geom, pids, z, covar=eye(2)): assert len(pids) == 3 assert len(z) == 2 assert covar.shape == (2, 2) Factor.__init__(self, "BAFactor", pids, z, covar) self.cam_geom = cam_geom def get_reproj_error(self, cam_pose, feature, cam_params): """ Get reprojection error """ T_WC = pose2tf(cam_pose) p_W = feature p_C = tf_point(inv(T_WC), p_W) status, z_hat = self.cam_geom.project(cam_params, p_C) if status is False: return None z = self.measurement reproj_error = norm(z - z_hat) return reproj_error def eval(self, params, **kwargs): """ Evaluate """ assert len(params) == 3 assert len(params[0]) == 7 assert len(params[1]) == 3 assert len(params[2]) == self.cam_geom.get_params_size() # Setup r = np.array([0.0, 0.0]) J0 = zeros((2, 6)) J1 = zeros((2, 3)) J2 = zeros((2, self.cam_geom.get_params_size())) # Map params cam_pose, feature, cam_params = params # Project point in world frame to image plane T_WC = pose2tf(cam_pose) z_hat = zeros((2, 1)) p_W = zeros((3, 1)) p_W = feature p_C = tf_point(inv(T_WC), p_W) status, z_hat = self.cam_geom.project(cam_params, p_C) # Calculate residual sqrt_info = self.sqrt_info z = self.measurement r = sqrt_info @ (z - z_hat) if kwargs.get('only_residuals', False): return r # Calculate Jacobians if status is False: return (r, [J0, J1, J2]) # -- Measurement model jacobian neg_sqrt_info = -1.0 * sqrt_info Jh = self.cam_geom.J_proj(cam_params, p_C) Jh_weighted = neg_sqrt_info @ Jh # -- Jacobian w.r.t. camera pose T_WC C_WC = tf_rot(T_WC) C_CW = C_WC.T r_WC = tf_trans(T_WC) J0 = zeros((2, 6)) # w.r.t Camera pose T_WC J0[0:2, 0:3] = Jh_weighted @ -C_CW J0[0:2, 3:6] = Jh_weighted @ -C_CW @ skew(p_W - r_WC) @ -C_WC # -- Jacobian w.r.t. feature J1 = zeros((2, 3)) J1 = Jh_weighted @ C_CW # -- Jacobian w.r.t. camera parameters J_cam_params = self.cam_geom.J_params(cam_params, p_C) J2 = zeros((2, self.cam_geom.get_params_size())) J2 = neg_sqrt_info @ J_cam_params return (r, [J0, J1, J2]) class VisionFactor(Factor): """ Vision Factor """ def __init__(self, cam_geom, pids, z, covar=eye(2)): assert len(pids) == 4 assert len(z) == 2 assert covar.shape == (2, 2) Factor.__init__(self, "VisionFactor", pids, z, covar) self.cam_geom = cam_geom def get_reproj_error(self, pose, cam_exts, feature, cam_params): """ Get reprojection error """ T_WB = pose2tf(pose) T_BCi = pose2tf(cam_exts) p_W = feature p_C = tf_point(inv(T_WB @ T_BCi), p_W) status, z_hat = self.cam_geom.project(cam_params, p_C) if status is False: return None z = self.measurement reproj_error = norm(z - z_hat) return reproj_error def eval(self, params, **kwargs): """ Evaluate """ assert len(params) == 4 assert len(params[0]) == 7 assert len(params[1]) == 7 assert len(params[2]) == 3 assert len(params[3]) == self.cam_geom.get_params_size() # Setup r = np.array([0.0, 0.0]) J0 = zeros((2, 6)) J1 = zeros((2, 6)) J2 = zeros((2, 3)) J3 = zeros((2, self.cam_geom.get_params_size())) # Project point in world frame to image plane pose, cam_exts, feature, cam_params = params T_WB = pose2tf(pose) T_BCi = pose2tf(cam_exts) p_W = feature p_C = tf_point(inv(T_WB @ T_BCi), p_W) status, z_hat = self.cam_geom.project(cam_params, p_C) # Calculate residual sqrt_info = self.sqrt_info z = self.measurement r = sqrt_info @ (z - z_hat) if kwargs.get('only_residuals', False): return r # Calculate Jacobians if status is False: return (r, [J0, J1, J2, J3]) C_BCi = tf_rot(T_BCi) C_WB = tf_rot(T_WB) C_CB = C_BCi.T C_BW = C_WB.T C_CW = C_CB @ C_WB.T r_WB = tf_trans(T_WB) neg_sqrt_info = -1.0 * sqrt_info # -- Measurement model jacobian Jh = self.cam_geom.J_proj(cam_params, p_C) Jh_weighted = neg_sqrt_info @ Jh # -- Jacobian w.r.t. pose T_WB J0 = zeros((2, 6)) J0[0:2, 0:3] = Jh_weighted @ C_CB @ -C_BW J0[0:2, 3:6] = Jh_weighted @ C_CB @ -C_BW @ skew(p_W - r_WB) @ -C_WB # -- Jacobian w.r.t. camera extrinsics T_BCi J1 = zeros((2, 6)) J1[0:2, 0:3] = Jh_weighted @ -C_CB J1[0:2, 3:6] = Jh_weighted @ -C_CB @ skew(C_BCi @ p_C) @ -C_BCi # -- Jacobian w.r.t. feature J2 = zeros((2, 3)) J2 = Jh_weighted @ C_CW # -- Jacobian w.r.t. camera parameters J_cam_params = self.cam_geom.J_params(cam_params, p_C) J3 = zeros((2, 8)) J3 = neg_sqrt_info @ J_cam_params return (r, [J0, J1, J2, J3]) class CalibVisionFactor(Factor): """ Calibration Vision Factor """ def __init__(self, cam_geom, pids, grid_data, covar=eye(2)): assert len(pids) == 3 assert len(grid_data) == 4 assert covar.shape == (2, 2) tag_id, corner_idx, r_FFi, z = grid_data Factor.__init__(self, "CalibVisionFactor", pids, z, covar) self.cam_geom = cam_geom self.tag_id = tag_id self.corner_idx = corner_idx self.r_FFi = r_FFi def get_residual(self, pose, cam_exts, cam_params): """ Get residual """ T_BF = pose2tf(pose) T_BCi = pose2tf(cam_exts) T_CiB = inv(T_BCi) r_CiFi = tf_point(T_CiB @ T_BF, self.r_FFi) status, z_hat = self.cam_geom.project(cam_params, r_CiFi) if status is False: return None r = self.measurement - z_hat return r def get_reproj_error(self, pose, cam_exts, cam_params): """ Get reprojection error """ r = self.get_residual(pose, cam_exts, cam_params) if r is None: return None return norm(r) def eval(self, params, **kwargs): """ Evaluate """ assert len(params) == 3 assert len(params[0]) == 7 assert len(params[1]) == 7 assert len(params[2]) == self.cam_geom.get_params_size() # Setup r = np.array([0.0, 0.0]) J0 = zeros((2, 6)) J1 = zeros((2, 6)) J2 = zeros((2, self.cam_geom.get_params_size())) # Map parameters out pose, cam_exts, cam_params = params T_BF = pose2tf(pose) T_BCi = pose2tf(cam_exts) # Transform and project point to image plane T_CiB = inv(T_BCi) r_CiFi = tf_point(T_CiB @ T_BF, self.r_FFi) status, z_hat = self.cam_geom.project(cam_params, r_CiFi) # Calculate residual sqrt_info = self.sqrt_info z = self.measurement r = sqrt_info @ (z - z_hat) if kwargs.get('only_residuals', False): return r # Calculate Jacobians if status is False: return (r, [J0, J1, J2]) neg_sqrt_info = -1.0 * sqrt_info Jh = self.cam_geom.J_proj(cam_params, r_CiFi) Jh_weighted = neg_sqrt_info @ Jh # -- Jacobians w.r.t relative camera pose T_BF C_CiB = tf_rot(T_CiB) C_BF = tf_rot(T_BF) J0 = zeros((2, 6)) J0[0:2, 0:3] = Jh_weighted @ C_CiB J0[0:2, 3:6] = Jh_weighted @ C_CiB @ -C_BF @ skew(self.r_FFi) # -- Jacobians w.r.t T_BCi r_BFi = tf_point(T_BF, self.r_FFi) r_BCi = tf_trans(T_BCi) C_BCi = tf_rot(T_BCi) J1 = zeros((2, 6)) J1[0:2, 0:3] = Jh_weighted @ -C_CiB J1[0:2, 3:6] = Jh_weighted @ -C_CiB @ skew(r_BFi - r_BCi) @ -C_BCi # -- Jacobians w.r.t cam params J_cam_params = self.cam_geom.J_params(cam_params, r_CiFi) J2 = neg_sqrt_info @ J_cam_params return (r, [J0, J1, J2]) class ImuBuffer: """ IMU buffer """ def __init__(self, ts=None, acc=None, gyr=None): self.ts = ts if ts is not None else [] self.acc = acc if acc is not None else [] self.gyr = gyr if gyr is not None else [] def add(self, ts, acc, gyr): """ Add imu measurement """ self.ts.append(ts) self.acc.append(acc) self.gyr.append(gyr) def add_event(self, imu_event): """ Add imu event """ self.ts.append(imu_event.ts) self.acc.append(imu_event.acc) self.gyr.append(imu_event.gyr) def length(self): """ Return length of imu buffer """ return len(self.ts) @dataclass class ImuParams: """ IMU parameters """ noise_acc: np.array noise_gyr: np.array noise_ba: np.array noise_bg: np.array g: np.array = np.array([0.0, 0.0, 9.81]) @dataclass class ImuFactorData: """ IMU Factor data """ state_F: np.array state_P: np.array dr: np.array dv: np.array dC: np.array ba: np.array bg: np.array g: np.array Dt: float class ImuFactor(Factor): """ Imu Factor """ def __init__(self, pids, imu_params, imu_buf, sb_i): assert len(pids) == 4 self.imu_params = imu_params self.imu_buf = imu_buf data = self.propagate(imu_buf, imu_params, sb_i) Factor.__init__(self, "ImuFactor", pids, None, data.state_P) self.state_F = data.state_F self.state_P = data.state_P self.dr = data.dr self.dv = data.dv self.dC = data.dC self.ba = data.ba self.bg = data.bg self.g = data.g self.Dt = data.Dt @staticmethod def propagate(imu_buf, imu_params, sb_i): """ Propagate imu measurements """ # Setup Dt = 0.0 g = imu_params.g state_F = eye(15) # State jacobian state_P = zeros((15, 15)) # State covariance # Noise matrix Q Q = zeros((12, 12)) Q[0:3, 0:3] = imu_params.noise_acc**2 * eye(3) Q[3:6, 3:6] = imu_params.noise_gyr**2 * eye(3) Q[6:9, 6:9] = imu_params.noise_ba**2 * eye(3) Q[9:12, 9:12] = imu_params.noise_bg**2 * eye(3) # Pre-integrate relative position, velocity, rotation and biases dr = np.array([0.0, 0.0, 0.0]) # Relative position dv = np.array([0.0, 0.0, 0.0]) # Relative velocity dC = eye(3) # Relative rotation ba_i = sb_i.param[3:6] # Accel biase at i bg_i = sb_i.param[6:9] # Gyro biase at i # Pre-integrate imu measuremenets for k in range(len(imu_buf.ts) - 1): # Timestep ts_i = imu_buf.ts[k] ts_j = imu_buf.ts[k + 1] dt = ts2sec(ts_j - ts_i) dt_sq = dt * dt # Accelerometer and gyroscope measurements acc_i = imu_buf.acc[k] gyr_i = imu_buf.gyr[k] # Propagate IMU state using Euler method dr = dr + (dv * dt) + (0.5 * dC @ (acc_i - ba_i) * dt_sq) dv = dv + dC @ (acc_i - ba_i) * dt dC = dC @ Exp((gyr_i - bg_i) * dt) ba = ba_i bg = bg_i # Make sure determinant of rotation is 1 by normalizing the quaternion dq = quat_normalize(rot2quat(dC)) dC = quat2rot(dq) # Continuous time transition matrix F F = zeros((15, 15)) F[0:3, 3:6] = eye(3) F[3:6, 6:9] = -1.0 * dC @ skew(acc_i - ba_i) F[3:6, 9:12] = -1.0 * dC F[6:9, 6:9] = -1.0 * skew(gyr_i - bg_i) F[6:9, 12:15] = -eye(3) # Continuous time input jacobian G G = zeros((15, 12)) G[3:6, 0:3] = -1.0 * dC G[6:9, 3:6] = -eye(3) G[9:12, 6:9] = eye(3) G[12:15, 9:12] = eye(3) # Update G_dt = G * dt I_F_dt = eye(15) + F * dt state_F = I_F_dt @ state_F state_P = I_F_dt @ state_P @ I_F_dt.T + G_dt @ Q @ G_dt.T Dt += dt state_P = (state_P + state_P.T) / 2.0 return ImuFactorData(state_F, state_P, dr, dv, dC, ba, bg, g, Dt) def eval(self, params, **kwargs): """ Evaluate IMU factor """ assert len(params) == 4 assert len(params[0]) == 7 assert len(params[1]) == 9 assert len(params[2]) == 7 assert len(params[3]) == 9 # Map params pose_i, sb_i, pose_j, sb_j = params # Timestep i T_i = pose2tf(pose_i) r_i = tf_trans(T_i) C_i = tf_rot(T_i) q_i = tf_quat(T_i) v_i = sb_i[0:3] ba_i = sb_i[3:6] bg_i = sb_i[6:9] # Timestep j T_j = pose2tf(pose_j) r_j = tf_trans(T_j) C_j = tf_rot(T_j) q_j = tf_quat(T_j) v_j = sb_j[0:3] # Correct the relative position, velocity and orientation # -- Extract jacobians from error-state jacobian dr_dba = self.state_F[0:3, 9:12] dr_dbg = self.state_F[0:3, 12:15] dv_dba = self.state_F[3:6, 9:12] dv_dbg = self.state_F[3:6, 12:15] dq_dbg = self.state_F[6:9, 12:15] dba = ba_i - self.ba dbg = bg_i - self.bg # -- Correct the relative position, velocity and rotation dr = self.dr + dr_dba @ dba + dr_dbg @ dbg dv = self.dv + dv_dba @ dba + dv_dbg @ dbg dC = self.dC @ Exp(dq_dbg @ dbg) dq = quat_normalize(rot2quat(dC)) # Form residuals sqrt_info = self.sqrt_info g = self.g Dt = self.Dt Dt_sq = Dt * Dt dr_meas = (C_i.T @ ((r_j - r_i) - (v_i * Dt) + (0.5 * g * Dt_sq))) dv_meas = (C_i.T @ ((v_j - v_i) + (g * Dt))) err_pos = dr_meas - dr err_vel = dv_meas - dv err_rot = (2.0 * quat_mul(quat_inv(dq), quat_mul(quat_inv(q_i), q_j)))[1:4] err_ba = np.array([0.0, 0.0, 0.0]) err_bg = np.array([0.0, 0.0, 0.0]) r = sqrt_info @ np.block([err_pos, err_vel, err_rot, err_ba, err_bg]) if kwargs.get('only_residuals', False): return r # Form jacobians J0 = zeros((15, 6)) # residuals w.r.t pose i J1 = zeros((15, 9)) # residuals w.r.t speed and biase i J2 = zeros((15, 6)) # residuals w.r.t pose j J3 = zeros((15, 9)) # residuals w.r.t speed and biase j # -- Jacobian w.r.t. pose i # yapf: disable J0[0:3, 0:3] = -C_i.T # dr w.r.t r_i J0[0:3, 3:6] = skew(dr_meas) # dr w.r.t C_i J0[3:6, 3:6] = skew(dv_meas) # dv w.r.t C_i J0[6:9, 3:6] = -(quat_left(rot2quat(C_j.T @ C_i)) @ quat_right(dq))[1:4, 1:4] # dtheta w.r.t C_i J0 = sqrt_info @ J0 # yapf: enable # -- Jacobian w.r.t. speed and biases i # yapf: disable J1[0:3, 0:3] = -C_i.T * Dt # dr w.r.t v_i J1[0:3, 3:6] = -dr_dba # dr w.r.t ba J1[0:3, 6:9] = -dr_dbg # dr w.r.t bg J1[3:6, 0:3] = -C_i.T # dv w.r.t v_i J1[3:6, 3:6] = -dv_dba # dv w.r.t ba J1[3:6, 6:9] = -dv_dbg # dv w.r.t bg J1[6:9, 6:9] = -quat_left(rot2quat(C_j.T @ C_i @ self.dC))[1:4, 1:4] @ dq_dbg # dtheta w.r.t C_i J1 = sqrt_info @ J1 # yapf: enable # -- Jacobian w.r.t. pose j # yapf: disable J2[0:3, 0:3] = C_i.T # dr w.r.t r_j J2[6:9, 3:6] = quat_left(rot2quat(dC.T @ C_i.T @ C_j))[1:4, 1:4] # dtheta w.r.t C_j J2 = sqrt_info @ J2 # yapf: enable # -- Jacobian w.r.t. sb j J3[3:6, 0:3] = C_i.T # dv w.r.t v_j J3 = sqrt_info @ J3 return (r, [J0, J1, J2, J3]) def check_factor_jacobian(factor, fvars, var_idx, jac_name, **kwargs): """ Check factor jacobian """ # Step size and threshold h = kwargs.get('step_size', 1e-8) threshold = kwargs.get('threshold', 1e-4) verbose = kwargs.get('verbose', False) # Calculate baseline params = [sv.param for sv in fvars] r, jacs = factor.eval(params) # Numerical diff J_fdiff = zeros((len(r), fvars[var_idx].min_dims)) for i in range(fvars[var_idx].min_dims): # Forward difference and evaluate vars_fwd = copy.deepcopy(fvars) vars_fwd[var_idx] = perturb_state_variable(vars_fwd[var_idx], i, 0.5 * h) r_fwd, _ = factor.eval([sv.param for sv in vars_fwd]) # Backward difference and evaluate vars_bwd = copy.deepcopy(fvars) vars_bwd[var_idx] = perturb_state_variable(vars_bwd[var_idx], i, -0.5 * h) r_bwd, _ = factor.eval([sv.param for sv in vars_bwd]) # Central finite difference J_fdiff[:, i] = (r_fwd - r_bwd) / h J = jacs[var_idx] return check_jacobian(jac_name, J_fdiff, J, threshold, verbose) # FACTOR GRAPH ################################################################ class FactorGraph: """ Factor Graph """ def __init__(self): # Parameters and factors self._next_param_id = 0 self._next_factor_id = 0 self.params = {} self.factors = {} # Solver self.solver_max_iter = 5 self.solver_lambda = 1e-4 def add_param(self, param): """ Add param """ param_id = self._next_param_id self.params[param_id] = param self.params[param_id].set_param_id(param_id) self._next_param_id += 1 return param_id def add_factor(self, factor): """ Add factor """ # Double check if params exists for param_id in factor.param_ids: if param_id not in self.params: raise RuntimeError(f"Parameter [{param_id}] does not exist!") # Add factor factor_id = self._next_factor_id self.factors[factor_id] = factor self.factors[factor_id].set_factor_id(factor_id) self._next_factor_id += 1 return factor_id def remove_param(self, param): """ Remove param """ assert param.param_id in self.params del self.params[param.param_id] def remove_factor(self, factor): """ Remove factor """ assert factor.factor_id in self.factors del self.factors[factor.factor_id] def get_reproj_errors(self): """ Get reprojection errors """ target_factors = ["BAFactor", "VisionFactor", "CalibVisionFactor"] reproj_errors = [] for _, factor in self.factors.items(): if factor.factor_type in target_factors: factor_params = [self.params[pid].param for pid in factor.param_ids] retval = factor.get_reproj_error(*factor_params) if retval is not None: reproj_errors.append(retval) return np.array(reproj_errors).flatten() @staticmethod def _print_to_console(iter_k, lambda_k, cost_kp1, cost_k): """ Print to console """ print(f"iter[{iter_k}]:", end=" ") print(f"lambda: {lambda_k:.2e}", end=", ") print(f"cost: {cost_kp1:.2e}", end=", ") print(f"dcost: {cost_kp1 - cost_k:.2e}", end=" ") print() # rmse_vision = rmse(self._get_reproj_errors()) # print(f"rms_reproj_error: {rmse_vision:.2f} px") sys.stdout.flush() def _form_param_indices(self): """ Form parameter indices """ # Parameter ids pose_param_ids = set() sb_param_ids = set() camera_param_ids = set() exts_param_ids = set() feature_param_ids = set() # Track parameters nb_params = 0 for _, factor in self.factors.items(): for _, param_id in enumerate(factor.param_ids): param = self.params[param_id] if param.fix: continue elif param.var_type == "pose": pose_param_ids.add(param_id) elif param.var_type == "speed_and_biases": sb_param_ids.add(param_id) elif param.var_type == "extrinsics": exts_param_ids.add(param_id) elif param.var_type == "feature": feature_param_ids.add(param_id) elif param.var_type == "camera": camera_param_ids.add(param_id) nb_params += 1 # Assign global parameter order param_ids_list = [] param_ids_list.append(pose_param_ids) param_ids_list.append(sb_param_ids) param_ids_list.append(exts_param_ids) param_ids_list.append(feature_param_ids) param_ids_list.append(camera_param_ids) param_idxs = {} param_size = 0 for param_ids in param_ids_list: for param_id in param_ids: param_idxs[param_id] = param_size param_size += self.params[param_id].min_dims return (param_idxs, param_size) def _linearize(self, params, param_idxs, param_size): """ Linearize non-linear problem """ H = zeros((param_size, param_size)) g = zeros(param_size) # Form Hessian and R.H.S of Gauss newton for _, factor in self.factors.items(): factor_params = [params[pid].param for pid in factor.param_ids] r, jacobians = factor.eval(factor_params) # Form Hessian nb_params = len(factor_params) for i in range(nb_params): param_i = params[factor.param_ids[i]] if param_i.fix: continue idx_i = param_idxs[factor.param_ids[i]] size_i = param_i.min_dims J_i = jacobians[i] for j in range(i, nb_params): param_j = params[factor.param_ids[j]] if param_j.fix: continue idx_j = param_idxs[factor.param_ids[j]] size_j = param_j.min_dims J_j = jacobians[j] rs = idx_i re = idx_i + size_i cs = idx_j ce = idx_j + size_j if i == j: # Diagonal H[rs:re, cs:ce] += J_i.T @ J_j else: # Off-Diagonal H[rs:re, cs:ce] += J_i.T @ J_j H[cs:ce, rs:re] += H[rs:re, cs:ce].T # Form R.H.S. Gauss Newton g rs = idx_i re = idx_i + size_i g[rs:re] += (-J_i.T @ r) return (H, g) def _evaluate(self, params): """ Evaluate """ (param_idxs, param_size) = self._form_param_indices() (H, g) = self._linearize(params, param_idxs, param_size) return ((H, g), param_idxs) def _calculate_residuals(self, params): """ Calculate Residuals """ residuals = [] for _, factor in self.factors.items(): factor_params = [params[pid].param for pid in factor.param_ids] r = factor.eval(factor_params, only_residuals=True) residuals.append(r) return np.array(residuals).flatten() def _calculate_cost(self, params): """ Calculate Cost """ r = self._calculate_residuals(params) return 0.5 * (r.T @ r) @staticmethod def _update(params_k, param_idxs, dx): """ Update """ params_kp1 = copy.deepcopy(params_k) for param_id, param in params_kp1.items(): # Check if param even exists if param_id not in param_idxs: continue # Update parameter start = param_idxs[param_id] end = start + param.min_dims param_dx = dx[start:end] update_state_variable(param, param_dx) return params_kp1 @staticmethod def _solve_for_dx(lambda_k, H, g): """ Solve for dx """ # Damp Hessian H = H + lambda_k * eye(H.shape[0]) # H = H + lambda_k * np.diag(H.diagonal()) # # Pseudo inverse # dx = pinv(H) @ g # # Linear solver # dx = np.linalg.solve(H, g) # # Cholesky decomposition c, low = scipy.linalg.cho_factor(H) dx = scipy.linalg.cho_solve((c, low), g) # SVD # dx = solve_svd(H, g) # # Sparse cholesky decomposition # sH = scipy.sparse.csc_matrix(H) # dx = scipy.sparse.linalg.spsolve(sH, g) return dx def solve(self, verbose=False): """ Solve """ lambda_k = self.solver_lambda params_k = copy.deepcopy(self.params) cost_k = self._calculate_cost(params_k) # First evaluation if verbose: print(f"nb_factors: {len(self.factors)}") print(f"nb_params: {len(self.params)}") self._print_to_console(0, lambda_k, cost_k, cost_k) # Iterate for i in range(1, self.solver_max_iter): # Update and calculate cost ((H, g), param_idxs) = self._evaluate(params_k) dx = self._solve_for_dx(lambda_k, H, g) params_kp1 = self._update(params_k, param_idxs, dx) cost_kp1 = self._calculate_cost(params_kp1) # Verbose if verbose: self._print_to_console(i, lambda_k, cost_kp1, cost_k) # Accept or reject update if cost_kp1 < cost_k: # Accept update cost_k = cost_kp1 params_k = params_kp1 lambda_k /= 10.0 else: # Reject update params_k = params_k lambda_k *= 10.0 # Finish - set the original params the optimized values # Note: The reason we don't just do `self.params = params_k` is because # that would destroy the references to outside `FactorGraph()`. for param_id, param in params_k.items(): self.params[param_id].param = param.param # FEATURE TRACKING ############################################################# def draw_matches(img_i, img_j, kps_i, kps_j, **kwargs): """ Draw keypoint matches between images `img_i` and `img_j` with keypoints `kps_i` and `kps_j` """ assert len(kps_i) == len(kps_j) nb_kps = len(kps_i) viz = cv2.hconcat([img_i, img_j]) viz = cv2.cvtColor(viz, cv2.COLOR_GRAY2RG) color = (0, 255, 0) radius = 3 thickness = kwargs.get('thickness', cv2.FILLED) linetype = kwargs.get('linetype', cv2.LINE_AA) for n in range(nb_kps): pt_i = None pt_j = None if hasattr(kps_i[n], 'pt'): pt_i = (int(kps_i[n].pt[0]), int(kps_i[n].pt[1])) pt_j = (int(kps_j[n].pt[0] + img_i.shape[1]), int(kps_j[n].pt[1])) else: pt_i = (int(kps_i[n][0]), int(kps_i[n][1])) pt_j = (int(kps_j[n][0] + img_i.shape[1]), int(kps_j[n][1])) cv2.circle(viz, pt_i, radius, color, thickness, lineType=linetype) cv2.circle(viz, pt_j, radius, color, thickness, lineType=linetype) cv2.line(viz, pt_i, pt_j, color, 1, linetype) return viz def draw_keypoints(img, kps, inliers=None, **kwargs): """ Draw points `kps` on image `img`. The `inliers` boolean list is optional and is expected to be the same size as `kps` denoting whether the point should be drawn or not. """ inliers = [1 for i in range(len(kps))] if inliers is None else inliers radius = kwargs.get('radius', 2) color = kwargs.get('color', (0, 255, 0)) thickness = kwargs.get('thickness', cv2.FILLED) linetype = kwargs.get('linetype', cv2.LINE_AA) viz = img if len(img.shape) == 2: viz = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) for n, kp in enumerate(kps): if inliers[n]: p = None if hasattr(kp, 'pt'): p = (int(kp.pt[0]), int(kp.pt[1])) else: p = (int(kp[0]), int(kp[1])) cv2.circle(viz, p, radius, color, thickness, lineType=linetype) return viz def sort_keypoints(kps): """ Sort a list of cv2.KeyPoint based on their response """ responses = [kp.response for kp in kps] indices = range(len(responses)) indices = sorted(indices, key=lambda i: responses[i], reverse=True) return [kps[i] for i in indices] def spread_keypoints(img, kps, min_dist, **kwargs): """ Given a set of keypoints `kps` make sure they are atleast `min_dist` pixels away from each other, if they are not remove them. """ # Pre-check if not kps: return kps # Setup debug = kwargs.get('debug', False) prev_kps = kwargs.get('prev_kps', []) min_dist = int(min_dist) img_h, img_w = img.shape A = np.zeros(img.shape) # Allowable areas are marked 0 else not allowed # Loop through previous keypoints for kp in prev_kps: # Convert from keypoint to tuple p = (int(kp.pt[0]), int(kp.pt[1])) # Fill the area of the matrix where the next keypoint cannot be around rs = int(max(p[1] - min_dist, 0.0)) re = int(min(p[1] + min_dist + 1, img_h)) cs = int(max(p[0] - min_dist, 0.0)) ce = int(min(p[0] + min_dist + 1, img_w)) A[rs:re, cs:ce] = np.ones((re - rs, ce - cs)) # Loop through keypoints kps_results = [] for kp in sort_keypoints(kps): # Convert from keypoint to tuple p = (int(kp.pt[0]), int(kp.pt[1])) # Check if point is ok to be added to results if A[p[1], p[0]] > 0.0: continue # Fill the area of the matrix where the next keypoint cannot be around rs = int(max(p[1] - min_dist, 0.0)) re = int(min(p[1] + min_dist + 1, img_h)) cs = int(max(p[0] - min_dist, 0.0)) ce = int(min(p[0] + min_dist + 1, img_w)) A[rs:re, cs:ce] = np.ones((re - rs, ce - cs)) A[p[1], p[0]] = 2 # Add to results kps_results.append(kp) # Debug if debug: img = draw_keypoints(img, kps_results, radius=3) plt.figure() ax = plt.subplot(121) ax.imshow(A) ax.set_xlabel('pixel') ax.set_ylabel('pixel') ax.xaxis.tick_top() ax.xaxis.set_label_position('top') ax = plt.subplot(122) ax.imshow(img) ax.set_xlabel('pixel') ax.set_ylabel('pixel') ax.xaxis.tick_top() ax.xaxis.set_label_position('top') plt.show() return kps_results class FeatureGrid: """ FeatureGrid The idea is to take all the feature positions and put them into grid cells across the full image space. This is so that one could keep track of how many feautures are being tracked in each individual grid cell and act accordingly. o-----> x | --------------------- | | 0 | 1 | 2 | 3 | V --------------------- y | 4 | 5 | 6 | 7 | --------------------- | 8 | 9 | 10 | 11 | --------------------- | 12 | 13 | 14 | 15 | --------------------- grid_x = ceil((max(1, pixel_x) / img_w) * grid_cols) - 1.0 grid_y = ceil((max(1, pixel_y) / img_h) * grid_rows) - 1.0 cell_id = int(grid_x + (grid_y * grid_cols)) """ def __init__(self, grid_rows, grid_cols, image_shape, keypoints): assert len(image_shape) == 2 self.grid_rows = grid_rows self.grid_cols = grid_cols self.image_shape = image_shape self.keypoints = keypoints self.cell = [0 for i in range(self.grid_rows * self.grid_cols)] for kp in keypoints: if hasattr(kp, 'pt'): # cv2.KeyPoint assert (kp.pt[0] >= 0 and kp.pt[0] <= image_shape[1]) assert (kp.pt[1] >= 0 and kp.pt[1] <= image_shape[0]) self.cell[self.cell_index(kp.pt)] += 1 else: # Tuple assert (kp[0] >= 0 and kp[0] <= image_shape[1]) assert (kp[1] >= 0 and kp[1] <= image_shape[0]) self.cell[self.cell_index(kp)] += 1 def cell_index(self, pt): """ Return cell index based on point `pt` """ pixel_x, pixel_y = pt img_h, img_w = self.image_shape grid_x = math.ceil((max(1, pixel_x) / img_w) * self.grid_cols) - 1.0 grid_y = math.ceil((max(1, pixel_y) / img_h) * self.grid_rows) - 1.0 cell_id = int(grid_x + (grid_y * self.grid_cols)) return cell_id def count(self, cell_idx): """ Return cell count """ return self.cell[cell_idx] def grid_detect(detector, image, **kwargs): """ Detect features uniformly using a grid system. """ optflow_mode = kwargs.get('optflow_mode', False) max_keypoints = kwargs.get('max_keypoints', 240) grid_rows = kwargs.get('grid_rows', 3) grid_cols = kwargs.get('grid_cols', 4) prev_kps = kwargs.get('prev_kps', []) if prev_kps is None: prev_kps = [] # Calculate number of grid cells and max corners per cell image_height, image_width = image.shape dx = int(math.ceil(float(image_width) / float(grid_cols))) dy = int(math.ceil(float(image_height) / float(grid_rows))) nb_cells = grid_rows * grid_cols max_per_cell = math.floor(max_keypoints / nb_cells) # Detect corners in each grid cell feature_grid = FeatureGrid(grid_rows, grid_cols, image.shape, prev_kps) des_all = [] kps_all = [] cell_idx = 0 for y in range(0, image_height, dy): for x in range(0, image_width, dx): # Make sure roi width and height are not out of bounds w = image_width - x if (x + dx > image_width) else dx h = image_height - y if (y + dy > image_height) else dy # Detect corners in grid cell cs, ce, rs, re = (x, x + w, y, y + h) roi_image = image[rs:re, cs:ce] kps = None des = None if optflow_mode: detector.setNonmaxSuppression(1) kps = detector.detect(roi_image) kps = sort_keypoints(kps) else: kps = detector.detect(roi_image, None) kps, des = detector.compute(roi_image, kps) # Offset keypoints cell_vacancy = max_per_cell - feature_grid.count(cell_idx) if cell_vacancy <= 0: continue limit = min(len(kps), cell_vacancy) for i in range(limit): kp = kps[i] kp.pt = (kp.pt[0] + x, kp.pt[1] + y) kps_all.append(kp) des_all.append(des[i, :] if optflow_mode is False else None) # Update cell_idx cell_idx += 1 # Space out the keypoints if optflow_mode: kps_all = spread_keypoints(image, kps_all, 20, prev_kps=prev_kps) # Debug if kwargs.get('debug', False): # Setup viz = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) kps_grid = FeatureGrid(grid_rows, grid_cols, image.shape, kps_all) # Visualization properties red = (0, 0, 255) yellow = (0, 255, 255) linetype = cv2.LINE_AA font = cv2.FONT_HERSHEY_SIMPLEX # -- Draw horizontal lines for x in range(0, image_width, dx): cv2.line(viz, (x, 0), (x, image_height), red, 1, linetype) # -- Draw vertical lines for y in range(0, image_height, dy): cv2.line(viz, (0, y), (image_width, y), red, 1, linetype) # -- Draw bin numbers cell_idx = 0 for y in range(0, image_height, dy): for x in range(0, image_width, dx): text = str(kps_grid.count(cell_idx)) origin = (x + 10, y + 20) viz = cv2.putText(viz, text, origin, font, 0.5, red, 1, linetype) # text = str(feature_grid.count(cell_idx)) # origin = (x + 10, y + 20) # viz = cv2.putText(viz, text, origin, font, 0.5, yellow, 1, linetype) cell_idx += 1 # -- Draw keypoints viz = draw_keypoints(viz, kps_all, color=red) viz = draw_keypoints(viz, prev_kps, color=yellow) cv2.imshow("viz", viz) cv2.waitKey(0) # Return if optflow_mode: return kps_all return kps_all, np.array(des_all) def optflow_track(img_i, img_j, pts_i, **kwargs): """ Track keypoints `pts_i` from image `img_i` to image `img_j` using optical flow. Returns a tuple of `(pts_i, pts_j, inliers)` points in image i, j and a vector of inliers. """ # Setup patch_size = kwargs.get('patch_size', 50) max_iter = kwargs.get('max_iter', 100) epsilon = kwargs.get('epsilon', 0.001) crit = (cv2.TermCriteria_COUNT | cv2.TermCriteria_EPS, max_iter, epsilon) # Optical flow settings config = {} config['winSize'] = (patch_size, patch_size) config['maxLevel'] = 3 config['criteria'] = crit config['flags'] = cv2.OPTFLOW_USE_INITIAL_FLOW # Track using optical flow pts_j = np.array(pts_i) track_results = cv2.calcOpticalFlowPyrLK(img_i, img_j, pts_i, pts_j, **config) (pts_j, optflow_inliers, _) = track_results # Make sure keypoints are within image dimensions bound_inliers = [] img_h, img_w = img_j.shape for p in pts_j: x_ok = p[0] >= 0 and p[0] <= img_w y_ok = p[1] >= 0 and p[1] <= img_h if x_ok and y_ok: bound_inliers.append(True) else: bound_inliers.append(False) # Update or mark feature as lost assert len(pts_i) == optflow_inliers.shape[0] assert len(pts_i) == len(bound_inliers) inliers = [] for i in range(len(pts_i)): if optflow_inliers[i, 0] and bound_inliers[i]: inliers.append(True) else: inliers.append(False) if kwargs.get('debug', False): viz_i = draw_keypoints(img_i, pts_i, inliers) viz_j = draw_keypoints(img_j, pts_j, inliers) viz = cv2.hconcat([viz_i, viz_j]) cv2.imshow('viz', viz) cv2.waitKey(0) return (pts_i, pts_j, inliers) def filter_outliers(pts_i, pts_j, inliers): """ Filter outliers """ pts_out_i = [] pts_out_j = [] for n, status in enumerate(inliers): if status: pts_out_i.append(pts_i[n]) pts_out_j.append(pts_j[n]) return (pts_out_i, pts_out_j) def ransac(pts_i, pts_j, cam_i, cam_j): """ RANSAC """ # Setup cam_geom_i = cam_i.data cam_geom_j = cam_j.data # Undistort points pts_i_ud = np.array([cam_geom_i.undistort(cam_i.param, p) for p in pts_i]) pts_j_ud = np.array([cam_geom_j.undistort(cam_j.param, p) for p in pts_j]) # Ransac via OpenCV's find fundamental matrix method = cv2.FM_RANSAC reproj_thresh = 0.75 confidence = 0.99 args = [pts_i_ud, pts_j_ud, method, reproj_thresh, confidence] _, inliers = cv2.findFundamentalMat(*args) return inliers.flatten() class FeatureTrackerData: """ Feature tracking data *per camera* This data structure keeps track of: - Image - Keypoints - Descriptors - Feature ids (optional) """ def __init__(self, cam_idx, image, keypoints, feature_ids=None): self.cam_idx = cam_idx self.image = image self.keypoints = list(keypoints) self.feature_ids = list(feature_ids) def add(self, fid, kp): """ Add measurement """ assert isinstance(fid, int) assert hasattr(kp, 'pt') self.keypoints.append(kp) self.feature_ids.append(fid) assert len(self.keypoints) == len(self.feature_ids) def update(self, image, fids, kps): """ Extend measurements """ assert len(kps) == len(fids) self.image = np.array(image) if kps: assert hasattr(kps[0], 'pt') self.feature_ids.extend(fids) self.keypoints.extend(kps) assert len(self.keypoints) == len(self.feature_ids) class FeatureTracker: """ Feature tracker """ def __init__(self): # Settings self.mode = "TRACK_DEFAULT" # self.mode = "TRACK_OVERLAPS" # self.mode = "TRACK_INDEPENDENT" # Settings self.reproj_threshold = 5.0 # Data self.prev_ts = None self.frame_idx = 0 self.detector = cv2.FastFeatureDetector_create(threshold=50) self.features_detected = 0 self.features_tracking = 0 self.feature_overlaps = {} self.prev_mcam_imgs = None self.kp_size = 0 self.cam_idxs = [] self.cam_params = {} self.cam_exts = {} self.cam_overlaps = {} self.cam_data = {} def add_camera(self, cam_idx, cam_params, cam_exts): """ Add camera """ self.cam_idxs.append(cam_idx) self.cam_data[cam_idx] = None self.cam_params[cam_idx] = cam_params self.cam_exts[cam_idx] = cam_exts def add_overlap(self, cam_i_idx, cam_j_idx): """ Add overlap """ if cam_i_idx not in self.cam_overlaps: self.cam_overlaps[cam_i_idx] = [] self.cam_overlaps[cam_i_idx].append(cam_j_idx) def num_tracking(self): """ Return number of features tracking """ feature_ids = [] for _, cam_data in self.cam_data.items(): if cam_data is not None: feature_ids.extend(cam_data.feature_ids) return len(set(feature_ids)) def _get_camera_indices(self): """ Get camera indices """ return [cam_idx for cam_idx, _ in self.cam_params] def _get_keypoints(self, cam_idx): """ Get keypoints observed by camera `cam_idx` """ keypoints = None if self.cam_data[cam_idx] is not None: keypoints = self.cam_data[cam_idx].keypoints return keypoints def _get_feature_ids(self, cam_idx): """ Get feature ids observed by camera `cam_idx` """ feature_ids = None if self.cam_data[cam_idx] is not None: feature_ids = self.cam_data[cam_idx].feature_ids return feature_ids def _form_feature_ids(self, nb_kps): """ Form list of feature ids for new features to be added """ self.features_detected += nb_kps start_idx = self.features_detected - nb_kps end_idx = start_idx + nb_kps return list(range(start_idx, end_idx)) def _triangulate(self, idx_i, idx_j, z_i, z_j): """ Triangulate feature """ # Setup cam_i = self.cam_params[idx_i] cam_j = self.cam_params[idx_j] cam_geom_i = cam_i.data cam_geom_j = cam_j.data cam_exts_i = self.cam_exts[idx_i] cam_exts_j = self.cam_exts[idx_j] # Form projection matrices P_i and P_j T_BCi = pose2tf(cam_exts_i.param) T_BCj = pose2tf(cam_exts_j.param) T_CiCj = inv(T_BCi) @ T_BCj P_i = pinhole_P(cam_geom_i.proj_params(cam_i.param), eye(4)) P_j = pinhole_P(cam_geom_j.proj_params(cam_j.param), T_CiCj) # Undistort image points z_i and z_j x_i = cam_geom_i.undistort(cam_i.param, z_i) x_j = cam_geom_j.undistort(cam_j.param, z_j) # Linear triangulate p_Ci = linear_triangulation(P_i, P_j, x_i, x_j) return p_Ci def _reproj_filter(self, idx_i, idx_j, pts_i, pts_j): """ Filter features by triangulating them via a stereo-pair and see if the reprojection error is reasonable """ assert idx_i != idx_j assert len(pts_i) == len(pts_j) # Reject outliers based on reprojection error reproj_inliers = [] cam_i = self.cam_params[idx_i] cam_geom_i = cam_i.data nb_pts = len(pts_i) for n in range(nb_pts): # Triangulate z_i = pts_i[n] z_j = pts_j[n] p_Ci = self._triangulate(idx_i, idx_j, z_i, z_j) if p_Ci[2] < 0.0: reproj_inliers.append(False) continue # Reproject z_i_hat = cam_geom_i.project(cam_i.param, p_Ci) if z_i_hat is None: reproj_inliers.append(False) else: reproj_error = norm(z_i - z_i_hat) if reproj_error > self.reproj_threshold: reproj_inliers.append(False) else: reproj_inliers.append(True) return reproj_inliers def _add_features(self, cam_idxs, mcam_imgs, cam_kps, fids): """ Add features """ # Pre-check assert cam_idxs assert all(cam_idx in mcam_imgs for cam_idx in cam_idxs) assert all(cam_idx in cam_kps for cam_idx in cam_idxs) # Add camera data for idx in cam_idxs: img = mcam_imgs[idx] kps = cam_kps[idx] assert len(kps) == len(fids) if self.cam_data[idx] is None: self.cam_data[idx] = FeatureTrackerData(idx, img, kps, fids) else: self.cam_data[idx].update(img, fids, kps) # Update overlapping features if len(cam_idxs) > 1: for fid in fids: self.feature_overlaps[fid] = 2 def _update_features(self, cam_idxs, mcam_imgs, cam_kps, fids): """ Update features """ # Pre-check assert cam_idxs assert all(cam_idx in mcam_imgs for cam_idx in cam_idxs) assert all(cam_idx in cam_kps for cam_idx in cam_idxs) # Update camera data for idx in cam_idxs: img = mcam_imgs[idx] kps = cam_kps[idx] self.cam_data[idx] = FeatureTrackerData(idx, img, kps, fids) # # Update lost features # fids_out = set(fids) # fids_lost = [x for x in fids_in if x not in fids_out] # for fid in fids_lost: # # feature overlaps # if fid in self.feature_overlaps: # self.feature_overlaps[fid] -= 1 # if self.feature_overlaps[fid] == 0: # del self.feature_overlaps[fid] def _detect(self, image, prev_kps=None): """ Detect """ assert image is not None kwargs = {'prev_kps': prev_kps, 'optflow_mode': True} kps = grid_detect(self.detector, image, **kwargs) self.kp_size = kps[0].size if kps else 0 return kps def _detect_overlaps(self, mcam_imgs): """ Detect overlapping features """ # Loop through camera overlaps for idx_i, overlaps in self.cam_overlaps.items(): # Detect keypoints observed from idx_i (primary camera) cam_i = self.cam_params[idx_i] img_i = mcam_imgs[idx_i] prev_kps = self._get_keypoints(idx_i) kps_i = self._detect(img_i, prev_kps=prev_kps) pts_i = np.array([kp.pt for kp in kps_i], dtype=np.float32) fids_new = self._form_feature_ids(len(kps_i)) if not kps_i: continue # Track feature from camera idx_i to idx_j (primary to secondary camera) for idx_j in overlaps: # Optical flow img_j = mcam_imgs[idx_j] (_, pts_j, optflow_inliers) = optflow_track(img_i, img_j, pts_i) # RANSAC ransac_inliers = [] if len(kps_i) < 10: ransac_inliers = np.array([True for _, _ in enumerate(kps_i)]) else: cam_j = self.cam_params[idx_j] ransac_inliers = ransac(pts_i, pts_j, cam_i, cam_j) # Reprojection filter reproj_inliers = self._reproj_filter(idx_i, idx_j, pts_i, pts_j) # Filter outliers inliers = optflow_inliers & ransac_inliers & reproj_inliers kps_j = [cv2.KeyPoint(p[0], p[1], self.kp_size) for p in pts_j] fids = [] cam_kps = {idx_i: [], idx_j: []} for i, inlier in enumerate(inliers): if inlier: fids.append(fids_new[i]) cam_kps[idx_i].append(kps_i[i]) cam_kps[idx_j].append(kps_j[i]) # Add features cam_idxs = [idx_i, idx_j] cam_imgs = {idx_i: img_i, idx_j: img_j} self._add_features(cam_idxs, cam_imgs, cam_kps, fids) def _detect_nonoverlaps(self, mcam_imgs): """ Detect non-overlapping features """ for idx in self.cam_params: # Detect keypoints img = mcam_imgs[idx] prev_kps = self._get_keypoints(idx) kps = self._detect(img, prev_kps=prev_kps) if not kps: return # Add features fids = self._form_feature_ids(len(kps)) self._add_features([idx], {idx: img}, {idx: kps}, fids) def _detect_new(self, mcam_imgs): """ Detect new features """ # Detect new features if self.mode == "TRACK_DEFAULT": self._detect_overlaps(mcam_imgs) self._detect_nonoverlaps(mcam_imgs) elif self.mode == "TRACK_OVERLAPS": self._detect_overlaps(mcam_imgs) elif self.mode == "TRACK_INDEPENDENT": self._detect_nonoverlaps(mcam_imgs) else: raise RuntimeError("Invalid FeatureTracker mode [%s]!" % self.mode) def _track_through_time(self, mcam_imgs, cam_idx): """ Track features through time """ # Setup images img_km1 = self.prev_mcam_imgs[cam_idx] img_k = mcam_imgs[cam_idx] # Setup keypoints and feature_ids kps_km1 = self._get_keypoints(cam_idx) feature_ids = self._get_feature_ids(cam_idx) pts_km1 = np.array([kp.pt for kp in kps_km1], dtype=np.float32) # Optical flow (pts_km1, pts_k, optflow_inliers) = optflow_track(img_km1, img_k, pts_km1) # RANSAC ransac_inliers = [] if len(kps_km1) < 10: ransac_inliers = np.array([True for _, _ in enumerate(kps_km1)]) else: cam = self.cam_params[cam_idx] ransac_inliers = ransac(pts_km1, pts_k, cam, cam) # Form inliers list optflow_inliers = np.array(optflow_inliers) ransac_inliers = np.array(ransac_inliers) inliers = optflow_inliers & ransac_inliers return (pts_km1, pts_k, feature_ids, inliers) def _track_stereo(self, mcam_imgs, idx_i, idx_j, pts_i): """ Track feature through stereo-pair """ # Optical flow img_i = mcam_imgs[idx_i] img_j = mcam_imgs[idx_j] (pts_i, pts_j, optflow_inliers) = optflow_track(img_i, img_j, pts_i) # RANSAC cam_i = self.cam_params[idx_i] cam_j = self.cam_params[idx_j] ransac_inliers = ransac(pts_i, pts_j, cam_i, cam_j) # Reject outliers based on reprojection error reproj_inliers = self._reproj_filter(idx_i, idx_j, pts_i, pts_j) # Logical AND optflow_inliers and reproj_inliers ransac_inliers = np.array(ransac_inliers) optflow_inliers = np.array(optflow_inliers) reproj_inliers = np.array(reproj_inliers) inliers = optflow_inliers & ransac_inliers & reproj_inliers return (pts_i, pts_j, inliers) def _track_features(self, mcam_imgs): """ Track features """ # Track features in each camera for idx in self.cam_idxs: # Track through time track_results = self._track_through_time(mcam_imgs, idx) (_, pts_k, fids_old, inliers) = track_results fids = [] kps = [] for i, inlier in enumerate(inliers): if inlier: pt = pts_k[i] fids.append(fids_old[i]) kps.append(cv2.KeyPoint(pt[0], pt[1], self.kp_size)) # Update features cam_idxs = [idx] cam_imgs = {idx: mcam_imgs[idx]} cam_kps = {idx: kps} self._update_features(cam_idxs, cam_imgs, cam_kps, fids) def update(self, ts, mcam_imgs): """ Update Feature Tracker """ # Track features if self.frame_idx == 0: self._detect_new(mcam_imgs) self.features_tracking = self.num_tracking() else: self._track_features(mcam_imgs) if (self.num_tracking() / self.features_tracking) < 0.8: self._detect_new(mcam_imgs) # Update self.frame_idx += 1 self.prev_ts = ts self.prev_mcam_imgs = mcam_imgs return self.cam_data def visualize_tracking(ft_data): """ Visualize feature tracking data """ viz = [] radius = 4 green = (0, 255, 0) yellow = (0, 255, 255) thickness = 1 linetype = cv2.LINE_AA # Find overlaps fids = {} feature_overlaps = set() for _, cam_data in ft_data.items(): for n, _ in enumerate(cam_data.keypoints): fid = cam_data.feature_ids[n] fids[fid] = (fids[fid] + 1) if fid in fids else 1 if fids[fid] > 1: feature_overlaps.add(fid) # Draw features being tracked in each camera for _, cam_data in ft_data.items(): img = cam_data.image cam_viz = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) for n, kp in enumerate(cam_data.keypoints): fid = cam_data.feature_ids[n] color = green if fid in feature_overlaps else yellow p = (int(kp.pt[0]), int(kp.pt[1])) if hasattr(kp, 'pt') else kp cv2.circle(cam_viz, p, radius, color, thickness, lineType=linetype) viz.append(cam_viz) return cv2.hconcat(viz) # STATE-ESTIMATOR ############################################################# class KeyFrame: """ Key Frame """ def __init__(self, ts, images, pose, vision_factors): self.ts = ts self.images = images self.pose = pose self.vision_factors = vision_factors class Tracker: """ Tracker """ def __init__(self, feature_tracker): # Feature tracker self.feature_tracker = feature_tracker # Flags self.imu_started = False self.cams_started = False # Data self.graph = FactorGraph() self.pose_init = None self.imu_buf = ImuBuffer() self.imu_params = None self.cam_params = {} self.cam_geoms = {} self.cam_exts = {} self.features = {} self.keyframes = [] # Settings self.window_size = 10 def nb_cams(self): """ Return number of cameras """ return len(self.cam_params) def nb_keyframes(self): """ Return number of keyframes """ return len(self.keyframes) def nb_features(self): """ Return number of keyframes """ return len(self.features) def add_imu(self, imu_params): """ Add imu """ self.imu_params = imu_params def add_camera(self, cam_idx, cam_params, cam_exts): """ Add camera """ self.cam_params[cam_idx] = cam_params self.cam_geoms[cam_idx] = cam_params.data self.cam_exts[cam_idx] = cam_exts self.graph.add_param(cam_params) self.graph.add_param(cam_exts) self.feature_tracker.add_camera(cam_idx, cam_params, cam_exts) def add_overlap(self, cam_i, cam_j): """ Add overlap """ self.feature_tracker.add_overlap(cam_i, cam_j) def set_initial_pose(self, T_WB): """ Set initial pose """ assert self.pose_init is None self.pose_init = T_WB def inertial_callback(self, ts, acc, gyr): """ Inertial callback """ if self.imu_params is None: raise RuntimeError("Forgot to add imu to tracker?") self.imu_buf.add(ts, acc, gyr) self.imu_started = True def _triangulate(self, cam_i, cam_j, z_i, z_j, T_WB): """ Triangulate feature """ # Setup cam_params_i = self.cam_params[cam_i] cam_params_j = self.cam_params[cam_j] cam_geom_i = cam_params_i.data cam_geom_j = cam_params_j.data cam_exts_i = self.cam_exts[cam_i] cam_exts_j = self.cam_exts[cam_j] # Form projection matrices P_i and P_j T_BCi = pose2tf(cam_exts_i.param) T_BCj = pose2tf(cam_exts_j.param) T_CiCj = inv(T_BCi) @ T_BCj P_i = pinhole_P(cam_geom_i.proj_params(cam_params_i.param), eye(4)) P_j = pinhole_P(cam_geom_j.proj_params(cam_params_j.param), T_CiCj) # Undistort image points z_i and z_j x_i = cam_geom_i.undistort(cam_params_i.param, z_i) x_j = cam_geom_j.undistort(cam_params_j.param, z_j) # Linear triangulate p_Ci = linear_triangulation(P_i, P_j, x_i, x_j) if p_Ci[2] < 0.0: return None # Transform feature from camera frame to world frame T_BCi = pose2tf(self.cam_exts[cam_i].param) p_W = tf_point(T_WB @ T_BCi, p_Ci) return p_W def _add_pose(self, ts, T_WB): """ Add pose Args: T_WB (np.array): Body pose in world frame """ pose = pose_setup(ts, T_WB) self.graph.add_param(pose) return pose def _get_last_pose(self): """ Get last pose """ return pose2tf(self.keyframes[-1].pose.param) def _add_feature(self, fid, ts, cam_idx, kp): """ Add feature Args: fid (int): Feature id ts (int): Timestamp cam_idx (int): Camera index kp (cv2.KeyPoint): Key point """ assert hasattr(kp, 'pt') self.features[fid] = feature_setup(zeros((3,))) self.features[fid].data.update(ts, cam_idx, kp.pt) feature_pid = self.graph.add_param(self.features[fid]) return feature_pid def _update_feature(self, fid, ts, cam_idx, kp, T_WB): """ Update feature Args: fid (int): Feature id ts (int): Timestamp cam_idx (int): Camera index kp (cv2.KeyPoint): Key point T_WB (np.array): Body pose in world frame """ # Update feature self.features[fid].data.update(ts, cam_idx, kp.pt) # Initialize overlapping features has_inited = self.features[fid].data.initialized() has_overlap = self.features[fid].data.has_overlap(ts) if has_inited is False and has_overlap is True: overlaps = self.features[fid].data.get_overlaps(ts) cam_i, z_i = overlaps[0] cam_j, z_j = overlaps[1] p_W = self._triangulate(cam_i, cam_j, z_i, z_j, T_WB) if p_W is not None: self.features[fid].param = p_W self.features[fid].data.set_initialized() def _process_features(self, ts, ft_data, pose): """ Process features Args: ts (int): Timestamp ft_data (Dict[int, FeatureTrackerData]): Multi-camera feature tracker data pose (StateVariable): Body pose in world frame """ # Add or update feature T_WB = pose2tf(pose.param) for cam_idx, cam_data in ft_data.items(): for fid, kp in zip(cam_data.feature_ids, cam_data.keypoints): if fid not in self.features: self._add_feature(fid, ts, cam_idx, kp) else: self._update_feature(fid, ts, cam_idx, kp, T_WB) def _add_keyframe(self, ts, mcam_imgs, ft_data, pose): """ Add keyframe Args: ts (int): Timestamp mcam_imgs (Dict[int, np.array]): Multi-camera images ft_data (Dict[int, FeatureTrackerData]): Multi-camera features pose (Pose): Body pose in world frame """ vision_factors = [] for cam_idx, cam_data in ft_data.items(): # camera params, geometry and extrinsics cam_params = self.cam_params[cam_idx] cam_geom = self.cam_geoms[cam_idx] cam_exts = self.cam_exts[cam_idx] # Form vision factors for fid, kp in zip(cam_data.feature_ids, cam_data.keypoints): feature = self.features[fid] if feature.data.initialized() is False: continue # Form vision factor param_ids = [] param_ids.append(pose.param_id) param_ids.append(cam_exts.param_id) param_ids.append(feature.param_id) param_ids.append(cam_params.param_id) factor = VisionFactor(cam_geom, param_ids, kp.pt) vision_factors.append(factor) self.graph.add_factor(factor) # Form keyframe self.keyframes.append(KeyFrame(ts, mcam_imgs, pose, vision_factors)) def _pop_old_keyframe(self): """ Pop old keyframe """ # Remove pose parameter and vision factors kf = self.keyframes[0] self.graph.remove_param(kf.pose) for factor in kf.vision_factors: self.graph.remove_factor(factor) # Pop the front of the queue self.keyframes.pop(0) def _filter_keyframe_factors(self, filter_from=0): """ Filter keyframe factors """ removed = 0 for kf in self.keyframes[filter_from:]: # Calculate reprojection error reproj_errors = [] for factor in list(kf.vision_factors): # factor_params = self.graph._get_factor_params(factor) factor_params = [] r, _ = factor.eval(factor_params) reproj_errors.append(norm(r)) # Filter factors threshold = 3.0 * np.std(reproj_errors) filtered_factors = [] for reproj_error, factor in zip(reproj_errors, kf.vision_factors): if reproj_error >= threshold: self.graph.remove_factor(factor) removed += 1 else: filtered_factors.append(factor) kf.vision_factors = filtered_factors def vision_callback(self, ts, mcam_imgs): """ Vision callback Args: ts (int): Timestamp mcam_imgs (Dict[int, np.array]): Multi-camera images """ assert self.pose_init is not None # Has IMU? if self.imu_params is not None and self.imu_started is False: return # Perform feature tracking ft_data = self.feature_tracker.update(ts, mcam_imgs) # Add pose pose = None if self.nb_keyframes() == 0: pose = self._add_pose(ts, self.pose_init) else: T_WB = self._get_last_pose() pose = self._add_pose(ts, T_WB) # Process features, add keyframe and solve self._process_features(ts, ft_data, pose) self._add_keyframe(ts, mcam_imgs, ft_data, pose) if self.nb_keyframes() != 1: self.graph.solve(True) self._filter_keyframe_factors() if len(self.keyframes) > self.window_size: self._pop_old_keyframe() errors = self.graph.get_reproj_errors() print(f"reproj_error:", end=" [") print(f"mean: {np.mean(errors):.2f}", end=", ") print(f"median: {np.median(errors):.2f}", end=", ") print(f"rms: {rmse(errors):.2f}", end=", ") print(f"max: {np.max(errors):.2f}", end="]\n") print(f"nb_keyframes: {self.nb_keyframes()}") print() ############################################################################### # CALIBRATION ############################################################################### class AprilGrid: """ AprilGrid """ def __init__(self, tag_rows=6, tag_cols=6, tag_size=0.088, tag_spacing=0.3): self.tag_rows = tag_rows self.tag_cols = tag_cols self.tag_size = tag_size self.tag_spacing = tag_spacing self.nb_tags = self.tag_rows * self.tag_cols self.ts = None self.data = {} @staticmethod def load(csv_file): """ Load AprilGrid """ # Load csv file csv_data = pandas.read_csv(csv_file) if csv_data.shape[0] == 0: return None # AprilGrid properties ts = csv_data['#ts'][0] tag_rows = csv_data['tag_rows'][0] tag_cols = csv_data['tag_cols'][0] tag_size = csv_data['tag_size'][0] tag_spacing = csv_data['tag_spacing'][0] # AprilGrid measurements tag_indices = csv_data['tag_id'] corner_indices = csv_data['corner_idx'] kps = np.array([csv_data['kp_x'], csv_data['kp_y']]).T # Form AprilGrid grid = AprilGrid(tag_rows, tag_cols, tag_size, tag_spacing) for tag_id, corner_idx, kp in zip(tag_indices, corner_indices, kps): grid.add_keypoint(ts, tag_id, corner_idx, kp) return grid def get_object_point(self, tag_id, corner_idx): """ Form object point """ # Calculate the AprilGrid index using tag id [i, j] = self.get_grid_index(tag_id) # Calculate the x and y of the tag origin (bottom left corner of tag) # relative to grid origin (bottom left corner of entire grid) x = j * (self.tag_size + self.tag_size * self.tag_spacing) y = i * (self.tag_size + self.tag_size * self.tag_spacing) # Corners from bottom left in counter-clockwise fashion if corner_idx == 0: # Bottom left return np.array([x, y, 0]) elif corner_idx == 1: # Bottom right return np.array([x + self.tag_size, y, 0]) elif corner_idx == 2: # Top right return np.array([x + self.tag_size, y + self.tag_size, 0]) elif corner_idx == 3: # Top left return np.array([x, y + self.tag_size, 0]) raise RuntimeError(f"Invalid tag_id[{tag_id}] corner_idx[{corner_idx}]!") def get_object_points(self): """ Form object points """ object_points = [] for tag_id in range(self.nb_tags): for corner_idx in range(4): object_points.append(self.get_object_point(tag_id, corner_idx)) return np.array(object_points) def get_center(self): """ Calculate center of aprilgrid """ x = (self.tag_cols / 2.0) * self.tag_size x += ((self.tag_cols / 2.0) - 1) * self.tag_spacing * self.tag_size x += 0.5 * self.tag_spacing * self.tag_size y = (self.tag_rows / 2.0) * self.tag_size y += ((self.tag_rows / 2.0) - 1) * self.tag_spacing * self.tag_size y += 0.5 * self.tag_spacing * self.tag_size return np.array([x, y]) def get_grid_index(self, tag_id): """ Calculate grid index from tag id """ assert tag_id < (self.nb_tags) and tag_id >= 0 i = int(tag_id / self.tag_cols) j = int(tag_id % self.tag_cols) return (i, j) def add_keypoint(self, ts, tag_id, corner_idx, kp): """ Add keypoint """ self.ts = ts if tag_id not in self.data: self.data[tag_id] = {} self.data[tag_id][corner_idx] = kp def remove_keypoint(self, tag_id, corner_idx): """ Remove keypoint """ assert tag_id in self.data assert corner_idx in self.data[tag_id] del self.data[tag_id][corner_idx] def get_measurements(self): """ Get measurements """ data = [] for tag_id, tag_data in self.data.items(): for corner_idx, kp in tag_data.items(): obj_point = self.get_object_point(tag_id, corner_idx) data.append((tag_id, corner_idx, obj_point, kp)) return data def solvepnp(self, cam_params): """ Estimate relative transform between camera and aprilgrid """ # Check if we actually have data to work with if not self.data: return None # Create object points (counter-clockwise, from bottom left) cam_geom = cam_params.data obj_pts = [] img_pts = [] for (_, _, r_FFi, z) in self.get_measurements(): img_pts.append(cam_geom.undistort(cam_params.param, z)) obj_pts.append(r_FFi) obj_pts = np.array(obj_pts) img_pts = np.array(img_pts) # Solve pnp K = pinhole_K(cam_params.param[0:4]) D = np.array([0.0, 0.0, 0.0, 0.0]) flags = cv2.SOLVEPNP_ITERATIVE _, rvec, tvec = cv2.solvePnP(obj_pts, img_pts, K, D, False, flags=flags) # Form relative tag pose as a 4x4 transform matrix C, _ = cv2.Rodrigues(rvec) r = tvec.flatten() T_CF = tf(C, r) return T_CF def plot(self, ax, T_WF): """ Plot """ obj_pts = self.get_object_points() for row_idx in range(obj_pts.shape[0]): r_FFi = obj_pts[row_idx, :] r_WFi = tf_point(T_WF, r_FFi) ax.plot(r_WFi[0], r_WFi[1], r_WFi[2], 'r.') def calib_generate_poses(calib_target, **kwargs): """ Generate calibration poses infront of the calibration target """ # Pose settings x_range = kwargs.get('x_range', np.linspace(-0.3, 0.3, 5)) y_range = kwargs.get('y_range', np.linspace(-0.3, 0.3, 5)) z_range = kwargs.get('z_range', np.linspace(0.3, 0.5, 5)) # Generate camera positions infront of the calib target r_FC calib_center = np.array([*calib_target.get_center(), 0.0]) cam_pos = [] pos_idx = 0 for x in x_range: for y in y_range: for z in z_range: r_FC = np.array([x, y, z]) + calib_center cam_pos.append(r_FC) pos_idx += 1 # For each position create a camera pose that "looks at" the calib # center in the target frame, T_FC. return [lookat(r_FC, calib_center) for r_FC in cam_pos] def calib_generate_random_poses(calib_target, **kwargs): """ Generate random calibration poses infront of the calibration target """ # Settings nb_poses = kwargs.get('nb_poses', 30) att_range = kwargs.get('att_range', [deg2rad(-10.0), deg2rad(10.0)]) x_range = kwargs.get('x_range', [-0.5, 0.5]) y_range = kwargs.get('y_range', [-0.5, 0.5]) z_range = kwargs.get('z_range', [0.5, 0.7]) # For each position create a camera pose that "looks at" the calibration # center in the target frame, T_FC. calib_center = np.array([*calib_target.get_center(), 0.0]) poses = [] for _ in range(nb_poses): # Generate random pose x = np.random.uniform(x_range[0], x_range[1]) y = np.random.uniform(y_range[0], y_range[1]) z = np.random.uniform(z_range[0], z_range[1]) r_FC = calib_center + np.array([x, y, z]) T_FC = lookat(r_FC, calib_center) # Perturb the pose a little so it doesn't look at the center directly yaw = np.random.uniform(*att_range) pitch = np.random.uniform(*att_range) roll = np.random.uniform(*att_range) C_perturb = euler321(yaw, pitch, roll) r_perturb = zeros((3,)) T_perturb = tf(C_perturb, r_perturb) poses.append(T_FC @ T_perturb) return poses class CalibView: """ Calibration View """ def __init__(self, pose, cam_params, cam_exts, grid): self.ts = grid.ts self.pose = pose self.cam_idx = cam_params.data.cam_idx self.cam_params = cam_params self.cam_geom = cam_params.data self.cam_exts = cam_exts self.grid = grid self.factors = [] pids = [pose.param_id, cam_exts.param_id, cam_params.param_id] for grid_data in grid.get_measurements(): self.factors.append(CalibVisionFactor(self.cam_geom, pids, grid_data)) def get_reproj_errors(self): """ Get reprojection errors """ reproj_errors = [] factor_params = [self.pose, self.cam_exts, self.cam_params] for factor in self.factors: reproj_error = factor.get_reproj_error(*factor_params) if reproj_error is not None: reproj_errors.append(reproj_error) return