prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import importlib import xarray as xr import numpy as np import pandas as pd import sys import os from math import nan from CASutils import calendar_utils as cal from CASutils import filter_utils as filt importlib.reload(cal) importlib.reload(filt) pathout="/project/cas/islas/python_savs/snowpaper/DATA_SORT/t850_laggedregs/" def deseasonalize(dat): datseas = dat.groupby('time.dayofyear').mean('time') dat4harm = filt.calc_season_nharm(datseas,4,dimtime=1) datanoms = dat.groupby('time.dayofyear') - dat4harm datdjfanoms = cal.group_season_daily(datanoms,'DJF') datmean = datdjfanoms.mean('day') datdjfanoms = datdjfanoms - datmean return datdjfanoms def readanddeseas(file1, var): dat1 = xr.open_dataset(file1).sel(time=slice("1979-01-01","2014-12-31")) dat1 = dat1[var] dat1deseas = deseasonalize(dat1) return dat1deseas #def readanddeseas(file1,var): # dat = xr.open_dataset(file1).sel(time=slice("1979-01-01","2014-12-31")) # dat = dat[var] # datdeseas = deseasonalize(dat) # return datdeseas cities=['Saskatoon','Toronto','Siderovsk'] filepath = "/project/cas/islas/python_savs/snowpaper/DATA_SORT/3cities/SCAM_CLMINIT_60days_withclearsky/" t850_clm5 = readanddeseas(filepath+"T850_SCAM_CLM5_CLM5F_01.nc","t850") t850_snowd = readanddeseas(filepath+"T850_SCAM_SNOWD_CLM5F_01.nc","t850") trefht_clm5 = readanddeseas(filepath+"TREFHT_SCAM_CLM5_CLM5F_01.nc","t850") trefht_snowd = readanddeseas(filepath+"TREFHT_SCAM_SNOWD_CLM5F_01.nc","t850") flns_clm5 = readanddeseas(filepath+"FLNS_SCAM_CLM5_CLM5F_01.nc","flns") flns_snowd = readanddeseas(filepath+"FLNS_SCAM_SNOWD_CLM5F_01.nc","flns") flnsc_clm5 = readanddeseas(filepath+"FLNSC_SCAM_CLM5_CLM5F_01.nc","flnsc") flnsc_snowd = readanddeseas(filepath+"FLNSC_SCAM_SNOWD_CLM5F_01.nc","flnsc") nyears = len(t850_clm5[:,0,0]) ; ndays = len(t850_clm5[0,:,0]) lag = np.arange(-10,11,1) dat1clm5 = np.reshape(np.array(t850_clm5[:,10:ndays-10,:]),[nyears*(ndays-lag.size+1),3]) dat1snowd = np.reshape(np.array(t850_snowd[:,10:ndays-10,:]),[nyears*(ndays-lag.size+1),3]) trefhtregclm5 = np.zeros([lag.size,3]) ; trefhtregsnowd = np.zeros([lag.size,3]) t850regclm5 = np.zeros([lag.size,3]) ; t850regsnowd = np.zeros([lag.size,3]) flnsregclm5 = np.zeros([lag.size,3]) ; flnsregsnowd =
np.zeros([lag.size,3])
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Oct 28 13:25:28 2020 @author: <NAME>, <NAME> """ import numpy as np import pandas as pd from sklearn.model_selection import train_test_split import operator import sklearn as sklearn import xgboost as xgb from Functions_downselection_training_RF import plot_RF_test #plot_heatmap, plot_RF_test, splitAndScale, scale, inverseScale, compare_features_barplot # In[4]: def analyze_XGB_for_multiple_seeds(list_X, list_y, ho_params = None, n_seeds = 20, save_pickle = False, bar_plot = True, groups = None, groups_only_for_plotting = False, test_proportion = 0.21, top_n = 20, plotting=True, saveas = None, title=True): n_datasets = len(list_X) # Let's repeat y stratification. At the same, let's create a dataset for # RF hyperparameter optimization. R2_all2 = np.zeros((n_seeds,n_datasets)) RMSE_all2 = np.zeros((n_seeds,n_datasets)) top_features_all2 = [] features_all2 = [] X_tests = [] y_tests = [] X_trains = [] y_trains = [] regressors = [] filenames = ['X_tests_imp', 'y_tests_imp', 'X_tests', 'y_tests', 'X_trains_imp', 'y_trains_imp', 'X_trains', 'y_trains'] for j in range(n_datasets): if ho_params is not None: n_estimators = ho_params[j]['n_estimators'] max_depth = ho_params[j]['max_depth'] gamma = ho_params[j]['gamma'] eta = ho_params[j]['eta'] top_features_temp = [] features_temp = [] X_tests_temp = [] y_tests_temp = [] X_trains_temp = [] y_trains_temp = [] regressors_temp = [] if title is not None: title_temp = True else: title_temp = None for i in range(n_seeds): if saveas is not None: saveas_temp = saveas+str(i) else: saveas_temp = saveas if ho_params is None: feature_weights, top_feature_weights, regressor, R2, RMSE, scaler_test, X_test, y_test, y_pred, X_train, y_train = XGB_feature_analysis( list_X[j], list_y[j], groups=groups, groups_only_for_plotting = groups_only_for_plotting, test_indices = None, test_proportion = test_proportion, top_n = top_n, i='', random_state = i, sample_weighing = False, plotting=plotting, saveas = saveas_temp, title = title_temp) else: feature_weights, top_feature_weights, regressor, R2, RMSE, scaler_test, X_test, y_test, y_pred, X_train, y_train = XGB_feature_analysis( list_X[j], list_y[j], groups=groups, groups_only_for_plotting = groups_only_for_plotting, test_indices = None, test_proportion = test_proportion, top_n = top_n, i='', random_state = i, sample_weighing = False, plotting=plotting, saveas = saveas_temp, title = title_temp, max_depth= int(max_depth), gamma = gamma, n_estimators=n_estimators, eta = eta) R2_all2[i,j] = R2 RMSE_all2[i,j] = RMSE top_features_temp.append(top_feature_weights.copy()) features_temp.append(feature_weights.copy()) X_tests_temp.append(X_test.copy()) y_tests_temp.append(y_test.copy()) X_trains_temp.append(X_train.copy()) y_trains_temp.append(y_train.copy()) regressors_temp.append(regressor) top_features_all2.append(top_features_temp) features_all2.append(features_temp) X_tests.append(X_tests_temp) y_tests.append(y_tests_temp) X_trains.append(X_trains_temp) y_trains.append(y_trains_temp) regressors.append(regressors_temp) print('R2 and RMSE for dataset ', j, ': ', R2_all2[:,j], RMSE_all2[:,j]) print('Mean: ', np.mean(R2_all2[:,j]), np.mean(RMSE_all2[:,j])) print('Std: ', np.std(R2_all2[:,j]), np.std(RMSE_all2[:,j])) print('Min: ', np.min(R2_all2[:,j]), np.min(RMSE_all2[:,j])) print('Max: ', np.max(R2_all2[:,j]), np.max(RMSE_all2[:,j])) if save_pickle == True: # Pickles for HO: if j == 0: save_to_pickle(X_tests, filenames[2]) save_to_pickle(y_tests, filenames[3]) save_to_pickle(X_trains, filenames[6]) save_to_pickle(y_trains, filenames[7]) if j == 1: save_to_pickle(X_tests, filenames[0]) save_to_pickle(y_tests, filenames[1]) save_to_pickle(X_trains, filenames[4]) save_to_pickle(y_trains, filenames[5]) # Plot the results. Compare feature weights of two methods. E.g., here the top # 50 feature weights of FilteredImportant dataset are compared to the top 50 # feature weights of the Filtered dataset. if (bar_plot == True) and (n_datasets>1): compare_features_barplot(top_features_all2[0][0], top_features_all2[1][0]) return R2_all2, RMSE_all2, top_features_all2, features_all2, X_tests, y_tests, X_trains, y_trains, regressors # In[ ]: # In[6]: def XGB_feature_analysis(X, y, groups = None, groups_only_for_plotting = False, test_indices = None, test_proportion = 0.1, top_n = 5, n_estimators = 100, max_depth = 10, gamma = 2, eta = 0.5, i='', random_state = None, sample_weighing = None, plotting = True, saveas = None, title = True): """ Splits 'X' and 'y' to train and test sets so that 'test_proportion' of samples is in the test set. Fits a (sklearn) random forest model to the data according to RF parameters ('n_estimators', 'max_depth', 'min_samples_split', 'min_samples_leaf', 'max_features', 'bootstrap'). Estimates feature importances and determines 'top_n' most important features. A plot and printouts for describing the results. Parameters: X (df): X data (features in columns, samples in rows) y (df): y data (one column, samples in rows) test_proportion (float, optional): Proportion of the test size from the original data. top_n (float, optional): The number of features in output 'top_feature_weights' n_estimators (int, optional): Number of trees in the forest max_depth (int, optional): Maximum depth of the tree min_samples split (int, optional): minimum number of samples required to split an internal node (could also be a float, see sklearn documentation) min_samples_leaf (int, optional): The minimum number od samples to be at a leaf node (could also be a float, see sklearn documentation) max_features (str, float, string, or None, optional): The number of features to consider when looking for the best split (see the options in sklearn documentation, 'sqrt' means max number is sqrt(number of features)) bootstrap (boolean, optional): False means the whole dataset is used for building each tree, True means bootstrap of samples is used TO DO: Add value range that works for 5K dataset i (int, optional): Optional numeric index for figure filename. random_state (int, optional): Seed for train test split. Returns: feature_weights (df): weights of all the features top_feature_weights (df): weights of the features with the most weight regressor (RandomForestRegressor) RF regressor R2 (float): R2 value of the prediction for the test set. """ if test_proportion == 0: # Use the whole dataset for both training and "testing". X_train = X.copy() X_test = X.copy() y_train = y.copy() y_test = y.copy() elif test_proportion == None: # Assume X and y are lists with two datasets... # Use dataset 0 as train and dataset 1 as test. X_train = X[0].copy() X_test = X[1].copy() y_train = y[0].copy() y_test = y[1].copy() else: # Split into test and train sets, and scale with StandardScaler. if test_indices is None: if groups is not None: if groups_only_for_plotting == False: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_proportion, random_state=random_state, stratify=groups) else: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_proportion, random_state=random_state) #shufflesplit = sklearn.model_selection.ShuffleSplit(n_splits=1, test_size=test_proportion, random_state=random_state) #X_train, X_test, y_train, y_test = shufflesplit.split(X, y, groups=groups) else: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_proportion, random_state=random_state) else: #X_test = X.copy() # Are these needed? #y_test = y.copy() # Are these needed? X_test = X[test_indices].copy() y_test = y[test_indices].copy() #X_train = X.copy() #y_train = y.copy() X_train = X[~test_indices].copy() y_train = y[~test_indices].copy() print(y_test) if sample_weighing: #sample_weight = np.divide(1,y_train.iloc[:,0]+0.1) #sample_weight = np.abs(y_train.iloc[:,0]-8.5) #sample_weight = np.abs(y_train.iloc[:,0]-4.1) sample_weight = y_train.copy() sample_weight[y_train<=3] = 5 sample_weight[y_train>=8] = 5 sample_weight[(y_train>3)&(y_train<8)] = 1 sample_weight = sample_weight.squeeze() else: sample_weight = None params = {'eta': eta, 'gamma': gamma, 'max_depth': max_depth, 'n_estimators': n_estimators} # if you want to do weighting, you can do it manually on y_train. #print(params) #print(np.array(X_train)) #print(np.array(y_train)) regressor = xgb.XGBRegressor(**params).fit(np.array(X_train), np.ravel(
np.array(y_train)
numpy.array
# -*- coding: utf-8 -*- """ Created on Sun Dec 19 14:58:38 2021 @author: TD """ import numpy as np class GLM: def __init__(self, basis_funcs=([lambda x: np.ones_like(x), lambda x:x],)): """ Parameters ---------- basis_funcs : list or tuple List of lists of functions, where each list in the list is the basis functions corresponding to a single dimension. For example, if passed ([lambda x: np.ones_like(x), lambda x: x], [lambda x: x]) this is equivalent to the basis {1, x, y} for the equation z = Ax + By + C; an equation for a plane. The default is the basis for an equation of a line in 1-dimension ([lambda x: 1, lambda x:x],). """ self.basis_funcs = basis_funcs def fit(self, X, y, sample_weights=None): A = GLM.create_design_matrix(self.basis_funcs, X) W = GLM.get_sample_weight_matrix(sample_weights, y) B = GLM.compute_b_matrix(A, W) self.beta = np.dot(B, y) ### for diagnotics and stats # trace(W.M) self.dof = np.trace( np.dot( W, GLM.compute_m_matrix( GLM.compute_projection_matrix(A, B) ) ) ) self.sigma_sqrd = GLM.compute_sigma_sqrd( y - GLM._func_glm(A, self.beta), W, self.dof ) self.var_beta = GLM.compute_var_beta(self.sigma_sqrd, B) return self def predict(self, X): ### TODO address trade off here: # must recompute design matrix each predict call # not saving design matrix during fit reduces memory footprint return GLM.func_glm(self.basis_funcs, self.beta, X) @staticmethod def create_design_matrix(basis_funcs, X): A = np.concatenate( [ np.array( [f(X[:, i]) for f in bf_coord] ).T for i, bf_coord in enumerate(basis_funcs) ], axis=1 ) return A @staticmethod def _func_glm(A, beta): return np.dot(A, beta) @staticmethod def func_glm(basis_funcs, beta, X): A = GLM.create_design_matrix(basis_funcs, X) return GLM._func_glm(A, beta) @staticmethod def jac_glm(basis_funcs, X): return GLM.create_design_matrix(basis_funcs, X) @staticmethod def jac_objective(basis_funcs, beta, X, y, sample_weights=None): A = GLM.create_design_matrix(basis_funcs, X) e = y - np.dot(A, beta) # faster not to call func_glm W = GLM.get_sample_weight_matrix(sample_weights, y) return 2 * np.dot(np.dot(e.T, W), A) @staticmethod def get_sample_weight_matrix(sample_weights, y): if sample_weights is None: sample_weights = np.identity(y.shape[0]) if not isinstance(sample_weights, np.ndarray): sample_weights = np.array(sample_weights) W = sample_weights if len(W.shape) < 2: W = np.diag(W) if len(W.shape) != 2: raise ValueError( f'{W.shape} -- weights matrix shape. 2-d matrix required!' ) if (W.shape[0] != W.shape[1]): raise ValueError( f'{W.shape} -- weights matrix shape. Matrix is not square!' ) if (W.shape[0] != len(y)): raise ValueError( f'{W.shape} -- weights matrix shape.\n' f'{len(y)} -- number of samples.\n' 'Weight matrix should have shape nsamples x nsamples!' ) return W @staticmethod def compute_b_matrix(A, W): """ beta = B.y """ ATW = np.dot(A.T, W) V = np.dot(ATW, A) if np.linalg.det(V) == 0: raise ValueError( 'NO SOLUTION: det(A^T.W.A)=0\n' 'Check design matrix or sample weight matrix!' ) B = np.dot(np.linalg.inv(V), ATW) del V, ATW return B @staticmethod def compute_projection_matrix(A, B): """ projection matrix is idempotent P^2 = P y_fit = P.y """ return np.dot(A, B) @staticmethod def compute_m_matrix(PA): """ residual operator matrix e = M.y """ return np.identity(PA.shape[0]) - PA @staticmethod def compute_sigma_sqrd(e, W, dof): return np.dot(
np.dot(e.T, W)
numpy.dot
# std import warnings from collections import defaultdict # third-party import numpy as np from scipy.signal import get_window from astropy.stats import sigma_clipped_stats # relative from recipes.array import fold from .spectral import resolve_overlap # TODO: OCSVM, Tietjen-Moore, Topological Anomaly detection def generalizedESD(x, maxOLs, alpha=0.05, fullOutput=False): """ Carry out a Generalized ESD Test for Outliers. The Generalized Extreme Studentized Deviate (ESD) test for outliers can be used to search for outliers in a univariate data set, which approximately follows a normal distribution. A description of the algorithm is, e.g., given at `Nist <http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h3.htm>`_ or [Rosner1983]_. Parameters ---------- maxOLs : int Maximum number of outliers in the data set.Rectangle alpha : float, optional Significance (default is 0.05). fullOutput : boolean, optional Determines whether additional return values are provided. Default is False. Returns ------- Number of outliers : int The number of data points characterized as outliers by the test. Indices : list of intsRectangle The indices of the data points found to be outliers. R : list of floats, optional The values of the "R statistics". Only provided if `fullOutput` is set to True. L : list of floats, optional The lambda values needed to test whether a point should be regarded an outlier. Only provided if `fullOutput` is set to True. """ from scipy.stats import t if maxOLs < 1: raise ValueError xm = np.ma.array(x.copy()) n = len(xm) maxOLs = min(maxOLs, n) # can't have more outliers than points! # Compute R-values R, L = [], [] idx = [] for i in range(maxOLs + 1): # Compute mean and std of x xmean, xstd = xm.mean(), xm.std() # Find maximum deviation rr = np.abs((xm - xmean) / xstd) # Malhanobis distance wrr = np.argmax(rr) idx.append(wrr) # index of data point with maximal Malhanobis distance R.append(rr[wrr]) if i >= 1: p = 1.0 - alpha / (2.0 * (n - i + 1)) perPoint = t.ppf(p, n - i - 1) # the 100p percentage point from the t-distribution L.append((n - i) * perPoint / np.sqrt( (n - i - 1 + perPoint ** 2) * (n - i + 1))) # Mask that value and proceed xm[idx[-1]] = np.ma.masked # Remove the last entry from R, which is of # no meaning for the test R.pop(-1) # Find the number of outliers ofound = False for i in range(maxOLs - 1, -1, -1): if R[i] > L[i]: ofound = True break # Prepare return value if ofound: # There are outliers if fullOutput: return idx[0:i + 1], i + 1, R, L, idx return idx[0:i + 1] # No outliers could be detected if fullOutput: return [], 0, R, L, idx return [] # def CovEstOD(data, classifier=None, threshold=0): # if classifier is None: # from sklearn.covariance import EllipticEnvelope # classifier = EllipticEnvelope(support_fraction=1., contamination=0.1) # # classifier.fit(data) # idx, = np.where( classifier.decision_function(data) < threshold ) # # return idx def CovEstOD(data, classifier=None, n=1, **kw): # multivariate outlier detection if classifier is None: from sklearn.covariance import EllipticEnvelope contamination = n / data.shape[0] classifier = EllipticEnvelope(support_fraction=1., contamination=contamination) classifier.fit(data) outliers, = np.where(classifier.predict(data) == -1) return outliers def get_ellipse(classifier, **kws): from matplotlib.patches import Ellipse # todo: probably check that data is 2d w, T = np.linalg.eigh(classifier.precision_) # T (eigenvectors of precision matrix) is the transformation matrix # between principle axes and data coordinates Ti = np.linalg.inv(T) M = np.dot(Ti, classifier.precision_) * T # Diagonalizing the precision matrix ==> quadratic representation of # decision boundary (ellipse): z^T M z = threshold. where x-<x> = Tz # transforms to principle axes a, b = np.sqrt(classifier.threshold / np.diag(M)) # a, b are semi-major & semi-minor axes # T is (im)proper rotation matrix theta = np.degrees(
np.arccos(T[0, 0])
numpy.arccos
"""Trains model and exposes predictor class objects""" from datetime import datetime import logging import operator import os import pickle from armchair_analysis.game_data import game_data from hyperopt import fmin, hp, tpe, Trials import matplotlib.pyplot as plt from melo import Melo import numpy as np import pandas as pd from . import cachedir class MeloNFL(Melo): """ Generate NFL point-spread or point-total predictions using the Margin-dependent Elo (MELO) model. """ def __init__(self, mode, kfactor, regress_coeff, rest_bonus, exp_bonus, weight_qb, burnin=512): # hyperparameters self.mode = mode self.kfactor = kfactor self.regress_coeff = regress_coeff self.rest_bonus = rest_bonus self.exp_bonus = exp_bonus self.weight_qb = weight_qb self.burnin = burnin # model operation mode: "spread" or "total" if self.mode not in ["spread", "total"]: raise ValueError( "Unknown mode; valid options are 'spread' and 'total'") # mode-specific training hyperparameters self.commutes, self.compare, self.lines = { "total": (True, operator.add,
np.arange(-0.5, 111.5)
numpy.arange
import numpy as np import random from kmc.particles import * import sys # Personalized errors class randomized_error(Exception): def __init__(self,number): self.message="We were not able to include the " + str(number) + " particle(s) into the lattice. Loosen up the spacial restrictions for particle creation!" super().__init__(self.message) # SET OF FUNCS THAT GENERATE THE MORPHOLOGY OF THE SYSTEM # note: always define the function by list (param) that contains the things needed #### CHOOSE A FUNC TO GENERATE PARTICLES ''' def randomized(available, number, system, kwargs): mat = kwargs['mat'] selected = random.sample(list(available),number) selected = [s for s in selected if system.mats[s] in mat] count = 0 cutoff = number*10 while len(selected) < number and count < cutoff: count = count + 1 new = random.sample(list(available),number-len(selected)) for n in new: if system.mats[n] in mat: selected.append(n) if count >= cutoff and len(selected) != number: raise randomized_error(number) return selected ''' def randomized(available, number, system, kwargs): mat = kwargs['mat'] selected = random.sample(list(available),number) selected = [s for s in selected if system.mats[s] in mat] selec_size_old = len(selected) selec_size_new = number # could be anything that satisfies selec_size_old != selec_size_new = True, but this way is granted to work if len(selected) < number = True count = 1 cutoff = 10000*number*np.sqrt(len(list(available))) #print(count,number,selec_size_old,selec_size_new) while len(selected) < number and count < cutoff: count = count + 1 selec_size_old = len(selected) sel_old = selected.copy() new = random.sample(list(available),number-len(selected)) new_mat = [sel for sel in new if system.mats[sel] in mat] selected = list(set(selected + new_mat)) #enforcing uniqueness selec_size_new = len(selected) ''' print() print('--->',count,selec_size_old,selec_size_new,new, [system.mats[a] for a in new]) print('---> sel. old',sel_old) print('---> sel. new',selected) ''' ''' print('#') print(count,selec_size_old,selec_size_new, len(selected) < number,selec_size_old != selec_size_new ) print(cutoff,count) print(selected) ''' if count == cutoff:#if we could not find suitable sites for particle creation raise randomized_error(number) return selected def interface(available, number, system, kwargs): mat = kwargs['mat'] neighbors = kwargs['neigh'] available = [i for i in available if system.mats[i] in mat] new_available = [] for i in range(len(available)): R = np.copy(system.R) dR = R - R[i,:] modulo = np.sqrt(np.sum(dR*dR,axis=1)) indices = np.argsort(modulo)[1:neighbors+1] if np.any(system.mats[indices] != system.mats[i]): new_available.append(i) selected = random.sample(new_available,number) return selected ##CLASS FOR GENERATING PARTICLES IN THE SYSTEM########################################### class Create_Particles(): def __init__(self,kind, num, method, **kwargs): self.kind = kind self.num = num self.method = method self.argv = kwargs def assign_to_system(self,system): selected = self.method(range(len(system.X)),self.num, system, self.argv) Particula = getattr(sys.modules[__name__], self.kind.title()) particles = [Particula(number) for number in selected] system.set_particles(particles) ######################################################################################### ##CLASSES TO ASSIGN ENERGIES TO LATTICE################################################## class Gaussian_energy(): def __init__(self,s1s): self.s1s = s1s def assign_to_system(self,system): type_en = self.s1s['level'] uniq = system.uniq N = len(system.mats) means = np.empty(N) stds = np.empty(N) means.fill(self.s1s[uniq[0]][0]) stds.fill(self.s1s[uniq[0]][1]) for m in uniq[1:]: mask = system.mats == m means[mask] = self.s1s[m][0] stds[mask] = self.s1s[m][1] s1 = np.random.normal(means,stds,N) #if type(self.s1s[uniq[0]]) == str: #if the user provides a file that contains the energies # s1 = np.random.choice(np.loadtxt(self.s1s[uniq[0]]),size = N) #else: #if you want to generate an on-the-fly gaussian distr. # s1 = np.random.normal(self.s1s[uniq[0]][0],self.s1s[uniq[0]][1],N) #materials = [i for i in uniq if i != uniq[0]] #for m in materials: # print('aqui') # if type(self.s1s[m]) == str: # s11 = np.random.choice(np.loadtxt(self.s1s[m]),size = N) # else: # s11 = np.random.normal(self.s1s[m][0],self.s1s[m][1],N) # s1[system.mats == m] = s11[system.mats == m] #print(s1) system.set_energies(s1,type_en) ######################################################################################### # FUNCS TO SHAPE THE GENERATION OF PARTICLES #funcs that define the filtering, like inside a sphere, plane etc class sphere_conditional(): def __init__(self): self.args = ['origin','radius_min'] def test_cond(self,pos,args): r0 = args.get('origin') r_min = args.get('radius_min') x = pos[0] - r0[0] y = pos[1] - r0[1] z = pos[2] - r0[2] r_pos = np.sqrt(x**2 + y**2 + z**2) return r_pos <= r_min #condition to be inside the sphere class plane_conditional(): def __init__(self): self.args = ['origin','coefs'] def test_cond(self,pos,args): r0 = args.get('origin') coefs = args.get('coefs') #Equation of plane is defined as # A(X-X0) + B(Y-Y0) + C(Z-Z0) = 0 x = pos[0] - r0[0] y = pos[1] - r0[1] z = pos[2] - r0[2] A,B,C = coefs cond = A*x + B*y + C*z == 0 #condition to be in the plane return cond class cone_conditional(): #hollow cone def __init__(self): self.args = ['origin','coefs'] def test_cond(self,pos,args): r0 = args.get('origin') coefs = args.get('coefs') #Equation of cone is defined as # (X-X0)^2/A^2 + (Y-Y0)^2/B^2 + (Z-Z0)^2/C^2 = 0 x = pos[0] - r0[0] y = pos[1] - r0[1] z = pos[2] - r0[2] A,B,C = coefs cond = (x**2)/(A**2) + (y**2)/(B**2) -(z**2)/(C**2) == 0 #condition to be in the cone return cond class cilinder_conditional(): def __init__(self): self.args = ['origin','radius_min'] def test_cond(self,pos,args): r0 = args.get('origin') RHO_min = args.get('radius_min') x = pos[0] - r0[0] y = pos[1] - r0[1] z = pos[2] - r0[2] cond = np.sqrt( x**2 + y**2) <= RHO_min return cond class no_conditional(): def __init__(self): pass def test_cond(self,pos,args): return True class rectangle_conditional(): def __init__(self): self.args = ['limits'] def test_cond(self,pos,args): limits = args.get('limits') x,y,z = pos xlim,ylim,zlim = limits x_i,x_f = xlim y_i,y_f = ylim z_i,z_f = zlim if (( x >= x_i) and ( x <= x_f)): if (( y >= y_i) and ( y <= y_f)): if (( z >= z_i) and ( z <= z_f)): return True #main function, regardless of the conditional, filters the sites according to it def conditional_selection(available, number, system, kwargs): # dictonary of all possible geometric creation of particles type_dic = {'sphere': sphere_conditional, 'plane':plane_conditional,'cone':cone_conditional, 'cilinder':cilinder_conditional,'rectangle': rectangle_conditional,'free':no_conditional} selected = [] mat_restric = kwargs['mat'] shape = kwargs['type_cond'] conditional = type_dic.get(shape)() try:#getting all kwargs given by the user list_kwargs = conditional.args dict_kwargs = {} for arg in list_kwargs: dict_kwargs[arg] = kwargs[arg] except:#in case that the conditional does no require additiona kwargs dict_kwargs = [] X_cop = system.X.copy() Y_cop = system.Y.copy() Z_cop = system.Z.copy() Mats_cop = system.mats.copy() for index_mol in range(len(X_cop)): x = X_cop[index_mol] y = Y_cop[index_mol] z = Z_cop[index_mol] mat = Mats_cop[index_mol] if conditional.test_cond([x,y,z],dict_kwargs) and (mat in mat_restric): selected.append(index_mol) return random.sample(selected,number) ##LATTICE CLASSES#################################################################################### class ReadLattice(): def __init__(self,file): self.file = file def assign_to_system(self,system): data = np.loadtxt(self.file,comments='#') system.set_morph(data[:,0],data[:,1],data[:,2],data[:,3]) class Lattice(): def __init__(self,num_sites,vector,disorder,composition): #initializing the lattice class with some basic info given by the user self.num_sites = num_sites self.vector = vector self.disorder = disorder self.composition = np.cumsum([i/np.sum(composition) for i in composition]) def make(self): #Generating the set X,Y,Z,Mats dim = [] for elem in self.vector: if elem != 0: dim.append(1) else: dim.append(0) numx = max(dim[0]*int(self.num_sites**(1/np.sum(dim))),1) numy = max(dim[1]*int(self.num_sites**(1/np.sum(dim))),1) numz = max(dim[2]*int(self.num_sites**(1/np.sum(dim))),1) Numx = np.random.normal(np.array(range(numx))*self.vector[0],self.disorder[0],numx) Numy = np.random.normal(np.array(range(numy))*self.vector[1],self.disorder[1],numy) Numz = np.random.normal(np.array(range(numz))*self.vector[2],self.disorder[2],numz) total = numx*numy*numz X,Y,Z = np.meshgrid(Numx,Numy,Numz,indexing = 'ij') X,Y,Z = X.reshape(total,),Y.reshape(total,),Z.reshape(total,) luck = np.random.uniform(0,1,total) Mats = np.zeros(total) for i in reversed(range(len(self.composition))): Mats[ luck < self.composition[i] ] = i return X,Y,Z,Mats def assign_to_system(self, system): #adding the X,Y,Z,Mats to the system X, Y, Z, Mats = self.make() system.set_morph(X,Y,Z,Mats) #list sites' indexes of all neighbors of one given position def filter_mats_by_distance(r,X,Y,Z,Mats,cutoff,r_index): x = r[0] y = r[1] z = r[2] neighbors = [] for n in range(len(X)): dx = (x - X[n]) dy = (y - Y[n]) dz = (z - Z[n]) dist = np.sqrt(dx**2+dy**2+dz**2) if(dist <= cutoff and r_index != n): neighbors.append(n) #return np.array(neighbors) return neighbors class Lattice_BHJ(): def __init__(self,n_loops,cutoff,num_sites,vector,disorder,composition): self.n_loops = n_loops self.cutoff = cutoff self.num_sites = num_sites self.vector = vector self.disorder = disorder self.composition = composition #np.cumsum([i/np.sum(composition) for i in composition]) self.lattice = Lattice(self.num_sites,self.vector,self.disorder,self.composition) def make(self): X,Y,Z,Mats = self.lattice.make() #finding the neighbors around each site based on a cutoff distance neighbors_lattice = [] for j in range(len(X)): r = [X[j],Y[j],Z[j]] neighbors = filter_mats_by_distance(r,X,Y,Z,Mats,self.cutoff,j) neighbors_lattice.append(neighbors) #interating the BHJ process for i in range(self.n_loops): Mats_new = np.copy(Mats) for k in range(len(X)): #finding which material is more present around the j-th site mats_selected = [ Mats[ind] for ind in neighbors_lattice[k] ] unique, counts = np.unique(mats_selected, return_counts=True) mat_dict = dict(zip(unique, counts)) max_mat = max(mat_dict, key=mat_dict.get) #dealing with mats having equal max occurence max_occurence = mat_dict[max_mat] max_dict = {} for entry in mat_dict: if mat_dict[entry] == max_occurence: max_dict[entry] = max_occurence mat_keys = list(max_dict.keys()) ps = np.zeros([len(mat_keys)]) ps = ps +1 ps = [i/np.sum(ps) for i in ps] ps = np.cumsum(ps) dice = random.uniform(0,1) chosen = np.where(dice < ps)[0][0] Mats_new[k] = mat_keys[chosen] Mats = np.copy(Mats_new) Mats = np.copy(Mats_new) unique, counts = np.unique(Mats, return_counts=True) mat_dict = dict(zip(unique, counts)) return X,Y,Z,Mats def assign_to_system(self, system): #adding the X,Y,Z,Mats to the system X, Y, Z, Mats = self.make() system.set_morph(X,Y,Z,Mats) def multiply_lattice(lattice,n_times_ar,delta): X_lenght = delta[0] #Increments Y_lenght = delta[1] Z_lenght = delta[2] n_times_x = n_times_ar[0] n_times_y = n_times_ar[1] n_times_z = n_times_ar[2] new_lattice = np.copy(lattice) n_sites = len(lattice) for dx in range(n_times_x): for dy in range(n_times_y): for dz in range(n_times_z): new_cell = np.copy(lattice) for i in range(n_sites): #multipling the X position in the unit cell dx times #beware of the convention X,Y,Z,Mats in the lattice new_cell[i][0] = new_cell[i][0] +dx*X_lenght new_cell[i][1] = new_cell[i][1] +dy*Y_lenght new_cell[i][2] = new_cell[i][2] +dz*Z_lenght new_lattice =
np.vstack((new_lattice,new_cell))
numpy.vstack
"""Performs face alignment and stores face thumbnails in the output directory.""" # MIT License # # Copyright (c) 2016 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import random import sys import detect_face # import facenet import facenet.src.facenet as facenet import numpy as np import tensorflow as tf from scipy import misc def main(args): output_dir = args.output_dir if not os.path.exists(output_dir): os.makedirs(output_dir) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) dataset = facenet.get_dataset(args.input_dir) print('Creating networks and loading parameters') with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = detect_face.create_mtcnn(sess, None) minsize = 20 # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor # Add a random key to the filename to allow alignment using multiple processes random_key = np.random.randint(0, high=99999) bounding_boxes_filename = os.path.join(output_dir, 'bounding_boxes_%05d.txt' % random_key) with open(bounding_boxes_filename, "w") as text_file: nrof_images_total = 0 nrof_successfully_aligned = 0 if args.random_order: random.shuffle(dataset) for cls in dataset: output_class_dir = os.path.join(output_dir, cls.name) if not os.path.exists(output_class_dir): os.makedirs(output_class_dir) if args.random_order: random.shuffle(cls.image_paths) for image_path in cls.image_paths: nrof_images_total += 1 filename = os.path.splitext(os.path.split(image_path)[1])[0] output_filename = os.path.join(output_class_dir, filename + '.png') print(image_path) if not os.path.exists(output_filename): try: img = misc.imread(image_path) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) print(errorMessage) else: if img.ndim < 2: print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) continue if img.ndim == 2: img = facenet.to_rgb(img) img = img[:, :, 0:3] bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] if nrof_faces > 0: det = bounding_boxes[:, 0:4] det_arr = [] img_size = np.asarray(img.shape)[0:2] if nrof_faces > 1: if args.detect_multiple_faces: for i in range(nrof_faces): det_arr.append(np.squeeze(det[i])) else: bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1]) img_center = img_size / 2 offsets = np.vstack([(det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0]]) offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) index = np.argmax( bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering det_arr.append(det[index, :]) else: det_arr.append(np.squeeze(det)) for i, det in enumerate(det_arr): det = np.squeeze(det) bb =
np.zeros(4, dtype=np.int32)
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Sat May 19 16:01:19 2018 @author: kirichoi """ import os, sys import tellurium as te import roadrunner import numpy as np import antimony import scipy.optimize import networkGenerator as ng import plotting as pt import ioutils import analysis import matplotlib.pyplot as plt import time import copy #np.seterr(all='raise') def f1(k_list, *args): global counts global countf args[0].reset() args[0].setValues(args[0].getGlobalParameterIds(), k_list) try: args[0].steadyStateApproximate() objCCC = args[0].getScaledConcentrationControlCoefficientMatrix() if np.isnan(objCCC).any(): dist_obj = 10000 else: objCCC[np.abs(objCCC) < 1e-12] = 0 # Set small values to zero objCCC_row = objCCC.rownames objCCC_col = objCCC.colnames objCCC = objCCC[np.argsort(objCCC_row)] objCCC = objCCC[:,np.argsort(objCCC_col)] dist_obj = ((np.linalg.norm(realConcCC - objCCC))*(1 + np.sum(np.not_equal(np.sign(np.array(realConcCC)), np.sign(np.array(objCCC)))))) except: countf += 1 dist_obj = 10000 counts += 1 return dist_obj def callbackF(X, convergence=0.): global counts global countf print(str(counts) + ", " + str(countf)) return False def mutate_and_evaluate(listantStr, listdist, listrl): global countf global counts eval_dist = np.empty(mut_size) eval_model = np.empty(mut_size, dtype='object') eval_rl = np.empty(mut_size, dtype='object') for m in mut_range: r = te.loada(listantStr[m]) r.steadyStateApproximate() concCC = r.getScaledConcentrationControlCoefficientMatrix() cFalse = (1 + np.sum(np.not_equal(np.sign(
np.array(realConcCC)
numpy.array
""" <NAME> University of Manitoba September 10th, 2021 """ import os import numpy as np import matplotlib.pyplot as plt from umbms import get_proj_path, verify_path from umbms.loadsave import load_pickle ############################################################################### __OUT_DIR = os.path.join(get_proj_path(), 'output/g3/diagnostic-figs/') verify_path(__OUT_DIR) # Define RGB colors for plotting das_col = [0, 0, 0] dmas_col = [80, 80, 80] orr_col = [160, 160, 160] das_col = [ii / 255 for ii in das_col] dmas_col = [ii / 255 for ii in dmas_col] orr_col = [ii / 255 for ii in orr_col] ############################################################################### def plt_adi_ref_performance(): """Plot the diagnostic performance when adipose-only used as ref """ # Define x-coords for bars das_xs = [0, 3.5] dmas_xs = [1, 4.5] orr_xs = [2, 5.5] # Init plot plt.figure(figsize=(12, 6)) plt.rc('font', family='Times New Roman') plt.tick_params(labelsize=20) # Plot DAS sensitivity and specificity plt.bar(das_xs, height=[das_sens[0], das_spec], width=0.75, linewidth=1, color=das_col, edgecolor='k', label='DAS') # Plot DMAS sensitivity and specificity plt.bar(dmas_xs, height=[dmas_sens[0], dmas_spec], width=0.75, capsize=10, linewidth=1, color=dmas_col, edgecolor='k', label='DMAS') # Plot plt.bar(orr_xs, height=[orr_sens[0], orr_spec], width=0.75, capsize=10, linewidth=1, color=orr_col, edgecolor='k', label='ORR') plt.legend(fontsize=18, loc='upper left', framealpha=0.95) plt.xticks([1, 4.5], ["Sensitivity", "Specificity"], size=20) plt.ylabel('Metric Value (%)', fontsize=22) # Put text on the bars das_text_ys = [15, 40] das_for_text = [das_sens[0], das_spec] dmas_text_ys = [16, 36] dmas_for_text = [dmas_sens[0], dmas_spec] gd_text_ys = [23, 52] gd_for_text = [orr_sens[0], orr_spec] for ii in range(len(das_text_ys)): plt.text(das_xs[ii], das_text_ys[ii], "%d" % das_for_text[ii], size=16, color='k', horizontalalignment='center', verticalalignment='center', bbox={'facecolor': 'w', 'alpha': 0.9}) for ii in range(len(dmas_text_ys)): plt.text(dmas_xs[ii], dmas_text_ys[ii], "%d" % dmas_for_text[ii], size=16, color='k', horizontalalignment='center', verticalalignment='center', bbox={'facecolor': 'w', 'alpha': 0.9}) for ii in range(len(gd_text_ys)): plt.text(orr_xs[ii], gd_text_ys[ii], "%d" % gd_for_text[ii], size=16, color='k', horizontalalignment='center', verticalalignment='center', bbox={'facecolor': 'w', 'alpha': 0.9}) # Set appropriate y-limit plt.ylim([0, 100]) plt.tight_layout() # Make everything fit nicely plt.show() # Display the plot # Save the figure plt.savefig(os.path.join(__OUT_DIR, 'sens_spec_adi_refs.png'), dpi=300, transparent=False) def plt_fib_ref_performance(): """Plot the diagnostic performance when healthy scan as reference """ # Define x-coords for bars das_xs = [0, 3.5] dmas_xs = [1, 4.5] orr_xs = [2, 5.5] # Init fig plt.figure(figsize=(12, 6)) plt.rc('font', family='Times New Roman') plt.tick_params(labelsize=20) plt.bar(das_xs, height=[das_sens[1], das_spec], width=0.75, linewidth=1, color=das_col, edgecolor='k', label='DAS') plt.bar(dmas_xs, height=[dmas_sens[1], dmas_spec], width=0.75, capsize=10, linewidth=1, color=dmas_col, edgecolor='k', label='DMAS') plt.bar(orr_xs, height=[orr_sens[1], orr_spec], width=0.75, capsize=10, linewidth=1, color=orr_col, edgecolor='k', label='ORR') plt.legend(fontsize=18, loc='upper left', framealpha=0.95) plt.xticks([1, 4.5], ["Sensitivity", "Specificity"], size=20) plt.ylabel('Metric Value (%)', fontsize=22) # Put text on the bars das_text_ys = [67, 40] das_for_text = [das_sens[1], das_spec] dmas_text_ys = [74, 36] dmas_for_text = [dmas_sens[1], dmas_spec] gd_text_ys = [78, 52] gd_for_text = [orr_sens[1], orr_spec] for ii in range(len(das_text_ys)): plt.text(das_xs[ii], das_text_ys[ii], "%d" % das_for_text[ii], size=16, color='k', horizontalalignment='center', verticalalignment='center', bbox={'facecolor': 'w', 'alpha': 0.9}) for ii in range(len(dmas_text_ys)): plt.text(dmas_xs[ii], dmas_text_ys[ii], "%d" % dmas_for_text[ii], size=16, color='k', horizontalalignment='center', verticalalignment='center', bbox={'facecolor': 'w', 'alpha': 0.9}) for ii in range(len(gd_text_ys)): plt.text(orr_xs[ii], gd_text_ys[ii], "%d" % gd_for_text[ii], size=16, color='k', horizontalalignment='center', verticalalignment='center', bbox={'facecolor': 'w', 'alpha': 0.9}) # Set appropriate y-limit plt.ylim([0, 100]) plt.tight_layout() # Make everything fit nicely plt.show() # Display the plot # Save fig plt.savefig(os.path.join(__OUT_DIR, 'sens_spec_fib_refs.png'), dpi=300, transparent=False) def plt_sens_by_tum_adi(): """Plot sensitivity as a function of tumour size with adi refs """ # Define x-coords of bars das_xs = [0, 3.5, 7, 10.5, 14] dmas_xs = [1, 4.5, 8, 11.5, 15] orr_xs = [2, 5.5, 9, 12.5, 16] # Init fig plt.figure(figsize=(12, 6)) plt.rc('font', family='Times New Roman') plt.tick_params(labelsize=20) plt.bar(das_xs, height=das_by_tum_adi, width=0.75, linewidth=1, color=das_col, edgecolor='k', label='DAS') plt.bar(dmas_xs, height=dmas_by_tum_adi, width=0.75, capsize=10, linewidth=1, color=dmas_col, edgecolor='k', label='DMAS') plt.bar(orr_xs, height=orr_by_tum_adi, width=0.75, capsize=10, linewidth=1, color=orr_col, edgecolor='k', label='ORR') plt.legend(fontsize=18, loc='upper left', framealpha=0.95) plt.xticks(dmas_xs, ["30", "25", "20", "15", "10"], size=20) plt.ylabel('Sensitivity (%)', fontsize=22) plt.xlabel('Tumour Diameter (mm)', fontsize=22) # Put text on the fig das_text_ys = np.array(das_by_tum_adi) - 4 das_text_ys[np.array(das_by_tum_adi) == 0] = 4 das_for_text = das_by_tum_adi dmas_text_ys = np.array(dmas_by_tum_adi) - 4 dmas_text_ys[np.array(dmas_by_tum_adi) == 0] = 4 dmas_for_text = dmas_by_tum_adi orr_text_ys = np.array(orr_by_tum_adi) - 4 orr_text_ys[np.array(orr_by_tum_adi) == 0] = 4 orr_for_text = orr_by_tum_adi for ii in range(len(das_text_ys)): plt.text(das_xs[ii], das_text_ys[ii], "%d" % das_for_text[ii], size=16, color='k', horizontalalignment='center', verticalalignment='center', bbox={'facecolor': 'w', 'alpha': 0.9}) for ii in range(len(dmas_text_ys)): plt.text(dmas_xs[ii], dmas_text_ys[ii], "%d" % dmas_for_text[ii], size=16, color='k', horizontalalignment='center', verticalalignment='center', bbox={'facecolor': 'w', 'alpha': 0.9}) for ii in range(len(orr_text_ys)): plt.text(orr_xs[ii], orr_text_ys[ii], "%d" % orr_for_text[ii], size=16, color='k', horizontalalignment='center', verticalalignment='center', bbox={'facecolor': 'w', 'alpha': 0.9}) # Set appropriate y-limit plt.ylim([0, 100]) plt.tight_layout() # Make everything fit nicely plt.show() # Display the plot # Save fig plt.savefig(os.path.join(__OUT_DIR, 'sens_by_tum_adi.png'), dpi=300, transparent=False) def plt_sens_by_tum_fib(): """Plot sensitivity vs tumour size when healthy scan used as refs """ # Define x-coords for bars das_xs = [0, 3.5, 7, 10.5, 14] dmas_xs = [1, 4.5, 8, 11.5, 15] orr_xs = [2, 5.5, 9, 12.5, 16] # Init fig plt.figure(figsize=(12, 6)) plt.rc('font', family='Times New Roman') plt.tick_params(labelsize=20) # Plot bars plt.bar(das_xs, height=das_by_tum_fib, width=0.75, linewidth=1, color=das_col, edgecolor='k', label='DAS') plt.bar(dmas_xs, height=dmas_by_tum_fib, width=0.75, capsize=10, linewidth=1, color=dmas_col, edgecolor='k', label='DMAS') plt.bar(orr_xs, height=orr_by_tum_fib, width=0.75, capsize=10, linewidth=1, color=orr_col, edgecolor='k', label='ORR') plt.legend(fontsize=18, loc='upper right', framealpha=0.95) plt.xticks(dmas_xs, ["30", "25", "20", "15", "10"], size=20) plt.ylabel('Sensitivity (%)', fontsize=22) plt.xlabel('Tumour Diameter (mm)', fontsize=22) das_text_ys = np.array(das_by_tum_fib) - 4 das_text_ys[
np.array(das_by_tum_fib)
numpy.array
""" Sentiment Classification Task """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import argparse import numpy as np import multiprocessing import sys import paddle import paddle.fluid as fluid sys.path.append("../shared_modules/models/classification/") sys.path.append("../shared_modules/") print(sys.path) from nets import bow_net from nets import lstm_net from nets import cnn_net from nets import bilstm_net from nets import gru_net from nets import ernie_base_net from nets import ernie_bilstm_net from preprocess.ernie import task_reader from models.representation.ernie import ErnieConfig from models.representation.ernie import ernie_encoder, ernie_encoder_with_paddle_hub #from models.representation.ernie import ernie_pyreader from models.model_check import check_cuda from config import PDConfig from utils import init_checkpoint def ernie_pyreader(args, pyreader_name): src_ids = fluid.layers.data( name="src_ids", shape=[None, args.max_seq_len, 1], dtype="int64") sent_ids = fluid.layers.data( name="sent_ids", shape=[None, args.max_seq_len, 1], dtype="int64") pos_ids = fluid.layers.data( name="pos_ids", shape=[None, args.max_seq_len, 1], dtype="int64") input_mask = fluid.layers.data( name="input_mask", shape=[None, args.max_seq_len, 1], dtype="float32") labels = fluid.layers.data(name="labels", shape=[None, 1], dtype="int64") seq_lens = fluid.layers.data(name="seq_lens", shape=[None], dtype="int64") pyreader = fluid.io.DataLoader.from_generator( feed_list=[src_ids, sent_ids, pos_ids, input_mask, labels, seq_lens], capacity=50, iterable=False, use_double_buffer=True) ernie_inputs = { "src_ids": src_ids, "sent_ids": sent_ids, "pos_ids": pos_ids, "input_mask": input_mask, "seq_lens": seq_lens } return pyreader, ernie_inputs, labels def create_model(args, embeddings, labels, is_prediction=False): """ Create Model for sentiment classification based on ERNIE encoder """ sentence_embeddings = embeddings["sentence_embeddings"] token_embeddings = embeddings["token_embeddings"] if args.model_type == "ernie_base": ce_loss, probs = ernie_base_net(sentence_embeddings, labels, args.num_labels) elif args.model_type == "ernie_bilstm": ce_loss, probs = ernie_bilstm_net(token_embeddings, labels, args.num_labels) else: raise ValueError("Unknown network type!") if is_prediction: return probs loss = fluid.layers.mean(x=ce_loss) num_seqs = fluid.layers.create_tensor(dtype='int64') accuracy = fluid.layers.accuracy(input=probs, label=labels, total=num_seqs) return loss, accuracy, num_seqs def evaluate(exe, test_program, test_pyreader, fetch_list, eval_phase): """ Evaluation Function """ test_pyreader.start() total_cost, total_acc, total_num_seqs = [], [], [] time_begin = time.time() while True: try: np_loss, np_acc, np_num_seqs = exe.run(program=test_program, fetch_list=fetch_list, return_numpy=False) np_loss = np.array(np_loss) np_acc = np.array(np_acc) np_num_seqs =
np.array(np_num_seqs)
numpy.array
import sys from datetime import date, datetime, timedelta from numbers import Number from typing import ( Any, Callable, Dict, List, Optional, Sequence, Tuple, Type, Union, overload, ) import numpy as np try: import pyarrow as pa _PYARROW_AVAILABLE = True except ImportError: # pragma: no cover _PYARROW_AVAILABLE = False import math from polars import internals as pli from polars.internals.construction import ( arrow_to_pyseries, numpy_to_pyseries, pandas_to_pyseries, sequence_to_pyseries, series_to_pyseries, ) try: from polars.polars import PyDataFrame, PySeries _DOCUMENTING = False except ImportError: # pragma: no cover _DOCUMENTING = True from polars.datatypes import ( Boolean, DataType, Date, Datetime, Duration, Float32, Float64, Int8, Int16, Int32, Int64, ) from polars.datatypes import List as PlList from polars.datatypes import ( Object, Time, UInt8, UInt16, UInt32, UInt64, Utf8, dtype_to_ctype, dtype_to_ffiname, maybe_cast, py_type_to_dtype, ) from polars.utils import ( _date_to_pl_date, _datetime_to_pl_timestamp, _ptr_to_numpy, _to_python_datetime, range_to_slice, ) try: import pandas as pd _PANDAS_AVAILABLE = True except ImportError: # pragma: no cover _PANDAS_AVAILABLE = False if sys.version_info >= (3, 8): from typing import Literal else: from typing_extensions import Literal # pragma: no cover def get_ffi_func( name: str, dtype: Type["DataType"], obj: "PySeries", ) -> Optional[Callable[..., Any]]: """ Dynamically obtain the proper ffi function/ method. Parameters ---------- name function or method name where dtype is replaced by <> for example "call_foo_<>" dtype polars dtype. obj Object to find the method for. Returns ------- ffi function, or None if not found """ ffi_name = dtype_to_ffiname(dtype) fname = name.replace("<>", ffi_name) return getattr(obj, fname, None) def wrap_s(s: "PySeries") -> "Series": return Series._from_pyseries(s) ArrayLike = Union[ Sequence[Any], "Series", "pa.Array", np.ndarray, "pd.Series", "pd.DatetimeIndex" ] class Series: """ A Series represents a single column in a polars DataFrame. Parameters ---------- name : str, default None Name of the series. Will be used as a column name when used in a DataFrame. When not specified, name is set to an empty string. values : ArrayLike, default None One-dimensional data in various forms. Supported are: Sequence, Series, pyarrow Array, and numpy ndarray. dtype : DataType, default None Polars dtype of the Series data. If not specified, the dtype is inferred. strict Throw error on numeric overflow nan_to_null In case a numpy arrow is used to create this Series, indicate how to deal with np.nan Examples -------- Constructing a Series by specifying name and values positionally: >>> s = pl.Series("a", [1, 2, 3]) >>> s shape: (3,) Series: 'a' [i64] [ 1 2 3 ] Notice that the dtype is automatically inferred as a polars Int64: >>> s.dtype <class 'polars.datatypes.Int64'> Constructing a Series with a specific dtype: >>> s2 = pl.Series("a", [1, 2, 3], dtype=pl.Float32) >>> s2 shape: (3,) Series: 'a' [f32] [ 1 2 3 ] It is possible to construct a Series with values as the first positional argument. This syntax considered an anti-pattern, but it can be useful in certain scenarios. You must specify any other arguments through keywords. >>> s3 = pl.Series([1, 2, 3]) >>> s3 shape: (3,) Series: '' [i64] [ 1 2 3 ] """ def __init__( self, name: Optional[Union[str, ArrayLike]] = None, values: Optional[ArrayLike] = None, dtype: Optional[Type[DataType]] = None, strict: bool = True, nan_to_null: bool = False, ): # Handle case where values are passed as the first argument if name is not None and not isinstance(name, str): if values is None: values = name name = None else: raise ValueError("Series name must be a string.") # TODO: Remove if-statement below once Series name is allowed to be None if name is None: name = "" if values is None: self._s = sequence_to_pyseries(name, [], dtype=dtype) elif isinstance(values, Series): self._s = series_to_pyseries(name, values) elif _PYARROW_AVAILABLE and isinstance(values, pa.Array): self._s = arrow_to_pyseries(name, values) elif isinstance(values, np.ndarray): self._s = numpy_to_pyseries(name, values, strict, nan_to_null) if dtype is not None: self._s = self.cast(dtype, strict=True)._s elif isinstance(values, Sequence): self._s = sequence_to_pyseries(name, values, dtype=dtype, strict=strict) elif _PANDAS_AVAILABLE and isinstance(values, (pd.Series, pd.DatetimeIndex)): self._s = pandas_to_pyseries(name, values) else: raise ValueError("Series constructor not called properly.") @classmethod def _from_pyseries(cls, pyseries: "PySeries") -> "Series": series = cls.__new__(cls) series._s = pyseries return series @classmethod def _repeat( cls, name: str, val: Union[int, float, str, bool], n: int, dtype: Type[DataType] ) -> "Series": return cls._from_pyseries(PySeries.repeat(name, val, n, dtype)) @classmethod def _from_arrow( cls, name: str, values: "pa.Array", rechunk: bool = True ) -> "Series": """ Construct a Series from an Arrow Array. """ return cls._from_pyseries(arrow_to_pyseries(name, values, rechunk)) @classmethod def _from_pandas( cls, name: str, values: Union["pd.Series", "pd.DatetimeIndex"], nan_to_none: bool = True, ) -> "Series": """ Construct a Series from a pandas Series or DatetimeIndex. """ return cls._from_pyseries( pandas_to_pyseries(name, values, nan_to_none=nan_to_none) ) def inner(self) -> "PySeries": return self._s def __getstate__(self) -> Any: return self._s.__getstate__() def __setstate__(self, state: Any) -> None: self._s = sequence_to_pyseries("", [], Float32) self._s.__setstate__(state) def __str__(self) -> str: return self._s.as_str() def __repr__(self) -> str: return self.__str__() def __and__(self, other: "Series") -> "Series": if not isinstance(other, Series): other = Series([other]) return wrap_s(self._s.bitand(other._s)) def __rand__(self, other: "Series") -> "Series": return self.__and__(other) def __or__(self, other: "Series") -> "Series": if not isinstance(other, Series): other = Series([other]) return wrap_s(self._s.bitor(other._s)) def __ror__(self, other: "Series") -> "Series": return self.__or__(other) def __xor__(self, other: "Series") -> "Series": if not isinstance(other, Series): other = Series([other]) return wrap_s(self._s.bitxor(other._s)) def __rxor__(self, other: "Series") -> "Series": return self.__xor__(other) def _comp(self, other: Any, op: str) -> "Series": if isinstance(other, datetime) and self.dtype == Datetime: ts = _datetime_to_pl_timestamp(other, self.time_unit) f = get_ffi_func(op + "_<>", Int64, self._s) assert f is not None return wrap_s(f(ts)) if isinstance(other, date) and self.dtype == Date: d = _date_to_pl_date(other) f = get_ffi_func(op + "_<>", Int32, self._s) assert f is not None return wrap_s(f(d)) if isinstance(other, Sequence) and not isinstance(other, str): other = Series("", other) if isinstance(other, Series): return wrap_s(getattr(self._s, op)(other._s)) other = maybe_cast(other, self.dtype, self.time_unit) f = get_ffi_func(op + "_<>", self.dtype, self._s) if f is None: return NotImplemented return wrap_s(f(other)) def __eq__(self, other: Any) -> "Series": # type: ignore[override] return self._comp(other, "eq") def __ne__(self, other: Any) -> "Series": # type: ignore[override] return self._comp(other, "neq") def __gt__(self, other: Any) -> "Series": return self._comp(other, "gt") def __lt__(self, other: Any) -> "Series": return self._comp(other, "lt") def __ge__(self, other: Any) -> "Series": return self._comp(other, "gt_eq") def __le__(self, other: Any) -> "Series": return self._comp(other, "lt_eq") def _arithmetic(self, other: Any, op_s: str, op_ffi: str) -> "Series": if isinstance(other, Series): return wrap_s(getattr(self._s, op_s)(other._s)) if isinstance(other, float) and not self.is_float(): _s = sequence_to_pyseries("", [other]) if "rhs" in op_ffi: return wrap_s(getattr(_s, op_s)(self._s)) else: return wrap_s(getattr(self._s, op_s)(_s)) else: other = maybe_cast(other, self.dtype, self.time_unit) f = get_ffi_func(op_ffi, self.dtype, self._s) if f is None: raise ValueError( f"cannot do arithmetic with series of dtype: {self.dtype} and argument of type: {type(other)}" ) return wrap_s(f(other)) def __add__(self, other: Any) -> "Series": if isinstance(other, str): other = Series("", [other]) return self._arithmetic(other, "add", "add_<>") def __sub__(self, other: Any) -> "Series": return self._arithmetic(other, "sub", "sub_<>") def __truediv__(self, other: Any) -> "Series": if self.is_datelike(): raise ValueError("first cast to integer before dividing datelike dtypes") # this branch is exactly the floordiv function without rounding the floats if self.is_float(): return self._arithmetic(other, "div", "div_<>") return self.cast(Float64) / other def __floordiv__(self, other: Any) -> "Series": if self.is_datelike(): raise ValueError("first cast to integer before dividing datelike dtypes") result = self._arithmetic(other, "div", "div_<>") # todo! in place, saves allocation if self.is_float() or isinstance(other, float): result = result.floor() return result def __mul__(self, other: Any) -> "Series": if self.is_datelike(): raise ValueError("first cast to integer before multiplying datelike dtypes") return self._arithmetic(other, "mul", "mul_<>") def __mod__(self, other: Any) -> "Series": if self.is_datelike(): raise ValueError( "first cast to integer before applying modulo on datelike dtypes" ) return self._arithmetic(other, "rem", "rem_<>") def __rmod__(self, other: Any) -> "Series": if self.is_datelike(): raise ValueError( "first cast to integer before applying modulo on datelike dtypes" ) return self._arithmetic(other, "rem", "rem_<>_rhs") def __radd__(self, other: Any) -> "Series": return self._arithmetic(other, "add", "add_<>_rhs") def __rsub__(self, other: Any) -> "Series": return self._arithmetic(other, "sub", "sub_<>_rhs") def __invert__(self) -> "Series": if self.dtype == Boolean: return wrap_s(self._s._not()) return NotImplemented def __rtruediv__(self, other: Any) -> "Series": if self.is_datelike(): raise ValueError("first cast to integer before dividing datelike dtypes") if self.is_float(): self.__rfloordiv__(other) if isinstance(other, int): other = float(other) return self.cast(Float64).__rfloordiv__(other) def __rfloordiv__(self, other: Any) -> "Series": if self.is_datelike(): raise ValueError("first cast to integer before dividing datelike dtypes") return self._arithmetic(other, "div", "div_<>_rhs") def __rmul__(self, other: Any) -> "Series": if self.is_datelike(): raise ValueError("first cast to integer before multiplying datelike dtypes") return self._arithmetic(other, "mul", "mul_<>") def __pow__(self, power: float, modulo: None = None) -> "Series": if self.is_datelike(): raise ValueError( "first cast to integer before raising datelike dtypes to a power" ) return np.power(self, power) # type: ignore def __rpow__(self, other: Any) -> "Series": if self.is_datelike(): raise ValueError( "first cast to integer before raising datelike dtypes to a power" ) return np.power(other, self) # type: ignore def __neg__(self) -> "Series": return 0 - self def __getitem__(self, item: Union[int, "Series", range, slice]) -> Any: if isinstance(item, int): if item < 0: item = self.len() + item if self.dtype in (PlList, Object): f = get_ffi_func("get_<>", self.dtype, self._s) if f is None: return NotImplemented out = f(item) if self.dtype == PlList: if out is None: return None return wrap_s(out) return out return self._s.get_idx(item) # assume it is boolean mask if isinstance(item, Series): return wrap_s(self._s.filter(item._s)) if isinstance(item, range): return self[range_to_slice(item)] # slice if isinstance(item, slice): start, stop, stride = item.indices(self.len()) out = self.slice(start, stop - start) if stride != 1: return out.take_every(stride) else: return out raise NotImplementedError def __setitem__( self, key: Union[int, "Series", np.ndarray, List, Tuple], value: Any ) -> None: if isinstance(value, list): raise ValueError("cannot set with a list as value, use a primitive value") if isinstance(key, Series): if key.dtype == Boolean: self._s = self.set(key, value)._s elif key.dtype == UInt64: self._s = self.set_at_idx(key.cast(UInt32), value)._s elif key.dtype == UInt32: self._s = self.set_at_idx(key, value)._s # TODO: implement for these types without casting to series elif isinstance(key, np.ndarray) and key.dtype == np.bool_: # boolean numpy mask self._s = self.set_at_idx(np.argwhere(key)[:, 0], value)._s elif isinstance(key, (np.ndarray, list, tuple)): s = wrap_s(PySeries.new_u32("", np.array(key, np.uint32), True)) self.__setitem__(s, value) elif isinstance(key, int) and not isinstance(key, bool): self.__setitem__([key], value) else: raise ValueError(f'cannot use "{key}" for indexing') def estimated_size(self) -> int: """ Returns an estimation of the total (heap) allocated size of the `Series` in bytes. This estimation is the sum of the size of its buffers, validity, including nested arrays. Multiple arrays may share buffers and bitmaps. Therefore, the size of 2 arrays is not the sum of the sizes computed from this function. In particular, [`StructArray`]'s size is an upper bound. When an array is sliced, its allocated size remains constant because the buffer unchanged. However, this function will yield a smaller number. This is because this function returns the visible size of the buffer, not its total capacity. FFI buffers are included in this estimation. """ return self._s.estimated_size() def sqrt(self) -> "Series": """ Compute the square root of the elements Syntactic sugar for >>> pl.Series([1, 2]) ** 0.5 shape: (2,) Series: '' [f64] [ 1 1.4142135623730951 ] """ return self ** 0.5 def any(self) -> bool: """ Check if any boolean value in the column is `True` Returns ------- Boolean literal """ return self.to_frame().select(pli.col(self.name).any()).to_series()[0] def all(self) -> bool: """ Check if all boolean values in the column are `True` Returns ------- Boolean literal """ return self.to_frame().select(pli.col(self.name).all()).to_series()[0] def log(self, base: float = math.e) -> "Series": """ Compute the logarithm to a given base """ return self.to_frame().select(pli.col(self.name).log(base)).to_series() def log10(self) -> "Series": """ Return the base 10 logarithm of the input array, element-wise. """ return np.log10(self) # type: ignore def exp(self) -> "Series": """ Return the exponential element-wise """ return
np.exp(self)
numpy.exp
# -*- coding: utf-8 -*- """ @author: <NAME> @time: 2022-2-18 16:55 """ import numpy as np class HMM(object): def __init__(self, state_num, observe_num, train_params = 'ste'): self.s_n = state_num self.o_n = observe_num self.A = np.random.rand(self.s_n, self.s_n) self.A = self.A/self.A.sum(axis = 1).reshape([-1,1]) self.B = np.random.rand(self.s_n, self.o_n) self.B = self.B/self.B.sum(axis = 1).reshape([-1,1]) self.pi = np.random.rand(self.s_n) self.pi = self.pi/sum(self.pi) self.train_data = [] self.train_params = train_params #input_data 格式为 [[o1,o2,o3,...,ox], [o1,o2,o3,...,oy]] #支持多观测序列输入,观测序列的输入是index化后的值,需要提前根据实际的观测值字典去映射,解码出的隐状态值也是一样,都是index数据,需要再根据映射还原 def add_data(self, input_data): self.train_data.extend(input_data) #计算所有的前向概率 # [[o1,o2,o3,...,ot1], [o1,o2,o3,...,ot2]] # [t1 * s_n, t2 * s_n] def forward(self, o_seqs): self.alpha = [] for seq in o_seqs: alpha = np.zeros((len(seq),self.s_n)) for i in range(self.s_n): alpha[0,i] = self.pi[i] * self.B[i,seq[0]] for r in range(1,len(seq)): for i in range(self.s_n): alpha[r,i] = sum([alpha[r-1,j]*self.A[j,i] for j in range(self.s_n)])*self.B[i,seq[r]] self.alpha.append(alpha) #计算所有的后向概率 # [[o1,o2,o3,...,ot1], [o1,o2,o3,...,ot2]] # [t1 * s_n, t2 * s_n] def backward(self, o_seqs): self.beta = [] for seq in o_seqs: beta = np.zeros((len(seq),self.s_n)) for i in range(self.s_n): beta[len(seq)-1,i] = 1 for r in range(len(seq)-2,-1,-1): for i in range(self.s_n): beta[r,i] = sum([self.A[i,j]*self.B[j,seq[r+1]]*beta[r+1,j] for j in range(self.s_n)]) self.beta.append(beta) #给定模型参数和观测序列,时刻t的状态为xx的概率 # t * s_n # 多条观测序列输入 则为[t1 * s_n, t2 * s_n, ... , tk * s_n] def gamma_matrix(self): self.gamma = [] for i in range(len(self.alpha)): alpha = self.alpha[i] beta = self.beta[i] self.gamma.append(alpha*beta/sum(alpha[len(alpha)-1])) #给定模型参数和观测序列,时刻t的状态为xx,且t+1的状态为yy的概率 # t * s_n * s_n # 多条观测序列输入 则为[t1-1 * s_n * s_n, t2-1 * s_n * s_n, ... , tk-1 * s_n * s_n] def ksi_matrix(self): self.ksi = [] for i in range(len(self.train_data)): seq = self.train_data[i] alpha = self.alpha[i] beta = self.beta[i] ksi = np.zeros((len(seq)-1, self.s_n, self.s_n)) for t in range(len(seq)-1): for i in range(self.s_n): for j in range(self.s_n): ksi[t,i,j] = alpha[t,i]*self.A[i,j]*self.B[j,seq[t+1]]*beta[t+1,j]/sum(alpha[len(alpha)-1]) self.ksi.append(ksi) #EM思想 Baum-Welch算法 def train(self, maxStep = 10, delta = 0.01): step = 0 while step < maxStep: print("=============== step {} ===============".format(step)) #固定模型参数计算隐含数据 ''' self.forward(self.train_data) ''' #这里estimate_prob中计算了forward,所以 不用单独计算一次forward log_prob = [np.log(p) for p in self.estimate_prob(self.train_data)] self.backward(self.train_data) self.gamma_matrix() self.ksi_matrix() #固定隐含数据计算模型参数 new_pi = sum([gamma[0] for gamma in self.gamma])/len(self.gamma) new_A = sum([ksi.sum(axis = 0) for ksi in self.ksi])/np.reshape(sum([gamma[:-1].sum(axis = 0) for gamma in self.gamma]), [-1,1]) sn_on_list = [] for i in range(len(self.train_data)): seq = np.array(self.train_data[i]) gamma = self.gamma[i] sn_on = [] for o in range(self.o_n): sn_o = (np.reshape(seq == o, [-1,1]) * gamma).sum(axis = 0).reshape([-1,1]) sn_on.append(sn_o) sn_on_list.append(np.concatenate(sn_on,axis = 1)) new_B = sum(sn_on_list)/np.reshape(sum([gamma.sum(axis = 0) for gamma in self.gamma]), [-1,1]) #误差小也停止 pi_error = np.sum(np.square(new_pi - self.pi)) A_error = np.sum(np.square(new_A - self.A)) B_error = np.sum(np.square(new_B - self.B)) print("pi_error is {}".format(pi_error)) print("A_error is {}".format(A_error)) print("B_error is {}".format(B_error)) print("log_prob is {}".format(log_prob)) if pi_error < delta and A_error < delta and B_error < delta: if 's' in self.train_params: self.pi = new_pi if 't' in self.train_params: self.A = new_A if 'e' in self.train_params: self.B = new_B break if 's' in self.train_params: self.pi = new_pi if 't' in self.train_params: self.A = new_A if 'e' in self.train_params: self.B = new_B step += 1 #viterbi算法 #单条输入:[[o1,o2,o3,...,ot1]] #多条输入:[[o1,o2,o3,...,ot1],[o1,o2,o3,...,ot2]] #输出:[(prob1, [s1,s2,s3,...,st1]), (prob2, [s1,s2,s3,...,st2])] def decode(self, o_seq): result = [] for i in range(len(o_seq)): seq = o_seq[i] last_max_state = [[-1]*self.s_n] max_state_prob_now = [self.pi[s]*self.B[s,seq[0]] for s in range(self.s_n)] for o in seq[1:]: current_last_max_state = [0]*self.s_n max_state_prob_new = [0]*self.s_n for ns in range(self.s_n): candidates = [max_state_prob_now[bs]*self.A[bs,ns]*self.B[ns,o] for bs in range(self.s_n)] max_index = np.argmax(candidates) current_last_max_state[ns] = max_index max_state_prob_new[ns] = candidates[max_index] last_max_state.append(current_last_max_state) max_state_prob_now = max_state_prob_new #状态回溯 hidden_state = [] current_state =
np.argmax(max_state_prob_now)
numpy.argmax
from __future__ import print_function import os import numpy as np import csv import matplotlib from matplotlib import pyplot as plt from matplotlib.ticker import PercentFormatter from PIL import Image, ImageOps from skimage import io from utils.preprocess import load_pfm FONTSIZE=20 matplotlib.rcParams.update({'font.size': FONTSIZE}) #matplotlib.rc('xtick', labelsize=FONTSIZE) #matplotlib.rc('ytick', labelsize=FONTSIZE) #matplotlib.rc('xlabel', labelsize=FONTSIZE) #matplotlib.rc('ylabel', labelsize=FONTSIZE) #DATAPATH = '/media/sf_Shared_Data/gpuhomedataset/dispnet' #DATAPATH = '/home/datasets/imagenet/dispnet/virtual' #DATAPATH = '/home/datasets/imagenet/dispnet' DATAPATH = './data' OUTPUTPATH = '/tmp' #FILELIST = 'FlyingThings3D_release_TEST.list' #FILELIST = 'FlyingThings3D_release_TRAIN.list' #FILELIST='lists/real_release.list' #FILELIST='lists/kitti-groundtruth.list' #FILELIST='lists/kitti2015_train.list' #FILELIST='lists/MB2014_TRAIN.list' #FILELIST='lists/eth3d_train.list' FILELIST='lists/FlyingThings3D_release_TRAIN_100.list' RESULTLIST = 'NEW_' + FILELIST CLEANRESULTLIST = 'CLEAN_' + FILELIST def plot_hist(d, save=False, filename=None, plot=True, color='r'): flatten = d.ravel() mean = np.mean(flatten) max = np.max(flatten) std = np.std(flatten) print('len: %d, mean: %.3f, std: %.3f' % (len(flatten), mean, std)) #return n_neg, flatten.size # return #negative, total if plot: #count, bins, ignored = plt.hist(flatten, 50, color=color) flatten = flatten[np.abs(flatten) > 0.0] count, bins, ignored = plt.hist(flatten, bins=np.arange(0,300), density=True, color=color) plt.gca().yaxis.set_major_formatter(PercentFormatter(1)) plt.xlabel('Disparity') plt.ylabel('Percentage') if save: plt.savefig(os.path.join(OUTPUTPATH, '%s.pdf'%filename), bbox_inches='tight') else: #plt.show() pass #plt.clf() return mean, std, max def statistic(file_list): img_pairs = [] with open(file_list, "r") as f: img_pairs = f.readlines() csv_file = open(RESULTLIST, 'a') for f in img_pairs: names = f.split() name = names[2] print('Name: ', name) gt_disp_name = os.path.join(DATAPATH, name) gt_disp, scale = load_pfm(gt_disp_name) print('Shape: ', gt_disp.shape, ', Mean: ', np.mean(gt_disp)) name_items = name.split('/') save_name = 'hist_{}_{}_{}'.format(name_items[-4], name_items[-3], name_items[-1].split('.')[0]) mean, std, max = plot_hist(gt_disp, save=True, filename=save_name, plot=False) writer = csv.writer(csv_file, delimiter='\t') writer.writerow([name, mean, std, max]) csv_file.close() def statistic_with_file(fn): result_file = open(CLEANRESULTLIST, 'a') with open(fn, 'r') as f: total_array = [] fns = [] for line in f.readlines(): items = line.split('\t') total_array.append([float(i) for i in items[1:]]) fns.append(items[0]) total_array = np.array(total_array) print('Shape: ', total_array[:, 0].shape) for i, mean in enumerate(total_array[:, 0]): if mean < 150: grt = fns[i] name_items = grt.split('/') left = 'FlyingThings3D_release/frames_cleanpass/%s/%s/%s/left/%s.png' % (name_items[-5], name_items[-4], name_items[-3], name_items[-1].split('.')[0]) right = 'FlyingThings3D_release/frames_cleanpass/%s/%s/%s/right/%s.png' % (name_items[-5], name_items[-4], name_items[-3], name_items[-1].split('.')[0]) #result_file.write("%s %s %s\n" % (left, right, fns[i])) plot_hist(total_array[:, 0]) #plot_hist(total_array[:, 1]) #plot_hist(total_array[:, 2]) result_file.close() def statistic_mean_std(filelist): img_pairs = [] with open(filelist, "r") as f: img_pairs = f.readlines() means = [] for f in img_pairs: names = f.split() leftname = names[0] rightname = names[1] leftfn = os.path.join(DATAPATH, leftname) rightfn = os.path.join(DATAPATH, rightname) leftimgdata = io.imread(leftfn) rightimgdata = io.imread(rightfn) leftmean = np.mean(leftimgdata.ravel()) rightmean = np.mean(rightimgdata.ravel()) print('leftmean: ', leftmean) print('rightmean: ', rightmean) means.append((leftmean+rightmean)/2) means = np.array(means) print('total mean: ', np.mean(means)) print('total std: ', np.std(means)) def statistic_disparity(filelist): img_pairs = [] with open(filelist, "r") as f: img_pairs = f.readlines() all = np.array([], dtype=np.float32) for f in img_pairs: names = f.split() dispname = names[2] fn = os.path.join(DATAPATH, dispname) print('fn: ', fn) if fn.find('.png') >= 0: gt_disp = Image.open(fn) gt_disp = np.ascontiguousarray(gt_disp,dtype=np.float32)/256 else: gt_disp, _ = load_pfm(fn) gt_disp[np.isinf(gt_disp)] = 0 all = np.concatenate((gt_disp.ravel(), all)) mean = np.mean(all) std = np.std(all) color='#A9D18E' mean, std, max = plot_hist(all, save=True, filename=filelist, plot=True, color=color) print('total mean: ', mean) print('total std: ', std) def statistic_kitti_disparity(filelist): img_pairs = [] with open(filelist, "r") as f: img_pairs = f.readlines() all = np.array([], dtype=np.float32) for f in img_pairs: dispname = f[:-1] fn = dispname gt_disp = Image.open(fn) gt_disp = np.ascontiguousarray(gt_disp,dtype=np.float32)/256 #gt_disp, _ = load_pfm(fn) all = np.concatenate((gt_disp.ravel(), all)) np.save('stat.npy', all) mean = np.mean(all) std = np.std(all) print('total mean: ', mean) print('total std: ', std) mean, std, max = plot_hist(all, save=True, filename='real_disp.png', plot=False, color='r') def force_plot(): all = np.load('stat.npy') mean, std, max = plot_hist(all, save=True, filename='real_disp.png', plot=True, color='r') def plot_hist_with_filename(fn): fnt='img00000.bmp' leftfn = '/media/sf_Shared_Data/gpuhomedataset/dispnet/real_release/frames_cleanpass/left/%s'%fnt rightfn = '/media/sf_Shared_Data/gpuhomedataset/dispnet/real_release/frames_cleanpass/right/%s'%fnt realimgdata = io.imread(leftfn) #leftfn = '/media/sf_Shared_Data/gpuhomedataset/FlyingThings3D_release/frames_cleanpass/TRAIN/A/0001/left/%s'%fn #rightfn = '/media/sf_Shared_Data/gpuhomedataset/FlyingThings3D_release/frames_cleanpass/TRAIN/A/0001/right/%s'%fn #realimgdata = io.imread(leftfn) leftfn = '/media/sf_Shared_Data/gpuhomedataset/FlyingThings3D_release/frames_cleanpass/TRAIN/A/0000/left/%s'%fn rightfn = '/media/sf_Shared_Data/gpuhomedataset/FlyingThings3D_release/frames_cleanpass/TRAIN/A/0000/right/%s'%fn leftimgdata = io.imread(leftfn) rightimgdata = io.imread(rightfn) mean, std, max = plot_hist(leftimgdata, save=False, filename=None, plot=True, color='r') mean, std, max = plot_hist(realimgdata, save=False, filename=None, plot=True, color='b') plt.show() def extract_exception_of_occulution(): #occulution_list = 'CC_FlyingThings3D_release_TRAIN.list' #occulution_list = './lists/CC_FlyingThings3D_release_TRAIN.list' occulution_list = './lists/girl20_TRAIN.list' img_pairs = [] with open(occulution_list, "r") as f: img_pairs = f.readlines() means = [] maxcount = 10000 i = 0 for f in img_pairs: names = f.split() name = names[2] #gt_disp_name = os.path.join(DATAPATH, 'clean_dispnet', name) gt_disp_name = os.path.join(DATAPATH, name) if not os.path.isfile(gt_disp_name): #print('Not found: ', gt_disp_name) continue gt_disp, scale = load_pfm(gt_disp_name) mean = np.mean(gt_disp) means.append(mean) i+=1 if i > maxcount: break print('Name: ', name, ', Mean: ', mean, ', std: ',
np.std(gt_disp)
numpy.std
import tensorflow as tf import numpy as np from scipy.io import loadmat from tensorflow.examples.tutorials.mnist import input_data import copy import hashlib import errno from numpy.testing import assert_array_almost_equal def return_Obj_data(path_data): Obj_data_all = loadmat(path_data) xx = Obj_data_all['fts'].astype(np.float32) yy = Obj_data_all['label']-1 yy = dense_to_one_hot_amazon(yy, 40) return xx, xx, yy, yy def return_Amazon(path_data, data_name): amazon_data_all = loadmat(path_data) xx = amazon_data_all['xx'].toarray() xxl = xx[0:5000][:] offset = amazon_data_all['offset'] yy = amazon_data_all['yy'] yy = dense_to_one_hot_amazon(yy,2) if data_name == 'book': i = 0 ind1 = int(offset[i]) ind2 = int(offset[i+1]) train_feature = np.transpose(xxl[:,ind1:ind1+2000]) test_feature = np.transpose(xxl[:,ind1+2000:ind2-1]) train_labels = yy[ind1:2000,:] test_labels = yy[ind1+2000:ind2-1,:] if data_name == 'dvd': i = 1 ind1 = int(offset[i]) ind2 = int(offset[i+1]) train_feature = np.transpose(xxl[:,ind1:ind1+2000]) test_feature = np.transpose(xxl[:,ind1+2000:ind2-1]) train_labels = yy[ind1:ind1+2000,:] test_labels = yy[ind1+2000:ind2-1,:] if data_name == 'electronics': i = 2 ind1 = int(offset[i]) ind2 = int(offset[i+1]) train_feature = np.transpose(xxl[:,ind1:ind1+2000]) test_feature = np.transpose(xxl[:,ind1+2000:ind2-1]) train_labels = yy[ind1:ind1+2000,:] test_labels = yy[ind1+2000:ind2-1,:] if data_name == 'kitchen': i = 3 ind1 = int(offset[i]) ind2 = int(offset[i+1]) train_feature = np.transpose(xxl[:,ind1:ind1+2000]) test_feature = np.transpose(xxl[:,ind1+2000:ind2-1]) train_labels = yy[ind1:ind1+2000,:] test_labels = yy[ind1+2000:ind2-1,:] return train_feature, test_feature, train_labels, test_labels def return_svhn(path_train, path_test): svhn_train = loadmat(path_train) svhn_test = loadmat(path_test) svhn_train_im = svhn_train['X'] svhn_train_im = svhn_train_im.transpose(3, 0, 1, 2) svhn_train_im = np.reshape(svhn_train_im, (svhn_train_im.shape[0], 32, 32, 3)) svhn_label = dense_to_one_hot_svhn(svhn_train['y']) svhn_test_im = svhn_test['X'] svhn_test_im = svhn_test_im.transpose(3, 0, 1, 2) svhn_label_test = dense_to_one_hot_svhn(svhn_test['y']) svhn_test_im = np.reshape(svhn_test_im, (svhn_test_im.shape[0], 32, 32, 3)) return svhn_train_im, svhn_test_im, svhn_label, svhn_label_test def return_mnist(path_train, path_test): mnist = input_data.read_data_sets('MNIST_data', one_hot=True) mnist_train = np.reshape(np.load(path_train), (55000, 32, 32, 1)) mnist_train = np.reshape(mnist_train, (55000, 32, 32, 1)) mnist_train = mnist_train.astype(np.float32) mnist_test = np.reshape(np.load(path_test), (10000, 32, 32, 1)).astype( np.float32) mnist_test = np.reshape(mnist_test, (10000, 32, 32, 1)) mnist_train = np.concatenate([mnist_train, mnist_train, mnist_train], 3) mnist_test = np.concatenate([mnist_test, mnist_test, mnist_test], 3) return mnist_train, mnist_test, mnist.train.labels, mnist.test.labels def select_class(labels, data, num_class=10, per_class=10): classes = np.argmax(labels, axis=1) labeled = [] train_label = [] unlabels = [] for i in range(num_class): class_list = np.array(np.where(classes == i)) class_list = class_list[0] class_ind = labels[np.where(classes == i), :] rands = np.random.permutation(len(class_list)) unlabels.append(class_list[rands[per_class:]]) labeled.append(class_list[rands[:per_class]]) label_i = np.zeros((per_class, num_class)) label_i[:, i] = 1 train_label.append(label_i) unlabel_ind = [] label_ind = [] for t in unlabels: for i in t: unlabel_ind.append(i) for t in labeled: for i in t: label_ind.append(i) unlabel_data = data[unlabel_ind, :, :, :] labeled_data = data[label_ind, :, :, :] train_label = np.array(train_label).reshape((num_class * per_class, num_class)) return np.array(labeled_data), np.array(train_label), unlabel_data def judge_func(data, pred1, pred2, upper=0.95, num_class=10): num = pred1.shape[0] new_ind = [] new_data = [] new_label = [] for i in range(num): cand_data = data[i, :, :, :] label_data = np.zeros((1, num_class)) ind1 = np.argmax(pred1[i, :]) value1 = np.max(pred1[i, :]) ind2 = np.argmax(pred2[i, :]) value2 = np.max(pred2[i, :]) if ind1 == ind2: if max(value1, value2) > upper: label_data[0, ind1] = 1 new_label.append(label_data) new_data.append(cand_data) new_ind.append(i) return np.array(new_data), np.array(new_label) def judge_func_amazon(data, pred1, pred2, upper, num_class=2): num = pred1.shape[0] new_ind = [] new_data = [] new_label = [] for i in range(num): cand_data = data[i, :] label_data = np.zeros((1, num_class)) ind1 = np.argmax(pred1[i, :]) value1 = np.max(pred1[i, :]) ind2 = np.argmax(pred2[i, :]) value2 = np.max(pred2[i, :]) if ind1 == ind2: if max(value1, value2) > upper: label_data[0, ind1] = 1 new_label.append(label_data) new_data.append(cand_data) new_ind.append(i) return np.array(new_data), np.array(new_label) def judge_func_obj(data, pred1, pred2, upper, num_class=40): num = pred1.shape[0] new_ind = [] new_data = [] new_label = [] for i in range(num): cand_data = data[i, :] label_data = np.zeros((1, num_class)) ind1 = np.argmax(pred1[i, :]) value1 = np.max(pred1[i, :]) ind2 = np.argmax(pred2[i, :]) value2 = np.max(pred2[i, :]) if ind1 == ind2: # print(max(value1, value2)) if max(value1, value2) > upper: label_data[0, ind1] = 1 new_label.append(label_data) new_data.append(cand_data) new_ind.append(i) return
np.array(new_data)
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/9/20 18:26 # @Author : ganliang # @File : ndsplit.py # @Desc : 数组切割 import numpy as np a = np.arange(16).reshape(4, 4) print(a) print(np.split(a, 2)) print(np.hsplit(a, 4)) print(
np.vsplit(a, 4)
numpy.vsplit
import sys from datetime import datetime from functools import wraps from inspect import getcallargs from pathlib import Path import json from traceback import format_exc import matplotlib import numpy as np from IPython.display import display from scipy import interpolate from scipy.spatial.distance import euclidean from skimage import measure from sklearn.linear_model import LinearRegression from sklearn.utils.validation import check_is_fitted import ipywidgets as widgets from remote_control.control import save_coords from remote_control.email import send_email from remote_control.preview import PhysicalPreview, ImzMLCoordPreview from remote_control.utils import acquire, NpEncoder SLIDES = { "spot30": { "spot_spacing": (6, 5, 1), #h,v (mm) "spot_size":(2., 2., 1.), #h, v (mm) "grid_size":(3, 10), # h, v "shape": "circle", }, "spot10": {"spot_spacing": (11.7, 9.7, 1), #h,v (mm) centre to centre distance "spot_size": (6.7, 6.7, 1), #h, v (mm) "grid_size": (2,5), # h, v, "shape": "circle", }, "labtek": {"spot_spacing": (1.2, 1.2, 1), #h,v (mm) centre to centre distance "spot_size": (3., 2., 1.), #h, v (mm) "grid_size": (1, 4), # h, v, "shape": "rectangle", } } MASK_FUNCTIONS = { "circle": lambda xv, yv, r, c: np.square(xv - c[0])/((r[0]/2)**2) + np.square(yv - c[1])/((r[0]/2)** 2) <= 1, "ellipse": lambda xv, yv, r, c: np.square(xv - c[0])/(r[0]/2)**2 + np.square(yv - c[1])/(r[1]/2) ** 2 < 1, "rectangle": lambda xv, yv, r, c: (xv < c[0] + r[0]/2.) & (xv > c[0] - r[0]/2.) & (yv < c[1] + r[1]/2.) & (yv > c[1] - r[1]/2.), } AREA_FUNCTIONS = { None: lambda xv, yv, r, c, m: True, "left": lambda xv, yv, r, c, m: (xv < c[0] - m), "right": lambda xv, yv, r, c, m: (xv > c[0] + m), "upper": lambda xv, yv, r, c, m: (yv > c[1] + m), "lower": lambda xv, yv, r, c, m: (yv < c[1] - m), "upper_left": lambda xv, yv, r, c, m: (xv < c[0] - m) & (yv > c[1] + m), "upper_right": lambda xv, yv, r, c, m: (xv > c[0] + m) & (yv > c[1] + m), "lower_left": lambda xv, yv, r, c, m: (xv < c[0] - m) & (yv < c[1] - m), "lower_right": lambda xv, yv, r, c, m: (xv > c[0] + m) & (yv < c[1] - m), } def get_plate_info(name): return [SLIDES[name][val] for val in ["spot_spacing", "spot_size", "grid_size"]] def rms(v): return np.sqrt(np.square(v).sum()) def unit_vector(v): return v / np.linalg.norm(v) pad = lambda x: np.hstack([x, np.ones((x.shape[0], 1))]) unpad = lambda x: x[:, :-1] def grid_deviation(coords): """Models a linear transform based on the 4 supplied coords and returns the maximum error for each axis""" base_coords = [(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1)] coords = np.array(list(coords)) tform = np.linalg.lstsq(base_coords, coords, rcond=None)[0] result_coords = np.array([np.dot(base_coord, tform) for base_coord in base_coords]) error = np.max(np.abs(result_coords - coords), axis=0) return error def grid_skew(coords): ll, lh, hl, hh = coords[:4] x_vector = unit_vector(ll - lh + hl - hh) y_vector = unit_vector(ll - hl + lh - hh) grid_skew = np.dot(x_vector, y_vector) return np.rad2deg(np.arcsin(grid_skew)) def _record_args(func): @wraps(func) def wrapper(self, *args, **kwargs): if getattr(self, '_recorded_args', None) is None: self._recorded_args = {'__class__': self.__class__.__name__} all_args = getcallargs(func, self, *args, **kwargs) all_args.pop('self', None) self._recorded_args[func.__name__] = all_args return func(self, *args, **kwargs) return wrapper class Acquisition(): def __init__(self, config_fn, datadir=None): self.config = json.load(open(config_fn)) self.targets = [] self.image_bounds = None self.subpattern_coords = [(0, 0)] # Physical X/Y offsets (in µm) self.subpattern_pixels = [(0, 0)] # Pixel-space X/Y offsets self.plots = [] def coords_fname(self, dataset_name): return dataset_name + 'positions.json' def write_imzml_coords(self, dataset_name): import json fn = self.coords_fname(dataset_name) coords = json.load(open(fn)) fn2 = fn.replace(".json", "imzc.txt") with open(fn2, "w+") as f: for x, y in zip(coords['index x'], coords['index y']): f.write("{} {}\n".format(int(x), int(y))) def write_imzc_coords_file(self, filename): xys = np.asarray([t[0] for t in self.targets]) with open(filename, "w") as f: for x, y in xys[:, :2]: f.write("{} {}\n".format(int(x), int(y))) def write_json_coords_file(self, filename): xys = np.asarray([t[0] for t in self.targets]) pos = np.asarray([t[1] for t in self.targets]) save_coords(filename, xys, pos, [], []) @_record_args def set_image_bounds(self, image_bounds=None, *, min_x=None, max_x=None, min_y=None, max_y=None): if image_bounds is not None: self.image_bounds = image_bounds else: valid_args = all(val is not None for val in [min_x, max_x, min_y, max_y]) assert valid_args, 'set_image_bounds must be called with either image_bounds or the min/max x/y named arguments' assert min_x < max_x, 'min_x must be less than max_x' assert min_y < max_y, 'min_y must be less than max_y' self.image_bounds = [[max_x, min_y], [min_x, max_y]] @_record_args def apply_subpattern(self, subpattern_pixels, subpattern_coords, size_x, size_y): self.subpattern_pixels = subpattern_pixels self.subpattern_coords = subpattern_coords self.targets = [ ((px * size_x + pox, py * size_y + poy), (cx + cox, cy + coy, cz)) for (px, py), (cx, cy, cz) in self.targets for (pox, poy), (cox, coy) in zip(self.subpattern_pixels, self.subpattern_coords) ] @_record_args def apply_spiral_subpattern(self, spacing_x, spacing_y): subpattern_pixels = [ (1,1), (1,0), (2,0), (2,1), (2,2), (1,2), (0,2), (0,1), (0,0) ] subpattern_coords = (np.array(subpattern_pixels) * [[spacing_x, spacing_y]]).tolist() psx, psy = np.max(subpattern_pixels, axis=0) + 1 # size of pixel grid self.apply_subpattern(subpattern_pixels, subpattern_coords, psx, psy) def _get_recorded_args_json(self): try: if getattr(self, '_recorded_args', None) is not None: return json.dumps(self._recorded_args, indent=2, cls=NpEncoder) except: print(f'Failed to dump recorded acquisition parameters:\n{format_exc()}') def _save_recorded_args(self, suffix=''): args_json = self._get_recorded_args_json() if self.config.get('saved_parameters') and args_json is not None: base_path = Path(self.config.get('saved_parameters')) base_path.mkdir(parents=True, exist_ok=True) f = base_path / f'{datetime.now().isoformat().replace(":","_")}{suffix}.json' f.open('w').write(args_json) @_record_args def acquire(self, filename, dummy=True, measure=True, email_on_success=None, email_on_failure=None): """ :param filename: output filename prefix (should match .raw filename) :param dummy: dummy run (True, False) :param measure: True to measure, False to only send goto commands (True, False) :return: """ assert self.targets is not None and len(self.targets), 'No targets - call generate_targets first' try: print("Acquiring {} ({} pixels)".format(filename, len(self.targets))) xys = np.asarray([t[0] for t in self.targets]) pos = np.asarray([t[1] for t in self.targets]) self._recorded_args['raw_xys'] = xys.tolist() self._recorded_args['raw_pos'] = pos.tolist() self._save_recorded_args('_dummy' if dummy else '_moveonly' if not measure else '_real') acquire( config=self.config, xys=xys, pos=pos, image_bounds=self.image_bounds, dummy=dummy, coords_fname=self.coords_fname(filename), measure=measure ) if not dummy: self.write_imzml_coords(filename) send_email( self.config, email_on_success, 'MALDI notebook success', f'Acquisition completed for {filename}' ) except: send_email( self.config, email_on_failure, 'MALDI notebook error', f'The following exception occurred while acquiring {filename}:\n{format_exc()}' ) raise def mask_function(self, mask_function_name): return MASK_FUNCTIONS[mask_function_name] def area_function(self, area_function_name): return AREA_FUNCTIONS[area_function_name] def apply_image_mask(self, filename, threshold=0.5): import matplotlib.pyplot as plt img = np.atleast_3d(plt.imread(filename)) mask = np.mean(img, axis=2) > threshold self.targets = [([cx, cy], pos) for ((cx, cy), pos) in self.targets if cx < mask.shape[0] and cy < mask.shape[1] and mask[cx, cy]] print(f'Number of pixels after mask: {len(self.targets)}') def plot_targets(self, annotate=False, show=True, dummy=False): """ Plot output data coordinates and physical coordinates. :param annotate: bool, whether to annotate start and stop. :param show: bool, whether to show the plots and control panel, if False return just the plots :param dummy: bool, whether to set dummy mode in the control panel :return: a tuple of two plt.Figure objects containing the plots if show == False. """ import matplotlib.pyplot as plt from remote_control.control_panel import ControlPanel def handle_select(idx, data_coord, pos_coord): pos_plot.set_selection(idx) path_plot.set_selection(idx) control_panel.set_selected_position(idx, pos_coord) xys = np.asarray([t[0] for t in self.targets]) pos = np.asarray([t[1] for t in self.targets]) for plot in self.plots: plot.close() self.plots.clear() if show: # Close any existing figures that may have accumulated from other acquisition instances plt.close('all') plt.ion() logs_out = widgets.Output() pos_out = widgets.Output() with pos_out: pos_plot = PhysicalPreview(pos, logs_out, self.image_bounds) pos_plot.on_select(handle_select) self.plots.append(pos_plot) path_out = widgets.Output() with path_out: path_plot = ImzMLCoordPreview(xys, pos, logs_out, annotate) path_plot.on_select(handle_select) self.plots.append(path_plot) if show: tabs = widgets.Tab() tabs.children = [pos_out, path_out] tabs.set_title(1, 'ImzML layout') tabs.set_title(0, 'Stage positions') display(tabs) control_panel = ControlPanel(self, logs_out, dummy=dummy) control_panel.on_select(handle_select) display(control_panel.panel_out) display(logs_out) if len(pos): handle_select(0, xys[0], pos[0]) else: return pos_plot.fig, path_plot.fig class RectangularAquisition(Acquisition): @_record_args def generate_targets(self, calibration_positions, target_positions, x_pitch=None, y_pitch=None, x_size=None, y_size=None, interpolate_xy=False): """ :param calibration_positions: Coordinates used for calculating the Z axis. :param target_positions: Coordinates of the 4 corners to sample :param x_pitch: Distance between pixels in the X axis (calculated from x_size if needed) :param y_pitch: Distance between pixels in the Y axis (calculated from y_size if needed) :param x_size: Number of pixels in the X axis (calculated from x_pitch if needed) :param y_size: Number of pixels in the Y axis (calculated from y_pitch if needed) :param interpolate_xy: False to use a linear transform for calculating X/Y, which ensures the shape is at least a parallelogram so that the x/y pitch is consistent. True to use interpolation, which allows the shape to be trapezoidal, which ensures that target_positions are hit exactly, but can lead to uneven pitches """ # Normalize inputs calibration_positions = np.array(calibration_positions) target_positions = np.array(target_positions)[:, :2] if x_pitch is not None and x_size is None: x_size = int(euclidean(target_positions[0], target_positions[1]) / x_pitch) elif x_pitch is None and x_size is not None: x_pitch = euclidean(target_positions[0], target_positions[1]) / x_size else: raise ValueError("either x_pitch or x_size must be specified, but not both") if y_pitch is not None and y_size is None: y_size = int(euclidean(target_positions[0], target_positions[2]) / y_pitch) elif y_pitch is None and y_size is not None: y_pitch = euclidean(target_positions[0], target_positions[2]) / y_size else: raise ValueError("either y_pitch or y_size must be specified, but not both") # Calculate the coordinate frames and print debug info corner_coords = np.array([(0, 0, 1), (x_size, 0, 1), (0, y_size, 1), (x_size, y_size, 1)]) print(f"Output size: {x_size} x {y_size} pixels (= {x_size*y_size} total pixels)") print(f"Output grid pitch: {x_pitch:#.5g} x {y_pitch:#.5g}") xy_to_z = interpolate.interp2d(calibration_positions[:, 0], calibration_positions[:, 1], calibration_positions[:, 2]) error_x, error_y, error_z = grid_deviation([(x, y, *xy_to_z(x, y)) for x, y in target_positions]) print(f"Maximum error due to grid irregularity: x±{error_x:#.2f}, y±{error_y:#.2f}, z±{error_z:#.2f}") print(f"Grid skew: {grid_skew(target_positions):#.1f}°") if interpolate_xy: coord_to_x = interpolate.interp2d(corner_coords[:, 0], corner_coords[:, 1], target_positions[:, 0]) coord_to_y = interpolate.interp2d(corner_coords[:, 0], corner_coords[:, 1], target_positions[:, 1]) coord_to_xy = lambda cx, cy: (coord_to_x(cx, cy).item(0), coord_to_y(cx, cy).item(0)) else: coord_to_xy_matrix = np.linalg.lstsq(corner_coords, target_positions, rcond=None)[0] coord_to_xy = lambda cx, cy: tuple(np.dot((cx, cy, 1), coord_to_xy_matrix).tolist()) # Write all coordinates to self.targets self.targets = [] for cy in range(y_size): for cx in range(x_size): x_pos, y_pos = coord_to_xy(cx, cy) z_pos = xy_to_z(x_pos, y_pos).item(0) self.targets.append(([cx, cy], [x_pos, y_pos, z_pos])) class WellPlateGridAquisition(Acquisition): @_record_args def __init__(self, plate_type, *args, **kwargs): if isinstance(plate_type, dict): self.plate_type = plate_type['name'] self.plate=plate_type else: self.plate_type = plate_type self.plate = SLIDES[plate_type] self.tform = [] #transformation matrix super().__init__(*args, **kwargs) @_record_args def calibrate(self, instrument_positions, wells, ref_loc='centre'): """ :param instrument_positions: positions of known locations from MCP (um). This should be the centre of the well. :param wells: x, y index of wells used for calibration. :return: """ def get_transform(primary, secondary): # Pad the data with ones, so that our transformation can do translations too n = primary.shape[0] X = pad(primary) Y = pad(secondary) # Solve the least squares problem X * A = Y # to find our transformation matrix A A, res, rank, s = np.linalg.lstsq(X, Y, rcond=None) return A instrument_positions, wells = map(lambda x: np.asarray(x), [instrument_positions, wells]) reference_positions = self._well_coord(wells, ref_loc) self.tform = get_transform(reference_positions, instrument_positions) print("RMS error:", rms(instrument_positions - self._transform(reference_positions))) @property def _origin(self): return np.asarray([self.plate["spot_size"][0]/2., self.plate["spot_size"][1]/2., 0]) def _well_coord(self, wells, location): LOCATIONS= ["centre", "top_left", "top_right", "bottom_left", "bottom_right"] TRANSFORMS = { "centre": lambda wellixs: spacing * wellixs + self._origin, "top_left": lambda wellixs: spacing * wellixs, "top_right": lambda wellixs: spacing * wellixs + np.asarray([2 * self._origin[0], 0, 0]), "bottom_left": lambda wellixs: spacing * wellixs + np.asarray([0, 2 * self._origin[1], 0]), "bottom_right": lambda wellixs: spacing * wellixs + 2*self._origin } assert location in LOCATIONS, "location not in {}".format(LOCATIONS) spacing = np.asarray(self.plate["spot_spacing"]) transform = TRANSFORMS[location] wells = np.asarray(wells) assert wells.ndim == 2, 'wells must be a 2D array' assert wells.shape[1] in (2, 3), 'well coordinates must each have 2 or 3 axes' if wells.shape[1] == 2: # Pad to 3 components per coordinate, as that's expected by self.get_transform wells = np.pad(wells, pad_width=((0, 0), (0, 3 - wells.shape[1]))) return transform(wells) def _transform(self, vect): return unpad(np.dot(pad(vect), self.tform)) def _get_measurement_bounds(self, wells_to_acquire): wells_to_acquire = np.asarray(wells_to_acquire) mins = np.min(wells_to_acquire, axis=0) maxs = np.max(wells_to_acquire, axis=0) extremes =[ [mins[0], mins[1], 0], [maxs[0], mins[1], 0], [mins[0], maxs[1], 0], [maxs[0], maxs[1], 0] ] locations = ["top_left", "top_right", "bottom_left", "bottom_right"] t = [self._transform(self._well_coord([e], l))[0] for e, l in zip(extremes, locations)] return np.asarray(t) @_record_args def generate_targets(self, wells_to_acquire, pixelsize_x, pixelsize_y, offset_x, offset_y, mask_function_name=None, area_function_name=None, area_function_margin=0, shared_grid=False): """ :param wells_to_acquire: index (x,y) of wells to image :param pixelsize_x: spatial separation in x (um) :param pixelsize_y: spatial separation in y (um) :param offset_x: (default=0) offset from 0,0 position for acquisition points in x (um) :param offset_y: (default=0) offset from 0,0 position for acquisition points in y (um) :param mask_function_name: None, 'circle', 'ellipse', 'rectangle' :param area_function_name: None, 'left', 'upper', 'upper_left', etc. :param area_function_margin: distance (um) between opposing areas defined by area function :param shared_grid: if True, one big grid is used for the whole acquisition, so pixels are perfectly evenly spaced, even between wells. This allows the optical image to perfectly match the ablated area if False, each well gets its own pixel grid. This allows a better fit for the well shape, but may physically be up to 1 pixelsize away from the optically registered point. :return: """ if mask_function_name is None: mask_function_name = self.plate['shape'] def well_mask(c, xv, yv): r = [_d * 1000 for _d in self.plate["spot_size"]] if
np.round(r[0] / pixelsize_x)
numpy.round
import numpy as np from dissonant.tuning import harmonic_tone, freq_to_pitch, pitch_to_freq def test_harmonic_tone(): assert np.allclose(harmonic_tone(440, 1)[0], np.array([[440]])) assert np.allclose(harmonic_tone(440, 1)[1], np.array([[1.]])) assert np.allclose(harmonic_tone(440, 5)[0], np.array([[440, 880, 1320, 1760, 2200]])) assert np.allclose(harmonic_tone(440, 5)[1], np.array([[1, 0.5, 0.33333333, 0.25, 0.2]])) assert np.allclose(harmonic_tone([440, 441], 1)[0], np.array([[440], [441]])) assert np.allclose(harmonic_tone([440, 441], 1)[1], np.array([[1], [1]])) assert np.allclose(harmonic_tone([440, 441], 5)[0], np.array([[440, 880, 1320, 1760, 2200], [441, 882, 1323, 1764, 2205]])) assert np.allclose(harmonic_tone([440, 441], 5)[1],
np.array([[1, 0.5, 0.33333333, 0.25, 0.2], [1, 0.5, 0.33333333, 0.25, 0.2]])
numpy.array
# Copyright (c) OpenMMLab. All rights reserved. import functools import operator import cv2 import numpy as np import pyclipper import torch from mmcv.ops import contour_expand, pixel_group from numpy.fft import ifft from numpy.linalg import norm from shapely.geometry import Polygon from skimage.morphology import skeletonize from mmocr.core import points2boundary from mmocr.core.evaluation.utils import boundary_iou def filter_instance(area, confidence, min_area, min_confidence): return bool(area < min_area or confidence < min_confidence) def decode( decoding_type='pan', # 'pan' or 'pse' **kwargs): if decoding_type == 'pan': return pan_decode(**kwargs) if decoding_type == 'pse': return pse_decode(**kwargs) if decoding_type == 'db': return db_decode(**kwargs) if decoding_type == 'textsnake': return textsnake_decode(**kwargs) if decoding_type == 'fcenet': return fcenet_decode(**kwargs) if decoding_type == 'drrg': return drrg_decode(**kwargs) raise NotImplementedError def pan_decode(preds, text_repr_type='poly', min_text_confidence=0.5, min_kernel_confidence=0.5, min_text_avg_confidence=0.85, min_text_area=16): """Convert scores to quadrangles via post processing in PANet. This is partially adapted from https://github.com/WenmuZhou/PAN.pytorch. Args: preds (tensor): The head output tensor of size 6xHxW. text_repr_type (str): The boundary encoding type 'poly' or 'quad'. min_text_confidence (float): The minimal text confidence. min_kernel_confidence (float): The minimal kernel confidence. min_text_avg_confidence (float): The minimal text average confidence. min_text_area (int): The minimal text instance region area. Returns: boundaries: (list[list[float]]): The instance boundary and its instance confidence list. """ preds[:2, :, :] = torch.sigmoid(preds[:2, :, :]) preds = preds.detach().cpu().numpy() text_score = preds[0].astype(np.float32) text = preds[0] > min_text_confidence kernel = (preds[1] > min_kernel_confidence) * text embeddings = preds[2:].transpose((1, 2, 0)) # (h, w, 4) region_num, labels = cv2.connectedComponents( kernel.astype(np.uint8), connectivity=4) contours, _ = cv2.findContours((kernel * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE) kernel_contours = np.zeros(text.shape, dtype='uint8') cv2.drawContours(kernel_contours, contours, -1, 255) text_points = pixel_group(text_score, text, embeddings, labels, kernel_contours, region_num, min_text_avg_confidence) boundaries = [] for text_inx, text_point in enumerate(text_points): text_confidence = text_point[0] text_point = text_point[2:] text_point = np.array(text_point, dtype=int).reshape(-1, 2) area = text_point.shape[0] if filter_instance(area, text_confidence, min_text_area, min_text_avg_confidence): continue vertices_confidence = points2boundary(text_point, text_repr_type, text_confidence) if vertices_confidence is not None: boundaries.append(vertices_confidence) return boundaries def pse_decode(preds, text_repr_type='poly', min_kernel_confidence=0.5, min_text_avg_confidence=0.85, min_kernel_area=0, min_text_area=16): """Decoding predictions of PSENet to instances. This is partially adapted from https://github.com/whai362/PSENet. Args: preds (tensor): The head output tensor of size nxHxW. text_repr_type (str): The boundary encoding type 'poly' or 'quad'. min_text_confidence (float): The minimal text confidence. min_kernel_confidence (float): The minimal kernel confidence. min_text_avg_confidence (float): The minimal text average confidence. min_kernel_area (int): The minimal text kernel area. min_text_area (int): The minimal text instance region area. Returns: boundaries: (list[list[float]]): The instance boundary and its instance confidence list. """ preds = torch.sigmoid(preds) # text confidence score = preds[0, :, :] masks = preds > min_kernel_confidence text_mask = masks[0, :, :] kernel_masks = masks[0:, :, :] * text_mask score = score.data.cpu().numpy().astype(np.float32) # to numpy kernel_masks = kernel_masks.data.cpu().numpy().astype(np.uint8) # to numpy region_num, labels = cv2.connectedComponents( kernel_masks[-1], connectivity=4) # labels = pse(kernel_masks, min_kernel_area) labels = contour_expand(kernel_masks, labels, min_kernel_area, region_num) labels = np.array(labels) label_num = np.max(labels) boundaries = [] for i in range(1, label_num + 1): points = np.array(np.where(labels == i)).transpose((1, 0))[:, ::-1] area = points.shape[0] score_instance = np.mean(score[labels == i]) if filter_instance(area, score_instance, min_text_area, min_text_avg_confidence): continue vertices_confidence = points2boundary(points, text_repr_type, score_instance) if vertices_confidence is not None: boundaries.append(vertices_confidence) return boundaries def box_score_fast(bitmap, _box): h, w = bitmap.shape[:2] box = _box.copy() xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int32), 0, w - 1) xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int32), 0, w - 1) ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int32), 0, h - 1) ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int32), 0, h - 1) mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8) box[:, 0] = box[:, 0] - xmin box[:, 1] = box[:, 1] - ymin cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1) return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0] def unclip(box, unclip_ratio=1.5): poly = Polygon(box) distance = poly.area * unclip_ratio / poly.length offset = pyclipper.PyclipperOffset() offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) expanded = np.array(offset.Execute(distance)) return expanded def db_decode(preds, text_repr_type='poly', mask_thr=0.3, min_text_score=0.3, min_text_width=5, unclip_ratio=1.5, max_candidates=3000): """Decoding predictions of DbNet to instances. This is partially adapted from https://github.com/MhLiao/DB. Args: preds (Tensor): The head output tensor of size nxHxW. text_repr_type (str): The boundary encoding type 'poly' or 'quad'. mask_thr (float): The mask threshold value for binarization. min_text_score (float): The threshold value for converting binary map to shrink text regions. min_text_width (int): The minimum width of boundary polygon/box predicted. unclip_ratio (float): The unclip ratio for text regions dilation. max_candidates (int): The maximum candidate number. Returns: boundaries: (list[list[float]]): The predicted text boundaries. """ prob_map = preds[0, :, :] text_mask = prob_map > mask_thr score_map = prob_map.data.cpu().numpy().astype(np.float32) text_mask = text_mask.data.cpu().numpy().astype(np.uint8) # to numpy contours, _ = cv2.findContours((text_mask * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) boundaries = [] for i, poly in enumerate(contours): if i > max_candidates: break epsilon = 0.01 * cv2.arcLength(poly, True) approx = cv2.approxPolyDP(poly, epsilon, True) points = approx.reshape((-1, 2)) if points.shape[0] < 4: continue score = box_score_fast(score_map, points) if score < min_text_score: continue poly = unclip(points, unclip_ratio=unclip_ratio) if len(poly) == 0 or isinstance(poly[0], list): continue poly = poly.reshape(-1, 2) if text_repr_type == 'quad': poly = points2boundary(poly, text_repr_type, score, min_text_width) elif text_repr_type == 'poly': poly = poly.flatten().tolist() if score is not None: poly = poly + [score] if len(poly) < 8: poly = None else: raise ValueError(f'Invalid text repr type {text_repr_type}') if poly is not None: boundaries.append(poly) return boundaries def fill_hole(input_mask): h, w = input_mask.shape canvas =
np.zeros((h + 2, w + 2), np.uint8)
numpy.zeros
import pytest import cv2 import numpy as np from plantcv.plantcv import report_size_marker_area, outputs @pytest.mark.parametrize("marker,exp", [["detect", 1257], ["define", 2601]]) def test_report_size_marker(marker, exp, test_data): """Test for PlantCV.""" # Clear outputs outputs.clear() # Read in test data img = cv2.imread(test_data.small_rgb_img) # Draw a marker img = cv2.circle(img, (50, 100), 20, (0, 0, 255), thickness=-1) # ROI contour roi_contour = [np.array([[[25, 75]], [[25, 125]], [[75, 125]], [[75, 75]]], dtype=np.int32)] roi_hierarchy = np.array([[[-1, -1, -1, -1]]], dtype=np.int32) _ = report_size_marker_area(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, marker=marker, objcolor='light', thresh_channel='s', thresh=120) assert int(outputs.observations["default"]["marker_area"]["value"]) == exp def test_report_size_marker_grayscale_input(test_data): """Test for PlantCV.""" # Clear outputs outputs.clear() # Read in test data img = cv2.imread(test_data.small_gray_img, -1) # ROI contour roi_contour = [
np.array([[[25, 75]], [[25, 125]], [[75, 125]], [[75, 75]]], dtype=np.int32)
numpy.array
import numpy as np import tensorflow as tf from tensorflow.keras.layers import Dense from tf2rl.algos.policy_base import OffPolicyAgent from tf2rl.networks.noisy_dense import NoisyDense from tf2rl.envs.atari_wrapper import LazyFrames from tf2rl.misc.target_update_ops import update_target_variables from tf2rl.misc.huber_loss import huber_loss class QFunc(tf.keras.Model): def __init__(self, state_shape, action_dim, units=(32, 32), name="QFunc", enable_dueling_dqn=False, enable_noisy_dqn=False): super().__init__(name=name) self._enable_dueling_dqn = enable_dueling_dqn self._enable_noisy_dqn = enable_noisy_dqn DenseLayer = NoisyDense if enable_noisy_dqn else Dense self.l1 = DenseLayer(units[0], name="L1", activation="relu") self.l2 = DenseLayer(units[1], name="L2", activation="relu") self.l3 = DenseLayer(action_dim, name="L3", activation="linear") if enable_dueling_dqn: self.l4 = DenseLayer(1, name="L3", activation="linear") with tf.device("/cpu:0"): self(inputs=tf.constant(np.zeros(shape=(1,) + state_shape, dtype=np.float32))) def call(self, inputs): features = self.l1(inputs) features = self.l2(features) if self._enable_dueling_dqn: advantages = self.l3(features) v_values = self.l4(features) q_values = (v_values + (advantages - tf.reduce_mean(advantages, axis=1, keepdims=True))) else: q_values = self.l3(features) return q_values class DQN(OffPolicyAgent): """ DQN Agent: https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf DQN supports following algorithms; * DDQN: https://arxiv.org/abs/1509.06461 * Dueling Network: https://arxiv.org/abs/1511.06581 * Noisy Network: https://arxiv.org/abs/1706.10295 Command Line Args: * ``--n-warmup`` (int): Number of warmup steps before training. The default is ``1e4``. * ``--batch-size`` (int): Batch size of training. The default is ``32``. * ``--gpu`` (int): GPU id. ``-1`` disables GPU. The default is ``0``. * ``--memory-capacity`` (int): Replay Buffer size. The default is ``1e6``. * ``--enable-double-dqn``: Enable DDQN * ``--enable-dueling-dqn``: Enable Dueling Network * ``--enable-noisy-dqn``: Enable Noisy Network """ def __init__( self, state_shape, action_dim, q_func=None, name="DQN", lr=0.001, adam_eps=1e-07, units=(32, 32), epsilon=0.1, epsilon_min=None, epsilon_decay_step=int(1e6), n_warmup=int(1e4), target_replace_interval=int(5e3), memory_capacity=int(1e6), enable_double_dqn=False, enable_dueling_dqn=False, enable_noisy_dqn=False, optimizer=None, **kwargs): """ Initialize DQN agent Args: state_shape (iterable of int): Observation space shape action_dim (int): Dimension of discrete action q_function (QFunc): Custom Q function class. If ``None`` (default), Q function is constructed with ``QFunc``. name (str): Name of agent. The default is ``"DQN"`` lr (float): Learning rate. The default is ``0.001``. adam_eps (float): Epsilon for Adam. The default is ``1e-7`` units (iterable of int): Units of hidden layers. The default is ``(32, 32)`` espilon (float): Initial epsilon of e-greedy. The default is ``0.1`` epsilon_min (float): Minimum epsilon of after decayed. epsilon_decay_step (int): Number of steps decaying. The default is ``1e6`` n_warmup (int): Number of warmup steps befor training. The default is ``1e4`` target_replace_interval (int): Number of steps between target network update. The default is ``5e3`` memory_capacity (int): Size of replay buffer. The default is ``1e6`` enable_double_dqn (bool): Whether use Double DQN. The default is ``False`` enable_dueling_dqn (bool): Whether use Dueling network. The default is ``False`` enable_noisy_dqn (bool): Whether use noisy network. The default is ``False`` optimizer (tf.keras.optimizers.Optimizer): Custom optimizer batch_size (int): Batch size. The default is ``256``. discount (float): Discount factor. The default is ``0.99``. max_grad (float): Maximum gradient. The default is ``10``. gpu (int): GPU id. ``-1`` disables GPU. The default is ``0``. """ super().__init__(name=name, memory_capacity=memory_capacity, n_warmup=n_warmup, **kwargs) q_func = q_func if q_func is not None else QFunc # Define and initialize Q-function network kwargs_dqn = { "state_shape": state_shape, "action_dim": action_dim, "units": units, "enable_dueling_dqn": enable_dueling_dqn, "enable_noisy_dqn": enable_noisy_dqn} self.q_func = q_func(**kwargs_dqn) self.q_func_target = q_func(**kwargs_dqn) self.q_func_optimizer = optimizer or tf.keras.optimizers.Adam(learning_rate=lr, epsilon=adam_eps) update_target_variables(self.q_func_target.weights, self.q_func.weights, tau=1.) self._action_dim = action_dim # This is used to check if input state to `get_action` is multiple (batch) or single self._state_ndim =