reproj_errors class Calibrator: """ Calibrator """ def __init__(self): # Parameters self.cam_geoms = {} self.cam_params = {} self.cam_exts = {} self.imu_params = None # Data self.graph = FactorGraph() self.poses = {} self.calib_views = {} def get_num_cams(self): """ Return number of cameras """ return len(self.cam_params) def get_num_views(self): """ Return number of views """ return len(self.calib_views) def add_camera(self, cam_idx, cam_res, proj_model, dist_model): """ Add camera """ fx = focal_length(cam_res[0], 90.0) fy = focal_length(cam_res[1], 90.0) cx = cam_res[0] / 2.0 cy = cam_res[1] / 2.0 params = [fx, fy, cx, cy, 0.0, 0.0, 0.0, 0.0] args = [cam_idx, cam_res, proj_model, dist_model, params] cam_params = camera_params_setup(*args) fix_exts = True if cam_idx == 0 else False self.cam_geoms[cam_idx] = cam_params.data self.cam_params[cam_idx] = cam_params self.cam_exts[cam_idx] = extrinsics_setup(eye(4), fix=fix_exts) self.graph.add_param(self.cam_params[cam_idx]) self.graph.add_param(self.cam_exts[cam_idx]) def add_imu(self, imu_params): """ Add imu """ self.imu_params = imu_params def add_camera_view(self, ts, cam_idx, grid): """ Add camera view """ # Estimate relative pose T_BF cam_params = self.cam_params[cam_idx] cam_exts = self.cam_exts[cam_idx] T_CiF = grid.solvepnp(cam_params) T_BCi = pose2tf(cam_exts.param) T_BF = T_BCi @ T_CiF self.poses[ts] = pose_setup(ts, T_BF) # CalibView self.graph.add_param(self.poses[ts]) self.calib_views[ts] = CalibView(self.poses[ts], cam_params, cam_exts, grid) for factor in self.calib_views[ts].factors: self.graph.add_factor(factor) # Solve if len(self.calib_views) >= 5: self.graph.solver_max_iter = 10 self.graph.solve(True) # Calculate reprojection error reproj_errors = self.graph.get_reproj_errors() print(f"nb_reproj_errors: {len(reproj_errors)}") print(f"rms_reproj_errors: {rmse(reproj_errors):.4f} [px]") print() # plt.hist(reproj_errors) # plt.show() def solve(self): """ Solve """ self.graph.solver_max_iter = 30 self.graph.solve(True) reproj_errors = self.graph.get_reproj_errors() print(f"nb_cams: {self.get_num_cams()}") print(f"nb_views: {self.get_num_views()}") print(f"nb_reproj_errors: {len(reproj_errors)}") print(f"rms_reproj_errors: {rmse(reproj_errors):.4f} [px]") sys.stdout.flush() ############################################################################### # SIMULATION ############################################################################### # UTILS ####################################################################### def create_3d_features(x_bounds, y_bounds, z_bounds, nb_features): """ Create 3D features randomly """ features = zeros((nb_features, 3)) for i in range(nb_features): features[i, 0] = random.uniform(*x_bounds) features[i, 1] = random.uniform(*y_bounds) features[i, 2] = random.uniform(*z_bounds) return features def create_3d_features_perimeter(origin, dim, nb_features): """ Create 3D features in a square """ assert len(origin) == 3 assert len(dim) == 3 assert nb_features > 0 # Dimension of the outskirt w, l, h = dim # Features per side nb_fps = int(nb_features / 4.0) # Features in the east side x_bounds = [origin[0] - w, origin[0] + w] y_bounds = [origin[1] + l, origin[1] + l] z_bounds = [origin[2] - h, origin[2] + h] east = create_3d_features(x_bounds, y_bounds, z_bounds, nb_fps) # Features in the north side x_bounds = [origin[0] + w, origin[0] + w] y_bounds = [origin[1] - l, origin[1] + l] z_bounds = [origin[2] - h, origin[2] + h] north = create_3d_features(x_bounds, y_bounds, z_bounds, nb_fps) # Features in the west side x_bounds = [origin[0] - w, origin[0] + w] y_bounds = [origin[1] - l, origin[1] - l] z_bounds = [origin[2] - h, origin[2] + h] west = create_3d_features(x_bounds, y_bounds, z_bounds, nb_fps) # Features in the south side x_bounds = [origin[0] - w, origin[0] - w] y_bounds = [origin[1] - l, origin[1] + l] z_bounds = [origin[2] - h, origin[2] + h] south = create_3d_features(x_bounds, y_bounds, z_bounds, nb_fps) # Stack features and return return np.block([[east], [north], [west], [south]]) # SIMULATION ################################################################## class SimCameraFrame: """ Sim camera frame """ def __init__(self, ts, cam_idx, camera, T_WCi, features): assert T_WCi.shape == (4, 4) assert features.shape[0] > 0 assert features.shape[1] == 3 self.ts = ts self.cam_idx = cam_idx self.T_WCi = T_WCi self.cam_geom = camera.data self.cam_params = camera.param self.feature_ids = [] self.measurements = [] # Simulate camera frame nb_points = features.shape[0] T_CiW = tf_inv(self.T_WCi) for i in range(nb_points): # Project point from world frame to camera frame p_W = features[i, :] p_C = tf_point(T_CiW, p_W) z = self.cam_geom.project(self.cam_params, p_C) if z is not None: self.measurements.append(z) self.feature_ids.append(i) def num_measurements(self): """ Return number of measurements """ return len(self.measurements) def draw_measurements(self): """ Returns camera measurements in an image """ kps = [kp for kp in self.measurements] img_w, img_h = self.cam_geom.resolution img = np.zeros((img_h, img_w), dtype=np.uint8) return draw_keypoints(img, kps) class SimCameraData: """ Sim camera data """ def __init__(self, cam_idx, camera, features): self.cam_idx = cam_idx self.camera = camera self.features = features self.timestamps = [] self.poses = {} self.frames = {} class SimImuData: """ Sim imu data """ def __init__(self, imu_idx): self.imu_idx = imu_idx self.timestamps = [] self.poses = {} self.vel = {} self.acc = {} self.gyr = {} def form_imu_buffer(self, start_idx, end_idx): """ Form ImuBuffer """ imu_ts = self.timestamps[start_idx:end_idx] imu_acc = [] imu_gyr = [] for ts in self.timestamps: imu_acc.append(self.acc[ts]) imu_gyr.append(self.gyr[ts]) return ImuBuffer(imu_ts, imu_acc, imu_gyr) class SimData: """ Sim data """ def __init__(self, circle_r, circle_v, **kwargs): # Settings self.circle_r = circle_r self.circle_v = circle_v self.cam_rate = 10.0 self.imu_rate = 200.0 self.nb_features = 200 # Trajectory data self.g = np.array([0.0, 0.0, 9.81]) self.circle_dist = 2.0 * pi * circle_r self.time_taken = self.circle_dist / self.circle_v self.w = -2.0 * pi * (1.0 / self.time_taken) self.theta_init = pi self.yaw_init = pi / 2.0 self.features = self._setup_features() # Simulate IMU self.imu0_data = None if kwargs.get("sim_imu", True): self.imu0_data = self._sim_imu(0) # Simulate camera self.mcam_data = {} self.cam_exts = {} if kwargs.get("sim_cams", True): # -- cam0 self.cam0_params = self._setup_camera(0) C_BC0 = euler321(*deg2rad([-90.0, 0.0, -90.0])) r_BC0 = np.array([0.0, 0.0, 0.0]) self.T_BC0 = tf(C_BC0, r_BC0) self.mcam_data[0] = self._sim_cam(0, self.cam0_params, self.T_BC0) self.cam_exts[0] = extrinsics_setup(self.T_BC0) # -- cam1 self.cam1_params = self._setup_camera(1) C_BC1 = euler321(*deg2rad([-90.0, 0.0, -90.0])) r_BC1 = np.array([0.0, 0.0, 0.0]) self.T_BC1 = tf(C_BC1, r_BC1) # -- Multicam data self.mcam_data[1] = self._sim_cam(1, self.cam1_params, self.T_BC1) self.cam_exts[1] = extrinsics_setup(self.T_BC1) # Timeline self.timeline = self._form_timeline() def get_camera_data(self, cam_idx): """ Get camera data """ return self.mcam_data[cam_idx] def get_camera_params(self, cam_idx): """ Get camera parameters """ return self.mcam_data[cam_idx].camera def get_camera_geometry(self, cam_idx): """ Get camera geometry """ return self.mcam_data[cam_idx].camera.data def get_camera_extrinsics(self, cam_idx): """ Get camera extrinsics """ return self.cam_exts[cam_idx] def plot_scene(self): """ Plot 3D Scene """ # Setup plt.figure() ax = plt.axes(projection='3d') # Plot features features = self.features ax.scatter3D(features[:, 0], features[:, 1], features[:, 2]) # Plot camera frames idx = 0 for _, T_WB in self.imu0_data.poses.items(): if idx % 100 == 0: T_BC0 = pose2tf(self.cam_exts[0].param) T_BC1 = pose2tf(self.cam_exts[1].param) plot_tf(ax, T_WB @ T_BC0) plot_tf(ax, T_WB @ T_BC1) if idx > 3000: break idx += 1 # Show plt.show() @staticmethod def create_or_load(circle_r, circle_v, pickle_path): """ Create or load SimData """ sim_data = None if os.path.exists(pickle_path): with open(pickle_path, 'rb') as f: sim_data = pickle.load(f) else: sim_data = SimData(circle_r, circle_v) with open(pickle_path, 'wb') as f: pickle.dump(sim_data, f) f.flush() return sim_data @staticmethod def _setup_camera(cam_idx): """ Setup camera """ res = [640, 480] fov = 120.0 fx = focal_length(res[0], fov) fy = focal_length(res[0], fov) cx = res[0] / 2.0 cy = res[1] / 2.0 proj_model = "pinhole" dist_model = "radtan4" proj_params = [fx, fy, cx, cy] dist_params = [0.0, 0.0, 0.0, 0.0] params = np.block([*proj_params, *dist_params]) return camera_params_setup(cam_idx, res, proj_model, dist_model, params) def _setup_features(self): """ Setup features """ origin = [0, 0, 0] dim = [self.circle_r * 2.0, self.circle_r * 2.0, self.circle_r * 1.5] return create_3d_features_perimeter(origin, dim, self.nb_features) def _sim_imu(self, imu_idx): """ Simulate IMU """ sim_data = SimImuData(imu_idx) time = 0.0 dt = 1.0 / self.imu_rate theta = self.theta_init yaw = self.yaw_init while time <= self.time_taken: # Timestamp ts = sec2ts(time) # IMU pose rx = self.circle_r * cos(theta) ry = self.circle_r * sin(theta) rz = 0.0 r_WS = np.array([rx, ry, rz]) C_WS = euler321(yaw, 0.0, 0.0) T_WS = tf(C_WS, r_WS) # IMU velocity vx = -self.circle_r * self.w * sin(theta) vy = self.circle_r * self.w * cos(theta) vz = 0.0 v_WS = np.array([vx, vy, vz]) # IMU acceleration ax = -self.circle_r * self.w**2 * cos(theta) ay = -self.circle_r * self.w**2 * sin(theta) az = 0.0 a_WS = np.array([ax, ay, az]) # IMU angular velocity wx = 0.0 wy = 0.0 wz = self.w w_WS = np.array([wx, wy, wz]) # IMU measurements acc = C_WS.T @ (a_WS + self.g) gyr = C_WS.T @ w_WS # Update sim_data.timestamps.append(ts) sim_data.poses[ts] = T_WS sim_data.vel[ts] = v_WS sim_data.acc[ts] = acc sim_data.gyr[ts] = gyr theta += self.w * dt yaw += self.w * dt time += dt return sim_data def _sim_cam(self, cam_idx, cam_params, T_BCi): """ Simulate camera """ sim_data = SimCameraData(cam_idx, cam_params, self.features) time = 0.0 dt = 1.0 / self.cam_rate theta = self.theta_init yaw = self.yaw_init while time <= self.time_taken: # Timestamp ts = sec2ts(time) # Body pose rx = self.circle_r * cos(theta) ry = self.circle_r * sin(theta) rz = 0.0 r_WB = [rx, ry, rz] C_WB = euler321(yaw, 0.0, 0.0) T_WB = tf(C_WB, r_WB) # Simulate camera pose and camera frame T_WCi = T_WB @ T_BCi cam_frame = SimCameraFrame(ts, cam_idx, cam_params, T_WCi, self.features) sim_data.timestamps.append(ts) sim_data.poses[ts] = T_WCi sim_data.frames[ts] = cam_frame # Update theta += self.w * dt yaw += self.w * dt time += dt return sim_data def _form_timeline(self): """ Form timeline """ # Form timeline timeline = Timeline() # -- Add imu events imu_idx = self.imu0_data.imu_idx for ts in self.imu0_data.timestamps: acc = self.imu0_data.acc[ts] gyr = self.imu0_data.gyr[ts] imu_event = ImuEvent(ts, imu_idx, acc, gyr) timeline.add_event(ts, imu_event) # -- Add camera events for cam_idx, cam_data in self.mcam_data.items(): for ts in cam_data.timestamps: frame = cam_data.frames[ts] fids = frame.feature_ids kps = frame.measurements sim_img = [] for i, fid in enumerate(fids): sim_img.append([fid, kps[i]]) cam_event = CameraEvent(ts, cam_idx, sim_img) timeline.add_event(ts, cam_event) return timeline class SimFeatureTracker(FeatureTracker): """ Sim Feature Tracker """ def __init__(self): FeatureTracker.__init__(self) def update(self, ts, mcam_imgs): """ Update Sim Feature Tracker """ for cam_idx, cam_data in mcam_imgs.items(): kps = [data[1] for data in cam_data] fids = [data[0] for data in cam_data] ft_data = FeatureTrackerData(cam_idx, None, kps, fids) self.cam_data[cam_idx] = ft_data # Update self.frame_idx += 1 self.prev_ts = ts self.prev_mcam_imgs = mcam_imgs return self.cam_data def visualize(self): """ Visualize """ # Image size # cam_res = cam0_params.data.resolution # img_w, img_h = cam_res # img0 = np.zeros((img_h, img_w), dtype=np.uint8) # kps = [kp for kp in ft_data[0].keypoints] # viz = draw_keypoints(img0, kps) # cv2.imshow('viz', viz) # cv2.waitKey(0) pass ############################################################################### # CONTROL ############################################################################### class PID: """ PID controller """ def __init__(self, k_p, k_i, k_d): self.k_p = k_p self.k_i = k_i self.k_d = k_d self.error_p = 0.0 self.error_i = 0.0 self.error_d = 0.0 self.error_prev = 0.0 self.error_sum = 0.0 def update(self, setpoint, actual, dt): """ Update """ # Calculate errors error = setpoint - actual self.error_sum += error * dt # Calculate output self.error_p = self.k_p * error self.error_i = self.k_i * self.error_sum self.error_d = self.k_d * (error - self.error_prev) / dt output = self.error_p + self.error_i + self.error_d # Keep track of error self.error_prev = error return output def reset(self): """ Reset """ class CarrotController: """ Carrot Controller """ def __init__(self): self.waypoints = [] self.wp_start = None self.wp_end = None self.wp_index = None self.look_ahead_dist = 0.0 def _calculate_closest_point(self, pos): """ Calculate closest point """ v1 = pos - self.wp_start v2 = self.wp_end - self.wp_start t = v1 @ v2 / v2.squaredNorm() pt = self.wp_start + t * v2 return (t, pt) def _calculate_carrot_point(self, pos): """ Calculate carrot point """ assert len(pos) == 3 t, closest_pt = self._calculate_closest_point(pos) carrot_pt = None if t == -1: # Closest point is before wp_start carrot_pt = self.wp_start elif t == 0: # Closest point is between wp_start wp_end u = self.wp_end - self.wp_start v = u / norm(u) carrot_pt = closest_pt + self.look_ahead_dist * v elif t == 1: # Closest point is after wp_end carrot_pt = self.wp_end return (t, carrot_pt) def update(self, pos): """ Update """ assert len(pos) == 3 # Calculate new carot point status, carrot_pt = self._calculate_carrot_point(pos) # Check if there are more waypoints if (self.wp_index + 1) == len(self.waypoints): return None # Update waypoints if status == 1: self.wp_index += 1 self.wp_start = self.wp_end self.wp_end = self.waypoints[self.wp_index] return carrot_pt ############################################################################### # Visualizer ############################################################################### import websockets import asyncio class DevServer: """ Dev server """ def __init__(self, loop_fn): self.host = "127.0.0.1" self.port = 5000 self.loop_fn = loop_fn def run(self): """ Run server """ kwargs = {"ping_timeout": 1, "close_timeout": 1} server = websockets.serve(self.loop_fn, self.host, self.port, **kwargs) loop = asyncio.get_event_loop() loop.run_until_complete(server) loop.run_forever() @staticmethod def stop(): """ Stop server """ asyncio.get_event_loop().stop() class MultiPlot: """ MultiPlot """ def __init__(self, has_gnd=False): self.plots = [] self.add_pos_xy_plot(has_gnd=has_gnd) self.add_pos_z_plot(has_gnd=has_gnd) self.add_roll_plot(has_gnd=has_gnd) self.add_pitch_plot(has_gnd=has_gnd) self.add_yaw_plot(has_gnd=has_gnd) self.add_pos_error_plot() self.add_att_error_plot() self.add_reproj_error_plot() self.plot_data = {} self.emit_rate = 8.0 # Hz self.last_updated = datetime.now() def _add_plot(self, title, xlabel, ylabel, trace_names, **kwargs): conf = {} conf["title"] = title conf["width"] = kwargs.get("width", 300) conf["height"] = kwargs.get("height", 280) conf["buf_size"] = kwargs.get("buf_size", 100) conf["trace_names"] = trace_names conf["xlabel"] = xlabel conf["ylabel"] = ylabel conf["show_legend"] = True if len(trace_names) > 1 else False self.plots.append(conf) def add_pos_xy_plot(self, **kwargs): """ Add Position X-Y Data """ title = "Position X-Y" xlabel = "x [m]" ylabel = "y [m]" trace_names = ["Estimate"] if kwargs.get("has_gnd"): trace_names.append("Ground-Truth") self._add_plot(title, xlabel, ylabel, trace_names) def add_pos_z_plot(self, **kwargs): """ Add Position Z Data """ xlabel = "Time [s]" ylabel = "y [m]" trace_names = ["Estimate"] if kwargs.get("has_gnd"): trace_names.append("Ground-Truth") self._add_plot("Position Z", xlabel, ylabel, trace_names) def add_roll_plot(self, **kwargs): """ Add Roll Data """ xlabel = "Time [s]" ylabel = "Attitude [deg]" trace_names = ["Estimate"] if kwargs.get("has_gnd"): trace_names.append("Ground-Truth") self._add_plot("Roll", xlabel, ylabel, trace_names) def add_pitch_plot(self, **kwargs): """ Add Roll Data """ xlabel = "Time [s]" ylabel = "Attitude [deg]" trace_names = ["Estimate"] if kwargs.get("has_gnd"): trace_names.append("Ground-Truth") self._add_plot("Pitch", xlabel, ylabel, trace_names) def add_yaw_plot(self, **kwargs): """ Add Yaw Data """ xlabel = "Time [s]" ylabel = "Attitude [deg]" trace_names = ["Estimate"] if kwargs.get("has_gnd"): trace_names.append("Ground-Truth") self._add_plot("Yaw", xlabel, ylabel, trace_names) def add_pos_error_plot(self): """ Add Position Error Data """ title = "Position Error" xlabel = "Time [s]" ylabel = "Position Error [m]" trace_names = ["Error"] self._add_plot(title, xlabel, ylabel, trace_names) def add_att_error_plot(self): """ Add Attitude Error Data """ title = "Attitude Error" xlabel = "Time [s]" ylabel = "Position Error [m]" trace_names = ["Error"] self._add_plot(title, xlabel, ylabel, trace_names) def add_reproj_error_plot(self): """ Add Reprojection Error Data """ title = "Reprojection Error" xlabel = "Time [s]" ylabel = "Reprojection Error [px]" trace_names = ["Mean", "RMSE"] self._add_plot(title, xlabel, ylabel, trace_names) def _form_plot_data(self, plot_title, time_s, **kwargs): gnd = kwargs.get("gnd") est = kwargs.get("est") err = kwargs.get("err") conf = {plot_title: {}} if gnd: conf[plot_title]["Ground-Truth"] = {"x": time_s, "y": gnd} if est: conf[plot_title]["Estimate"] = {"x": time_s, "y": est} if err: conf[plot_title]["Error"] = {"x": time_s, "y": err} self.plot_data.update(conf) def add_pos_xy_data(self, **kwargs): """ Add Position X-Y Data """ plot_title = "Position X-Y" conf = {plot_title: {}} if "gnd" in kwargs: gnd = kwargs["gnd"] conf[plot_title]["Ground-Truth"] = {"x": gnd[0], "y": gnd[1]} if "est" in kwargs: est = kwargs["est"] conf[plot_title]["Estimate"] = {"x": est[0], "y": est[1]} self.plot_data.update(conf) def add_pos_z_data(self, time_s, **kwargs): """ Add Position Z Data """ self._form_plot_data("Position Z", time_s, **kwargs) def add_roll_data(self, time_s, **kwargs): """ Add Roll Data """ self._form_plot_data("Roll", time_s, **kwargs) def add_pitch_data(self, time_s, **kwargs): """ Add Roll Data """ self._form_plot_data("Pitch", time_s, **kwargs) def add_yaw_data(self, time_s, **kwargs): """ Add Yaw Data """ self._form_plot_data("Yaw", time_s, **kwargs) def add_pos_error_data(self, time_s, error): """ Add Position Error Data """ self._form_plot_data("Position Error", time_s, err=error) def add_att_error_data(self, time_s, error): """ Add Attitude Error Data """ self._form_plot_data("Attitude Error", time_s, err=error) def add_reproj_error_data(self, time_s, reproj_rmse, reproj_mean): """ Add Reprojection Error Data """ plot_title = "Reprojection Error" conf = {plot_title: {}} conf[plot_title]["Mean"] = {"x": time_s, "y": reproj_rmse} conf[plot_title]["RMSE"] = {"x": time_s, "y": reproj_mean} self.plot_data.update(conf) def get_plots(self): """ Get plots """ return json.dumps(self.plots) def get_plot_data(self): """ Get plot data """ return json.dumps(self.plot_data) async def emit_data(self, ws): """ Emit data """ time_now = datetime.now() time_diff = (time_now - self.last_updated).total_seconds() if time_diff > (1.0 / self.emit_rate): await ws.send(self.get_plot_data()) self.last_updated = time_now ############################################################################### # UNITTESTS ############################################################################### import unittest euroc_data_path = '/data/euroc/raw/V1_01' # LINEAR ALGEBRA ############################################################## class TestLinearAlgebra(unittest.TestCase): """ Test Linear Algebra """ def test_normalize(self): """ Test normalize() """ x = np.array([1.0, 2.0, 3.0]) x_prime = normalize(x) self.assertTrue(isclose(norm(x_prime), 1.0)) def test_skew(self): """ Test skew() """ x = np.array([1.0, 2.0, 3.0]) S = np.array([[0.0, -3.0, 2.0], [3.0, 0.0, -1.0], [-2.0, 1.0, 0.0]]) self.assertTrue(matrix_equal(S, skew(x))) def test_skew_inv(self): """ Test skew_inv() """ x = np.array([1.0, 2.0, 3.0]) S = np.array([[0.0, -3.0, 2.0], [3.0, 0.0, -1.0], [-2.0, 1.0, 0.0]]) self.assertTrue(matrix_equal(x, skew_inv(S))) def test_matrix_equal(self): """ Test matrix_equal() """ A = ones((3, 3)) B = ones((3, 3)) self.assertTrue(matrix_equal(A, B)) C = 2.0 * ones((3, 3)) self.assertFalse(matrix_equal(A, C)) # def test_check_jacobian(self): # step_size = 1e-6 # threshold = 1e-5 # # x = 2 # y0 = x**2 # y1 = (x + step_size)**2 # jac = 2 * x # fdiff = y1 - y0 # # jac_name = "jac" # fdiff = (y1 - y0) / step_size # self.assertTrue(check_jacobian(jac_name, fdiff, jac, threshold)) class TestLie(unittest.TestCase): """ Test Lie algebra functions """ def test_Exp_Log(self): """ Test Exp() and Log() """ pass # TRANSFORM ################################################################### class TestTransform(unittest.TestCase): """ Test transform functions """ def test_homogeneous(self): """ Test homogeneous() """ p = np.array([1.0, 2.0, 3.0]) hp = homogeneous(p) self.assertTrue(hp[0] == 1.0) self.assertTrue(hp[1] == 2.0) self.assertTrue(hp[2] == 3.0) self.assertTrue(len(hp) == 4) def test_dehomogeneous(self): """ Test dehomogeneous() """ p = np.array([1.0, 2.0, 3.0]) hp = np.array([1.0, 2.0, 3.0, 1.0]) p = dehomogeneous(hp) self.assertTrue(p[0] == 1.0) self.assertTrue(p[1] == 2.0) self.assertTrue(p[2] == 3.0) self.assertTrue(len(p) == 3) def test_rotx(self): """ Test rotx() """ x = np.array([0.0, 1.0, 0.0]) C = rotx(deg2rad(90.0)) x_prime = C @ x self.assertTrue(np.allclose(x_prime, [0.0, 0.0, 1.0])) def test_roty(self): """ Test roty() """ x = np.array([1.0, 0.0, 0.0]) C = roty(deg2rad(90.0)) x_prime = C @ x self.assertTrue(np.allclose(x_prime, [0.0, 0.0, -1.0])) def test_rotz(self): """ Test rotz() """ x = np.array([1.0, 0.0, 0.0]) C = rotz(deg2rad(90.0)) x_prime = C @ x self.assertTrue(np.allclose(x_prime, [0.0, 1.0, 0.0])) def test_aa2quat(self): """ Test aa2quat() """ pass def test_rvec2rot(self): """ Test rvec2quat() """ pass def test_vecs2axisangle(self): """ Test vecs2axisangle() """ pass def test_euler321(self): """ Test euler321() """ C = euler321(0.0, 0.0, 0.0) self.assertTrue(np.array_equal(C, eye(3))) def test_euler2quat_and_quat2euler(self): """ Test euler2quat() and quat2euler() """ y_in = deg2rad(3.0) p_in = deg2rad(2.0) r_in = deg2rad(1.0) q = euler2quat(y_in, p_in, r_in) ypr_out = quat2euler(q) self.assertTrue(len(q) == 4) self.assertTrue(abs(y_in - ypr_out[0]) < 1e-5) self.assertTrue(abs(p_in - ypr_out[1]) < 1e-5) self.assertTrue(abs(r_in - ypr_out[2]) < 1e-5) def test_quat2rot(self): """ Test quat2rot() """ ypr = np.array([0.1, 0.2, 0.3]) C_i = euler321(*ypr) C_j = quat2rot(euler2quat(*ypr)) self.assertTrue(np.allclose(C_i, C_j)) def test_rot2euler(self): """ Test rot2euler() """ ypr = np.array([0.1, 0.2, 0.3]) C = euler321(*ypr) euler = rot2euler(C) self.assertTrue(np.allclose(ypr, euler)) def test_rot2quat(self): """ Test rot2quat() """ ypr = np.array([0.1, 0.2, 0.3]) C = euler321(*ypr) q = rot2quat(C) self.assertTrue(np.allclose(quat2euler(q), ypr)) def test_quat_norm(self): """ Test quat_norm() """ q = np.array([1.0, 0.0, 0.0, 0.0]) self.assertTrue(isclose(quat_norm(q), 1.0)) def test_quat_normalize(self): """ Test quat_normalize() """ q = np.array([1.0, 0.1, 0.2, 0.3]) q = quat_normalize(q) self.assertTrue(isclose(quat_norm(q), 1.0)) def test_quat_conj(self): """ Test quat_conj() """ ypr = np.array([0.1, 0.0, 0.0]) q = rot2quat(euler321(*ypr)) q_conj = quat_conj(q) self.assertTrue(np.allclose(quat2euler(q_conj), -1.0 * ypr)) def test_quat_inv(self): """ Test quat_inv() """ ypr = np.array([0.1, 0.0, 0.0]) q = rot2quat(euler321(*ypr)) q_inv = quat_inv(q) self.assertTrue(np.allclose(quat2euler(q_inv), -1.0 * ypr)) def test_quat_mul(self): """ Test quat_mul() """ p = euler2quat(deg2rad(3.0), deg2rad(2.0), deg2rad(1.0)) q = euler2quat(deg2rad(1.0), deg2rad(2.0), deg2rad(3.0)) r = quat_mul(p, q) self.assertTrue(r is not None) def test_quat_omega(self): """ Test quat_omega() """ pass def test_quat_slerp(self): """ Test quat_slerp() """ q_i = rot2quat(euler321(0.1, 0.0, 0.0)) q_j = rot2quat(euler321(0.2, 0.0, 0.0)) q_k = quat_slerp(q_i, q_j, 0.5) self.assertTrue(np.allclose(quat2euler(q_k), [0.15, 0.0, 0.0])) q_i = rot2quat(euler321(0.0, 0.1, 0.0)) q_j = rot2quat(euler321(0.0, 0.2, 0.0)) q_k = quat_slerp(q_i, q_j, 0.5) self.assertTrue(np.allclose(quat2euler(q_k), [0.0, 0.15, 0.0])) q_i = rot2quat(euler321(0.0, 0.0, 0.1)) q_j = rot2quat(euler321(0.0, 0.0, 0.2)) q_k = quat_slerp(q_i, q_j, 0.5) self.assertTrue(np.allclose(quat2euler(q_k), [0.0, 0.0, 0.15])) def test_tf(self): """ Test tf() """ r = np.array([1.0, 2.0, 3.0]) q = np.array([0.0, 0.0, 0.0, 1.0]) T = tf(q, r) self.assertTrue(np.allclose(T[0:3, 0:3], quat2rot(q))) self.assertTrue(np.allclose(T[0:3, 3], r)) # CV ########################################################################## class TestCV(unittest.TestCase): """ Test computer vision functions """ def setUp(self): # Camera img_w = 640 img_h = 480 fx = focal_length(img_w, 90.0) fy = focal_length(img_w, 90.0) cx = img_w / 2.0 cy = img_h / 2.0 self.proj_params = [fx, fy, cx, cy] # Camera pose in world frame C_WC = euler321(-pi / 2, 0.0, -pi / 2) r_WC = np.array([0.0, 0.0, 0.0]) self.T_WC = tf(C_WC, r_WC) # 3D World point self.p_W = np.array([10.0, 0.0, 0.0]) # Point w.r.t camera self.p_C = tf_point(inv(self.T_WC), self.p_W) self.x = np.array([self.p_C[0] / self.p_C[2], self.p_C[1] / self.p_C[2]]) def test_linear_triangulation(self): """ Test linear_triangulation() """ # Camera i - Camera j extrinsics C_CiCj = eye(3) r_CiCj = np.array([0.05, 0.0, 0.0]) T_CiCj = tf(C_CiCj, r_CiCj) # Camera 0 pose in world frame C_WCi = euler321(-pi / 2, 0.0, -pi / 2) r_WCi = np.array([0.0, 0.0, 0.0]) T_WCi = tf(C_WCi, r_WCi) # Camera 1 pose in world frame T_WCj = T_WCi @ T_CiCj # Projection matrices P_i and P_j P_i = pinhole_P(self.proj_params, eye(4)) P_j = pinhole_P(self.proj_params, T_CiCj) # Test multiple times nb_tests = 100 for _ in range(nb_tests): # Project feature point p_W to image plane x = np.random.uniform(-0.05, 0.05) y = np.random.uniform(-0.05, 0.05) p_W = np.array([10.0, x, y]) p_Ci_gnd = tf_point(inv(T_WCi), p_W) p_Cj_gnd = tf_point(inv(T_WCj), p_W) z_i = pinhole_project(self.proj_params, p_Ci_gnd) z_j = pinhole_project(self.proj_params, p_Cj_gnd) # Triangulate p_Ci_est = linear_triangulation(P_i, P_j, z_i, z_j) self.assertTrue(np.allclose(p_Ci_est, p_Ci_gnd)) def test_pinhole_K(self): """ Test pinhole_K() """ fx = 1.0 fy = 2.0 cx = 3.0 cy = 4.0 proj_params = [fx, fy, cx, cy] K = pinhole_K(proj_params) expected = np.array([[1.0, 0.0, 3.0], [0.0, 2.0, 4.0], [0.0, 0.0, 1.0]]) self.assertTrue(np.array_equal(K, expected)) def test_pinhole_project(self): """ Test pinhole_project() """ z = pinhole_project(self.proj_params, self.p_C) self.assertTrue(isclose(z[0], 320.0)) self.assertTrue(isclose(z[1], 240.0)) def test_pinhole_params_jacobian(self): """ Test pinhole_params_jacobian() """ # Pinhole params jacobian fx, fy, cx, cy = self.proj_params z = np.array([fx * self.x[0] + cx, fy * self.x[1] + cy]) J = pinhole_params_jacobian(self.x) # Perform numerical diff to obtain finite difference step_size = 1e-6 tol = 1e-4 finite_diff = zeros((2, 4)) for i in range(4): params_diff = list(self.proj_params) params_diff[i] += step_size fx, fy, cx, cy = params_diff z_diff = np.array([fx * self.x[0] + cx, fy * self.x[1] + cy]) finite_diff[0:2, i] = (z_diff - z) / step_size self.assertTrue(matrix_equal(finite_diff, J, tol, True)) def test_pinhole_point_jacobian(self): """ Test pinhole_point_jacobian() """ # Pinhole params jacobian fx, fy, cx, cy = self.proj_params z = np.array([fx * self.x[0] + cx, fy * self.x[1] + cy]) J = pinhole_point_jacobian(self.proj_params) # Perform numerical diff to obtain finite difference step_size = 1e-6 tol = 1e-4 finite_diff = zeros((2, 2)) for i in range(2): x_diff = list(self.x) x_diff[i] += step_size z_diff = np.array([fx * x_diff[0] + cx, fy * x_diff[1] + cy]) finite_diff[0:2, i] = (z_diff - z) / step_size