np.array(state_shape)
numpy.array
import warnings import numpy as np import scipy import matplotlib.pyplot as plt from scipy.ndimage.filters import gaussian_filter1d from scipy.interpolate import UnivariateSpline from astropy import log from astropy.table import Table from ..crossspectrum import AveragedCrossspectrum, normalize_crossspectrum from ..powerspectrum import AveragedPowerspectrum from ..gti import cross_two_gtis, bin_intervals_from_gtis __all__ = ["calculate_FAD_correction", "get_periodograms_from_FAD_results"] def _get_fourier_intv(lc, start_ind, end_ind): """Calculate the Fourier transform of a light curve chunk. Parameters ---------- lc : a :class:`Lightcurve` object Input light curve start_ind : int Start index of the light curve chunk end_ind : int End index of the light curve chunk Returns ------- freq : array of floats Frequencies of the Fourier transform fft : array of complex numbers The Fourier transform nph : int Number of photons in the interval of the light curve nbins : int Number of bins in the light curve segment meancounts : float The mean counts/bin in the light curve """ time = lc.time[start_ind:end_ind] counts = lc.counts[start_ind:end_ind] fourier = scipy.fftpack.fft(counts) freq = scipy.fftpack.fftfreq(len(time), lc.dt) good = freq > 0 nbins = time.size return freq[good], fourier[good], np.sum(counts), nbins def calculate_FAD_correction(lc1, lc2, segment_size, norm="none", gti=None, plot=False, ax=None, smoothing_alg='gauss', smoothing_length=None, verbose=False, tolerance=0.05, strict=False, all_leahy=False, output_file=None, return_objects=False): """Calculate Frequency Amplitude Difference-corrected (cross)power spectra. Reference: Bachetti \& Huppenkothen, 2018, ApJ, 853L, 21 The two input light curve must be strictly simultaneous, and recorded by two independent detectors with similar responses, so that the count rates are similar and dead time is independent. The method does not apply to different energy channels of the same instrument, or to the signal observed by two instruments with very different responses. See the paper for caveats. Parameters ---------- lc1: class:`stingray.ligthtcurve.Lightcurve` Light curve from channel 1 lc2: class:`stingray.ligthtcurve.Lightcurve` Light curve from channel 2. Must be strictly simultaneous to ``lc1`` and have the same binning time. Also, it must be strictly independent, e.g. from a different detector. There must be no dead time cross-talk between the two light curves. segment_size: float The final Fourier products are averaged over many segments of the input light curves. This is the length of each segment being averaged. Note that the light curve must be long enough to have at least 30 segments, as the result gets better as one averages more and more segments. norm: {``frac``, ``abs``, ``leahy``, ``none``}, default ``none`` The normalization of the (real part of the) cross spectrum. Other parameters ---------------- plot : bool, default False Plot diagnostics: check if the smoothed Fourier difference scatter is a good approximation of the data scatter. ax : :class:`matplotlib.axes.axes` object If not None and ``plot`` is True, use this axis object to produce the diagnostic plot. Otherwise, create a new figure. smoothing_alg : {'gauss', ...} Smoothing algorithm. For now, the only smoothing algorithm allowed is ``gauss``, which applies a Gaussian Filter from `scipy`. smoothing_length : int, default ``segment_size * 3`` Number of bins to smooth in gaussian window smoothing verbose: bool, default False Print out information on the outcome of the algorithm (recommended) tolerance : float, default 0.05 Accepted relative error on the FAD-corrected Fourier amplitude, to be used as success diagnostics. Should be ``` stdtheor = 2 / np.sqrt(n) std = (average_corrected_fourier_diff / n).std() np.abs((std - stdtheor) / stdtheor) < tolerance ``` strict : bool, default False Decide what to do if the condition on tolerance is not met. If True, raise a ``RuntimeError``. If False, just throw a warning. all_leahy : **deprecated** bool, default False Save all spectra in Leahy normalization. Otherwise, leave unnormalized. output_file : str, default None Name of an output file (any extension automatically recognized by Astropy is fine) Returns ------- results : class:`astropy.table.Table` object or ``dict`` or ``str`` The content of ``results`` depends on whether ``return_objects`` is True or False. If ``return_objects==False``, ``results`` is a `Table` with the following columns: + pds1: the corrected PDS of ``lc1`` + pds2: the corrected PDS of ``lc2`` + cs: the corrected cospectrum + ptot: the corrected PDS of lc1 + lc2 If ``return_objects`` is True, ``results`` is a ``dict``, with keys named like the columns listed above but with `AveragePowerspectrum` or `AverageCrossspectrum` objects instead of arrays. """ if smoothing_length is None: smoothing_length = segment_size * 3 if gti is None: gti = cross_two_gtis(lc1.gti, lc2.gti) if all_leahy: warnings.warn("`all_leahy` is deprecated. Use `norm` instead! " + " Setting `norm`=`leahy`.", DeprecationWarning) norm="leahy" lc1.gti = gti lc2.gti = gti lc1.apply_gtis() lc2.apply_gtis() summed_lc = lc1 + lc2 start_inds, end_inds = \ bin_intervals_from_gtis(gti, segment_size, lc1.time, dt=lc1.dt) freq = 0 # These will be the final averaged periodograms. Initializing with a single # scalar 0, but the final products will be arrays. pds1 = 0 pds2 = 0 ptot = 0 cs = 0 n = 0 nph1_tot = nph2_tot = nph_tot = 0 average_diff = average_diff_uncorr = 0 if plot: if ax is None: fig, ax = plt.subplots() for start_ind, end_ind in zip(start_inds, end_inds): freq, f1, nph1, nbins1 = _get_fourier_intv(lc1, start_ind, end_ind) f1_leahy = f1 *
np.sqrt(2 / nph1)
numpy.sqrt
import comet_ml, json import numpy as np import torch from torch import optim from misc import clear_gradients from lib import create_agent from util.env_util import create_env from util.plot_util import load_checkpoint from lib.distributions import kl_divergence from local_vars import PROJECT_NAME, WORKSPACE, LOADING_API_KEY, LOGGING_API_KEY alim = [-1, 1] aint = 0.01 BATCH_SIZE = 256 N_ACTION_SAMPLES = 100 # Reacher Experiments: # direct: 48edb0b9aca847c09c6893793c982884 # iterative: 58ec5bc5273044e59ae30a969c3d7de4 def estimate_opt_landscape(exp_key, states=None, ckpt_timestep=None, device_id=None): """ Estimates the optimization landscape for a checkpointed agent. Also gets the policy estimates during inference optimization. Args: exp_key (str): the comet experiment ID state (list of torch.Tensor, optional): the state(s) used for estimation ckpt_timestep (int, optional): the checkpoint for estimation device_id (int, optional): the GPU ID """ # load the experiment comet_api = comet_ml.API(api_key=LOADING_API_KEY) experiment = comet_api.get_experiment(project_name=PROJECT_NAME, workspace=WORKSPACE, experiment=exp_key) # create the environment (just to create agent) param_summary = experiment.get_parameters_summary() env_name = [a for a in param_summary if a['name'] == 'env'][0]['valueCurrent'] env = create_env(env_name) # create the agent asset_list = experiment.get_asset_list() agent_config_asset_list = [a for a in asset_list if 'agent_args' in a['fileName']] agent_args = None if len(agent_config_asset_list) > 0: # if we've saved the agent config dict, load it agent_args = experiment.get_asset(agent_config_asset_list[0]['assetId']) agent_args = json.loads(agent_args) agent_args = agent_args if 'opt_type' in agent_args['inference_optimizer_args'] else None agent = create_agent(env, agent_args=agent_args, device_id=device_id)[0] # load the checkpoint load_checkpoint(agent, exp_key, ckpt_timestep) if states is None: # load a random state from the most recently collected episode state_asset = None if ckpt_timestep is not None: # load the corresponding episode if it is present state_asset_list = [a for a in asset_list if 'episode_step_' + str(ckpt_timestep) + '_state' in a['fileName']] if len(state_asset_list) > 0: state_asset = state_asset_list[0] if state_asset is None: # get most recently collected episode asset_times = [asset['createdAt'] for asset in asset_list if 'state' in asset['fileName']] state_asset = [a for a in asset_list if a['createdAt'] == max(asset_times)][0] episode_states = experiment.get_asset(state_asset['assetId']) episode_states = json.loads(episode_states) # state_timestep = [np.random.randint(len(episode_states)) for _ in range(100)] state_timesteps = range(100) states = [torch.from_numpy(
np.array(episode_states[state_timestep])
numpy.array
import numpy as np def linear(t): return t def in_quad(t): return t * t def out_quad(t): return -t * (t - 2) def in_out_quad(t): u = 2 * t - 1 a = 2 * t * t b = -0.5 * (u * (u - 2) - 1) return np.where(t < 0.5, a, b) def in_cubic(t): return t * t * t def out_cubic(t): u = t - 1 return u * u * u + 1 def in_out_cubic(t): u = t * 2 v = u - 2 a = 0.5 * u * u * u b = 0.5 * (v * v * v + 2) return np.where(u < 1, a, b) def in_quart(t): return t * t * t * t def out_quart(t): u = t - 1 return -(u * u * u * u - 1) def in_out_quart(t): u = t * 2 v = u - 2 a = 0.5 * u * u * u * u b = -0.5 * (v * v * v * v - 2) return np.where(u < 1, a, b) def in_quint(t): return t * t * t * t * t def out_quint(t): u = t - 1 return u * u * u * u * u + 1 def in_out_quint(t): u = t * 2 v = u - 2 a = 0.5 * u * u * u * u * u b = 0.5 * (v * v * v * v * v + 2) return np.where(u < 1, a, b) def in_sine(t): return -np.cos(t * np.pi / 2) + 1 def out_sine(t): return np.sin(t * np.pi / 2) def in_out_sine(t): return -0.5 * (np.cos(np.pi * t) - 1) def in_expo(t): a = np.zeros(len(t)) b = 2 ** (10 * (t - 1)) return np.where(t == 0, a, b) def out_expo(t): a = np.zeros(len(t)) + 1 b = 1 - 2 ** (-10 * t) return
np.where(t == 1, a, b)
numpy.where
# System import time, os, h5py, re import logging # Structure from collections import deque # Data import scipy import numpy as np import pandas as pd from scipy.sparse import diags as spdiags from scipy.sparse import linalg as sp_linalg from scipy import interpolate, signal from utils_models import auc_roc_2dist from packages.photometry_functions import get_dFF # Plotting import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec import seaborn as sns from packages.photometry_functions import get_f0_Martianova_jove, jove_fit_reference, jove_find_best_param # caiman try: from caiman.source_extraction.cnmf.deconvolution import GetSn from caiman.source_extraction.cnmf.utilities import fast_prct_filt from caiman.utils.stats import df_percentile except ModuleNotFoundError: print("CaImAn not installed or environment not activated, certain functions might not be usable") RAND_STATE = 230 # TODO: Move project specific portions to pipeline_*.py as things scale ################################################## #################### Loading ##################### ################################################## def get_probswitch_session_by_condition(folder, group='all', region='NAc', signal='all'): """ Searches through [folder] and find all of probswitch experiment sessions that match the description; Returns lists of session files of different recording type :param group: str, expression :param region: str, region of recording :param signal: str, signal type (DA or Ca 05/25/21) :param photometry: :param choices: :param processed: :return: """ if group == 'all': groups = ('D1', 'A2A') else: groups = [group] if region == 'all': regions = ['NAc', 'DMS'] else: regions = [region] if signal == 'all': signals = ['DA', 'Ca'] else: signals = [signal] results = {} for g in groups: grouppdf = pd.read_csv(os.path.join(folder, f"ProbSwitch_FP_Mice_{g}.csv")) rsel = grouppdf['Region'].isin(regions) if signals[0] == 'none': animal_sessions = grouppdf[rsel] else: fpsel = grouppdf['FP'] >= 1 sigsel = np.logical_and.reduce([grouppdf[f'FP_{s}_zoom'] > 0 for s in signals]) animal_sessions = grouppdf[rsel & fpsel & sigsel] results[g] = {} for animal in animal_sessions['animal'].unique(): results[g][animal] = sorted(animal_sessions[animal_sessions['animal'] == animal]['session']) return results def get_prob_switch_all_sessions(folder, groups): """ Exhaustively check all folder that contains ProbSwitch task .mat files and encode all sessions. .mat -> decode -> return group :param folder: :return: """ only_Ca = [] only_DA = [] results = {g: {a: [] for a in groups[g]} for g in groups} for d in os.listdir(folder): if os.path.isdir(os.path.join(folder, d)): m = re.match("^(?P<animal>\w{2,3}-\d{2,}[-\w*]*_[A-Z]{2})_(?P<session>p\d+\w+)", d) if m: animal, day = m.group('animal'), m.group('session') group_dict = results[animal.split("-")[0]] if animal in group_dict: group_dict[animal].append(day) elif animal not in group_dict and '*' in group_dict: group_dict[animal] = [day] for g in results: del results[g]['*'] return results def check_FP_contain_dff_method(fp, methods, sig='DA'): """ Utility function that helps check whether the <fp> hdf5 file contains <dff> signals preprocessed. """ if fp is None: return False if isinstance(methods, str): methods = [methods] with h5py.File(fp, 'r') as hf: return np.all([f'{sig}/dff/{m}' in hf for m in methods]) def get_sources_from_csvs(csvfiles, window=400, aux_times=None, tags=None, show=False): """ Extract sources from a list of csvfiles, with csvfile[0] be channels with cleaniest TODO: potentially use the fact that 415 has the same timestamps to speed up the process :param csvfiles: :param window: :return: """ if isinstance(csvfiles, str): csvfiles = [csvfiles] try: pdf = pd.read_csv(csvfiles[0], delimiter=" ", names=['time', 'calcium'], usecols=[0, 1]) FP_times = [None] * len(csvfiles) FP_signals = [None] * len(csvfiles) for i in range(len(csvfiles)): csvfile = csvfiles[i] # Signal Sorting pdf = pd.read_csv(csvfile, delimiter=" ", names=['time', 'calcium'], usecols=[0, 1]) FP_times[i] = pdf.time.values FP_signals[i] = pdf.calcium.values if aux_times: old_zero = FP_times[0][0] if old_zero == aux_times[0][0]: print('WARNING: NO UPDATE, something is up') assert len(FP_times) == len(aux_times), 'MUST BE SAME dim' FP_times = aux_times if tags is None: tags = [f'REC{i}' for i in range(len(csvfiles))] except: print('OOPPS') # TODO: aux_time input potentially needed FP_times = [None] * len(csvfiles) * 2 FP_signals = [None] * len(csvfiles) * 2 for i in range(len(csvfiles)): # Signal Sorting csvfile = csvfiles[i] pdf = pd.read_csv(csvfile, delimiter=",") red_sig = pdf['Region1R'].values green_sig = pdf['Region0G'].values times = pdf['Timestamp'].values FP_times[2 * i], FP_times[2*i+1] = times, times FP_signals[2 * i], FP_signals[2*i+1] = green_sig, red_sig if tags is None: tags = np.concatenate([[f'REC{i}_G', f'REC{i}_R'] for i in range(len(csvfiles))]) FP_REC_signals = [None] * len(FP_signals) FP_REC_times = [None] * len(FP_signals) FP_415_signals = [None] * len(FP_signals) FP_415_times = [None] * len(FP_signals) FP_415_sel = None for i in range(len(FP_signals)): FP_time, FP_signal = FP_times[i], FP_signals[i] # # Plain Threshold # min_signal, max_signal = np.min(FP_signal), np.max(FP_signal) # intensity_threshold = min_signal+(max_signal - min_signal)*0.4 # Dynamic Threshold n_win = len(FP_signal) // window bulk = n_win * window edge = len(FP_signal) - bulk first_batch = FP_signal[:bulk].reshape((n_win, window), order='C') end_batch = FP_signal[-window:] edge_batch = FP_signal[-edge:] sigT_sels = np.concatenate([(first_batch > np.mean(first_batch, keepdims=True, axis=1)) .reshape(bulk, order='C'), edge_batch > np.mean(end_batch)]) sigD_sels = ~sigT_sels FP_top_signal, FP_top_time = FP_signal[sigT_sels], FP_time[sigT_sels] FP_down_signal, FP_down_time = FP_signal[sigD_sels], FP_time[sigD_sels] topN, downN = len(FP_top_signal)//window, len(FP_down_signal)//window top_dyn_std = np.std(FP_top_signal[:topN * window].reshape((topN, window),order='C'), axis=1).mean() down_dyn_std = np.std(FP_down_signal[:downN * window].reshape((downN,window),order='C'),axis=1).mean() # TODO: check for consecutives # TODO: check edge case when only 415 has signal if top_dyn_std >= down_dyn_std: sigREC_sel, sig415_sel = sigT_sels, sigD_sels FP_REC_signals[i], FP_REC_times[i] = FP_top_signal, FP_top_time FP_415_signals[i], FP_415_times[i] = FP_down_signal, FP_down_time else: sigREC_sel, sig415_sel = sigD_sels, sigT_sels FP_REC_signals[i], FP_REC_times[i] = FP_down_signal, FP_down_time FP_415_signals[i], FP_415_times[i] = FP_top_signal, FP_top_time if show: fig, axes = plt.subplots(nrows=len(FP_REC_signals), ncols=1, sharex=True) for i in range(len(FP_REC_signals)): ax = axes[i] if len(FP_REC_signals) > 1 else axes itag = tags[i] ax.plot(FP_REC_times[i], FP_REC_signals[i], label=itag) ax.plot(FP_415_times[i], FP_415_signals[i], label='415') ax.legend() # TODO: save as pd.DataFrame if len(FP_REC_signals) == 1: return FP_REC_times[0], FP_REC_signals[0], FP_415_times[0], FP_415_signals[0] # TODO: if shape uniform merge signals return FP_REC_times, FP_REC_signals, FP_415_times, FP_415_signals def path_prefix_free(path): symbol = os.path.sep if path[-len(symbol):] == symbol: return path[path.rfind(symbol, 0, -len(symbol))+len(symbol):-len(symbol)] else: return path[path.rfind(symbol) + len(symbol):] def file_folder_path(f): symbol = os.path.sep len_sym = len(symbol) if f[-len_sym:] == symbol: return f[:f.rfind(symbol, 0, -len_sym)] else: return f[:f.rfind(symbol)] def summarize_sessions(data_root, implant_csv, save_path, sort_key='aID'): """ implant_csv: pd.DataFrame from implant csv file """ # add region of implant, session number, signal quality # input a list of names implant locations # "/A2A-15B-B_RT_20200229_learning-switch-2_p39.mat" supposed to be 139 # sorting with p notation mess up if p is less 100\ # bug /D1-27H_LT_20200229_ToneSamp_p89.mat read as 022 alles = {'animal': [], 'aID':[], 'session': [], 'date': [], 'ftype':[], 'age':[], 'FP': [], 'region': [], 'note': []} implant_lookup = {} for i in range(len(implant_csv)): animal_name = implant_csv.loc[i, 'Name'] if animal_name and (str(animal_name) != 'nan'): LH_target = implant_csv.loc[i, 'LH Target'] RH_target = implant_csv.loc[i, 'RH Target'] print(animal_name) name_first, name_sec = animal_name.split(' ') name_first = "-".join(name_first.split('-')[:2]) implant_lookup[name_first+'_'+name_sec] = {'LH': LH_target, 'RH': RH_target} for f in os.listdir(data_root): options = decode_from_filename(f) if options is None: pass #print(f, "ALERT") elif ('FP_' in f) and ('FP_' not in options['session']): print(f, options['session']) else: for q in ['animal', 'ftype', 'session']: alles[q].append(options[q]) name_first2, name_sec2 = options['animal'].split('_') name_first2 = "-".join(name_first2.split('-')[:2]) aID = name_first2+"_"+name_sec2 alles['aID'].append(aID) alles['date'].append(options['T']) opts = options['session'].split("_FP_") alles['age'].append(opts[0]) if len(opts) > 1: alles['FP'].append(opts[1]) if aID not in implant_lookup: print('skipping', options, ) alles['region'].append('') else: alles['region'].append(implant_lookup[aID][opts[1]]) else: alles['FP'].append("") alles['region'].append('') alles['note'].append(options['DN'] + options['SP']) apdf = pd.DataFrame(alles) sorted_pdf = apdf.sort_values(['date', 'session'], ascending=True) sorted_pdf['S_no'] = 0 new_pdfs = [] for anim in sorted_pdf[sort_key].unique(): tempslice = sorted_pdf[sorted_pdf[sort_key] == anim] sorted_pdf.loc[sorted_pdf[sort_key] == anim, 'S_no'] = np.arange(1, len(tempslice)+1) #final_pdf = pd.concat(new_pdfs, axis=0) final_pdf = sorted_pdf final_pdf.to_csv(os.path.join(save_path, f"exper_list_final_{sort_key}.csv"), index=False) def encode_to_filename(folder, animal, session, ftypes="processed_all"): """ :param folder: str folder for data storage :param animal: str animal name: e.g. A2A-15B-B_RT :param session: str session name: e.g. p151_session1_FP_RH :param ftype: list or str: list (or a single str) of typed files to return 'exper': .mat files 'bin_mat': binary file 'green': green fluorescence 'red': red FP 'behavior': .mat behavior file 'FP': processed dff hdf5 file if ftypes=="all" :return: returns all 5 files in a dictionary; otherwise return all file types in a dictionary, None if not found """ # TODO: enable aliasing paths = [os.path.join(folder, animal, session), os.path.join(folder, animal+'_'+session), os.path.join(folder, animal), folder] if ftypes == "raw all": ftypes = ["exper", "bin_mat", "green", "red"] elif ftypes == "processed_all": ftypes = ["processed", "green", "red", "FP"] elif isinstance(ftypes, str): ftypes = [ftypes] results = {ft: None for ft in ftypes} registers = 0 for p in paths: if os.path.exists(p): for f in os.listdir(p): opt = decode_from_filename(f) if opt is not None: ift = opt['ftype'] check_mark = opt['animal'] == animal and opt['session'] == session #print(opt['session'], animal, session) check_mark_mdl = (opt['animal'] == animal) and (opt['session'] in session) cm_mdl = (ift == 'modeling' and check_mark_mdl) # TODO: temporary hacky method for modeling #print(opt['session'], animal, session, check_mark_mdl, ift, cm_mdl) if ift in ftypes and results[ift] is None and (check_mark or cm_mdl): results[ift] = os.path.join(p, f) registers += 1 if registers == len(ftypes): return results if len(results) > 1 else results[ift] return results if len(results) > 1 else list(results.values())[0] def decode_from_filename(filename): """ Takes in filenames of the following formats and returns the corresponding file options `A2A-15B_RT_20200612_ProbSwitch_p243_FP_RH`, `D1-27H_LT_20200314_ProbSwitch_FP_RH_p103` behavioral: * **Gen-ID_EarPoke_Time_DNAME_Age_special.mat** FP: **Gen-ID_EarPoke_DNAME2_Hemi_Age_channel_Time(dash)[Otherthing].csv** binary matrix: **Drug-ID_Earpoke_DNAME_Hemi_Age_(NIDAQ_Ai0_Binary_Matrix)Time[special].etwas** timestamps: **Drug-ID_Earpoke_DNAME_Hemi_Age_(NIDAQ_Ai0_timestamps)Time[special].csv** GEN: genetic line, ID: animal ID, EP: ear poke, T: time of expr, TD: detailed HMS DN: Data Name, A: Age, H: hemisphere, S: session, SP: special extension :param filename: :return: options: dict ftype animal session """ filename = path_prefix_free(filename) # case exper mBMat = re.match(r"^(?P<GEN>\w{2,3})-(?P<ID>\d{2,}[-\w*]*)_(?P<EP>[A-Z]{2})_(?P<T>\d+)_(?P<DN>[-&\w]+)_(" r"?P<A>p\d+)(?P<SP>[-&\w]*)\.mat", filename) # case processed behavior mPBMat = re.match(r"^(?P<GEN>\w{2,3})-(?P<ID>\d{2,}[-\w*]*)_(?P<EP>[A-Z]{2})_" r"(?P<A>p\d+)(?P<S>_session\d+_|_?)(?P<H>FP_[LR]H)_processed_data.mat", filename) mPBOMat = re.match(r"^(?P<GEN>\w{2,3})-(?P<ID>\d{2,}[-\w*]*)_(?P<EP>[A-Z]{2})_" r"(?P<A>p\d+)(?P<S>_session\d+_|_?)(?P<H>FP_[LR]H)_behavior_data.mat", filename) mFPMat = re.match(r"^(?P<GEN>\w{2,3})-(?P<ID>\d{2,}[-\w*]*)_(?P<EP>[A-Z]{2})_" r"(?P<A>p\d+)(?P<S>_session\d+_|_?)(?P<H>FP_[LR]H).hdf5", filename) mMDMat = re.match(r"^(?P<GEN>\w{2,3})-(?P<ID>\d{2,}[-\w*]*)_(?P<EP>[A-Z]{2})_" r"(?P<A>p\d+)(?P<S>_session\d+_|_?)(?P<H>(FP_[LR]H)?)_modeling.hdf5", filename) mTBMat =re.match(r"^(?P<GEN>\w{2,3})-(?P<ID>\d{2,}[-\w*]*)_(?P<EP>[A-Z]{2})_" r"(?P<A>p\d+)(?P<S>_session\d+_|_?)_trialB.csv", filename) # case binary mBIN = None options, ftype = None, None if mBMat is not None: # TODO: handle session# options = mBMat.groupdict() ftype = "exper" oS = options["SP"] options["H"] = "" dn_match = re.match(".*(FP_[LR]H).*", options['DN']) sp_match = re.match(".*(FP_[LR]H).*", options['SP']) if dn_match: options["H"] = dn_match.group(1) elif sp_match: options['H'] = sp_match.group(1) elif mTBMat is not None: options = mTBMat.groupdict() ftype = 'trialB' oS = options['S'] elif mMDMat is not None: options = mMDMat.groupdict() ftype = 'modeling' oS = options['S'] elif mPBMat is not None: options = mPBMat.groupdict() ftype = "processed" oS = options["S"] elif mPBOMat is not None: options = mPBOMat.groupdict() ftype = "behavior_old" oS = options["S"] elif mFPMat is not None: options = mFPMat.groupdict() ftype = "FP" oS = options['S'] elif mBIN is not None: # TODO: fill it up options = mBIN.groupdict() oS = "" ftype = "bin_mat" else: #TODO: print("Warning! Certain sessions have inconsistent naming! needs more through check") # case csv #todo: merge cage id and earpoke """A2A-16B-1_RT_ChR2_switch_no_cue_LH_p147_red_2020-03-17T15_38_40.csv""" channels = ['keystrokes', "MetaData", "NIDAQ_Ai0_timestamp", "red", "green", "FP", 'FPTS'] for c in channels: mCSV = re.match( r"^(?P<GEN>\w{2,3})-(?P<ID>\d{2,}[-\w*]*)_(?P<EP>[A-Z]{2})_(?P<DN>[-&\w]+)_(?P<H>[LR]H)_" r"(?P<A>p\d+)(?P<SP>[-&\w]*)" + f"_{c}" + r"(?P<S>_session\d+_|_?)(?P<T>\d{4}-?\d{2}-?\d{2})T" r"(?P<TD>[_\d]+)\.csv", filename) if mCSV is not None: options = mCSV.groupdict() ftype = c oS = options["S"] options['H'] = "FP_" + options['H'] break # print(filename) # print(options) if ftype is None: #print("special:", filename) return None mS = re.match(r".*(session\d+).*", oS) fS = "" if mS: fS = "_"+mS.group(1) options["ftype"] = ftype options["animal"] = options['GEN'] + "-" + options["ID"] + "_" + options["EP"] options["session"] = options['A'] + fS + (("_"+options['H']) if options['H'] else "") return options # Figure out rigorous representation; also keep old version intact def encode_to_filename_new(folder, animal, session, ftypes="processed_all"): """ :param folder: str folder for data storage :param animal: str animal name: e.g. A2A-15B-B_RT :param session: str session name: e.g. p151_session1_FP_RH :param ftype: list or str: list (or a single str) of typed files to return 'exper': .mat files 'bin_mat': binary file 'green': green fluorescence 'red': red FP 'behavior': .mat behavior file 'FP': processed dff hdf5 file if ftypes=="all" :return: returns all 5 files in a dictionary; otherwise return all file types in a dictionary, None if not found """ # TODO: enable aliasing paths = [os.path.join(folder, animal, session), os.path.join(folder, animal+'_'+session), os.path.join(folder, animal), folder] if ftypes == "raw all": ftypes = ["exper", "bin_mat", "green", "red"] elif ftypes == "processed_all": ftypes = ["processed", "green", "red", "FP"] elif isinstance(ftypes, str): ftypes = [ftypes] results = {ft: None for ft in ftypes} registers = 0 for p in paths: if os.path.exists(p): for f in os.listdir(p): for ift in ftypes: if ift == 'FP': ift_arg = 'FP_' else: ift_arg = ift if (ift_arg in f) and (animal in f) and (session in f): results[ift] = os.path.join(p, f) registers += 1 if registers == len(ftypes): return results if len(results) > 1 else results[ift] # opt = decode_from_filename(f) # if opt is not None: # ift = opt['ftype'] # check_mark = opt['animal'] == animal and opt['session'] == session # #print(opt['session'], animal, session) # check_mark_mdl = (opt['animal'] == animal) and (opt['session'] in session) # cm_mdl = (ift == 'modeling' and check_mark_mdl) # # TODO: temporary hacky method for modeling # #print(opt['session'], animal, session, check_mark_mdl, ift, cm_mdl) # if ift in ftypes and results[ift] is None and (check_mark or cm_mdl): # results[ift] = os.path.join(p, f) # registers += 1 # if registers == len(ftypes): # return results if len(results) > 1 else results[ift] return results if len(results) > 1 else list(results.values())[0] def decode_from_filename_new(filename): """ Takes in filenames of the following formats and returns the corresponding file options `A2A-15B_RT_20200612_ProbSwitch_p243_FP_RH`, `D1-27H_LT_20200314_ProbSwitch_FP_RH_p103` behavioral: * **Gen-ID_EarPoke_Time_DNAME_Age_special.mat** FP: **Gen-ID_EarPoke_DNAME2_Hemi_Age_channel_Time(dash)[Otherthing].csv** binary matrix: **Drug-ID_Earpoke_DNAME_Hemi_Age_(NIDAQ_Ai0_Binary_Matrix)Time[special].etwas** timestamps: **Drug-ID_Earpoke_DNAME_Hemi_Age_(NIDAQ_Ai0_timestamps)Time[special].csv** GEN: genetic line, ID: animal ID, EP: ear poke, T: time of expr, TD: detailed HMS DN: Data Name, A: Age, H: hemisphere, S: session, SP: special extension :param filename: :return: options: dict ftype animal session """ filename = path_prefix_free(filename) # case exper mBMat = re.match(r"^(?P<GEN>\w{2,3})-(?P<ID>\d{2,}[-\w*]*)_(?P<EP>[A-Z]{2})_(?P<T>\d+)_(?P<DN>[-&\w]+)_(" r"?P<A>p\d+)(?P<SP>[-&\w]*)\.mat", filename) # case processed behavior mPBMat = re.match(r"^(?P<GEN>\w{2,3})-(?P<ID>\d{2,}[-\w*]*)_(?P<EP>[A-Z]{2})_" r"(?P<A>p\d+)(?P<S>_session\d+_|_?)(?P<H>FP_[LR]H)_processed_data.mat", filename) mPBOMat = re.match(r"^(?P<GEN>\w{2,3})-(?P<ID>\d{2,}[-\w*]*)_(?P<EP>[A-Z]{2})_" r"(?P<A>p\d+)(?P<S>_session\d+_|_?)(?P<H>FP_[LR]H)_behavior_data.mat", filename) mFPMat = re.match(r"^(?P<GEN>\w{2,3})-(?P<ID>\d{2,}[-\w*]*)_(?P<EP>[A-Z]{2})_" r"(?P<A>p\d+)(?P<S>_session\d+_|_?)(?P<H>FP_[LR]H).hdf5", filename) mMDMat = re.match(r"^(?P<GEN>\w{2,3})-(?P<ID>(\d|\w){3,}[-\w*]*)_(?P<EP>[A-Z]{2})_" r"(?P<A>p\d+)(?P<S>_session\d+_|_?)(?P<H>(FP_[LR]H)?)_modeling.hdf5", filename) mTBMat = re.match(r"^(?P<GEN>\w{2,3})-(?P<ID>(\d|\w){3,}[-\w*]*)_(?P<EP>[A-Z]{2})_(?P<A>p\d+)(?P<S>(_session\d+)?)_trialB.csv", filename) # case binary mBIN = None options, ftype = None, None if mBMat is not None: # TODO: handle session# options = mBMat.groupdict() ftype = "exper" oS = options["SP"] options["H"] = "" dn_match = re.match(".*(FP_[LR]H).*", options['DN']) sp_match = re.match(".*(FP_[LR]H).*", options['SP']) if dn_match: options["H"] = dn_match.group(1) elif sp_match: options['H'] = sp_match.group(1) elif mTBMat is not None: options = mTBMat.groupdict() ftype = 'trialB' oS = options['S'] options['H'] = '' elif mMDMat is not None: options = mMDMat.groupdict() ftype = 'modeling' oS = options['S'] elif mPBMat is not None: options = mPBMat.groupdict() ftype = "processed" oS = options["S"] elif mPBOMat is not None: options = mPBOMat.groupdict() ftype = "behavior_old" oS = options["S"] elif mFPMat is not None: options = mFPMat.groupdict() ftype = "FP" oS = options['S'] elif mBIN is not None: # TODO: fill it up options = mBIN.groupdict() oS = "" ftype = "bin_mat" else: #TODO: print("Warning! Certain sessions have inconsistent naming! needs more through check") # case csv #todo: merge cage id and earpoke """A2A-16B-1_RT_ChR2_switch_no_cue_LH_p147_red_2020-03-17T15_38_40.csv""" channels = ['keystrokes', "MetaData", "NIDAQ_Ai0_timestamp", "red", "green", "FP", 'FPTS'] for c in channels: mCSV = re.match(r"^(?P<GEN>\w{2,3})-(?P<ID>(\d|\w){3,}[-\w*]*)_(?P<EP>[A-Z]{2})_(?P<DN>[-&\w]+)_(?P<H>([LR]H_)?)" r"(?P<A>p\d+)(?P<SP>[-&\w]*)" + f"_{c}" + r"(?P<S>_session\d+_|_?)(?P<T>\d{4}-?\d{2}-?\d{2})T" r"(?P<TD>[_\d]+)\.csv", filename) if mCSV is not None: options = mCSV.groupdict() ftype = c oS = options["S"] options['H'] = ("FP_" + options['H']) if options['H'] else '' break # print(filename) # print(options) if ftype is None: #print("special:", filename) return None mS = re.match(r".*(session\d+).*", oS) fS = "" if mS: fS = "_"+mS.group(1) options["ftype"] = ftype options["animal"] = options['GEN'] + "-" + options["ID"] + "_" + options["EP"] options["session"] = options['A'] + fS + (("_"+options['H']) if options['H'] else "") return options def access_mat_with_path(mat, p, ravel=False, dtype=None, raw=False): """ Takes in .mat file or hdf5 file and path like structure p and return the entry :param mat: glml matfiles: modified from Belief_State_FP_Analysis.m legacy Chris Hall GLM structure: glml/ notes/ hemisphere/ region/ time/ center_in/ contra/ contra_rew/ contra_unrew/ execute/ initiate/ ipsi/ ipsi_rew/ ipsi_unrew/ left_in_choice/ right_in_choice/ trial_event_FP_time/ trials/ ITI/ center_in/ center_to_side/ contra/ contra_rew/ contra_unrew/ execute/ initiate/ termination of the trial. ipsi/ ipsi_rew/ ipsi_unrew/ left_in_choice/ omission/ right_in_choice/ side_to_center/ time_indexs/ value/ center_to_side_times/ contra/ cue_port_side/ 2=left 1=right execute/ initiate/ ipsi/ port_side/ result/ : 1.2=reward, 1.1 = correct omission, 2 = incorrect, 3 = no choice, 0: undefined side_to_center_time/ time_to_left/ time_to_right/ :param p: :return: """ result = mat for ip in p.split("/"): result = result[ip] if raw: return result result = np.array(result, dtype=dtype) return result.ravel() if ravel else result def recursive_mat_dict_view(mat, prefix=''): """ Recursively print out mat in file structure for visualization, only support pure dataset like""" for p in mat: print(prefix + p+"/") if not isinstance(mat[p], h5py.Dataset) and not isinstance(mat[p], np.ndarray): recursive_mat_dict_view(mat[p], prefix+" ") ################################################### #################### Cleaning ##################### ################################################### def flip_back_2_channels(animal, session): pass ######################################################## #################### Preprocessing ##################### ######################################################## def raw_fluor_to_dff(rec_time, rec_sig, iso_time, iso_sig, baseline_method='robust', zscore=False, **kwargs): """ Takes in 1d signal and convert to dff (zscore dff) :param rec_sig: :param rec_time: :param iso_sig: :param iso_time: :param baseline_method: :param zscore: :param kwargs: :return: """ # TODO: figure out the best policy for removal currently no removal # TODO: More in-depth analysis of the best baselining approach with quantitative metrics bms = baseline_method.split('_') fast = False if len(bms) > 1: fast = bms[-1] == 'fast' baseline_method = bms[0] if baseline_method == 'robust': f0 = f0_filter_sig(rec_time, rec_sig, buffer=not fast, **kwargs)[:, 0] elif baseline_method == 'mode': f0 = percentile_filter(rec_time, rec_sig, perc=None, **kwargs) elif baseline_method.startswith('perc'): pc = int(baseline_method[4:]) f0 = percentile_filter(rec_time, rec_sig, perc=pc, **kwargs) elif baseline_method == 'isosbestic': # cite jove paper reference = interpolate.interp1d(iso_time, iso_sig, fill_value='extrapolate')(rec_time) signal = rec_sig f0 = get_f0_Martianova_jove(reference, signal) elif baseline_method == 'isosbestic_old': dc_rec, dc_iso = np.mean(rec_sig), np.mean(iso_sig) dm_rec_sig, dm_iso_sig = rec_sig - dc_rec, iso_sig - dc_iso # TODO: implement impulse based optimization f0_iso = isosbestic_baseline_correct(iso_time, dm_iso_sig, **kwargs) + dc_rec f0 = f0_iso if iso_time.shape != rec_time.shape or np.allclose(iso_time, rec_time): f0 = interpolate.interp1d(iso_time, f0_iso, fill_value='extrapolate')(rec_time) else: raise NotImplementedError(f"Unknown baseline method {baseline_method}") dff = (rec_sig - f0) / (f0 + np.mean(rec_sig)+1e-16) # arbitrary DC shift to avoid issue return (dff - np.mean(dff)) / np.std(dff, ddof=1) if zscore else dff def sources_get_noise_power(s415, s470): npower415 = GetSn(s415) npower470 = GetSn(s470) return npower415, npower470 def get_sample_interval(times): return np.around((np.max(times) - np.min(times)) / len(times), 0) def resample_quasi_uniform(sig, times, method='interpolate'): if np.sum(np.diff(times) < 0) > 0: shuffles = np.argsort(times) sig = sig[shuffles] times = times[shuffles] si = get_sample_interval(times) T0, Tm = np.min(times), np.max(times) if method == 'interpolate': new_times = np.arange(T0, Tm, si) new_sig = interpolate.interp1d(times, sig, fill_value='extrapolate')(new_times) elif method == 'fft': new_sig, new_times = signal.resample(sig, int((Tm-T0) // si), t=times) else: raise NotImplementedError(f'unknown method {method}') return new_sig, new_times def denoise_quasi_uniform(sig, times, method='wiener'): new_sig, new_times = resample_quasi_uniform(sig, times) if method == 'wiener': return signal.wiener(new_sig), new_times else: raise NotImplementedError(f'Unknown method {method}') def f0_filter_sig(xs, ys, method=12, window=200, optimize_window=2, edge_method='prepend', buffer=False, **kwargs): """ First 2 * windows re-estimate with mode filter To avoid edge effects as beginning, it uses mode filter; better solution: specify initial conditions Return: dff: np.ndarray (T, 2) col0: dff col1: boundary scale for noise level """ if method < 10: mf, mDC = median_filter(window, method) else: mf, mDC = std_filter(window, method%10, buffer=buffer) opt_w = int(np.rint(optimize_window * window)) # prepend init_win_ys = ys[:opt_w] init_win_xs = xs[:opt_w] if edge_method == 'init': # subpar method so far, use prepend initial = percentile_filter(init_win_xs, init_win_ys, window) initial_std = np.sqrt(max(0, np.mean(np.square(init_win_ys - initial)))) m2 = np.mean(np.square(init_win_ys[init_win_ys - initial < (method % 10) * initial_std])) mDC.set_init(np.mean(initial[:window]), np.std(initial, ddof=1)) dff = np.array([(mf(ys, i), mDC.get_dev()) for i in range(len(ys))]) elif edge_method == 'prepend': prepend_xs = init_win_xs[opt_w-1:0:-1] prepend_ys = init_win_ys[opt_w-1:0:-1] prepend_xs = 2 * np.min(init_win_xs) - prepend_xs ys_pp = np.concatenate([prepend_ys, ys]) xs_pp = np.concatenate([prepend_xs, xs]) dff = np.array([(mf(ys_pp, i), mDC.get_dev()) for i in range(len(ys_pp))])[opt_w-1:] elif edge_method == 'mode': dff = np.array([(mf(ys, i), mDC.get_dev()) for i in range(len(ys))]) dff[:opt_w, 0] = percentile_filter(init_win_xs, init_win_ys, window) else: raise NotImplementedError(f"Unknown method {edge_method}") return dff def percentile_filter(xs, ys, window=200, perc=None, **kwargs): # TODO: 1D signal only if perc is None: perc, val = df_percentile(ys[:window]) return scipy.ndimage.percentile_filter(ys, perc, window) def isosbestic_baseline_correct_old(xs, ys, window=200, perc=50, **kwargs): # TODO: this is the greedy method with only the mean estimation #return f0_filter_sig(xs, ys, method=method, window=window)[:, 0] return percentile_filter(xs, ys, window, perc) def isosbestic_baseline_correct(xs, ys, window=200, perc=50, **kwargs): # TODO: current use simplest directly import zdff method but want to rigorously test baselining effect # TODO: this is the greedy method with only the mean estimation #return f0_filter_sig(xs, ys, method=method, window=window)[:, 0] return percentile_filter(xs, ys, window, perc) def calcium_dff(xs, ys, xs0=None, y0=None, method=12, window=200): f0 =f0_filter_sig(xs, ys, method=method, window=window)[:, 0] return (ys-f0) / f0 def wiener_deconvolution(y, h): # TODO: wiener filter performance not well as expected # perform wiener deconvolution on 1d array T = len(y) sn = GetSn(y) freq, Yxx = scipy.signal.welch(y, nfft=T) Yxx[1:] = Yxx[1:] / 2 # divide evenly between pos and neg from scipy.signal import fftconvolve Hf = np.fft.rfft(h, n=T) Hf2 = Hf.conjugate() * Hf Sxx =
np.maximum(Yxx - sn**2, 1e-16)
numpy.maximum
# # Evaluate trained models # import warnings warnings.simplefilter(action='ignore') from keras import backend as K from src.model1 import uResNet34 from src.train import get_train_test_split, get_norm_dict from src.gen1 import SliceIterator, primary_transform from src.const import ( model_dir, model_input_size, wells, ilines, xlines, nsamples, dt, slices_dir, crossval_dict ) import numpy as np import cv2 from itertools import chain import matplotlib.pyplot as plt from typing import List from pathlib import Path model_class = uResNet34 # model weights weights = { 'Gamma_Ray': [ 'uResNet34.Gamma_Ray.sz480x512.smtd_0.14-0.78.hdf5', 'uResNet34.Gamma_Ray.sz480x512.smtd_1.11-0.37.hdf5', 'uResNet34.Gamma_Ray.sz480x512.smtd_2.07-0.65.hdf5', 'uResNet34.Gamma_Ray.sz480x512.smtd_3.42-0.67.hdf5' ], } def predict_on_fold(slice_list: List[Path], carotage: str, model_weights: Path, verbose: bool = False) -> dict: """predict model for a single fold return: dict[slice/well]{'seism', 'mask', 'y_true', 'y_pred', 'corr'}""" norm_dict = get_norm_dict() norm = [(norm_dict[c]['mean'], norm_dict[c]['std']) for c in ['seismic', carotage]] K.clear_session() model = model_class(input_size=model_input_size, weights=model_weights, n_carotage=1) gen = SliceIterator(slice_list, [carotage], model_input_size, transform_fun=primary_transform, norm=norm, aug=False, batch_size=10, shuffle=False, seed=None, verbose=False, output_ids=True, infinite_loop=False) x_m, y, ids = zip(*gen) x, m = zip(*x_m) x = np.concatenate(x) m =
np.concatenate(m)
numpy.concatenate
"""Misc utilities""" import sys from time import strftime import pickle as pickle import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from sklearn.cross_validation import StratifiedShuffleSplit from sklearn.manifold import TSNE # Allow pickle to work with very deep recursion sys.setrecursionlimit(10000000) def multiclass_log_loss(y_true, y_pred, eps=1e-15): """Multi class version of Logarithmic Loss metric. https://www.kaggle.com/wiki/MultiClassLogLoss Taken from https://www.kaggle.com/c/predict-closed-questions-on-stack-overflow/forums/t/2644/multi-class-log-loss-function/14250#post14250 idea from this post: http://www.kaggle.com/c/emc-data-science/forums/t/2149/is-anyone-noticing-difference-betwen-validation-and-leaderboard-error/12209#post12209 Parameters ---------- y_true : array, shape = [n_samples] y_pred : array, shape = [n_samples, n_classes] Returns ------- loss : float """ predictions = np.clip(y_pred, eps, 1 - eps) # normalize row sums to 1 predictions /= predictions.sum(axis=1)[:, np.newaxis] actual = np.zeros(y_pred.shape) rows = actual.shape[0] actual[
np.arange(rows)
numpy.arange
"""Tests for nonlinear activation functions.""" import numpy as np import numpy.testing as npt from nn.activations import Sigmoid, Tanh, ReLU from nn.utils import finite_difference_derivative def test_sigmoid(): sigmoid = Sigmoid() # Intercept at exactly 0.5 npt.assert_equal(np.full(2, 0.5), sigmoid.forward(np.zeros(2))) # Check limits npt.assert_allclose(sigmoid.forward(np.array([-6, 6])), np.array([0, 1]), atol=1e-2) npt.assert_allclose(sigmoid.forward(np.array([-10, 10])), np.array([0, 1]), atol=1e-4) # Check preserves shape assert sigmoid.forward(np.zeros((2, 1))).shape == (2, 1) assert sigmoid.forward(np.zeros((2, ))).shape == (2, ) def test_sigmoid_derivative(): sigmoid = Sigmoid() # Do forward the check that backward updates error correctly sigmoid.forward(np.asarray([0])) npt.assert_array_equal(sigmoid.backward(np.ones(1)), np.asarray([0.25])) sigmoid.forward(
np.asarray([0])
numpy.asarray
# Created on Wed May 31 14:48:46 2017 # # @author: <NAME> """Containes a helper class for image input pipelines in tensorflow.""" import tensorflow as tf import numpy as np from scipy.sparse import vstack import pickle from collections import Counter from tensorflow.python.framework import dtypes from tensorflow.python.framework.ops import convert_to_tensor class Dataset(object): """Wrapper class around the new Tensorflows dataset pipeline. Requires Tensorflow >= version 1.12rc0 """ def __init__(self, pickle_file, batch_size, num_classes, shuffle=True): """Create a new ImageDataGenerator. Recieves a path string to a text file, which consists of many lines, where each line has first a path string to an image and seperated by a space an integer, referring to the class number. Using this data, this class will create TensrFlow datasets, that can be used to train e.g. a convolutional neural network. Args: txt_file: Path to the text file. batch_size: Number of images per batch. num_classes: Number of classes in the dataset. shuffle: Wether or not to shuffle the data in the dataset and the initial file list. buffer_size: Number of images used as buffer for TensorFlows shuffling of the dataset. Raises: ValueError: If an invalid mode is passed. """ self.pickle_file = pickle_file self.num_classes = num_classes self.batch_size = batch_size # load the data from the pickle file self._load_from_pickle_file() # number of samples in the dataset self.data_size = self.labels.shape[0] # shuffle the first `buffer_size` elements of the dataset if shuffle: self.shuffle() # Initialise the counter self.counter = 0 def _load_from_pickle_file(self): self.img_contents, self.labels, _ = pickle.load(open(self.pickle_file, 'rb')) if type(self.img_contents) is list: self.img_contents = np.vstack(self.img_contents) def _one_hot(self, labels, num_classes): one_hot_labels = np.zeros((labels.size, num_classes), dtype=np.float32) one_hot_labels[
np.arange(labels.size)
numpy.arange