self.assertTrue(matrix_equal(finite_diff, J, tol, True)) # DATASET #################################################################### class TestEuroc(unittest.TestCase): """ Test Euroc dataset loader """ def test_load(self): """ Test load """ dataset = EurocDataset(euroc_data_path) self.assertTrue(dataset is not None) class TestKitti(unittest.TestCase): """ Test KITTI dataset loader """ @unittest.skip("") def test_load(self): """ Test load """ data_dir = '/data/kitti' date = "2011_09_26" seq = "93" dataset = KittiRawDataset(data_dir, date, seq, True) # dataset.plot_frames() for i in range(dataset.nb_camera_images()): cam0_img = dataset.get_camera_image(0, index=i) cam1_img = dataset.get_camera_image(1, index=i) cam2_img = dataset.get_camera_image(2, index=i) cam3_img = dataset.get_camera_image(3, index=i) img_size = cam0_img.shape img_new_size = (int(img_size[1] / 2.0), int(img_size[0] / 2.0)) cam0_img = cv2.resize(cam0_img, img_new_size) cam1_img = cv2.resize(cam1_img, img_new_size) cam2_img = cv2.resize(cam2_img, img_new_size) cam3_img = cv2.resize(cam3_img, img_new_size) cv2.imshow("viz", cv2.vconcat([cam0_img, cam1_img, cam2_img, cam3_img])) cv2.waitKey(0) self.assertTrue(dataset is not None) # STATE ESTIMATION ############################################################ class TestFactors(unittest.TestCase): """ Test factors """ def test_pose_factor(self): """ Test pose factor """ # Setup camera pose T_WC rot = euler2quat(-pi / 2.0, 0.0, -pi / 2.0) trans = np.array([0.1, 0.2, 0.3]) T_WC = tf(rot, trans) rot = euler2quat(-pi / 2.0 + 0.01, 0.0 + 0.01, -pi / 2.0 + 0.01) trans = np.array([0.1 + 0.01, 0.2 + 0.01, 0.3 + 0.01]) T_WC_diff = tf(rot, trans) pose_est = pose_setup(0, T_WC_diff) # Create factor param_ids = [0] covar = eye(6) factor = PoseFactor(param_ids, T_WC, covar) # Test jacobians fvars = [pose_est] self.assertTrue(check_factor_jacobian(factor, fvars, 0, "J_pose")) def test_ba_factor(self): """ Test ba factor """ # Setup camera pose T_WC rot = euler2quat(-pi / 2.0, 0.0, -pi / 2.0) trans = np.array([0.1, 0.2, 0.3]) T_WC = tf(rot, trans) cam_pose = pose_setup(0, T_WC) # Setup cam0 cam_idx = 0 img_w = 640 img_h = 480 res = [img_w, img_h] fov = 60.0 fx = focal_length(img_w, fov) fy = focal_length(img_h, fov) cx = img_w / 2.0 cy = img_h / 2.0 params = [fx, fy, cx, cy, -0.01, 0.01, 1e-4, 1e-4] cam_params = camera_params_setup(cam_idx, res, "pinhole", "radtan4", params) cam_geom = camera_geometry_setup(cam_idx, res, "pinhole", "radtan4") # Setup feature p_W = np.array([10, random.uniform(0.0, 1.0), random.uniform(0.0, 1.0)]) # -- Feature XYZ parameterization feature = feature_setup(p_W) # # -- Feature inverse depth parameterization # param = idp_param(camera, T_WC, z) # feature = feature_init(0, param) # -- Calculate image point p_C = tf_point(inv(T_WC), p_W) z = cam_geom.project(cam_params.param, p_C) # Setup factor param_ids = [0, 1, 2] factor = BAFactor(cam_geom, param_ids, z) # Test jacobians fvars = [cam_pose, feature, cam_params] self.assertTrue(check_factor_jacobian(factor, fvars, 0, "J_cam_pose")) self.assertTrue(check_factor_jacobian(factor, fvars, 1, "J_feature")) self.assertTrue(check_factor_jacobian(factor, fvars, 2, "J_cam_params")) def test_vision_factor(self): """ Test vision factor """ # Setup camera pose T_WB rot = euler2quat(0.01, 0.01, 0.03) trans = np.array([0.001, 0.002, 0.003]) T_WB = tf(rot, trans) pose = pose_setup(0, T_WB) # Setup camera extrinsics T_BCi rot = euler2quat(-pi / 2.0, 0.0, -pi / 2.0) trans = np.array([0.1, 0.2, 0.3]) T_BCi = tf(rot, trans) cam_exts = extrinsics_setup(T_BCi) # Setup cam0 cam_idx = 0 img_w = 640 img_h = 480 res = [img_w, img_h] fov = 60.0 fx = focal_length(img_w, fov) fy = focal_length(img_h, fov) cx = img_w / 2.0 cy = img_h / 2.0 params = [fx, fy, cx, cy, -0.01, 0.01, 1e-4, 1e-4] cam_params = camera_params_setup(cam_idx, res, "pinhole", "radtan4", params) cam_geom = camera_geometry_setup(cam_idx, res, "pinhole", "radtan4") # Setup feature p_W = np.array([10, random.uniform(0.0, 1.0), random.uniform(0.0, 1.0)]) # -- Feature XYZ parameterization feature = feature_setup(p_W) # # -- Feature inverse depth parameterization # param = idp_param(camera, T_WC, z) # feature = feature_init(0, param) # -- Calculate image point T_WCi = T_WB * T_BCi p_C = tf_point(inv(T_WCi), p_W) z = cam_geom.project(cam_params.param, p_C) # Setup factor param_ids = [0, 1, 2, 3] factor = VisionFactor(cam_geom, param_ids, z) # Test jacobians fvars = [pose, cam_exts, feature, cam_params] self.assertTrue(check_factor_jacobian(factor, fvars, 0, "J_pose")) self.assertTrue(check_factor_jacobian(factor, fvars, 1, "J_cam_exts")) self.assertTrue(check_factor_jacobian(factor, fvars, 2, "J_feature")) self.assertTrue(check_factor_jacobian(factor, fvars, 3, "J_cam_params")) def test_calib_vision_factor(self): """ Test CalibVisionFactor """ # Calibration target pose T_WF C_WF = euler321(-pi / 2.0, 0.0, deg2rad(80.0)) r_WF = np.array([0.001, 0.001, 0.001]) T_WF = tf(C_WF, r_WF) # Body pose T_WB rot = euler2quat(-pi / 2.0, 0.0, -pi / 2.0) trans = np.array([-10.0, 0.0, 0.0]) T_WB = tf(rot, trans) # Relative pose T_BF T_BF = inv(T_WB) @ T_WF # Camera extrinsics T_BCi rot = eye(3) trans = np.array([0.001, 0.002, 0.003]) T_BCi = tf(rot, trans) # Camera 0 cam_idx = 0 img_w = 640 img_h = 480 res = [img_w, img_h] fov = 90.0 fx = focal_length(img_w, fov) fy = focal_length(img_h, fov) cx = img_w / 2.0 cy = img_h / 2.0 params = [fx, fy, cx, cy, -0.01, 0.01, 1e-4, 1e-4] cam_params = camera_params_setup(cam_idx, res, "pinhole", "radtan4", params) cam_geom = camera_geometry_setup(cam_idx, res, "pinhole", "radtan4") # Test factor grid = AprilGrid() tag_id = 1 corner_idx = 2 r_FFi = grid.get_object_point(tag_id, corner_idx) T_CiF = inv(T_BCi) @ T_BF r_CiFi = tf_point(T_CiF, r_FFi) z = cam_geom.project(cam_params.param, r_CiFi) pids = [0, 1, 2] grid_data = (tag_id, corner_idx, r_FFi, z) factor = CalibVisionFactor(cam_geom, pids, grid_data) # Test jacobianstf(rot, trans) rel_pose = pose_setup(0, T_BF) cam_exts = extrinsics_setup(T_BCi) fvars = [rel_pose, cam_exts, cam_params] self.assertTrue(check_factor_jacobian(factor, fvars, 0, "J_rel_pose")) self.assertTrue(check_factor_jacobian(factor, fvars, 1, "J_cam_exts")) self.assertTrue(check_factor_jacobian(factor, fvars, 2, "J_cam_params")) def test_imu_factor_propagate(self): """ Test IMU factor propagate """ # Sim imu data circle_r = 0.5 circle_v = 1.0 sim_data = SimData(circle_r, circle_v, sim_cams=False) imu_data = sim_data.imu0_data # Setup imu parameters noise_acc = 0.08 # accelerometer measurement noise stddev. noise_gyr = 0.004 # gyroscope measurement noise stddev. noise_ba = 0.00004 # accelerometer bias random work noise stddev. noise_bg = 2.0e-6 # gyroscope bias random work noise stddev. imu_params = ImuParams(noise_acc, noise_gyr, noise_ba, noise_bg) # Setup imu buffer start_idx = 0 end_idx = 10 # end_idx = len(imu_data.timestamps) - 1 imu_buf = imu_data.form_imu_buffer(start_idx, end_idx) # Pose i ts_i = imu_buf.ts[start_idx] T_WS_i = imu_data.poses[ts_i] # Speed and bias i ts_i = imu_buf.ts[start_idx] vel_i = imu_data.vel[ts_i] ba_i = np.array([0.0, 0.0, 0.0]) bg_i = np.array([0.0, 0.0, 0.0]) sb_i = speed_biases_setup(ts_i, vel_i, bg_i, ba_i) # Propagate imu measurements data = ImuFactor.propagate(imu_buf, imu_params, sb_i) # Check propagation ts_j = imu_data.timestamps[end_idx - 1] T_WS_j_est = T_WS_i @ tf(data.dC, data.dr) C_WS_j_est = tf_rot(T_WS_j_est) T_WS_j_gnd = imu_data.poses[ts_j] C_WS_j_gnd = tf_rot(T_WS_j_gnd) # -- Position trans_diff = norm(tf_trans(T_WS_j_gnd) - tf_trans(T_WS_j_est)) self.assertTrue(trans_diff < 0.05) # -- Rotation dC = C_WS_j_gnd.T * C_WS_j_est dq = quat_normalize(rot2quat(dC)) dC = quat2rot(dq) rpy_diff = rad2deg(acos((trace(dC) - 1.0) / 2.0)) self.assertTrue(rpy_diff < 1.0) def test_imu_factor(self): """ Test IMU factor """ # Simulate imu data circle_r = 0.5 circle_v = 1.0 sim_data = SimData(circle_r, circle_v, sim_cams=False) imu_data = sim_data.imu0_data # Setup imu parameters noise_acc = 0.08 # accelerometer measurement noise stddev. noise_gyr = 0.004 # gyroscope measurement noise stddev. noise_ba = 0.00004 # accelerometer bias random work noise stddev. noise_bg = 2.0e-6 # gyroscope bias random work noise stddev. imu_params = ImuParams(noise_acc, noise_gyr, noise_ba, noise_bg) # Setup imu buffer start_idx = 0 end_idx = 10 imu_buf = imu_data.form_imu_buffer(start_idx, end_idx) # Pose i ts_i = imu_buf.ts[start_idx] T_WS_i = imu_data.poses[ts_i] pose_i = pose_setup(ts_i, T_WS_i) # Pose j ts_j = imu_buf.ts[end_idx - 1] T_WS_j = imu_data.poses[ts_j] pose_j = pose_setup(ts_j, T_WS_j) # Speed and bias i vel_i = imu_data.vel[ts_i] ba_i = np.array([0.0, 0.0, 0.0]) bg_i = np.array([0.0, 0.0, 0.0]) sb_i = speed_biases_setup(ts_i, vel_i, bg_i, ba_i) # Speed and bias j vel_j = imu_data.vel[ts_j] ba_j = np.array([0.0, 0.0, 0.0]) bg_j = np.array([0.0, 0.0, 0.0]) sb_j = speed_biases_setup(ts_j, vel_j, bg_j, ba_j) # Setup IMU factor param_ids = [0, 1, 2, 3] factor = ImuFactor(param_ids, imu_params, imu_buf, sb_i) # Test jacobians fvars = [pose_i, sb_i, pose_j, sb_j] self.assertTrue(factor) # self.assertTrue(check_factor_jacobian(factor, fvars, 0, "J_pose_i")) # self.assertTrue(check_factor_jacobian(factor, fvars, 1, "J_sb_i", verbose=True)) # self.assertTrue(check_factor_jacobian(factor, fvars, 2, "J_pose_j", verbose=True)) self.assertTrue( check_factor_jacobian(factor, fvars, 3, "J_sb_j", verbose=True)) class TestFactorGraph(unittest.TestCase): """ Test Factor Graph """ @classmethod def setUpClass(cls): super(TestFactorGraph, cls).setUpClass() circle_r = 5.0 circle_v = 1.0 pickle_path = '/tmp/sim_data.pickle' cls.sim_data = SimData.create_or_load(circle_r, circle_v, pickle_path) def setUp(self): self.sim_data = TestFactorGraph.sim_data def test_factor_graph_add_param(self): """ Test FactorGrpah.add_param() """ # Setup camera pose T_WC rot = euler2quat(-pi / 2.0, 0.0, -pi / 2.0) trans = np.array([0.1, 0.2, 0.3]) T_WC = tf(rot, trans) pose0 = pose_setup(0, T_WC) pose1 = pose_setup(1, T_WC) # Add params graph = FactorGraph() pose0_id = graph.add_param(pose0) pose1_id = graph.add_param(pose1) # Assert self.assertEqual(pose0_id, 0) self.assertEqual(pose1_id, 1) self.assertNotEqual(pose0, pose1) self.assertEqual(graph.params[pose0_id], pose0) self.assertEqual(graph.params[pose1_id], pose1) def test_factor_graph_add_factor(self): """ Test FactorGrpah.add_factor() """ # Setup factor graph graph = FactorGraph() # Setup camera pose T_WC rot = euler2quat(-pi / 2.0, 0.0, -pi / 2.0) trans = np.array([0.1, 0.2, 0.3]) T_WC = tf(rot, trans) pose = pose_setup(0, T_WC) pose_id = graph.add_param(pose) # Create factor param_ids = [pose_id] covar = eye(6) pose_factor = PoseFactor(param_ids, T_WC, covar) pose_factor_id = graph.add_factor(pose_factor) # Assert self.assertEqual(len(graph.params), 1) self.assertEqual(len(graph.factors), 1) self.assertEqual(graph.factors[pose_factor_id], pose_factor) def test_factor_graph_solve_vo(self): """ Test solving a visual odometry problem """ # Sim data cam0_data = self.sim_data.get_camera_data(0) cam0_params = self.sim_data.get_camera_params(0) cam0_geom = self.sim_data.get_camera_geometry(0) # Setup factor graph poses_gnd = [] poses_init = [] poses_est = [] graph = FactorGraph() # -- Add features features = self.sim_data.features feature_ids = [] for i in range(features.shape[0]): p_W = features[i, :] # p_W += np.random.rand(3) * 0.1 # perturb feature feature = feature_setup(p_W, fix=True) feature_ids.append(graph.add_param(feature)) # -- Add cam0 cam0_id = graph.add_param(cam0_params) # -- Build bundle adjustment problem nb_poses = 0 for ts in cam0_data.timestamps: # Camera frame at ts cam_frame = cam0_data.frames[ts] # Add camera pose T_WC0 T_WC0_gnd = cam0_data.poses[ts] # -- Perturb camera pose trans_rand = np.random.rand(3) rvec_rand = np.random.rand(3) * 0.1 T_WC0_init = tf_update(T_WC0_gnd, np.block([*trans_rand, *rvec_rand])) # -- Add to graph pose = pose_setup(ts, T_WC0_init) pose_id = graph.add_param(pose) poses_gnd.append(T_WC0_gnd) poses_init.append(T_WC0_init) poses_est.append(pose_id) nb_poses += 1 # Add ba factors for i, idx in enumerate(cam_frame.feature_ids): z = cam_frame.measurements[i] param_ids = [pose_id, feature_ids[idx], cam0_id] graph.add_factor(BAFactor(cam0_geom, param_ids, z)) # Solve # debug = True debug = False # prof = profile_start() graph.solve(debug) # profile_stop(prof) # Visualize if debug: pos_gnd = np.array([tf_trans(T) for T in poses_gnd]) pos_init = np.array([tf_trans(T) for T in poses_init]) pos_est = [] for pose_pid in poses_est: pose = graph.params[pose_pid] pos_est.append(tf_trans(pose2tf(pose.param))) pos_est = np.array(pos_est) plt.figure() plt.plot(pos_gnd[:, 0], pos_gnd[:, 1], 'g-', label="Ground Truth") plt.plot(pos_init[:, 0], pos_init[:, 1], 'r-', label="Initial") plt.plot(pos_est[:, 0], pos_est[:, 1], 'b-', label="Estimated") plt.xlabel("Displacement [m]") plt.ylabel("Displacement [m]") plt.legend(loc=0) plt.show() # Asserts errors = graph.get_reproj_errors() self.assertTrue(rmse(errors) < 0.1) def test_factor_graph_solve_io(self): """ Test solving a pure inertial odometry problem """ # Imu params noise_acc = 0.08 # accelerometer measurement noise stddev. noise_gyr = 0.004 # gyroscope measurement noise stddev. noise_ba = 0.00004 # accelerometer bias random work noise stddev. noise_bg = 2.0e-6 # gyroscope bias random work noise stddev. imu_params = ImuParams(noise_acc, noise_gyr, noise_ba, noise_bg) # Setup factor graph imu0_data = self.sim_data.imu0_data window_size = 5 start_idx = 0 # end_idx = 200 # end_idx = 2000 end_idx = int((len(imu0_data.timestamps) - 1) / 2.0) poses_init = [] poses_est = [] sb_est = [] graph = FactorGraph() graph.solver_lambda = 1e4 # -- Pose i ts_i = imu0_data.timestamps[start_idx] T_WS_i = imu0_data.poses[ts_i] pose_i = pose_setup(ts_i, T_WS_i) pose_i_id = graph.add_param(pose_i) poses_init.append(T_WS_i) poses_est.append(pose_i_id) # -- Speed and biases i vel_i = imu0_data.vel[ts_i] ba_i = np.array([0.0, 0.0, 0.0]) bg_i = np.array([0.0, 0.0, 0.0]) sb_i = speed_biases_setup(ts_i, vel_i, ba_i, bg_i) sb_i_id = graph.add_param(sb_i) sb_est.append(sb_i_id) for ts_idx in range(start_idx + window_size, end_idx, window_size): # -- Pose j ts_j = imu0_data.timestamps[ts_idx] T_WS_j = imu0_data.poses[ts_j] # ---- Pertrub pose j trans_rand = np.random.rand(3) rvec_rand = np.random.rand(3) * 0.01 T_WS_j = tf_update(T_WS_j, np.block([*trans_rand, *rvec_rand])) # ---- Add to factor graph pose_j = pose_setup(ts_j, T_WS_j) pose_j_id = graph.add_param(pose_j) # -- Speed and biases j vel_j = imu0_data.vel[ts_j] ba_j = np.array([0.0, 0.0, 0.0]) bg_j = np.array([0.0, 0.0, 0.0]) sb_j = speed_biases_setup(ts_j, vel_j, ba_j, bg_j) sb_j_id = graph.add_param(sb_j) # ---- Keep track of initial and estimate pose poses_init.append(T_WS_j) poses_est.append(pose_j_id) sb_est.append(sb_j_id) # -- Imu Factor param_ids = [pose_i_id, sb_i_id, pose_j_id, sb_j_id] imu_buf = imu0_data.form_imu_buffer(ts_idx - window_size, ts_idx) factor = ImuFactor(param_ids, imu_params, imu_buf, sb_i) graph.add_factor(factor) # -- Update pose_i_id = pose_j_id pose_i = pose_j sb_i_id = sb_j_id sb_i = sb_j # Solve debug = False # debug = True # prof = profile_start() graph.solve(debug) # profile_stop(prof) if debug: pos_init = np.array([tf_trans(T) for T in poses_init]) pos_est = [] for pose_pid in poses_est: pose = graph.params[pose_pid] pos_est.append(tf_trans(pose2tf(pose.param))) pos_est = np.array(pos_est) sb_est = [graph.params[pid] for pid in sb_est] sb_ts0 = sb_est[0].ts sb_time = np.array([ts2sec(sb.ts - sb_ts0) for sb in sb_est]) vel_est = np.array([sb.param[0:3] for sb in sb_est]) ba_est = np.array([sb.param[3:6] for sb in sb_est]) bg_est = np.array([sb.param[6:9] for sb in sb_est]) plt.figure() plt.subplot(411) plt.plot(pos_init[:, 0], pos_init[:, 1], 'r-') plt.plot(pos_est[:, 0], pos_est[:, 1], 'b-') plt.xlabel("Displacement [m]") plt.ylabel("Displacement [m]") plt.subplot(412) plt.plot(sb_time, vel_est[:, 0], 'r-') plt.plot(sb_time, vel_est[:, 1], 'g-') plt.plot(sb_time, vel_est[:, 2], 'b-') plt.subplot(413) plt.plot(sb_time, ba_est[:, 0], 'r-') plt.plot(sb_time, ba_est[:, 1], 'g-') plt.plot(sb_time, ba_est[:, 2], 'b-') plt.subplot(414) plt.plot(sb_time, bg_est[:, 0], 'r-') plt.plot(sb_time, bg_est[:, 1], 'g-') plt.plot(sb_time, bg_est[:, 2], 'b-') plt.show() @unittest.skip("") def test_factor_graph_solve_vio(self): """ Test solving a visual inertial odometry problem """ # Imu params noise_acc = 0.08 # accelerometer measurement noise stddev. noise_gyr = 0.004 # gyroscope measurement noise stddev. noise_ba = 0.00004 # accelerometer bias random work noise stddev. noise_bg = 2.0e-6 # gyroscope bias random work noise stddev. imu_params = ImuParams(noise_acc, noise_gyr, noise_ba, noise_bg) # Setup factor graph feature_tracker = SimFeatureTracker() tracker = Tracker(feature_tracker) # -- Set initial pose ts0 = self.sim_data.imu0_data.timestamps[0] T_WB = self.sim_data.imu0_data.poses[ts0] tracker.set_initial_pose(T_WB) # -- Add imu tracker.add_imu(imu_params) # -- Add cam0 cam0_idx = 0 cam0_data = self.sim_data.mcam_data[cam0_idx] cam0_params = cam0_data.camera cam0_exts = extrinsics_setup(self.sim_data.T_BC0) tracker.add_camera(cam0_idx, cam0_params, cam0_exts) # -- Add cam1 cam1_idx = 1 cam1_data = self.sim_data.mcam_data[cam1_idx] cam1_params = cam1_data.camera cam1_exts = extrinsics_setup(self.sim_data.T_BC1) tracker.add_camera(cam1_idx, cam1_params, cam1_exts) # -- Add camera overlap tracker.add_overlap(cam0_idx, cam1_idx) # -- Loop through simulation data mcam_buf = MultiCameraBuffer(2) for ts in self.sim_data.timeline.get_timestamps(): for event in self.sim_data.timeline.get_events(ts): if isinstance(event, ImuEvent): tracker.inertial_callback(event.ts, event.acc, event.gyr) elif isinstance(event, CameraEvent): mcam_buf.add(ts, event.cam_idx, event.image) if mcam_buf.ready(): tracker.vision_callback(ts, mcam_buf.get_data()) mcam_buf.reset() class TestFeatureTracking(unittest.TestCase): """ Test feature tracking functions """ @classmethod def setUpClass(cls): super(TestFeatureTracking, cls).setUpClass() cls.dataset = EurocDataset(euroc_data_path) def setUp(self): # Setup test images self.dataset = TestFeatureTracking.dataset ts = self.dataset.cam0_data.timestamps[800] img0_path = self.dataset.cam0_data.image_paths[ts] img1_path = self.dataset.cam1_data.image_paths[ts] self.img0 = cv2.imread(img0_path, cv2.IMREAD_GRAYSCALE) self.img1 = cv2.imread(img1_path, cv2.IMREAD_GRAYSCALE) def test_spread_keypoints(self): """ Test spread_keypoints() """ # img = np.zeros((140, 160)) # kps = [] # kps.append(cv2.KeyPoint(10, 10, 0, 0.0, 0.0, 0)) # kps.append(cv2.KeyPoint(150, 130, 0, 0.0, 0.0, 1)) # kps = spread_keypoints(img, kps, 5, debug=True) detector = cv2.FastFeatureDetector_create(threshold=50) kwargs = {'optflow_mode': True, 'debug': False} kps = grid_detect(detector, self.img0, **kwargs) kps = spread_keypoints(self.img0, kps, 20, debug=False) self.assertTrue(len(kps)) def test_feature_grid_cell_index(self): """ Test FeatureGrid.grid_cell_index() """ grid_rows = 4 grid_cols = 4 image_shape = (280, 320) keypoints = [[0, 0], [320, 0], [0, 280], [320, 280]] grid = FeatureGrid(grid_rows, grid_cols, image_shape, keypoints) self.assertEqual(grid.cell[0], 1) self.assertEqual(grid.cell[3], 1) self.assertEqual(grid.cell[12], 1) self.assertEqual(grid.cell[15], 1) def test_feature_grid_count(self): """ Test FeatureGrid.count() """ grid_rows = 4 grid_cols = 4 image_shape = (280, 320) pts = [[0, 0], [320, 0], [0, 280], [320, 280]] grid = FeatureGrid(grid_rows, grid_cols, image_shape, pts) self.assertEqual(grid.count(0), 1) self.assertEqual(grid.count(3), 1) self.assertEqual(grid.count(12), 1) self.assertEqual(grid.count(15), 1) def test_grid_detect(self): """ Test grid_detect() """ debug = False # detector = cv2.ORB_create(nfeatures=500) # kps, des = grid_detect(detector, self.img0, **kwargs) # self.assertTrue(len(kps) > 0) # self.assertEqual(des.shape[0], len(kps)) detector = cv2.FastFeatureDetector_create(threshold=50) kwargs = {'optflow_mode': True, 'debug': debug} kps = grid_detect(detector, self.img0, **kwargs) self.assertTrue(len(kps) > 0) def test_optflow_track(self): """ Test optflow_track() """ debug = False # Detect feature = cv2.ORB_create(nfeatures=100) kps, des = grid_detect(feature, self.img0) self.assertTrue(len(kps) == len(des)) # Track pts_i = np.array([kp.pt for kp in kps], dtype=np.float32) track_results = optflow_track(self.img0, self.img1, pts_i, debug=debug) (pts_i, pts_j, inliers) = track_results self.assertTrue(len(pts_i) == len(pts_j)) self.assertTrue(len(pts_i) == len(inliers)) class TestFeatureTracker(unittest.TestCase): """ Test FeatureTracker """ @classmethod def setUpClass(cls): super(TestFeatureTracker, cls).setUpClass() cls.dataset = EurocDataset(euroc_data_path) def setUp(self): # Setup test images self.dataset = TestFeatureTracker.dataset ts = self.dataset.cam0_data.timestamps[0] img0_path = self.dataset.cam0_data.image_paths[ts] img1_path = self.dataset.cam1_data.image_paths[ts] self.img0 = cv2.imread(img0_path, cv2.IMREAD_GRAYSCALE) self.img1 = cv2.imread(img1_path, cv2.IMREAD_GRAYSCALE) # Setup cameras # -- cam0 res = self.dataset.cam0_data.config.resolution proj_params = self.dataset.cam0_data.config.intrinsics dist_params = self.dataset.cam0_data.config.distortion_coefficients proj_model = "pinhole" dist_model = "radtan4" params = np.block([*proj_params, *dist_params]) cam0 = camera_params_setup(0, res, proj_model, dist_model, params) # -- cam1 res = self.dataset.cam1_data.config.resolution proj_params = self.dataset.cam1_data.config.intrinsics dist_params = self.dataset.cam1_data.config.distortion_coefficients proj_model = "pinhole" dist_model = "radtan4" params = np.block([*proj_params, *dist_params]) cam1 = camera_params_setup(1, res, proj_model, dist_model, params) # Setup camera extrinsics # -- cam0 T_BC0 = self.dataset.cam0_data.config.T_BS cam0_exts = extrinsics_setup(T_BC0) # -- cam1 T_BC1 = self.dataset.cam1_data.config.T_BS cam1_exts = extrinsics_setup(T_BC1) # Setup feature tracker self.feature_tracker = FeatureTracker() self.feature_tracker.add_camera(0, cam0, cam0_exts) self.feature_tracker.add_camera(1, cam1, cam1_exts) self.feature_tracker.add_overlap(0, 1) def test_detect(self): """ Test FeatureTracker._detect() """ # Load and detect features from single image kps = self.feature_tracker._detect(self.img0) self.assertTrue(len(kps) > 0) def test_detect_overlaps(self): """ Test FeatureTracker._detect_overlaps() """ debug = False # debug = True # Feed camera images to feature tracker mcam_imgs = {0: self.img0, 1: self.img1} self.feature_tracker._detect_overlaps(mcam_imgs) # Assert data_i = self.feature_tracker.cam_data[0] data_j = self.feature_tracker.cam_data[1] kps_i = data_i.keypoints kps_j = data_j.keypoints overlapping_ids = self.feature_tracker.feature_overlaps self.assertTrue(len(kps_i) == len(kps_j)) self.assertTrue(len(kps_i) == len(overlapping_ids)) # Visualize for cam_i, overlaps in self.feature_tracker.cam_overlaps.items(): cam_j = overlaps[0] img_i = mcam_imgs[cam_i] img_j = mcam_imgs[cam_j] data_i = self.feature_tracker.cam_data[cam_i] data_j = self.feature_tracker.cam_data[cam_j] kps_i = data_i.keypoints kps_j = data_j.keypoints # viz = draw_matches(img_i, img_j, kps_i, kps_j) matches = [] for i in range(len(kps_i)): matches.append(cv2.DMatch(i, i, 0)) viz = cv2.drawMatches(img_i, kps_i, img_j, kps_j, matches, None) if debug: cv2.imshow('viz', viz) cv2.waitKey(0) def test_detect_nonoverlaps(self): """ Test FeatureTracker._detect_nonoverlaps() """ # Feed camera images to feature tracker mcam_imgs = {0: self.img0, 1: self.img1} self.feature_tracker._detect_nonoverlaps(mcam_imgs) # Visualize for cam_i, overlaps in self.feature_tracker.cam_overlaps.items(): cam_j = overlaps[0] img_i = mcam_imgs[cam_i] img_j = mcam_imgs[cam_j] data_i = self.feature_tracker.cam_data[cam_i] data_j = self.feature_tracker.cam_data[cam_j] kps_i = data_i.keypoints kps_j = data_j.keypoints viz_i = cv2.drawKeypoints(img_i, kps_i, None) viz_j = cv2.drawKeypoints(img_j, kps_j, None) viz = cv2.hconcat([viz_i, viz_j]) debug = False # debug = True if debug: cv2.imshow('viz', viz) cv2.waitKey(0) def test_detect_new(self): """ Test FeatureTracker.detect_new() """ mcam_imgs = {0: self.img0, 1: self.img1} self.feature_tracker._detect_new(mcam_imgs) ft_data = self.feature_tracker.cam_data viz = visualize_tracking(ft_data) debug = False # debug = True if debug: cv2.imshow('viz', viz) cv2.waitKey(0) def test_update(self): """ Test FeatureTracker.update() """ for ts in self.dataset.cam0_data.timestamps[1000:1200]: # for ts in self.dataset.cam0_data.timestamps: # Load images img0_path = self.dataset.cam0_data.image_paths[ts] img1_path = self.dataset.cam1_data.image_paths[ts] img0 = cv2.imread(img0_path, cv2.IMREAD_GRAYSCALE) img1 = cv2.imread(img1_path, cv2.IMREAD_GRAYSCALE) # Feed camera images to feature tracker mcam_imgs = {0: img0, 1: img1} ft_data = self.feature_tracker.update(ts, mcam_imgs) # Visualize debug = False # debug = True if debug: sys.stdout.flush() viz = visualize_tracking(ft_data) cv2.imshow('viz', viz) if cv2.waitKey(1) == ord('q'): break cv2.destroyAllWindows() class TestTracker(unittest.TestCase): """ Test Tracker """ @classmethod def setUpClass(cls): super(TestTracker, cls).setUpClass() # Load dataset cls.dataset = EurocDataset(euroc_data_path) ts0 = cls.dataset.cam0_data.timestamps[0] cls.img0 = cls.dataset.get_camera_image(0, ts0) cls.img1 = cls.dataset.get_camera_image(1, ts0) # Imu params noise_acc = 0.08 # accelerometer measurement noise stddev. noise_gyr = 0.004 # gyroscope measurement noise stddev. noise_ba = 0.00004 # accelerometer bias random work noise stddev. noise_bg = 2.0e-6 # gyroscope bias random work noise stddev. cls.imu_params = ImuParams(noise_acc, noise_gyr, noise_ba, noise_bg) # Setup cameras # -- cam0 res = cls.dataset.cam0_data.config.resolution proj_params = cls.dataset.cam0_data.config.intrinsics dist_params = cls.dataset.cam0_data.config.distortion_coefficients proj_model = "pinhole" dist_model = "radtan4" params = np.block([*proj_params, *dist_params]) cls.cam0 = camera_params_setup(0, res, proj_model, dist_model, params) cls.cam0.fix = True # -- cam1 res = cls.dataset.cam1_data.config.resolution proj_params = cls.dataset.cam1_data.config.intrinsics dist_params = cls.dataset.cam1_data.config.distortion_coefficients proj_model = "pinhole" dist_model = "radtan4" params = np.block([*proj_params, *dist_params]) cls.cam1 = camera_params_setup(1, res, proj_model, dist_model, params) cls.cam1.fix = True # Setup camera extrinsics # -- cam0 T_BC0 = cls.dataset.cam0_data.config.T_BS cls.cam0_exts = extrinsics_setup(T_BC0) cls.cam0_exts.fix = True # -- cam1 T_BC1 = cls.dataset.cam1_data.config.T_BS cls.cam1_exts = extrinsics_setup(T_BC1) cls.cam1_exts.fix = True def setUp(self): # Setup test dataset self.dataset = TestTracker.dataset self.imu_params = TestTracker.imu_params self.cam0 = TestTracker.cam0 self.cam1 = TestTracker.cam1 self.cam0_exts = TestTracker.cam0_exts self.cam1_exts = TestTracker.cam1_exts # Setup tracker ts0 = self.dataset.ground_truth.timestamps[0] T_WB = self.dataset.ground_truth.T_WB[ts0] feature_tracker = FeatureTracker() self.tracker = Tracker(feature_tracker) self.tracker.add_imu(self.imu_params) self.tracker.add_camera(0, self.cam0, self.cam0_exts) self.tracker.add_camera(1, self.cam1, self.cam1_exts) self.tracker.add_overlap(0, 1) self.tracker.set_initial_pose(T_WB) def test_tracker_add_camera(self): """ Test Tracker.add_camera() """ self.assertTrue(len(self.tracker.cam_params), 2) self.assertTrue(len(self.tracker.cam_geoms), 2) self.assertTrue(len(self.tracker.cam_exts), 2) def test_tracker_set_initial_pose(self): """ Test Tracker.set_initial_pose() """ self.assertTrue(self.tracker.pose_init is not None) def test_tracker_inertial_callback(self): """ Test Tracker.inertial_callback() """ ts = 0 acc = np.array([0.0, 0.0, 10.0]) gyr = np.array([0.0, 0.0, 0.0]) self.tracker.inertial_callback(ts, acc, gyr) self.assertEqual(self.tracker.imu_buf.length(), 1) self.assertTrue(self.tracker.imu_started) def test_tracker_triangulate(self): """ Test Tracker._triangulate() """ # Feature in world frame p_W = np.array([1.0, 0.01, 0.02]) # Body pose in world frame C_WB = euler321(*deg2rad([-90.0, 0.0, -90.0])) r_WB = np.array([0.0, 0.0, 0.0]) T_WB = tf(C_WB, r_WB) # Camera parameters and geometry cam_i = 0 cam_j = 1 cam_params_i = self.tracker.cam_params[cam_i] cam_params_j = self.tracker.cam_params[cam_j] cam_geom_i = self.tracker.cam_geoms[cam_i] cam_geom_j = self.tracker.cam_geoms[cam_j] # Camera extrinsics T_BCi = pose2tf(self.tracker.cam_exts[cam_i].param) T_BCj = pose2tf(self.tracker.cam_exts[cam_j].param) # Point relative to cam_i and cam_j p_Ci = tf_point(inv(T_WB @ T_BCi), p_W) p_Cj = tf_point(inv(T_WB @ T_BCj), p_W) # Image point z_i and z_j z_i = cam_geom_i.project(cam_params_i.param, p_Ci) z_j = cam_geom_j.project(cam_params_j.param, p_Cj) # Triangulate p_W_est = self.tracker._triangulate(cam_i, cam_j, z_i, z_j, T_WB) # Assert self.assertTrue(np.allclose(p_W_est, p_W)) def test_tracker_add_pose(self): """ Test Tracker._add_pose() """ # Timestamp ts = 0 # Body pose in world frame C_WB = euler321(*deg2rad([-90.0, 0.0, -90.0])) r_WB = np.array([0.0, 0.0, 0.0]) T_WB = tf(C_WB, r_WB) # Add pose pose = self.tracker._add_pose(ts, T_WB) self.assertTrue(pose is not None) def test_tracker_add_feature(self): """ Test Tracker._add_feature() """ # Feature in world frame p_W = np.array([1.0, 0.01, 0.02]) # Body pose in world frame C_WB = euler321(*deg2rad([-90.0, 0.0, -90.0])) r_WB = np.array([0.0, 0.0, 0.0]) T_WB = tf(C_WB, r_WB) # Project world point to image plane cam_idx = 0 cam_params = self.tracker.cam_params[cam_idx] cam_geom = self.tracker.cam_geoms[cam_idx] T_BC = pose2tf(self.tracker.cam_exts[cam_idx].param) p_C = tf_point(