import os import numpy as np import cv2 import pathlib from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import import matplotlib.pyplot as plt from plyfile import PlyData, PlyElement from CGAL.CGAL_Kernel import Point_3 from CGAL.CGAL_Kernel import Vector_3 from CGAL.CGAL_Point_set_processing_3 import * #import pypcd from joblib import Parallel, delayed import multiprocessing import json import random import sys sys.path.append('../action/') sys.path.append('../human_pose/') from IKEAActionDataset import IKEAActionDataset as Dataset import joint_ids import math import trimesh import pyrender from pyrender.constants import RenderFlags from smpl import get_smpl_faces # import smplx def get_subdirs(input_path): ''' get a list of subdirectories in input_path directory :param input_path: parent directory (in which to get the subdirectories) :return: subdirs: list of subdirectories in input_path ''' subdirs = [os.path.join(input_path, dir_i) for dir_i in os.listdir(input_path) if os.path.isdir(os.path.join(input_path, dir_i))] subdirs.sort() return subdirs def get_files(input_path, file_type='.png'): ''' get a list of files in input_path directory :param input_path: parent directory (in which to get the file list) :return: files: list of files in input_path ''' files = [os.path.join(input_path, file_i) for file_i in os.listdir(input_path) if os.path.isfile(os.path.join(input_path, file_i)) and file_i.endswith(file_type)] files.sort() return files def get_list_of_all_files(dir_path, file_type='.jpg'): ''' get a list of all files of a given type in input_path directory :param dir_path: parent directory (in which to get the file list) :return: allFiles: list of files in input_path ''' listOfFile = os.listdir(dir_path) allFiles = list() # Iterate over all the entries for entry in listOfFile: # Create full path fullPath = os.path.join(dir_path, entry) # If entry is a directory then get the list of files in this directory if os.path.isdir(fullPath): allFiles = allFiles + get_list_of_all_files(fullPath, file_type=file_type) else: if fullPath.endswith(file_type): allFiles.append(fullPath) return allFiles def get_depth_ins_params(param_file): ''' read the depth intrinsic parameters file :param param_file: path to depth intrinsic parameters file DepthIns.txt :return: ir_camera_params_obj: a libfreenect2 IrCameraParams object ''' with open(param_file, 'r') as f: depth_ins_params = [float(line.strip()) for line in f if line] ir_camera_params_obj = { "fx" : depth_ins_params[0], "fy" : depth_ins_params[1], "cx" : depth_ins_params[2], "cy" : depth_ins_params[3], "k1" : depth_ins_params[4], "k2" : depth_ins_params[5], "k3" : depth_ins_params[6], "p1" : depth_ins_params[7], "p2" : depth_ins_params[8] } return ir_camera_params_obj def get_rgb_ins_params(param_file): ''' read the rgb intrinsic parameters file :param param_file: path to depth intrinsic parameters file DepthIns.txt :return: rgb_ins_params: a libfreenect2 ColorCameraParams object ''' with open(param_file, 'r') as f: rgb_ins_params = [float(line.strip()) for line in f if line] rgb_camera_params_obj = { "fx" : rgb_ins_params[0], "fy" : rgb_ins_params[1], "cx" : rgb_ins_params[2], "cy" : rgb_ins_params[3], "shift_d" : rgb_ins_params[4], "shift_m" : rgb_ins_params[5], "mx_x3y0" : rgb_ins_params[6], "mx_x0y3" : rgb_ins_params[7], "mx_x2y1" : rgb_ins_params[8], "mx_x1y2" : rgb_ins_params[9], "mx_x2y0" : rgb_ins_params[10], "mx_x0y2" : rgb_ins_params[11], "mx_x1y1" : rgb_ins_params[12], "mx_x1y0" : rgb_ins_params[13], "mx_x0y1" : rgb_ins_params[14], "mx_x0y0" : rgb_ins_params[15], "my_x3y0" : rgb_ins_params[16], "my_x0y3" : rgb_ins_params[17], "my_x2y1" : rgb_ins_params[18], "my_x1y2" : rgb_ins_params[19], "my_x2y0" : rgb_ins_params[20], "my_x0y2" : rgb_ins_params[21], "my_x1y1" : rgb_ins_params[22], "my_x1y0" : rgb_ins_params[23], "my_x0y1" : rgb_ins_params[24], "my_x0y0" : rgb_ins_params[25] } return rgb_camera_params_obj def get_prop_path_list(input_path, property_name='normals'): category_path_list = get_subdirs(input_path) scan_path_list = [] for category in category_path_list: if os.path.basename(category) != 'Calibration': category_scans = get_subdirs(category) for category_scan in category_scans: scan_path_list.append(category_scan) pose_path_list = [] for scan in scan_path_list: device_list = get_subdirs(scan) for device in device_list: pose_path = os.path.join(device, property_name) # property names: 'normals','point_clouds' if os.path.exists(pose_path): pose_path_list.append(pose_path) return pose_path_list def get_scan_list(input_path, devices='all'): ''' get_scan_list retreieves all of the subdirectories under the dataset main directories: :param input_path: path to ANU IKEA Dataset directory :return: scan_path_list: path to all available scans category_path_list: path to all available categories ''' category_path_list = get_subdirs(input_path) scan_path_list = [] for category in category_path_list: if os.path.basename(category) != 'Calibration': category_scans = get_subdirs(category) for category_scan in category_scans: scan_path_list.append(category_scan) rgb_path_list = [] depth_path_list = [] normals_path_list = [] rgb_params_files = [] depth_params_files = [] for scan in scan_path_list: device_list = get_subdirs(scan) for device in device_list: if os.path.basename(device) in devices: rgb_path = os.path.join(device, 'images') depth_path = os.path.join(device, 'depth') normals_path = os.path.join(device, 'normals') if os.path.exists(rgb_path): rgb_path_list.append(rgb_path) rgb_params_files.append(os.path.join(device, 'ColorIns.txt')) if os.path.exists(depth_path): if 'dev3' in device: # remove redundant depths - remove this line for full 3 views depth_path_list.append(depth_path) depth_params_files.append(os.path.join(device, 'DepthIns.txt')) if os.path.exists(normals_path): normals_path_list.append(normals_path) return category_path_list, scan_path_list, rgb_path_list, depth_path_list, depth_params_files, rgb_params_files, normals_path_list def distort(mx, my, depth_ins): # see http://en.wikipedia.org/wiki/Distortion_(optics) for description # based on the C++ implementation in libfreenect2 dx = (float(mx) - depth_ins['cx']) / depth_ins['fx'] dy = (float(my) - depth_ins['cy']) / depth_ins['fy'] dx2 = np.square(dx) dy2 = np.square(dy) r2 = dx2 + dy2 dxdy2 = 2 * dx * dy kr = 1 + ((depth_ins['k3'] * r2 + depth_ins['k2']) * r2 + depth_ins['k1']) * r2 x = depth_ins['fx'] * (dx * kr + depth_ins['p2'] * (r2 + 2 * dx2) + depth_ins['p1'] * dxdy2) + depth_ins['cx'] y = depth_ins['fy'] * (dy * kr + depth_ins['p1'] * (r2 + 2 * dy2) + depth_ins['p2'] * dxdy2) + depth_ins['cy'] return x, y def depth_to_color(mx, my, dz, depth_ins, color_ins): # based on the C++ implementation in libfreenect2, constants are hardcoded into sdk depth_q = 0.01 color_q = 0.002199 mx = (mx - depth_ins['cx']) * depth_q my = (my - depth_ins['cy']) * depth_q wx = (mx * mx * mx * color_ins['mx_x3y0']) + (my * my * my * color_ins['mx_x0y3']) + \ (mx * mx * my * color_ins['mx_x2y1']) + (my * my * mx * color_ins['mx_x1y2']) + \ (mx * mx * color_ins['mx_x2y0']) + (my * my * color_ins['mx_x0y2']) + \ (mx * my * color_ins['mx_x1y1']) +(mx * color_ins['mx_x1y0']) + \ (my * color_ins['mx_x0y1']) + (color_ins['mx_x0y0']) wy = (mx * mx * mx * color_ins['my_x3y0']) + (my * my * my * color_ins['my_x0y3']) +\ (mx * mx * my * color_ins['my_x2y1']) + (my * my * mx * color_ins['my_x1y2']) +\ (mx * mx * color_ins['my_x2y0']) + (my * my * color_ins['my_x0y2']) + (mx * my * color_ins['my_x1y1']) +\ (mx * color_ins['my_x1y0']) + (my * color_ins['my_x0y1']) + color_ins['my_x0y0'] rx = (wx / (color_ins['fx'] * color_q)) - (color_ins['shift_m'] / color_ins['shift_d']) ry = int((wy / color_q) + color_ins['cy']) rx = rx + (color_ins['shift_m'] / dz) rx = int(rx * color_ins['fx'] + color_ins['cx']) return rx, ry def getPointXYZ(undistorted, r, c, depth_ins): depth_val = undistorted[r, c] #/ 1000.0 # map from mm to meters if np.isnan(depth_val) or depth_val <= 0.001: x = 0 y = 0 z = 0 else: x = (c + 0.5 - depth_ins['cx']) * depth_val / depth_ins['fx'] y = (r + 0.5 - depth_ins['cy']) * depth_val / depth_ins['fy'] z = depth_val point = [x, y, z] return point def get_rc_from_xyz(x, y, z, depth_ins): ''' project a 3d point back to the image row and column indices :param point: xyz 3D point :param depth_ins: depth camera intrinsic parameters :return: ''' c = int((x * depth_ins['fx'] / z) + depth_ins['cx']) r = int((y * depth_ins['fy'] / z) + depth_ins['cy']) return c, r def apply(dz, rx, ry, rgb_ins_params): cy = int(ry) rx = rx + (rgb_ins_params['shift_m'] / dz) cx = int(rx * rgb_ins_params['fx'] + rgb_ins_params['cx']) return cx, cy def compute_point_clouds(depth_ins_params, rgb_ins_params, depth_frames, rgb_frames, j, point_cloud_dir_name): frame_filename, depth_frame_file_extension = os.path.splitext(os.path.basename(depth_frames[j])) depth_img = cv2.imread(depth_frames[j], cv2.IMREAD_ANYDEPTH).astype(np.float32) depth_img = cv2.flip(depth_img, 1) # images were saved flipped # relative_depth_frame = get_relative_depth(depth_img) color_img = cv2.imread(rgb_frames[j]) color_img = cv2.flip(color_img, 1) # images were saved flipped # # Compute point cloud from images point_cloud = [] new_vertices = [] registered = np.zeros([424, 512, 3], dtype=np.uint8) undistorted = np.zeros([424, 512, 3], dtype=np.float32) for y in range(424): for x in range(512): # point = registration.getPointXYZ(depth_frame, y, x) mx, my = distort(x, y, depth_ins_params) ix = int(mx + 0.5) iy = int(my + 0.5) point = getPointXYZ(depth_img, y, x, depth_ins_params) if (ix >= 0 and ix < 512 and iy >= 0 and iy < 424): # check if pixel is within the image undistorted[iy, ix] = depth_img[y, x] z = depth_img[y, x] if z > 0 and not np.isnan(z): # point_cloud.append(point) cx, cy = depth_to_color(x, y, z, depth_ins_params, rgb_ins_params) if (cx >= 0 and cx < 1920 and cy >= 0 and cy < 1080): registered[y, x, :] = color_img[cy, cx].flatten() registered[y, x, :] = cv2.cvtColor(registered[y, x].reshape([1, 1, 3]), cv2.COLOR_BGR2RGB) point_cloud.append([(point), registered[y, x, :]]) new_vertices.append((point[0], point[1], point[2], registered[y, x, 0], registered[y, x, 1], registered[y, x, 2])) # cv2.imshow('relative depth', relative_depth_frame) # cv2.imshow('registered image', cv2.cvtColor(registered,cv2.COLOR_RGB2BGR)) # cv2.waitKey(0) # if point_cloud_type == '.ply': pc_file_name = os.path.join(point_cloud_dir_name, frame_filename + '.ply') new_vertices = np.array(new_vertices, dtype=[('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')]) el = PlyElement.describe(new_vertices, 'vertex') PlyData([el]).write(pc_file_name) print('Saved Point cloud ' + frame_filename + '.ply to ' + point_cloud_dir_name) # else: # Add support for other file types # pc_file_name = os.path.join(point_cloud_dir_name, frame_filename+'.pcd') # pcl.save(new_vertices, pc_file_name, format='.pcd', binary=False) # fig = plt.figure() # ax = fig.add_subplot(111, projection='3d') # point_cloud = np.array(point_cloud) # ax.scatter(point_cloud[:, 0], point_cloud[:, 1], point_cloud[:, 2], marker='.', s=1, c=point_cloud[:, 3:]) # ax.set_xlabel('X Label') # ax.set_ylabel('Y Label') # ax.set_zlabel('Z Label') # plt.show() def export_point_clouds(input_path, pc_per_scan=1.0, include_rgb=True, point_cloud_type='.ply', output_path='', devices='dev3'): ''' Export point clouds per frame. Assumes sync and same number of depth and rgb frames. :param input_path: path to dataset :param pc_per_scan: fration of point clouds to generate, default generate all :return: ''' if output_path == '': output_path = input_path category_path_list, scan_path_list, rgb_path_list, depth_path_list, depth_params_files,\ rgb_params_files, normals_path_list = get_scan_list(input_path, devices=devices) for i, scan in enumerate(depth_path_list): depth_param_filename = depth_params_files[i] color_param_filename = rgb_params_files[i] depth_frames = get_files(scan, file_type='.png') rgb_frames = get_files(rgb_path_list[i], file_type='.jpg') if depth_frames: # check if empty depth_ins_params = get_depth_ins_params(depth_param_filename) if rgb_frames: rgb_ins_params = get_rgb_ins_params(color_param_filename) out_dir = scan.replace(scan[:scan.index("ANU_ikea_dataset") + 17], output_path) point_cloud_dir_name = os.path.join(os.path.abspath(os.path.join(out_dir, os.pardir)), 'point_clouds') if not os.path.exists(point_cloud_dir_name): os.makedirs(point_cloud_dir_name) # for j, _ in enumerate(depth_frames): # parallel point cloud computation and export num_cores = multiprocessing.cpu_count() Parallel(n_jobs=num_cores)(delayed(compute_point_clouds)(depth_ins_params, rgb_ins_params, depth_frames, rgb_frames, j, point_cloud_dir_name) for j, _ in enumerate(depth_frames)) ######################################### Video export utils ####################################### def get_relative_depth(img, min_depth_val=0.0, max_depth_val = 4500, colormap='jet'): ''' Convert the depth image to relative depth for better visualization. uses fixed minimum and maximum distances to avoid flickering :param img: depth image min_depth_val: minimum depth in mm (default 50cm) max_depth_val: maximum depth in mm ( default 10m ) :return: relative_depth_frame: relative depth converted into cv2 GBR ''' relative_depth_frame = cv2.convertScaleAbs(img, alpha=(255.0/max_depth_val), beta=-255.0*min_depth_val/max_depth_val) relative_depth_frame = cv2.cvtColor(relative_depth_frame, cv2.COLOR_GRAY2BGR) # relative_depth_frame = cv2.applyColorMap(relative_depth_frame, cv2.COLORMAP_JET) return relative_depth_frame def get_absolute_depth(img, min_depth_val=0.0, max_depth_val = 4500, colormap='jet'): ''' Convert the relative depth image to absolute depth. uses fixed minimum and maximum distances to avoid flickering :param img: depth image min_depth_val: minimum depth in mm (default 50cm) max_depth_val: maximum depth in mm ( default 10m ) :return: absolute_depth_frame: absolute depth converted into cv2 gray ''' absolute_depth_frame = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # absolute_depth_frame = cv2.convertScaleAbs(absolute_depth_frame, alpha=(max_depth_val/255.0), # beta=min_depth_val).astype(np.uint16) #converts to 8 bit absolute_depth_frame = absolute_depth_frame * float(max_depth_val/255.0) return absolute_depth_frame.astype(np.uint16) def get_fps(frames, native=False): if native: start = os.path.getmtime(frames[0]) end = os.path.getmtime(frames[-1]) duration = end - start n_frames = len(frames) fps = n_frames / duration else: fps = 30 return fps def export_video_par(scan, depth_flag, normals_flag, output_path, fps, overide, vid_scale, vid_format): """ function that can run in parallel to export videos from individual frames. supports avi and webm. Parameters ---------- scan : scan name [string] depth_flag : true | false - use depth stream normals_flag : true | false - use normal vectors stream output_path : outpue path fps : frames per seconds overide : true | false if to override existing files in the output dir[bool] vid_scale : indicting the scale. to unscale use 1. [float] vid_format : 'avi' | 'webm' video format [string] Returns ------- """ if 'processed' not in scan: # if output path changes this will break out_dir = scan.replace(scan[:scan.index("ANU_ikea_dataset") + 17], output_path) else: out_dir = scan if not os.path.exists(out_dir): os.makedirs(out_dir) video_file_name = os.path.join(out_dir, 'scan_video.' + vid_format) if not os.path.exists(video_file_name) or overide: frames = get_files(scan, file_type='.png') if depth_flag or normals_flag else get_files(scan, file_type='.jpg') if frames: if depth_flag: img = cv2.imread(frames[0], cv2.IMREAD_ANYDEPTH) img = get_relative_depth(img.astype(np.float32)) # better for visualization else: img = cv2.imread(frames[0]) if not vid_scale == 1: img = cv2.resize(img, dsize=(int(img.shape[1]/vid_scale), int(img.shape[0]/vid_scale))) img_shape = img.shape size = (img_shape[1], img_shape[0]) print('Saving video file to ' + video_file_name) fourcc = cv2.VideoWriter_fourcc(*'VP09') if vid_format == 'webm' else cv2.VideoWriter_fourcc(*'DIVX') out = cv2.VideoWriter(video_file_name, fourcc, fps, size) for j, _ in enumerate(frames): if depth_flag: img = cv2.imread(frames[j], cv2.IMREAD_ANYDEPTH).astype(np.float32) img = get_relative_depth(img) # use default min depth 0 and max depth 4500 for reconstruction from the video else: img = cv2.imread(frames[j]) if not vid_scale == 1: img = cv2.resize(img, dsize=(int(img.shape[1] / vid_scale), int(img.shape[0] / vid_scale))) out.write(img) out.release() print('Done\n') def video_export_helper(path_list, depth_flag=False, normals_flag=False, output_path='', fps=25, overide=False, vid_scale=1, vid_format='avi'): ''' Helper function to handle different cases of AVI export (for rgb and depth) :param path_list: list of paths to image folders to convert to AVI :param depth_flag: True / False is for depth :return: TO DO: Remove this function, after the parallelization it is redundant ''' num_cores = multiprocessing.cpu_count() Parallel(n_jobs=num_cores)(delayed(export_video_par)(scan, depth_flag, normals_flag, output_path, fps, overide, vid_scale, vid_format) for i, scan in enumerate(path_list)) # for i, scan in enumerate(path_list): def export_videos(input_path, rgb_flag=False, depth_flag=False, normals_flag=False, pose_flag=False, seg_flag=False, perception_demo_flag=False, output_path='', vid_scale=1, vid_format='avi', overide=False, devices='all'): ''' Saves video files of the scanned rgb and/or depth images note: on Ubuntu install SMplayer to view video file :param input_path: path to ikea dataset :param rgb_flag: True / False if to export the rgb video file :param depth_flag: True / False if to export the depth video file :param depth_flag: True / False if to export the normals vodeo file :param fps: frames per second for videos :return: ''' if output_path == '': output_path = input_path category_path_list, scan_path_list, rgb_path_list, depth_path_list, depth_params_files,\ rgb_params_files, _ = get_scan_list(input_path, devices=devices) if rgb_flag: video_export_helper(rgb_path_list, depth_flag=False, output_path=output_path, vid_scale=vid_scale, vid_format=vid_format, overide=overide) if depth_flag: video_export_helper(depth_path_list, depth_flag=True, output_path=output_path, vid_scale=vid_scale, vid_format=vid_format, overide=overide) if normals_flag: normals_path_list = get_prop_path_list(output_path, property_name='normals') video_export_helper(normals_path_list, depth_flag=False, normals_flag=True, output_path=output_path, vid_scale=vid_scale, vid_format=vid_format, overide=overide) if pose_flag: # pose_path_list = get_pose_path_list(input_path) pose_path_list = get_prop_path_list(output_path, property_name='2DposeImages') video_export_helper(pose_path_list, depth_flag=False, output_path=output_path, vid_scale=vid_scale, vid_format=vid_format, overide=overide) if seg_flag: seg_path_list = get_prop_path_list(output_path, property_name='seg') video_export_helper(seg_path_list, depth_flag=False, output_path=output_path, vid_scale=vid_scale, vid_format=vid_format, overide=overide) if perception_demo_flag: seg_path_list = get_prop_path_list(output_path, property_name='perception_demo') video_export_helper(seg_path_list, depth_flag=False, output_path=output_path, vid_scale=vid_scale, vid_format=vid_format, overide=overide) ######################################### Normal Estimation utils ####################################### def convert_normals_to_rgb(normal): ''' Maps the normal direction to the rgb cube and returns the corresponsing rgb color :param normal: normal vector :return: rgb: corresponsing rgb values ''' r = int(127.5*normal.x()+127.5) g = int(127.5*normal.y()+127.5) b = int(127.5*normal.z()+127.5) rgb = [r, g, b] return rgb def estimate_normals(point_cloud_filename, depth_param_filename, normals_dir_name, n_neighbors=100): ''' :param point_cloud_filename: full path and name of point cloud file to load :param depth_param_filename: full path and name of depth parameter file :param normals_dir_name: full path to normal estimation output directory :param n_neighbors: number of neighbors for computing the normal vector :return: None. Saves the normal estimation as .png file. ''' frame_filename, point_cloud_file_extension = os.path.splitext(os.path.basename(point_cloud_filename)) depth_ins_params = get_depth_ins_params(depth_param_filename) ply = PlyData.read(point_cloud_filename) vertex = ply['vertex'] (x, y, z) = (vertex[t].tolist() for t in ('x', 'y', 'z')) points = [] for j in range(len(x)): points.append(Point_3(x[j], y[j], z[j])) normals = [] jet_estimate_normals(points, normals, n_neighbors) # compute the normal vectors new_vertices = [] normal_image = np.zeros([424, 512, 3], dtype=np.uint8) for k, point in enumerate(points): if -(point.x() * normals[k].x() + point.y() * normals[k].y() + point.z() * normals[k].z()) < 0: normals[k] = -normals[k] # determine normal ambiguous direction using the camera position normal_rgb = convert_normals_to_rgb(normals[k]) new_vertices.append((point.x(), point.y(), point.z(), normal_rgb[0], normal_rgb[1], normal_rgb[2])) r, c = get_rc_from_xyz(point.x(), point.y(), point.z(), depth_ins_params) normal_image[c, r] = normal_rgb # export normals to .png normals_img_file_name = os.path.join(normals_dir_name, frame_filename + '_normals.png') cv2.imwrite(normals_img_file_name, cv2.flip(normal_image, 1)) print('Saved normals image ' + frame_filename + '_normals.png to ' + normals_dir_name) # # export the normals to color of ply, normal direction can be stored directly to ply # normals_file_name = os.path.join(normals_dir_name, frame_filename+'_normals.ply') # new_vertices = np.array(new_vertices, dtype=[('x', 'f4'), ('y', 'f4'), ('z', 'f4'), # ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')]) # el = PlyElement.describe(new_vertices, 'vertex') # PlyData([el]).write(normals_file_name) # print('Saved Point cloud ' + frame_filename+'_normals.ply to' + normals_dir_name) def export_normal_vectors(input_path, n_neighbors = 100, output_path='', devices='dev3'): ''' Saves normal vector images of the scanned point clouds :param input_path: path to ikea dataset :return: None, exports all png files to output directry ''' if output_path == '': output_path = input_path category_path_list, scan_path_list, rgb_path_list, depth_path_list, depth_params_files,\ rgb_params_files, normals_path_list = get_scan_list(input_path, devices=devices) for i, scan in enumerate(depth_path_list): out_dir = scan.replace(scan[:scan.index("ANU_ikea_dataset") + 17], output_path) out_dir = out_dir[:-5] # remove the depth directory point_cloud_path = os.path.join(out_dir, 'point_clouds') if os.path.exists(point_cloud_path): point_cloud_path_list = get_files(point_cloud_path, file_type='.ply') if not os.path.exists(out_dir): os.makedirs(out_dir) normals_dir_name = os.path.join(out_dir, 'normals') depth_param_filename = depth_params_files[i] if not os.path.exists(normals_dir_name): os.makedirs(normals_dir_name) # for point_cloud_filename in point_cloud_path_list: # parallelize the normal estimation for speed num_cores = multiprocessing.cpu_count() Parallel(n_jobs=num_cores)(delayed(estimate_normals)(point_cloud_filename, depth_param_filename, normals_dir_name, n_neighbors) for point_cloud_filename in point_cloud_path_list) def export_video_montage(input_path, output_path, devices='dev3'): """ export a single video containing videos from different captured modalities including depth, rgb, normal vectors, point clouds, 2D poses. Note: Assumes all modality videos already exist in the input directory Parameters ---------- input_path : dataset directory (where all modality videos are available) output_path : path to save the montage videos Returns ------- Saves the montage video """ _, scan_path_list, _, _, _, _, _ = get_scan_list(input_path, devices) fps = 30 size = (512*3, 424*2 + 2*50) for i, scan in enumerate(scan_path_list): device_list = get_subdirs(scan) for device in device_list: scan_device_path = os.path.join(scan, device) processed_scan_path = scan_device_path.replace(scan_device_path[:scan_device_path.index("ANU_ikea_dataset") + 17], output_path) rgb_video_file = os.path.join(processed_scan_path, 'images/scan_video.avi') depth_video_file = os.path.join(processed_scan_path, 'depth/scan_video.avi') normals_video_file = os.path.join(processed_scan_path, 'normals/scan_video.avi') point_clouds_video_file = os.path.join(processed_scan_path, 'point_clouds/point_cloud_video.avi') pose2D_video_file = os.path.join(processed_scan_path, '2DposeImages/scan_video.avi') video_file_name = os.path.join(processed_scan_path, 'montage.avi') if os.path.exists(rgb_video_file) and os.path.exists(depth_video_file) and \ os.path.exists(normals_video_file) and os.path.exists(point_clouds_video_file) and \ os.path.exists(pose2D_video_file): rgb_vid = cv2.VideoCapture(rgb_video_file) depth_vid = cv2.VideoCapture(depth_video_file) normals_vid = cv2.VideoCapture(normals_video_file) pc_vid = cv2.VideoCapture(point_clouds_video_file) pose2D_vid = cv2.VideoCapture(pose2D_video_file) montage_video_writer = cv2.VideoWriter(video_file_name, cv2.VideoWriter_fourcc(*'DIVX'), fps, size) while (rgb_vid.isOpened()): rgb_ret, rgb_frame = rgb_vid.read() depth_ret, depth_frame = depth_vid.read() normals_ret, normals_frame = normals_vid.read() normals_frame = cv2.flip(normals_frame, 1) pc_ret, pc_frame = pc_vid.read() pc_frame = cv2.flip(pc_frame, 1) pose2D_ret, pose2D_frame = pose2D_vid.read() if rgb_ret and depth_ret and normals_ret and pc_ret and pose2D_ret: rgb_frame = cv2.resize(rgb_frame, (512, 424)) pose2D_frame = cv2.resize(pose2D_frame, (512, 424)) pc_frame = cv2.resize(pc_frame, (512, 424)) rgb_frame = insert_text_to_image(rgb_frame, 'RGB') depth_frame = insert_text_to_image(depth_frame, 'Depth') normals_frame = insert_text_to_image(normals_frame, 'Normal Vectors') pose2D_frame = insert_text_to_image(pose2D_frame, '2D Pose') pc_frame =insert_text_to_image(pc_frame, '3D Point Cloud') montage_row1 = cv2.hconcat([rgb_frame, depth_frame]) montage_row2 = cv2.hconcat([normals_frame, pc_frame, pose2D_frame]) side_margin = int((montage_row2.shape[1] - montage_row1.shape[1]) / 2) montage_row1 = cv2.copyMakeBorder(montage_row1, 0, 0, side_margin, side_margin, cv2.BORDER_CONSTANT, value=[0, 0, 0]) montage_frame = cv2.vconcat([montage_row1, montage_row2]) montage_video_writer.write(montage_frame) else: break rgb_vid.release() depth_vid.release() normals_vid.release() pc_vid.release() pose2D_vid.release() montage_video_writer.release() print('Saved ' + video_file_name) else: print('One or more videos required for the montage is not available, please preprocess the dataset first') def insert_text_to_image(img, txt, font=cv2.FONT_HERSHEY_SIMPLEX, font_size=1): # get boundary of this text textsize = cv2.getTextSize(txt, font, 1, 2)[0] # get coords based on boundary textX = int((img.shape[1] - textsize[0]) / 2) img = cv2.copyMakeBorder(img, 50, 0, 0, 0, cv2.BORDER_CONSTANT, value=[0, 0, 0]) cv2.putText(img, txt, (textX, 40), font, 1, (255, 255, 255), 2, cv2.LINE_AA) return img def export_pose_images(input_path, output_path='', device='dev3', scan_name=None, mode='skeleton', skeleton_type='openpose'): """ Saves images with human pose Parameters ---------- input_path : path to ikea dataset output_path : path to save the output images scan_name : None | scane name to export. if None traverses the entire dataset Returns ------- exports all jpg files to output directry """ if output_path == '': output_path = input_path if not scan_name is None: scan_path = os.path.join(input_path, scan_name, device) output_path = os.path.join(output_path, scan_name, device, '2DposeImages') os.makedirs(output_path, exist_ok=True) rgb_frames = get_files(os.path.join(scan_path, 'images'), file_type='.jpg') n_frames = len(rgb_frames) num_cores = multiprocessing.cpu_count() Parallel(n_jobs=num_cores)(delayed(export_pose_helper)(scan_path, rgb_frames, j, output_path, mode, skeleton_type) for j in range(n_frames)) # # debug # for j in range(n_frames): # export_pose_helper(scan_path, rgb_frames, j, output_path, mode, skeleton_type=skeleton_type) else: #TODO implement dataset traversal pose export pass def get_seg_data(input_path, output_path='', device='dev3', scan_name=None): color_cat = {1: (255, 0, 0), 2: (0, 0, 255), 3: (0, 255, 0), 4: (127, 0, 127), 5: (127, 64, 0), 6: (64, 0, 127), 7: (64, 0, 64)} cat_dict = {1: 'table_top', 2: 'leg', 3: 'shelf', 4: 'side_panel', 5: 'front_panel', 6: 'bottom_panel', 7: 'rear_panel'} if output_path == '': output_path = input_path scan_path = os.path.join(input_path, scan_name, device) # output_path = os.path.join(output_path, scan_name, device, 'seg') # os.makedirs(output_path, exist_ok=True) rgb_frames = get_files(os.path.join(scan_path, 'images'), file_type='.jpg') n_frames = len(rgb_frames) scan_name = scan_path.split('/')[-2] seg_json_filename = os.path.join(scan_path, 'seg', scan_name + '.json') tracking_path = os.path.join(scan_path, 'seg', 'tracklets_interp_' + scan_name + '.txt') all_segments, dict_tracks, track_id = get_all_segments_and_tracks(seg_json_filename, tracking_path) # Obtain Unique colors for each part dict_colors = get_object_segment_color_dict(track_id) all_segments_dict = {} for item in all_segments['annotations']: if item['image_id'] not in all_segments_dict: all_segments_dict[item['image_id']] = [] all_segments_dict[item['image_id']].append(item) return rgb_frames, dict_tracks, all_segments, all_segments_dict, dict_colors, color_cat, cat_dict, n_frames def get_seg_data_v2(input_path, output_path='', device='dev3', scan_name=None): # This function works specifically for the training data where psudo ground truth is available and tracking data isnt. color_cat = {1: (129, 0, 70), 2: (220, 120, 0), 3: (255, 100, 220), 4: (6, 231, 255), 5: (89, 0, 251), 6: (251, 121, 64), 7: (171, 128, 126)} cat_dict = {1: 'table_top', 2: 'leg', 3: 'shelf', 4: 'side_panel', 5: 'front_panel', 6: 'bottom_panel', 7: 'rear_panel'} if output_path == '': output_path = input_path scan_path = os.path.join(input_path, scan_name, device) rgb_frames = get_files(os.path.join(scan_path, 'images'), file_type='.jpg') n_frames = len(rgb_frames) seg_pgt_json_filename = os.path.join(scan_path, 'pseudo_gt_coco_format.json') seg_gt_json_filename = os.path.join(scan_path, 'manual_coco_format.json') gt_segments = json.load(open(seg_gt_json_filename)) pgt_segments = json.load(open(seg_pgt_json_filename)) all_segments = {'images': np.concatenate([gt_segments['images'], pgt_segments['images']]), 'annotations': np.concatenate([gt_segments['annotations'], pgt_segments['annotations']]), 'categories': gt_segments['categories']} all_segments_dict = {} for item in gt_segments['annotations']: file_name = gt_segments['images'][item['image_id']]['file_name'] if file_name not in all_segments_dict: all_segments_dict[file_name] = [] all_segments_dict[file_name].append(item) for item in pgt_segments['annotations']: file_name = pgt_segments['images'][item['image_id']-1]['file_name'] # TODO: remove -1 after indexing is fixed if file_name not in all_segments_dict: all_segments_dict[file_name] = [] all_segments_dict[file_name].append(item) return rgb_frames, all_segments, all_segments_dict, color_cat, cat_dict, n_frames def export_seg_images(input_path, output_path='', device='dev3', scan_name=None): """ Saves images with object segmentation Parameters ---------- input_path : path to ikea dataset output_path : path to save the output images scan_name : None | scane name to export. if None traverses the entire dataset Returns ------- exports all jpg files to output directry """ if not scan_name is None: rgb_frames, dict_tracks, all_segments, all_segments_dict, dict_colors, color_cat, cat_dict, n_frames =\ get_seg_data(input_path=input_path, output_path=output_path, device=device, scan_name=scan_name) else: #TODO implement dataset traversal pose export pass num_cores = multiprocessing.cpu_count() Parallel(n_jobs=num_cores)(delayed(export_seg_helper)(rgb_frames, j, output_path, dict_tracks, all_segments, all_segments_dict, dict_colors, color_cat, cat_dict) for j in range(n_frames)) def get_all_segments_and_tracks(seg_json_filename, tracking_path): """ Load the part segments and tracks from json and txt files Parameters ---------- seg_json_filename : path to .json segments file tracking_path : path to tracking txt file Returns ------- """ all_segments = json.load(open(seg_json_filename)) fid_track = open(tracking_path) tracking_results = str.split(fid_track.read(), '\n') track_id = [] dict_tracks = {} for track in tracking_results: if track != "": track_id.append(int(str.split(track, ' ')[-3])) items = str.split(track, ' ') if items[-2] not in dict_tracks: dict_tracks[items[-2]] = [] dict_tracks[items[-2]].append([items[0:5], items[-1]]) return all_segments, dict_tracks, track_id def get_object_segment_color_dict(track_id): """ Parameters ---------- track_id : Returns ------- """ dict_colors = {} max_part = np.max(np.unique(track_id)) r = random.sample(range(0, 255), max_part) g = random.sample(range(0, 255), max_part) b = random.sample(range(0, 255), max_part) for part_id in np.unique(track_id): dict_colors[str(part_id)] = (int(r[part_id - 1]), int(g[part_id - 1]), int(b[part_id - 1])) return dict_colors def export_pose_helper(scan_path, rgb_frames, file_idx, output_path, mode, skeleton_type='openpose'): """ export pose for a single image - allows parallelization Parameters ---------- scan_path : rgb_frames : file_idx : output_path : Returns ------- """ frame_filename = str(file_idx).zfill(6) pose_json_filename = os.path.join(scan_path, 'predictions', 'pose2d', skeleton_type, 'scan_video_' + str(file_idx).zfill(12) + '_keypoints.json') output_filename = os.path.join(output_path, frame_filename + '.jpg') img = cv2.imread(rgb_frames[file_idx]) if mode == 'skeleton': img = img_pose_skeleton_overlay(img, pose_json_filename, skeleton_type=skeleton_type ) else: img = img_pose_mesh_overlay(img, pose_json_filename) cv2.imwrite(output_filename, img) print('Saved pose for ' + frame_filename + '.jpeg to ' + output_path) def export_seg_helper(rgb_frames, file_idx, output_path, dict_tracks, all_segments, all_segments_dict, dict_colors, color_cat, cat_dict): """ export object segmentation for a single image - allows parallelization Parameters ---------- scan_path : rgb_frames : file_idx : output_path : Returns ------- """ frame_filename = str(file_idx).zfill(6) image_id = find_seg_id(frame_filename, all_segments) fname_id = int(str.split(frame_filename, '.')[0]) segment = all_segments_dict[image_id] track = dict_tracks[str(fname_id)] output_filename = os.path.join(output_path, frame_filename + '.jpg') img = cv2.imread(rgb_frames[file_idx]) img = img_seg_overlay(img, segment, track, dict_colors, color_cat, cat_dict) cv2.imwrite(output_filename, img) print('Saved object segmentation for ' + frame_filename + '.jpeg to ' + output_path) def find_seg_id(image_name, test_data): for item in test_data['images']: if item['file_name'].find(image_name) != -1: return item['id'] return -1 def find_seg_id_v2(image_name, test_data): for img in test_data.keys(): if image_name in img: return img return -1 def img_seg_overlay(image, predictions, part_tracks, dict_colors, color_cat, cat_dict): """ overlays object segmentation from json file on the given image Parameters ---------- img : rgb image json_path : path to .json file Returns ------- img : rgb img with object segments overlay """ for part in part_tracks: assigned = 0 for item in predictions: box = item['bbox'] label = item['category_id'] segment = item['segmentation'] segment_id = item['id'] contours = [] length = len(segment) if segment_id == int(part[1]): for i in range(length): id = 0 contour = segment[i] cnt = len(contour) c = np.zeros((int(cnt / 2), 1, 2), dtype=np.int32) for j in range(0, cnt, 2): c[id, 0, 0] = contour[j] c[id, 0, 1] = contour[j + 1] id = id + 1 contours.append(c) cv2.drawContours(image, contours, -1, color_cat[label], -1) x1, y1 = box[:2] cv2.putText(image, cat_dict[label], (int(x1) - 10, int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, .5, (0, 0, 0), 1) rgb = dict_colors[part[0][-1]] assigned = 1 image = cv2.rectangle(image, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), rgb, 3) if assigned == 0: rgb = dict_colors[part[0][-1]] image = cv2.rectangle(image, (int(float(part[0][0])), int(float(part[0][1]))), (int(float(part[0][0]) + float(part[0][2])), int(float(part[0][1]) + float(part[0][3]))), rgb, 3) return image def img_seg_overlay_v2(image, predictions, color_cat, cat_dict, show_text=False): """ overlays object segmentation from json file on the given image Parameters ---------- img : rgb image json_path : path to .json file Returns ------- img : rgb img with object segments overlay """ for part in predictions: contours = [] length = len(part['segmentation']) bbox = part['bbox'] for i in range(length): id = 0 contour = part['segmentation'][i] cnt = len(contour) c = np.zeros((int(cnt / 2), 1, 2), dtype=np.int32) for j in range(0, cnt, 2): c[id, 0, 0] = contour[j] c[id, 0, 1] = contour[j + 1] id = id + 1 if c.shape[0] != 0: contours.append(c) color = color_cat[part['category_id']] cv2.drawContours(image, contours, -1, (color[0], color[1], color[2]), -1) # if 'part_id' in part: if show_text: cv2.putText(image, cat_dict[part['category_id']], (int(bbox[0] + bbox[2] // 2), int(bbox[1] + bbox[3] // 2)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1) image = cv2.rectangle(image, (int(bbox[0]), int(bbox[1])), (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3])), (0, 0, 0),2) return image def img_pose_skeleton_overlay(img, pose_json_filename, show_numbers=False, anonimyze=False, skeleton_type='openpose'): """ overlays pose from json file on the given image Parameters ---------- img : rgb image json_path : path to .json file Returns ------- img : rgb img with pose overlay """ j2d = read_pose_json(pose_json_filename) if skeleton_type == 'openpose': skeleton_pairs = joint_ids.get_body25_connectivity() skeleton_pairs = skeleton_pairs[0:19] else: skeleton_pairs = joint_ids.get_ikea_connectivity() part_colors = joint_ids.get_pose_colors(mode='bgr') if anonimyze: # anonimize the img by plotting a black circle centered on the nose nose = tuple(int(element) for element in j2d[0]) radius = 45 img = cv2.circle(img, nose, radius, (0, 0, 0), -1) # plot the joints bad_points_idx = [] for i, point in enumerate(j2d): if not point[0] == 0 and not point[1] == 0: cv2.circle(img, (int(point[0]), int(point[1])), 8, (0, 255, 255), thickness=-1, lineType=cv2.FILLED) else: bad_points_idx.append(i) # plot the skeleton for i, pair in enumerate(skeleton_pairs): partA = pair[0] partB = pair[1] if partA not in bad_points_idx and partB not in bad_points_idx: # if j2d[partA] and j2d[partB]: line_color = part_colors[i] img = cv2.line(img, tuple([int(el) for el in j2d[partA]]), tuple([int(el) for el in j2d[partB]]), line_color, 3) if show_numbers: # add numbers to the joints for i, point in enumerate(j2d): if i not in bad_points_idx: cv2.putText(img, "{}".format(i), (int(point[0]), int(point[1])), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2, lineType=cv2.LINE_AA) return img def img_pose_mesh_overlay(img, pose_json_filename): """ overlays pose mesh (human SMPL model) from json file on the given image Parameters ---------- img : rgb image json_path : path to .json file Returns ------- img : rgb img with pose overlay """ data = read_pose_json(pose_json_filename) vertices = data[0]['verts'] betas = data[0]['betas'] cam = data[0]['orig_cam'] mesh_color = [1.0, 1.0, 0.9] renderer = Renderer(resolution=(img.shape[1], img.shape[0]), orig_img=True, wireframe=False) img = renderer.render(img, vertices, cam=cam, color=mesh_color, mesh_filename=None) return img def read_pose_json(json_path): """ Parameters ---------- json_path : path to json file Returns ------- data: a list of dictionaries containing the pose information per video frame """ with open(json_path) as json_file: json_data = json.load(json_file) data = json_data['people'] if len(data) > 1: data = get_active_person(data) else: data =
np.array(data[0]['pose_keypoints_2d'])
numpy.array
# -*- coding: utf-8 -*- # # This file is part of the pyFDA project hosted at https://github.com/chipmuenk/pyfda # # Copyright © pyFDA Project Contributors # Licensed under the terms of the MIT License # (see file LICENSE in root directory for details) """ Create a popup window with FFT window information """ import logging logger = logging.getLogger(__name__) import numpy as np from numpy.fft import fft, fftshift, fftfreq from scipy.signal import argrelextrema import matplotlib.patches as mpl_patches from pyfda.libs.pyfda_lib import safe_eval, to_html, pprint_log from pyfda.libs.pyfda_qt_lib import qwindow_stay_on_top from pyfda.pyfda_rc import params from pyfda.libs.pyfda_fft_windows_lib import calc_window_function from pyfda.plot_widgets.mpl_widget import MplWidget import pyfda.filterbroker as fb # importing filterbroker initializes all its globals from pyfda.libs.compat import (Qt, pyqtSignal, QHBoxLayout, QVBoxLayout, QDialog, QCheckBox, QLabel, QLineEdit, QFrame, QFont, QTextBrowser, QSplitter,QTableWidget, QTableWidgetItem) #------------------------------------------------------------------------------ class Plot_FFT_win(QDialog): """ Create a pop-up widget for displaying time and frequency view of an FFT window. Data is passed via the dictionary `win_dict` that is passed during construction. """ # incoming sig_rx = pyqtSignal(object) # outgoing sig_tx = pyqtSignal(object) def __init__(self, parent, win_dict=fb.fil[0]['win_fft'], sym=True, title='pyFDA Window Viewer'): super(Plot_FFT_win, self).__init__(parent) self.needs_calc = True self.needs_draw = True self.needs_redraw = True self.bottom_f = -80 # min. value for dB display self.bottom_t = -60 self.N = 32 # initial number of data points self.N_auto = win_dict['win_len'] self.pad = 16 # amount of zero padding self.win_dict = win_dict self.sym = sym self.tbl_rows = 2 self.tbl_cols = 6 # initial settings for checkboxes self.tbl_sel = [True, True, False, False] self.setAttribute(Qt.WA_DeleteOnClose) self.setWindowTitle(title) self._construct_UI() qwindow_stay_on_top(self, True) #------------------------------------------------------------------------------ def closeEvent(self, event): """ Catch closeEvent (user has tried to close the window) and send a signal to parent where window closing is registered before actually closing the window. """ self.sig_tx.emit({'sender':__name__, 'closeEvent':''}) event.accept() #------------------------------------------------------------------------------ def process_sig_rx(self, dict_sig=None): """ Process signals coming from the navigation toolbar and from sig_rx """ logger.debug("PROCESS_SIG_RX - vis: {0}\n{1}"\ .format(self.isVisible(), pprint_log(dict_sig))) if ('view_changed' in dict_sig and dict_sig['view_changed'] == 'win')\ or ('filt_changed' in dict_sig and dict_sig['filt_changed'] == 'firwin')\ or self.needs_calc: # logger.warning("Auto: {0} - WinLen: {1}".format(self.N_auto, self.win_dict['win_len'])) self.N_auto = self.win_dict['win_len'] self.calc_N() if self.isVisible(): self.draw() self.needs_calc = False else: self.needs_calc = True elif 'home' in dict_sig: self.update_view() else: logger.error("Unknown content of dict_sig: {0}".format(dict_sig)) #------------------------------------------------------------------------------ def _construct_UI(self): """ Intitialize the widget, consisting of: - Matplotlib widget with NavigationToolbar - Frame with control elements """ self.bfont = QFont() self.bfont.setBold(True) self.chk_auto_N = QCheckBox(self) self.chk_auto_N.setChecked(False) self.chk_auto_N.setToolTip("Use number of points from calling routine.") self.lbl_auto_N = QLabel("Auto " + to_html("N", frmt='i')) self.led_N = QLineEdit(self) self.led_N.setText(str(self.N)) self.led_N.setMaximumWidth(70) self.led_N.setToolTip("<span>Number of window data points.</span>") self.chk_log_t = QCheckBox("Log", self) self.chk_log_t.setChecked(False) self.chk_log_t.setToolTip("Display in dB") self.led_log_bottom_t = QLineEdit(self) self.led_log_bottom_t.setText(str(self.bottom_t)) self.led_log_bottom_t.setMaximumWidth(50) self.led_log_bottom_t.setEnabled(self.chk_log_t.isChecked()) self.led_log_bottom_t.setToolTip("<span>Minimum display value for log. scale.</span>") self.lbl_log_bottom_t = QLabel("dB", self) self.lbl_log_bottom_t.setEnabled(self.chk_log_t.isChecked()) self.chk_norm_f = QCheckBox("Norm", self) self.chk_norm_f.setChecked(True) self.chk_norm_f.setToolTip("Normalize window spectrum for a maximum of 1.") self.chk_half_f = QCheckBox("Half", self) self.chk_half_f.setChecked(True) self.chk_half_f.setToolTip("Display window spectrum in the range 0 ... 0.5 f_S.") self.chk_log_f = QCheckBox("Log", self) self.chk_log_f.setChecked(True) self.chk_log_f.setToolTip("Display in dB") self.led_log_bottom_f = QLineEdit(self) self.led_log_bottom_f.setText(str(self.bottom_f)) self.led_log_bottom_f.setMaximumWidth(50) self.led_log_bottom_f.setEnabled(self.chk_log_f.isChecked()) self.led_log_bottom_f.setToolTip("<span>Minimum display value for log. scale.</span>") self.lbl_log_bottom_f = QLabel("dB", self) self.lbl_log_bottom_f.setEnabled(self.chk_log_f.isChecked()) layHControls = QHBoxLayout() layHControls.addWidget(self.chk_auto_N) layHControls.addWidget(self.lbl_auto_N) layHControls.addWidget(self.led_N) layHControls.addStretch(1) layHControls.addWidget(self.chk_log_t) layHControls.addWidget(self.led_log_bottom_t) layHControls.addWidget(self.lbl_log_bottom_t) layHControls.addStretch(10) layHControls.addWidget(self.chk_norm_f) layHControls.addStretch(1) layHControls.addWidget(self.chk_half_f) layHControls.addStretch(1) layHControls.addWidget(self.chk_log_f) layHControls.addWidget(self.led_log_bottom_f) layHControls.addWidget(self.lbl_log_bottom_f) self.tblWinProperties = QTableWidget(self.tbl_rows, self.tbl_cols, self) self.tblWinProperties.setAlternatingRowColors(True) self.tblWinProperties.verticalHeader().setVisible(False) self.tblWinProperties.horizontalHeader().setVisible(False) self._init_table(self.tbl_rows, self.tbl_cols, " ") self.txtInfoBox = QTextBrowser(self) #---------------------------------------------------------------------- # ### frmControls ### # # This widget encompasses all control subwidgets #---------------------------------------------------------------------- self.frmControls = QFrame(self) self.frmControls.setObjectName("frmControls") self.frmControls.setLayout(layHControls) #---------------------------------------------------------------------- # ### mplwidget ### # # main widget: Layout layVMainMpl (VBox) is defined with MplWidget, # additional widgets can be added (like self.frmControls) # The widget encompasses all other widgets. #---------------------------------------------------------------------- self.mplwidget = MplWidget(self) self.mplwidget.layVMainMpl.addWidget(self.frmControls) self.mplwidget.layVMainMpl.setContentsMargins(*params['wdg_margins']) #---------------------------------------------------------------------- # ### frmInfo ### # # This widget encompasses the text info box and the table with window # parameters. #---------------------------------------------------------------------- layVInfo = QVBoxLayout(self) layVInfo.addWidget(self.tblWinProperties) layVInfo.addWidget(self.txtInfoBox) self.frmInfo = QFrame(self) self.frmInfo.setObjectName("frmInfo") self.frmInfo.setLayout(layVInfo) #---------------------------------------------------------------------- # ### splitter ### # # This widget encompasses all control subwidgets #---------------------------------------------------------------------- splitter = QSplitter(self) splitter.setOrientation(Qt.Vertical) splitter.addWidget(self.mplwidget) splitter.addWidget(self.frmInfo) # setSizes uses absolute pixel values, but can be "misused" by specifying values # that are way too large: in this case, the space is distributed according # to the _ratio_ of the values: splitter.setSizes([3000,1000]) layVMain = QVBoxLayout() layVMain.addWidget(splitter) self.setLayout(layVMain) #---------------------------------------------------------------------- # Set subplots # self.ax = self.mplwidget.fig.subplots(nrows=1, ncols=2) self.ax_t = self.ax[0] self.ax_f = self.ax[1] self.draw() # initial drawing #---------------------------------------------------------------------- # GLOBAL SIGNALS & SLOTs #---------------------------------------------------------------------- self.sig_rx.connect(self.process_sig_rx) #---------------------------------------------------------------------- # LOCAL SIGNALS & SLOTs #---------------------------------------------------------------------- self.chk_log_f.clicked.connect(self.update_view) self.chk_log_t.clicked.connect(self.update_view) self.led_log_bottom_t.editingFinished.connect(self.update_bottom) self.led_log_bottom_f.editingFinished.connect(self.update_bottom) self.chk_auto_N.clicked.connect(self.calc_N) self.led_N.editingFinished.connect(self.draw) self.chk_norm_f.clicked.connect(self.draw) self.chk_half_f.clicked.connect(self.update_view) self.mplwidget.mplToolbar.sig_tx.connect(self.process_sig_rx) self.tblWinProperties.itemClicked.connect(self._handle_item_clicked) #------------------------------------------------------------------------------ def _init_table(self, rows, cols, val): for r in range(rows): for c in range(cols): item = QTableWidgetItem(val) if c % 3 == 0: item.setFlags(Qt.ItemIsUserCheckable | Qt.ItemIsEnabled) if self.tbl_sel[r * 2 + c % 3]: item.setCheckState(Qt.Checked) else: item.setCheckState(Qt.Unchecked) self.tblWinProperties.setItem(r,c,item) # https://stackoverflow.com/questions/12366521/pyqt-checkbox-in-qtablewidget #------------------------------------------------------------------------------ def _set_table_item(self, row, col, val, font=None, sel=None): """ Set the table item with the index `row, col` and the value val """ item = self.tblWinProperties.item(row, col) item.setText(str(val)) if font: self.tblWinProperties.item(row,col).setFont(font) if sel == True: item.setCheckState(Qt.Checked) if sel == False: item.setCheckState(Qt.Unchecked) # when sel is not specified, don't change anything #------------------------------------------------------------------------------ def _handle_item_clicked(self, item): if item.column() % 3 == 0: # clicked on checkbox num = item.row() * 2 + item.column() // 3 if item.checkState() == Qt.Checked: self.tbl_sel[num] = True logger.debug('"{0}:{1}" Checked'.format(item.text(), num)) else: self.tbl_sel[num] = False logger.debug('"{0}:{1}" Unchecked'.format(item.text(), num)) elif item.column() % 3 == 1: # clicked on value field logger.info("{0:s} copied to clipboard.".format(item.text())) fb.clipboard.setText(item.text()) self.update_view() #------------------------------------------------------------------------------ def update_bottom(self): """ Update log bottom settings """ self.bottom_t = safe_eval(self.led_log_bottom_t.text(), self.bottom_t, sign='neg', return_type='float') self.led_log_bottom_t.setText(str(self.bottom_t)) self.bottom_f = safe_eval(self.led_log_bottom_f.text(), self.bottom_f, sign='neg', return_type='float') self.led_log_bottom_f.setText(str(self.bottom_f)) self.update_view() #------------------------------------------------------------------------------ def calc_N(self): """ (Re-)Calculate the number of data points when Auto N chkbox has been clicked or when the number of data points has been updated outside this class """ if self.chk_auto_N.isChecked(): self.N = self.N_auto self.draw() #------------------------------------------------------------------------------ def calc_win(self): """ (Re-)Calculate the window and its FFT """ self.led_N.setEnabled(not self.chk_auto_N.isChecked()) if not self.chk_auto_N.isChecked(): self.N = safe_eval(self.led_N.text(), self.N, sign='pos', return_type='int') # else: #self.N = self.win_dict['win_len'] self.led_N.setText(str(self.N)) self.n = np.arange(self.N) self.win = calc_window_function(self.win_dict, self.win_dict['name'], self.N, sym=self.sym) self.nenbw = self.N * np.sum(np.square(self.win)) / (np.square(np.sum(self.win))) self.scale = self.N / np.sum(self.win) self.F = fftfreq(self.N * self.pad, d=1. / fb.fil[0]['f_S']) # use zero padding self.Win = np.abs(fft(self.win, self.N * self.pad)) if self.chk_norm_f.isChecked(): self.Win /= (self.N / self.scale)# correct gain for periodic signals (coherent gain) first_zero = argrelextrema(self.Win[:(self.N*self.pad)//2], np.less) if
np.shape(first_zero)
numpy.shape
""" Created on Jan. 07, 2021 @author: Heng-Sheng (Hanson) Chang """ import numpy as np from numba import njit import multiprocessing as mp from elastica._linalg import _batch_cross from elastica._calculus import quadrature_kernel from elastica.external_forces import inplace_addition, NoForces from gym_softrobot.utils.actuation.actuations.actuation import ContinuousActuation, ApplyActuation from gym_softrobot.utils.actuation.frame_tools import change_box_to_arrow_axes class Muscle(ContinuousActuation): def __init__(self, n_elements): ContinuousActuation.__init__(self, n_elements) self.n_elements = n_elements self.activation = np.zeros(self.n_elements-1) self.s = np.linspace(0, 1, self.n_elements+1)[1:-1] def set_activation(self, activation): self.activation[:] = activation return def get_activation(self): raise NotImplementedError class MuscleForce(Muscle): def __init__(self, n_elements): Muscle.__init__(self, n_elements) self.distributed_activation = np.zeros(self.n_elements) def get_activation(self): redistribute_activation(self.activation, self.distributed_activation) return self.distributed_activation @njit(cache=True) def redistribute_activation(activation, distributed_activation): distributed_activation[0] = activation[0]/2 distributed_activation[-1] = activation[-1]/2 distributed_activation[1:-1] = (activation[1:] + activation[:-1])/2 return class MuscleCouple(Muscle): def __init__(self, n_elements): Muscle.__init__(self, n_elements) def get_activation(self): return self.activation class MuscleFibers(object): def __init__(self, n_elements, control_numbers): self.controls = np.zeros(control_numbers) # self.G_activations = np.zeros((control_numbers, n_elements)) self.G_internal_forces = np.zeros((control_numbers, 3, n_elements)) self.G_internal_couples =
np.zeros((control_numbers, 3, n_elements-1))
numpy.zeros
import numpy as np from PIL import Image import jittor as jt from jittor import nn from jittor import transform from jittor.lr_scheduler import CosineAnnealingLR from data.jimm import resnet26 from data.feature_utils import * model_dict_path = '/home/fengyuan/JittorModels/trained-models/restnet-14-0.98.pkl' img_path = '/home/fengyuan/JittorModels/trainingSet/trainingSet/0/img_1.jpg' def get_train_transforms(): return transform.Compose([ transform.RandomCropAndResize((448, 448)), transform.RandomHorizontalFlip(), transform.ToTensor(), transform.ImageNormalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) ]) def get_valid_transforms(): return transform.Compose([ transform.Resize(448), # transform.CenterCrop(448), transform.ToTensor(), transform.ImageNormalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) ]) class Extractor(): """ Extract grad and output of a model """ def __init__(self, model): self.model = model self.model.eval() self.model_output = None self.conv_output = [] self.relu_output = [] self.conv_grads_out = [] self.relu_grads_out = [] self.conv_grads_in = [] def remove_hooks(self): for module_pos, module in enumerate(unpack_children(self.model)): if isinstance(module, jt.nn.ReLU): module.remove_forward_hook() module.remove_backward_hook() elif isinstance(module, jt.nn.Conv2d): module.remove_forward_hook() module.remove_backward_hook() def clear_cache(self): self.conv_output = [] self.relu_output = [] self.conv_grads_out = [] self.relu_grads_out = [] self.conv_grads_in = [] def register_hooks(self, type="cam"): self.remove_hooks() self.clear_cache() if type=="cam": self.register_cam_hooks() elif type=="gbp": self.register_gbp_hooks() elif type=="vbp": self.register_vbp_hooks() else: print("wrong hook type") def register_cam_hooks(self): def relu_forward_hook(m, t_in, t_out): self.relu_output.append(t_out) def relu_backward_hook(m, g_in, g_out): self.relu_grads_out.append(g_out[0]) def conv_forward_hook(m, t_in, t_out): self.conv_output.append(t_out) def conv_backward_hook(m, g_in, g_out): self.conv_grads_out.append(g_out[0]) for module_pos, module in enumerate(unpack_children(self.model)): if isinstance(module, jt.nn.ReLU): module.register_forward_hook(relu_forward_hook) module.register_backward_hook(relu_backward_hook) elif isinstance(module, jt.nn.Conv2d): module.register_forward_hook(conv_forward_hook) module.register_backward_hook(conv_backward_hook) def register_vbp_hooks(self): def conv_backward_hook(m, g_in, g_out): self.conv_grads_in.append(g_in[0]) def relu_backward_hook(m, g_in, g_out): g_in[0].data for module_pos, module in enumerate(unpack_children(self.model)): if isinstance(module, jt.nn.ReLU): module.register_backward_hook(relu_backward_hook) elif isinstance(module, jt.nn.Conv2d): module.register_backward_hook(conv_backward_hook) def register_gbp_hooks(self): def relu_backward_hook(module, grad_in, grad_out): """ If there is a negative gradient, change it to zero """ grad_in[0].data corresponding_forward_output = self.relu_output[-1] corresponding_forward_output.data[corresponding_forward_output.data > 0] = 1 modified_grad_out = corresponding_forward_output * jt.clamp(grad_in[0], min_v=0.0) del self.relu_output[-1] return (modified_grad_out,) def relu_forward_hook(m, t_in, t_out): self.relu_output.append(t_out) def conv_backward_hook(m, g_in, g_out): self.conv_grads_in.append(g_in[0]) for module_pos, module in enumerate(unpack_children(self.model)): if isinstance(module, jt.nn.ReLU): module.register_forward_hook(relu_forward_hook) module.register_backward_hook(relu_backward_hook) elif isinstance(module, jt.nn.Conv2d): module.register_backward_hook(conv_backward_hook) def forward_and_backward(self, model_input, target_class): model_input.start_grad() self.model_output = self.model(model_input) if not target_class: target_class = np.argmax(self.model_output.data) one_hot_output = jt.float32([[0 for i in range(self.model_output.size()[-1])]]) one_hot_output.data[0][target_class] = 1 criterion = nn.CrossEntropyLoss() loss = criterion(self.model_output, one_hot_output) model_input_grad = jt.grad(loss, model_input) model_input_grad.sync() def generate_gradients(self, input_image, target_class): # grad at first conv self.clear_cache() self.forward_and_backward(input_image, target_class) gradients = self.conv_grads_in[-1] self.clear_cache() return gradients # ------for integrated grad------------ def generate_images_on_linear_path(self, input_image, steps): step_list = np.arange(steps+1)/steps xbar_list = [input_image*step for step in step_list] return xbar_list def generate_integrated_gradients(self, model_input, target_class, steps=10): xbar_list = self.generate_images_on_linear_path(model_input, steps) integrated_grads = np.zeros(model_input.size()) for xbar_image in xbar_list: single_integrated_grad = self.generate_gradients(xbar_image, target_class) integrated_grads = integrated_grads + single_integrated_grad/steps return integrated_grads[0] class FeatureVis(): """ Algorithms for feature visualization (bp) vanilla_bp, guided_bp (cam) grad_cam, layer_cam, guided_grad_cam (grad) integrated_gradients (gradximg) [(gbp/integ)_]grad_times_image, """ def __init__(self, model=None): self.model = model self.model.eval() self.transform = get_valid_transforms() self.ori_img = get_img(img_path) self.model_input = self.transform(self.ori_img) self.model_input = self.model_input.reshape((1,3,448,448)) self.model_input = jt.array(self.model_input) self.target_class = extract_target_class(img_path) def get_feature_vis(self, model_input=None, target_class=None, method='vanilla_bp'): """ model_input (numpy, [w, h, 3]) return numpy([w, h, 3]) """ if model_input is not None: if model_input.shape[2]==3: # if shape (w, h, 3) img_input = model_input.transpose((2,0,1)) img_input = self.transform(model_input) w, h = img_input.shape[1], img_input.shape[2] img_input = img_input.reshape((1, 3, w, h)) img_input = jt.array(img_input) print(img_input.shape, target_class) if not 'cam' in method: grads = eval("self.%s" % method)(img_input=img_input, target_class=target_class) else: ori_img = Image.fromarray(np.uint8(model_input)) grads = eval("self.%s" % method)(img_input=img_input, target_class=target_class, ori_img=ori_img) grads = grads.transpose((1,2,0)) # change to (w, h, 3) return grads def vanilla_bp(self, img_input, target_class, file_name_to_export='vanilla_bp', save=False): extractor = Extractor(self.model) extractor.register_hooks(type="vbp") first_conv_grad = extractor.generate_gradients(img_input, target_class)[0].data vanilla_grads = first_conv_grad if save: save_gradient_images(vanilla_grads, file_name_to_export + '_Guided_BP_color') grayscale_guided_grads = convert_to_grayscale(vanilla_grads) save_gradient_images(grayscale_guided_grads, file_name_to_export + '_Guided_BP_gray') pos_sal, neg_sal = get_positive_negative_saliency(vanilla_grads) save_gradient_images(pos_sal, file_name_to_export + '_p_sal') save_gradient_images(neg_sal, file_name_to_export + '_n_sal') # grayscale_guided_grads = convert_to_grayscale(vanilla_grads) # vanilla_grads = grayscale_guided_grads print('vanilla_bp', type(vanilla_grads), vanilla_grads.shape) vanilla_grads = normalize(vanilla_grads) return vanilla_grads def guided_bp(self, img_input, target_class, file_name_to_export='guided_bp', save=False): extractor = Extractor(self.model) extractor.register_hooks("gbp") first_conv_grad = extractor.generate_gradients(img_input, target_class)[0].data guided_grads = first_conv_grad if save: save_gradient_images(guided_grads, file_name_to_export + '_Guided_BP_color') grayscale_guided_grads = convert_to_grayscale(guided_grads) save_gradient_images(grayscale_guided_grads, file_name_to_export + '_Guided_BP_gray') pos_sal, neg_sal = get_positive_negative_saliency(guided_grads) save_gradient_images(pos_sal, file_name_to_export + '_p_sal') save_gradient_images(neg_sal, file_name_to_export + '_n_sal') print('guided_bp', type(guided_grads), guided_grads.shape) return normalize(guided_grads) def integrated_gradients(self, img_input, target_class, steps=10, file_name_to_export='integrated_gradients', save=False): extractor = Extractor(self.model) extractor.register_hooks("vbp") integrated_grads = extractor.generate_integrated_gradients(img_input, target_class, steps) integrated_grads = integrated_grads.data if save: grayscale_integrated_grads = convert_to_grayscale(integrated_grads) save_gradient_images(grayscale_integrated_grads, file_name_to_export + '_Integrated_G_gray') print('integrated_gradients', type(integrated_grads), integrated_grads.shape) grayscale_integrated_grads = convert_to_grayscale(integrated_grads) return normalize(grayscale_integrated_grads) def grad_times_image(self, img_input, target_class, file_name_to_export='gradximg', save=False): extractor = Extractor(self.model) extractor.register_hooks("vbp") first_conv_grad = extractor.generate_gradients(img_input, target_class)[0].data vanilla_grads = first_conv_grad grad_times_image = vanilla_grads * img_input.numpy()[0] if save: grayscale_vanilla_grads = convert_to_grayscale(grad_times_image) save_gradient_images(grayscale_vanilla_grads, file_name_to_export + '_grad_times_image_gray') print('grad_times_image', type(grad_times_image), grad_times_image.shape) grayscale_vanilla_grads = convert_to_grayscale(grad_times_image) return normalize(grayscale_vanilla_grads) def gbp_grad_times_image(self, img_input, target_class, file_name_to_export='gbp_gradximg', save=False): extractor = Extractor(self.model) extractor.register_hooks("gbp") first_conv_grad = extractor.generate_gradients(img_input, target_class)[0].data gbp_grads = first_conv_grad gbp_grad_times_image = gbp_grads * img_input.numpy()[0] if save: grayscale_vanilla_grads = convert_to_grayscale(gbp_grad_times_image) save_gradient_images(grayscale_vanilla_grads, file_name_to_export + '_grad_times_image_gray') print('gbp_grad_times_image', type(gbp_grad_times_image), gbp_grad_times_image.shape) grayscale_vanilla_grads = convert_to_grayscale(gbp_grad_times_image) return normalize(grayscale_vanilla_grads) def integ_grad_times_image(self, img_input, target_class, file_name_to_export='integ_gradximg', save=False): extractor = Extractor(self.model) extractor.register_hooks("vbp") integrated_grads = extractor.generate_integrated_gradients(img_input, target_class).data integ_grad_times_image = integrated_grads * img_input.numpy()[0] if save: grayscale_vanilla_grads = convert_to_grayscale(integ_grad_times_image) save_gradient_images(grayscale_vanilla_grads, file_name_to_export + '_grad_times_image_gray') print('integ_grad_times_image', type(integ_grad_times_image), integ_grad_times_image.shape) grayscale_vanilla_grads = convert_to_grayscale(integ_grad_times_image) return normalize(grayscale_vanilla_grads) def grad_cam(self, img_input, target_class, ori_img=None, file_name_to_export='grad_cam', save=False, cam_size=None, return_cam=False): extractor = Extractor(self.model) extractor.register_hooks("cam") extractor.forward_and_backward(img_input, target_class) last_conv_grad = extractor.conv_grads_out[0][0].data last_conv_output = extractor.conv_output[-1][0].data weights = np.mean(last_conv_grad, axis=(1, 2)) target = last_conv_output cam =
np.ones(target.shape[1:], dtype=np.float32)
numpy.ones
import os import numpy as np import torch import shutil import torchvision.transforms as transforms from torch.autograd import Variable class AvgrageMeter(object): def __init__(self): self.reset() def reset(self): self.avg = 0 self.sum = 0 self.cnt = 0 def update(self, val, n=1): self.sum += val * n self.cnt += n self.avg = self.sum / self.cnt def accuracy(output, target, topk=(1,)): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0/batch_size)) return res class Cutout(object): def __init__(self, length): self.length = length def __call__(self, img): h, w = img.size(1), img.size(2) mask = np.ones((h, w), np.float32) y = np.random.randint(h) x =
np.random.randint(w)
numpy.random.randint
"""Deep sea treasure envirnment mostly compatible with OpenAI gym envs """ from __future__ import print_function import sys import math import random import itertools import numpy as np import scipy.stats import gym import pygame print("Using pygame backend", file=sys.stderr) from utils import truncated_mean, compute_angle, pareto_filter SEA_MAP = [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [18, 26, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0], [-1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [-1, -1, -1, 44, 48.2, 0, 0, 0, 0, 0, 0, 0], [-1, -1, -1, -1, -1, 56, 0, 0, 0, 0, 0, 0], [-1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0], [-1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0], [-1, -1, -1, -1, -1, -1, 72, 76.3, 0, 0, 0, 0], [-1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0], [-1, -1, -1, -1, -1, -1, -1, -1, 90, 0, 0, 0], [-1, -1, -1, -1, -1, -1, -1, -1, -1, 100, 0, 0]] HOME_POS = (0, 0) SIZE_X = 12 SIZE_Y = 12 ACT_LEFT = 0 ACT_RIGHT = 1 ACT_UP = 2 ACT_DOWN = 3 ACTIONS = ["Left", "Right", "Up", "Down"] ACTION_COUNT = len(ACTIONS) # State space (whole map) vars WIDTH = 480 HEIGHT = 480 BOX_WIDTH = int(WIDTH / SIZE_X) BOX_HEIGHT = int(HEIGHT / SIZE_Y) # Observation space vars OBSERVE_WIDTH = int(WIDTH * 5 / 12) OBSERVE_HEIGHT = int(HEIGHT * 5 / 12) # Pre-calculated space vars for add margin M_WIDTH = WIDTH + OBSERVE_WIDTH M_HEIGHT = HEIGHT + OBSERVE_HEIGHT W_MIN = int(OBSERVE_WIDTH/2) W_MAX = int(OBSERVE_WIDTH/2 + WIDTH) H_MIN = int(OBSERVE_HEIGHT/2) H_MAX = int(OBSERVE_HEIGHT/2 + HEIGHT) # Color definitions WHITE = (255, 255, 255) BLACK = (0, 0, 0) BLUE = (0, 51, 204) YELLOW = (255, 212, 84) GREY = (80, 80, 80) FPS = 180 class DeepSeaTreasure(): """Deep sea treasure environment """ def __init__(self, sea_map=SEA_MAP): self.action_space = np.arange(ACTION_COUNT) self.observation_space = np.zeros((OBSERVE_WIDTH, OBSERVE_HEIGHT, 3), dtype=np.uint8) # Initialize graphics backend pygame.init() self.screen = pygame.display.set_mode((WIDTH, HEIGHT)) self.clock = pygame.time.Clock() # self.submarine_sprite = pygame.sprite.Sprite() # self.submarine_sprites = pygame.sprite.Group() # self.submarine_sprites.add(self.submarine_sprite) self.submarine_pos = list(HOME_POS) self.sea_map = sea_map self.end = False self.obj_cnt = 2 def step(self, action, frame_skip=1, incremental_frame_skip=True): """Perform the given action `frame_skip` times ["Left", "Right", "Up", "Down"] Arguments: action {int} -- Action to perform, ACT_MINE (0), ACT_LEFT (1), ACT_RIGHT (2), ACT_ACCEL (3), ACT_BRAKE (4) or ACT_NONE (5) Keyword Arguments: frame_skip {int} -- Repeat the action this many times (default: {1}) incremental_frame_skip {bool} -- If True, frame_skip actions are performed in succession, otherwise the repeated actions are performed simultaneously (e.g., 4 accelerations are performed and then the cart moves). Returns: tuple -- (observation, reward, terminal, info) tuple """ reward = np.zeros(self.obj_cnt) if frame_skip < 1: frame_skip = 1 reward[-1] = -1 move = (0, 0) if action == ACT_LEFT: move = (-1,0) elif action == ACT_RIGHT: move = (1,0) elif action == ACT_UP: move = (0,-1) elif action == ACT_DOWN: move = (0,1) changed = self.move_submarine(move) reward[0] = self.sea_map[self.submarine_pos[1]][self.submarine_pos[0]] if not self.end and changed: self.render() info = self.get_state(True) observation = self.observation_space # observation (pixels), reward (list), done (boolean), info (dict) return observation, reward, self.end, info def move_submarine(self, move): target_x = self.submarine_pos[0] + move[0] target_y = self.submarine_pos[1] + move[1] if 0 <= target_x < 12 and 0 <= target_y < 12: if self.sea_map[target_y][target_x] != -1: self.submarine_pos[0] = target_x self.submarine_pos[1] = target_y if self.sea_map[target_y][target_x] != 0: self.end = True return True return False def get_pixels(self, update=True): """Get the environment's image representation Keyword Arguments: update {bool} -- Whether to redraw the environment (default: {True}) Returns: np.array -- array of pixels, with shape (width, height, channels) """ if update: self.pixels = pygame.surfarray.array3d(self.screen) self.get_observation() return self.pixels def get_state(self, update=True): """Returns the environment's full state, including the cart's position, its speed, its orientation and its content, as well as the environment's pixels Keyword Arguments: update {bool} -- Whether to update the representation (default: {True}) Returns: dict -- dict containing the aforementioned elements """ return { "position": self.submarine_pos, "pixels": self.get_pixels(update) } def get_observation(self): """Create a partially observable observation with the given state. Half size of state["pixels"] with origin of state["position"], and the overflow part is black Returns: array: 3d array as the same type of state["pixels"] """ # original state pixels with margins margin_state_pixels =
np.full((M_WIDTH, M_HEIGHT, 3), GREY[0], dtype=np.uint8)
numpy.full
import numpy as np from menpo.transform import ThinPlateSplines from menpofit.differentiable import DL, DX from .rbf import DifferentiableR2LogR2RBF class DifferentiableThinPlateSplines(ThinPlateSplines, DL, DX): r""" The Thin Plate Splines (TPS) alignment between 2D `source` and `target` landmarks. The transform can compute its own derivative with respect to spatial changes, as well as anchor landmark changes. Parameters ---------- source : ``(N, 2)`` `ndarray` The source points to apply the tps from target : ``(N, 2)`` `ndarray` The target points to apply the tps to kernel : `class` or ``None``, optional The differentiable kernel to apply. Possible options are :map:`DifferentiableR2LogRRBF` and :map:`DifferentiableR2LogR2RBF`. If ``None``, then :map:`DifferentiableR2LogR2RBF` is used. """ def __init__(self, source, target, kernel=None): if kernel is None: kernel = DifferentiableR2LogR2RBF(source.points) ThinPlateSplines.__init__(self, source, target, kernel=kernel) def d_dl(self, points): """ Calculates the Jacobian of the TPS warp wrt to the source landmarks assuming that he target is equal to the source. This is a special case of the Jacobian wrt to the source landmarks that is used in AAMs to weight the relative importance of each pixel in the reference frame wrt to each one of the source landmarks. dW_dl = dOmega_dl * k(points) = T * d_L**-1_dl * k(points) = T * -L**-1 dL_dl L**-1 * k(points) # per point (c, d) = (d, c+3) (c+3, c+3) (c+3, c+3, c, d) (c+3, c+3) (c+3) (c, d) = (d, c+3) (c+3, c+3, c, d) (c+3,) (c, d) = (d, ) ( c, d) (c, d) = ( ) ( c, d) Parameters ---------- points : ``(n_points, n_dims)`` `ndarray` The spatial points at which the derivative should be evaluated. Returns ------- dW/dl : (n_points, n_params, n_dims) ndarray The Jacobian of the transform wrt to the source landmarks evaluated at the previous points and assuming that the target is equal to the source. """ n_centres = self.n_points n_points = points.shape[0] # TPS kernel (nonlinear + affine) # for each input, evaluate the rbf # (n_points, n_centres) k_points = self.kernel.apply(points) # k_points with (1, x, y) appended to each point # (n_points, n_centres+3) - 3 is (1, x, y) for affine component k = np.hstack([k_points,
np.ones([n_points, 1])
numpy.ones
#!/usr/bin/env python """ Extracts faces from images and recognize the persons inside each image and returns the images the bounding boxes and the recognized faces """ # MIT License # # Copyright (c) 2020 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import os import argparse import tensorflow as tf import numpy as np import cv2 import random from collections import Counter from recognition.facenet.src import facenet from detection.insightface.RetinaFace.retinaface import RetinaFace def recognition_handler(args): # define detector gpuid = -1 model_path = args.fd_model.split(',') detector = RetinaFace(model_path[0], int(model_path[1]), gpuid, 'net3') # Making sure output directory exists if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) cap = cv2.VideoCapture(args.input_image) # Check if video feed opened successfully if not cap.isOpened(): print("Unable to read frames feed") with tf.Graph().as_default(): with tf.Session() as sess: emb_array = np.load(args.dataset+'features_data.npy') #load saved dataset features for KNN labels = np.load(args.dataset+'labels.npy') recognized_labels = [] facenet.load_model(args.fr_model) # Get input and output tensors images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0") embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") # embedding_size = embeddings.get_shape()[1] counter = 0 while True: # place holder for the open connection ret, frame = cap.read() # if failed to read frame data if ret: detect_align(frame, detector) else: break frame = cv2.rotate(frame,cv2.ROTATE_90_CLOCKWISE) faces_bounding_boxes, landmarks = detect_align(frame, detector) nrof_faces = faces_bounding_boxes.shape[0] faces = np.zeros((nrof_faces, args.image_size, args.image_size, 3)) if nrof_faces > 0: det = faces_bounding_boxes[:, 0:4] det_arr = [] img_size = np.asarray(frame.shape)[0:2] crop_margin = 20 for i in range(nrof_faces): det_arr.append(np.squeeze(det[i])) for i, det in enumerate(det_arr): det = np.squeeze(det) bb =
np.zeros(4, dtype=np.int32)
numpy.zeros
# CIFAR - 10 # To decode the files import pickle # For array manipulations import numpy as np # To make one-hot vectors from keras.utils import np_utils # To plot graphs and display images from matplotlib import pyplot as plt import pandas as pd #constants path = "data/" # Path to data # Height or width of the images (32 x 32) size = 32 # 3 channels: Red, Green, Blue (RGB) channels = 3 # Number of classes num_classes = 10 # Each file contains 10000 images image_batch = 10000 # 5 training files num_files_train = 5 # Total number of training images images_train = image_batch * num_files_train # https://www.cs.toronto.edu/~kriz/cifar.html def unpickle(file): # Convert byte stream to object with open(path + file,'rb') as fo: print("Decoding file: %s" % (path+file)) dict = pickle.load(fo, encoding='bytes') # Dictionary with images and labels return dict def convert_images(raw_images): # Convert images to numpy arrays # Convert raw images to numpy array and normalize it raw = np.array(raw_images, dtype = float) / 255.0 # Reshape to 4-dimensions - [image_number, channel, height, width] images = raw.reshape([-1, channels, size, size]) images = images.transpose([0, 2, 3, 1]) # 4D array - [image_number, height, width, channel] return images def load_data(file): # Load file, unpickle it and return images with their labels data = unpickle(file) # Get raw images images_array = data[b'data'] # Convert image images = convert_images(images_array) # Convert class number to numpy array labels = np.array(data[b'labels']) # Images and labels in np array form return images, labels def get_test_data(): # Load all test data images, labels = load_data(file = "test_batch") # Images, their labels and # corresponding one-hot vectors in form of np arrays return images, labels, np_utils.to_categorical(labels,num_classes) def get_train_data(): # Load all training data in 5 files # Pre-allocate arrays images = np.zeros(shape = [images_train, size, size, channels], dtype = float) labels = np.zeros(shape=[images_train],dtype = int) # Starting index of training dataset start = 0 # For all 5 files for i in range(num_files_train): # Load images and labels images_batch, labels_batch = load_data(file = "data_batch_" + str(i+1)) # Calculate end index for current batch end = start + image_batch # Store data to corresponding arrays images[start:end,:] = images_batch labels[start:end] = labels_batch # Update starting index of next batch start = end # Images, their labels and # corresponding one-hot vectors in form of np arrays return images, labels, np_utils.to_categorical(labels,num_classes) def get_class_names(): # Load class names raw = unpickle("batches.meta")[b'label_names'] # Convert from binary strings names = [x.decode('utf-8') for x in raw] # Class names return names def plot_image(image, label_true=None, class_names=None, label_pred=None): plt.grid() plt.imshow(image) # Show true and predicted classes if label_true is not None and class_names is not None: labels_true_name = class_names[label_true] if label_pred is None: xlabel = "True: "+labels_true_name else: # Name of the predicted class labels_pred_name = class_names[label_pred] xlabel = "True: "+labels_true_name+"\nPredicted: "+ labels_pred_name # Show the class on the x-axis plt.xlabel(xlabel) plt.xticks([]) # Remove ticks from the plot plt.yticks([]) plt.show() # Show the plot def plot_images(images, labels_true, class_names, labels_pred=None, confidence=None, titles=None): assert len(images) == len(labels_true) # Create a figure with sub-plots fig, axes = plt.subplots(3, 3, figsize = (10,10)) # Adjust the vertical spacing hspace = 0.2 if labels_pred is not None: hspace += 0.2 if titles is not None: hspace += 0.2 fig.subplots_adjust(hspace=hspace, wspace=0.0) for i, ax in enumerate(axes.flat): # Fix crash when less than 9 images if i < len(images): # Plot the image ax.imshow(images[i]) # Name of the true class labels_true_name = class_names[labels_true[i]] # Show true and predicted classes if labels_pred is None: xlabel = "True: "+labels_true_name else: # Name of the predicted class labels_pred_name = class_names[labels_pred[i]] xlabel = "True: "+labels_true_name+"\nPred: "+ labels_pred_name if (confidence is not None): xlabel += " (" + "{0:.1f}".format(confidence[i] * 100) + "%)" # Show the class on the x-axis ax.set_xlabel(xlabel) if titles is not None: ax.set_title(titles[i]) # Remove ticks from the plot ax.set_xticks([]) ax.set_yticks([]) # Show the plot plt.show() def plot_model(model_details): # Create sub-plots fig, axs = plt.subplots(1,2,figsize=(15,5)) # Summarize history for accuracy axs[0].plot(range(1,len(model_details.history['acc'])+1),model_details.history['acc']) axs[0].plot(range(1,len(model_details.history['val_acc'])+1),model_details.history['val_acc']) axs[0].set_title('Model Accuracy') axs[0].set_ylabel('Accuracy') axs[0].set_xlabel('Epoch') axs[0].set_xticks(np.arange(1,len(model_details.history['acc'])+1),len(model_details.history['acc'])/10) axs[0].legend(['train', 'val'], loc='best') # Summarize history for loss axs[1].plot(range(1,len(model_details.history['loss'])+1),model_details.history['loss']) axs[1].plot(range(1,len(model_details.history['val_loss'])+1),model_details.history['val_loss']) axs[1].set_title('Model Loss') axs[1].set_ylabel('Loss') axs[1].set_xlabel('Epoch') axs[1].set_xticks(np.arange(1,len(model_details.history['loss'])+1),len(model_details.history['loss'])/10) axs[1].legend(['train', 'val'], loc='best') # Show the plot plt.show() def visualize_errors(images_test, labels_test, class_names, labels_pred, correct): incorrect = (correct == False) # Images of the test-set that have been incorrectly classified. images_error = images_test[incorrect] # Get predicted classes for those images labels_error = labels_pred[incorrect] # Get true classes for those images labels_true = labels_test[incorrect] # Plot the first 9 images. plot_images(images=images_error[0:9], labels_true=labels_true[0:9], class_names=class_names, labels_pred=labels_error[0:9]) def visualize_attack(df, class_names): results = df[df.success].sample(9) images = np.array(results.attack_image) labels_true =
np.array(results.true)
numpy.array
"""" Title : Wetted area wing Written by: <NAME> Date : 13/11/19 Language : Python Aeronautical Institute of Technology Inputs: MTOW Outputs: Cap_Sal FO_Sal """ ######################################################################################## """Importing Modules""" ######################################################################################## ######################################################################################## """Constants declaration""" ######################################################################################## import numpy as np import pandas as pd import os from scipy import interpolate from framework.Sizing.Geometry.area_triangle_3d import area_triangle_3d from framework.Sizing.Geometry.airfoil_preprocessing import airfoil_preprocessing def wetted_area_wing(vehicle, fileToRead1, fileToRead2, fileToRead3): wing = vehicle['wing'] fuselage = vehicle['fuselage'] engine = vehicle['engine'] semispan = wing['span']/2 # Calcula area exposta ada asa rad = np.pi/180 # raio = fuselage['width']/2 tanaux = np.tan(rad*wing['sweep_leading_edge'] ) airfoil_names = [fileToRead1, fileToRead2, fileToRead3] airfoil_chords = [wing['root_chord'], wing['kink_chord'], wing['tip_chord']] ######################################################################################## """Pre-processing airfoils""" ######################################################################################## airfoils = {1: {}, 2: {}, 3: {}} panel_number = 201 for i in range(len(airfoils)): j = i+1 airfoils[j]['name'] = airfoil_names[i] airfoils[j]['chord'] = airfoil_chords[i] for i in airfoils: airfoil = i airfoil_name = airfoils[airfoil]['name'] airfoil_preprocessing(airfoil_name, panel_number) ######################################################################################## """Importing Data""" ######################################################################################## # Load airfoil coordinates df = pd.read_csv( "" + airfoil_names[0] + '.dat', sep=',', delimiter=None, header=None, skiprows=[0]) df.columns = ['x', 'y'] df_head = df.head() n_coordinates = len(df) # Compute distance between consecutive points dx = [] dy = [] ds = [] ds_vector = [] ds = np.zeros((n_coordinates, 1)) ds[0] = 0 for i in range(1, n_coordinates): dx = df.x[i] - df.x[i-1] dy = df.y[i] - df.y[i-1] ds[i] = ds[i-1] + np.sqrt(dx*dx+dy*dy) xa = df.x[0] xb = df.x[1] ind = 0 # Find leading edge index while xb < xa: ind = ind + 1 xa = df.x[ind] xb = df.x[ind+1] n_panels_x = 51 xp = np.linspace(0, 1, n_panels_x) xp = np.flip((np.cos(xp*np.pi)/2+0.5)) # Interpolate upper skin dsaux = ds[0:ind+1] xaux = df.x[0:ind+1] dsaux = np.reshape(dsaux, -1) ds = np.reshape(ds, -1) dsinterp = interpolate.interp1d( xaux, dsaux, kind='slinear', fill_value='extrapolate')(xp) yupp_root = interpolate.interp1d(ds, df.y, kind='slinear')(dsinterp) # Interpolate lower skin dsaux = [] dsaux = ds[ind:n_coordinates] dsinterp = [] xaux = df.x[ind:n_coordinates] dsinterp = interpolate.interp1d( xaux, dsaux, kind='slinear', fill_value='extrapolate')(xp) ylow_root = interpolate.interp1d(ds, df.y, kind='slinear')(dsinterp) xproot = np.array([np.flip(xp), xp]) xproot = xproot.ravel() yproot = np.array([np.flip(yupp_root), ylow_root]) yproot = yproot.ravel() esspraiz = max(yupp_root)-min(ylow_root) # plt.figure() # plt.plot(xproot,yproot,'bo') ######################################################################################## # Load airfoil coordinates df = pd.read_csv( "" + airfoil_names[1] + '.dat', sep=',', delimiter=None, header=None, skiprows=[0]) df.columns = ['x', 'y'] df_head = df.head() n_coordinates = len(df) # Compute distance between consecutive points dx = [] dy = [] ds = [] ds_vector = [] ds = np.zeros((n_coordinates, 1)) ds[0] = 0 for i in range(1, n_coordinates): dx = df.x[i] - df.x[i-1] dy = df.y[i] - df.y[i-1] ds[i] = ds[i-1] + np.sqrt(dx*dx+dy*dy) xa = df.x[0] xb = df.x[1] ind = 0 # Find leading edge index while xb < xa: ind = ind + 1 xa = df.x[ind] xb = df.x[ind+1] n_panels_x = 51 xp = np.linspace(0, 1, n_panels_x) xp = np.flip((np.cos(xp*np.pi)/2+0.5)) # Interpolate upper skin dsaux = ds[0:ind+1] xaux = df.x[0:ind+1] dsaux = np.reshape(dsaux, -1) ds = np.reshape(ds, -1) dsinterp = interpolate.interp1d( xaux, dsaux, kind='slinear', fill_value='extrapolate')(xp) yupp_kink = interpolate.interp1d(ds, df.y, kind='slinear')(dsinterp) # Interpolate lower skin dsaux = [] dsaux = ds[ind:n_coordinates] dsinterp = [] xaux = df.x[ind:n_coordinates] dsinterp = interpolate.interp1d( xaux, dsaux, kind='slinear', fill_value='extrapolate')(xp) ylow_kink = interpolate.interp1d(ds, df.y, kind='slinear')(dsinterp) xpkink = np.array([np.flip(xp), xp]) xpkink = xpkink.ravel() ypkink = np.array([np.flip(yupp_kink), ylow_kink]) ypkink = ypkink.ravel() # plt.plot(xpkink,ypkink,'ro') ######################################################################################## # Load airfoil coordinates df = pd.read_csv( "" + airfoil_names[2] + '.dat', sep=',', delimiter=None, header=None, skiprows=[0]) df.columns = ['x', 'y'] df_head = df.head() n_coordinates = len(df) # Compute distance between consecutive points dx = [] dy = [] ds = [] ds_vector = [] ds = np.zeros((n_coordinates, 1)) ds[0] = 0 for i in range(1, n_coordinates): dx = df.x[i] - df.x[i-1] dy = df.y[i] - df.y[i-1] ds[i] = ds[i-1] + np.sqrt(dx*dx+dy*dy) xa = df.x[0] xb = df.x[1] ind = 0 # Find leading edge index while xb < xa: ind = ind + 1 xa = df.x[ind] xb = df.x[ind+1] n_panels_x = 51 xp = np.linspace(0, 1, n_panels_x) xp = np.flip((np.cos(xp*np.pi)/2+0.5)) # Interpolate upper skin dsaux = ds[0:ind+1] xaux = df.x[0:ind+1] dsaux = np.reshape(dsaux, -1) ds = np.reshape(ds, -1) dsinterp = interpolate.interp1d( xaux, dsaux, kind='slinear', fill_value='extrapolate')(xp) yupp_tip = interpolate.interp1d(ds, df.y, kind='slinear')(dsinterp) # Interpolate lower skin dsaux = [] dsaux = ds[ind:n_coordinates] dsinterp = [] xaux = df.x[ind:n_coordinates] dsinterp = interpolate.interp1d( xaux, dsaux, kind='slinear', fill_value='extrapolate')(xp) ylow_tip = interpolate.interp1d(ds, df.y, kind='slinear')(dsinterp) xptip = np.array([np.flip(xp), xp]) xptip = xptip.ravel() yptip = np.array([np.flip(yupp_tip), ylow_tip]) yptip = yptip.ravel() ######################################################################################## ######################################################################################## # =====> Wing if wing['position'] == 1: wingpos = -0.48*raio engzpos = -0.485*raio else: wingpos = raio-wing['center_chord']*1.15*0.12/2 engzpos = wingpos-0.10*engine['fan_diameter']/2 # Rotate root section according to given incidence teta = -wing['root_incidence'] # - points sky + points ground tetar = teta*rad xproot = xproot*np.cos(tetar)-yproot*np.sin(tetar) yproot = xproot*np.sin(tetar)+yproot*np.cos(tetar) # Rotates kink station airfoil teta = -wing['kink_incidence'] tetar = teta*rad xpkink = xpkink*np.cos(tetar)-ypkink*np.sin(tetar) ypkink = xpkink*np.sin(tetar)+ypkink*
np.cos(tetar)
numpy.cos
import os import numpy as np import flopy import warnings from io import StringIO from struct import pack from tempfile import TemporaryFile from textwrap import dedent from flopy.utils.util_array import Util2d, Util3d, Transient2d, Transient3d from ci_framework import base_test_dir, FlopyTestSetup base_dir = base_test_dir(__file__, rel_path="temp", verbose=True) def test_load_txt_free(): a = np.ones((10,), dtype=np.float32) * 250.0 fp = StringIO("10*250.0") fa = Util2d.load_txt(a.shape, fp, a.dtype, "(FREE)") np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype a = np.arange(10, dtype=np.int32).reshape((2, 5)) fp = StringIO( dedent( """\ 0 1,2,3, 4 5 6, 7, 8 9 """ ) ) fa = Util2d.load_txt(a.shape, fp, a.dtype, "(FREE)") np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype a = np.ones((2, 5), dtype=np.float32) a[1, 0] = 2.2 fp = StringIO( dedent( """\ 5*1.0 2.2 2*1.0, +1E-00 1.0 """ ) ) fa = Util2d.load_txt(a.shape, fp, a.dtype, "(FREE)") np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype def test_load_txt_fixed(): a = np.arange(10, dtype=np.int32).reshape((2, 5)) fp = StringIO( dedent( """\ 01234X 56789 """ ) ) fa = Util2d.load_txt(a.shape, fp, a.dtype, "(5I1)") np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype fp = StringIO( dedent( """\ 0123X 4 5678 9 """ ) ) fa = Util2d.load_txt(a.shape, fp, a.dtype, "(4I1)") np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype a = np.array([[-1, 1, -2, 2, -3], [3, -4, 4, -5, 5]], np.int32) fp = StringIO( dedent( """\ -1 1-2 2-3 3 -44 -55 """ ) ) fa = Util2d.load_txt(a.shape, fp, a.dtype, "(5I2)") np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype def test_load_block(): a = np.ones((2, 5), dtype=np.int32) * 4 fp = StringIO( dedent( """\ 1 1 2 1 5 4 """ ) ) fa = Util2d.load_block(a.shape, fp, a.dtype) np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype a = np.ones((2, 5), dtype=np.float32) * 4 a[0:2, 1:2] = 9.0 a[0, 2:4] = 6.0 fp = StringIO( dedent( """\ 3 1 2 1 5 4.0 1 2 2 2 9.0 1 1 3 4 6.0 """ ) ) fa = Util2d.load_block(a.shape, fp, a.dtype) np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype a = np.zeros((2, 5), dtype=np.int32) a[0, 2:4] = 8 fp = StringIO( dedent( """\ 1 1 1 3 4 8 """ ) ) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") fa = Util2d.load_block(a.shape, fp, a.dtype) assert len(w) == 1 assert "blocks do not cover full array" in str(w[-1].message) np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype def test_load_bin(): model_ws = f"{base_dir}_test_load_bin" test_setup = FlopyTestSetup(test_dirs=model_ws) def temp_file(data): # writable file that is destroyed as soon as it is closed f = TemporaryFile(dir=model_ws) f.write(data) f.seek(0) return f # INTEGER a = np.arange(3 * 4, dtype=np.int32).reshape((3, 4)) - 1 fp = temp_file(a.tobytes()) fh, fa = Util2d.load_bin((3, 4), fp, np.int32) assert fh is None # no header_dtype np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype # check warning if wrong integer type is used to read 4-byte integers # e.g. on platforms where int -> int64 with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") fp.seek(0) fh, fa = Util2d.load_bin((3, 4), fp, np.int64) fp.close() assert len(w) == 1 assert a.dtype == np.int32 assert fh is None # no header_dtype
np.testing.assert_equal(fa, a)
numpy.testing.assert_equal
import numpy as np from gym import spaces import vrep from envs.VrepEnv import catch_errors, VrepEnv class SawyerEnv(VrepEnv): """ Abstract parent class encapsulating behaviour common to environments with a Sawyer arm. """ num_joints = 7 action_space = spaces.Box(np.array([-0.3] * num_joints), np.array([0.3] * num_joints), dtype=np.float32) curr_action = np.array([0.] * num_joints) scale = 0.01 identity = scale * np.identity(num_joints) def __init__(self, *args, random_joints=True): super().__init__(*args) self.random_joints = random_joints self.np_random = np.random.RandomState() # Get the initial configuration of the robot (needed to later reset the robot's pose) self.init_config_tree, _, _, _ = self.call_lua_function('get_configuration_tree') _, self.init_joint_angles, _, _ = self.call_lua_function('get_joint_angles') self.joint_handles = np.array([None] * self.num_joints) for i in range(self.num_joints): handle = catch_errors(vrep.simxGetObjectHandle(self.cid, 'Sawyer_joint' + str(i + 1), vrep.simx_opmode_blocking)) self.joint_handles[i] = handle # Start the simulation (the "Play" button in V-Rep should now be in a "Pressed" state) catch_errors(vrep.simxStartSimulation(self.cid, vrep.simx_opmode_blocking)) def seed(self, seed=None): self.np_random.seed(seed) def reset(self): if self.random_joints: initial_pose = self.np_random.multivariate_normal(self.init_joint_angles, self.identity) else: initial_pose = self.init_joint_angles self.call_lua_function('set_joint_angles', ints=self.init_config_tree, floats=initial_pose) self.curr_action =
np.array([0.] * 6)
numpy.array
import pytest import math import numpy as np import autograd.numpy as adnp from autograd import grad import cs107_salad.Forward.salad as ad from cs107_salad.Forward.utils import check_list, compare_dicts, compare_dicts_multi def test_add_radd(): x = ad.Variable(3) y = x + 3 assert y.val == 6 assert list(y.der.values()) == np.array([1]) x = ad.Variable(3) y = 3 + x assert y.val == 6 assert list(y.der.values()) == np.array([1]) x = ad.Variable(3, {"x": 1}) y = ad.Variable(3, {"y": 1}) z = x + y assert z.val == 6 assert z.der == {"x": 1, "y": 1} x = ad.Variable(np.ones((5, 5)), label="x") y = ad.Variable(np.ones((5, 5)), label="y") z = x + y assert np.array_equal(z.val, 2 * np.ones((5, 5))) np.testing.assert_equal(z.der, {"x": np.ones((5, 5)), "y": np.ones((5, 5))}) z = x + x + y + y + 2 assert np.array_equal(z.val, 4 * np.ones((5, 5)) + 2) np.testing.assert_equal(z.der, {"x": 2 * np.ones((5, 5)), "y": 2 * np.ones((5, 5))}) def test_sub_rsub(): x = ad.Variable(3) y = x - 3 assert y.val == 0 assert list(y.der.values()) == np.array([1]) x = ad.Variable(3) y = 3 - x assert y.val == 0 assert list(y.der.values()) == np.array([-1]) x = ad.Variable(3, {"x": 1}) y = ad.Variable(3, {"y": 1}) z = x - y assert z.val == 0 assert z.der == {"x": 1, "y": -1} x = ad.Variable(np.ones((5, 5)), label="x") y = ad.Variable(np.ones((5, 5)), label="y") z = x - y assert np.array_equal(z.val, np.zeros((5, 5))) np.testing.assert_equal(z.der, {"x": np.ones((5, 5)), "y": -1 * np.ones((5, 5))}) z = x + x - y - y + 2 assert np.array_equal(z.val, 2 * np.ones((5, 5))) np.testing.assert_equal( z.der, {"x": 2 * np.ones((5, 5)), "y": -2 * np.ones((5, 5))} ) def test_mul_rmul(): x = ad.Variable(3, label="x") y = x * 2 assert y.val == 6 assert y.der == {"x": 2} # y = 5x + x^2 y = x * 2 + 3 * x + x * x assert y.val == 24 assert y.der == {"x": 11} x = ad.Variable(3, label="x") y = ad.Variable(2, label="y") z = x * y assert z.val == 6 assert z.der == {"x": 2, "y": 3} z = 3 * z * 3 assert z.val == 54 assert z.der == {"x": 18, "y": 27} x = ad.Variable(3, label="x") y = ad.Variable(2, label="y") z = x * y z = y * z # y^2*x assert z.val == 12 assert z.der == {"x": y.val ** 2, "y": 2 * y.val * x.val} x = ad.Variable(2 * np.ones((5, 5)), label="x") y = ad.Variable(3 * np.ones((5, 5)), label="y") z = x * y assert np.array_equal(z.val, 2 * 3 * np.ones((5, 5))) np.testing.assert_equal(z.der, {"x": 3 * np.ones((5, 5)), "y": 2 * np.ones((5, 5))}) z = -1 * z * x # f = -(x^2) * y, dx = -2xy, dy = -x^2 assert np.array_equal(z.val, -12 * np.ones((5, 5))) np.testing.assert_equal( z.der, {"x": -2 * 2 * 3 * np.ones((5, 5)), "y": -1 * 2 * 2 * np.ones((5, 5))} ) def test_truediv_rtruediv(): x = ad.Variable(3, label="x") y = x / 2 assert y.val == 1.5 assert y.der == {"x": 1 / 2} y = x / 2 + 3 / x + x / x assert y.val == 3.5 assert y.der == {"x": 0.5 - 3 / 9} x = ad.Variable(3, label="x") y = ad.Variable(2, label="y") z = x / y assert z.val == 3 / 2 assert z.der == {"x": 1 / 2, "y": -3 / 4} # dx = 1/y, dy = -x/y^2 z = 2.4 / z / x / 8 # 2.4/(x/y)/x/8 assert z.val == 2.4 / (3 / 2) / 3 / 8 ## Using this function because of rounding errors assert compare_dicts( z.der, {"x": (-0.6 * y.val) / (x.val ** 3), "y": (0.3 / (x.val ** 2))} ) # dx = -.6y/x^3 , dy = .3/x^2 x = ad.Variable(2 * np.ones((5, 5)), label="x") y = ad.Variable(3 * np.ones((5, 5)), label="y") z = x / y assert np.array_equal(z.val, 2 / 3 * np.ones((5, 5))) np.testing.assert_equal(z.der, {"x": 1 / y.val, "y": -1 * x.val / (y.val ** 2)}) z = -1 / z / x assert np.array_equal(z.val, -1 / (2 / 3) / 2 * np.ones((5, 5))) np.testing.assert_equal( z.der, {"x": 2 * y.val / (x.val ** 3), "y": -1 / (x.val ** 2)} ) def test_exp(): x = 3 ans = ad.exp(x) sol = np.exp(x) assert sol == ans x = ad.Variable(3, label="x") y = ad.exp(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = np.exp(3), np.exp(3) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(3, label="x") ans_val, ans_der = ad.exp(x).val, ad.exp(x).der["x"] sol_val, sol_der = np.exp(3), np.exp(3) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(3, label="x") + 3 y = ad.exp(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = np.exp(6), np.exp(6) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(3, label="x") + ad.Variable(4, label="y") y = ad.exp(x) ans_val, ans_der = y.val, [y.der["x"], y.der["y"]] sol_val, sol_der = np.exp(7), [np.exp(7), np.exp(7)] assert ans_val == sol_val assert check_list(ans_der, sol_der) x = ad.Variable([3, 4, 5], label="x") y = ad.exp(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [np.exp(3), np.exp(4), np.exp(5)], [np.exp(3), np.exp(4), np.exp(5),], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([3, 4, 5], label="x") y = ad.exp(x) + ad.exp(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [2 * np.exp(3), 2 * np.exp(4), 2 * np.exp(5)], [2 * np.exp(3), 2 * np.exp(4), 2 * np.exp(5),], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([3, 4, 5], label="x") z = x + x y = ad.exp(z) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [np.exp(2 * 3), np.exp(2 * 4), np.exp(2 * 5)], [2 * np.exp(2 * 3), 2 * np.exp(2 * 4), 2 * np.exp(2 * 5),], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([3, 4, 5], label="x") y = ad.Variable([6, 6, 6], label="y") y = ad.exp(x + y) ans_val, ans_der_x, ans_der_y = y.val, y.der["x"], y.der["y"] sol_val, sol_der_x, sol_der_y = ( [np.exp(9), np.exp(10), np.exp(11)], [ grad(lambda x, y: adnp.exp(x + y), 0)(3.0, 6.0), grad(lambda x, y: adnp.exp(x + y), 0)(4.0, 6.0), grad(lambda x, y: adnp.exp(x + y), 0)(5.0, 6.0), ], [ grad(lambda x, y: adnp.exp(x + y), 1)(3.0, 6.0), grad(lambda x, y: adnp.exp(x + y), 1)(4.0, 6.0), grad(lambda x, y: adnp.exp(x + y), 1)(5.0, 6.0), ], ) assert check_list(ans_val, sol_val) assert check_list(sol_der_x, ans_der_x) & check_list(sol_der_y, ans_der_y) def test_ln(): x = 3 ans = ad.ln(x) sol = adnp.log(x) assert sol == ans x = ad.Variable(3, label="x") y = ad.ln(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = adnp.log(3), grad(adnp.log)(3.0) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(3, label="x") + 3 y = ad.ln(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = adnp.log(6), grad(lambda x: adnp.log(x + 3.0))(3.0) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(3, label="x") + ad.Variable(4, label="y") y = ad.ln(x) ans_val, ans_der = y.val, [y.der["x"], y.der["y"]] sol_val, sol_der = ( adnp.log(7), [ grad(lambda x, y: adnp.log(x + y), 0)(3.0, 4.0), grad(lambda x, y: adnp.log(x + y), 1)(3.0, 4.0), ], ) assert ans_val == sol_val assert check_list(ans_der, sol_der) x = ad.Variable([3, 4, 5], label="x") y = ad.ln(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [np.log(3), np.log(4), np.log(5)], [ grad(lambda x: adnp.log(x))(3.0), grad(lambda x: adnp.log(x))(4.0), grad(lambda x: adnp.log(x))(5.0), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([3, 4, 5], label="x") y = ad.ln(x + x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [adnp.log(3 * 2), adnp.log(4 * 2), adnp.log(5 * 2)], [ grad(lambda x: adnp.log(x + x))(3.0), grad(lambda x: adnp.log(x + x))(4.0), grad(lambda x: adnp.log(x + x))(5.0), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([3, 4, 5], label="x") y = ad.Variable([6, 6, 6], label="y") y = ad.ln(x + y) ans_val, ans_der_x, ans_der_y = y.val, y.der["x"], y.der["y"] sol_val, sol_der_x, sol_der_y = ( [np.log(9), np.log(10), np.log(11)], [ grad(lambda x, y: adnp.log(x + y), 0)(3.0, 6.0), grad(lambda x, y: adnp.log(x + y), 0)(4.0, 6.0), grad(lambda x, y: adnp.log(x + y), 0)(5.0, 6.0), ], [ grad(lambda x, y: adnp.log(x + y), 1)(3.0, 6.0), grad(lambda x, y: adnp.log(x + y), 1)(4.0, 6.0), grad(lambda x, y: adnp.log(x + y), 1)(5.0, 6.0), ], ) assert check_list(ans_val, sol_val) assert check_list(sol_der_x, ans_der_x) & check_list(sol_der_y, ans_der_y) def test_logistic(): def logistic(x): return 1 / (1 + adnp.exp(-x)) x = 3 ans = ad.logistic(x) sol = logistic(x) assert sol == ans x = ad.Variable(3, label="x") y = ad.logistic(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = logistic(3), grad(logistic)(3.0) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(3, label="x") + 3 y = ad.logistic(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = logistic(6), grad(lambda x: logistic(x + 3.0))(3.0) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(3, label="x") + ad.Variable(4, label="y") y = ad.logistic(x) ans_val, ans_der = y.val, [y.der["x"], y.der["y"]] sol_val, sol_der = ( logistic(7), [ grad(lambda x, y: logistic(x + y), 0)(3.0, 4.0), grad(lambda x, y: logistic(x + y), 1)(3.0, 4.0), ], ) assert ans_val == sol_val assert check_list(ans_der, sol_der) x = ad.Variable([3, 4, 5], label="x") y = ad.logistic(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [logistic(3), logistic(4), logistic(5)], [ grad(lambda x: logistic(x))(3.0), grad(lambda x: logistic(x))(4.0), grad(lambda x: logistic(x))(5.0), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([3, 4, 5], label="x") y = ad.logistic(x + x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [logistic(3 * 2), logistic(4 * 2), logistic(5 * 2)], [ grad(lambda x: logistic(x + x))(3.0), grad(lambda x: logistic(x + x))(4.0), grad(lambda x: logistic(x + x))(5.0), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([3, 4, 5], label="x") y = ad.Variable([6, 6, 6], label="y") y = ad.logistic(x + y) ans_val, ans_der_x, ans_der_y = y.val, y.der["x"], y.der["y"] sol_val, sol_der_x, sol_der_y = ( [logistic(9), logistic(10), logistic(11)], [ grad(lambda x, y: logistic(x + y), 0)(3.0, 6.0), grad(lambda x, y: logistic(x + y), 0)(4.0, 6.0), grad(lambda x, y: logistic(x + y), 0)(5.0, 6.0), ], [ grad(lambda x, y: logistic(x + y), 1)(3.0, 6.0), grad(lambda x, y: logistic(x + y), 1)(4.0, 6.0), grad(lambda x, y: logistic(x + y), 1)(5.0, 6.0), ], ) assert check_list(ans_val, sol_val) assert check_list(sol_der_x, ans_der_x) & check_list(sol_der_y, ans_der_y) def test_log10(): def log10(x): return adnp.log(x) / adnp.log(10) x = 3 ans = ad.log10(x) sol = log10(x) assert sol == ans x = ad.Variable(3, label="x") y = ad.log10(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = log10(3), grad(log10)(3.0) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(3, label="x") + 3 y = ad.log10(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = log10(6), grad(lambda x: log10(x + 3.0))(3.0) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(3, label="x") + ad.Variable(4, label="y") y = ad.log10(x) ans_val, ans_der = y.val, [y.der["x"], y.der["y"]] sol_val, sol_der = ( log10(7), [ grad(lambda x, y: log10(x + y), 0)(3.0, 4.0), grad(lambda x, y: log10(x + y), 1)(3.0, 4.0), ], ) assert ans_val == sol_val assert check_list(ans_der, sol_der) x = ad.Variable([3, 4, 5], label="x") y = ad.log10(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [log10(3), log10(4), log10(5)], [ grad(lambda x: log10(x))(3.0), grad(lambda x: log10(x))(4.0), grad(lambda x: log10(x))(5.0), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([3, 4, 5], label="x") y = ad.log10(x + x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [log10(3 * 2), log10(4 * 2), log10(5 * 2)], [ grad(lambda x: log10(x + x))(3.0), grad(lambda x: log10(x + x))(4.0), grad(lambda x: log10(x + x))(5.0), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([3, 4, 5], label="x") y = ad.Variable([6, 6, 6], label="y") y = ad.log10(x + y) ans_val, ans_der_x, ans_der_y = y.val, y.der["x"], y.der["y"] sol_val, sol_der_x, sol_der_y = ( [log10(9), log10(10), log10(11)], [ grad(lambda x, y: log10(x + y), 0)(3.0, 6.0), grad(lambda x, y: log10(x + y), 0)(4.0, 6.0), grad(lambda x, y: log10(x + y), 0)(5.0, 6.0), ], [ grad(lambda x, y: log10(x + y), 1)(3.0, 6.0), grad(lambda x, y: log10(x + y), 1)(4.0, 6.0), grad(lambda x, y: log10(x + y), 1)(5.0, 6.0), ], ) assert check_list(ans_val, sol_val) assert check_list(sol_der_x, ans_der_x) & check_list(sol_der_y, ans_der_y) def test_sin(): x = 0.3 ans = ad.sin(x) sol = adnp.sin(x) assert sol == ans x = ad.Variable(0.3, label="x") y = ad.sin(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = adnp.sin(0.3), grad(adnp.sin)(0.3) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(0.3, label="x") + 0.3 y = ad.sin(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = adnp.sin(0.6), grad(lambda x: adnp.sin(x + 0.3))(0.3) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(0.3, label="x") + ad.Variable(0.4, label="y") y = ad.sin(x) ans_val, ans_der = y.val, [y.der["x"], y.der["y"]] sol_val, sol_der = ( adnp.sin(0.7), [ grad(lambda x, y: adnp.sin(x + y), 0)(0.3, 0.4), grad(lambda x, y: adnp.sin(x + y), 1)(0.3, 0.4), ], ) assert ans_val == sol_val assert check_list(ans_der, sol_der) x = ad.Variable([0.3, 0.4, 0.5], label="x") y = ad.sin(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [adnp.sin(0.3), adnp.sin(0.4), adnp.sin(0.5)], [ grad(lambda x: adnp.sin(x))(0.3), grad(lambda x: adnp.sin(x))(0.4), grad(lambda x: adnp.sin(x))(0.5), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([0.3, 0.4, 0.5], label="x") y = ad.sin(x + x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [adnp.sin(0.3 * 2), adnp.sin(0.4 * 2), adnp.sin(0.5 * 2)], [ grad(lambda x: adnp.sin(x + x))(0.3), grad(lambda x: adnp.sin(x + x))(0.4), grad(lambda x: adnp.sin(x + x))(0.5), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([0.03, 0.04, 0.05], label="x") y = ad.Variable([0.06, 0.06, 0.06], label="y") y = ad.sin(x + y) ans_val, ans_der_x, ans_der_y = y.val, y.der["x"], y.der["y"] sol_val, sol_der_x, sol_der_y = ( [adnp.sin(0.09), adnp.sin(0.10), adnp.sin(0.11)], [ grad(lambda x, y: adnp.sin(x + y), 0)(0.030, 0.060), grad(lambda x, y: adnp.sin(x + y), 0)(0.040, 0.060), grad(lambda x, y: adnp.sin(x + y), 0)(0.050, 0.060), ], [ grad(lambda x, y: adnp.sin(x + y), 1)(0.030, 0.060), grad(lambda x, y: adnp.sin(x + y), 1)(0.040, 0.060), grad(lambda x, y: adnp.sin(x + y), 1)(0.050, 0.060), ], ) assert check_list(ans_val, sol_val) assert check_list(sol_der_x, ans_der_x) & check_list(sol_der_y, ans_der_y) def test_arcsin(): x = 0.3 ans = ad.arcsin(x) sol = adnp.arcsin(x) assert sol == ans x = ad.Variable(0.3, label="x") y = ad.arcsin(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = adnp.arcsin(0.3), grad(adnp.arcsin)(0.3) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(0.3, label="x") + 0.3 y = ad.arcsin(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = adnp.arcsin(0.6), grad(lambda x: adnp.arcsin(x + 0.3))(0.3) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(0.3, label="x") + ad.Variable(0.4, label="y") y = ad.arcsin(x) ans_val, ans_der = y.val, [y.der["x"], y.der["y"]] sol_val, sol_der = ( adnp.arcsin(0.7), [ grad(lambda x, y: adnp.arcsin(x + y), 0)(0.3, 0.4), grad(lambda x, y: adnp.arcsin(x + y), 1)(0.3, 0.4), ], ) assert ans_val == sol_val assert check_list(ans_der, sol_der) x = ad.Variable([0.3, 0.4, 0.5], label="x") y = ad.arcsin(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [adnp.arcsin(0.3), adnp.arcsin(0.4), adnp.arcsin(0.5)], [ grad(lambda x: adnp.arcsin(x))(0.3), grad(lambda x: adnp.arcsin(x))(0.4), grad(lambda x: adnp.arcsin(x))(0.5), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([0.3, 0.4, 0.5], label="x") y = ad.arcsin(x + x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [adnp.arcsin(0.3 * 2), adnp.arcsin(0.4 * 2), adnp.arcsin(0.5 * 2)], [ grad(lambda x: adnp.arcsin(x + x))(0.3), grad(lambda x: adnp.arcsin(x + x))(0.4), grad(lambda x: adnp.arcsin(x + x))(0.5), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([0.03, 0.04, 0.05], label="x") y = ad.Variable([0.06, 0.06, 0.06], label="y") y = ad.arcsin(x + y) ans_val, ans_der_x, ans_der_y = y.val, y.der["x"], y.der["y"] sol_val, sol_der_x, sol_der_y = ( [adnp.arcsin(0.09), adnp.arcsin(0.10), adnp.arcsin(0.11)], [ grad(lambda x, y: adnp.arcsin(x + y), 0)(0.030, 0.060), grad(lambda x, y: adnp.arcsin(x + y), 0)(0.040, 0.060), grad(lambda x, y: adnp.arcsin(x + y), 0)(0.050, 0.060), ], [ grad(lambda x, y: adnp.arcsin(x + y), 1)(0.030, 0.060), grad(lambda x, y: adnp.arcsin(x + y), 1)(0.040, 0.060), grad(lambda x, y: adnp.arcsin(x + y), 1)(0.050, 0.060), ], ) assert check_list(ans_val, sol_val) assert check_list(sol_der_x, ans_der_x) & check_list(sol_der_y, ans_der_y) x = ad.Variable(2, label="x") with pytest.raises(Exception): y = ad.arcsin(x) def test_sinh(): x = 0.3 ans = ad.sinh(x) sol = adnp.sinh(x) assert sol == ans x = ad.Variable(0.3, label="x") y = ad.sinh(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = adnp.sinh(0.3), grad(adnp.sinh)(0.3) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(0.3, label="x") + 0.3 y = ad.sinh(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = adnp.sinh(0.6), grad(lambda x: adnp.sinh(x + 0.3))(0.3) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(0.3, label="x") + ad.Variable(0.4, label="y") y = ad.sinh(x) ans_val, ans_der = y.val, [y.der["x"], y.der["y"]] sol_val, sol_der = ( adnp.sinh(0.7), [ grad(lambda x, y: adnp.sinh(x + y), 0)(0.3, 0.4), grad(lambda x, y: adnp.sinh(x + y), 1)(0.3, 0.4), ], ) assert ans_val == sol_val assert check_list(ans_der, sol_der) x = ad.Variable([0.3, 0.4, 0.5], label="x") y = ad.sinh(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [adnp.sinh(0.3), adnp.sinh(0.4), adnp.sinh(0.5)], [ grad(lambda x: adnp.sinh(x))(0.3), grad(lambda x: adnp.sinh(x))(0.4), grad(lambda x: adnp.sinh(x))(0.5), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([0.3, 0.4, 0.5], label="x") y = ad.sinh(x + x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [adnp.sinh(0.3 * 2), adnp.sinh(0.4 * 2), adnp.sinh(0.5 * 2)], [ grad(lambda x: adnp.sinh(x + x))(0.3), grad(lambda x: adnp.sinh(x + x))(0.4), grad(lambda x: adnp.sinh(x + x))(0.5), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([0.03, 0.04, 0.05], label="x") y = ad.Variable([0.06, 0.06, 0.06], label="y") y = ad.sinh(x + y) ans_val, ans_der_x, ans_der_y = y.val, y.der["x"], y.der["y"] sol_val, sol_der_x, sol_der_y = ( [adnp.sinh(0.09), adnp.sinh(0.10), adnp.sinh(0.11)], [ grad(lambda x, y: adnp.sinh(x + y), 0)(0.030, 0.060), grad(lambda x, y: adnp.sinh(x + y), 0)(0.040, 0.060), grad(lambda x, y: adnp.sinh(x + y), 0)(0.050, 0.060), ], [ grad(lambda x, y: adnp.sinh(x + y), 1)(0.030, 0.060), grad(lambda x, y: adnp.sinh(x + y), 1)(0.040, 0.060), grad(lambda x, y: adnp.sinh(x + y), 1)(0.050, 0.060), ], ) assert check_list(ans_val, sol_val) assert check_list(sol_der_x, ans_der_x) & check_list(sol_der_y, ans_der_y) def test_cos(): x = 0.3 ans = ad.cos(x) sol = adnp.cos(x) assert sol == ans x = ad.Variable(0.3, label="x") y = ad.cos(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = adnp.cos(0.3), grad(adnp.cos)(0.3) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(0.3, label="x") + 0.3 y = ad.cos(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = adnp.cos(0.6), grad(lambda x: adnp.cos(x + 0.3))(0.3) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(0.3, label="x") + ad.Variable(0.4, label="y") y = ad.cos(x) ans_val, ans_der = y.val, [y.der["x"], y.der["y"]] sol_val, sol_der = ( adnp.cos(0.7), [ grad(lambda x, y: adnp.cos(x + y), 0)(0.3, 0.4), grad(lambda x, y: adnp.cos(x + y), 1)(0.3, 0.4), ], ) assert ans_val == sol_val assert check_list(ans_der, sol_der) x = ad.Variable([0.3, 0.4, 0.5], label="x") y = ad.cos(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [adnp.cos(0.3), adnp.cos(0.4), adnp.cos(0.5)], [ grad(lambda x: adnp.cos(x))(0.3), grad(lambda x: adnp.cos(x))(0.4), grad(lambda x: adnp.cos(x))(0.5), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([0.3, 0.4, 0.5], label="x") y = ad.cos(x + x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [adnp.cos(0.3 * 2), adnp.cos(0.4 * 2), adnp.cos(0.5 * 2)], [ grad(lambda x: adnp.cos(x + x))(0.3), grad(lambda x: adnp.cos(x + x))(0.4), grad(lambda x: adnp.cos(x + x))(0.5), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([0.03, 0.04, 0.05], label="x") y = ad.Variable([0.06, 0.06, 0.06], label="y") y = ad.cos(x + y) ans_val, ans_der_x, ans_der_y = y.val, y.der["x"], y.der["y"] sol_val, sol_der_x, sol_der_y = ( [adnp.cos(0.09), adnp.cos(0.10), adnp.cos(0.11)], [ grad(lambda x, y: adnp.cos(x + y), 0)(0.030, 0.060), grad(lambda x, y: adnp.cos(x + y), 0)(0.040, 0.060), grad(lambda x, y: adnp.cos(x + y), 0)(0.050, 0.060), ], [ grad(lambda x, y: adnp.cos(x + y), 1)(0.030, 0.060), grad(lambda x, y: adnp.cos(x + y), 1)(0.040, 0.060), grad(lambda x, y: adnp.cos(x + y), 1)(0.050, 0.060), ], ) assert check_list(ans_val, sol_val) assert check_list(sol_der_x, ans_der_x) & check_list(sol_der_y, ans_der_y) def test_arccos(): x = 0.3 ans = ad.arccos(x) sol = adnp.arccos(x) assert sol == ans x = ad.Variable(0.3, label="x") y = ad.arccos(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = adnp.arccos(0.3), grad(adnp.arccos)(0.3) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(0.3, label="x") + 