inv(T_WB @ T_BC)
numpy.linalg.inv
# -*- coding: utf-8 -*- """ Created on Wed Mar 18 17:29:25 2020 @author: <NAME> """ import numpy as np import AlgoritmiAlgebraLineare as al # -------- Test del metodo di sostituzione all'indietro ------ print('\n TESTING BACKWARD SUBSTITION') print(' -------------------------------------') print(' Dimension: 5x5') matrix = np.array([[1, 2, 3, 5, 8], [0, 1, 5, 1, 7], [0, 0, 2, 5, 2], [0, 0, 0, 5, 2], [0, 0, 0, 0, 2]]) #Fisso ad uno le soluzioni del sistema xsol = np.ones(5) #Calcolo il vettore dei termini noti b = np.dot(matrix,xsol) #Applico backwardSubstition a matrix e b e mi aspetto #di ritrovare xsol findSol = al.backwardSubstition(matrix, b) print(' Solution of linear system:\n ', findSol) print('\n TESTING BACKWARD SUBSTITION') print(' -------------------------------------') print(' Dimension: 50x50') #Dimensione matrice n = 50 M = 10 #Creo una matrice 50x50 con valori compresi tra 0 e 20 matrix = np.random.random((n, n))*2*M #converto in float tipo dei coefficienti matrix = matrix.astype(float) #trasformo la matrice in una matrice triangolare superiore matrix = np.triu(matrix) #Fisso ad 1 la soluzione xs = np.ones(n) #Calcolo il vettore dei termini noti b =
np.dot(matrix, xs)
numpy.dot
import math import gym from frozen_lake import * import numpy as np import time from utils import * from tqdm import * import matplotlib.pyplot as plt def learn_Q_QLearning(env, num_episodes=10000, gamma = 0.99, lr = 0.1, e = 0.2, max_step=6): """Learn state-action values using the Q-learning algorithm with epsilon-greedy exploration strategy(no decay) Feel free to reuse your assignment1's code Parameters ---------- env: gym.core.Environment Environment to compute Q function for. Must have nS, nA, and P as attributes. num_episodes: int Number of episodes of training. gamma: float Discount factor. Number in range [0, 1) learning_rate: float Learning rate. Number in range [0, 1) e: float Epsilon value used in the epsilon-greedy method. max_step: Int max number of steps in each episode Returns ------- np.array An array of shape [env.nS x env.nA] representing state-action values """ Q = np.zeros((env.nS, env.nA)) ######################################################## # YOUR CODE HERE # ######################################################## total_score = 0 average_score = np.zeros(num_episodes) for i in range(num_episodes): done = False state = env.reset() for _ in range(max_step): if done: break if np.random.rand() > e: action = np.argmax(Q[state]) else: action = np.random.randint(env.nA) nextstate, reward, done, _ = env.step(action) Q[state][action] = (1-lr)*Q[state][action]+lr*(reward+gamma*np.max(Q[nextstate])) state = nextstate total_score += reward average_score[i] = total_score / (i+1) ######################################################## # END YOUR CODE # ######################################################## return (Q, average_score) def main(): env = FrozenLakeEnv(is_slippery=False) for e in tqdm(np.linspace(0,1,11)): (Q, average_score) = learn_Q_QLearning(env, num_episodes = 10000, gamma = 0.99, lr = 0.1, e = e) render_single_Q(env, Q) plt.plot(
np.arange(10000)
numpy.arange
import numpy as np from bayeso.gp import gp import utils parser, args = utils.get_parser() str_fun = args.function print(str_fun) if str_fun == 'few': import fun_1d_1 as unc str_exp = 'unc_1d_few_gp' elif str_fun == 'many': import fun_1d_2 as unc str_exp = 'unc_1d_many_gp' elif str_fun == 'cubic': import fun_1d_3 as unc str_exp = 'unc_1d_cubic_gp' else: raise ValueError('not allowed str_fun') print(str_exp) if __name__ == '__main__': mean, std, Sigma = gp.predict_with_optimized_hyps(unc.X_train, unc.Y_train[..., np.newaxis], unc.X_test, str_cov='matern52', fix_noise=False, debug=True, str_optimizer_method='Nelder-Mead') mean = np.squeeze(mean, axis=1) std = np.squeeze(std, axis=1) mean_gp, std_gp, _ = gp.predict_with_optimized_hyps(unc.X_train, unc.Y_train[..., np.newaxis], unc.X_test, str_cov='matern52', fix_noise=False, debug=True, str_optimizer_method='Nelder-Mead') mean_gp = np.squeeze(mean_gp, axis=1) std_gp = np.squeeze(std_gp, axis=1) nll = utils.compute_nll(mean, std, np.squeeze(unc.X_test, axis=1), unc.Y_test,
np.squeeze(unc.X_train, axis=1)
numpy.squeeze
from __future__ import print_function, division, absolute_import import time import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import numpy as np import six.moves as sm import cv2 import shapely import shapely.geometry import imgaug as ia from imgaug.testutils import reseed def main(): time_start = time.time() test_is_np_array() test_is_single_integer() test_is_single_float() test_is_single_number() test_is_iterable() test_is_string() test_is_single_bool() test_is_integer_array() test_is_float_array() test_is_callable() test_caller_name() test_seed() test_current_random_state() test_new_random_state() test_dummy_random_state() test_copy_random_state() test_derive_random_state() test_derive_random_states() test_forward_random_state() # test_quokka() # test_quokka_square() # test_angle_between_vectors() # test_draw_text() test_imresize_many_images() test_imresize_single_image() test_pad() test_compute_paddings_for_aspect_ratio() test_pad_to_aspect_ratio() test_pool() test_avg_pool() test_max_pool() test_draw_grid() # test_show_grid() # test_do_assert() # test_HooksImages_is_activated() # test_HooksImages_is_propagating() # test_HooksImages_preprocess() # test_HooksImages_postprocess() test_Keypoint() test_KeypointsOnImage() test_BoundingBox() test_BoundingBoxesOnImage() # test_HeatmapsOnImage_get_arr() # test_HeatmapsOnImage_find_global_maxima() test_HeatmapsOnImage_draw() test_HeatmapsOnImage_draw_on_image() test_HeatmapsOnImage_invert() test_HeatmapsOnImage_pad() # test_HeatmapsOnImage_pad_to_aspect_ratio() test_HeatmapsOnImage_avg_pool() test_HeatmapsOnImage_max_pool() test_HeatmapsOnImage_scale() # test_HeatmapsOnImage_to_uint8() # test_HeatmapsOnImage_from_uint8() # test_HeatmapsOnImage_from_0to1() # test_HeatmapsOnImage_change_normalization() # test_HeatmapsOnImage_copy() # test_HeatmapsOnImage_deepcopy() test_SegmentationMapOnImage_bool() test_SegmentationMapOnImage_get_arr_int() # test_SegmentationMapOnImage_get_arr_bool() test_SegmentationMapOnImage_draw() test_SegmentationMapOnImage_draw_on_image() test_SegmentationMapOnImage_pad() test_SegmentationMapOnImage_pad_to_aspect_ratio() test_SegmentationMapOnImage_scale() test_SegmentationMapOnImage_to_heatmaps() test_SegmentationMapOnImage_from_heatmaps() test_SegmentationMapOnImage_copy() test_SegmentationMapOnImage_deepcopy() test_Polygon___init__() test_Polygon_xx() test_Polygon_yy() test_Polygon_xx_int() test_Polygon_yy_int() test_Polygon_is_valid() test_Polygon_area() test_Polygon_project() test_Polygon__compute_inside_image_point_mask() test_Polygon_is_fully_within_image() test_Polygon_is_partly_within_image() test_Polygon_is_out_of_image() test_Polygon_cut_out_of_image() test_Polygon_clip_out_of_image() test_Polygon_shift() test_Polygon_draw_on_image() test_Polygon_extract_from_image() test_Polygon_to_shapely_polygon() test_Polygon_to_bounding_box() test_Polygon_from_shapely() test_Polygon_copy() test_Polygon_deepcopy() test_Polygon___repr__() test_Polygon___str__() # test_Batch() test_BatchLoader() # test_BackgroundAugmenter.get_batch() # test_BackgroundAugmenter._augment_images_worker() # test_BackgroundAugmenter.terminate() time_end = time.time() print("<%s> Finished without errors in %.4fs." % (__file__, time_end - time_start,)) def test_is_np_array(): class _Dummy(object): pass values_true = [ np.zeros((1, 2), dtype=np.uint8), np.zeros((64, 64, 3), dtype=np.uint8), np.zeros((1, 2), dtype=np.float32), np.zeros((100,), dtype=np.float64) ] values_false = [ "A", "BC", "1", True, False, (1.0, 2.0), [1.0, 2.0], _Dummy(), -100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4 ] for value in values_true: assert ia.is_np_array(value) is True for value in values_false: assert ia.is_np_array(value) is False def test_is_single_integer(): assert ia.is_single_integer("A") is False assert ia.is_single_integer(None) is False assert ia.is_single_integer(1.2) is False assert ia.is_single_integer(1.0) is False assert ia.is_single_integer(np.ones((1,), dtype=np.float32)[0]) is False assert ia.is_single_integer(1) is True assert ia.is_single_integer(1234) is True assert ia.is_single_integer(np.ones((1,), dtype=np.uint8)[0]) is True assert ia.is_single_integer(np.ones((1,), dtype=np.int32)[0]) is True def test_is_single_float(): assert ia.is_single_float("A") is False assert ia.is_single_float(None) is False assert ia.is_single_float(1.2) is True assert ia.is_single_float(1.0) is True assert ia.is_single_float(np.ones((1,), dtype=np.float32)[0]) is True assert ia.is_single_float(1) is False assert ia.is_single_float(1234) is False assert ia.is_single_float(np.ones((1,), dtype=np.uint8)[0]) is False assert ia.is_single_float(np.ones((1,), dtype=np.int32)[0]) is False def test_caller_name(): assert ia.caller_name() == 'test_caller_name' def test_is_single_number(): class _Dummy(object): pass values_true = [-100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4] values_false = ["A", "BC", "1", True, False, (1.0, 2.0), [1.0, 2.0], _Dummy(), np.zeros((1, 2), dtype=np.uint8)] for value in values_true: assert ia.is_single_number(value) is True for value in values_false: assert ia.is_single_number(value) is False def test_is_iterable(): class _Dummy(object): pass values_true = [ [0, 1, 2], ["A", "X"], [[123], [456, 789]], [], (1, 2, 3), (1,), tuple(), "A", "ABC", "", np.zeros((100,), dtype=np.uint8) ] values_false = [1, 100, 0, -100, -1, 1.2, -1.2, True, False, _Dummy()] for value in values_true: assert ia.is_iterable(value) is True, value for value in values_false: assert ia.is_iterable(value) is False def test_is_string(): class _Dummy(object): pass values_true = ["A", "BC", "1", ""] values_false = [-100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4, True, False, (1.0, 2.0), [1.0, 2.0], _Dummy(), np.zeros((1, 2), dtype=np.uint8)] for value in values_true: assert ia.is_string(value) is True for value in values_false: assert ia.is_string(value) is False def test_is_single_bool(): class _Dummy(object): pass values_true = [False, True] values_false = [-100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4, (1.0, 2.0), [1.0, 2.0], _Dummy(), np.zeros((1, 2), dtype=np.uint8), np.zeros((1,), dtype=bool)] for value in values_true: assert ia.is_single_bool(value) is True for value in values_false: assert ia.is_single_bool(value) is False def test_is_integer_array(): class _Dummy(object): pass values_true = [ np.zeros((1, 2), dtype=np.uint8), np.zeros((100,), dtype=np.uint8), np.zeros((1, 2), dtype=np.uint16), np.zeros((1, 2), dtype=np.int32), np.zeros((1, 2), dtype=np.int64) ] values_false = [ "A", "BC", "1", "", -100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4, True, False, (1.0, 2.0), [1.0, 2.0], _Dummy(), np.zeros((1, 2), dtype=np.float16), np.zeros((100,), dtype=np.float32), np.zeros((1, 2), dtype=np.float64), np.zeros((1, 2), dtype=np.bool) ] for value in values_true: assert ia.is_integer_array(value) is True for value in values_false: assert ia.is_integer_array(value) is False def test_is_float_array(): class _Dummy(object): pass values_true = [ np.zeros((1, 2), dtype=np.float16), np.zeros((100,), dtype=np.float32), np.zeros((1, 2), dtype=np.float64) ] values_false = [ "A", "BC", "1", "", -100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4, True, False, (1.0, 2.0), [1.0, 2.0], _Dummy(), np.zeros((1, 2), dtype=np.uint8), np.zeros((100,), dtype=np.uint8), np.zeros((1, 2), dtype=np.uint16), np.zeros((1, 2), dtype=np.int32), np.zeros((1, 2), dtype=np.int64), np.zeros((1, 2), dtype=np.bool) ] for value in values_true: assert ia.is_float_array(value) is True for value in values_false: assert ia.is_float_array(value) is False def test_is_callable(): def _dummy_func(): pass _dummy_func2 = lambda x: x class _Dummy1(object): pass class _Dummy2(object): def __call__(self): pass values_true = [_dummy_func, _dummy_func2, _Dummy2()] values_false = ["A", "BC", "1", "", -100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4, True, False, (1.0, 2.0), [1.0, 2.0], _Dummy1(), np.zeros((1, 2), dtype=np.uint8)] for value in values_true: assert ia.is_callable(value) == True for value in values_false: assert ia.is_callable(value) == False def test_seed(): ia.seed(10017) rs = np.random.RandomState(10017) assert ia.CURRENT_RANDOM_STATE.randint(0, 1000*1000) == rs.randint(0, 1000*1000) reseed() def test_current_random_state(): assert ia.current_random_state() == ia.CURRENT_RANDOM_STATE def test_new_random_state(): seed = 1000 ia.seed(seed) rs_observed = ia.new_random_state(seed=None, fully_random=False) rs_expected = np.random.RandomState(np.random.RandomState(seed).randint(0, 10**6, 1)[0]) assert rs_observed.randint(0, 10**6) == rs_expected.randint(0, 10**6) rs_observed1 = ia.new_random_state(seed=None, fully_random=False) rs_observed2 = ia.new_random_state(seed=None, fully_random=False) assert rs_observed1.randint(0, 10**6) != rs_observed2.randint(0, 10**6) ia.seed(seed) np.random.seed(seed) rs_observed = ia.new_random_state(seed=None, fully_random=True) rs_not_expected = np.random.RandomState(np.random.RandomState(seed).randint(0, 10**6, 1)[0]) assert rs_observed.randint(0, 10**6) != rs_not_expected.randint(0, 10**6) rs_observed1 = ia.new_random_state(seed=None, fully_random=True) rs_observed2 = ia.new_random_state(seed=None, fully_random=True) assert rs_observed1.randint(0, 10**6) != rs_observed2.randint(0, 10**6) rs_observed1 = ia.new_random_state(seed=1234) rs_observed2 = ia.new_random_state(seed=1234) rs_expected = np.random.RandomState(1234) assert rs_observed1.randint(0, 10**6) == rs_observed2.randint(0, 10**6) == rs_expected.randint(0, 10**6) def test_dummy_random_state(): assert ia.dummy_random_state().randint(0, 10**6) == np.random.RandomState(1).randint(0, 10**6) def test_copy_random_state(): rs = np.random.RandomState(1017) rs_copy = ia.copy_random_state(rs) assert rs != rs_copy assert rs.randint(0, 10**6) == rs_copy.randint(0, 10**6) assert ia.copy_random_state(np.random) == np.random assert ia.copy_random_state(np.random, force_copy=True) != np.random def test_derive_random_state(): rs = np.random.RandomState(1017) rs_observed = ia.derive_random_state(np.random.RandomState(1017)) rs_expected = np.random.RandomState(np.random.RandomState(1017).randint(0, 10**6)) assert rs_observed.randint(0, 10**6) == rs_expected.randint(0, 10**6) def test_derive_random_states(): rs_observed1, rs_observed2 = ia.derive_random_states(np.random.RandomState(1017), n=2) seed = np.random.RandomState(1017).randint(0, 10**6) rs_expected1 = np.random.RandomState(seed+0) rs_expected2 = np.random.RandomState(seed+1) assert rs_observed1.randint(0, 10**6) == rs_expected1.randint(0, 10**6) assert rs_observed2.randint(0, 10**6) == rs_expected2.randint(0, 10**6) def test_forward_random_state(): rs1 = np.random.RandomState(1017) rs2 = np.random.RandomState(1017) ia.forward_random_state(rs1) rs2.uniform() assert rs1.randint(0, 10**6) == rs2.randint(0, 10**6) def test_imresize_many_images(): interpolations = [None, "nearest", "linear", "area", "cubic", cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC] for c in [1, 3]: image1 = np.zeros((16, 16, c), dtype=np.uint8) + 255 image2 = np.zeros((16, 16, c), dtype=np.uint8) image3 = np.pad( np.zeros((8, 8, c), dtype=np.uint8) + 255, ((4, 4), (4, 4), (0, 0)), mode="constant", constant_values=0 ) image1_small = np.zeros((8, 8, c), dtype=np.uint8) + 255 image2_small = np.zeros((8, 8, c), dtype=np.uint8) image3_small = np.pad( np.zeros((4, 4, c), dtype=np.uint8) + 255, ((2, 2), (2, 2), (0, 0)), mode="constant", constant_values=0 ) image1_large = np.zeros((32, 32, c), dtype=np.uint8) + 255 image2_large = np.zeros((32, 32, c), dtype=np.uint8) image3_large = np.pad( np.zeros((16, 16, c), dtype=np.uint8) + 255, ((8, 8), (8, 8), (0, 0)), mode="constant", constant_values=0 ) images = np.uint8([image1, image2, image3]) images_small = np.uint8([image1_small, image2_small, image3_small]) images_large = np.uint8([image1_large, image2_large, image3_large]) for images_this_iter in [images, list(images)]: # test for ndarray and list(ndarray) input for interpolation in interpolations: images_same_observed = ia.imresize_many_images(images_this_iter, (16, 16), interpolation=interpolation) for image_expected, image_observed in zip(images_this_iter, images_same_observed): diff = np.abs(image_expected.astype(np.int32) - image_observed.astype(np.int32)) assert np.sum(diff) == 0 for interpolation in interpolations: images_small_observed = ia.imresize_many_images(images_this_iter, (8, 8), interpolation=interpolation) for image_expected, image_observed in zip(images_small, images_small_observed): diff = np.abs(image_expected.astype(np.int32) - image_observed.astype(np.int32)) diff_fraction = np.sum(diff) / (image_observed.size * 255) assert diff_fraction < 0.5 for interpolation in interpolations: images_large_observed = ia.imresize_many_images(images_this_iter, (32, 32), interpolation=interpolation) for image_expected, image_observed in zip(images_large, images_large_observed): diff = np.abs(image_expected.astype(np.int32) - image_observed.astype(np.int32)) diff_fraction = np.sum(diff) / (image_observed.size * 255) assert diff_fraction < 0.5 # test size given as single int images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, 8) assert observed.shape == (1, 8, 8, 3) # test size given as single float images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, 2.0) assert observed.shape == (1, 8, 8, 3) images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, 0.5) assert observed.shape == (1, 2, 2, 3) # test size given as (float, float) images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, (2.0, 2.0)) assert observed.shape == (1, 8, 8, 3) images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, (0.5, 0.5)) assert observed.shape == (1, 2, 2, 3) images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, (2.0, 0.5)) assert observed.shape == (1, 8, 2, 3) images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, (0.5, 2.0)) assert observed.shape == (1, 2, 8, 3) # test size given as int+float or float+int images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, (11, 2.0)) assert observed.shape == (1, 11, 8, 3) images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, (2.0, 11)) assert observed.shape == (1, 8, 11, 3) # test no channels images = np.zeros((1, 4, 4), dtype=np.uint8) images_rs = ia.imresize_many_images(images, (2, 2)) assert images_rs.shape == (1, 2, 2) images = [np.zeros((4, 4), dtype=np.uint8)] images_rs = ia.imresize_many_images(images, (2, 2)) assert isinstance(images_rs, list) assert images_rs[0].shape == (2, 2) # test len 0 input observed = ia.imresize_many_images(np.zeros((0, 8, 8, 3), dtype=np.uint8), (4, 4)) assert ia.is_np_array(observed) assert observed.dtype.type == np.uint8 assert len(observed) == 0 observed = ia.imresize_many_images([], (4, 4)) assert isinstance(observed, list) assert len(observed) == 0 # test images with zero height/width images = [np.zeros((0, 4, 3), dtype=np.uint8)] got_exception = False try: _ = ia.imresize_many_images(images, sizes=(2, 2)) except Exception as exc: assert "Cannot resize images, because at least one image has a height and/or width of zero." in str(exc) got_exception = True assert got_exception images = [np.zeros((4, 0, 3), dtype=np.uint8)] got_exception = False try: _ = ia.imresize_many_images(images, sizes=(2, 2)) except Exception as exc: assert "Cannot resize images, because at least one image has a height and/or width of zero." in str(exc) got_exception = True assert got_exception images = [np.zeros((0, 0, 3), dtype=np.uint8)] got_exception = False try: _ = ia.imresize_many_images(images, sizes=(2, 2)) except Exception as exc: assert "Cannot resize images, because at least one image has a height and/or width of zero." in str(exc) got_exception = True assert got_exception # test invalid sizes sizes_all = [(-1, 2), (0, 2)] sizes_all = sizes_all\ + [(float(a), b) for a, b in sizes_all]\ + [(a, float(b)) for a, b in sizes_all]\ + [(float(a), float(b)) for a, b in sizes_all]\ + [(-a, -b) for a, b in sizes_all]\ + [(-float(a), -b) for a, b in sizes_all]\ + [(-a, -float(b)) for a, b in sizes_all]\ + [(-float(a), -float(b)) for a, b in sizes_all] sizes_all = sizes_all\ + [(b, a) for a, b in sizes_all] sizes_all = sizes_all\ + [-1.0, 0.0, -1, 0] for sizes in sizes_all: images = [np.zeros((4, 4, 3), dtype=np.uint8)] got_exception = False try: _ = ia.imresize_many_images(images, sizes=sizes) except Exception as exc: assert "value is zero or lower than zero." in str(exc) got_exception = True assert got_exception # test list input but all with same shape images = [np.zeros((8, 8, 3), dtype=np.uint8) for _ in range(2)] observed = ia.imresize_many_images(images, (4, 4)) assert isinstance(observed, list) assert all([image.shape == (4, 4, 3) for image in observed]) assert all([image.dtype.type == np.uint8 for image in observed]) def test_imresize_single_image(): for c in [-1, 1, 3]: image1 = np.zeros((16, 16, abs(c)), dtype=np.uint8) + 255 image2 = np.zeros((16, 16, abs(c)), dtype=np.uint8) image3 = np.pad( np.zeros((8, 8, abs(c)), dtype=np.uint8) + 255, ((4, 4), (4, 4), (0, 0)), mode="constant", constant_values=0 ) image1_small = np.zeros((8, 8, abs(c)), dtype=np.uint8) + 255 image2_small = np.zeros((8, 8, abs(c)), dtype=np.uint8) image3_small = np.pad( np.zeros((4, 4, abs(c)), dtype=np.uint8) + 255, ((2, 2), (2, 2), (0, 0)), mode="constant", constant_values=0 ) image1_large = np.zeros((32, 32, abs(c)), dtype=np.uint8) + 255 image2_large = np.zeros((32, 32, abs(c)), dtype=np.uint8) image3_large = np.pad( np.zeros((16, 16, abs(c)), dtype=np.uint8) + 255, ((8, 8), (8, 8), (0, 0)), mode="constant", constant_values=0 ) images = np.uint8([image1, image2, image3]) images_small = np.uint8([image1_small, image2_small, image3_small]) images_large = np.uint8([image1_large, image2_large, image3_large]) if c == -1: images = images[:, :, 0] images_small = images_small[:, :, 0] images_large = images_large[:, :, 0] interpolations = [None, "nearest", "linear", "area", "cubic", cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC] for interpolation in interpolations: for image in images: image_observed = ia.imresize_single_image(image, (16, 16), interpolation=interpolation) diff = np.abs(image.astype(np.int32) - image_observed.astype(np.int32)) assert np.sum(diff) == 0 for interpolation in interpolations: for image, image_expected in zip(images, images_small): image_observed = ia.imresize_single_image(image, (8, 8), interpolation=interpolation) diff = np.abs(image_expected.astype(np.int32) - image_observed.astype(np.int32)) diff_fraction = np.sum(diff) / (image_observed.size * 255) assert diff_fraction < 0.5 for interpolation in interpolations: for image, image_expected in zip(images, images_large): image_observed = ia.imresize_single_image(image, (32, 32), interpolation=interpolation) diff = np.abs(image_expected.astype(np.int32) - image_observed.astype(np.int32)) diff_fraction = np.sum(diff) / (image_observed.size * 255) assert diff_fraction < 0.5 def test_pad(): # ------- # uint8, int32 # ------- for dtype in [np.uint8, np.int32]: arr = np.zeros((3, 3), dtype=dtype) + 255 arr_pad = ia.pad(arr) assert arr_pad.shape == (3, 3) assert arr_pad.dtype.type == dtype assert np.array_equal(arr_pad, arr) arr_pad = ia.pad(arr, top=1) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert np.all(arr_pad[0, :] == 0) arr_pad = ia.pad(arr, right=1) assert arr_pad.shape == (3, 4) assert arr_pad.dtype.type == dtype assert np.all(arr_pad[:, -1] == 0) arr_pad = ia.pad(arr, bottom=1) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert np.all(arr_pad[-1, :] == 0) arr_pad = ia.pad(arr, left=1) assert arr_pad.shape == (3, 4) assert arr_pad.dtype.type == dtype assert np.all(arr_pad[:, 0] == 0) arr_pad = ia.pad(arr, top=1, right=2, bottom=3, left=4) assert arr_pad.shape == (3+(1+3), 3+(2+4)) assert arr_pad.dtype.type == dtype assert np.all(arr_pad[0, :] == 0) assert np.all(arr_pad[:, -2:] == 0) assert np.all(arr_pad[-3:, :] == 0) assert np.all(arr_pad[:, :4] == 0) arr_pad = ia.pad(arr, top=1, cval=10) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert np.all(arr_pad[0, :] == 10) arr = np.zeros((3, 3, 3), dtype=dtype) + 128 arr_pad = ia.pad(arr, top=1) assert arr_pad.shape == (4, 3, 3) assert arr_pad.dtype.type == dtype assert np.all(arr_pad[0, :, 0] == 0) assert np.all(arr_pad[0, :, 1] == 0) assert np.all(arr_pad[0, :, 2] == 0) arr = np.zeros((3, 3), dtype=dtype) + 128 arr[1, 1] = 200 arr_pad = ia.pad(arr, top=1, mode="maximum") assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert arr_pad[0, 0] == 128 assert arr_pad[0, 1] == 200 assert arr_pad[0, 2] == 128 arr = np.zeros((3, 3), dtype=dtype) arr_pad = ia.pad(arr, top=1, mode="constant", cval=123) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert arr_pad[0, 0] == 123 assert arr_pad[0, 1] == 123 assert arr_pad[0, 2] == 123 assert arr_pad[1, 0] == 0 arr = np.zeros((1, 1), dtype=dtype) + 100 arr_pad = ia.pad(arr, top=4, mode="linear_ramp", cval=200) assert arr_pad.shape == (5, 1) assert arr_pad.dtype.type == dtype assert arr_pad[0, 0] == 200 assert arr_pad[1, 0] == 175 assert arr_pad[2, 0] == 150 assert arr_pad[3, 0] == 125 assert arr_pad[4, 0] == 100 # ------- # float32, float64 # ------- for dtype in [np.float32, np.float64]: arr = np.zeros((3, 3), dtype=dtype) + 1.0 arr_pad = ia.pad(arr) assert arr_pad.shape == (3, 3) assert arr_pad.dtype.type == dtype assert np.allclose(arr_pad, arr) arr_pad = ia.pad(arr, top=1) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert np.allclose(arr_pad[0, :], dtype([0, 0, 0])) arr_pad = ia.pad(arr, right=1) assert arr_pad.shape == (3, 4) assert arr_pad.dtype.type == dtype assert np.allclose(arr_pad[:, -1], dtype([0, 0, 0])) arr_pad = ia.pad(arr, bottom=1) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert np.allclose(arr_pad[-1, :], dtype([0, 0, 0])) arr_pad = ia.pad(arr, left=1) assert arr_pad.shape == (3, 4) assert arr_pad.dtype.type == dtype assert np.allclose(arr_pad[:, 0], dtype([0, 0, 0])) arr_pad = ia.pad(arr, top=1, right=2, bottom=3, left=4) assert arr_pad.shape == (3+(1+3), 3+(2+4)) assert arr_pad.dtype.type == dtype assert 0 - 1e-6 < np.max(arr_pad[0, :]) < 0 + 1e-6 assert 0 - 1e-6 < np.max(arr_pad[:, -2:]) < 0 + 1e-6 assert 0 - 1e-6 < np.max(arr_pad[-3, :]) < 0 + 1e-6 assert 0 - 1e-6 < np.max(arr_pad[:, :4]) < 0 + 1e-6 arr_pad = ia.pad(arr, top=1, cval=0.2) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert np.allclose(arr_pad[0, :], dtype([0.2, 0.2, 0.2])) arr = np.zeros((3, 3, 3), dtype=dtype) + 0.5 arr_pad = ia.pad(arr, top=1) assert arr_pad.shape == (4, 3, 3) assert arr_pad.dtype.type == dtype assert np.allclose(arr_pad[0, :, 0], dtype([0, 0, 0])) assert np.allclose(arr_pad[0, :, 