0.3 y = ad.arccos(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = adnp.arccos(0.6), grad(lambda x: adnp.arccos(x + 0.3))(0.3) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(0.3, label="x") + ad.Variable(0.4, label="y") y = ad.arccos(x) ans_val, ans_der = y.val, [y.der["x"], y.der["y"]] sol_val, sol_der = ( adnp.arccos(0.7), [ grad(lambda x, y: adnp.arccos(x + y), 0)(0.3, 0.4), grad(lambda x, y: adnp.arccos(x + y), 1)(0.3, 0.4), ], ) assert ans_val == sol_val assert check_list(ans_der, sol_der) x = ad.Variable([0.3, 0.4, 0.5], label="x") y = ad.arccos(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [adnp.arccos(0.3), adnp.arccos(0.4), adnp.arccos(0.5)], [ grad(lambda x: adnp.arccos(x))(0.3), grad(lambda x: adnp.arccos(x))(0.4), grad(lambda x: adnp.arccos(x))(0.5), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([0.3, 0.4, 0.5], label="x") y = ad.arccos(x + x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [adnp.arccos(0.3 * 2), adnp.arccos(0.4 * 2), adnp.arccos(0.5 * 2)], [ grad(lambda x: adnp.arccos(x + x))(0.3), grad(lambda x: adnp.arccos(x + x))(0.4), grad(lambda x: adnp.arccos(x + x))(0.5), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([0.03, 0.04, 0.05], label="x") y = ad.Variable([0.06, 0.06, 0.06], label="y") y = ad.arccos(x + y) ans_val, ans_der_x, ans_der_y = y.val, y.der["x"], y.der["y"] sol_val, sol_der_x, sol_der_y = ( [adnp.arccos(0.09), adnp.arccos(0.10), adnp.arccos(0.11)], [ grad(lambda x, y: adnp.arccos(x + y), 0)(0.030, 0.060), grad(lambda x, y: adnp.arccos(x + y), 0)(0.040, 0.060), grad(lambda x, y: adnp.arccos(x + y), 0)(0.050, 0.060), ], [ grad(lambda x, y: adnp.arccos(x + y), 1)(0.030, 0.060), grad(lambda x, y: adnp.arccos(x + y), 1)(0.040, 0.060), grad(lambda x, y: adnp.arccos(x + y), 1)(0.050, 0.060), ], ) assert check_list(ans_val, sol_val) assert check_list(sol_der_x, ans_der_x) & check_list(sol_der_y, ans_der_y) x = ad.Variable(2, label="x") with pytest.raises(Exception): y = ad.arccos(x) def test_cosh(): x = 0.3 ans = ad.cosh(x) sol = adnp.cosh(x) assert sol == ans x = ad.Variable(0.3, label="x") y = ad.cosh(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = adnp.cosh(0.3), grad(adnp.cosh)(0.3) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(0.3, label="x") + 0.3 y = ad.cosh(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = adnp.cosh(0.6), grad(lambda x: adnp.cosh(x + 0.3))(0.3) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(0.3, label="x") + ad.Variable(0.4, label="y") y = ad.cosh(x) ans_val, ans_der = y.val, [y.der["x"], y.der["y"]] sol_val, sol_der = ( adnp.cosh(0.7), [ grad(lambda x, y: adnp.cosh(x + y), 0)(0.3, 0.4), grad(lambda x, y: adnp.cosh(x + y), 1)(0.3, 0.4), ], ) assert ans_val == sol_val assert check_list(ans_der, sol_der) x = ad.Variable([0.3, 0.4, 0.5], label="x") y = ad.cosh(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [adnp.cosh(0.3), adnp.cosh(0.4), adnp.cosh(0.5)], [ grad(lambda x: adnp.cosh(x))(0.3), grad(lambda x: adnp.cosh(x))(0.4), grad(lambda x: adnp.cosh(x))(0.5), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([0.3, 0.4, 0.5], label="x") y = ad.cosh(x + x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [adnp.cosh(0.3 * 2), adnp.cosh(0.4 * 2), adnp.cosh(0.5 * 2)], [ grad(lambda x: adnp.cosh(x + x))(0.3), grad(lambda x: adnp.cosh(x + x))(0.4), grad(lambda x: adnp.cosh(x + x))(0.5), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([0.03, 0.04, 0.05], label="x") y = ad.Variable([0.06, 0.06, 0.06], label="y") y = ad.cosh(x + y) ans_val, ans_der_x, ans_der_y = y.val, y.der["x"], y.der["y"] sol_val, sol_der_x, sol_der_y = ( [adnp.cosh(0.09), adnp.cosh(0.10), adnp.cosh(0.11)], [ grad(lambda x, y: adnp.cosh(x + y), 0)(0.030, 0.060), grad(lambda x, y: adnp.cosh(x + y), 0)(0.040, 0.060), grad(lambda x, y: adnp.cosh(x + y), 0)(0.050, 0.060), ], [ grad(lambda x, y: adnp.cosh(x + y), 1)(0.030, 0.060), grad(lambda x, y: adnp.cosh(x + y), 1)(0.040, 0.060), grad(lambda x, y: adnp.cosh(x + y), 1)(0.050, 0.060), ], ) assert check_list(ans_val, sol_val) assert check_list(sol_der_x, ans_der_x) & check_list(sol_der_y, ans_der_y) def test_tan(): x = 0.3 ans = ad.tan(x) sol = adnp.tan(x) assert sol == ans x = ad.Variable(0.3, label="x") y = ad.tan(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = adnp.tan(0.3), grad(adnp.tan)(0.3) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(0.3, label="x") + 0.3 y = ad.tan(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = adnp.tan(0.6), grad(lambda x: adnp.tan(x + 0.3))(0.3) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(0.3, label="x") + ad.Variable(0.4, label="y") y = ad.tan(x) ans_val, ans_der = y.val, [y.der["x"], y.der["y"]] sol_val, sol_der = ( adnp.tan(0.7), [ grad(lambda x, y: adnp.tan(x + y), 0)(0.3, 0.4), grad(lambda x, y: adnp.tan(x + y), 1)(0.3, 0.4), ], ) assert ans_val == sol_val assert check_list(ans_der, sol_der) x = ad.Variable([0.3, 0.4, 0.5], label="x") y = ad.tan(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [adnp.tan(0.3), adnp.tan(0.4), adnp.tan(0.5)], [ grad(lambda x: adnp.tan(x))(0.3), grad(lambda x: adnp.tan(x))(0.4), grad(lambda x: adnp.tan(x))(0.5), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([0.3, 0.4, 0.5], label="x") y = ad.tan(x + x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [adnp.tan(0.3 * 2), adnp.tan(0.4 * 2), adnp.tan(0.5 * 2)], [ grad(lambda x: adnp.tan(x + x))(0.3), grad(lambda x: adnp.tan(x + x))(0.4), grad(lambda x: adnp.tan(x + x))(0.5), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([0.03, 0.04, 0.05], label="x") y = ad.Variable([0.06, 0.06, 0.06], label="y") y = ad.tan(x + y) ans_val, ans_der_x, ans_der_y = y.val, y.der["x"], y.der["y"] sol_val, sol_der_x, sol_der_y = ( [adnp.tan(0.09), adnp.tan(0.10), adnp.tan(0.11)], [ grad(lambda x, y: adnp.tan(x + y), 0)(0.030, 0.060), grad(lambda x, y: adnp.tan(x + y), 0)(0.040, 0.060), grad(lambda x, y: adnp.tan(x + y), 0)(0.050, 0.060), ], [ grad(lambda x, y: adnp.tan(x + y), 1)(0.030, 0.060), grad(lambda x, y: adnp.tan(x + y), 1)(0.040, 0.060), grad(lambda x, y: adnp.tan(x + y), 1)(0.050, 0.060), ], ) assert check_list(ans_val, sol_val) assert check_list(sol_der_x, ans_der_x) & check_list(sol_der_y, ans_der_y) def test_arctan(): x = 0.3 ans = ad.arctan(x) sol = adnp.arctan(x) assert sol == ans x = ad.Variable(0.3, label="x") y = ad.arctan(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = adnp.arctan(0.3), grad(adnp.arctan)(0.3) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(0.3, label="x") + 0.3 y = ad.arctan(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = adnp.arctan(0.6), grad(lambda x: adnp.arctan(x + 0.3))(0.3) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(0.3, label="x") + ad.Variable(0.4, label="y") y = ad.arctan(x) ans_val, ans_der = y.val, [y.der["x"], y.der["y"]] sol_val, sol_der = ( adnp.arctan(0.7), [ grad(lambda x, y: adnp.arctan(x + y), 0)(0.3, 0.4), grad(lambda x, y: adnp.arctan(x + y), 1)(0.3, 0.4), ], ) assert ans_val == sol_val assert check_list(ans_der, sol_der) x = ad.Variable([0.3, 0.4, 0.5], label="x") y = ad.arctan(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [adnp.arctan(0.3), adnp.arctan(0.4), adnp.arctan(0.5)], [ grad(lambda x: adnp.arctan(x))(0.3), grad(lambda x: adnp.arctan(x))(0.4), grad(lambda x: adnp.arctan(x))(0.5), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([0.3, 0.4, 0.5], label="x") y = ad.arctan(x + x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [adnp.arctan(0.3 * 2), adnp.arctan(0.4 * 2), adnp.arctan(0.5 * 2)], [ grad(lambda x: adnp.arctan(x + x))(0.3), grad(lambda x: adnp.arctan(x + x))(0.4), grad(lambda x: adnp.arctan(x + x))(0.5), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([0.03, 0.04, 0.05], label="x") y = ad.Variable([0.06, 0.06, 0.06], label="y") y = ad.arctan(x + y) ans_val, ans_der_x, ans_der_y = y.val, y.der["x"], y.der["y"] sol_val, sol_der_x, sol_der_y = ( [adnp.arctan(0.09), adnp.arctan(0.10), adnp.arctan(0.11)], [ grad(lambda x, y: adnp.arctan(x + y), 0)(0.030, 0.060), grad(lambda x, y: adnp.arctan(x + y), 0)(0.040, 0.060), grad(lambda x, y: adnp.arctan(x + y), 0)(0.050, 0.060), ], [ grad(lambda x, y: adnp.arctan(x + y), 1)(0.030, 0.060), grad(lambda x, y: adnp.arctan(x + y), 1)(0.040, 0.060), grad(lambda x, y: adnp.arctan(x + y), 1)(0.050, 0.060), ], ) assert check_list(ans_val, sol_val) assert check_list(sol_der_x, ans_der_x) & check_list(sol_der_y, ans_der_y) def test_tanh(): x = 0.3 ans = ad.tanh(x) sol = adnp.tanh(x) assert sol == ans x = ad.Variable(0.3, label="x") y = ad.tanh(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = adnp.tanh(0.3), grad(adnp.tanh)(0.3) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(0.3, label="x") + 0.3 y = ad.tanh(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = adnp.tanh(0.6), grad(lambda x: adnp.tanh(x + 0.3))(0.3) assert ans_val == sol_val assert math.isclose(ans_der, sol_der) x = ad.Variable(0.3, label="x") + ad.Variable(0.4, label="y") y = ad.tanh(x) ans_val, ans_der = y.val, [y.der["x"], y.der["y"]] sol_val, sol_der = ( adnp.tanh(0.7), [ grad(lambda x, y: adnp.tanh(x + y), 0)(0.3, 0.4), grad(lambda x, y: adnp.tanh(x + y), 1)(0.3, 0.4), ], ) assert ans_val == sol_val assert check_list(ans_der, sol_der) x = ad.Variable([0.3, 0.4, 0.5], label="x") y = ad.tanh(x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [adnp.tanh(0.3), adnp.tanh(0.4), adnp.tanh(0.5)], [ grad(lambda x: adnp.tanh(x))(0.3), grad(lambda x: adnp.tanh(x))(0.4), grad(lambda x: adnp.tanh(x))(0.5), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([0.3, 0.4, 0.5], label="x") y = ad.tanh(x + x) ans_val, ans_der = y.val, y.der["x"] sol_val, sol_der = ( [adnp.tanh(0.3 * 2), adnp.tanh(0.4 * 2), adnp.tanh(0.5 * 2)], [ grad(lambda x: adnp.tanh(x + x))(0.3), grad(lambda x: adnp.tanh(x + x))(0.4), grad(lambda x: adnp.tanh(x + x))(0.5), ], ) assert check_list(ans_val, sol_val) assert check_list(ans_der, sol_der) x = ad.Variable([0.03, 0.04, 0.05], label="x") y = ad.Variable([0.06, 0.06, 0.06], label="y") y = ad.tanh(x + y) ans_val, ans_der_x, ans_der_y = y.val, y.der["x"], y.der["y"] sol_val, sol_der_x, sol_der_y = ( [adnp.tanh(0.09), adnp.tanh(0.10), adnp.tanh(0.11)], [ grad(lambda x, y: adnp.tanh(x + y), 0)(0.030, 0.060), grad(lambda x, y: adnp.tanh(x + y), 0)(0.040, 0.060), grad(lambda x, y: adnp.tanh(x + y), 0)(0.050, 0.060), ], [ grad(lambda x, y: adnp.tanh(x + y), 1)(0.030, 0.060), grad(lambda x, y: adnp.tanh(x + y), 1)(0.040, 0.060), grad(lambda x, y: adnp.tanh(x + y), 1)(0.050, 0.060), ], ) assert check_list(ans_val, sol_val) assert check_list(sol_der_x, ans_der_x) & check_list(sol_der_y, ans_der_y) def test_neg(): x = ad.Variable(3, label="x") y = -x assert y.val == -3 assert y.der == {"x": -1} x = ad.Variable(3, label="x", der={"x": 2}) y = -x assert y.val == -3 assert y.der == {"x": -2} x = ad.Variable(np.arange(3), label="x") y = -x assert np.all(y.val == [0, -1, -2]) assert y.der == {"x": [-1, -1, -1]} x = ad.Variable(0, label="x") y = ad.Variable(3, label="y") z = x + 2 * y z2 = -z assert z2.val == -6 assert z2.der == {"x": -1, "y": -2} x = ad.Variable(np.arange(3), label="x") y = ad.Variable(3 + np.arange(3), label="y") z = x + 2 * y z2 = -z assert np.all(z2.val == [-6, -9, -12]) assert z2.der == {"x": [-1, -1, -1], "y": [-2, -2, -2]} def test_pow(): x = ad.Variable(3, label="x") z = x ** 2 assert z.val == 9 assert z.der == {"x": 6} x = ad.Variable(0, label="x") z = x ** 2 assert z.val == 0 assert z.der == {"x": 0} x = ad.Variable([3, 2], label="x") z = x ** 2 assert np.all(z.val == [9, 4]) assert np.all(z.der == {"x": [6, 4]}) x = ad.Variable(3, label="x") y = ad.Variable(2, label="y") z = x ** y assert z.val == 9 assert z.der == {"x": 6, "y": 9 * np.log(3)} x = ad.Variable([3, 2], label="x") y = ad.Variable([2, 3], label="y") z = x ** y assert np.all(z.val == [9, 8]) assert ( compare_dicts_multi(z.der, {"x": [6, 12], "y": [9 * np.log(3), 8 * np.log(2)]}) == True ) x = ad.Variable([np.e - 1, np.e - 1], label="x") y = ad.Variable([1, 1], label="y") z = x + y z2 = z ** y assert np.all(z2.val == [np.e, np.e]) assert compare_dicts_multi(z2.der, {"x": [1, 1], "y": [np.e + 1, np.e + 1]}) == True x = ad.Variable([0, 0], label="x") y = ad.Variable([1, 2], label="y") z = x ** y assert np.all(z.val == [0, 0]) assert compare_dicts_multi(z.der, {"x": [1, 0], "y": [0, 0]}) == True def test_rpow(): x = ad.Variable(1, label="x") z = np.e ** x assert z.val == np.e assert z.der == {"x": np.e} x = ad.Variable(1, label="x") z = 0 ** x assert z.val == 0 assert z.der == {"x": 0} x = ad.Variable([1, 2], label="x") z = np.e ** x assert np.all(z.val == [np.e, np.e ** 2]) assert np.all(z.der == {"x": [np.e, np.e ** 2]}) x = ad.Variable(2, label="x") y = ad.Variable(-1, label="y") z = np.e ** (x + 2 * y) assert z.val == 1 assert z.der == {"x": 1, "y": 2} x = ad.Variable([2, -2], label="x") y = ad.Variable([-1, 1], label="y") z = np.e ** (x + 2 * y) assert np.all(z.val == [1, 1]) assert np.all(z.der == {"x": [1, 1], "y": [2, 2]}) def test_ne(): x = ad.Variable(1, label="x") y = ad.Variable(1, label="y") assert (x != x) == False assert (x != y) == True z1 = ad.Variable([1, 2], der={"x": [1, 2], "y": [1, 2]}, label="z1") z2 = ad.Variable([1, 2], der={"x": [1, 2], "y": [1, 2]}, label="z2") assert (z1 != z2) == False z1 = ad.Variable(1, der={"x": 2, "y": 3}, label="z1") z2 = ad.Variable(1, der={"x": 2, "y": 3}, label="z2") assert (z1 != z2) == False z1 = ad.Variable([1, 2], der={"x": [1, 2], "y": [1, 2]}, label="z1") z2 = ad.Variable([1, 2], der={"x": [1, 2], "y": [1, 3]}, label="z2") assert (z1 != z2) == True x = ad.Variable(1, label="x") y = ad.Variable(1, label="y") z1 = ad.exp(x) + np.e * y z2 = ad.exp(y) + np.e * x assert (z1 != z2) == False x = ad.Variable([1, 2, 3], label="x") y = ad.Variable([2, 3], label="y") assert (x != y) == True z = 1 assert (x != z) == True def test_lt(): x = ad.Variable(1, label="x") y = ad.Variable(2, label="y") assert (x < y) == True x = ad.Variable([1, 2], label="x") y = ad.Variable([2, 2], label="y") assert np.all((x < y) == [True, False]) x = ad.Variable([1, 1, 1], label="x") y = ad.Variable([2, 2], label="y") with pytest.raises(Exception): print(x < y) def test_le(): x = ad.Variable(1, label="x") y = ad.Variable(2, label="y") assert (x <= y) == True x = ad.Variable([1, 2], label="x") y = ad.Variable([2, 2], label="y") assert np.all((x <= y) == [True, True]) x = ad.Variable([1, 1, 1], label="x") y = ad.Variable([2, 2], label="y") with pytest.raises(Exception): print(x <= y) def test_gt(): x = ad.Variable(3, label="x") y = ad.Variable(2, label="y") assert (x > y) == True x = ad.Variable([3, 2], label="x") y = ad.Variable([2, 2], label="y") assert np.all((x > y) == [True, False]) x = ad.Variable([1, 1, 1], label="x") y = ad.Variable([2, 2], label="y") with pytest.raises(Exception): print(x > y) def test_ge(): x = ad.Variable(3, label="x") y = ad.Variable(2, label="y") assert (x >= y) == True x = ad.Variable([3, 2], label="x") y = ad.Variable([2, 2], label="y") assert np.all((x >= y) == [True, True]) x = ad.Variable([1, 1, 1], label="x") y = ad.Variable([2, 2], label="y") with pytest.raises(Exception): print(x >= y) def test_complicated_functions(): ## Function 1 ## sin(x) + cos(x) * 3*y - x^4 + ln(x*y) x = np.random.rand(5, 4) x_var = ad.Variable(x, label="x") y = np.random.rand(5, 4) y_var = ad.Variable(y, label="y") f_ad = ad.sin(x_var) + ad.cos(x_var) * 3 * y_var - x_var ** 4 + ad.ln(x_var * y_var) f_ad_val = f_ad.val f_ad_grad = f_ad.der f_np_val = np.sin(x) + np.cos(x) * 3 * y - x ** 4 + np.log(x * y) dx = -4 * x ** 3 - 3 * y * np.sin(x) + 1 / x + np.cos(x) dy = 3 * np.cos(x) + 1 / y assert np.array_equal(f_ad_val, f_np_val) assert np.array_equal(np.around(f_ad_grad["x"], 4), np.around(dx, 4)) assert np.array_equal(np.around(f_ad_grad["y"], 4), np.around(dy, 4)) ## Function 2 ## cos(x*y^2) + exp(x*y*3x) x = np.random.rand(3, 8) x_var = ad.Variable(x, label="x") y = np.random.rand(3, 8) y_var = ad.Variable(y, label="y") f_ad = ad.cos(x_var * y_var ** 2) + ad.exp(x_var * y_var * 3 * x_var) f_ad_val = f_ad.val f_ad_grad = f_ad.der f_np_val = np.cos(x * y ** 2) + np.exp(x * y * 3 * x) dx = y * (6 * x * np.exp(3 * x ** 2 * y) - y * np.sin(x * y ** 2)) dy = x * (3 * x *
np.exp(3 * x ** 2 * y)
numpy.exp
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(221, 'P m -3 m', transformations) space_groups[221] = sg space_groups['P m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(222, 'P n -3 n :2', transformations) space_groups[222] = sg space_groups['P n -3 n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(223, 'P m -3 n', transformations) space_groups[223] = sg space_groups['P m -3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(224, 'P n -3 m :2', transformations) space_groups[224] = sg space_groups['P n -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(225, 'F m -3 m', transformations) space_groups[225] = sg space_groups['F m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(226, 'F m -3 c', transformations) space_groups[226] = sg space_groups['F m -3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(227, 'F d -3 m :2', transformations) space_groups[227] = sg space_groups['F d -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,5,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,5,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,5]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,3,5]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num =
N.array([0,3,3])
numpy.array
# -*- coding: utf-8 -*- """ pyDIS: A simple one dimensional spectra reduction and analysis package Created with the Apache Point Observatory (APO) 3.5-m telescope's Dual Imaging Spectrograph (DIS) in mind. YMMV e.g. DIS specifics: - have BLUE/RED channels - hand-code in that the RED channel wavelength is backwards - dispersion along the X, spatial along the Y axis """ import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib.widgets import Cursor import os import numpy as np from astropy.io import fits from astropy.convolution import convolve, Box1DKernel from scipy.optimize import curve_fit import scipy.signal from scipy.interpolate import UnivariateSpline from scipy.interpolate import SmoothBivariateSpline import warnings # import datetime # from matplotlib.widgets import SpanSelector __all__ = ['OpenImg', 'ap_trace', 'ap_extract', 'HeNeAr_fit', 'mapwavelength', 'biascombine', 'flatcombine', 'line_trace', 'find_peaks', 'lines_to_surface', 'normalize', 'DefFluxCal', 'ApplyFluxCal', 'AirmassCor'] def _mag2flux(wave, mag, zeropt=48.60): ''' Convert magnitudes to flux units. This is important for dealing with standards and files from IRAF, which are stored in AB mag units. To be clear, this converts to "PHOTFLAM" units in IRAF-speak. Assumes the common flux zeropoint used in IRAF Parameters ---------- wave : 1d numpy array The wavelength of the data points mag : 1d numpy array The magnitudes of the data zeropt : float, optional Conversion factor for mag->flux. (Default is 48.60) Returns ------- Flux values! ''' c = 2.99792458e18 # speed of light, in A/s flux = 10.0**( (mag + zeropt) / (-2.5) ) return flux * (c / wave**2.0) def _gaus(x, a, b, x0, sigma): """ Simple Gaussian function, for internal use only Parameters ---------- x : float or 1-d numpy array The data to evaluate the Gaussian over a : float the amplitude b : float the constant offset x0 : float the center of the Gaussian sigma : float the width of the Gaussian Returns ------- Array or float of same type as input (x). """ return a * np.exp(-(x - x0)**2 / (2 * sigma**2)) + b def _WriteSpec(spec, wfinal, ffinal, efinal, trace): # write file with the trace (y positions) tout = open(spec+'.trace','w') tout.write('# This file contains the x,y coordinates of the trace \n') for k in range(len(trace)): tout.write(str(k)+', '+str(trace[k]) + '\n') tout.close() # write the final spectrum out fout = open(spec+'.spec','w') fout.write('# This file contains the final extracted (wavelength,flux,err) data \n') for k in range(len(wfinal)): fout.write(str(wfinal[k]) + ' ' + str(ffinal[k]) + ' ' + str(efinal[k]) + '\n') fout.close() return def _CheckMono(wave): ''' Check if the wavelength array is monotonically increasing. Return a warning if not. NOTE: because RED/BLUE wavelength direction is flipped it has to check both increasing and decreasing. It must satisfy one! Method adopted from here: http://stackoverflow.com/a/4983359/4842871 ''' # increasing up = all(x<y for x, y in zip(wave, wave[1:])) # decreasing dn = all(x>y for x, y in zip(wave, wave[1:])) if (up is False) and (dn is False): print("WARNING: Wavelength array is not monotonically increasing!") return class OpenImg(object): """ A simple wrapper for astropy.io.fits (pyfits) to open and extract the data we want from images and headers. Parameters ---------- file : string The path to the image to open trim : bool, optional Trim the image using the DATASEC keyword in the header, assuming has format of [0:1024,0:512] (Default is True) Returns ------- image object """ def __init__(self, file, trim=True): self.file = file self.trim = trim hdu = fits.open(file) if trim is True: self.datasec = hdu[0].header['DATASEC'][1:-1].replace(':',',').split(',') d = list(map(int, self.datasec)) self.data = hdu[0].data[d[2]-1:d[3],d[0]-1:d[1]] else: self.data = hdu[0].data if 'AIRMASS' in hdu[0].header: self.airmass = hdu[0].header['AIRMASS'] elif 'ZD' in hdu[0].header: # try using the Zenith Distance (assume in degrees) ZD = hdu[0].header['ZD'] / 180.0 * np.pi self.airmass = 1.0/np.cos(ZD) # approximate airmass else: self.airmass = 1.0 # compute the approximate wavelength solution try: self.disp_approx = hdu[0].header['DISPDW'] self.wcen_approx = hdu[0].header['DISPWC'] # the red chip wavelength is backwards (DIS specific) clr = hdu[0].header['DETECTOR'] if (clr.lower()=='red'): sign = -1.0 else: sign = 1.0 self.wavelength = (np.arange(self.data.shape[1]) - (self.data.shape[1])/2.0) * \ self.disp_approx * sign + self.wcen_approx except KeyError: # if these keywords aren't in the header, just return pixel # self.wavelength = np.arange(self.data.shape[1]) self.exptime = hdu[0].header['EXPTIME'] hdu.close(closed=True) # return raw, exptime, airmass, wapprox def biascombine(biaslist, output='BIAS.fits', trim=True, silent=True): """ Combine the bias frames in to a master bias image. Currently only supports median combine. Parameters ---------- biaslist : str Path to file containing list of bias images. output: str, optional Name of the master bias image to write. (Default is "BIAS.fits") trim : bool, optional Trim the image using the DATASEC keyword in the header, assuming has format of [0:1024,0:512] (Default is True) silent : bool, optional If False, print details about the biascombine. (Default is True) Returns ------- bias : 2-d array The median combined master bias image """ # assume biaslist is a simple text file with image names # e.g. ls flat.00*b.fits > bflat.lis files = np.genfromtxt(biaslist,dtype=np.str) if silent is False: print('biascombine: combining ' + str(len(files)) + ' files in ' + biaslist) for i in range(0,len(files)): hdu_i = fits.open(files[i]) if trim is False: im_i = hdu_i[0].data if trim is True: datasec = hdu_i[0].header['DATASEC'][1:-1].replace(':',',').split(',') d = list(map(int, datasec)) im_i = hdu_i[0].data[d[2]-1:d[3],d[0]-1:d[1]] # create image stack if (i==0): all_data = im_i elif (i>0): all_data = np.dstack( (all_data, im_i) ) hdu_i.close(closed=True) # do median across whole stack bias = np.nanmedian(all_data, axis=2) # write output to disk for later use hduOut = fits.PrimaryHDU(bias) hduOut.writeto(output, overwrite=True) return bias def overscanbias(img, cols=(1,), rows=(1,)): ''' Generate a bias frame based on overscan region. Can work with rows or columns, pass either kwarg the limits: >>> bias = overscanbias(imagedata, cols=(1024,1050)) # doctest: +SKIP ''' bias = np.zeros_like(img) if len(cols) > 1: bcol = np.nanmean(img[:, cols[0]:cols[1]], axis=0) for j in range(img.shape()[1]): img[j,:] = bcol elif len(rows) > 1: brow = np.nanmean(img[rows[0]:rows[1], :], axis=1) for j in range(img.shape()[0]): img[j,:] = brow else: print('OVERSCANBIAS ERROR: need to pass either cols=(a,b) or rows=(a,b),') print('setting bias = zero as result!') return bias def smooth(y, box_pts): box = np.ones(box_pts)/box_pts y_smooth = np.convolve(y, box, mode='same') return y_smooth def flatcombine(flatlist, bias, output='FLAT.fits', trim=True, mode='spline', display=True, flat_poly=5, response=True, Saxis=1): """ Combine the flat frames in to a master flat image. Subtracts the master bias image first from each flat image. Currently only supports median combining the images. Parameters ---------- flatlist : str Path to file containing list of flat images. bias : str or 2-d array Either the path to the master bias image (str) or the output from 2-d array output from biascombine output : str, optional Name of the master flat image to write. (Default is "FLAT.fits") response : bool, optional If set to True, first combines the median image stack along the spatial (Y) direction, then fits polynomial to 1D curve, then divides each row in flat by this structure. This nominally divides out the spectrum of the flat field lamp. (Default is True) trim : bool, optional Trim the image using the DATASEC keyword in the header, assuming has format of [0:1024,0:512] (Default is True) display : bool, optional Set to True to show 1d flat, and final flat (Default is False) flat_poly : int, optional Polynomial order to fit 1d flat curve with. Only used if response is set to True. (Default is 5) Saxis : int, optional Set which axis the spatial dimension is along. 1 = Y axis, 0 = X. (Default is 1) Returns ------- flat : 2-d array The median combined master flat """ # read the bias in, BUT we don't know if it's the numpy array or file name if isinstance(bias, str): # read in file if a string bias_im = fits.open(bias)[0].data else: # assume is proper array from biascombine function bias_im = bias # assume flatlist is a simple text file with image names # e.g. ls flat.00*b.fits > bflat.lis files = np.genfromtxt(flatlist,dtype=np.str) for i in range(0,len(files)): hdu_i = fits.open(files[i]) if trim is False: im_i = hdu_i[0].data - bias_im if trim is True: datasec = hdu_i[0].header['DATASEC'][1:-1].replace(':',',').split(',') d = list(map(int, datasec)) im_i = hdu_i[0].data[d[2]-1:d[3],d[0]-1:d[1]] - bias_im # check for bad regions (not illuminated) in the spatial direction ycomp = im_i.sum(axis=Saxis) # compress to spatial axis only illum_thresh = 0.8 # value compressed data must reach to be used for flat normalization ok = np.where( (ycomp>= np.nanmedian(ycomp)*illum_thresh) ) # assume a median scaling for each flat to account for possible different exposure times if (i==0): all_data = im_i / np.nanmedian(im_i[ok,:]) elif (i>0): all_data = np.dstack( (all_data, im_i / np.nanmedian(im_i[ok,:])) ) hdu_i.close(closed=True) # do median across whole stack of flat images flat_stack = np.nanmedian(all_data, axis=2) # print(flat_stack.shape) # print(flat_stack[ok,:].shape) # print(ok) if display: plt.figure() plt.imshow(flat_stack) plt.show() # define the wavelength axis Waxis = 0 # add a switch in case the spatial/wavelength axis is swapped if Saxis is 0: Waxis = 1 if response is True: xdata = np.arange(all_data.shape[1]) # x pixels # sum along spatial axis, smooth w/ 5pixel boxcar, take log of summed flux flat_1d = np.log10(smooth(flat_stack[ok[0],:].mean(axis=Waxis), 5)) if mode=='spline': spl = UnivariateSpline(xdata, flat_1d, ext=0, k=2 ,s=0.001) flat_curve = 10.0**spl(xdata) elif mode=='poly': # fit log flux with polynomial flat_fit = np.polyfit(xdata, flat_1d, flat_poly) # get rid of log flat_curve = 10.0**np.polyval(flat_fit, xdata) if display is True: plt.figure() plt.plot(10.0**flat_1d) plt.plot(xdata, flat_curve,'r') plt.show() # divide median stacked flat by this RESPONSE curve flat = np.zeros_like(flat_stack) if Saxis is 1: for i in range(flat_stack.shape[Waxis]): flat[i,:] = flat_stack[i,:] / flat_curve else: for i in range(flat_stack.shape[Waxis]): flat[:,i] = flat_stack[:,i] / flat_curve else: flat = flat_stack if display is True: plt.figure() plt.imshow(flat, origin='lower',aspect='auto') plt.show() # write output to disk for later use hduOut = fits.PrimaryHDU(flat) hduOut.writeto(output, overwrite=True) return flat ,ok[0] def ap_trace(img, fmask=(1,), nsteps=20, interac=False, recenter=False, prevtrace=(0,), bigbox=15, Saxis=1, display=False, peak_guess = None, plot_ind = False): """ Trace the spectrum aperture in an image Assumes wavelength axis is along the X, spatial axis along the Y. Chops image up in bins along the wavelength direction, fits a Gaussian within each bin to determine the spatial center of the trace. Finally, draws a cubic spline through the bins to up-sample the trace. Parameters ---------- img : 2d numpy array This is the image, stored as a normal numpy array. Can be read in using astropy.io.fits like so: >>> hdu = fits.open('file.fits') # doctest: +SKIP >>> img = hdu[0].data # doctest: +SKIP nsteps : int, optional Keyword, number of bins in X direction to chop image into. Use fewer bins if ap_trace is having difficulty, such as with faint targets (default is 50, minimum is 4) fmask : array-like, optional A list of illuminated rows in the spatial direction (Y), as returned by flatcombine. interac : bool, optional Set to True to have user click on the y-coord peak. (Default is False) recenter : bool, optional Set to True to use previous trace, but allow small shift in position. Currently only allows linear shift (Default is False) bigbox : float, optional The number of sigma away from the main aperture to allow to trace display : bool, optional If set to true display the trace over-plotted on the image Saxis : int, optional Set which axis the spatial dimension is along. 1 = Y axis, 0 = X. (Default is 1) Returns ------- my : array The spatial (Y) positions of the trace, interpolated over the entire wavelength (X) axis """ # define the wavelength axis Waxis = 0 # add a switch in case the spatial/wavelength axis is swapped if Saxis is 0: Waxis = 1 print('Tracing Aperture using nsteps='+str(nsteps)) # the valid y-range of the chip if (len(fmask)>1): ydata = np.arange(img.shape[Waxis])[fmask] else: ydata = np.arange(img.shape[Waxis]) # need at least 4 samples along the trace. sometimes can get away with very few if (nsteps<4): nsteps = 4 # median smooth to crudely remove cosmic rays img_sm = scipy.signal.medfilt2d(img, kernel_size=(5,5)) #--- Pick the strongest source, good if only 1 obj on slit ztot = img_sm.sum(axis=Saxis)[ydata] yi = np.arange(img.shape[Waxis])[ydata] peak_y = yi[np.nanargmax(ztot)] if peak_guess is None: peak_guess = [np.nanmax(ztot), np.nanmedian(ztot), peak_y, 2.] else: peak_guess = [ztot[peak_guess], np.nanmedian(ztot), peak_guess, 2.] # IF user supplies peak guess. #-- allow interactive mode, if mult obj on slit if interac is True and recenter is False: class InteracTrace(object): def __init__(self): self.fig = plt.figure() self.ax = self.fig.add_subplot(111) self.ax.plot(yi, ztot) plt.ylabel('Counts (Image summed in X direction)') plt.xlabel('Y Pixel') plt.title('Click on object!') self.cursor = Cursor(self.ax, useblit=False, horizOn=False, color='red', linewidth=1 ) self.connect = self.fig.canvas.mpl_connect self.disconnect = self.fig.canvas.mpl_disconnect self.ClickID = self.connect('button_press_event', self.__onclick__) return def __onclick__(self,click): if self.fig.canvas.manager.toolbar._active is None: self.xpoint = click.xdata self.ypoint = click.ydata self.disconnect(self.ClickID) # disconnect from event self.cursor.disconnect_events() self.cursor._update() plt.close() # close window when clicked return self.xpoint, self.ypoint else: pass theclick = InteracTrace() plt.show() xcl = theclick.xpoint # ycl = theclick.ypoint peak_guess[2] = xcl #-- use middle of previous trace as starting guess if (recenter is True) and (len(prevtrace)>10): peak_guess[2] = np.nanmedian(prevtrace) #-- fit a Gaussian to peak popt_tot, pcov = curve_fit(_gaus, yi[np.isfinite(ztot)], ztot[np.isfinite(ztot)], p0=peak_guess) ydata2 = ydata ztot = img_sm.sum(axis=Saxis)[ydata2] yi = np.arange(img.shape[Waxis])[ydata2] # define the X-bin edges xbins = np.linspace(0, img.shape[Saxis], nsteps, dtype='int') ybins = np.zeros_like(xbins, dtype='int') for i in range(0,len(xbins)-1): #-- fit gaussian w/i each window if Saxis is 1: zi = np.sum(img_sm[ydata2, xbins[i]:xbins[i+1]], axis=Saxis) else: zi = img_sm[xbins[i]:xbins[i+1], ydata2].sum(axis=Saxis) zifilt = scipy.signal.medfilt(zi, 3) # remove random noise when fitting trace pguess = [np.nanmax(zi), np.nanmedian(zi), yi[np.nanargmax(zifilt)], 3.] print(pguess) popt,pcov = curve_fit(_gaus, yi[np.isfinite(ztot)], zi[np.isfinite(ztot)], p0=pguess, maxfev = 10000) if plot_ind: plt.figure() plt.plot(yi[np.isfinite(ztot)], zi[np.isfinite(ztot)]) plt.plot(yi[np.isfinite(ztot)], _gaus(yi[np.isfinite(ztot)], *popt)) plt.axvline(popt[2]) plt.show() # if gaussian fits off chip, then use chip-integrated answer if (popt[2] <= min(ydata2)+25) or (popt[2] >= max(ydata2)-25): ybins[i] = popt_tot[2] popt = popt_tot print('failed. using chip answer') else: ybins[i] = popt[2] # update the box it can search over, in case a big bend in the order # ydata2 = ydata[np.where((ydata>= popt[2] - popt[3]*bigbox) & # (ydata<= popt[2] + popt[3]*bigbox))] # recenter the bin positions, trim the unused bin off in Y mxbins = (xbins[:-1]+xbins[1:]) / 2. mybins = ybins[:-1] # run a cubic spline thru the bins ap_spl = UnivariateSpline(mxbins, mybins, ext=0, k=3, s=0) # interpolate the spline to 1 position per column mx = np.arange(0, img.shape[Saxis]) my = ap_spl(mx) if display is True: plt.figure() plt.imshow(np.log10(img),origin='lower',aspect='auto',cmap=cm.Greys_r) plt.autoscale(False) plt.plot(mx,my,'b',lw=1) # plt.plot(mx,my+popt_tot[3]*bigbox,'y') # plt.plot(mx,my-popt_tot[3]*bigbox,'y') plt.show() print("> Trace gaussian width = "+str(popt_tot[3])+' pixels') return my def line_trace(img, pcent, wcent, fmask=(1,), maxbend=10, display=False): ''' Trace the lines of constant wavelength along the spatial dimension. To be run after peaks found in the HeNeAr lamp. Usually run internally to HeNeAr_fit() Method works by tracing up and down from the image center (slice) along each HeNeAr line by 1 pixel, fitting a gaussian to find the center. Parameters ---------- img : 2d float the HeNeAr data pcent : float array the pixel center along the image slice of each HeNeAr line to trace wcent : float array the identified wavelength that corresponds to each peak's pixel center (pcent) fmask : float array, optional the illumination section to trace trace over in spatial dimension maxbend : int, optional How big of a width (in pixel units) to allow the bend in the HeNeAr line to search over (Default is 10). Probably doesn't need to be modified much. display : bool, optional should we display plot after? (Default is False) Returns ------- xcent, ycent, wcent These are the arrays of X pixel (wavelength dimension), Y pixel (spatial dimension), and corresponding wavelengths of each HeNeAr line. ''' xcent_big = [] ycent_big = [] wcent_big = [] # the valid y-range of the chip if (len(fmask)>1): ydata = np.arange(img.shape[0])[fmask] else: ydata = np.arange(img.shape[0]) ybuf = 10 # split the chip in to 2 parts, above and below the center ydata1 = ydata[np.where((ydata>=img.shape[0]/2) & (ydata<img.shape[0]-ybuf))] ydata2 = ydata[np.where((ydata<img.shape[0]/2) & (ydata>ybuf))][::-1] # plt.figure() # plt.plot(img[img.shape[0]/2,:]) # plt.scatter(pcent, pcent*0.+np.mean(img)) # plt.show() img_med = np.nanmedian(img) # loop over every HeNeAr peak that had a good fit for i in range(len(pcent)): xline = np.arange(int(pcent[i])-maxbend,int(pcent[i])+maxbend) # above center line (where fit was done) for j in ydata1: yline = img[j-ybuf:j+ybuf, int(pcent[i])-maxbend:int(pcent[i])+maxbend].sum(axis=0) # fit gaussian, assume center at 0, width of 2 if j==ydata1[0]: cguess = pcent[i] # xline[np.argmax(yline)] pguess = [np.nanmax(yline), img_med, cguess, 2.] try: popt,pcov = curve_fit(_gaus, xline, yline, p0=pguess) if popt[2]>0 and popt[2]<img.shape[1]: cguess = popt[2] # update center pixel xcent_big = np.append(xcent_big, popt[2]) ycent_big = np.append(ycent_big, j) wcent_big = np.append(wcent_big, wcent[i]) except RuntimeError: popt = pguess # below center line, from middle down for j in ydata2: yline = img[j-ybuf:j+ybuf, int(pcent[i])-maxbend:int(pcent[i])+maxbend].sum(axis=0) # fit gaussian, assume center at 0, width of 2 if j==ydata2[0]: cguess = pcent[i] # xline[np.argmax(yline)] pguess = [np.nanmax(yline), img_med, cguess, 2.] try: popt,pcov = curve_fit(_gaus, xline, yline, p0=pguess) if popt[2]>0 and popt[2]<img.shape[1]: cguess = popt[2] # update center pixel xcent_big = np.append(xcent_big, popt[2]) ycent_big = np.append(ycent_big, j) wcent_big = np.append(wcent_big, wcent[i]) except RuntimeError: popt = pguess if display is True: plt.figure() plt.imshow(np.log10(img), origin = 'lower',aspect='auto',cmap=cm.Greys_r) plt.colorbar() plt.scatter(xcent_big,ycent_big,marker='|',c='r') plt.show() return xcent_big, ycent_big, wcent_big def find_peaks(wave, flux, pwidth=10, pthreshold=97, minsep=1): ''' Given a slice thru a HeNeAr image, find the significant peaks. Parameters ---------- wave : `~numpy.ndarray` Wavelength flux : `~numpy.ndarray` Flux pwidth : float the number of pixels around the "peak" to fit over pthreshold : float Peak threshold minsep : float Minimum separation Returns ------- Peak Pixels, Peak Wavelengths ''' # sort data, cut top x% of flux data as peak threshold flux_thresh = np.percentile(flux, pthreshold) # find flux above threshold high = np.where((flux >= flux_thresh)) # find individual peaks (separated by > 1 pixel) pk = high[0][1:][ ( (high[0][1:]-high[0][:-1]) > minsep ) ] # offset from start/end of array by at least same # of pixels pk = pk[pk > pwidth] pk = pk[pk < (len(flux) - pwidth)] # print('Found '+str(len(pk))+' peaks in HeNeAr to fit Gaussians to') pcent_pix = np.zeros_like(pk,dtype='float') wcent_pix = np.zeros_like(pk,dtype='float') # wtemp[pk] # for each peak, fit a gaussian to find center for i in range(len(pk)): xi = wave[pk[i] - pwidth:pk[i] + pwidth] yi = flux[pk[i] - pwidth:pk[i] + pwidth] pguess = (np.nanmax(yi), np.nanmedian(flux), float(np.nanargmax(yi)), 2.) try: popt,pcov = curve_fit(_gaus, np.arange(len(xi),dtype='float'), yi, p0=pguess) # the gaussian center of the line in pixel units pcent_pix[i] = (pk[i]-pwidth) + popt[2] # and the peak in wavelength units wcent_pix[i] = xi[np.nanargmax(yi)] except RuntimeError: pcent_pix[i] = float('nan') wcent_pix[i] = float('nan') wcent_pix, ss = np.unique(wcent_pix, return_index=True) pcent_pix = pcent_pix[ss] okcent = np.where((np.isfinite(pcent_pix))) return pcent_pix[okcent], wcent_pix[okcent] def lines_to_surface(img, xcent, ycent, wcent, mode='spline2d', fit_order=2, display=False): ''' Turn traced arc lines into a wavelength solution across the entire chip Requires inputs from line_trace(). Outputs are a 2d wavelength solution Parameters ---------- img : 2d array the HeNeAr data xcent : 1d array the X (spatial) pixel positions of the HeNeAr lines ycent : 1d array the Y (wavelength) pixel positions of the HeNeAr lines wcent : 1d array the wavelength values of the HeNeAr lines mode : str, {'poly', 'spline', 'spline2d'} what mode of interpolation to use to go from traces along the HeNeAr lines to a wavelength value for every (x,y) pixel? Options include (1) poly: along 1-pixel wide slices in the spatial dimension, fit a polynomial between the HeNeAr lines. Uses fit_order; (2) spline: along 1-pixel wide slices in the spatial dimension, fit a quadratic spline; (3) spline2d: fit a full 2d surface using a cubic spline. This is the best option, in principle. Returns ------- the 2d wavelenth solution. Output depends on mode parameter. ''' xsz = img.shape[1] # fit the wavelength solution for the entire chip w/ a 2d spline if (mode=='spline2d'): xfitd = 5 # the spline dimension in the wavelength space print('Fitting Spline2d - NOTE: this mode doesnt work well') wfit = SmoothBivariateSpline(xcent, ycent, wcent, kx=xfitd, ky=3, bbox=[0,img.shape[1],0,img.shape[0]], s=0) #elif mode=='poly2d': ## using 2d polyfit # wfit = polyfit2d(xcent_big, ycent_big, wcent_big, order=3) elif mode=='spline': wfit = np.zeros_like(img) xpix = np.arange(xsz) for i in np.arange(ycent.min(), ycent.max()): x = np.where((ycent == i))[0] x_u, ind_u = np.unique(xcent[x], return_index=True) # this smoothing parameter is absurd... spl = UnivariateSpline(x_u, wcent[x][ind_u], ext=0, k=3, s=5e7) if display is True: plt.figure() plt.scatter(xcent[x][ind_u], wcent[x][ind_u]) plt.plot(xpix, spl(xpix)) plt.show() wfit[int(i),:] = spl(xpix) elif mode=='poly': wfit = np.zeros_like(img).astype(np.float64) xpix = np.arange(xsz) # print(xcent) # print(ycent) # print(wcent) # print(ycent.min(), ycent.max(), ycent) for i in np.arange(ycent.min(), ycent.max()): x = np.where((ycent == i))[0] if len(x) == 0: wfit[int(i),:] = 0.0 print('x has length 0') continue coeff = np.polyfit(xcent[x], wcent[x], fit_order) wfit[int(i),:] = np.polyval(coeff, xpix) return wfit def ap_extract(img, trace, apwidth=8, skysep=3, skywidth=7, skydeg=0, coaddN=1): """ 1. Extract the spectrum using the trace. Simply add up all the flux around the aperture within a specified +/- width. Note: implicitly assumes wavelength axis is perfectly vertical within the trace. An major simplification at present. To be changed! 2. Fits a polynomial to the sky at each column Note: implicitly assumes wavelength axis is perfectly vertical within the trace. An important simplification. 3. Computes the uncertainty in each pixel Parameters ---------- img : 2d numpy array This is the image, stored as a normal numpy array. Can be read in using astropy.io.fits like so: >>> hdu = fits.open('file.fits') # doctest: +SKIP >>> img = hdu[0].data # doctest: +SKIP trace : 1-d array The spatial positions (Y axis) corresponding to the center of the trace for every wavelength (X axis), as returned from ap_trace apwidth : int, optional The width along the Y axis on either side of the trace to extract. Note: a fixed width is used along the whole trace. (default is 8 pixels) skysep : int, optional The separation in pixels from the aperture to the sky window. (Default is 3) skywidth : int, optional The width in pixels of the sky windows on either side of the aperture. (Default is 7) skydeg : int, optional The polynomial order to fit between the sky windows. (Default is 0) Returns ------- onedspec : 1-d array The summed flux at each column about the trace. Note: is not sky subtracted! skysubflux : 1-d array The integrated sky values along each column, suitable for subtracting from the output of ap_extract fluxerr : 1-d array the uncertainties of the flux values """ onedspec = np.zeros_like(trace) skysubflux = np.zeros_like(trace) fluxerr = np.zeros_like(trace) for i in range(0,len(trace)): #-- first do the aperture flux # juuuust in case the trace gets too close to the edge widthup = apwidth widthdn = apwidth if (trace[i]+widthup > img.shape[0]): widthup = img.shape[0]-trace[i] - 1 if (trace[i]-widthdn < 0): widthdn = trace[i] - 1 # simply add up the total flux around the trace +/- width onedspec[i] = img[int(trace[i]-widthdn):int(trace[i]+widthup+1), i].sum() #-- now do the sky fit itrace = int(trace[i]) y = np.append(np.arange(itrace-apwidth-skysep-skywidth, itrace-apwidth-skysep), np.arange(itrace+apwidth+skysep+1, itrace+apwidth+skysep+skywidth+1)) z = img[y,i] if (skydeg>0): # fit a polynomial to the sky in this column pfit = np.polyfit(y,z,skydeg) # define the aperture in this column ap = np.arange(trace[i]-apwidth, trace[i]+apwidth+1) # evaluate the polynomial across the aperture, and sum skysubflux[i] = np.sum(np.polyval(pfit, ap)) elif (skydeg==0): skysubflux[i] = np.nanmean(z)*(apwidth*2.0 + 1) #-- finally, compute the error in this pixel sigB = (np.quantile(z, 0.84) - np.quantile(z, 0.16)) / 2 # stddev in the background data N_B = len(y) # number of bkgd pixels N_A = apwidth*2. + 1 # number of aperture pixels # based on aperture phot err description by <NAME>, Caltech: # http://wise2.ipac.caltech.edu/staff/fmasci/ApPhotUncert.pdf fluxerr[i] = np.sqrt(np.sum((onedspec[i]-(skysubflux[i]))/coaddN) + (N_A + N_A**2. / N_B) * (sigB**2.)) return onedspec, skysubflux, fluxerr def HeNeAr_fit(calimage, linelist='apohenear.dat', interac=True, trim=True, fmask=(1,), display=False, tol=10, fit_order=2, previous='',mode='poly', second_pass=True): """ Determine the wavelength solution to be used for the science images. Can be done either automatically (buyer beware) or manually. Both the manual and auto modes use a "slice" through the chip center to learn the wavelengths of specific HeNeAr lines. Emulates the IDENTIFY function in IRAF. If the automatic mode is selected (interac=False), program tries to first find significant peaks in the "slice", then uses a brute-force guess scheme based on the grating information in the header. While easy, your mileage may vary with this method. If the interactive mode is selected (interac=True), you click on features in the "slice" and identify their wavelengths. Parameters ---------- calimage : str Path to the HeNeAr calibration image linelist : str, optional The linelist file to use in the resources/linelists/ directory. Only used in automatic mode. (Default is apohenear.dat) interac : bool, optional Should the HeNeAr identification be done interactively (manually)? (Default is True) trim : bool, optional Trim the image using the DATASEC keyword in the header, assuming has format of [0:1024,0:512] (Default is True) fmask : array-like, optional A list of illuminated rows in the spatial direction (Y), as returned by flatcombine. display : bool, optional tol : int, optional When in automatic mode, the tolerance in pixel units between linelist entries and estimated wavelengths for the first few lines matched... use carefully. (Default is 10) mode : str, optional What type of function to use to fit the entire 2D wavelength solution? Options include (poly, spline2d). (Default is poly) fit_order : int, optional The polynomial order to use to interpolate between identified peaks in the HeNeAr (Default is 2) previous : string, optional name of file containing previously identified peaks. Still has to do the fitting. Returns ------- wfit : bivariate spline object or 2d polynomial The wavelength solution at every pixel. Output type depends on the mode keyword above (poly is recommended) """ print('Running HeNeAr_fit function on file '+calimage) # silence the polyfit warnings warnings.simplefilter('ignore', np.RankWarning) hdu = fits.open(calimage) if trim is False: img = hdu[0].data if trim is True: datasec = hdu[0].header['DATASEC'][1:-1].replace(':',',').split(',') d = list(map(int, datasec)) img = hdu[0].data[d[2]-1:d[3],d[0]-1:d[1]] # this approach will be very DIS specific try: disp_approx = hdu[0].header['DISPDW'] wcen_approx = hdu[0].header['DISPWC'] except KeyError: disp_approx = 0. wcen_approx = 1. try: # the red chip wavelength is backwards (DIS specific) clr = hdu[0].header['DETECTOR'] if (clr.lower() == 'red'): sign = -1.0 else: sign = 1.0 except KeyError: sign = 1.0 hdu.close(closed=True) #-- this is how I *want* to do this. Need to header values later though... # img, _, _, wtemp = OpenImg(calimage, trim=trim) # take a slice thru the data (+/- 10 pixels) in center row of chip slice = img[int(img.shape[0]/2-10):int(img.shape[0]/2+10),:].sum(axis=0) # use the header info to do rough solution (linear guess) wtemp = (np.arange(len(slice))-len(slice)/2) * disp_approx * sign + wcen_approx ###### IDENTIFY (auto and interac modes) # = = = = = = = = = = = = = = = = #-- automatic mode if (interac is False): if (len(previous)==0): print("Doing automatic wavelength calibration on HeNeAr.") print("Note, this is not very robust. Suggest you re-run with interac=True") # find the linelist of choice linelists_dir = os.path.dirname(os.path.realpath(__file__))+ '/resources/linelists/' # if (len(linelist)==0): # linelist = os.path.join(linelists_dir, linelist) # import the linelist linewave = np.genfromtxt(os.path.join(linelists_dir, linelist), dtype='float', skip_header=1,usecols=(0,),unpack=True) pcent_pix, wcent_pix = find_peaks(wtemp, slice, pwidth=10, pthreshold=97) # loop thru each peak, from center outwards. a greedy solution # find nearest list line. if not line within tolerance, then skip peak pcent = [] wcent = [] # find center-most lines, sort by dist from center pixels ss = np.argsort(np.abs(wcent_pix-wcen_approx)) #coeff = [0.0, 0.0, disp_approx*sign, wcen_approx] coeff = np.append(np.zeros(fit_order-1),(disp_approx*sign, wcen_approx)) for i in range(len(pcent_pix)): xx = pcent_pix-len(slice)/2 #wcent_pix = coeff[3] + xx * coeff[2] + coeff[1] * (xx*xx) + coeff[0] * (xx*xx*xx) wcent_pix = np.polyval(coeff, xx) if display is True: plt.figure() plt.plot(wtemp, slice, 'b') plt.scatter(linewave,np.ones_like(linewave)*np.nanmax(slice),marker='o',c='cyan') plt.scatter(wcent_pix,np.ones_like(wcent_pix)*np.nanmax(slice)/2.,marker='*',c='green') plt.scatter(wcent_pix[ss[i]],np.nanmax(slice)/2., marker='o',c='orange') # if there is a match w/i the linear tolerance if (min((np.abs(wcent_pix[ss][i] - linewave))) < tol): # add corresponding pixel and *actual* wavelength to output vectors pcent = np.append(pcent,pcent_pix[ss[i]]) wcent = np.append(wcent, linewave[np.argmin(np.abs(wcent_pix[ss[i]] - linewave))] ) if display is True: plt.scatter(wcent,np.ones_like(wcent)*np.nanmax(slice),marker='o',c='red') if (len(pcent)>fit_order): coeff = np.polyfit(pcent-len(slice)/2, wcent, fit_order) if display is True: plt.xlim((min(wtemp),max(wtemp))) plt.show() lout = open(calimage+'.lines', 'w') lout.write("# This file contains the HeNeAr lines identified [auto] Columns: (pixel, wavelength) \n") for l in range(len(pcent)): lout.write(str(pcent[l]) + ', ' + str(wcent[l])+'\n') lout.close() # the end result is the vector "coeff" has the wavelength solution for "slice" # update the "wtemp" vector that goes with "slice" (fluxes) wtemp = np.polyval(coeff, (np.arange(len(slice))-len(slice)/2)) if (len(previous) > 0): pcent, wcent = np.genfromtxt(previous, dtype='float', unpack=True, skip_header=1, delimiter=',') # = = = = = = = = = = = = = = = = #-- manual (interactive) mode elif (interac is True): if (len(previous)==0): print('') print('Using INTERACTIVE HeNeAr_fit mode:') print('1) Click on HeNeAr lines in plot window') print('2) Enter corresponding wavelength in terminal and press <return>') print(' If mis-click or unsure, just press leave blank and press <return>') print('3) To delete an entry, click on label, enter "d" in terminal, press <return>') print('4) Close plot window when finished') xraw = np.arange(len(slice)) class InteracWave(object): # http://stackoverflow.com/questions/21688420/callbacks-for-graphical-mouse-input-how-to-refresh-graphics-how-to-tell-matpl def __init__(self): self.fig = plt.figure() self.ax = self.fig.add_subplot(111) self.ax.plot(wtemp, slice, 'b') plt.xlabel('Wavelength') plt.ylabel('Counts') self.pcent = [] # the pixel centers of the identified lines self.wcent = [] # the labeled wavelengths of the lines self.ixlib = [] # library of click points self.cursor = Cursor(self.ax, useblit=False,horizOn=False, color='red', linewidth=1 ) self.connect = self.fig.canvas.mpl_connect self.disconnect = self.fig.canvas.mpl_disconnect self.clickCid = self.connect("button_press_event",self.OnClick) def OnClick(self, event): # only do stuff if toolbar not being used # NOTE: this subject to change API, so if breaks, this probably why # http://stackoverflow.com/questions/20711148/ignore-matplotlib-cursor-widget-when-toolbar-widget-selected if self.fig.canvas.manager.toolbar._active is None: ix = event.xdata # if the click is in good space, proceed if (ix is not None) and (ix > np.nanmin(slice)) and (ix < np.nanmax(slice)): # disable button event connection self.disconnect(self.clickCid) # disconnect cursor, and remove from plot self.cursor.disconnect_events() self.cursor._update() # get points nearby to the click nearby = np.where((wtemp > ix-10*disp_approx) & (wtemp < ix+10*disp_approx) ) # find if click is too close to an existing click (overlap) kill = None if len(self.pcent)>0: for k in range(len(self.pcent)): if np.abs(self.ixlib[k]-ix)<tol: kill_d = input('> WARNING: Click too close to existing point. To delete existing point, enter "d"') if kill_d=='d': kill = k if kill is not None: del(self.pcent[kill]) del(self.wcent[kill]) del(self.ixlib[kill]) # If there are enough valid points to possibly fit a peak too... if (len(nearby[0]) > 4) and (kill is None): imax = np.nanargmax(slice[nearby]) pguess = (np.nanmax(slice[nearby]), np.nanmedian(slice), xraw[nearby][imax], 3.) try: popt,pcov = curve_fit(_gaus, xraw[nearby], slice[nearby], p0=pguess) self.ax.plot(wtemp[int(popt[2])], popt[0], 'r|') except ValueError: print('> WARNING: Bad data near this click, cannot centroid line with Gaussian. I suggest you skip this one') popt = pguess except RuntimeError: print('> WARNING: Gaussian centroid on line could not converge. I suggest you skip this one') popt = pguess # using raw_input sucks b/c doesn't raise terminal, but works for now try: number=float(input('> Enter Wavelength: ')) self.pcent.append(popt[2]) self.wcent.append(number) self.ixlib.append((ix)) self.ax.plot(wtemp[int(popt[2])], popt[0], 'ro') print(' Saving '+str(number)) except ValueError: print("> Warning: Not a valid wavelength float!") elif (kill is None): print('> Error: No valid data near click!') # reconnect to cursor and button event self.clickCid = self.connect("button_press_event",self.OnClick) self.cursor = Cursor(self.ax, useblit=False,horizOn=False, color='red', linewidth=1 ) else: pass # run the interactive program wavefit = InteracWave() plt.show() #activate the display - GO! # how I would LIKE to do this interactively: # inside the interac mode, do a split panel, live-updated with # the wavelength solution, and where user can edit the fit_order # how I WILL do it instead # a crude while loop here, just to get things moving # after interactive fitting done, get results fit peaks pcent = np.array(wavefit.pcent,dtype='float') wcent = np.array(wavefit.wcent, dtype='float') print('> You have identified '+str(len(pcent))+' lines') lout = open(calimage+'.lines', 'w') lout.write("# This file contains the HeNeAr lines identified [manual] Columns: (pixel, wavelength) \n") for l in range(len(pcent)): lout.write(str(pcent[l]) + ', ' + str(wcent[l])+'\n') lout.close() if (len(previous)>0): pcent, wcent = np.genfromtxt(previous, dtype='float', unpack=True, skip_header=1,delimiter=',') #--- FIT SMOOTH FUNCTION --- # fit polynomial thru the peak wavelengths # xpix = (np.arange(len(slice))-len(slice)/2) # coeff = np.polyfit(pcent-len(slice)/2, wcent, fit_order) xpix = np.arange(len(slice)) coeff = np.polyfit(pcent, wcent, fit_order) wtemp = np.polyval(coeff, xpix) done = str(fit_order) while (done != 'd'): fit_order = int(done) coeff = np.polyfit(pcent, wcent, fit_order) wtemp = np.polyval(coeff, xpix) fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True) ax1.plot(pcent, wcent, 'bo') ax1.plot(xpix, wtemp, 'r') ax2.plot(pcent, wcent - np.polyval(coeff, pcent),'ro') ax2.set_xlabel('pixel') ax1.set_ylabel('wavelength') ax2.set_ylabel('residual') ax1.set_title('fit_order = '+str(fit_order)) # ylabel('wavelength') print(" ") print('> How does this look? Enter "d" to be done (accept), ') print(' or a number to change the polynomial order and re-fit') print('> Currently fit_order = '+str(fit_order)) print(" ") plt.show() _CheckMono(wtemp) print(' ') done = str(input('ENTER: "d" (done) or a # (poly order): ')) # = = = = = = = = = = = = = = = = = = # now rough wavelength is found, either via interactive or auto mode! #-- SECOND PASS if second_pass is True: linelists_dir = os.path.dirname(os.path.realpath(__file__))+ '/resources/linelists/' hireslinelist = 'henear.dat' linewave2 = np.genfromtxt(os.path.join(linelists_dir, hireslinelist), dtype='float', skip_header=1, usecols=(0,), unpack=True) tol2 = tol # / 2.0 pcent_pix2, wcent_pix2 = find_peaks(wtemp, slice, pwidth=10, pthreshold=80) pcent2 = [] wcent2 = [] # sort from center wavelength out ss = np.argsort(np.abs(wcent_pix2-wcen_approx)) # coeff should already be set by manual or interac mode above # coeff = np.append(np.zeros(fit_order-1),(disp_approx*sign, wcen_approx)) for i in range(len(pcent_pix2)): xx = pcent_pix2-len(slice)/2 wcent_pix2 = np.polyval(coeff, xx) if (min((np.abs(wcent_pix2[ss][i] - linewave2))) < tol2): # add corresponding pixel and *actual* wavelength to output vectors pcent2 = np.append(pcent2, pcent_pix2[ss[i]]) wcent2 = np.append(wcent2, linewave2[np.argmin(np.abs(wcent_pix2[ss[i]] - linewave2))] ) #-- update in real time. maybe not good for 2nd pass # if (len(pcent2)>fit_order): # coeff = np.polyfit(pcent2-len(slice)/2, wcent2, fit_order) if display is True: plt.figure() plt.plot(wtemp, slice, 'b') plt.scatter(linewave2,np.ones_like(linewave2)*np.nanmax(slice), marker='o',c='cyan') plt.scatter(wcent_pix2,np.ones_like(wcent_pix2)*np.nanmax(slice)/2., marker='*',c='green') plt.scatter(wcent_pix2[ss[i]],np.nanmax(slice)/2., marker='o',c='orange') plt.text(np.nanmin(wcent_pix2), np.nanmax(slice)*0.95, hireslinelist) plt.text(np.nanmin(wcent_pix2), np.nanmax(slice)/2.