1], dtype([0, 0, 0])) assert np.allclose(arr_pad[0, :, 2], dtype([0, 0, 0])) arr = np.zeros((3, 3), dtype=dtype) + 0.5 arr[1, 1] = 0.75 arr_pad = ia.pad(arr, top=1, mode="maximum") assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert 0.50 - 1e-6 < arr_pad[0, 0] < 0.50 + 1e-6 assert 0.75 - 1e-6 < arr_pad[0, 1] < 0.75 + 1e-6 assert 0.50 - 1e-6 < arr_pad[0, 2] < 0.50 + 1e-6 arr = np.zeros((3, 3), dtype=dtype) arr_pad = ia.pad(arr, top=1, mode="constant", cval=0.4) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert 0.4 - 1e-6 < arr_pad[0, 0] < 0.4 + 1e-6 assert 0.4 - 1e-6 < arr_pad[0, 1] < 0.4 + 1e-6 assert 0.4 - 1e-6 < arr_pad[0, 2] < 0.4 + 1e-6 assert 0.0 - 1e-6 < arr_pad[1, 0] < 0.0 + 1e-6 arr = np.zeros((1, 1), dtype=dtype) + 0.6 arr_pad = ia.pad(arr, top=4, mode="linear_ramp", cval=1.0) assert arr_pad.shape == (5, 1) assert arr_pad.dtype.type == dtype assert 1.0 - 1e-6 < arr_pad[0, 0] < 1.0 + 1e-6 assert 0.9 - 1e-6 < arr_pad[1, 0] < 0.9 + 1e-6 assert 0.8 - 1e-6 < arr_pad[2, 0] < 0.8 + 1e-6 assert 0.7 - 1e-6 < arr_pad[3, 0] < 0.7 + 1e-6 assert 0.6 - 1e-6 < arr_pad[4, 0] < 0.6 + 1e-6 def test_compute_paddings_for_aspect_ratio(): arr = np.zeros((4, 4), dtype=np.uint8) top, right, bottom, left = ia.compute_paddings_for_aspect_ratio(arr, 1.0) assert top == 0 assert right == 0 assert bottom == 0 assert left == 0 arr = np.zeros((1, 4), dtype=np.uint8) top, right, bottom, left = ia.compute_paddings_for_aspect_ratio(arr, 1.0) assert top == 2 assert right == 0 assert bottom == 1 assert left == 0 arr = np.zeros((4, 1), dtype=np.uint8) top, right, bottom, left = ia.compute_paddings_for_aspect_ratio(arr, 1.0) assert top == 0 assert right == 2 assert bottom == 0 assert left == 1 arr = np.zeros((2, 4), dtype=np.uint8) top, right, bottom, left = ia.compute_paddings_for_aspect_ratio(arr, 1.0) assert top == 1 assert right == 0 assert bottom == 1 assert left == 0 arr = np.zeros((4, 2), dtype=np.uint8) top, right, bottom, left = ia.compute_paddings_for_aspect_ratio(arr, 1.0) assert top == 0 assert right == 1 assert bottom == 0 assert left == 1 arr = np.zeros((4, 4), dtype=np.uint8) top, right, bottom, left = ia.compute_paddings_for_aspect_ratio(arr, 0.5) assert top == 2 assert right == 0 assert bottom == 2 assert left == 0 arr = np.zeros((4, 4), dtype=np.uint8) top, right, bottom, left = ia.compute_paddings_for_aspect_ratio(arr, 2.0) assert top == 0 assert right == 2 assert bottom == 0 assert left == 2 def test_pad_to_aspect_ratio(): for dtype in [np.uint8, np.int32, np.float32]: # aspect_ratio = 1.0 arr = np.zeros((4, 4), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 1.0) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 4 arr = np.zeros((1, 4), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 1.0) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 4 arr = np.zeros((4, 1), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 1.0) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 4 arr = np.zeros((2, 4), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 1.0) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 4 arr = np.zeros((4, 2), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 1.0) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 4 # aspect_ratio != 1.0 arr = np.zeros((4, 4), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 2.0) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 8 arr = np.zeros((4, 4), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 0.5) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 8 assert arr_pad.shape[1] == 4 # 3d arr arr = np.zeros((4, 2, 3), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 1.0) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 4 assert arr_pad.shape[2] == 3 # cval arr = np.zeros((4, 4), dtype=np.uint8) + 128 arr_pad = ia.pad_to_aspect_ratio(arr, 2.0) assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 8 assert np.max(arr_pad[:, 0:2]) == 0 assert np.max(arr_pad[:, -2:]) == 0 assert np.max(arr_pad[:, 2:-2]) == 128 arr = np.zeros((4, 4), dtype=np.uint8) + 128 arr_pad = ia.pad_to_aspect_ratio(arr, 2.0, cval=10) assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 8 assert np.max(arr_pad[:, 0:2]) == 10 assert np.max(arr_pad[:, -2:]) == 10 assert np.max(arr_pad[:, 2:-2]) == 128 arr = np.zeros((4, 4), dtype=np.float32) + 0.5 arr_pad = ia.pad_to_aspect_ratio(arr, 2.0, cval=0.0) assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 8 assert 0 - 1e-6 <= np.max(arr_pad[:, 0:2]) <= 0 + 1e-6 assert 0 - 1e-6 <= np.max(arr_pad[:, -2:]) <= 0 + 1e-6 assert 0.5 - 1e-6 <= np.max(arr_pad[:, 2:-2]) <= 0.5 + 1e-6 arr = np.zeros((4, 4), dtype=np.float32) + 0.5 arr_pad = ia.pad_to_aspect_ratio(arr, 2.0, cval=0.1) assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 8 assert 0.1 - 1e-6 <= np.max(arr_pad[:, 0:2]) <= 0.1 + 1e-6 assert 0.1 - 1e-6 <= np.max(arr_pad[:, -2:]) <= 0.1 + 1e-6 assert 0.5 - 1e-6 <= np.max(arr_pad[:, 2:-2]) <= 0.5 + 1e-6 # mode arr = np.zeros((4, 4), dtype=np.uint8) + 128 arr[1:3, 1:3] = 200 arr_pad = ia.pad_to_aspect_ratio(arr, 2.0, mode="maximum") assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 8 assert np.max(arr_pad[0:1, 0:2]) == 128 assert np.max(arr_pad[1:3, 0:2]) == 200 assert np.max(arr_pad[3:, 0:2]) == 128 assert np.max(arr_pad[0:1, -2:]) == 128 assert np.max(arr_pad[1:3, -2:]) == 200 assert np.max(arr_pad[3:, -2:]) == 128 # TODO add tests for return_pad_values=True def test_pool(): # basic functionality with uint8, int32, float32 arr = np.uint8([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.pool(arr, 2, np.average) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.average([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.average([2, 3, 6, 7])) assert arr_pooled[1, 0] == int(np.average([8, 9, 12, 13])) assert arr_pooled[1, 1] == int(np.average([10, 11, 14, 15])) arr = np.int32([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.pool(arr, 2, np.average) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.average([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.average([2, 3, 6, 7])) assert arr_pooled[1, 0] == int(np.average([8, 9, 12, 13])) assert arr_pooled[1, 1] == int(np.average([10, 11, 14, 15])) arr = np.float32([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.pool(arr, 2, np.average) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert np.allclose(arr_pooled[0, 0], np.average([0, 1, 4, 5])) assert np.allclose(arr_pooled[0, 1], np.average([2, 3, 6, 7])) assert np.allclose(arr_pooled[1, 0], np.average([8, 9, 12, 13])) assert np.allclose(arr_pooled[1, 1], np.average([10, 11, 14, 15])) # preserve_dtype off arr = np.uint8([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.pool(arr, 2, np.average, preserve_dtype=False) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == np.float64 assert np.allclose(arr_pooled[0, 0], np.average([0, 1, 4, 5])) assert np.allclose(arr_pooled[0, 1], np.average([2, 3, 6, 7])) assert np.allclose(arr_pooled[1, 0], np.average([8, 9, 12, 13])) assert np.allclose(arr_pooled[1, 1], np.average([10, 11, 14, 15])) # maximum function arr = np.uint8([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.pool(arr, 2, np.max) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.max([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.max([2, 3, 6, 7])) assert arr_pooled[1, 0] == int(np.max([8, 9, 12, 13])) assert arr_pooled[1, 1] == int(np.max([10, 11, 14, 15])) # 3d array arr = np.uint8([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr = np.tile(arr[..., np.newaxis], (1, 1, 3)) arr_pooled = ia.pool(arr, 2, np.average) assert arr_pooled.shape == (2, 2, 3) assert np.array_equal(arr_pooled[..., 0], arr_pooled[..., 1]) assert np.array_equal(arr_pooled[..., 1], arr_pooled[..., 2]) arr_pooled = arr_pooled[..., 0] assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.average([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.average([2, 3, 6, 7])) assert arr_pooled[1, 0] == int(np.average([8, 9, 12, 13])) assert arr_pooled[1, 1] == int(np.average([10, 11, 14, 15])) # block_size per axis arr = np.float32([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.pool(arr, (2, 1), np.average) assert arr_pooled.shape == (2, 4) assert arr_pooled.dtype == arr.dtype.type assert np.allclose(arr_pooled[0, 0], np.average([0, 4])) assert np.allclose(arr_pooled[0, 1], np.average([1, 5])) assert np.allclose(arr_pooled[0, 2], np.average([2, 6])) assert np.allclose(arr_pooled[0, 3], np.average([3, 7])) assert np.allclose(arr_pooled[1, 0], np.average([8, 12])) assert np.allclose(arr_pooled[1, 1], np.average([9, 13])) assert np.allclose(arr_pooled[1, 2], np.average([10, 14])) assert np.allclose(arr_pooled[1, 3], np.average([11, 15])) # cval arr = np.uint8([ [0, 1, 2], [4, 5, 6], [8, 9, 10] ]) arr_pooled = ia.pool(arr, 2, np.average) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.average([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.average([2, 0, 6, 0])) assert arr_pooled[1, 0] == int(np.average([8, 9, 0, 0])) assert arr_pooled[1, 1] == int(np.average([10, 0, 0, 0])) arr = np.uint8([ [0, 1], [4, 5] ]) arr_pooled = ia.pool(arr, (4, 1), np.average) assert arr_pooled.shape == (1, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.average([0, 4, 0, 0])) assert arr_pooled[0, 1] == int(np.average([1, 5, 0, 0])) arr = np.uint8([ [0, 1, 2], [4, 5, 6], [8, 9, 10] ]) arr_pooled = ia.pool(arr, 2, np.average, cval=22) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.average([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.average([2, 22, 6, 22])) assert arr_pooled[1, 0] == int(np.average([8, 9, 22, 22])) assert arr_pooled[1, 1] == int(np.average([10, 22, 22, 22])) def test_avg_pool(): # very basic test, as avg_pool() just calls pool(), which is tested in test_pool() arr = np.uint8([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.avg_pool(arr, 2) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.average([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.average([2, 3, 6, 7])) assert arr_pooled[1, 0] == int(np.average([8, 9, 12, 13])) assert arr_pooled[1, 1] == int(np.average([10, 11, 14, 15])) def test_max_pool(): # very basic test, as avg_pool() just calls pool(), which is tested in test_pool() arr = np.uint8([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.max_pool(arr, 2) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.max([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.max([2, 3, 6, 7])) assert arr_pooled[1, 0] == int(np.max([8, 9, 12, 13])) assert arr_pooled[1, 1] == int(np.max([10, 11, 14, 15])) def test_draw_grid(): image = np.zeros((2, 2, 3), dtype=np.uint8) image[0, 0] = 64 image[0, 1] = 128 image[1, 0] = 192 image[1, 1] = 256 grid = ia.draw_grid([image], rows=1, cols=1) assert np.array_equal(grid, image) grid = ia.draw_grid(np.uint8([image]), rows=1, cols=1) assert np.array_equal(grid, image) grid = ia.draw_grid([image, image, image, image], rows=2, cols=2) expected = np.vstack([ np.hstack([image, image]), np.hstack([image, image]) ]) assert np.array_equal(grid, expected) grid = ia.draw_grid([image, image], rows=1, cols=2) expected = np.hstack([image, image]) assert np.array_equal(grid, expected) grid = ia.draw_grid([image, image, image, image], rows=2, cols=None) expected = np.vstack([ np.hstack([image, image]), np.hstack([image, image]) ]) assert np.array_equal(grid, expected) grid = ia.draw_grid([image, image, image, image], rows=None, cols=2) expected = np.vstack([ np.hstack([image, image]), np.hstack([image, image]) ]) assert np.array_equal(grid, expected) grid = ia.draw_grid([image, image, image, image], rows=None, cols=None) expected = np.vstack([ np.hstack([image, image]), np.hstack([image, image]) ]) assert np.array_equal(grid, expected) def test_Keypoint(): eps = 1e-8 # x/y/x_int/y_int kp = ia.Keypoint(y=1, x=2) assert kp.y == 1 assert kp.x == 2 assert kp.y_int == 1 assert kp.x_int == 2 kp = ia.Keypoint(y=1.1, x=2.7) assert 1.1 - eps < kp.y < 1.1 + eps assert 2.7 - eps < kp.x < 2.7 + eps assert kp.y_int == 1 assert kp.x_int == 3 # project kp = ia.Keypoint(y=1, x=2) kp2 = kp.project((10, 10), (10, 10)) assert kp2.y == 1 assert kp2.x == 2 kp2 = kp.project((10, 10), (20, 10)) assert kp2.y == 2 assert kp2.x == 2 kp2 = kp.project((10, 10), (10, 20)) assert kp2.y == 1 assert kp2.x == 4 kp2 = kp.project((10, 10), (20, 20)) assert kp2.y == 2 assert kp2.x == 4 # shift kp = ia.Keypoint(y=1, x=2) kp2 = kp.shift(y=1) assert kp2.y == 2 assert kp2.x == 2 kp2 = kp.shift(y=-1) assert kp2.y == 0 assert kp2.x == 2 kp2 = kp.shift(x=1) assert kp2.y == 1 assert kp2.x == 3 kp2 = kp.shift(x=-1) assert kp2.y == 1 assert kp2.x == 1 kp2 = kp.shift(y=1, x=2) assert kp2.y == 2 assert kp2.x == 4 # __repr__ / __str_ kp = ia.Keypoint(y=1, x=2) assert kp.__repr__() == kp.__str__() == "Keypoint(x=2.00000000, y=1.00000000)" kp = ia.Keypoint(y=1.2, x=2.7) assert kp.__repr__() == kp.__str__() == "Keypoint(x=2.70000000, y=1.20000000)" def test_KeypointsOnImage(): eps = 1e-8 kps = [ia.Keypoint(x=1, y=2), ia.Keypoint(x=3, y=4)] # height/width kpi = ia.KeypointsOnImage(keypoints=kps, shape=(10, 20, 3)) assert kpi.height == 10 assert kpi.width == 20 # image instead of shape kpi = ia.KeypointsOnImage(keypoints=kps, shape=np.zeros((10, 20, 3), dtype=np.uint8)) assert kpi.shape == (10, 20, 3) # on() kpi2 = kpi.on((10, 20, 3)) assert all([kp_i.x == kp_j.x and kp_i.y == kp_j.y for kp_i, kp_j in zip(kpi.keypoints, kpi2.keypoints)]) kpi2 = kpi.on((20, 40, 3)) assert kpi2.keypoints[0].x == 2 assert kpi2.keypoints[0].y == 4 assert kpi2.keypoints[1].x == 6 assert kpi2.keypoints[1].y == 8 kpi2 = kpi.on(np.zeros((20, 40, 3), dtype=np.uint8)) assert kpi2.keypoints[0].x == 2 assert kpi2.keypoints[0].y == 4 assert kpi2.keypoints[1].x == 6 assert kpi2.keypoints[1].y == 8 # draw_on_image kpi = ia.KeypointsOnImage(keypoints=kps, shape=(5, 5, 3)) image = np.zeros((5, 5, 3), dtype=np.uint8) + 10 kps_mask = np.zeros(image.shape[0:2], dtype=np.bool) kps_mask[2, 1] = 1 kps_mask[4, 3] = 1 image_kps = kpi.draw_on_image(image, color=[0, 255, 0], size=1, copy=True, raise_if_out_of_image=False) assert np.all(image_kps[kps_mask] == [0, 255, 0]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) image_kps = kpi.draw_on_image(image, color=[0, 255, 0], size=3, copy=True, raise_if_out_of_image=False) kps_mask_size3 = np.copy(kps_mask) kps_mask_size3[2-1:2+1+1, 1-1:1+1+1] = 1 kps_mask_size3[4-1:4+1+1, 3-1:3+1+1] = 1 assert np.all(image_kps[kps_mask_size3] == [0, 255, 0]) assert np.all(image_kps[~kps_mask_size3] == [10, 10, 10]) image_kps = kpi.draw_on_image(image, color=[0, 0, 255], size=1, copy=True, raise_if_out_of_image=False) assert np.all(image_kps[kps_mask] == [0, 0, 255]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) image_kps = kpi.draw_on_image(image, color=255, size=1, copy=True, raise_if_out_of_image=False) assert np.all(image_kps[kps_mask] == [255, 255, 255]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) image2 = np.copy(image) image_kps = kpi.draw_on_image(image2, color=[0, 255, 0], size=1, copy=False, raise_if_out_of_image=False) assert np.all(image2 == image_kps) assert np.all(image_kps[kps_mask] == [0, 255, 0]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) assert np.all(image2[kps_mask] == [0, 255, 0]) assert np.all(image2[~kps_mask] == [10, 10, 10]) kpi = ia.KeypointsOnImage(keypoints=kps + [ia.Keypoint(x=100, y=100)], shape=(5, 5, 3)) image = np.zeros((5, 5, 3), dtype=np.uint8) + 10 kps_mask = np.zeros(image.shape[0:2], dtype=np.bool) kps_mask[2, 1] = 1 kps_mask[4, 3] = 1 image_kps = kpi.draw_on_image(image, color=[0, 255, 0], size=1, copy=True, raise_if_out_of_image=False) assert np.all(image_kps[kps_mask] == [0, 255, 0]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) kpi = ia.KeypointsOnImage(keypoints=kps + [ia.Keypoint(x=100, y=100)], shape=(5, 5, 3)) image = np.zeros((5, 5, 3), dtype=np.uint8) + 10 got_exception = False try: image_kps = kpi.draw_on_image(image, color=[0, 255, 0], size=1, copy=True, raise_if_out_of_image=True) assert np.all(image_kps[kps_mask] == [0, 255, 0]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) except Exception: got_exception = True assert got_exception kpi = ia.KeypointsOnImage(keypoints=kps + [ia.Keypoint(x=5, y=5)], shape=(5, 5, 3)) image = np.zeros((5, 5, 3), dtype=np.uint8) + 10 kps_mask = np.zeros(image.shape[0:2], dtype=np.bool) kps_mask[2, 1] = 1 kps_mask[4, 3] = 1 image_kps = kpi.draw_on_image(image, color=[0, 255, 0], size=1, copy=True, raise_if_out_of_image=False) assert np.all(image_kps[kps_mask] == [0, 255, 0]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) got_exception = False try: image_kps = kpi.draw_on_image(image, color=[0, 255, 0], size=1, copy=True, raise_if_out_of_image=True) assert np.all(image_kps[kps_mask] == [0, 255, 0]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) except Exception: got_exception = True assert got_exception # shift kpi = ia.KeypointsOnImage(keypoints=kps, shape=(5, 5, 3)) kpi2 = kpi.shift(x=0, y=0) assert kpi2.keypoints[0].x == kpi.keypoints[0].x assert kpi2.keypoints[0].y == kpi.keypoints[0].y assert kpi2.keypoints[1].x == kpi.keypoints[1].x assert kpi2.keypoints[1].y == kpi.keypoints[1].y kpi2 = kpi.shift(x=1) assert kpi2.keypoints[0].x == kpi.keypoints[0].x + 1 assert kpi2.keypoints[0].y == kpi.keypoints[0].y assert kpi2.keypoints[1].x == kpi.keypoints[1].x + 1 assert kpi2.keypoints[1].y == kpi.keypoints[1].y kpi2 = kpi.shift(x=-1) assert kpi2.keypoints[0].x == kpi.keypoints[0].x - 1 assert kpi2.keypoints[0].y == kpi.keypoints[0].y assert kpi2.keypoints[1].x == kpi.keypoints[1].x - 1 assert kpi2.keypoints[1].y == kpi.keypoints[1].y kpi2 = kpi.shift(y=1) assert kpi2.keypoints[0].x == kpi.keypoints[0].x assert kpi2.keypoints[0].y == kpi.keypoints[0].y + 1 assert kpi2.keypoints[1].x == kpi.keypoints[1].x assert kpi2.keypoints[1].y == kpi.keypoints[1].y + 1 kpi2 = kpi.shift(y=-1) assert kpi2.keypoints[0].x == kpi.keypoints[0].x assert kpi2.keypoints[0].y == kpi.keypoints[0].y - 1 assert kpi2.keypoints[1].x == kpi.keypoints[1].x assert kpi2.keypoints[1].y == kpi.keypoints[1].y - 1 kpi2 = kpi.shift(x=1, y=2) assert kpi2.keypoints[0].x == kpi.keypoints[0].x + 1 assert kpi2.keypoints[0].y == kpi.keypoints[0].y + 2 assert kpi2.keypoints[1].x == kpi.keypoints[1].x + 1 assert kpi2.keypoints[1].y == kpi.keypoints[1].y + 2 # get_coords_array kpi = ia.KeypointsOnImage(keypoints=kps, shape=(5, 5, 3)) observed = kpi.get_coords_array() expected = np.float32([ [1, 2], [3, 4] ]) assert np.allclose(observed, expected) # from_coords_array arr = np.float32([ [1, 2], [3, 4] ]) kpi = ia.KeypointsOnImage.from_coords_array(arr, shape=(5, 5, 3)) assert 1 - eps < kpi.keypoints[0].x < 1 + eps assert 2 - eps < kpi.keypoints[0].y < 2 + eps assert 3 - eps < kpi.keypoints[1].x < 3 + eps assert 4 - eps < kpi.keypoints[1].y < 4 + eps # to_keypoint_image kpi = ia.KeypointsOnImage(keypoints=kps, shape=(5, 5, 3)) image = kpi.to_keypoint_image(size=1) image_size3 = kpi.to_keypoint_image(size=3) kps_mask = np.zeros((5, 5, 2), dtype=np.bool) kps_mask[2, 1, 0] = 1 kps_mask[4, 3, 1] = 1 kps_mask_size3 = np.zeros_like(kps_mask) kps_mask_size3[2-1:2+1+1, 1-1:1+1+1, 0] = 1 kps_mask_size3[4-1:4+1+1, 3-1:3+1+1, 1] = 1 assert np.all(image[kps_mask] == 255) assert np.all(image[~kps_mask] == 0) assert np.all(image_size3[kps_mask] == 255) assert np.all(image_size3[kps_mask_size3] >= 128) assert np.all(image_size3[~kps_mask_size3] == 0) # from_keypoint_image() kps_image = np.zeros((5, 5, 2), dtype=np.uint8) kps_image[2, 1, 0] = 255 kps_image[4, 3, 1] = 255 kpi2 = ia.KeypointsOnImage.from_keypoint_image(kps_image, nb_channels=3) assert kpi2.shape == (5, 5, 3) assert len(kpi2.keypoints) == 2 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[0].x == 1 assert kpi2.keypoints[1].y == 4 assert kpi2.keypoints[1].x == 3 kps_image = np.zeros((5, 5, 2), dtype=np.uint8) kps_image[2, 1, 0] = 255 kps_image[4, 3, 1] = 10 kpi2 = ia.KeypointsOnImage.from_keypoint_image(kps_image, if_not_found_coords={"x": -1, "y": -2}, threshold=20, nb_channels=3) assert kpi2.shape == (5, 5, 3) assert len(kpi2.keypoints) == 2 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[0].x == 1 assert kpi2.keypoints[1].y == -2 assert kpi2.keypoints[1].x == -1 kps_image = np.zeros((5, 5, 2), dtype=np.uint8) kps_image[2, 1, 0] = 255 kps_image[4, 3, 1] = 10 kpi2 = ia.KeypointsOnImage.from_keypoint_image(kps_image, if_not_found_coords=(-1, -2), threshold=20, nb_channels=3) assert kpi2.shape == (5, 5, 3) assert len(kpi2.keypoints) == 2 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[0].x == 1 assert kpi2.keypoints[1].y == -2 assert kpi2.keypoints[1].x == -1 kps_image = np.zeros((5, 5, 2), dtype=np.uint8) kps_image[2, 1, 0] = 255 kps_image[4, 3, 1] = 10 kpi2 = ia.KeypointsOnImage.from_keypoint_image(kps_image, if_not_found_coords=None, threshold=20, nb_channels=3) assert kpi2.shape == (5, 5, 3) assert len(kpi2.keypoints) == 1 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[0].x == 1 got_exception = False try: kps_image = np.zeros((5, 5, 2), dtype=np.uint8) kps_image[2, 1, 0] = 255 kps_image[4, 3, 1] = 10 _ = ia.KeypointsOnImage.from_keypoint_image(kps_image, if_not_found_coords="exception-please", threshold=20, nb_channels=3) except Exception as exc: assert "Expected if_not_found_coords to be" in str(exc) got_exception = True assert got_exception # copy() kps = [ia.Keypoint(x=1, y=2), ia.Keypoint(x=3, y=4)] kpi = ia.KeypointsOnImage(keypoints=kps, shape=(5, 5, 3)) kpi2 = kpi.copy() assert kpi2.keypoints[0].x == 1 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[1].x == 3 assert kpi2.keypoints[1].y == 4 kps[0].x = 100 assert kpi2.keypoints[0].x == 100 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[1].x == 3 assert kpi2.keypoints[1].y == 4 # deepcopy() kps = [ia.Keypoint(x=1, y=2), ia.Keypoint(x=3, y=4)] kpi = ia.KeypointsOnImage(keypoints=kps, shape=(5, 5, 3)) kpi2 = kpi.deepcopy() assert kpi2.keypoints[0].x == 1 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[1].x == 3 assert kpi2.keypoints[1].y == 4 kps[0].x = 100 assert kpi2.keypoints[0].x == 1 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[1].x == 3 assert kpi2.keypoints[1].y == 4 # repr/str kps = [ia.Keypoint(x=1, y=2), ia.Keypoint(x=3, y=4)] kpi = ia.KeypointsOnImage(keypoints=kps, shape=(5, 5, 3)) expected = "KeypointsOnImage([Keypoint(x=1.00000000, y=2.00000000), Keypoint(x=3.00000000, y=4.00000000)], " \ + "shape=(5, 5, 3))" assert kpi.__repr__() == kpi.__str__() == expected def test_BoundingBox(): eps = 1e-8 # properties with ints bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) assert bb.y1_int == 10 assert bb.x1_int == 20 assert bb.y2_int == 30 assert bb.x2_int == 40 assert bb.width == 40 - 20 assert bb.height == 30 - 10 center_x = bb.x1 + (bb.x2 - bb.x1)/2 center_y = bb.y1 + (bb.y2 - bb.y1)/2 assert center_x - eps < bb.center_x < center_x + eps assert center_y - eps < bb.center_y < center_y + eps # wrong order of y1/y2, x1/x2 bb = ia.BoundingBox(y1=30, x1=40, y2=10, x2=20, label=None) assert bb.y1_int == 10 assert bb.x1_int == 20 assert bb.y2_int == 30 assert bb.x2_int == 40 # properties with floats bb = ia.BoundingBox(y1=10.1, x1=20.1, y2=30.9, x2=40.9, label=None) assert bb.y1_int == 10 assert bb.x1_int == 20 assert bb.y2_int == 31 assert bb.x2_int == 41 assert bb.width == 40.9 - 20.1 assert bb.height == 30.9 - 10.1 center_x = bb.x1 + (bb.x2 - bb.x1)/2 center_y = bb.y1 + (bb.y2 - bb.y1)/2 assert center_x - eps < bb.center_x < center_x + eps assert center_y - eps < bb.center_y < center_y + eps # area bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) assert bb.area == (30-10) * (40-20) # project bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = bb.project((10, 10), (10, 10)) assert 10 - eps < bb2.y1 < 10 + eps assert 20 - eps < bb2.x1 < 20 + eps assert 30 - eps < bb2.y2 < 30 + eps assert 40 - eps < bb2.x2 < 40 + eps bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = bb.project((10, 10), (20, 20)) assert 10*2 - eps < bb2.y1 < 10*2 + eps assert 20*2 - eps < bb2.x1 < 20*2 + eps assert 30*2 - eps < bb2.y2 < 30*2 + eps assert 40*2 - eps < bb2.x2 < 40*2 + eps bb2 = bb.project((10, 10), (5, 5)) assert 10*0.5 - eps < bb2.y1 < 10*0.5 + eps assert 20*0.5 - eps < bb2.x1 < 20*0.5 + eps assert 30*0.5 - eps < bb2.y2 < 30*0.5 + eps assert 40*0.5 - eps < bb2.x2 < 40*0.5 + eps bb2 = bb.project((10, 10), (10, 20)) assert 10*1 - eps < bb2.y1 < 10*1 + eps assert 20*2 - eps < bb2.x1 < 20*2 + eps assert 30*1 - eps < bb2.y2 < 30*1 + eps assert 40*2 - eps < bb2.x2 < 40*2 + eps bb2 = bb.project((10, 10), (20, 10)) assert 10*2 - eps < bb2.y1 < 10*2 + eps assert 20*1 - eps < bb2.x1 < 20*1 + eps assert 30*2 - eps < bb2.y2 < 30*2 + eps assert 40*1 - eps < bb2.x2 < 40*1 + eps # extend bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = bb.extend(all_sides=1) assert bb2.y1 == 10-1 assert bb2.y2 == 30+1 assert bb2.x1 == 20-1 assert bb2.x2 == 40+1 bb2 = bb.extend(all_sides=-1) assert bb2.y1 == 10-(-1) assert bb2.y2 == 30+(-1) assert bb2.x1 == 20-(-1) assert bb2.x2 == 40+(-1) bb2 = bb.extend(top=1) assert bb2.y1 == 10-1 assert bb2.y2 == 30+0 assert bb2.x1 == 20-0 assert bb2.x2 == 40+0 bb2 = bb.extend(right=1) assert bb2.y1 == 10-0 assert bb2.y2 == 30+0 assert bb2.x1 == 20-0 assert bb2.x2 == 40+1 bb2 = bb.extend(bottom=1) assert bb2.y1 == 10-0 assert bb2.y2 == 30+1 assert bb2.x1 == 20-0 assert bb2.x2 == 40+0 bb2 = bb.extend(left=1) assert bb2.y1 == 10-0 assert bb2.y2 == 30+0 assert bb2.x1 == 20-1 assert bb2.x2 == 40+0 # intersection bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=10, x1=39, y2=30, x2=59, label=None) bb_inter = bb1.intersection(bb2) assert bb_inter.x1 == 39 assert bb_inter.x2 == 40 assert bb_inter.y1 == 10 assert bb_inter.y2 == 30 bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=10, x1=41, y2=30, x2=61, label=None) bb_inter = bb1.intersection(bb2, default=False) assert bb_inter is False # union bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=10, x1=39, y2=30, x2=59, label=None) bb_union = bb1.union(bb2) assert bb_union.x1 == 20 assert bb_union.x2 == 59 assert bb_union.y1 == 10 assert bb_union.y2 == 30 # iou bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) iou = bb1.iou(bb2) assert 1.0 - eps < iou < 1.0 + eps bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=10, x1=41, y2=30, x2=61, label=None) iou = bb1.iou(bb2) assert 0.0 - eps < iou < 0.0 + eps bb1 = ia.BoundingBox(y1=10, x1=10, y2=20, x2=20, label=None) bb2 = ia.BoundingBox(y1=15, x1=15, y2=25, x2=25, label=None) iou = bb1.iou(bb2) area_union = 10 * 10 + 10 * 10 - 5 * 5 area_intersection = 5 * 5 iou_expected = area_intersection / area_union assert iou_expected - eps < iou < iou_expected + eps # is_fully_within_image bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) assert bb.is_fully_within_image((100, 100, 3)) is True assert bb.is_fully_within_image((20, 100, 3)) is False assert bb.is_fully_within_image((100, 30, 3)) is False assert bb.is_fully_within_image((1, 1, 3)) is False # is_partly_within_image bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) assert bb.is_partly_within_image((100, 100, 3)) is True assert bb.is_partly_within_image((20, 100, 3)) is True assert bb.is_partly_within_image((100, 30, 3)) is True assert bb.is_partly_within_image((1, 1, 3)) is False # is_out_of_image() bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) assert bb.is_out_of_image((100, 100, 3), partly=True, fully=True) is False assert bb.is_out_of_image((100, 100, 3), partly=False, fully=True) is False assert bb.is_out_of_image((100, 100, 3), partly=True, fully=False) is False assert bb.is_out_of_image((20, 100, 3), partly=True, fully=True) is True assert bb.is_out_of_image((20, 100, 3), partly=False, fully=True) is False assert bb.is_out_of_image((20, 100, 3), partly=True, fully=False) is True assert bb.is_out_of_image((100, 30, 3), partly=True, fully=True) is True assert bb.is_out_of_image((100, 30, 3), partly=False, fully=True) is False assert bb.is_out_of_image((100, 30, 3), partly=True, fully=False) is True assert bb.is_out_of_image((1, 1, 3), partly=True, fully=True) is True assert bb.is_out_of_image((1, 1, 3), partly=False, fully=True) is True assert bb.is_out_of_image((1, 1, 3), partly=True, fully=False) is False # cut_out_of_image bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb_cut = bb.cut_out_of_image((100, 100, 3)) eps = np.finfo(np.float32).eps assert bb_cut.y1 == 10 assert bb_cut.x1 == 20 assert bb_cut.y2 == 30 assert bb_cut.x2 == 40 bb_cut = bb.cut_out_of_image(np.zeros((100, 100, 3), dtype=np.uint8)) assert bb_cut.y1 == 10 assert bb_cut.x1 == 20 assert bb_cut.y2 == 30 assert bb_cut.x2 == 40 bb_cut = bb.cut_out_of_image((20, 100, 3)) assert bb_cut.y1 == 10 assert bb_cut.x1 == 20 assert 20 - 2*eps < bb_cut.y2 < 20 assert bb_cut.x2 == 40 bb_cut = bb.cut_out_of_image((100, 30, 3)) assert bb_cut.y1 == 10 assert bb_cut.x1 == 20 assert bb_cut.y2 == 30 assert 30 - 2*eps < bb_cut.x2 < 30 # shift bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb_top = bb.shift(top=0) bb_right = bb.shift(right=0) bb_bottom = bb.shift(bottom=0) bb_left = bb.shift(left=0) assert bb_top.y1 == 10 assert bb_top.x1 == 20 assert bb_top.y2 == 30 assert bb_top.x2 == 40 assert bb_right.y1 == 10 assert bb_right.x1 == 20 assert bb_right.y2 == 30 assert bb_right.x2 == 40 assert bb_bottom.y1 == 10 assert bb_bottom.x1 == 20 assert bb_bottom.y2 == 30 assert bb_bottom.x2 == 40 assert bb_left.y1 == 10 assert bb_left.x1 == 20 assert bb_left.y2 == 30 assert bb_left.x2 == 40 bb_top = bb.shift(top=1) bb_right = bb.shift(right=1) bb_bottom = bb.shift(bottom=1) bb_left = bb.shift(left=1) assert bb_top.y1 == 10+1 assert bb_top.x1 == 20 assert bb_top.y2 == 30+1 assert bb_top.x2 == 40 assert bb_right.y1 == 10 assert bb_right.x1 == 20-1 assert bb_right.y2 == 30 assert bb_right.x2 == 40-1 assert bb_bottom.y1 == 10-1 assert bb_bottom.x1 == 20 assert bb_bottom.y2 == 30-1 assert bb_bottom.x2 == 40 assert bb_left.y1 == 10 assert bb_left.x1 == 20+1 assert bb_left.y2 == 30 assert bb_left.x2 == 40+1 bb_top = bb.shift(top=-1) bb_right = bb.shift(right=-1) bb_bottom = bb.shift(bottom=-1) bb_left = bb.shift(left=-1) assert bb_top.y1 == 10-1 assert bb_top.x1 == 20 assert bb_top.y2 == 30-1 assert bb_top.x2 == 40 assert bb_right.y1 == 10 assert bb_right.x1 == 20+1 assert bb_right.y2 == 30 assert bb_right.x2 == 40+1 assert bb_bottom.y1 == 10+1 assert bb_bottom.x1 == 20 assert bb_bottom.y2 == 30+1 assert bb_bottom.x2 == 40 assert bb_left.y1 == 10 assert bb_left.x1 == 20-1 assert bb_left.y2 == 30 assert bb_left.x2 == 40-1 bb_mix = bb.shift(top=1, bottom=2, left=3, right=4) assert bb_mix.y1 == 10+1-2 assert bb_mix.x1 == 20+3-4 assert bb_mix.y2 == 30+3-4 assert bb_mix.x2 == 40+1-2 # draw_on_image() image = np.zeros((10, 10, 3), dtype=np.uint8) bb = ia.BoundingBox(y1=1, x1=1, y2=3, x2=3, label=None) bb_mask = np.zeros(image.shape[0:2], dtype=np.bool) bb_mask[1:3+1, 1] = True bb_mask[1:3+1, 3] = True bb_mask[1, 1:3+1] = True bb_mask[3, 1:3+1] = True image_bb = bb.draw_on_image(image, color=[255, 255, 255], alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [255, 255, 255]) assert np.all(image_bb[~bb_mask] == [0, 0, 0]) assert np.all(image == 0) image_bb = bb.draw_on_image(image, color=[255, 0, 0], alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [255, 0, 0]) assert np.all(image_bb[~bb_mask] == [0, 0, 0]) image_bb = bb.draw_on_image(image, color=128, alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [128, 128, 128]) assert np.all(image_bb[~bb_mask] == [0, 0, 0]) image_bb = bb.draw_on_image(image+100, color=[200, 200, 200], alpha=0.5, thickness=1, copy=True, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [150, 150, 150]) assert np.all(image_bb[~bb_mask] == [100, 100, 100]) image_bb = bb.draw_on_image((image+100).astype(np.float32), color=[200, 200, 200], alpha=0.5, thickness=1, copy=True, raise_if_out_of_image=False) assert np.sum(np.abs((image_bb - [150, 150, 150])[bb_mask])) < 0.1 assert np.sum(np.abs((image_bb - [100, 100, 100])[~bb_mask])) < 0.1 image_bb = bb.draw_on_image(image, color=[255, 255, 255], alpha=1.0, thickness=1, copy=False, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [255, 255, 255]) assert np.all(image_bb[~bb_mask] == [0, 0, 0]) assert np.all(image[bb_mask] == [255, 255, 255]) assert np.all(image[~bb_mask] == [0, 0, 0]) image = np.zeros_like(image) bb = ia.BoundingBox(y1=-1, x1=-1, y2=2, x2=2, label=None) bb_mask = np.zeros(image.shape[0:2], dtype=np.bool) bb_mask[2, 0:3] = True bb_mask[0:3, 2] = True image_bb = bb.draw_on_image(image, color=[255, 255, 255], alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [255, 255, 255]) assert np.all(image_bb[~bb_mask] == [0, 0, 0]) bb = ia.BoundingBox(y1=1, x1=1, y2=3, x2=3, label=None) bb_mask = np.zeros(image.shape[0:2], dtype=np.bool) bb_mask[0:5, 0:5] = True bb_mask[2, 2] = False image_bb = bb.draw_on_image(image, color=[255, 255, 255], alpha=1.0, thickness=2, copy=True, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [255, 255, 255]) assert np.all(image_bb[~bb_mask] == [0, 0, 0]) bb = ia.BoundingBox(y1=-1, x1=-1, y2=1, x2=1, label=None) bb_mask = np.zeros(image.shape[0:2], dtype=np.bool) bb_mask[0:1+1, 1] = True bb_mask[1, 0:1+1] = True image_bb = bb.draw_on_image(image, color=[255, 255, 255], alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [255, 255, 255]) assert np.all(image_bb[~bb_mask] == [0, 0, 0]) bb = ia.BoundingBox(y1=-1, x1=-1, y2=1, x2=1, label=None) got_exception = False try: _ = bb.draw_on_image(image, color=[255, 255, 255], alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=True) except Exception: got_exception = True assert got_exception is False bb = ia.BoundingBox(y1=-5, x1=-5, y2=-1, x2=-1, label=None) got_exception = False try: _ = bb.draw_on_image(image, color=[255, 255, 255], alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=True) except Exception: got_exception = True assert got_exception is True # extract_from_image() image = np.random.RandomState(1234).randint(0, 255, size=(10, 10, 3)) bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label=None) image_sub = bb.extract_from_image(image) assert np.array_equal(image_sub, image[1:3, 1:3, :]) image = np.random.RandomState(1234).randint(0, 255, size=(10, 10)) bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label=None) image_sub = bb.extract_from_image(image) assert np.array_equal(image_sub, image[1:3, 1:3]) image = np.random.RandomState(1234).randint(0, 255, size=(10, 10)) bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label=None) image_sub = bb.extract_from_image(image) assert np.array_equal(image_sub, image[1:3, 1:3]) image = np.random.RandomState(1234).randint(0, 255, size=(10, 10, 3)) image_pad = np.pad(image, ((0, 1), (0, 1), (0, 0)), mode="constant", constant_values=0) bb = ia.BoundingBox(y1=8, y2=11, x1=8, x2=11, label=None) image_sub = bb.extract_from_image(image) assert np.array_equal(image_sub, image_pad[8:11, 8:11, :]) image = np.random.RandomState(1234).randint(0, 255, size=(10, 10, 3)) image_pad = np.pad(image, ((1, 0), (1, 0), (0, 0)), mode="constant", constant_values=0) bb = ia.BoundingBox(y1=-1, y2=3, x1=-1, x2=4, label=None) image_sub = bb.extract_from_image(image) assert np.array_equal(image_sub, image_pad[0:4, 0:5, :]) # to_keypoints() bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label=None) kps = bb.to_keypoints() assert kps[0].y == 1 assert kps[0].x == 1 assert kps[1].y == 1 assert kps[1].x == 3 assert kps[2].y == 3 assert kps[2].x == 3 assert kps[3].y == 3 assert kps[3].x == 1 # copy() bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label="test") bb2 = bb.copy() assert bb2.y1 == 1 assert bb2.y2 == 3 assert bb2.x1 == 1 assert bb2.x2 == 3 assert bb2.label == "test" bb2 = bb.copy(y1=10, x1=20, y2=30, x2=40, label="test2") assert bb2.y1 == 10 assert bb2.x1 == 20 assert bb2.y2 == 30 assert bb2.x2 == 40 assert bb2.label == "test2" # deepcopy() bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label=["test"]) bb2 = bb.deepcopy() assert bb2.y1 == 1 assert bb2.y2 == 3 assert bb2.x1 == 1 assert bb2.x2 == 3 assert bb2.label[0] == "test" # BoundingBox_repr() bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label=None) assert bb.__repr__() == "BoundingBox(x1=1.0000, y1=1.0000, x2=3.0000, y2=3.0000, label=None)" # test_BoundingBox_str() bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label=None) assert bb.__str__() == "BoundingBox(x1=1.0000, y1=1.0000, x2=3.0000, y2=3.0000, label=None)" def test_BoundingBoxesOnImage(): reseed() # test height/width bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=45, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) assert bbsoi.height == 40 assert bbsoi.width == 50 bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=45, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=np.zeros((40, 50, 3), dtype=np.uint8)) assert bbsoi.height == 40 assert bbsoi.width == 50 # on() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=45, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=np.zeros((40, 50, 3), dtype=np.uint8)) bbsoi_projected = bbsoi.on((40, 50)) assert bbsoi_projected.bounding_boxes[0].y1 == 10 assert bbsoi_projected.bounding_boxes[0].x1 == 20 assert bbsoi_projected.bounding_boxes[0].y2 == 30 assert bbsoi_projected.bounding_boxes[0].x2 == 40 assert bbsoi_projected.bounding_boxes[1].y1 == 15 assert bbsoi_projected.bounding_boxes[1].x1 == 25 assert bbsoi_projected.bounding_boxes[1].y2 == 35 assert bbsoi_projected.bounding_boxes[1].x2 == 45 bbsoi_projected = bbsoi.on((40*2, 50*2, 3)) assert bbsoi_projected.bounding_boxes[0].y1 == 10*2 assert bbsoi_projected.bounding_boxes[0].x1 == 20*2 assert bbsoi_projected.bounding_boxes[0].y2 == 30*2 assert bbsoi_projected.bounding_boxes[0].x2 == 40*2 assert bbsoi_projected.bounding_boxes[1].y1 == 15*2 assert bbsoi_projected.bounding_boxes[1].x1 == 25*2 assert bbsoi_projected.bounding_boxes[1].y2 == 35*2 assert bbsoi_projected.bounding_boxes[1].x2 == 45*2 bbsoi_projected = bbsoi.on(np.zeros((40*2, 50*2, 3), dtype=np.uint8)) assert bbsoi_projected.bounding_boxes[0].y1 == 10*2 assert bbsoi_projected.bounding_boxes[0].x1 == 20*2 assert bbsoi_projected.bounding_boxes[0].y2 == 30*2 assert bbsoi_projected.bounding_boxes[0].x2 == 40*2 assert bbsoi_projected.bounding_boxes[1].y1 == 15*2 assert bbsoi_projected.bounding_boxes[1].x1 == 25*2 assert bbsoi_projected.bounding_boxes[1].y2 == 35*2 assert bbsoi_projected.bounding_boxes[1].x2 == 45*2 # draw_on_image() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=45, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) image = bbsoi.draw_on_image(np.zeros(bbsoi.shape, dtype=np.uint8), color=[0, 255, 0], alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=False) assert np.all(image[10-1, 20-1, :] == [0, 0, 0]) assert np.all(image[10-1, 20-0, :] == [0, 0, 0]) assert np.all(image[10-0, 20-1, :] == [0, 0, 0]) assert np.all(image[10-0, 20-0, :] == [0, 255, 0]) assert np.all(image[10+1, 20+1, :] == [0, 0, 0]) assert np.all(image[30-1, 40-1, :] == [0, 0, 0]) assert np.all(image[30+1, 40-0, :] == [0, 0, 0]) assert np.all(image[30+0, 40+1, :] == [0, 0, 0]) assert np.all(image[30+0, 40+0, :] == [0, 255, 0]) assert np.all(image[30+1, 40+1, :] == [0, 0, 0]) assert np.all(image[15-1, 25-1, :] == [0, 0, 0]) assert np.all(image[15-1, 25-0, :] == [0, 0, 0]) assert np.all(image[15-0, 25-1, :] == [0, 0, 0]) assert np.all(image[15-0, 25-0, :] == [0, 255, 0]) assert np.all(image[15+1, 25+1, :] == [0, 0, 0]) assert np.all(image[35-1, 45-1, :] == [0, 0, 0]) assert np.all(image[35+1, 45+0, :] == [0, 0, 0]) assert np.all(image[35+0, 45+1, :] == [0, 0, 0]) assert np.all(image[35+0, 45+0, :] == [0, 255, 0]) assert np.all(image[35+1, 45+1, :] == [0, 0, 0]) # remove_out_of_image() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=51, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) bbsoi_slim = bbsoi.remove_out_of_image(fully=True, partly=True) assert len(bbsoi_slim.bounding_boxes) == 1 assert bbsoi_slim.bounding_boxes[0] == bb1 # cut_out_of_image() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=51, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) eps = np.finfo(np.float32).eps bbsoi_cut = bbsoi.cut_out_of_image() assert len(bbsoi_cut.bounding_boxes) == 2 assert bbsoi_cut.bounding_boxes[0].y1 == 10 assert bbsoi_cut.bounding_boxes[0].x1 == 20 assert bbsoi_cut.bounding_boxes[0].y2 == 30 assert bbsoi_cut.bounding_boxes[0].x2 == 40 assert bbsoi_cut.bounding_boxes[1].y1 == 15 assert bbsoi_cut.bounding_boxes[1].x1 == 25 assert bbsoi_cut.bounding_boxes[1].y2 == 35 assert 50 - 2*eps < bbsoi_cut.bounding_boxes[1].x2 < 50 # shift() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=51, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) bbsoi_shifted = bbsoi.shift(right=1) assert len(bbsoi_cut.bounding_boxes) == 2 assert bbsoi_shifted.bounding_boxes[0].y1 == 10 assert bbsoi_shifted.bounding_boxes[0].x1 == 20 - 1 assert bbsoi_shifted.bounding_boxes[0].y2 == 30 assert bbsoi_shifted.bounding_boxes[0].x2 == 40 - 1 assert bbsoi_shifted.bounding_boxes[1].y1 == 15 assert bbsoi_shifted.bounding_boxes[1].x1 == 25 - 1 assert bbsoi_shifted.bounding_boxes[1].y2 == 35 assert bbsoi_shifted.bounding_boxes[1].x2 == 51 - 1 # copy() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=51, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) bbsoi_copy = bbsoi.copy() assert len(bbsoi.bounding_boxes) == 2 assert bbsoi_copy.bounding_boxes[0].y1 == 10 assert bbsoi_copy.bounding_boxes[0].x1 == 20 assert bbsoi_copy.bounding_boxes[0].y2 == 30 assert bbsoi_copy.bounding_boxes[0].x2 == 40 assert bbsoi_copy.bounding_boxes[1].y1 == 15 assert bbsoi_copy.bounding_boxes[1].x1 == 25 assert bbsoi_copy.bounding_boxes[1].y2 == 35 assert bbsoi_copy.bounding_boxes[1].x2 == 51 bbsoi.bounding_boxes[0].y1 = 0 assert bbsoi_copy.bounding_boxes[0].y1 == 0 # deepcopy() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=51, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) bbsoi_copy = bbsoi.deepcopy() assert len(bbsoi.bounding_boxes) == 2 assert bbsoi_copy.bounding_boxes[0].y1 == 10 assert bbsoi_copy.bounding_boxes[0].x1 == 20 assert bbsoi_copy.bounding_boxes[0].y2 == 30 assert bbsoi_copy.bounding_boxes[0].x2 == 40 assert bbsoi_copy.bounding_boxes[1].y1 == 15 assert bbsoi_copy.bounding_boxes[1].x1 == 25 assert bbsoi_copy.bounding_boxes[1].y2 == 35 assert bbsoi_copy.bounding_boxes[1].x2 == 51 bbsoi.bounding_boxes[0].y1 = 0 assert bbsoi_copy.bounding_boxes[0].y1 == 10 # repr() / str() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=51, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) bb1_expected = "BoundingBox(x1=20.0000, y1=10.0000, x2=40.0000, y2=30.0000, label=None)" bb2_expected = "BoundingBox(x1=25.0000, y1=15.0000, x2=51.0000, y2=35.0000, label=None)" expected = "BoundingBoxesOnImage([%s, %s], shape=(40, 50, 3))" % (bb1_expected, bb2_expected) assert bbsoi.__repr__() == bbsoi.__str__() == expected def test_HeatmapsOnImage_draw(): heatmaps_arr = np.float32([ [0.5, 0.0, 0.0, 0.5], [0.0, 1.0, 1.0, 0.0], [0.0, 1.0, 1.0, 0.0], [0.5, 0.0, 0.0, 0.5], ]) heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(4, 4, 3)) heatmaps_drawn = heatmaps.draw()[0] assert heatmaps_drawn.shape == (4, 4, 3) v1 = heatmaps_drawn[0, 1] v2 = heatmaps_drawn[0, 0] v3 = heatmaps_drawn[1, 1] for y, x in [(0, 1), (0, 2), (1, 0), (1, 3), (2, 0), (2, 3), (3, 1), (3, 2)]: assert np.allclose(heatmaps_drawn[y, x], v1) for y, x in [(0, 0), (0, 3), (3, 0), (3, 3)]: assert np.allclose(heatmaps_drawn[y, x], v2) for y, x in [(1, 1), (1, 2), (2, 1), (2, 2)]: assert np.allclose(heatmaps_drawn[y, x], v3) # size differs from heatmap array size heatmaps_arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(2, 2, 3)) heatmaps_drawn = heatmaps.draw(size=(4, 4))[0] assert heatmaps_drawn.shape == (4, 4, 3) v1 = heatmaps_drawn[0, 0] v2 = heatmaps_drawn[0, -1] for y in range(4): for x in range(2): assert np.allclose(heatmaps_drawn[y, x], v1) for y in range(4): for x in range(2, 4): assert
np.allclose(heatmaps_drawn[y, x], v2)
numpy.allclose
# -*- coding: utf-8 -*- import numpy as np import cv2 def ZNCC(img, part): out = img.copy() H, W, _ = img.shape h, w, _ = part.shape _img = img -
np.mean(img, axis=(0, 1))
numpy.mean
# python 2.7 from __future__ import absolute_import, division, print_function import os.path from os.path import join, basename from glob import glob import cv2 import numpy as np import tensorflow as tf def filename_key(x): res = int(splitext(basename(x))[0]) return res def get_data(data_folder, label_folder, image_h, image_w, norm=False): background_color = np.array([255, 255, 255]) # white lane_color = np.array([0, 0, 255]) # red image_paths = glob(join(data_folder, '*.png')) # label_paths = glob(join(label_folder, '*.png')) # make sure the label and image are matched image_paths.sort() # label_paths.sort() images = [] # data gt_images = [] # labels for image_file_id in range(0, len(image_paths)): image_file = image_paths[image_file_id] image = cv2.imread(image_file, 3) if (norm): image = normalize(image) images.append(image) # for each image in the training set, find the related label img_name = basename(image_file) # gt_image_file = label_paths[image_file_id] gt_image_file = join(label_folder, img_name) gt_image = cv2.imread(gt_image_file, 3) gt_bg = np.all(gt_image == background_color, axis=2).reshape(image_h, image_w, 1) gt_l = np.all(gt_image == lane_color, axis=2).reshape(image_h, image_w, 1) gt_image = np.concatenate((gt_bg, gt_l), axis=2) gt_images.append(gt_image) return np.array(images),
np.array(gt_images)
numpy.array
# Licensed under a 3-clause BSD style license - see LICENSE.rst import itertools import inspect import numpy as np from numpy.testing import assert_array_equal import pytest from astropy import units as u from astropy.units.quantity_helper.function_helpers import ( ARRAY_FUNCTION_ENABLED, SUBCLASS_SAFE_FUNCTIONS, UNSUPPORTED_FUNCTIONS, FUNCTION_HELPERS, DISPATCHED_FUNCTIONS, IGNORED_FUNCTIONS) from astropy.utils.compat import ( NUMPY_LT_1_14, NUMPY_LT_1_15, NUMPY_LT_1_16, NUMPY_LT_1_18) NO_ARRAY_FUNCTION = not ARRAY_FUNCTION_ENABLED # To get the functions that could be covered, we look for those that # are wrapped. Of course, this does not give a full list pre-1.17. all_wrapped_functions = {name: f for name, f in np.__dict__.items() if callable(f) and hasattr(f, '__wrapped__') and (NUMPY_LT_1_15 or f is not np.printoptions)} all_wrapped = set(all_wrapped_functions.values()) class CoverageMeta(type): """Meta class that tracks which functions are covered by tests. Assumes that a test is called 'test_<function_name>'. """ covered = set() def __new__(mcls, name, bases, members): for k, v in members.items(): if inspect.isfunction(v) and k.startswith('test'): f = k.replace('test_', '') if f in all_wrapped_functions: mcls.covered.add(all_wrapped_functions[f]) return super().__new__(mcls, name, bases, members) class BasicTestSetup(metaclass=CoverageMeta): """Test setup for functions that should not change the unit. Also provides a default Quantity with shape (3, 3) and units of m. """ def setup(self): self.q = np.arange(9.).reshape(3, 3) / 4. * u.m class InvariantUnitTestSetup(BasicTestSetup): def check(self, func, *args, **kwargs): o = func(self.q, *args, **kwargs) expected = func(self.q.value, *args, **kwargs) * self.q.unit assert o.shape == expected.shape assert np.all(o == expected) class NoUnitTestSetup(BasicTestSetup): def check(self, func, *args, **kwargs): out = func(self.q, *args, **kwargs) expected = func(self.q.value, *args, *kwargs) assert type(out) is type(expected) if isinstance(expected, tuple): assert all(np.all(o == x) for o, x in zip(out, expected)) else: assert np.all(out == expected) class TestShapeInformation(BasicTestSetup): # alen is deprecated in Numpy 1.8 if NUMPY_LT_1_18: def test_alen(self): assert np.alen(self.q) == 3 def test_shape(self): assert np.shape(self.q) == (3, 3) def test_size(self): assert np.size(self.q) == 9 def test_ndim(self): assert np.ndim(self.q) == 2 class TestShapeManipulation(InvariantUnitTestSetup): # Note: do not parametrize the below, since test names are used # to check coverage. def test_reshape(self): self.check(np.reshape, (9, 1)) def test_ravel(self): self.check(np.ravel) def test_moveaxis(self): self.check(np.moveaxis, 0, 1) def test_rollaxis(self): self.check(np.rollaxis, 0, 2) def test_swapaxes(self): self.check(np.swapaxes, 0, 1) def test_transpose(self): self.check(np.transpose) def test_atleast_1d(self): q = 1. * u.m o, so = np.atleast_1d(q, self.q) assert o.shape == (1,) assert o == q expected = np.atleast_1d(self.q.value) * u.m assert np.all(so == expected) def test_atleast_2d(self): q = 1. * u.m o, so = np.atleast_2d(q, self.q) assert o.shape == (1, 1) assert o == q expected = np.atleast_2d(self.q.value) * u.m assert np.all(so == expected) def test_atleast_3d(self): q = 1. * u.m o, so = np.atleast_3d(q, self.q) assert o.shape == (1, 1, 1) assert o == q expected = np.atleast_3d(self.q.value) * u.m assert np.all(so == expected) @pytest.mark.xfail(NUMPY_LT_1_16, reason="expand_dims used asarray in numpy <1.16") def test_expand_dims(self): self.check(np.expand_dims, 1) def test_squeeze(self): o = np.squeeze(self.q[:, np.newaxis, :]) assert o.shape == (3, 3) assert np.all(o == self.q) @pytest.mark.xfail(NUMPY_LT_1_15, reason="flip needs axis argument in numpy <1.15") def test_flip(self): self.check(np.flip) def test_fliplr(self): self.check(np.fliplr) def test_flipud(self): self.check(np.flipud) def test_rot90(self): self.check(np.rot90) def test_broadcast_to(self): # TODO: should we change the default for subok? self.check(np.broadcast_to, (3, 3, 3), subok=True) def test_broadcast_arrays(self): # TODO: should we change the default for subok? q2 = np.ones((3, 3, 3)) / u.s o1, o2 = np.broadcast_arrays(self.q, q2, subok=True) assert isinstance(o1, u.Quantity) assert isinstance(o2, u.Quantity) assert o1.shape == o2.shape == (3, 3, 3) assert np.all(o1 == self.q) assert np.all(o2 == q2) class TestArgFunctions(NoUnitTestSetup): def test_argmin(self): self.check(np.argmin) def test_argmax(self): self.check(np.argmax) def test_argsort(self): self.check(np.argsort) def test_lexsort(self): self.check(np.lexsort) def test_searchsorted(self): q = self.q.ravel() q2 = np.array([150., 350.]) * u.cm out = np.searchsorted(q, q2) expected = np.searchsorted(q.value, q2.to_value(q.unit)) assert np.all(out == expected) def test_nonzero(self): self.check(np.nonzero) def test_argwhere(self): self.check(np.argwhere) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_argpartition(self): self.check(np.argpartition, 2) def test_flatnonzero(self): self.check(np.flatnonzero) class TestAlongAxis(BasicTestSetup): @pytest.mark.skip(NUMPY_LT_1_15, reason="take_long_axis added in numpy 1.15") def test_take_along_axis(self): indices = np.expand_dims(np.argmax(self.q, axis=0), axis=0) out = np.take_along_axis(self.q, indices, axis=0) expected = np.take_along_axis(self.q.value, indices, axis=0) * self.q.unit assert np.all(out == expected) @pytest.mark.skip(NUMPY_LT_1_15, reason="put_long_axis added in numpy 1.15") def test_put_along_axis(self): q = self.q.copy() indices = np.expand_dims(np.argmax(self.q, axis=0), axis=0) np.put_along_axis(q, indices, axis=0, values=-100 * u.cm) expected = q.value.copy() np.put_along_axis(expected, indices, axis=0, values=-1) expected = expected * q.unit assert np.all(q == expected) @pytest.mark.parametrize('axis', (0, 1)) def test_apply_along_axis(self, axis): out = np.apply_along_axis(np.square, axis, self.q) expected = np.apply_along_axis(np.square, axis, self.q.value) * self.q.unit ** 2 assert_array_equal(out, expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") @pytest.mark.parametrize('axes', ((1,), (0,), (0, 1))) def test_apply_over_axes(self, axes): def function(x, axis): return np.sum(np.square(x), axis) out = np.apply_over_axes(function, self.q, axes) expected = np.apply_over_axes(function, self.q.value, axes) expected = expected * self.q.unit ** (2 * len(axes)) assert_array_equal(out, expected) class TestIndicesFrom(NoUnitTestSetup): def test_diag_indices_from(self): self.check(np.diag_indices_from) def test_triu_indices_from(self): self.check(np.triu_indices_from) def test_tril_indices_from(self): self.check(np.tril_indices_from) class TestRealImag(InvariantUnitTestSetup): def setup(self): self.q = (np.arange(9.).reshape(3, 3) + 1j) * u.m def test_real(self): self.check(np.real) def test_imag(self): self.check(np.imag) class TestCopyAndCreation(InvariantUnitTestSetup): @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_copy(self): self.check(np.copy) # Also as kwarg copy = np.copy(a=self.q) assert_array_equal(copy, self.q) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_asfarray(self): self.check(np.asfarray) farray = np.asfarray(a=self.q) assert_array_equal(farray, self.q) def test_empty_like(self): o = np.empty_like(self.q) assert o.shape == (3, 3) assert isinstance(o, u.Quantity) assert o.unit == self.q.unit o2 = np.empty_like(prototype=self.q) assert o2.shape == (3, 3) assert isinstance(o2, u.Quantity) assert o2.unit == self.q.unit o3 = np.empty_like(self.q, subok=False) assert type(o3) is np.ndarray def test_zeros_like(self): self.check(np.zeros_like) o2 = np.zeros_like(a=self.q) assert_array_equal(o2, self.q * 0.) def test_ones_like(self): self.check(np.ones_like) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_full_like(self): o = np.full_like(self.q, 0.5 * u.km) expected = np.empty_like(self.q.value) * u.m expected[...] = 0.5 * u.km assert np.all(o == expected) with pytest.raises(u.UnitsError): np.full_like(self.q, 0.5 * u.s) class TestAccessingParts(InvariantUnitTestSetup): def test_diag(self): self.check(np.diag) def test_diagonal(self): self.check(np.diagonal) def test_diagflat(self): self.check(np.diagflat) def test_compress(self): o = np.compress([True, False, True], self.q, axis=0) expected = np.compress([True, False, True], self.q.value, axis=0) * self.q.unit assert np.all(o == expected) def test_extract(self): o = np.extract([True, False, True], self.q) expected = np.extract([True, False, True], self.q.value) * self.q.unit assert np.all(o == expected) def test_delete(self): self.check(np.delete, slice(1, 2), 0) self.check(np.delete, [0, 2], 1) def test_trim_zeros(self): q = self.q.ravel() out = np.trim_zeros(q) expected = np.trim_zeros(q.value) * u.m assert np.all(out == expected) def test_roll(self): self.check(np.roll, 1) self.check(np.roll, 1, axis=0) def test_take(self): self.check(np.take, [0, 1], axis=1) self.check(np.take, 1) class TestSettingParts(metaclass=CoverageMeta): def test_put(self): q = np.arange(3.) * u.m np.put(q, [0, 2], [50, 150] * u.cm) assert q.unit == u.m expected = [50, 100, 150] * u.cm assert np.all(q == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_putmask(self): q = np.arange(3.) * u.m mask = [True, False, True] values = [50, 0, 150] * u.cm np.putmask(q, mask, values) assert q.unit == u.m expected = [50, 100, 150] * u.cm assert np.all(q == expected) with pytest.raises(u.UnitsError): np.putmask(q, mask, values.value) with pytest.raises(u.UnitsError): np.putmask(q.value, mask, values) a = np.arange(3.) values = [50, 0, 150] * u.percent np.putmask(a, mask, values) expected = np.array([0.5, 1., 1.5]) assert np.all(a == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_place(self): q = np.arange(3.) * u.m np.place(q, [True, False, True], [50, 150] * u.cm) assert q.unit == u.m expected = [50, 100, 150] * u.cm assert np.all(q == expected) a = np.arange(3.) np.place(a, [True, False, True], [50, 150] * u.percent) assert type(a) is np.ndarray expected = np.array([0.5, 1., 1.5]) assert np.all(a == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_copyto(self): q = np.arange(3.) * u.m np.copyto(q, [50, 0, 150] * u.cm, where=[True, False, True]) assert q.unit == u.m expected = [50, 100, 150] * u.cm assert np.all(q == expected) a = np.arange(3.) np.copyto(a, [50, 0, 150] * u.percent, where=[True, False, True]) assert type(a) is np.ndarray expected = np.array([0.5, 1., 1.5]) assert np.all(a == expected) def test_fill_diagonal(self): q = np.arange(9.).reshape(3, 3) * u.m expected = q.value.copy() np.fill_diagonal(expected, 0.25) expected = expected * u.m np.fill_diagonal(q, 25. * u.cm) assert q.unit == u.m assert np.all(q == expected) class TestRepeat(InvariantUnitTestSetup): def test_tile(self): self.check(np.tile, 2) def test_repeat(self): self.check(np.repeat, 2) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_resize(self): self.check(np.resize, (4, 4)) class TestConcatenate(metaclass=CoverageMeta): def setup(self): self.q1 = np.arange(6.).reshape(2, 3) * u.m self.q2 = self.q1.to(u.cm) def check(self, func, *args, **kwargs): q_list = kwargs.pop('q_list', [self.q1, self.q2]) o = func(q_list, *args, **kwargs) unit = q_list[0].unit v_list = [q.to_value(unit) for q in q_list] expected = func(v_list, *args, **kwargs) * unit assert o.shape == expected.shape assert np.all(o == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_concatenate(self): self.check(np.concatenate) self.check(np.concatenate, axis=1) out = np.empty((4, 3)) * u.dimensionless_unscaled result = np.concatenate([self.q1, self.q2], out=out) assert out is result assert out.unit == self.q1.unit expected = np.concatenate( [self.q1.value, self.q2.to_value(self.q1.unit)]) * self.q1.unit assert np.all(result == expected) with pytest.raises(TypeError): np.concatenate([self.q1, object()]) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_stack(self): self.check(np.stack) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_column_stack(self): self.check(np.column_stack) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_hstack(self): self.check(np.hstack) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_vstack(self): self.check(np.vstack) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_dstack(self): self.check(np.dstack) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_block(self): self.check(np.block) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_append(self): out = np.append(self.q1, self.q2, axis=0) assert out.unit == self.q1.unit expected = np.append(self.q1.value, self.q2.to_value(self.q1.unit), axis=0) * self.q1.unit assert np.all(out == expected) a = np.arange(3.) result = np.append(a, 50. * u.percent) assert isinstance(result, u.Quantity) assert result.unit == u.dimensionless_unscaled expected = np.append(a, 0.5) * u.dimensionless_unscaled assert np.all(result == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_insert(self): # Unit of inserted values is ignored. q = np.arange(12.).reshape(6, 2) * u.m out = np.insert(q, (3, 5), [50., 25.] * u.cm) assert isinstance(out, u.Quantity) assert out.unit == q.unit expected = np.insert(q.value, (3, 5), [0.5, 0.25]) * u.m assert np.all(out == expected) a = np.arange(3.) result = np.insert(a, (2,), 50. * u.percent) assert isinstance(result, u.Quantity) assert result.unit == u.dimensionless_unscaled expected = np.insert(a, (2,), 0.5) * u.dimensionless_unscaled assert np.all(result == expected) with pytest.raises(TypeError): np.insert(q, 3 * u.cm, 50. * u.cm) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_pad(self): q = np.arange(1., 6.) * u.m out = np.pad(q, (2, 3), 'constant', constant_values=(0., 150.*u.cm)) assert out.unit == q.unit expected = np.pad(q.value, (2, 3), 'constant', constant_values=(0., 1.5)) * q.unit assert np.all(out == expected) out2 = np.pad(q, (2, 3), 'constant', constant_values=150.*u.cm) assert out2.unit == q.unit expected2 = np.pad(q.value, (2, 3), 'constant', constant_values=1.5) * q.unit assert np.all(out2 == expected2) out3 = np.pad(q, (2, 3), 'linear_ramp', end_values=(25.*u.cm, 0.)) assert out3.unit == q.unit expected3 = np.pad(q.value, (2, 3), 'linear_ramp', end_values=(0.25, 0.)) * q.unit assert np.all(out3 == expected3) class TestSplit(metaclass=CoverageMeta): def setup(self): self.q = np.arange(54.).reshape(3, 3, 6) * u.m def check(self, func, *args, **kwargs): out = func(self.q, *args, **kwargs) expected = func(self.q.value, *args, **kwargs) expected = [x * self.q.unit for x in expected] assert len(out) == len(expected) assert all(o.shape == x.shape for o, x in zip(out, expected)) assert all(np.all(o == x) for o, x in zip(out, expected)) def test_split(self): self.check(np.split, [1]) def test_array_split(self): self.check(np.array_split, 2) def test_hsplit(self): self.check(np.hsplit, [1, 4]) def test_vsplit(self): self.check(np.vsplit, [1]) def test_dsplit(self): self.check(np.dsplit, [1]) class TestUfuncReductions(InvariantUnitTestSetup): def test_amax(self): self.check(np.amax) def test_amin(self): self.check(np.amin) def test_sum(self): self.check(np.sum) def test_cumsum(self): self.check(np.cumsum) def test_any(self): with pytest.raises(NotImplementedError): np.any(self.q) def test_all(self): with pytest.raises(NotImplementedError): np.all(self.q) def test_sometrue(self): with pytest.raises(NotImplementedError): np.sometrue(self.q) def test_alltrue(self): with pytest.raises(NotImplementedError): np.alltrue(self.q) def test_prod(self): with pytest.raises(u.UnitsError): np.prod(self.q) def test_product(self): with pytest.raises(u.UnitsError): np.product(self.q) def test_cumprod(self): with pytest.raises(u.UnitsError): np.cumprod(self.q) def test_cumproduct(self): with pytest.raises(u.UnitsError): np.cumproduct(self.q) class TestUfuncLike(InvariantUnitTestSetup): def test_ptp(self): self.check(np.ptp) self.check(np.ptp, axis=0) def test_round_(self): self.check(np.round_) def test_around(self): self.check(np.around) def test_fix(self): self.check(np.fix) @pytest.mark.xfail(NUMPY_LT_1_16, reason="angle used asarray in numpy <1.16") def test_angle(self): q = np.array([1+0j, 0+1j, 1+1j, 0+0j]) * u.m out = np.angle(q) expected = np.angle(q.value) * u.radian assert np.all(out == expected) def test_i0(self): q = np.array([0., 10., 20.]) * u.percent out = np.i0(q) expected = np.i0(q.to_value(u.one)) * u.one assert isinstance(out, u.Quantity) assert np.all(out == expected) with pytest.raises(u.UnitsError): np.i0(self.q) def test_clip(self): qmin = 200 * u.cm qmax = [270, 280, 290] * u.cm out = np.clip(self.q, qmin, qmax) expected = np.clip(self.q.value, qmin.to_value(self.q.unit), qmax.to_value(self.q.unit)) * self.q.unit assert np.all(out == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_sinc(self): q = [0., 3690., -270., 690.] * u.deg out = np.sinc(q) expected = np.sinc(q.to_value(u.radian)) * u.one assert isinstance(out, u.Quantity) assert np.all(out == expected) with pytest.raises(u.UnitsError): np.sinc(1.*u.one) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_where(self): out = np.where([True, False, True], self.q, 1. * u.km) expected = np.where([True, False, True], self.q.value, 1000.) * self.q.unit assert np.all(out == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_choose(self): # from np.choose docstring a = np.array([0, 1]).reshape((2, 1, 1)) q1 = np.array([1, 2, 3]).reshape((1, 3, 1)) * u.cm q2 = np.array([-1, -2, -3, -4, -5]).reshape((1, 1, 5)) * u.m out = np.choose(a, (q1, q2)) # result is 2x3x5, res[0,:,:]=c1, res[1,:,:]=c2 expected = np.choose(a, (q1.value, q2.to_value(q1.unit))) * u.cm assert np.all(out == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_select(self): q = self.q out = np.select([q < 0.55 * u.m, q > 1. * u.m], [q, q.to(u.cm)], default=-1. * u.km) expected = np.select([q.value < 0.55, q.value > 1], [q.value, q.value], default=-1000) * u.m assert np.all(out == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_real_if_close(self): q = np.array([1+0j, 0+1j, 1+1j, 0+0j]) * u.m out = np.real_if_close(q) expected = np.real_if_close(q.value) * u.m assert np.all(out == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_tril(self): self.check(np.tril) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_triu(self): self.check(np.triu) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_unwrap(self): q = [0., 3690., -270., 690.] * u.deg out = np.unwrap(q) expected = (np.unwrap(q.to_value(u.rad)) * u.rad).to(q.unit) assert out.unit == expected.unit assert np.allclose(out, expected, atol=1*u.urad, rtol=0) with pytest.raises(u.UnitsError): np.unwrap([1., 2.]*u.m) with pytest.raises(u.UnitsError): np.unwrap(q, discont=1.*u.m) def test_nan_to_num(self): q = np.array([-np.inf, +np.inf, np.nan, 3., 4.]) * u.m out = np.nan_to_num(q) expected = np.nan_to_num(q.value) * q.unit assert np.all(out == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_nan_to_num_complex(self): q = np.array([-np.inf, +np.inf, np.nan, 3., 4.]) * u.m out = np.nan_to_num(q, nan=1.*u.km, posinf=2.*u.km, neginf=-2*u.km) expected = [-2000., 2000., 1000., 3., 4.] * u.m assert np.all(out == expected) class TestUfuncLikeTests(metaclass=CoverageMeta): def setup(self): self.q = np.array([-np.inf, +np.inf, np.nan, 3., 4.]) * u.m def check(self, func): out = func(self.q) expected = func(self.q.value) assert type(out) is np.ndarray assert out.dtype.kind == 'b' assert np.all(out == expected) def test_isposinf(self): self.check(np.isposinf) def test_isneginf(self): self.check(np.isneginf) def test_isreal(self): self.check(np.isreal) assert not np.isreal([1. + 1j]*u.m) def test_iscomplex(self): self.check(np.iscomplex) assert np.iscomplex([1. + 1j]*u.m) def test_isclose(self): q1 = np.arange(3.) * u.m q2 = np.array([0., 102., 199.]) * u.cm atol = 1.5 * u.cm rtol = 1. * u.percent out = np.isclose(q1, q2, atol=atol) expected = np.isclose(q1.value, q2.to_value(q1.unit), atol=atol.to_value(q1.unit)) assert type(out) is np.ndarray assert out.dtype.kind == 'b' assert np.all(out == expected) out = np.isclose(q1, q2, atol=0, rtol=rtol) expected = np.isclose(q1.value, q2.to_value(q1.unit), atol=0, rtol=0.01) assert type(out) is np.ndarray assert out.dtype.kind == 'b' assert np.all(out == expected) @pytest.mark.xfail def test_isclose_failure(self): q_cm = self.q.to(u.cm) # atol does not have units; TODO: should this work by default? out = np.isclose(self.q, q_cm) expected = np.isclose(self.q.value, q_cm.to_value(u.m)) assert np.all(out == expected) class TestReductionLikeFunctions(InvariantUnitTestSetup): def test_average(self): q1 = np.arange(9.).reshape(3, 3) * u.m q2 = np.eye(3) / u.s o = np.average(q1, weights=q2) expected =
np.average(q1.value, weights=q2.value)
numpy.average
# -*- coding: utf-8 -*- ''' By <NAME>(<EMAIL>) and <NAME>(https://github.com/ozmig77) https://www.github.com/kyubyong/g2p ''' import nltk import numpy as np import codecs import os import re from builtins import str as unicode import hazm from PersianG2p.expand import normalize_numbers from PersianG2p.hparams import hp dirname = os.path.dirname(__file__) def construct_homograph_dictionary(): f = os.path.join(dirname,'homographs.en') homograph2features = dict() for line in codecs.open(f, 'r', 'utf8').read().splitlines(): if line.startswith("#"): continue # comment headword, pron1, pron2, pos1 = line.strip().split("|") homograph2features[headword.lower()] = (pron1.split(), pron2.split(), pos1) return homograph2features def load_vocab(): g2idx = {g: idx for idx, g in enumerate(hp.graphemes)} idx2g = {idx: g for idx, g in enumerate(hp.graphemes)} p2idx = {p: idx for idx, p in enumerate(hp.phonemes)} idx2p = {idx: p for idx, p in enumerate(hp.phonemes)} return g2idx, idx2g, p2idx, idx2p # note that g and p mean grapheme and phoneme, respectively. # def segment(text): # ''' # Splits text into `tokens`. # :param text: A string. # :return: A list of tokens (string). # ''' # print(text) # text = re.sub('([.,?!]( |$))', r' \1', text) # print(text) # return text.split() class Persian_g2p_converter(object): def __init__(self, checkpoint=os.path.join(dirname,'data/checkpoint.npy')): super().__init__() # self.graphemes = ["<pad>", "<unk>", "</s>"] + list("آئابتثجحخدذرزسشصضطظعغفقلمنهوپچژکگی") self.graphemes = hp.graphemes self.phonemes = hp.phonemes self.g2idx, self.idx2g, self.p2idx, self.idx2p = load_vocab() self.checkpoint = checkpoint # load Tihu dictionary as the Persian lexicon tihu = {} #with open("tihudict.dict") as f: with codecs.open(os.path.join(dirname,"data/tihudict.dict"), encoding='utf-8', mode='r') as f: for line in f: (key, val) = line.strip('\n').split('\t') tihu[key] = val self.tihu = tihu self.load_variables() # self.homograph2features = construct_homograph_dictionary() def load_variables(self): self.variables = np.load(os.path.join(dirname, self.checkpoint), allow_pickle=True) self.enc_emb = self.variables.item().get("encoder.emb.weight") # (29, 64). (len(graphemes), emb) self.enc_w_ih = self.variables.item().get("encoder.rnn.weight_ih_l0") # (3*128, 64) self.enc_w_hh = self.variables.item().get("encoder.rnn.weight_hh_l0") # (3*128, 128) self.enc_b_ih = self.variables.item().get("encoder.rnn.bias_ih_l0") # (3*128,) self.enc_b_hh = self.variables.item().get("encoder.rnn.bias_hh_l0") # (3*128,) self.dec_emb = self.variables.item().get("decoder.emb.weight") # (74, 64). (len(phonemes), emb) self.dec_w_ih = self.variables.item().get("decoder.rnn.weight_ih_l0") # (3*128, 64) self.dec_w_hh = self.variables.item().get("decoder.rnn.weight_hh_l0") # (3*128, 128) self.dec_b_ih = self.variables.item().get("decoder.rnn.bias_ih_l0") # (3*128,) self.dec_b_hh = self.variables.item().get("decoder.rnn.bias_hh_l0") # (3*128,) self.fc_w = self.variables.item().get("decoder.fc.weight") # (74, 128) self.fc_b = self.variables.item().get("decoder.fc.bias") # (74,) def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def grucell(self, x, h, w_ih, w_hh, b_ih, b_hh): rzn_ih = np.matmul(x, w_ih.T) + b_ih rzn_hh = np.matmul(h, w_hh.T) + b_hh rz_ih, n_ih = rzn_ih[:, :rzn_ih.shape[-1] * 2 // 3], rzn_ih[:, rzn_ih.shape[-1] * 2 // 3:] rz_hh, n_hh = rzn_hh[:, :rzn_hh.shape[-1] * 2 // 3], rzn_hh[:, rzn_hh.shape[-1] * 2 // 3:] rz = self.sigmoid(rz_ih + rz_hh) r, z = np.split(rz, 2, -1) n = np.tanh(n_ih + r * n_hh) h = (1 - z) * n + z * h return h def gru(self, x, steps, w_ih, w_hh, b_ih, b_hh, h0=None): if h0 is None: h0 = np.zeros((x.shape[0], w_hh.shape[1]), np.float32) h = h0 # initial hidden state outputs = np.zeros((x.shape[0], steps, w_hh.shape[1]), np.float32) for t in range(steps): h = self.grucell(x[:, t, :], h, w_ih, w_hh, b_ih, b_hh) # (b, h) outputs[:, t, ::] = h return outputs def encode(self, word): chars = list(word) + ["</s>"] x = [self.g2idx.get(char, self.g2idx["<unk>"]) for char in chars] x = np.take(self.enc_emb, np.expand_dims(x, 0), axis=0) return x def predict(self, word): # encoder enc = self.encode(word) enc = self.gru(enc, len(word) + 1, self.enc_w_ih, self.enc_w_hh, self.enc_b_ih, self.enc_b_hh, h0=np.zeros((1, self.enc_w_hh.shape[-1]), np.float32)) last_hidden = enc[:, -1, :] # decoder dec =
np.take(self.dec_emb, [2], axis=0)
numpy.take
""" A FEED-FORWARD DEEP NEURAL NETWORK """ import pickle import time import matplotlib.pyplot as plt import matplotlib.animation as animation import numpy as np import numpy.linalg as la import seaborn as sns np.set_printoptions(formatter={'float': '{: 0.1f}'.format}) # Batch Normalization def batch_norm_ff(modes, v, gamma_bn, beta_bn, i, bnorm): if bnorm: eps = 1.0e-1 momenti = 0.9 global running_mean, running_variance gamma = gamma_bn + 0 beta = beta_bn + 0 v_in = v + 0 m_dim, n_dim = np.shape(v_in) if modes == 'train': means = np.mean(v_in, axis=0) variances = np.var(v_in, axis=0) va = v_in - means vx = np.sqrt((variances) + eps) + eps v_norm = (v_in - means) / (np.sqrt(variances + eps) + eps) v_out_bn = (gamma * v_norm) + beta # estimate running averages for test and validation running_mean[i] = (momenti * running_mean[i]) + (1 - momenti) * means running_variance[i] = (momenti * running_variance[i]) + (1 - momenti) * variances cache = [v_norm, v_in, means, variances, m_dim, gamma, beta] return [v_out_bn, cache] if modes == 'test' or modes == 'validate': v_norm = (v_in - running_mean[i]) / (np.sqrt(running_variance[i]) + eps) v_out_bn = (gamma_bn * v_norm) + beta_bn return v_out_bn if not bnorm and modes == 'test': return v return [v, 0] def batch_norm_bp(delta, store, bnorm): if bnorm: v_norm, v_in, means, variance, m_dim, gamma, beta = store eps = 1.0e-8 delta_in = delta + 0 dgamma = np.sum((delta_in * v_norm), axis=0) dbeta = np.sum(delta_in, axis=0) inv_std = 1. / (np.sqrt(variance) + eps) dv_norm = delta_in * gamma dvar = -0.5 * (inv_std ** 3) * np.sum(dv_norm *(v_in - means), axis = 0) dmean = -1 * inv_std * np.sum(dv_norm, axis=0) + dvar * -2.0 * np.mean((v_in - means), axis=0) ddelta = (inv_std * dv_norm) + (2.0 / m_dim * (v_in - means) * dvar) + (dmean / m_dim) # dx1 = gamma * t / m_dim # dx2 = (m_dim * delta_in) - np.sum(delta_in, axis=0) # dx3 = np.square(t) * (v_in - means) # dx4 = np.sum(delta_in * (v_in - means), axis=0) # # ddelta = dx1 * (dx2 - (dx3 * dx4)) return ddelta, dgamma, dbeta return [delta, 0, 0] def bn_term_update(g, b, dg, db, momentsg, momentsb): eps = 1.0e-8 dwg = alpha * dg dwb = alpha * db beta = 0.9 momentsg = (beta * momentsg) + ((1 - beta) * np.square(dg)) momentsb = (beta * momentsb) + ((1 - beta) * np.square(db)) rms_momentg= np.sqrt(momentsg) + eps rms_momentb = np.sqrt(momentsb) + eps g += dwg / rms_momentg b += dwb / rms_momentb return g, b # Weighted sum of input nodes and weights def weight_sum(x_data, weights): v = x_data.dot(weights) return v # Activation functions def activation(v, mode): y_io = 0 if mode == 'reLU': y_io = v + 0 np.putmask(y_io, y_io < 0, [0]) # y = y * (y > 0)np.maximum(y, 0, y) if mode == 'leaky_reLU': y_io = v + 0 np.putmask(y_io, y_io < 0, y_io * 0.01) if mode == 'sigmoid': y_io = 1 / (1 + np.exp(-v)) if mode == 'softmax': ex =
np.exp(v)
numpy.exp
# -*- coding: utf-8 -*- # Copyright 2020 The PsiZ Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Module of psychological embedding models. Classes: Proxy: Proxy class for embedding model. PsychologicalEmbedding: Abstract base class for a psychological embedding model. Functions: load_model: Load a hdf5 file, that was saved with the `save` class method, as a PsychologicalEmbedding object. """ import copy import json import os from pathlib import Path import warnings import h5py import numpy as np import tensorflow as tf from tensorflow.keras import backend as K from tensorflow.python.keras.engine import data_adapter from tensorflow.python.eager import backprop import tensorflow_probability as tfp import psiz.keras.layers import psiz.trials class Proxy(object): """Convenient proxy class for a psychological embedding model. The embedding procedure jointly infers three components. First, the embedding algorithm infers a stimulus representation denoted by the variable z. Second, the embedding algorithm infers the variables governing the similarity kernel, denoted theta. Third, the embedding algorithm infers a set of attention weights if there is more than one group. Methods: compile: Assign a optimizer, loss and regularization function for the optimization procedure. fit: Fit the embedding model using the provided observations. evaluate: Evaluate the embedding model using the provided observations. similarity: Return the similarity between provided points. distance: Return the (weighted) minkowski distance between provided points. save: Save the embedding model as an hdf5 file. Attributes: TODO n_stimuli: The number of unique stimuli in the embedding. n_dim: The dimensionality of the embedding. n_group: The number of distinct groups in the embedding. z: A dictionary with the keys 'value', 'trainable'. The key 'value' contains the actual embedding points. The key 'trainable' is a boolean flag that determines whether the embedding points are inferred during inference. theta: Dictionary containing data about the parameter values governing the similarity kernel. The dictionary contains the variable names as keys at the first level. For each variable, there is an additional dictionary containing the keys 'value', 'trainable', and 'bounds'. The key 'value' indicates the actual value of the parameter. The key 'trainable' is a boolean flag indicating whether the variable is trainable during inferene. The key 'bounds' indicates the bounds of the parameter during inference. The bounds are specified using a list of two items where the first item indicates the lower bound and the second item indicates the upper bound. Use None to indicate no bound. phi: Dictionary containing data about the group-specific parameter values. These parameters are only trainable if there is more than one group. The dictionary contains the parameter names as keys at the first level. For each parameter name, there is an additional dictionary containing the keys 'value' and 'trainable'. The key 'value' indicates the actual value of the parameter. The key 'trainable' is a boolean flag indicating whether the variable is trainable during inference. The free parameter `w` governs dimension-wide weights. log_freq: The number of epochs to wait between log entries. """ def __init__(self, model): """Initialize. Arguments: model: A TensorFlow model. """ super().__init__() self.model = model # Unsaved attributes. self.log_freq = 10 @property def n_stimuli(self): """Getter method for n_stimuli.""" return self.model.n_stimuli @property def n_dim(self): """Getter method for n_dim.""" return self.model.n_dim @property def n_group(self): """Getter method for n_group.""" return self.model.n_group @property def z(self): """Getter method for `z`.""" z = self.model.stimuli.embeddings if isinstance(z, tfp.distributions.Distribution): z = z.mode() # NOTE: This will not work for all distributions. z = z.numpy() if self.model.stimuli.mask_zero: if len(z.shape) == 2: z = z[1:] else: z = z[:, 1:] return z @property def w(self): """Getter method for `w`.""" if hasattr(self.model.kernel, 'attention'): w = self.model.kernel.attention.embeddings if isinstance(w, tfp.distributions.Distribution): if isinstance(w.distribution, tfp.distributions.LogitNormal): # For logit-normal distribution, use median instead of # mode. # `median = logistic(loc)`. w = tf.math.sigmoid(w.distribution.loc) else: w = w.mode() # NOTE: The mode may be undefined. w = w.numpy() if self.model.kernel.attention.mask_zero: w = w[1:] else: w =
np.ones([1, self.n_dim])
numpy.ones
import numpy as np #from scipy import interpolate import logging from psdtoolsx.terminology import Enum, Key, Type, Klass from psdtoolsx.constants import Tag from psdtoolsx.api.numpy_io import get_pattern, EXPECTED_CHANNELS logger = logging.getLogger(__name__) _COLOR_FUNC = { Klass.RGBColor: lambda x: x / 255., Klass.Grayscale: lambda x: (100. - x) / 100., Klass.CMYKColor: lambda x: (100 - x) / 100., Klass.LabColor: lambda x: x / 255., } def draw_vector_mask(layer): return _draw_path(layer, brush={'color': 255}) def draw_stroke(layer): desc = layer.stroke._data # _CAP = { # 'strokeStyleButtCap': 0, # 'strokeStyleSquareCap': 1, # 'strokeStyleRoundCap': 2, # } # _JOIN = { # 'strokeStyleMiterJoin': 0, # 'strokeStyleRoundJoin': 2, # 'strokeStyleBevelJoin': 3, # } width = float(desc.get('strokeStyleLineWidth', 1.)) # linejoin = desc.get('strokeStyleLineJoinType', None) # linejoin = linejoin.enum if linejoin else 'strokeStyleMiterJoin' # linecap = desc.get('strokeStyleLineCapType', None) # linecap = linecap.enum if linecap else 'strokeStyleButtCap' # miterlimit = desc.get('strokeStyleMiterLimit', 100.0) / 100. # aggdraw >= 1.3.12 will support additional params. return _draw_path( layer, pen={ 'color': 255, 'width': width, # 'linejoin': _JOIN.get(linejoin, 0), # 'linecap': _CAP.get(linecap, 0), # 'miterlimit': miterlimit, } ) def _draw_path(layer, brush=None, pen=None): height, width = layer._psd.height, layer._psd.width color = 0 if layer.vector_mask.initial_fill_rule and \ len(layer.vector_mask.paths) == 0: color = 1 mask = np.full((height, width, 1), color, dtype=np.float32) # Group merged path components. paths = [] for subpath in layer.vector_mask.paths: if subpath.operation == -1: paths[-1].append(subpath) else: paths.append([subpath]) # Apply shape operation. first = True for subpath_list in paths: plane = _draw_subpath(subpath_list, width, height, brush, pen) assert mask.shape == (height, width, 1) assert plane.shape == mask.shape op = subpath_list[0].operation if op == 0: # Exclude = Union - Intersect. mask = mask + plane - 2 * mask * plane elif op == 1: # Union (Combine). mask = mask + plane - mask * plane elif op == 2: # Subtract. if first and brush: mask = 1 - mask mask = np.maximum(0, mask - plane) elif op == 3: # Intersect. if first and brush: mask = 1 - mask mask = mask * plane first = False return np.minimum(1, np.maximum(0, mask)) def _draw_subpath(subpath_list, width, height, brush, pen): """ Rasterize Bezier curves. TODO: Replace aggdraw implementation with skimage.draw. """ from PIL import Image import aggdraw mask = Image.new('L', (width, height), 0) draw = aggdraw.Draw(mask) pen = aggdraw.Pen(**pen) if pen else None brush = aggdraw.Brush(**brush) if brush else None for subpath in subpath_list: if len(subpath) <= 1: logger.warning('not enough knots: %d' % len(subpath)) continue path = ' '.join(map(str, _generate_symbol(subpath, width, height))) symbol = aggdraw.Symbol(path) draw.symbol((0, 0), symbol, pen, brush) draw.flush() del draw return np.expand_dims(np.array(mask).astype(np.float32) / 255., 2) def _generate_symbol(path, width, height, command='C'): """Sequence generator for SVG path.""" if len(path) == 0: return # Initial point. yield 'M' yield path[0].anchor[1] * width yield path[0].anchor[0] * height yield command # Closed path or open path points = ( zip(path, path[1:] + path[0:1]) if path.is_closed() else zip(path, path[1:]) ) # Rest of the points. for p1, p2 in points: yield p1.leaving[1] * width yield p1.leaving[0] * height yield p2.preceding[1] * width yield p2.preceding[0] * height yield p2.anchor[1] * width yield p2.anchor[0] * height if path.is_closed(): yield 'Z' def create_fill_desc(layer, desc, viewport): """Create a fill image.""" if desc.classID == b'solidColorLayer': return draw_solid_color_fill(viewport, desc) if desc.classID == b'patternLayer': return draw_pattern_fill(viewport, layer._psd, desc) if desc.classID == b'gradientLayer': return draw_gradient_fill(viewport, desc) return None, None def create_fill(layer, viewport): """Create a fill image.""" if Tag.SOLID_COLOR_SHEET_SETTING in layer.tagged_blocks: desc = layer.tagged_blocks.get_data(Tag.SOLID_COLOR_SHEET_SETTING) return draw_solid_color_fill(viewport, desc) if Tag.PATTERN_FILL_SETTING in layer.tagged_blocks: desc = layer.tagged_blocks.get_data(Tag.PATTERN_FILL_SETTING) return draw_pattern_fill(viewport, layer._psd, desc) if Tag.GRADIENT_FILL_SETTING in layer.tagged_blocks: desc = layer.tagged_blocks.get_data(Tag.GRADIENT_FILL_SETTING) return draw_gradient_fill(viewport, desc) if Tag.VECTOR_STROKE_CONTENT_DATA in layer.tagged_blocks: stroke = layer.tagged_blocks.get_data(Tag.VECTOR_STROKE_DATA) if not stroke or stroke.get('fillEnabled').value is True: desc = layer.tagged_blocks.get_data(Tag.VECTOR_STROKE_CONTENT_DATA) if Key.Color in desc: return draw_solid_color_fill(viewport, desc) elif Key.Pattern in desc: return draw_pattern_fill(viewport, layer._psd, desc) elif Key.Gradient in desc: return draw_gradient_fill(viewport, desc) return None, None def draw_solid_color_fill(viewport, desc): """ Create a solid color fill. """ color_desc = desc.get(Key.Color) color_fn = _COLOR_FUNC.get(color_desc.classID, 1.0) fill = [color_fn(x) for x in color_desc.values()] height, width = viewport[3] - viewport[1], viewport[2] - viewport[0] color = np.full((height, width, len(fill)), fill, dtype=np.float32) return color, None def draw_pattern_fill(viewport, psd, desc): """ Create a pattern fill. """ pattern_id = desc[Enum.Pattern][Key.ID].value.rstrip('\x00') pattern = psd._get_pattern(pattern_id) if not pattern: logger.error('Pattern not found: %s' % (pattern_id)) return None, None panel = get_pattern(pattern) assert panel.shape[0] > 0 scale = float(desc.get(Key.Scale, 100.)) / 100. if scale != 1.: from skimage.transform import resize new_shape = ( max(1, int(panel.shape[0] * scale)), max(1, int(panel.shape[1] * scale)) ) panel = resize(panel, new_shape) height, width = viewport[3] - viewport[1], viewport[2] - viewport[0] reps = ( int(np.ceil(float(height) / panel.shape[0])), int(np.ceil(float(width) / panel.shape[1])), 1, ) channels = EXPECTED_CHANNELS.get(pattern.image_mode) pixels = np.tile(panel, reps)[:height, :width, :] if pixels.shape[2] > channels: return pixels[:, :, :channels], pixels[:, :, -1:] return pixels, None def draw_gradient_fill(viewport, desc): """ Create a gradient fill image. """ height, width = viewport[3] - viewport[1], viewport[2] - viewport[0] angle = float(desc.get(Key.Angle, 0)) scale = float(desc.get(Key.Scale, 100.)) / 100. ratio = (angle % 90) scale *= (90. - ratio) / 90. * width + (ratio / 90.) * height X, Y = np.meshgrid( np.linspace(-width / scale, width / scale, width, dtype=np.float32), np.linspace(-height / scale, height / scale, height, dtype=np.float32), ) gradient_kind = desc.get(Key.Type).enum if gradient_kind == Enum.Linear: Z = _make_linear_gradient(X, Y, angle) elif gradient_kind == Enum.Radial: Z = _make_radial_gradient(X, Y) elif gradient_kind == Enum.Angle: Z = _make_angle_gradient(X, Y, angle) elif gradient_kind == Enum.Reflected: Z = _make_reflected_gradient(X, Y, angle) elif gradient_kind == Enum.Diamond: Z = _make_diamond_gradient(X, Y, angle) else: # Unsupported: b'shapeburst', only avail in stroke effect logger.warning('Unknown gradient style: %s.' % (gradient_kind)) Z =
np.full((height, width), 0.5, dtype=np.float32)
numpy.full