*1.1, 'detected lines') plt.scatter(wcent2,np.ones_like(wcent2)*np.nanmax(slice)*1.05,marker='o',c='red') plt.text(np.nanmin(wcent_pix2), np.nanmax(slice)*1.1, 'matched lines') plt.ylim((np.nanmin(slice), np.nanmax(slice)*1.2)) plt.xlim((min(wtemp),max(wtemp))) plt.show() wtemp = np.polyval(coeff, (np.arange(len(slice))-len(slice)/2)) lout = open(calimage+'.lines2', 'w') lout.write("# This file contains the HeNeAr lines identified [2nd pass] Columns: (pixel, wavelength) \n") for l in range(len(pcent2)): lout.write(str(pcent2[l]) + ', ' + str(wcent2[l])+'\n') lout.close() xpix = np.arange(len(slice)) coeff = np.polyfit(pcent2, wcent2, fit_order) wtemp = np.polyval(coeff, xpix) #--- FIT SMOOTH FUNCTION --- if interac is True: done = str(fit_order) while (done != 'd'): fit_order = int(done) coeff = np.polyfit(pcent2, wcent2, fit_order) wtemp = np.polyval(coeff, xpix) fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True) ax1.plot(pcent2, wcent2, 'bo') ax1.plot(xpix, wtemp, 'r') ax2.plot(pcent2, wcent2 - np.polyval(coeff, pcent2),'ro') ax2.set_xlabel('pixel') ax1.set_ylabel('wavelength') ax2.set_ylabel('residual') ax1.set_title('2nd pass, fit_order = '+str(fit_order)) # ylabel('wavelength') print(" ") print('> How does this look? Enter "d" to be done (accept), ') print(' or a number to change the polynomial order and re-fit') print('> Currently fit_order = '+str(fit_order)) print(" ") plt.show() _CheckMono(wtemp) print(' ') done = str(input('ENTER: "d" (done) or a # (poly order): ')) #-- trace the peaks vertically -- xcent_big, ycent_big, wcent_big = line_trace(img, pcent, wcent, fmask=fmask, display=display) plt.figure() plt.imshow(img) plt.show() #-- turn these vertical traces in to a whole chip wavelength solution wfit = lines_to_surface(img, xcent_big, ycent_big, wcent_big, mode=mode, fit_order=fit_order) return wfit def mapwavelength(trace, wavemap, mode='spline2d'): """ Compute the wavelength along the center of the trace, to be run after the HeNeAr_fit routine. Parameters ---------- trace : 1-d array The spatial positions (Y axis) corresponding to the center of the trace for every wavelength (X axis), as returned from ap_trace wavemap : bivariate spline object or image-like wavelength map The wavelength evaluated at every pixel, output from HeNeAr_fit Type depends on mode parameter. mode : str, optional Which mode was used to generate the 2D wavelength solution in HeNeAr_fit(), and specifically in lines_to_surface()? Options include: poly, spline, spline2d (Default is 'spline2d') Returns ------- trace_wave : 1d array The wavelength vector evaluated at each position along the trace """ # use the wavemap from the HeNeAr_fit routine to determine the wavelength along the trace if mode=='spline2d': trace_wave = wavemap.ev(np.arange(len(trace)), trace) elif mode=='poly' or mode=='spline': trace_wave = np.zeros_like(trace) for i in range(len(trace)): wli = np.interp(trace[i], np.arange(wavemap.shape[0]), wavemap[:,i]) trace_wave[i] = wli ## using 2d polyfit # trace_wave = polyval2d(np.arange(len(trace)), trace, wavemap) return trace_wave def normalize(wave, flux, mode='poly', order=5): ''' Return a flattened, normalized spectrum. A model spectrum is made of the continuum by fitting either a polynomial or spline to the data, and then the data is normalized with the equation: >>> norm = (flux - model) / model # doctest: +SKIP Parameters ---------- wave : 1-d array The object's wavelength array flux : 1-d array The object's flux array mode : str, optional Decides which mode should be used to flatten the spectrum. Options are 'poly' (Default), 'spline', 'interac'. order : int, optional The polynomial order to use for mode='poly'. (Default is 3) Returns ------- Flux normalized spectrum at same wavelength points as the input ''' if (mode != 'interac') and (mode != 'spline') and (mode != 'poly'): mode = 'poly' print("WARNING: invalid mode set in normalize. Changing to 'poly'") if mode=='interac': print('interac mode not built yet. sorry...') mode = 'poly' if mode=='poly': fit = np.polyfit(wave, flux, order) model = np.polyval(fit, wave) if mode=='spline': spl = UnivariateSpline(wave, flux, ext=0, k=2 ,s=0.0025) model = spl(wave) norm = (flux - model) / model return norm def AirmassCor(obj_wave, obj_flux, airmass, airmass_file='apoextinct.dat'): """ Correct the spectrum based on the airmass Parameters ---------- obj_wave : 1-d array The 1-d wavelength array of the spectrum obj_flux : 1-d or 2-d array The 1-d or 2-d flux array of the spectrum airmass : float The value of the airmass, not the header keyword. airmass_file : str, {'apoextinct.dat', 'ctioextinct.dat', 'kpnoextinct.dat', 'ormextinct.dat'} The name of the airmass extinction file. This routine assumes the file is stored in the resources/extinction/ subdirectory. Available files are (Default is apoextinct.dat) Returns ------- The flux array """ # read in the airmass extinction curve extinction_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'resources/extinction') if len(airmass_file)==0: air_wave, air_cor = np.genfromtxt(os.path.join(extinction_dir, airmass_file), unpack=True,skip_header=2) else: print('> Loading airmass library file: '+airmass_file) # print(' Note: first 2 rows are skipped, assuming header') air_wave, air_cor = np.genfromtxt(os.path.join(extinction_dir, airmass_file), unpack=True,skip_header=2) # air_cor in units of mag/airmass airmass_ext = 10.0**(0.4 * airmass * np.interp(obj_wave, air_wave, air_cor)) # arimas_ext is broadcast to obj_flux if it is a 2-d array return obj_flux * airmass_ext def DefFluxCal(obj_wave, obj_flux, std_wave, std_mag, std_wth, std_stdstar='', mode='spline', polydeg=9, display=False): """ Parameters ---------- obj_wave : 1-d array The 1-d wavelength array of the spectrum obj_flux : 1-d array The 1-d flux array of the spectrum stdstar : str Name of the standard star file to use for flux calibration. You must give the subdirectory and file name, for example: >>> sensfunc = DefFluxCal(wave, flux, mode='spline', stdstar='spec50cal/feige34.dat') # doctest: +SKIP If no standard is set, or an invalid standard is selected, will return array of 1's and a warning. A list of all available subdirectories and objects is available on the wiki, or look in pydis/resources/onedstds/ mode : str, optional either "linear", "spline", or "poly" (Default is spline) polydeg : float, optional set the order of the polynomial to fit through (Default is 9) display : bool, optional If True, plot the down-sampled sensfunc and fit to screen (Default is False) Returns ------- sensfunc : 1-d array The sensitivity function for the standard star """ # standard star spectrum is stored in magnitude units std_flux = _mag2flux(std_wave, std_mag) # Automatically exclude these obnoxious lines... balmer = np.array([6563, 4861, 4341], dtype='float') # down-sample (ds) the observed flux to the standard's bins obj_flux_ds = [] obj_wave_ds = [] std_flux_ds = [] for i in range(len(std_wave)): rng = np.where((obj_wave >= std_wave[i] - std_wth[i] / 2.0) & (obj_wave < std_wave[i] + std_wth[i] / 2.0)) IsH = np.where((balmer >= std_wave[i] - std_wth[i] / 2.0) & (balmer < std_wave[i] + std_wth[i] / 2.0)) # does this bin contain observed spectra, and no Balmer line? if (len(rng[0]) > 1) and (len(IsH[0]) == 0): # obj_flux_ds.append(np.sum(obj_flux[rng]) / std_wth[i]) obj_flux_ds.append( np.nanmean(obj_flux[rng]) ) obj_wave_ds.append(std_wave[i]) std_flux_ds.append(std_flux[i]) # the ratio between the standard star flux and observed flux # has units like erg / counts ratio = np.abs(np.array(std_flux_ds, dtype='float') / np.array(obj_flux_ds, dtype='float')) # interp calibration (sensfunc) on to object's wave grid # can use 3 types of interpolations: linear, cubic spline, polynomial # if invalid mode selected, make it spline if mode not in ('linear', 'spline', 'poly'): mode = 'spline' print("WARNING: invalid mode set in DefFluxCal. Changing to spline") # actually fit the log of this sensfunc ratio # since IRAF does the 2.5*log(ratio), everything in mag units! LogSensfunc = np.log10(ratio) # interpolate back on to observed wavelength grid if mode=='linear': sensfunc2 = np.interp(obj_wave, obj_wave_ds, LogSensfunc) elif mode=='spline': spl = UnivariateSpline(obj_wave_ds, LogSensfunc, ext=0, k=2 ,s=0.0025) sensfunc2 = spl(obj_wave) elif mode=='poly': fit = np.polyfit(obj_wave_ds, LogSensfunc, polydeg) sensfunc2 = np.polyval(fit, obj_wave) if display is True: plt.figure() plt.plot(std_wave, std_flux, 'r', alpha=0.5, label='standard flux') plt.xlabel('Wavelength') plt.ylabel('Standard Star Flux') plt.legend() plt.show() plt.figure() plt.plot(obj_wave, obj_flux, 'k', label='observed counts') plt.plot(obj_wave_ds, obj_flux_ds, 'bo', label='downsample observed') plt.xlabel('Wavelength') plt.ylabel('Observed Counts/S') plt.legend() plt.show() plt.figure() plt.plot(obj_wave_ds, LogSensfunc, 'ko', label='sensfunc') plt.plot(obj_wave, sensfunc2, label='interpolated sensfunc') plt.xlabel('Wavelength') plt.ylabel('log Sensfunc') plt.legend() plt.show() plt.figure() plt.plot(obj_wave, obj_flux*(10**sensfunc2),'k', label='applied sensfunc') plt.plot(std_wave, std_flux, 'ro', alpha=0.5, label='standard flux') plt.xlabel('Wavelength') plt.ylabel('Standard Star Flux') plt.legend() plt.show() return 10**sensfunc2 def ApplyFluxCal(obj_wave, obj_flux, obj_err, cal_wave, sensfunc): # the sensfunc should already be BASICALLY at the same wavelenths as the targets # BUT, just in case, we linearly resample it: # ensure input array is sorted! ss = np.argsort(cal_wave) sensfunc2 =
np.interp(obj_wave, cal_wave[ss], sensfunc[ss])
numpy.interp
#!/usr/bin/env python # -*- coding: latin-1 -*- # # Copyright 2016-2021 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # import bisect import copy import gc import logging import multiprocessing as mp import os import platform import warnings import numpy as np from matplotlib.pyplot import figure, plot, show from nilearn import masking from scipy import ndimage from sklearn.decomposition import PCA import rapidtide.calccoherence as tide_calccoherence import rapidtide.calcnullsimfunc as tide_nullsimfunc import rapidtide.calcsimfunc as tide_calcsimfunc import rapidtide.correlate as tide_corr import rapidtide.filter as tide_filt import rapidtide.fit as tide_fit import rapidtide.glmpass as tide_glmpass import rapidtide.helper_classes as tide_classes import rapidtide.io as tide_io import rapidtide.miscmath as tide_math import rapidtide.multiproc as tide_multiproc import rapidtide.peakeval as tide_peakeval import rapidtide.refine as tide_refine import rapidtide.resample as tide_resample import rapidtide.simfuncfit as tide_simfuncfit import rapidtide.stats as tide_stats import rapidtide.util as tide_util import rapidtide.wiener as tide_wiener from rapidtide.tests.utils import mse from .utils import setup_logger try: import mkl mklexists = True except ImportError: mklexists = False print("mklexists:", mklexists) try: from memory_profiler import profile memprofilerexists = True except ImportError: memprofilerexists = False LGR = logging.getLogger("GENERAL") TimingLGR = logging.getLogger("TIMING") def conditionalprofile(): def resdec(f): if memprofilerexists: return profile(f) return f return resdec @conditionalprofile() def memcheckpoint(message): print(message) def maketmask(filename, timeaxis, maskvector, debug=False): inputdata = tide_io.readvecs(filename) theshape = np.shape(inputdata) if theshape[0] == 1: # this is simply a vector, one per TR. If the value is nonzero, include the point, otherwise don't if theshape[1] == len(timeaxis): maskvector = np.where(inputdata[0, :] > 0.0, 1.0, 0.0) else: raise ValueError("tmask length does not match fmri data") else: maskvector *= 0.0 for idx in range(0, theshape[1]): starttime = inputdata[0, idx] endtime = starttime + inputdata[1, idx] startindex = np.max((bisect.bisect_left(timeaxis, starttime), 0)) endindex = np.min((bisect.bisect_right(timeaxis, endtime), len(maskvector) - 1)) maskvector[startindex:endindex] = 1.0 LGR.info(f"{starttime}, {startindex}, {endtime}, {endindex}") return maskvector def numpy2shared(inarray, thetype): thesize = inarray.size theshape = inarray.shape if thetype == np.float64: inarray_shared = mp.RawArray("d", inarray.reshape(thesize)) else: inarray_shared = mp.RawArray("f", inarray.reshape(thesize)) inarray = np.frombuffer(inarray_shared, dtype=thetype, count=thesize) inarray.shape = theshape return inarray def allocshared(theshape, thetype): thesize = int(1) if not isinstance(theshape, (list, tuple)): thesize = theshape else: for element in theshape: thesize *= int(element) if thetype == np.float64: outarray_shared = mp.RawArray("d", thesize) else: outarray_shared = mp.RawArray("f", thesize) outarray = np.frombuffer(outarray_shared, dtype=thetype, count=thesize) outarray.shape = theshape return outarray, outarray_shared, theshape def readamask(maskfilename, nim_hdr, xsize, istext=False, valslist=None, maskname="the"): LGR.verbose(f"readamask called with filename: {maskfilename} vals: {valslist}") if istext: maskarray = tide_io.readvecs(maskfilename).astype("int16") theshape = np.shape(maskarray) theincludexsize = theshape[0] if not theincludexsize == xsize: raise ValueError( f"Dimensions of {maskname} mask do not match the input data - exiting" ) else: themask, maskarray, mask_hdr, maskdims, masksizes = tide_io.readfromnifti(maskfilename) maskarray = np.round(maskarray, 0).astype("int16") if not tide_io.checkspacematch(mask_hdr, nim_hdr): raise ValueError(f"Dimensions of {maskname} mask do not match the fmri data - exiting") if valslist is not None: tempmask = (0 * maskarray).astype("int16") for theval in valslist: LGR.verbose(f"looking for voxels matching {theval}") tempmask[np.where(np.fabs(maskarray - theval) < 0.1)] += 1 maskarray = np.where(tempmask > 0, 1, 0) return maskarray def getglobalsignal(indata, optiondict, includemask=None, excludemask=None, pcacomponents=0.8): # Start with all voxels themask = indata[:, 0] * 0 + 1 # modify the mask if needed if includemask is not None: themask = themask * includemask if excludemask is not None: themask = themask * (1 - excludemask) # combine all the voxels using one of the three methods global rt_floatset, rt_floattype globalmean = rt_floatset(indata[0, :]) thesize = np.shape(themask) numvoxelsused = int(np.sum(np.where(themask > 0.0, 1, 0))) selectedvoxels = indata[np.where(themask > 0.0), :][0] LGR.info(f"constructing global mean signal using {optiondict['globalsignalmethod']}") if optiondict["globalsignalmethod"] == "sum": globalmean = np.sum(selectedvoxels, axis=0) elif optiondict["globalsignalmethod"] == "meanscale": themean = np.mean(indata, axis=1) for vox in range(0, thesize[0]): if themask[vox] > 0.0: if themean[vox] != 0.0: globalmean += indata[vox, :] / themean[vox] - 1.0 elif optiondict["globalsignalmethod"] == "pca": try: thefit = PCA(n_components=pcacomponents).fit(selectedvoxels) except ValueError: if pcacomponents == "mle": LGR.warning("mle estimation failed - falling back to pcacomponents=0.8") thefit = PCA(n_components=0.8).fit(selectedvoxels) else: raise ValueError("unhandled math exception in PCA refinement - exiting") varex = 100.0 * np.cumsum(thefit.explained_variance_ratio_)[len(thefit.components_) - 1] LGR.info( f"Using {len(thefit.components_)} component(s), accounting for " f"{varex:.2f}% of the variance" ) else: dummy = optiondict["globalsignalmethod"] raise ValueError(f"illegal globalsignalmethod: {dummy}") LGR.info(f"used {numvoxelsused} voxels to calculate global mean signal") return tide_math.stdnormalize(globalmean), themask def addmemprofiling(thefunc, memprofile, themessage): if memprofile: return profile(thefunc, precision=2) else: tide_util.logmem(themessage) return thefunc def checkforzeromean(thedataset): themean = np.mean(thedataset, axis=1) thestd = np.std(thedataset, axis=1) if np.mean(thestd) > np.mean(themean): return True else: return False def echocancel(thetimecourse, echooffset, thetimestep, outputname, padtimepoints): tide_io.writebidstsv( f"{outputname}_desc-echocancellation_timeseries", thetimecourse, 1.0 / thetimestep, columns=["original"], append=False, ) shifttr = echooffset / thetimestep # lagtime is in seconds echotc, dummy, dummy, dummy = tide_resample.timeshift(thetimecourse, shifttr, padtimepoints) echotc[0 : int(np.ceil(shifttr))] = 0.0 echofit, echoR = tide_fit.mlregress(echotc, thetimecourse) fitcoeff = echofit[0, 1] outputtimecourse = thetimecourse - fitcoeff * echotc tide_io.writebidstsv( f"{outputname}_desc-echocancellation_timeseries", echotc, 1.0 / thetimestep, columns=["echo"], append=True, ) tide_io.writebidstsv( f"{outputname}_desc-echocancellation_timeseries", outputtimecourse, 1.0 / thetimestep, columns=["filtered"], append=True, ) return outputtimecourse, echofit, echoR def rapidtide_main(argparsingfunc): optiondict, theprefilter = argparsingfunc optiondict["nodename"] = platform.node() fmrifilename = optiondict["in_file"] outputname = optiondict["outputname"] filename = optiondict["regressorfile"] # Set up loggers for workflow setup_logger( logger_filename=f"{outputname}_log.txt", timing_filename=f"{outputname}_runtimings.tsv", memory_filename=f"{outputname}_memusage.tsv", verbose=optiondict["verbose"], debug=optiondict["debug"], ) TimingLGR.info("Start") # construct the BIDS base dictionary outputpath = os.path.dirname(optiondict["outputname"]) rawsources = [os.path.relpath(optiondict["in_file"], start=outputpath)] if optiondict["regressorfile"] is not None: rawsources.append(os.path.relpath(optiondict["regressorfile"], start=outputpath)) bidsbasedict = { "RawSources": rawsources, "Units": "arbitrary", "CommandLineArgs": optiondict["commandlineargs"], } TimingLGR.info("Argument parsing done") # don't use shared memory if there is only one process if (optiondict["nprocs"] == 1) and not optiondict["alwaysmultiproc"]: optiondict["sharedmem"] = False LGR.info("running single process - disabled shared memory use") # disable numba now if we're going to do it (before any jits) if optiondict["nonumba"]: tide_util.disablenumba() # set the internal precision global rt_floatset, rt_floattype if optiondict["internalprecision"] == "double": LGR.info("setting internal precision to double") rt_floattype = "float64" rt_floatset = np.float64 else: LGR.info("setting internal precision to single") rt_floattype = "float32" rt_floatset = np.float32 # set the output precision if optiondict["outputprecision"] == "double": LGR.info("setting output precision to double") rt_outfloattype = "float64" rt_outfloatset = np.float64 else: LGR.info("setting output precision to single") rt_outfloattype = "float32" rt_outfloatset = np.float32 # set set the number of worker processes if multiprocessing if optiondict["nprocs"] < 1: optiondict["nprocs"] = tide_multiproc.maxcpus() if optiondict["singleproc_getNullDist"]: optiondict["nprocs_getNullDist"] = 1 else: optiondict["nprocs_getNullDist"] = optiondict["nprocs"] if optiondict["singleproc_calcsimilarity"]: optiondict["nprocs_calcsimilarity"] = 1 else: optiondict["nprocs_calcsimilarity"] = optiondict["nprocs"] if optiondict["singleproc_peakeval"]: optiondict["nprocs_peakeval"] = 1 else: optiondict["nprocs_peakeval"] = optiondict["nprocs"] if optiondict["singleproc_fitcorr"]: optiondict["nprocs_fitcorr"] = 1 else: optiondict["nprocs_fitcorr"] = optiondict["nprocs"] if optiondict["singleproc_glm"]: optiondict["nprocs_glm"] = 1 else: optiondict["nprocs_glm"] = optiondict["nprocs"] # set the number of MKL threads to use if mklexists: mklmaxthreads = mkl.get_max_threads() if not (1 <= optiondict["mklthreads"] <= mklmaxthreads): optiondict["mklthreads"] = mklmaxthreads mkl.set_num_threads(optiondict["mklthreads"]) print(f"using {optiondict['mklthreads']} MKL threads") # Generate MemoryLGR output file with column names if not optiondict["memprofile"]: tide_util.logmem() # open the fmri datafile tide_util.logmem("before reading in fmri data") if tide_io.checkiftext(fmrifilename): LGR.info("input file is text - all I/O will be to text files") optiondict["textio"] = True if optiondict["gausssigma"] > 0.0: optiondict["gausssigma"] = 0.0 LGR.info("gaussian spatial filter disabled for text input files") else: optiondict["textio"] = False if optiondict["textio"]: nim_data = tide_io.readvecs(fmrifilename) nim_hdr = None theshape = np.shape(nim_data) xsize = theshape[0] ysize = 1 numslices = 1 fileiscifti = False timepoints = theshape[1] thesizes = [0, int(xsize), 1, 1, int(timepoints)] numspatiallocs = int(xsize) else: fileiscifti = tide_io.checkifcifti(fmrifilename) if fileiscifti: LGR.info("input file is CIFTI") ( cifti, cifti_hdr, nim_data, nim_hdr, thedims, thesizes, dummy, ) = tide_io.readfromcifti(fmrifilename) optiondict["isgrayordinate"] = True timepoints = nim_data.shape[1] numspatiallocs = nim_data.shape[0] LGR.info(f"cifti file has {timepoints} timepoints, {numspatiallocs} numspatiallocs") slicesize = numspatiallocs else: LGR.info("input file is NIFTI") nim, nim_data, nim_hdr, thedims, thesizes = tide_io.readfromnifti(fmrifilename) optiondict["isgrayordinate"] = False xsize, ysize, numslices, timepoints = tide_io.parseniftidims(thedims) numspatiallocs = int(xsize) * int(ysize) * int(numslices) xdim, ydim, slicethickness, tr = tide_io.parseniftisizes(thesizes) tide_util.logmem("after reading in fmri data") # correct some fields if necessary if fileiscifti: fmritr = 0.72 # this is wrong and is a hack until I can parse CIFTI XML else: if optiondict["textio"]: if optiondict["realtr"] <= 0.0: raise ValueError( "for text file data input, you must use the -t option to set the timestep" ) else: if nim_hdr.get_xyzt_units()[1] == "msec": fmritr = thesizes[4] / 1000.0 else: fmritr = thesizes[4] if optiondict["realtr"] > 0.0: fmritr = optiondict["realtr"] # check to see if we need to adjust the oversample factor if optiondict["oversampfactor"] < 0: optiondict["oversampfactor"] = int(np.max([np.ceil(fmritr / 0.5), 1])) LGR.info(f"oversample factor set to {optiondict['oversampfactor']}") oversamptr = fmritr / optiondict["oversampfactor"] LGR.verbose(f"fmri data: {timepoints} timepoints, tr = {fmritr}, oversamptr = {oversamptr}") LGR.info(f"{numspatiallocs} spatial locations, {timepoints} timepoints") TimingLGR.info("Finish reading fmrifile") # if the user has specified start and stop points, limit check, then use these numbers validstart, validend = tide_util.startendcheck( timepoints, optiondict["startpoint"], optiondict["endpoint"] ) if abs(optiondict["lagmin"]) > (validend - validstart + 1) * fmritr / 2.0: raise ValueError( f"magnitude of lagmin exceeds {(validend - validstart + 1) * fmritr / 2.0} - invalid" ) if abs(optiondict["lagmax"]) > (validend - validstart + 1) * fmritr / 2.0: raise ValueError( f"magnitude of lagmax exceeds {(validend - validstart + 1) * fmritr / 2.0} - invalid" ) # do spatial filtering if requested if optiondict["gausssigma"] < 0.0 and not optiondict["textio"]: # set gausssigma automatically optiondict["gausssigma"] = np.mean([xdim, ydim, slicethickness]) / 2.0 if optiondict["gausssigma"] > 0.0: LGR.info( f"applying gaussian spatial filter to timepoints {validstart} " f"to {validend} with sigma={optiondict['gausssigma']}" ) reportstep = 10 for i in range(validstart, validend + 1): if (i % reportstep == 0 or i == validend) and optiondict["showprogressbar"]: tide_util.progressbar( i - validstart + 1, validend - validstart + 1, label="Percent complete", ) nim_data[:, :, :, i] = tide_filt.ssmooth( xdim, ydim, slicethickness, optiondict["gausssigma"], nim_data[:, :, :, i], ) print() TimingLGR.info("End 3D smoothing") # reshape the data and trim to a time range, if specified. Check for special case of no trimming to save RAM fmri_data = nim_data.reshape((numspatiallocs, timepoints))[:, validstart : validend + 1] validtimepoints = validend - validstart + 1 # detect zero mean data optiondict["dataiszeromean"] = checkforzeromean(fmri_data) if optiondict["dataiszeromean"]: LGR.warning( "WARNING: dataset is zero mean - forcing variance masking and no refine prenormalization. " "Consider specifying a global mean and correlation mask." ) optiondict["refineprenorm"] = "None" optiondict["globalmaskmethod"] = "variance" # read in the optional masks tide_util.logmem("before setting masks") internalglobalmeanincludemask = None internalglobalmeanexcludemask = None internalrefineincludemask = None internalrefineexcludemask = None if optiondict["globalmeanincludename"] is not None: LGR.info("constructing global mean include mask") theglobalmeanincludemask = readamask( optiondict["globalmeanincludename"], nim_hdr, xsize, istext=optiondict["textio"], valslist=optiondict["globalmeanincludevals"], maskname="global mean include", ) internalglobalmeanincludemask = theglobalmeanincludemask.reshape(numspatiallocs) if tide_stats.getmasksize(internalglobalmeanincludemask) == 0: raise ValueError( "ERROR: there are no voxels in the global mean include mask - exiting" ) if optiondict["globalmeanexcludename"] is not None: LGR.info("constructing global mean exclude mask") theglobalmeanexcludemask = readamask( optiondict["globalmeanexcludename"], nim_hdr, xsize, istext=optiondict["textio"], valslist=optiondict["globalmeanexcludevals"], maskname="global mean exclude", ) internalglobalmeanexcludemask = theglobalmeanexcludemask.reshape(numspatiallocs) if tide_stats.getmasksize(internalglobalmeanexcludemask) == numspatiallocs: raise ValueError( "ERROR: the global mean exclude mask does not leave any voxels - exiting" ) if (internalglobalmeanincludemask is not None) and (internalglobalmeanexcludemask is not None): if ( tide_stats.getmasksize( internalglobalmeanincludemask * (1 - internalglobalmeanexcludemask) ) == 0 ): raise ValueError( "ERROR: the global mean include and exclude masks not leave any voxels between them - exiting" ) if optiondict["refineincludename"] is not None: LGR.info("constructing refine include mask") therefineincludemask = readamask( optiondict["refineincludename"], nim_hdr, xsize, istext=optiondict["textio"], valslist=optiondict["refineincludevals"], maskname="refine include", ) internalrefineincludemask = therefineincludemask.reshape(numspatiallocs) if tide_stats.getmasksize(internalrefineincludemask) == 0: raise ValueError("ERROR: there are no voxels in the refine include mask - exiting") if optiondict["refineexcludename"] is not None: LGR.info("constructing refine exclude mask") therefineexcludemask = readamask( optiondict["refineexcludename"], nim_hdr, xsize, istext=optiondict["textio"], valslist=optiondict["refineexcludevals"], maskname="refine exclude", ) internalrefineexcludemask = therefineexcludemask.reshape(numspatiallocs) if tide_stats.getmasksize(internalrefineexcludemask) == numspatiallocs: raise ValueError("ERROR: the refine exclude mask does not leave any voxels - exiting") tide_util.logmem("after setting masks") # read or make a mask of where to calculate the correlations tide_util.logmem("before selecting valid voxels") threshval = tide_stats.getfracvals(fmri_data[:, :], [0.98])[0] / 25.0 LGR.info("constructing correlation mask") if optiondict["corrmaskincludename"] is not None: thecorrmask = readamask( optiondict["corrmaskincludename"], nim_hdr, xsize, istext=optiondict["textio"], valslist=optiondict["corrmaskincludevals"], maskname="correlation", ) corrmask = np.uint16(np.where(thecorrmask > 0, 1, 0).reshape(numspatiallocs)) else: # check to see if the data has been demeaned meanim = np.mean(fmri_data, axis=1) stdim = np.std(fmri_data, axis=1) if fileiscifti: corrmask = np.uint(nim_data[:, 0] * 0 + 1) else: if np.mean(stdim) < np.mean(meanim): LGR.info("generating correlation mask from mean image") corrmask = np.uint16(masking.compute_epi_mask(nim).dataobj.reshape(numspatiallocs)) else: LGR.info("generating correlation mask from std image") corrmask = np.uint16( tide_stats.makemask(stdim, threshpct=optiondict["corrmaskthreshpct"]) ) if tide_stats.getmasksize(corrmask) == 0: raise ValueError("ERROR: there are no voxels in the correlation mask - exiting") optiondict["corrmasksize"] = tide_stats.getmasksize(corrmask) if internalrefineincludemask is not None: if internalrefineexcludemask is not None: if ( tide_stats.getmasksize( corrmask * internalrefineincludemask * (1 - internalrefineexcludemask) ) == 0 ): raise ValueError( "ERROR: the refine include and exclude masks not leave any voxels in the corrmask - exiting" ) else: if tide_stats.getmasksize(corrmask * internalrefineincludemask) == 0: raise ValueError( "ERROR: the refine include mask does not leave any voxels in the corrmask - exiting" ) else: if internalrefineexcludemask is not None: if tide_stats.getmasksize(corrmask * (1 - internalrefineexcludemask)) == 0: raise ValueError( "ERROR: the refine exclude mask does not leave any voxels in the corrmask - exiting" ) if optiondict["nothresh"]: corrmask *= 0 corrmask += 1 threshval = -10000000.0 if optiondict["savecorrmask"] and not (fileiscifti or optiondict["textio"]): theheader = copy.deepcopy(nim_hdr) theheader["dim"][0] = 3 theheader["dim"][4] = 1 if optiondict["bidsoutput"]: savename = f"{outputname}_desc-processed_mask" else: savename = f"{outputname}_corrmask" tide_io.savetonifti(corrmask.reshape(xsize, ysize, numslices), theheader, savename) LGR.verbose(f"image threshval = {threshval}") validvoxels = np.where(corrmask > 0)[0] numvalidspatiallocs = np.shape(validvoxels)[0] LGR.info(f"validvoxels shape = {numvalidspatiallocs}") fmri_data_valid = fmri_data[validvoxels, :] + 0.0 LGR.info(f"original size = {np.shape(fmri_data)}, trimmed size = {np.shape(fmri_data_valid)}") if internalglobalmeanincludemask is not None: internalglobalmeanincludemask_valid = 1.0 * internalglobalmeanincludemask[validvoxels] del internalglobalmeanincludemask LGR.info( "internalglobalmeanincludemask_valid has size: " f"{internalglobalmeanincludemask_valid.size}" ) else: internalglobalmeanincludemask_valid = None if internalglobalmeanexcludemask is not None: internalglobalmeanexcludemask_valid = 1.0 * internalglobalmeanexcludemask[validvoxels] del internalglobalmeanexcludemask LGR.info( "internalglobalmeanexcludemask_valid has size: " f"{internalglobalmeanexcludemask_valid.size}" ) else: internalglobalmeanexcludemask_valid = None if internalrefineincludemask is not None: internalrefineincludemask_valid = 1.0 * internalrefineincludemask[validvoxels] del internalrefineincludemask LGR.info( "internalrefineincludemask_valid has size: " f"{internalrefineincludemask_valid.size}" ) else: internalrefineincludemask_valid = None if internalrefineexcludemask is not None: internalrefineexcludemask_valid = 1.0 * internalrefineexcludemask[validvoxels] del internalrefineexcludemask LGR.info( "internalrefineexcludemask_valid has size: " f"{internalrefineexcludemask_valid.size}" ) else: internalrefineexcludemask_valid = None tide_util.logmem("after selecting valid voxels") # move fmri_data_valid into shared memory if optiondict["sharedmem"]: LGR.info("moving fmri data to shared memory") TimingLGR.info("Start moving fmri_data to shared memory") numpy2shared_func = addmemprofiling( numpy2shared, optiondict["memprofile"], "before fmri data move" ) fmri_data_valid = numpy2shared_func(fmri_data_valid, rt_floatset) TimingLGR.info("End moving fmri_data to shared memory") # get rid of memory we aren't using tide_util.logmem("before purging full sized fmri data") meanvalue = np.mean( nim_data.reshape((numspatiallocs, timepoints))[:, validstart : validend + 1], axis=1, ) del fmri_data del nim_data gc.collect() tide_util.logmem("after purging full sized fmri data") # filter out motion regressors here if optiondict["motionfilename"] is not None: LGR.info("regressing out motion") TimingLGR.info("Motion filtering start") (motionregressors, motionregressorlabels, fmri_data_valid,) = tide_glmpass.motionregress( optiondict["motionfilename"], fmri_data_valid, fmritr, motstart=validstart, motend=validend + 1, position=optiondict["mot_pos"], deriv=optiondict["mot_deriv"], derivdelayed=optiondict["mot_delayderiv"], ) TimingLGR.info( "Motion filtering end", { "message2": fmri_data_valid.shape[0], "message3": "voxels", }, ) if optiondict["bidsoutput"]: tide_io.writebidstsv( f"{outputname}_desc-orthogonalizedmotion_timeseries", motionregressors, 1.0 / fmritr, columns=motionregressorlabels, append=True, ) else: tide_io.writenpvecs(motionregressors, f"{outputname}_orthogonalizedmotion.txt") if optiondict["memprofile"]: memcheckpoint("...done") else: tide_util.logmem("after motion glm filter") if optiondict["savemotionfiltered"]: outfmriarray = np.zeros((numspatiallocs, validtimepoints), dtype=rt_floattype) outfmriarray[validvoxels, :] = fmri_data_valid[:, :] if optiondict["textio"]: tide_io.writenpvecs( outfmriarray.reshape((numspatiallocs, validtimepoints)), f"{outputname}_motionfiltered.txt", ) else: if optiondict["bidsoutput"]: savename = f"{outputname}_desc-motionfiltered" else: savename = f"{outputname}_motionfiltered" tide_io.savetonifti( outfmriarray.reshape((xsize, ysize, numslices, validtimepoints)), nim_hdr, savename, ) # read in the timecourse to resample TimingLGR.info("Start of reference prep") if filename is None: LGR.info("no regressor file specified - will use the global mean regressor") optiondict["useglobalref"] = True else: optiondict["useglobalref"] = False # calculate the global mean whether we intend to use it or not meanfreq = 1.0 / fmritr meanperiod = 1.0 * fmritr meanstarttime = 0.0 meanvec, meanmask = getglobalsignal( fmri_data_valid, optiondict, includemask=internalglobalmeanincludemask_valid, excludemask=internalglobalmeanexcludemask_valid, pcacomponents=optiondict["globalpcacomponents"], ) # now set the regressor that we'll use if optiondict["useglobalref"]: LGR.info("using global mean as probe regressor") inputfreq = meanfreq inputperiod = meanperiod inputstarttime = meanstarttime inputvec = meanvec fullmeanmask = np.zeros(numspatiallocs, dtype=rt_floattype) fullmeanmask[validvoxels] = meanmask[:] if optiondict["bidsoutput"]: savename = f"{outputname}_desc-globalmean_mask" else: savename = f"{outputname}_meanmask" if fileiscifti: theheader = copy.deepcopy(nim_hdr) timeindex = theheader["dim"][0] - 1 spaceindex = theheader["dim"][0] theheader["dim"][timeindex] = 1 theheader["dim"][spaceindex] = numspatiallocs tide_io.savetocifti( fullmeanmask, cifti_hdr, theheader, savename, isseries=False, names=["meanmask"], ) elif optiondict["textio"]: tide_io.writenpvecs( fullmeanmask, savename + ".txt", ) else: theheader = copy.deepcopy(nim_hdr) theheader["dim"][0] = 3 theheader["dim"][4] = 1 tide_io.savetonifti( fullmeanmask.reshape((xsize, ysize, numslices)), theheader, savename ) optiondict["preprocskip"] = 0 else: LGR.info(f"using externally supplied probe regressor {filename}") ( fileinputfreq, filestarttime, dummy, inputvec, dummy, dummy, ) = tide_io.readvectorsfromtextfile(filename, onecol=True) inputfreq = optiondict["inputfreq"] inputstarttime = optiondict["inputstarttime"] if inputfreq is None: if fileinputfreq is not None: inputfreq = fileinputfreq else: inputfreq = 1.0 / fmritr LGR.warning(f"no regressor frequency specified - defaulting to {inputfreq} (1/tr)") if inputstarttime is None: if filestarttime is not None: inputstarttime = filestarttime else: LGR.warning("no regressor start time specified - defaulting to 0.0") inputstarttime = 0.0 inputperiod = 1.0 / inputfreq # inputvec = tide_io.readvec(filename) numreference = len(inputvec) optiondict["inputfreq"] = inputfreq optiondict["inputstarttime"] = inputstarttime LGR.info( "Regressor start time, end time, and step: {:.3f}, {:.3f}, {:.3f}".format( -inputstarttime, inputstarttime + numreference * inputperiod, inputperiod ) ) LGR.verbose("Input vector") LGR.verbose(f"length: {len(inputvec)}") LGR.verbose(f"input freq: {inputfreq}") LGR.verbose(f"input start time: {inputstarttime:.3f}") if not optiondict["useglobalref"]: globalcorrx, globalcorry, dummy, dummy = tide_corr.arbcorr( meanvec, meanfreq, inputvec, inputfreq, start2=inputstarttime ) synctime = globalcorrx[np.argmax(globalcorry)] if optiondict["autosync"]: optiondict["offsettime"] = -synctime optiondict["offsettime_total"] = synctime else: synctime = 0.0 LGR.info(f"synctime is {synctime}") reference_x = np.arange(0.0, numreference) * inputperiod - ( inputstarttime - optiondict["offsettime"] ) LGR.info(f"total probe regressor offset is {inputstarttime + optiondict['offsettime']}") # Print out initial information LGR.verbose(f"there are {numreference} points in the original regressor") LGR.verbose(f"the timepoint spacing is {1.0 / inputfreq}") LGR.verbose(f"the input timecourse start time is {inputstarttime}") # generate the time axes fmrifreq = 1.0 / fmritr optiondict["fmrifreq"] = fmrifreq skiptime = fmritr * (optiondict["preprocskip"]) LGR.info(f"first fMRI point is at {skiptime} seconds relative to time origin") initial_fmri_x = np.arange(0.0, validtimepoints) * fmritr + skiptime os_fmri_x = ( np.arange( 0.0, validtimepoints * optiondict["oversampfactor"] - (optiondict["oversampfactor"] - 1), ) * oversamptr + skiptime ) LGR.verbose(f"os_fmri_x dim-0 shape: {np.shape(os_fmri_x)[0]}") LGR.verbose(f"initial_fmri_x dim-0 shape: {np.shape(initial_fmri_x)[0]}") # generate the comparison regressor from the input timecourse # correct the output time points # check for extrapolation if os_fmri_x[0] < reference_x[0]: LGR.warning( f"WARNING: extrapolating {os_fmri_x[0] - reference_x[0]} " "seconds of data at beginning of timecourse" ) if os_fmri_x[-1] > reference_x[-1]: LGR.warning( f"WARNING: extrapolating {os_fmri_x[-1] - reference_x[-1]} " "seconds of data at end of timecourse" ) # invert the regressor if necessary if optiondict["invertregressor"]: invertfac = -1.0 else: invertfac = 1.0 # detrend the regressor if necessary if optiondict["detrendorder"] > 0: reference_y = invertfac * tide_fit.detrend( inputvec[0:numreference], order=optiondict["detrendorder"], demean=optiondict["dodemean"], ) else: reference_y = invertfac * (inputvec[0:numreference] - np.mean(inputvec[0:numreference])) # write out the reference regressor prior to filtering if optiondict["bidsoutput"]: tide_io.writebidstsv( f"{outputname}_desc-initialmovingregressor_timeseries", reference_y, inputfreq, starttime=inputstarttime, columns=["prefilt"], append=False, ) else: tide_io.writenpvecs(reference_y, f"{outputname}_reference_origres_prefilt.txt") # band limit the regressor if that is needed LGR.info(f"filtering to {theprefilter.gettype()} band") ( optiondict["lowerstop"], optiondict["lowerpass"], optiondict["upperpass"], optiondict["upperstop"], ) = theprefilter.getfreqs() reference_y_classfilter = theprefilter.apply(inputfreq, reference_y) if optiondict["negativegradregressor"]: reference_y = -np.gradient(reference_y_classfilter) else: reference_y = reference_y_classfilter # write out the reference regressor used if optiondict["bidsoutput"]: tide_io.writebidstsv( f"{outputname}_desc-initialmovingregressor_timeseries", tide_math.stdnormalize(reference_y), inputfreq, starttime=inputstarttime, columns=["postfilt"], append=True, ) else: tide_io.writenpvecs( tide_math.stdnormalize(reference_y), f"{outputname}_reference_origres.txt" ) # filter the input data for antialiasing if optiondict["antialias"]: LGR.debug("applying trapezoidal antialiasing filter") reference_y_filt = tide_filt.dolptrapfftfilt( inputfreq, 0.25 * fmrifreq, 0.5 * fmrifreq, reference_y, padlen=int(inputfreq * optiondict["padseconds"]), debug=optiondict["debug"], ) reference_y = rt_floatset(reference_y_filt.real) warnings.filterwarnings("ignore", "Casting*") if optiondict["fakerun"]: return # generate the resampled reference regressors oversampfreq = optiondict["oversampfactor"] / fmritr if optiondict["detrendorder"] > 0: resampnonosref_y = tide_fit.detrend( tide_resample.doresample( reference_x, reference_y, initial_fmri_x, padlen=int(inputfreq * optiondict["padseconds"]), method=optiondict["interptype"], debug=optiondict["debug"], ), order=optiondict["detrendorder"], demean=optiondict["dodemean"], ) resampref_y = tide_fit.detrend( tide_resample.doresample( reference_x, reference_y, os_fmri_x, padlen=int(oversampfreq * optiondict["padseconds"]), method=optiondict["interptype"], debug=optiondict["debug"], ), order=optiondict["detrendorder"], demean=optiondict["dodemean"], ) else: resampnonosref_y = tide_resample.doresample( reference_x, reference_y, initial_fmri_x, padlen=int(inputfreq * optiondict["padseconds"]), method=optiondict["interptype"], ) resampref_y = tide_resample.doresample( reference_x, reference_y, os_fmri_x, padlen=int(oversampfreq * optiondict["padseconds"]), method=optiondict["interptype"], ) LGR.info( f"{len(os_fmri_x)} " f"{len(resampref_y)} " f"{len(initial_fmri_x)} " f"{len(resampnonosref_y)}" ) previousnormoutputdata = resampnonosref_y + 0.0 # prepare the temporal mask if optiondict["tmaskname"] is not None: tmask_y = maketmask(optiondict["tmaskname"], reference_x, rt_floatset(reference_y)) tmaskos_y = tide_resample.doresample( reference_x, tmask_y, os_fmri_x, method=optiondict["interptype"] ) if optiondict["bidsoutput"]: tide_io.writenpvecs(tmask_y, f"{outputname}_temporalmask.txt") else: tide_io.writenpvecs(tmask_y, f"{outputname}_temporalmask.txt") resampnonosref_y *= tmask_y thefit, R = tide_fit.mlregress(tmask_y, resampnonosref_y) resampnonosref_y -= thefit[0, 1] * tmask_y resampref_y *= tmaskos_y thefit, R = tide_fit.mlregress(tmaskos_y, resampref_y) resampref_y -= thefit[0, 1] * tmaskos_y nonosrefname = "_reference_fmrires_pass1.txt" osrefname = "_reference_resampres_pass1.txt" ( optiondict["kurtosis_reference_pass1"], optiondict["kurtosisz_reference_pass1"], optiondict["kurtosisp_reference_pass1"], ) = tide_stats.kurtosisstats(resampref_y) if optiondict["bidsoutput"]: if optiondict["bidsoutput"]: tide_io.writebidstsv( f"{outputname}_desc-movingregressor_timeseries", tide_math.stdnormalize(resampnonosref_y), 1.0 / fmritr, columns=["pass1"], append=False, ) tide_io.writebidstsv( f"{outputname}_desc-oversampledmovingregressor_timeseries", tide_math.stdnormalize(resampref_y), oversampfreq, columns=["pass1"], append=False, ) else: tide_io.writenpvecs(tide_math.stdnormalize(resampnonosref_y), outputname + nonosrefname) tide_io.writenpvecs(tide_math.stdnormalize(resampref_y), outputname + osrefname) TimingLGR.info("End of reference prep") corrtr = oversamptr LGR.verbose(f"corrtr={corrtr}") # initialize the Correlator theCorrelator = tide_classes.Correlator( Fs=oversampfreq, ncprefilter=theprefilter, negativegradient=optiondict["negativegradient"], detrendorder=optiondict["detrendorder"], windowfunc=optiondict["windowfunc"], corrweighting=optiondict["corrweighting"], corrpadding=optiondict["zeropadding"], ) theCorrelator.setreftc( np.zeros((optiondict["oversampfactor"] * validtimepoints), dtype=np.float64) ) corrorigin = theCorrelator.similarityfuncorigin dummy, corrscale, dummy = theCorrelator.getfunction(trim=False) lagmininpts = int((-optiondict["lagmin"] / corrtr) - 0.5) lagmaxinpts = int((optiondict["lagmax"] / corrtr) + 0.5) if (lagmaxinpts + lagmininpts) < 3: raise ValueError( "correlation search range is too narrow - decrease lagmin, increase lagmax, or increase oversample factor" ) theCorrelator.setlimits(lagmininpts, lagmaxinpts) dummy, trimmedcorrscale, dummy = theCorrelator.getfunction() # initialize the MutualInformationator theMutualInformationator = tide_classes.MutualInformationator( Fs=oversampfreq, smoothingtime=optiondict["smoothingtime"], ncprefilter=theprefilter, negativegradient=optiondict["negativegradient"], detrendorder=optiondict["detrendorder"], windowfunc=optiondict["windowfunc"], madnorm=False, lagmininpts=lagmininpts, lagmaxinpts=lagmaxinpts, debug=optiondict["debug"], ) theMutualInformationator.setreftc( np.zeros((optiondict["oversampfactor"] * validtimepoints), dtype=np.float64) ) nummilags = theMutualInformationator.similarityfunclen theMutualInformationator.setlimits(lagmininpts, lagmaxinpts) dummy, trimmedmiscale, dummy = theMutualInformationator.getfunction() LGR.verbose(f"trimmedcorrscale length: {len(trimmedcorrscale)}") LGR.verbose(f"trimmedmiscale length: {len(trimmedmiscale)} {nummilags}") LGR.verbose(f"corrorigin at point {corrorigin} {corrscale[corrorigin]}") LGR.verbose( f"corr range from {corrorigin - lagmininpts} ({corrscale[corrorigin - lagmininpts]}) " f"to {corrorigin + lagmaxinpts} ({corrscale[corrorigin + lagmaxinpts]})" ) if optiondict["savecorrtimes"]: if optiondict["bidsoutput"]: tide_io.writenpvecs(trimmedcorrscale, f"{outputname}_corrtimes.txt") tide_io.writenpvecs(trimmedmiscale, f"{outputname}_mitimes.txt") else: tide_io.writenpvecs(trimmedcorrscale, f"{outputname}_corrtimes.txt") tide_io.writenpvecs(trimmedmiscale, f"{outputname}_mitimes.txt") # allocate all of the data arrays tide_util.logmem("before main array allocation") if optiondict["textio"]: nativespaceshape = xsize else: if fileiscifti: nativespaceshape = (1, 1, 1, 1, numspatiallocs) else: nativespaceshape = (xsize, ysize, numslices) internalspaceshape = numspatiallocs internalvalidspaceshape = numvalidspatiallocs meanval = np.zeros(internalvalidspaceshape, dtype=rt_floattype) lagtimes = np.zeros(internalvalidspaceshape, dtype=rt_floattype) lagstrengths = np.zeros(internalvalidspaceshape, dtype=rt_floattype) lagsigma = np.zeros(internalvalidspaceshape, dtype=rt_floattype) fitmask = np.zeros(internalvalidspaceshape, dtype="uint16") failreason = np.zeros(internalvalidspaceshape, dtype="uint32") R2 = np.zeros(internalvalidspaceshape, dtype=rt_floattype) outmaparray = np.zeros(internalspaceshape, dtype=rt_floattype) tide_util.logmem("after main array allocation") corroutlen = np.shape(trimmedcorrscale)[0] if optiondict["textio"]: nativecorrshape = (xsize, corroutlen) else: if fileiscifti: nativecorrshape = (1, 1, 1, corroutlen, numspatiallocs) else: nativecorrshape = (xsize, ysize, numslices, corroutlen) internalcorrshape = (numspatiallocs, corroutlen) internalvalidcorrshape = (numvalidspatiallocs, corroutlen) LGR.info( f"allocating memory for correlation arrays {internalcorrshape} {internalvalidcorrshape}" ) if optiondict["sharedmem"]: corrout, dummy, dummy = allocshared(internalvalidcorrshape, rt_floatset) gaussout, dummy, dummy = allocshared(internalvalidcorrshape, rt_floatset) windowout, dummy, dummy = allocshared(internalvalidcorrshape, rt_floatset) outcorrarray, dummy, dummy = allocshared(internalcorrshape, rt_floatset) else: corrout = np.zeros(internalvalidcorrshape, dtype=rt_floattype) gaussout = np.zeros(internalvalidcorrshape, dtype=rt_floattype) windowout = np.zeros(internalvalidcorrshape, dtype=rt_floattype) outcorrarray = np.zeros(internalcorrshape, dtype=rt_floattype) tide_util.logmem("after correlation array allocation") if optiondict["textio"]: nativefmrishape = (xsize, np.shape(initial_fmri_x)[0]) else: if fileiscifti: nativefmrishape = (1, 1, 1, np.shape(initial_fmri_x)[0], numspatiallocs) else: nativefmrishape = (xsize, ysize, numslices, np.shape(initial_fmri_x)[0]) internalfmrishape = (numspatiallocs, np.shape(initial_fmri_x)[0]) internalvalidfmrishape = (numvalidspatiallocs, np.shape(initial_fmri_x)[0]) if optiondict["sharedmem"]: lagtc, dummy, dummy = allocshared(internalvalidfmrishape, rt_floatset) else: lagtc = np.zeros(internalvalidfmrishape, dtype=rt_floattype) tide_util.logmem("after lagtc array allocation") if optiondict["passes"] > 1 or optiondict["convergencethresh"] is not None: if optiondict["sharedmem"]: shiftedtcs, dummy, dummy = allocshared(internalvalidfmrishape, rt_floatset) weights, dummy, dummy = allocshared(internalvalidfmrishape, rt_floatset) else: shiftedtcs = np.zeros(internalvalidfmrishape, dtype=rt_floattype) weights = np.zeros(internalvalidfmrishape, dtype=rt_floattype) tide_util.logmem("after refinement array allocation") if optiondict["sharedmem"]: outfmriarray, dummy, dummy = allocshared(internalfmrishape, rt_floatset) else: outfmriarray = np.zeros(internalfmrishape, dtype=rt_floattype) # prepare for fast resampling padtime = ( max((-optiondict["lagmin"], optiondict["lagmax"])) + 30.0 + np.abs(optiondict["offsettime"]) ) LGR.info(f"setting up fast resampling with padtime = {padtime}") numpadtrs = int(padtime // fmritr) padtime = fmritr * numpadtrs genlagtc = tide_resample.FastResampler(reference_x, reference_y, padtime=padtime) # cycle over all voxels refine = True LGR.verbose(f"refine is set to {refine}") optiondict["edgebufferfrac"] = max( [optiondict["edgebufferfrac"], 2.0 / np.shape(corrscale)[0]] ) LGR.verbose(f"edgebufferfrac set to {optiondict['edgebufferfrac']}") # intitialize the correlation fitter thefitter = tide_classes.SimilarityFunctionFitter( lagmod=optiondict["lagmod"], lthreshval=optiondict["lthreshval"], uthreshval=optiondict["uthreshval"], bipolar=optiondict["bipolar"], lagmin=optiondict["lagmin"], lagmax=optiondict["lagmax"], absmaxsigma=optiondict["absmaxsigma"], absminsigma=optiondict["absminsigma"], debug=optiondict["debug"], peakfittype=optiondict["peakfittype"], searchfrac=optiondict["searchfrac"], enforcethresh=optiondict["enforcethresh"], hardlimit=optiondict["hardlimit"], ) # Preprocessing - echo cancellation if optiondict["echocancel"]: LGR.info("\n\nEcho cancellation") TimingLGR.info("Echo cancellation start") calcsimilaritypass_func = addmemprofiling( tide_calcsimfunc.correlationpass, optiondict["memprofile"], "before correlationpass", ) referencetc = tide_math.corrnormalize( resampref_y, detrendorder=optiondict["detrendorder"], windowfunc=optiondict["windowfunc"], ) (voxelsprocessed_echo, theglobalmaxlist, trimmedcorrscale,) = calcsimilaritypass_func( fmri_data_valid[:, :], referencetc, theCorrelator, initial_fmri_x, os_fmri_x, lagmininpts, lagmaxinpts, corrout, meanval, nprocs=optiondict["nprocs_calcsimilarity"], alwaysmultiproc=optiondict["alwaysmultiproc"], oversampfactor=optiondict["oversampfactor"], interptype=optiondict["interptype"], showprogressbar=optiondict["showprogressbar"], chunksize=optiondict["mp_chunksize"], rt_floatset=rt_floatset, rt_floattype=rt_floattype, ) for i in range(len(theglobalmaxlist)): theglobalmaxlist[i] = corrscale[theglobalmaxlist[i]] if optiondict["bidsoutput"]: namesuffix = "_desc-globallag_hist" else: namesuffix = "_globallaghist_echocancel" tide_stats.makeandsavehistogram( np.asarray(theglobalmaxlist), len(corrscale), 0, outputname + namesuffix, displaytitle="lagtime histogram", therange=(corrscale[0], corrscale[-1]), refine=False, dictvarname="globallaghist_preechocancel", saveasbids=optiondict["bidsoutput"], append=False, thedict=optiondict, ) # Now find and regress out the echo echooffset, echoratio = tide_stats.echoloc(np.asarray(theglobalmaxlist), len(corrscale)) LGR.info(f"Echooffset, echoratio: {echooffset} {echoratio}") echoremovedtc, echofit, echoR = echocancel( resampref_y, echooffset, oversamptr, outputname, numpadtrs ) optiondict["echooffset"] = echooffset optiondict["echoratio"] = echoratio optiondict["echofit"] = [echofit[0, 0], echofit[0, 1]] optiondict["echofitR"] = echoR resampref_y = echoremovedtc TimingLGR.info( "Echo cancellation calculation end", { "message2": voxelsprocessed_echo, "message3": "voxels", }, ) # --------------------- Main pass loop --------------------- # loop over all passes stoprefining = False refinestopreason = "passesreached" if optiondict["convergencethresh"] is None: numpasses = optiondict["passes"] else: numpasses = np.max([optiondict["passes"], optiondict["maxpasses"]]) for thepass in range(1, numpasses + 1): if stoprefining: break # initialize the pass if optiondict["passes"] > 1: LGR.info("\n\n*********************") LGR.info(f"Pass number {thepass}") referencetc = tide_math.corrnormalize( resampref_y, detrendorder=optiondict["detrendorder"], windowfunc=optiondict["windowfunc"], ) # Step -1 - check the regressor for periodic components in the passband dolagmod = True doreferencenotch = True if optiondict["respdelete"]: resptracker = tide_classes.FrequencyTracker(nperseg=64) thetimes, thefreqs = resptracker.track(resampref_y, 1.0 / oversamptr) if optiondict["bidsoutput"]: tide_io.writevec(thefreqs, f"{outputname}_peakfreaks_pass{thepass}.txt") else: tide_io.writevec(thefreqs, f"{outputname}_peakfreaks_pass{thepass}.txt") resampref_y = resptracker.clean(resampref_y, 1.0 / oversamptr, thetimes, thefreqs) if optiondict["bidsoutput"]: tide_io.writevec(resampref_y, f"{outputname}_respfilt_pass{thepass}.txt") else: tide_io.writevec(resampref_y, f"{outputname}_respfilt_pass{thepass}.txt") referencetc = tide_math.corrnormalize( resampref_y, detrendorder=optiondict["detrendorder"], windowfunc=optiondict["windowfunc"], ) if optiondict["check_autocorrelation"]: LGR.info("checking reference regressor autocorrelation properties") optiondict["lagmod"] = 1000.0 lagindpad = corrorigin - 2 * np.max((lagmininpts, lagmaxinpts)) acmininpts = lagmininpts + lagindpad acmaxinpts = lagmaxinpts + lagindpad theCorrelator.setreftc(referencetc) theCorrelator.setlimits(acmininpts, acmaxinpts) thexcorr, accheckcorrscale, dummy = theCorrelator.run(resampref_y) thefitter.setcorrtimeaxis(accheckcorrscale) ( maxindex, maxlag, maxval, acwidth, maskval, peakstart, peakend, thisfailreason, ) = tide_simfuncfit.onesimfuncfit( thexcorr, thefitter, despeckle_thresh=optiondict["despeckle_thresh"], lthreshval=optiondict["lthreshval"], fixdelay=optiondict["fixdelay"], rt_floatset=rt_floatset, rt_floattype=rt_floattype, ) outputarray = np.asarray([accheckcorrscale, thexcorr]) if optiondict["bidsoutput"]: tide_io.writebidstsv( f"{outputname}_desc-autocorr_timeseries", thexcorr, 1.0 / (accheckcorrscale[1] - accheckcorrscale[0]), starttime=accheckcorrscale[0], columns=[f"pass{thepass}"], append=(thepass > 1), ) else: tide_io.writenpvecs( outputarray, f"{outputname}_referenceautocorr_pass" + str(thepass) + ".txt", ) thelagthresh = np.max((abs(optiondict["lagmin"]), abs(optiondict["lagmax"]))) theampthresh = 0.1 LGR.info( f"searching for sidelobes with amplitude > {theampthresh} " f"with abs(lag) < {thelagthresh} s" ) sidelobetime, sidelobeamp = tide_corr.check_autocorrelation( accheckcorrscale, thexcorr, acampthresh=theampthresh, aclagthresh=thelagthresh, detrendorder=optiondict["detrendorder"], ) optiondict["acwidth"] = acwidth + 0.0 optiondict["absmaxsigma"] = acwidth * 10.0 passsuffix = "_pass" + str(thepass) if sidelobetime is not None: optiondict["acsidelobelag" + passsuffix] = sidelobetime optiondict["despeckle_thresh"] = np.max( [optiondict["despeckle_thresh"], sidelobetime / 2.0] ) optiondict["acsidelobeamp" + passsuffix] = sidelobeamp LGR.warning( f"\n\nWARNING: check_autocorrelation found bad sidelobe at {sidelobetime} " f"seconds ({1.0 / sidelobetime} Hz)..." ) if optiondict["bidsoutput"]: tide_io.writenpvecs( np.array([sidelobetime]), f"{outputname}_autocorr_sidelobetime" + passsuffix + ".txt", ) else: tide_io.writenpvecs( np.array([sidelobetime]), f"{outputname}_autocorr_sidelobetime" + passsuffix + ".txt", ) if optiondict["fix_autocorrelation"]: LGR.info("Removing sidelobe") if dolagmod: LGR.info("subjecting lag times to modulus") optiondict["lagmod"] = sidelobetime / 2.0 if doreferencenotch: LGR.info("removing spectral component at sidelobe frequency") acstopfreq = 1.0 / sidelobetime acfixfilter = tide_filt.NoncausalFilter( transferfunc=optiondict["transferfunc"], debug=optiondict["debug"], ) acfixfilter.settype("arb_stop") acfixfilter.setfreqs( acstopfreq * 0.9, acstopfreq * 0.95, acstopfreq * 1.05, acstopfreq * 1.1, ) cleaned_resampref_y = tide_math.corrnormalize( acfixfilter.apply(1.0 / oversamptr, resampref_y), windowfunc="None", detrendorder=optiondict["detrendorder"], ) cleaned_referencetc = tide_math.corrnormalize( cleaned_resampref_y, detrendorder=optiondict["detrendorder"], windowfunc=optiondict["windowfunc"], ) cleaned_nonosreferencetc = tide_math.stdnormalize( acfixfilter.apply(fmrifreq, resampnonosref_y) ) if optiondict["bidsoutput"]: tide_io.writebidstsv( f"{outputname}_desc-cleanedreferencefmrires_info", cleaned_nonosreferencetc, fmrifreq, columns=[f"pass{thepass}"], append=(thepass > 1), ) tide_io.writebidstsv( f"{outputname}_desc-cleanedreference_info", cleaned_referencetc, 1.0 / oversamptr, columns=[f"pass{thepass}"], append=(thepass > 1), ) tide_io.writebidstsv( f"{outputname}_desc-cleanedresamprefy_info", cleaned_resampref_y, 1.0 / oversamptr, columns=[f"pass{thepass}"], append=(thepass > 1), ) else: tide_io.writenpvecs( cleaned_nonosreferencetc, f"{outputname}_cleanedreference_fmrires_pass{thepass}.txt", ) tide_io.writenpvecs( cleaned_referencetc, f"{outputname}_cleanedreference_pass{thepass}.txt", ) tide_io.writenpvecs( cleaned_resampref_y, f"{outputname}_cleanedresampref_y_pass{thepass}.txt", ) else: cleaned_resampref_y = 1.0 * tide_math.corrnormalize( resampref_y, windowfunc="None", detrendorder=optiondict["detrendorder"], ) cleaned_referencetc = 1.0 * referencetc cleaned_nonosreferencetc = 1.0 * resampnonosref_y else: LGR.info("no sidelobes found in range") cleaned_resampref_y = 1.0 * tide_math.corrnormalize( resampref_y, windowfunc="None", detrendorder=optiondict["detrendorder"], ) cleaned_referencetc = 1.0 * referencetc cleaned_nonosreferencetc = 1.0 * resampnonosref_y else: cleaned_resampref_y = 1.0 * tide_math.corrnormalize( resampref_y, windowfunc="None", detrendorder=optiondict["detrendorder"] ) cleaned_referencetc = 1.0 * referencetc cleaned_nonosreferencetc = 1.0 * resampnonosref_y # Step 0 - estimate significance if optiondict["numestreps"] > 0: TimingLGR.info(f"Significance estimation start, pass {thepass}") LGR.info(f"\n\nSignificance estimation, pass {thepass}") LGR.verbose( "calling getNullDistributionData with args: " f"{oversampfreq} {fmritr} {corrorigin} {lagmininpts} {lagmaxinpts}" ) getNullDistributionData_func = addmemprofiling( tide_nullsimfunc.getNullDistributionDatax, optiondict["memprofile"], "before getnulldistristributiondata", ) if optiondict["checkpoint"]: if optiondict["bidsoutput"]: tide_io.writenpvecs( cleaned_referencetc, f"{outputname}_cleanedreference_pass" + str(thepass) + ".txt", ) tide_io.writenpvecs( cleaned_resampref_y, f"{outputname}_cleanedresampref_y_pass" + str(thepass) + ".txt", ) else: tide_io.writenpvecs( cleaned_referencetc, f"{outputname}_cleanedreference_pass" + str(thepass) + ".txt", ) tide_io.writenpvecs( cleaned_resampref_y, f"{outputname}_cleanedresampref_y_pass" + str(thepass) + ".txt", ) tide_io.writedicttojson( optiondict, f"{outputname}_options_pregetnull_pass" + str(thepass) + ".json", ) theCorrelator.setlimits(lagmininpts, lagmaxinpts) theCorrelator.setreftc(cleaned_resampref_y) theMutualInformationator.setlimits(lagmininpts, lagmaxinpts) theMutualInformationator.setreftc(cleaned_resampref_y) dummy, trimmedcorrscale, dummy = theCorrelator.getfunction() thefitter.setcorrtimeaxis(trimmedcorrscale) corrdistdata = getNullDistributionData_func( cleaned_resampref_y, oversampfreq, theCorrelator, thefitter, numestreps=optiondict["numestreps"], nprocs=optiondict["nprocs_getNullDist"], alwaysmultiproc=optiondict["alwaysmultiproc"], showprogressbar=optiondict["showprogressbar"], chunksize=optiondict["mp_chunksize"], permutationmethod=optiondict["permutationmethod"], fixdelay=optiondict["fixdelay"], fixeddelayvalue=optiondict["fixeddelayvalue"], rt_floatset=np.float64, rt_floattype="float64", ) if optiondict["bidsoutput"]: tide_io.writebidstsv( f"{outputname}_desc-corrdistdata_info", corrdistdata, 1.0, columns=["pass" + str(thepass)], append=(thepass > 1), ) else: tide_io.writenpvecs( corrdistdata, f"{outputname}_corrdistdata_pass" + str(thepass) + ".txt", ) # calculate percentiles for the crosscorrelation from the distribution data thepercentiles = np.array([0.95, 0.99, 0.995, 0.999]) thepvalnames = [] for thispercentile in thepercentiles: thepvalnames.append("{:.3f}".format(1.0 - thispercentile).replace(".", "p")) pcts, pcts_fit, sigfit = tide_stats.sigFromDistributionData( corrdistdata, optiondict["sighistlen"], thepercentiles, twotail=optiondict["bipolar"], nozero=optiondict["nohistzero"], dosighistfit=optiondict["dosighistfit"], ) for i in range(len(thepvalnames)): optiondict[ "p_lt_" + thepvalnames[i] + "_pass" + str(thepass) + "_thresh.txt" ] = pcts[i] if optiondict["dosighistfit"]: optiondict[ "p_lt_" + thepvalnames[i] + "_pass" + str(thepass) + "_fitthresh" ] = pcts_fit[i] optiondict["sigfit"] = sigfit if optiondict["ampthreshfromsig"]: if pcts is not None: LGR.info( f"setting ampthresh to the p < {1.0 - thepercentiles[0]:.3f} threshhold" ) optiondict["ampthresh"] = pcts[0] tide_stats.printthresholds( pcts, thepercentiles, "Crosscorrelation significance thresholds from data:", ) if optiondict["dosighistfit"]: tide_stats.printthresholds( pcts_fit, thepercentiles, "Crosscorrelation significance thresholds from fit:", ) if optiondict["bidsoutput"]: namesuffix = "_desc-nullsimfunc_hist" else: namesuffix = "_nullsimfunchist_pass" + str(thepass) tide_stats.makeandsavehistogram( corrdistdata, optiondict["sighistlen"], 0, outputname + namesuffix, displaytitle="Null correlation histogram, pass" + str(thepass), refine=False, dictvarname="nullsimfunchist_pass" + str(thepass), saveasbids=optiondict["bidsoutput"], therange=(0.0, 1.0), append=(thepass > 1), thedict=optiondict, ) else: LGR.info("leaving ampthresh unchanged") del corrdistdata TimingLGR.info( f"Significance estimation end, pass {thepass}", { "message2": optiondict["numestreps"], "message3": "repetitions", }, ) # Step 1 - Correlation step if optiondict["similaritymetric"] == "mutualinfo": similaritytype = "Mutual information" elif optiondict["similaritymetric"] == "correlation": similaritytype = "Correlation" else: similaritytype = "MI enhanced correlation" LGR.info(f"\n\n{similaritytype} calculation, pass {thepass}") TimingLGR.info(f"{similaritytype} calculation start, pass {thepass}") calcsimilaritypass_func = addmemprofiling( tide_calcsimfunc.correlationpass, optiondict["memprofile"], "before correlationpass", ) if optiondict["similaritymetric"] == "mutualinfo": theMutualInformationator.setlimits(lagmininpts, lagmaxinpts) (voxelsprocessed_cp, theglobalmaxlist, trimmedcorrscale,) = calcsimilaritypass_func( fmri_data_valid[:, :], cleaned_referencetc, theMutualInformationator, initial_fmri_x, os_fmri_x, lagmininpts, lagmaxinpts, corrout, meanval, nprocs=optiondict["nprocs_calcsimilarity"], alwaysmultiproc=optiondict["alwaysmultiproc"], oversampfactor=optiondict["oversampfactor"], interptype=optiondict["interptype"], showprogressbar=optiondict["showprogressbar"], chunksize=optiondict["mp_chunksize"], rt_floatset=rt_floatset, rt_floattype=rt_floattype, ) else: (voxelsprocessed_cp, theglobalmaxlist, trimmedcorrscale,) = calcsimilaritypass_func( fmri_data_valid[:, :], cleaned_referencetc, theCorrelator, initial_fmri_x, os_fmri_x, lagmininpts, lagmaxinpts, corrout, meanval, nprocs=optiondict["nprocs_calcsimilarity"], alwaysmultiproc=optiondict["alwaysmultiproc"], oversampfactor=optiondict["oversampfactor"], interptype=optiondict["interptype"], showprogressbar=optiondict["showprogressbar"], chunksize=optiondict["mp_chunksize"], rt_floatset=rt_floatset, rt_floattype=rt_floattype, ) for i in range(len(theglobalmaxlist)): theglobalmaxlist[i] = corrscale[theglobalmaxlist[i]] if optiondict["bidsoutput"]: namesuffix = "_desc-globallag_hist" else: namesuffix = "_globallaghist_pass" + str(thepass) tide_stats.makeandsavehistogram( np.asarray(theglobalmaxlist), len(corrscale), 0, outputname + namesuffix, displaytitle="lagtime histogram", therange=(corrscale[0], corrscale[-1]), refine=False, dictvarname="globallaghist_pass" + str(thepass), saveasbids=optiondict["bidsoutput"], append=(optiondict["echocancel"] or (thepass > 1)), thedict=optiondict, ) if optiondict["checkpoint"]: outcorrarray[:, :] = 0.0 outcorrarray[validvoxels, :] = corrout[:, :] if optiondict["textio"]: tide_io.writenpvecs( outcorrarray.reshape(nativecorrshape), f"{outputname}_corrout_prefit_pass" + str(thepass) + ".txt", ) else: if optiondict["bidsoutput"]: savename = f"{outputname}_desc-corroutprefit_pass-" + str(thepass) else: savename = f"{outputname}_corrout_prefit_pass" + str(thepass) tide_io.savetonifti(outcorrarray.reshape(nativecorrshape), theheader, savename) TimingLGR.info( f"{similaritytype} calculation end, pass {thepass}", { "message2": voxelsprocessed_cp, "message3": "voxels", }, ) # Step 1b. Do a peak prefit if optiondict["similaritymetric"] == "hybrid": LGR.info(f"\n\nPeak prefit calculation, pass {thepass}") TimingLGR.info(f"Peak prefit calculation start, pass {thepass}") peakevalpass_func = addmemprofiling( tide_peakeval.peakevalpass, optiondict["memprofile"], "before peakevalpass", ) voxelsprocessed_pe, thepeakdict = peakevalpass_func( fmri_data_valid[:, :], cleaned_referencetc, initial_fmri_x, os_fmri_x, theMutualInformationator, trimmedcorrscale, corrout, nprocs=optiondict["nprocs_peakeval"], alwaysmultiproc=optiondict["alwaysmultiproc"], bipolar=optiondict["bipolar"], oversampfactor=optiondict["oversampfactor"], interptype=optiondict["interptype"], showprogressbar=optiondict["showprogressbar"], chunksize=optiondict["mp_chunksize"], rt_floatset=rt_floatset, rt_floattype=rt_floattype, ) TimingLGR.info( f"Peak prefit end, pass {thepass}", { "message2": voxelsprocessed_pe, "message3": "voxels", }, ) mipeaks = lagtimes * 0.0 for i in range(numvalidspatiallocs): if len(thepeakdict[str(i)]) > 0: mipeaks[i] = thepeakdict[str(i)][0][0] else: thepeakdict = None # Step 2 - similarity function fitting and time lag estimation LGR.info(f"\n\nTime lag estimation pass {thepass}") TimingLGR.info(f"Time lag estimation start, pass {thepass}") fitcorr_func = addmemprofiling( tide_simfuncfit.fitcorr, optiondict["memprofile"], "before fitcorr" ) thefitter.setfunctype(optiondict["similaritymetric"]) thefitter.setcorrtimeaxis(trimmedcorrscale) # use initial lags if this is a hybrid fit if optiondict["similaritymetric"] == "hybrid" and thepeakdict is not None: initlags = mipeaks else: initlags = None voxelsprocessed_fc = fitcorr_func( genlagtc, initial_fmri_x, lagtc, trimmedcorrscale, thefitter, corrout, fitmask, failreason, lagtimes, lagstrengths, lagsigma, gaussout, windowout, R2, peakdict=thepeakdict, nprocs=optiondict["nprocs_fitcorr"], alwaysmultiproc=optiondict["alwaysmultiproc"], fixdelay=optiondict["fixdelay"], showprogressbar=optiondict["showprogressbar"], chunksize=optiondict["mp_chunksize"], despeckle_thresh=optiondict["despeckle_thresh"], initiallags=initlags, rt_floatset=rt_floatset, rt_floattype=rt_floattype, ) TimingLGR.info( f"Time lag estimation end, pass {thepass}", { "message2": voxelsprocessed_fc, "message3": "voxels", }, ) # Step 2b - Correlation time despeckle if optiondict["despeckle_passes"] > 0: LGR.info(f"\n\nCorrelation despeckling pass {thepass}") LGR.info(f"\tUsing despeckle_thresh = {optiondict['despeckle_thresh']:.3f}") TimingLGR.info(f"Correlation despeckle start, pass {thepass}") # find lags that are very different from their neighbors, and refit starting at the median lag for the point voxelsprocessed_fc_ds = 0 despecklingdone = False for despecklepass in range(optiondict["despeckle_passes"]): LGR.info(f"\n\nCorrelation despeckling subpass {despecklepass + 1}") outmaparray *= 0.0 outmaparray[validvoxels] = eval("lagtimes")[:] medianlags = ndimage.median_filter( outmaparray.reshape(nativespaceshape), 3 ).reshape(numspatiallocs) initlags = np.where( np.abs(outmaparray - medianlags) > optiondict["despeckle_thresh"], medianlags, -1000000.0, )[validvoxels] if len(initlags) > 0: if len(np.where(initlags != -1000000.0)[0]) > 0: voxelsprocessed_thispass = fitcorr_func( genlagtc, initial_fmri_x, lagtc, trimmedcorrscale, thefitter, corrout, fitmask, failreason, lagtimes, lagstrengths, lagsigma, gaussout, windowout, R2, peakdict=thepeakdict, nprocs=optiondict["nprocs_fitcorr"], alwaysmultiproc=optiondict["alwaysmultiproc"], fixdelay=optiondict["fixdelay"], showprogressbar=optiondict["showprogressbar"], chunksize=optiondict["mp_chunksize"], despeckle_thresh=optiondict["despeckle_thresh"], initiallags=initlags, rt_floatset=rt_floatset, rt_floattype=rt_floattype, ) voxelsprocessed_fc_ds += voxelsprocessed_thispass optiondict[ "despecklemasksize_pass" + str(thepass) + "_d" + str(despecklepass + 1) ] = voxelsprocessed_thispass optiondict[ "despecklemaskpct_pass" + str(thepass) + "_d" + str(despecklepass + 1) ] = (100.0 * voxelsprocessed_thispass / optiondict["corrmasksize"]) else: despecklingdone = True else: despecklingdone = True if despecklingdone: LGR.info("Nothing left to do! Terminating despeckling") break if optiondict["savedespecklemasks"] and thepass == optiondict["passes"]: theheader = copy.deepcopy(nim_hdr) theheader["dim"][4] = 1 if optiondict["bidsoutput"]: savename = f"{outputname}_desc-despeckle_mask" else: savename = f"{outputname}_despecklemask" if not fileiscifti: theheader["dim"][0] = 3 tide_io.savetonifti( ( np.where( np.abs(outmaparray - medianlags) > optiondict["despeckle_thresh"], medianlags, 0.0, ) ).reshape(nativespaceshape), theheader, savename, ) else: timeindex = theheader["dim"][0] - 1 spaceindex = theheader["dim"][0] theheader["dim"][timeindex] = 1 theheader["dim"][spaceindex] = numspatiallocs tide_io.savetocifti( ( np.where( np.abs(outmaparray - medianlags) > optiondict["despeckle_thresh"], medianlags, 0.0, ) ), cifti_hdr, theheader, savename, isseries=False, names=["despecklemask"], ) LGR.info( f"\n\n{voxelsprocessed_fc_ds} voxels despeckled in " f"{optiondict['despeckle_passes']} passes" ) TimingLGR.info( f"Correlation despeckle end, pass {thepass}", { "message2": voxelsprocessed_fc_ds, "message3": "voxels", }, ) # Step 3 - regressor refinement for next pass if thepass < optiondict["passes"] or optiondict["convergencethresh"] is not None: LGR.info(f"\n\nRegressor refinement, pass {thepass}") TimingLGR.info(f"Regressor refinement start, pass {thepass}") if optiondict["refineoffset"]: peaklag, peakheight, peakwidth = tide_stats.gethistprops( lagtimes[np.where(fitmask > 0)], optiondict["histlen"], pickleft=optiondict["pickleft"], peakthresh=optiondict["pickleftthresh"], ) optiondict["offsettime"] = peaklag optiondict["offsettime_total"] += peaklag LGR.info( f"offset time set to {optiondict['offsettime']:.3f}, " f"total is {optiondict['offsettime_total']:.3f}" ) # regenerate regressor for next pass refineregressor_func = addmemprofiling( tide_refine.refineregressor, optiondict["memprofile"], "before refineregressor", ) ( voxelsprocessed_rr, outputdata, refinemask, locationfails, ampfails, lagfails, sigmafails, ) = refineregressor_func( fmri_data_valid, fmritr, shiftedtcs, weights, thepass, lagstrengths, lagtimes, lagsigma, fitmask, R2, theprefilter, optiondict, bipolar=optiondict["bipolar"], padtrs=numpadtrs, includemask=internalrefineincludemask_valid, excludemask=internalrefineexcludemask_valid, rt_floatset=rt_floatset, rt_floattype=rt_floattype, ) optiondict["refinemasksize_pass" + str(thepass)] = voxelsprocessed_rr optiondict["refinemaskpct_pass" + str(thepass)] = ( 100.0 * voxelsprocessed_rr / optiondict["corrmasksize"] ) optiondict["refinelocationfails_pass" + str(thepass)] = locationfails optiondict["refineampfails_pass" + str(thepass)] = ampfails optiondict["refinelagfails_pass" + str(thepass)] = lagfails optiondict["refinesigmafails_pass" + str(thepass)] = sigmafails if voxelsprocessed_rr > 0: normoutputdata = tide_math.stdnormalize(theprefilter.apply(fmrifreq, outputdata)) normunfilteredoutputdata = tide_math.stdnormalize(outputdata) if optiondict["bidsoutput"]: tide_io.writebidstsv( f"{outputname}_desc-refinedmovingregressor_timeseries", normunfilteredoutputdata, 1.0 / fmritr, columns=["unfiltered_pass" + str(thepass)], append=(thepass > 1), ) tide_io.writebidstsv( f"{outputname}_desc-refinedmovingregressor_timeseries", normoutputdata, 1.0 / fmritr, columns=["filtered_pass" + str(thepass)], append=True, ) else: tide_io.writenpvecs( normoutputdata, f"{outputname}_refinedregressor_pass" + str(thepass) + ".txt", ) tide_io.writenpvecs( normunfilteredoutputdata, f"{outputname}_unfilteredrefinedregressor_pass" + str(thepass) + ".txt", ) # check for convergence regressormse = mse(normoutputdata, previousnormoutputdata) optiondict["regressormse_pass" + str(thepass).zfill(2)] = regressormse LGR.info(f"regressor difference at end of pass {thepass:d} is {regressormse:.6f}") if optiondict["convergencethresh"] is not None: if thepass >= optiondict["maxpasses"]: LGR.info("refinement ended (maxpasses reached)") stoprefining = True refinestopreason = "maxpassesreached" elif regressormse < optiondict["convergencethresh"]: LGR.info("refinement ended (refinement has converged") stoprefining = True refinestopreason = "convergence" else: stoprefining = False elif thepass >= optiondict["passes"]: stoprefining = True refinestopreason = "passesreached" else: stoprefining = False if optiondict["detrendorder"] > 0: resampnonosref_y = tide_fit.detrend( tide_resample.doresample( initial_fmri_x, normoutputdata, initial_fmri_x, method=optiondict["interptype"], ), order=optiondict["detrendorder"], demean=optiondict["dodemean"], ) resampref_y = tide_fit.detrend( tide_resample.doresample( initial_fmri_x, normoutputdata, os_fmri_x, method=optiondict["interptype"], ), order=optiondict["detrendorder"], demean=optiondict["dodemean"], ) else: resampnonosref_y = tide_resample.doresample( initial_fmri_x, normoutputdata, initial_fmri_x, method=optiondict["interptype"], ) resampref_y = tide_resample.doresample( initial_fmri_x, normoutputdata, os_fmri_x, method=optiondict["interptype"], ) if optiondict["tmaskname"] is not None: resampnonosref_y *= tmask_y thefit, R = tide_fit.mlregress(tmask_y, resampnonosref_y) resampnonosref_y -= thefit[0, 1] * tmask_y resampref_y *= tmaskos_y thefit, R = tide_fit.mlregress(tmaskos_y, resampref_y) resampref_y -= thefit[0, 1] * tmaskos_y # reinitialize lagtc for resampling previousnormoutputdata = normoutputdata + 0.0 genlagtc = tide_resample.FastResampler( initial_fmri_x, normoutputdata, padtime=padtime ) nonosrefname = "_reference_fmrires_pass" + str(thepass + 1) + ".txt" osrefname = "_reference_resampres_pass" + str(thepass + 1) + ".txt" ( optiondict["kurtosis_reference_pass" + str(thepass + 1)], optiondict["kurtosisz_reference_pass" + str(thepass + 1)], optiondict["kurtosisp_reference_pass" + str(thepass + 1)], ) = tide_stats.kurtosisstats(resampref_y) if not stoprefining: if optiondict["bidsoutput"]: tide_io.writebidstsv( f"{outputname}_desc-movingregressor_timeseries", tide_math.stdnormalize(resampnonosref_y), 1.0 / fmritr, columns=["pass" + str(thepass + 1)], append=True, ) tide_io.writebidstsv( f"{outputname}_desc-oversampledmovingregressor_timeseries", tide_math.stdnormalize(resampref_y), oversampfreq, columns=["pass" + str(thepass + 1)], append=True, ) else: tide_io.writenpvecs( tide_math.stdnormalize(resampnonosref_y), outputname + nonosrefname, ) tide_io.writenpvecs( tide_math.stdnormalize(resampref_y), outputname + osrefname ) else: LGR.warning(f"refinement failed - terminating at end of pass {thepass}") stoprefining = True refinestopreason = "emptymask" TimingLGR.info( f"Regressor refinement end, pass {thepass}", { "message2": voxelsprocessed_rr, "message3": "voxels", }, ) if optiondict["saveintermediatemaps"]: maplist = [ ("lagtimes", "maxtime"), ("lagstrengths", "maxcorr"), ("lagsigma", "maxwidth"), ("fitmask", "fitmask"), ("failreason", "corrfitfailreason"), ] if thepass < optiondict["passes"]: maplist.append(("refinemask", "refinemask")) for mapname, mapsuffix in maplist: if optiondict["memprofile"]: memcheckpoint(f"about to write {mapname} to {mapsuffix}") else: tide_util.logmem(f"about to write {mapname} to {mapsuffix}") outmaparray[:] = 0.0 outmaparray[validvoxels] = eval(mapname)[:] if optiondict["textio"]: tide_io.writenpvecs( outmaparray.reshape(nativespaceshape, 1), f"{outputname}_{mapsuffix}{passsuffix}.txt", ) else: if optiondict["bidsoutput"]: bidspasssuffix = f"_intermediatedata-pass{thepass}" if mapname == "fitmask": savename = f"{outputname}{bidspasssuffix}_desc-corrfit_mask" elif mapname == "failreason": savename = f"{outputname}{bidspasssuffix}_desc-corrfitfailreason_info" else: savename = f"{outputname}{bidspasssuffix}_desc-{mapsuffix}_map" bidsdict = bidsbasedict.copy() if mapname == "lagtimes" or mapname == "lagsigma": bidsdict["Units"] = "second" tide_io.writedicttojson(bidsdict, f"{savename}.json") else: savename = f"{outputname}_{mapname}" + passsuffix tide_io.savetonifti(outmaparray.reshape(nativespaceshape), theheader, savename) # We are done with refinement. if optiondict["convergencethresh"] is None: optiondict["actual_passes"] = optiondict["passes"] else: optiondict["actual_passes"] = thepass - 1 optiondict["refinestopreason"] = refinestopreason # Post refinement step -1 - Coherence calculation if optiondict["calccoherence"]: TimingLGR.info("Coherence calculation start") LGR.info("\n\nCoherence calculation") reportstep = 1000 # make the Coherer theCoherer = tide_classes.Coherer( Fs=(1.0 / fmritr), reftc=cleaned_nonosreferencetc, freqmin=0.0, freqmax=0.2, ncprefilter=theprefilter, windowfunc=optiondict["windowfunc"], detrendorder=optiondict["detrendorder"], debug=False, ) theCoherer.setreftc(cleaned_nonosreferencetc) ( coherencefreqstart, dummy, coherencefreqstep, coherencefreqaxissize, ) = theCoherer.getaxisinfo() if optiondict["textio"]: nativecoherenceshape = (xsize, coherencefreqaxissize) else: if fileiscifti: nativecoherenceshape = (1, 1, 1, coherencefreqaxissize, numspatiallocs) else: nativecoherenceshape = (xsize, ysize, numslices, coherencefreqaxissize) internalvalidcoherenceshape = (numvalidspatiallocs, coherencefreqaxissize) internalcoherenceshape = (numspatiallocs, coherencefreqaxissize) # now allocate the arrays needed for the coherence calculation if optiondict["sharedmem"]: coherencefunc, dummy, dummy = allocshared(internalvalidcoherenceshape, rt_outfloatset) coherencepeakval, dummy, dummy = allocshared(numvalidspatiallocs, rt_outfloatset) coherencepeakfreq, dummy, dummy = allocshared(numvalidspatiallocs, rt_outfloatset) else: coherencefunc = np.zeros(internalvalidcoherenceshape, dtype=rt_outfloattype) coherencepeakval, dummy, dummy = allocshared(numvalidspatiallocs, rt_outfloatset) coherencepeakfreq = np.zeros(numvalidspatiallocs, dtype=rt_outfloattype) coherencepass_func = addmemprofiling( tide_calccoherence.coherencepass, optiondict["memprofile"], "before coherencepass", ) voxelsprocessed_coherence = coherencepass_func( fmri_data_valid, theCoherer, coherencefunc, coherencepeakval, coherencepeakfreq, reportstep, alt=True, showprogressbar=optiondict["showprogressbar"], chunksize=optiondict["mp_chunksize"], nprocs=1, alwaysmultiproc=False, rt_floatset=rt_floatset, rt_floattype=rt_floattype, ) # save the results of the calculations outcoherencearray = np.zeros(internalcoherenceshape, dtype=rt_floattype) outcoherencearray[validvoxels, :] = coherencefunc[:, :] theheader = copy.deepcopy(nim_hdr) theheader["toffset"] = coherencefreqstart theheader["pixdim"][4] = coherencefreqstep if optiondict["textio"]: tide_io.writenpvecs( outcoherencearray.reshape(nativecoherenceshape), f"{outputname}_coherence.txt", ) else: if optiondict["bidsoutput"]: savename = f"{outputname}_desc-coherence_info" else: savename = f"{outputname}_coherence" if fileiscifti: timeindex = theheader["dim"][0] - 1 spaceindex = theheader["dim"][0] theheader["dim"][timeindex] = coherencefreqaxissize theheader["dim"][spaceindex] = numspatiallocs tide_io.savetocifti( outcoherencearray, cifti_hdr, theheader, savename, isseries=True, names=["coherence"], ) else: theheader["dim"][0] = 3 theheader["dim"][4] = coherencefreqaxissize tide_io.savetonifti( outcoherencearray.reshape(nativecoherenceshape), theheader, savename ) del coherencefunc del outcoherencearray TimingLGR.info( "Coherence calculation end", { "message2": voxelsprocessed_coherence, "message3": "voxels", }, ) # Post refinement step 0 - Wiener deconvolution if optiondict["dodeconv"]: TimingLGR.info("Wiener deconvolution start") LGR.info("\n\nWiener deconvolution") reportstep = 1000 # now allocate the arrays needed for Wiener deconvolution if optiondict["sharedmem"]: wienerdeconv, dummy, dummy = allocshared(internalvalidspaceshape, rt_outfloatset) wpeak, dummy, dummy = allocshared(internalvalidspaceshape, rt_outfloatset) else: wienerdeconv = np.zeros(internalvalidspaceshape, dtype=rt_outfloattype) wpeak = np.zeros(internalvalidspaceshape, dtype=rt_outfloattype) wienerpass_func = addmemprofiling( tide_wiener.wienerpass, optiondict["memprofile"], "before wienerpass", ) voxelsprocessed_wiener = wienerpass_func( numspatiallocs, reportstep, fmri_data_valid, threshval, optiondict, wienerdeconv, wpeak, resampref_y, rt_floatset=rt_floatset, rt_floattype=rt_floattype, ) TimingLGR.info( "Wiener deconvolution end", { "message2": voxelsprocessed_wiener, "message3": "voxels", }, ) # Post refinement step 1 - GLM fitting to remove moving signal if optiondict["doglmfilt"]: TimingLGR.info("GLM filtering start") LGR.info("\n\nGLM filtering") reportstep = 1000 if (optiondict["gausssigma"] > 0.0) or (optiondict["glmsourcefile"] is not None): if optiondict["glmsourcefile"] is not None: LGR.info(f"reading in {optiondict['glmsourcefile']} for GLM filter, please wait") if optiondict["textio"]: nim_data = tide_io.readvecs(optiondict["glmsourcefile"]) else: nim, nim_data, nim_hdr, thedims, thesizes = tide_io.readfromnifti( optiondict["glmsourcefile"] ) else: LGR.info(f"rereading {fmrifilename} for GLM filter, please wait") if optiondict["textio"]: nim_data = tide_io.readvecs(fmrifilename) else: nim, nim_data, nim_hdr, thedims, thesizes = tide_io.readfromnifti(fmrifilename) """meanvalue = np.mean( nim_data.reshape((numspatiallocs, timepoints))[:, validstart : validend + 1], axis=1, )""" fmri_data_valid = ( nim_data.reshape((numspatiallocs, timepoints))[:, validstart : validend + 1] )[validvoxels, :] + 0.0 # move fmri_data_valid into shared memory if optiondict["sharedmem"]: LGR.info("moving fmri data to shared memory") TimingLGR.info("Start moving fmri_data to shared memory") numpy2shared_func = addmemprofiling( numpy2shared, optiondict["memprofile"], "before movetoshared (glm)", ) fmri_data_valid = numpy2shared_func(fmri_data_valid, rt_floatset) TimingLGR.info("End moving fmri_data to shared memory") del nim_data # now allocate the arrays needed for GLM filtering if optiondict["sharedmem"]: glmmean, dummy, dummy = allocshared(internalvalidspaceshape, rt_outfloatset) rvalue, dummy, dummy = allocshared(internalvalidspaceshape, rt_outfloatset) r2value, dummy, dummy = allocshared(internalvalidspaceshape, rt_outfloatset) fitNorm, dummy, dummy = allocshared(internalvalidspaceshape, rt_outfloatset) fitcoeff, dummy, dummy = allocshared(internalvalidspaceshape, rt_outfloatset) movingsignal, dummy, dummy = allocshared(internalvalidfmrishape, rt_outfloatset) filtereddata, dummy, dummy = allocshared(internalvalidfmrishape, rt_outfloatset) else: glmmean = np.zeros(internalvalidspaceshape, dtype=rt_outfloattype) rvalue = np.zeros(internalvalidspaceshape, dtype=rt_outfloattype) r2value = np.zeros(internalvalidspaceshape, dtype=rt_outfloattype) fitNorm = np.zeros(internalvalidspaceshape, dtype=rt_outfloattype) fitcoeff =
np.zeros(internalvalidspaceshape, dtype=rt_outfloattype)
numpy.zeros
import os import scipy.io as io from pyimzml.ImzMLParser import ImzMLParser import numpy as np import psutil def convert_imaging_file_to_mat(imzml_filename, mat_filename, Z=0): p = ImzMLParser(imzml_filename) data={} amount_of_points_in_image=0 zs=[] RAM_available=psutil.virtual_memory().available print("Set the only one Z-coordinate to be processed\nSkip (press Enter) to use the default value") while amount_of_points_in_image==0: try: Z=int(input("Enter Z-coordinate: ")) except ValueError: print('Default Z=0 will be used. Enter only digits.') for i, (x,y,z) in enumerate(p.coordinates): if z==Z: amount_of_points_in_image+=1 if not (z in zs): zs.append(z) if amount_of_points_in_image==0: print("There is no such Z-coordinate in your MS image.\nAvailable Z are:") print(*zs, sep=' ') print("Try again or use Ctrl+C to terminate the process") #amount_of_points_in_image=len(p.intensityLengths) data['peaks'] = np.empty((amount_of_points_in_image,), dtype=np.object) data['R'] = np.ones(amount_of_points_in_image,dtype=np.int16) data['X'] =
np.zeros(amount_of_points_in_image,dtype=np.int16)
numpy.zeros
import networkx as nx import numpy as np import math from tqdm import tqdm import numba from numba.experimental import jitclass from numba import jit steadyspec = [ ('adj_matrix',numba.float64[:,:]), ('graph_size',numba.int32), ('background_field',numba.float64[:]), ('fixed_point_iter',numba.int32), ('fp_tol_fac',numba.float64), ] @jitclass(steadyspec) class steady_state(object): """ A class to calculate steady state of magnetisation. ... Attributes ---------- adj_matrix : numpy.array Adjacency matrix of the graph fixed_point_iter : float, optional Max number of iterations used in self-consistency equations (default 1e5) fp_tol_fac : float, optional Tolerance factor in stoppping condition for consistency equations (default 1e-6) """ def __init__(self,adj_matrix,fixed_point_iter=10000,fp_tol_fac=1e-6): self.adj_matrix = adj_matrix self.graph_size = self.adj_matrix.shape[0] self.fixed_point_iter=fixed_point_iter self.fp_tol_fac=fp_tol_fac def single_mag(self,i,m,beta,field): """ Calculates magnetisation for a single node. Subfunction of magnetisation function. Parameters ------------ i : int Index of the node in question. m : numpy.array magnetisation array for all nodes. beta: float Interaction strength field: numpy.array Array of agent's control field for each node """ gamma=1.0 spin_field = self.adj_matrix[i].dot(m) term = math.tanh(beta*(spin_field+field[i])) return (1.0-gamma)*m[i] + gamma*term def magnetisation(self,mag,beta,field): """ Calculates magnetisation for the whole system Parameters ------------ m : numpy.array magnetisation array for all nodes. beta: float Interaction strength field: numpy.array Array of agent's control field for each node """ m_old = mag m_new = np.zeros(len(m_old)) for i in range(self.graph_size): m_new[i]=self.single_mag(i,m_old,beta,field) return m_new def aitken_method(self,mag0,beta,field): """ Solves self-consistency equation by following Aitken method* for accelerating convergence. * Numerical Analysis Richard L.Burden 9th Edition, p. 105 Parameters ------------ m0 : numpy.array Initial guess of magnetisation for all nodes. beta: float Interaction strength field: numpy.array Array of agent's control field for each node """ mag1=self.magnetisation(mag0,beta,field) for i in range(self.fixed_point_iter): mag2=self.magnetisation(mag1,beta,field) if ((mag0+mag2-2*mag1)!=0).all(): mag_d = mag0 - (mag1-mag0)**2/(mag0+mag2-2*mag1) else: mag_d = mag1 if abs(np.sum(mag0)-np.sum(mag_d))<self.fp_tol_fac: break mag0=mag1 mag1=mag2 if i+1==self.fixed_point_iter: mag_d = mag1 return mag_d @jit(nopython=True) def isclose(a,b): return abs(a-b) <= max(1e-9 * max(abs(a), abs(b)), 1e-5) @jit(nopython=True) def susc_grad(beta,mag,adj_matrix): """ Calculates mean field susceptibility. Parameters ------------ beta: float Interaction strength. mag : numpy.array Magnetisation array for all nodes. adj_matrix : numpy.array Adjacency matrix of the network. """ D=np.identity(mag.shape[0])*np.array([(1-i**2) for i in mag]) inv = np.linalg.inv(np.identity(mag.shape[0])-beta*D.dot(adj_matrix)) susc_matrix = beta*inv.dot(D) gradient = np.sum(susc_matrix,axis=1).flatten() return gradient def mag_grad(beta,mag,adj_matrix): """ Calculates gradient of the magnetisation with respect to change in the external control field. Nominally mean field susceptibility. Parameters ------------ beta : float Interaction strength. mag : numpy.array Magnetisation array for all nodes. adj_matrix : numpy.array Adjacency matrix of the network. """ if np.all([isclose(i,j) for i,j in zip(mag,np.ones(mag.shape[0]))]): return np.zeros(len(mag)) else: return susc_grad(beta,mag,adj_matrix) @jit(nopython=True) def projection_simplex_sort(v, z): """ Bounds control field to agent's magnetic field budget. ... Parameters ---------- v : numpy.array Control field allocation of the agent. z : float Magnetic field budget. """ n_features = v.shape[0] v = np.abs(v) u = np.sort(v)[::-1] cssv = np.cumsum(u) - z ind = np.arange(n_features) + 1 cond = u - cssv / ind > 0 rho = ind[cond][-1] theta = cssv[cond][-1] / float(rho) w = np.maximum(v - theta, 0) return w @jit(nopython=True) def lr_1(x,iim_iter=5000): return np.exp(-x/(0.1*iim_iter)) @jit(nopython=True) def lr_2(x,iim_iter=5000): return np.exp(-x/(0.1*iim_iter)) @jit(nopython=True) def adam(grad,it,typ,ms,vs,iim_iter,beta1=0.9,beta2=0.999,eps=0.1): """ Adam optimiser. Parameters ------------ grad : numpy.array Gradient array for all nodes. it : int Iteration index. typ : string 'pos' if calculating for positive agent; 'neg' if calculating for negative agent. ms : numpy.array Momentum array with linear gradients vs : numpy.array Momentum array with squared gradients iim_iter : int Max number of iteration in optimisation algorithm. beta1 : float Default 0.9 beta2 : float Default 0.999 eps : float Default 0.1 """ if typ=='pos': lr=lr_1(it) elif typ=='neg': lr=lr_2(it) ms_new = beta1 * ms + (1.0 - beta1) * grad vs_new = beta2 * vs + (1.0 - beta2) * grad**2 mhat = ms_new / (1.0 - beta1**(it+1)) vhat = vs_new / (1.0 - beta2**(it+1)) ms = ms_new vs = vs_new change = lr* mhat/(
np.sqrt(vhat)
numpy.sqrt
""" @author: <NAME> Animation for understanding rotating phasors, negative frequency in DSP concepts Add, remove, or modify signals in rotating_phasors Script will animate the individual phasors and the combined output in both rectangular and polar plots Press any keyboard key to pause the animation """ # @todo # reorganize the object oriented scheme import matplotlib.pyplot as plt import numpy as np import matplotlib.animation as animation import cmath as cm import matplotlib.patheffects as pe from scipy.fftpack import fft, fftshift, fftfreq, ifft import math import custom_tools.fftplot as fftplot import custom_tools.list_accessories as list_acs import custom_tools.handyfuncs as hf import custom_tools.dsp_accessories as dsp_acs import custom_tools.fft_accessories as fft_acs import helper_functions as hlpf import scipy.signal as sig import csv import os from datetime import datetime pi = np.pi def wrap_around(x, count): return x % count # datalog vars curr_date = datetime.now().replace(microsecond=0) curr_dir = os.path.abspath(os.getcwd()) csv_file_name = str(curr_date).replace(':', '') + '_debug_datalog.csv' results_file_path = os.path.join(curr_dir, csv_file_name) # ********************* choose operating mode here ********************* # direct_phasor: Enter time-domain signals (such as real cosine, complex cosine) in rotating_phasors. # See predefined examples below. # FT_mode: Enter time domain samples (real or complex) in input_vector and the polar plot will # show reconstructed time domain samples # FIR_mode: Enter FIR filter coefficients h[k] or bk in input vector. polar plot will show how frequency # response of FIR filter is made available_op_modes = ['direct_phasor', 'FT_mode', 'FIR_mode'] op_mode = 'direct_phasor' Fs = 80e3 # 200kHz (Sample Rate) Ts = 1 / Fs Ts_sci, Ts_pow10 = hf.return_sci_notation(Ts) # num_sampls = Fs # number of samples num_sampls = 2 ** 12 # number of samples # x_t = np.arange(0, num_sampls * Ts, Ts) # x_t_1 = np.arange(0, num_sampls * Ts, Ts) x_t = np.linspace(0, num_sampls * Ts, num_sampls, endpoint=False) n = x_t # list of phasor arrays that get passed into animation function rotating_phasors = [] pause = False # Select if you want to display the sine as a continuous wave # True = continuous (not able to zoom in x-direction) # False = Non-continuous (able to zoom) continuous = False # if set True, all phasors in rotating_phasors will spin with respect to center of polar plot # if False, all phasors will spin with respect to the end of the previous phasor end point (true vector addition) spin_orig_center = False double_sided_FFT = True fft_mag_in_log = False # turning coherency on will drift the rect displays, but produces clean FFTs # This happens when Fs/fund is not an integer since the coherency works only for whole window length (num_sampls), # and rect plot shows only one cycle coherency = True debug = False # this data is from noise cancellation filter # input_vector = np.array([0.13083826, 0.12517881, 0.11899678, 0.11231907, 0.10508106, # 0.09738001, 0.08925131, 0.08073239, 0.07186244, 0.06268219, # 0.05323363, 0.04355975, 0.03370433, 0.02371163, 0.01362624, # 0.00349278, -0.00664429, -0.01674086, -0.0267534, -0.03663912]) input_vector = np.array([1, -1]) N = len(input_vector) max_mag =
np.absolute(input_vector)
numpy.absolute
import warnings from typing import Any, List, Set, Tuple, Union import numpy as np from xarray import Dataset from .typing import ArrayLike, DType def check_array_like( a: Any, dtype: Union[None, DType, Set[DType]] = None, kind: Union[None, str, Set[str]] = None, ndim: Union[None, int, Set[int]] = None, ) -> None: """Raise an error if an array does not match given attributes (dtype, kind, dimensions). Parameters ---------- a : Any Array of any type. dtype : Union[None, DType, Set[DType]], optional The dtype the array must have, by default None (don't check) If a set, then the array must have one of the dtypes in the set. kind : Union[None, str, Set[str]], optional The dtype kind the array must be, by default None (don't check). If a set, then the array must be one of the kinds in the set. ndim : Union[None, int, Set[int]], optional Number of dimensions the array must have, by default None (don't check) If a set, then the array must have one of the number of dimensions in the set. Raises ------ TypeError * If `a` does not have the attibutes `dtype`, `shape`, and `ndim`. * If `a` does not have a dtype that matches `dtype`. * If `a` is not a dtype kind that matches `kind`. ValueError If the number of dimensions of `a` does not match `ndim`. """ array_attrs = "ndim", "dtype", "shape" for k in array_attrs: if not hasattr(a, k): raise TypeError(f"Not an array. Missing attribute '{k}'") if dtype is not None: if isinstance(dtype, set): dtype = {np.dtype(t) for t in dtype} if a.dtype not in dtype: raise TypeError( f"Array dtype ({a.dtype}) does not match one of {dtype}" ) elif a.dtype != np.dtype(dtype): raise TypeError(f"Array dtype ({a.dtype}) does not match {np.dtype(dtype)}") if kind is not None: if isinstance(kind, set): if a.dtype.kind not in kind: raise TypeError( f"Array dtype kind ({a.dtype.kind}) does not match one of {kind}" ) elif a.dtype.kind != kind: raise TypeError(f"Array dtype kind ({a.dtype.kind}) does not match {kind}") if ndim is not None: if isinstance(ndim, set): if a.ndim not in ndim: raise ValueError( f"Number of dimensions ({a.ndim}) does not match one of {ndim}" ) elif ndim != a.ndim: raise ValueError(f"Number of dimensions ({a.ndim}) does not match {ndim}") def encode_array(x: ArrayLike) -> Tuple[ArrayLike, List[Any]]: """Encode array values as integers indexing unique values. The codes created for each unique element in the array correspond to order of appearance, not the natural sort order for the array dtype. Examples -------- >>> encode_array(['c', 'a', 'a', 'b']) (array([0, 1, 1, 2]), array(['c', 'a', 'b'], dtype='<U1')) Parameters ---------- x : (M,) array-like Array of elements to encode of any type. Returns ------- indexes : (M,) ndarray Encoded values as integer indices. values : ndarray Unique values in original array in order of appearance. """ # argsort not implemented in dask: https://github.com/dask/dask/issues/4368 names, index, inverse = np.unique(x, return_index=True, return_inverse=True) index = np.argsort(index) rank =
np.empty_like(index)
numpy.empty_like
""" Functions for algebraic fitting """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six import numpy as np MODE_DICT_ELLIPSE = {'circle': 'xy', 'ellipse_aligned': '0', 'ellipse': ''} MODE_DICT_ELLIPSOID = {'sphere': 'xyz', 'prolate': 'xy', 'oblate': 'xy', 'ellipsoid': '', 'ellipsoid_aligned': '0', 'prolate_aligned': '0xy', 'oblate_aligned': '0xy'} def fit_ellipse(coords, mode=''): """ Fits an ellipse to datapoints using an algebraic method. This method is different from least squares minimization of the distnace between each datapoint and the fitted ellipse (so-called geometrical approach). For circles, this makes no difference. The higher the aspect ratio of the ellipse, the worse the approximation gets. Parameters ---------- coords : numpy array of floats array of shape (N, 2) containing datapoints mode : {'circle', 'ellipse', 'ellipse_aligned'} 'ellipse' or None fits an arbitrary ellipse (default) 'circle' fits a circle 'ellipse_aligned' fits an ellipse with its axes aligned along [x y] axes Returns ------- center, radii, angle References ---------- .. [1] <NAME> (2010) Multi-dimensional ellipsoidal fitting. """ if coords.shape[0] != 2: raise ValueError('Input data must have two columns!') if mode in MODE_DICT_ELLIPSE: mode = MODE_DICT_ELLIPSE[mode] x = coords[0, :, np.newaxis] y = coords[1, :, np.newaxis] if mode == '': D = np.hstack((x**2 - y**2, 2*x*y, 2*x, 2*y, np.ones_like(x))) elif mode == '0': D = np.hstack((x**2 - y**2, 2*x, 2*y, np.ones_like(x))) elif mode == 'xy': D = np.hstack((2*x, 2*y, np.ones_like(x))) d2 = x**2 + y**2 # the RHS of the llsq problem (y's) u = np.linalg.solve(np.dot(D.T, D), (np.dot(D.T, d2)))[:, 0] v = np.empty((6), dtype=u.dtype) if mode == '': v[0] = u[0] - 1 v[1] = -u[0] - 1 v[2:] = u[1:] elif mode == '0': v[0] = u[0] - 1 v[1] = -u[0] - 1 v[2] = 0 v[3:] = u[1:] elif mode == 'xy': v[:2] = -1 v[2] = 0 v[3:] = u A = np.array([[v[0], v[2], v[3]], [v[2], v[1], v[4]], [v[3], v[4], v[5]]]) # find the center of the ellipse center = -np.linalg.solve(A[:2, :2], v[3:5]) # translate to the center T = np.identity(3, dtype=A.dtype) T[2, :2] = center R = np.dot(np.dot(T, A), T.T) # solve the eigenproblem evals, evecs = np.linalg.eig(R[:2, :2] / -R[2, 2]) radius = (np.sqrt(1 / np.abs(evals)) * np.sign(evals)) if mode == '': new_order = np.argmax(np.abs(evecs), 1) radius = radius[new_order] evecs = evecs[:, new_order] r11, r12, r21, r22 = evecs.T.flat angle = np.arctan(-r12/r11) else: angle = 0 return radius, center, angle def fit_ellipsoid(coords, mode='', return_mode=''): """ Fit an ellipsoid/sphere/paraboloid/hyperboloid to a set of xyz data points: Parameters ---------- coords : ndarray Cartesian coordinates, 3 x n array mode : {'', 'xy', 'xz', 'xyz', '0', '0xy', '0xz'} t '' or None fits an arbitrary ellipsoid (default) 'xy' fits a spheroid with x- and y- radii equal 'xz' fits a spheroid with x- and z- radii equal 'xyz' fits a sphere '0' fits an ellipsoid with its axes aligned along [x y z] axes '0xy' the same with x- and y- radii equal '0xz' the same with x- and z- radii equal return_mode : {'', 'euler', 'skew'} '' returns the directions of the radii as 3x3 array 'euler' returns euler angles 'skew' returns skew in xy Returns ------- radius : ndarray ellipsoid radii [zr, yr, xr] center : ndarray ellipsoid center coordinates [zc, yc, xc] value : return_mode == '': the radii directions as columns of the 3x3 matrix return_mode == 'euler': euler angles, applied in x, y, z order [z, y, x] the y value is the angle with the z axis (tilt) the z value is the angle around the z axis (rotation) the x value is the 3rd rotation, should be around 0 return_mode == 'skew': skew in y, x order Notes ----- Author: <NAME>, Oculus VR Date: September, 2015 ported to python by <NAME>, December 2015 added euler angles and skew by <NAME> """ if coords.shape[0] != 3: raise ValueError('Input data must have three columns!') if mode in MODE_DICT_ELLIPSOID: mode = MODE_DICT_ELLIPSOID[mode] if return_mode == 'skew' and 'xy' not in mode: raise ValueError('Cannot return skew when x, y radii are not equal') if return_mode == 'euler': raise ValueError('Euler mode is not implemented fully') z = coords[0, :, np.newaxis] y = coords[1, :, np.newaxis] x = coords[2, :, np.newaxis] # fit ellipsoid in the form Ax^2 + By^2 + Cz^2 + 2Dxy + 2Exz + 2Fyz + 2Gx + # 2Hy + 2Iz + J = 0 and A + B + C = 3 constraint removing one extra param if mode == '': D = np.hstack((x**2 + y**2 - 2 * z**2, x**2 + z**2 - 2 * y**2, 2 * x * y, 2 * x * z, 2 * y * z, 2 * x, 2 * y, 2 * z, np.ones_like(x))) elif mode == 'xy': D = np.hstack((x**2 + y**2 - 2 * z**2, 2 * x * y, 2 * x * z, 2 * y * z, 2 * x, 2 * y, 2 * z, np.ones_like(x))) elif mode == 'xz': D = np.hstack((x**2 + z**2 - 2 * y**2, 2 * x * y, 2 * x * z, 2 * y * z, 2 * x, 2 * y, 2 * z,
np.ones_like(x)
numpy.ones_like
# -*- coding: utf-8 -*- ''' Copyright (c) 2021, MIT Interactive Robotics Group, PI <NAME>. Authors: <NAME>, <NAME>, <NAME>, <NAME> All rights reserved. ''' import casadi as cas import numpy as np from casadi import MX, mtimes, vertcat, sum2, sqrt, jacobian from casadi import reshape as cas_reshape from scipy import interpolate import matplotlib.pyplot as plt import hr_planning from hr_planning.visualization.utils_visualization import print_FAIL from hr_planning.utils_interp import waypts_2_pwsplines use_human_ui_bound = True # use_human_ui_bound = False class HumanRefTracker: def __init__(self, pH_view_pH_pR_min_sep_dist, pH_min, pH_max, vH_min, vH_max, uH_min, uH_max, w_ref, w_u, w_move_to_pR, w_avoid_pR, dt, mass): """ Class for an MPC to compute human trajectory in continuous state space. n_pH = dimensionality of human position. n_vH = dimensionality of human velocity. n_uH = dimensionality of human control. Parameters ---------- pH_view_pH_pR_min_sep_dist: float, from the human's view, the min separation distance that the human wants to keep from the robot. The boundary conditions: pH_max: (n_pH,) np vector = max human position. pH_min: (n_pH,) np vector = min human position. vH_max: (n_pH,) np vector = max human velocity. vH_min: (n_pH,) np vector = min human velocity. uH_max: (n_pH,) np vector = max human control. uH_min: (n_pH,) np vector = min human control. """ self.pH_view_pH_pR_min_sep_dist = pH_view_pH_pR_min_sep_dist self.mass = mass assert mass > 1e-5 self.feas_tol = 1e-6 self.pH_min = pH_min self.pH_max = pH_max self.vH_min = vH_min self.vH_max = vH_max self.uH_min = uH_min self.uH_max = uH_max self.w_ref = w_ref self.w_move_to_pR = w_move_to_pR self.w_avoid_pR = w_avoid_pR self.w_u = w_u # self.dt = dt of MPC != dt_ref = dt of ref traj. # We will use piecewise cubics to interlate the ref traj. self.dt = dt self.n_pH = self.pH_min.shape[0] self.n_vH = self.vH_min.shape[0] self.n_uH = self.uH_min.shape[0] # We want the nx0 array, so that tolist works well assert self.n_pH == self.n_vH assert self.pH_min.shape == (self.n_pH,) assert self.pH_max.shape == (self.n_pH,) assert self.vH_min.shape == (self.n_vH,) assert self.vH_max.shape == (self.n_vH,) assert self.uH_min.shape == (self.n_uH,) assert self.uH_max.shape == (self.n_uH,) assert self.w_ref.shape == (self.n_pH, self.n_pH) assert self.w_move_to_pR.shape == (self.n_pH, self.n_pH) assert self.w_avoid_pR.shape == (self.n_pH, self.n_pH) assert self.w_u.shape == (self.n_uH, self.n_uH) def check_shapes(self, pHs_1_T=None, vHs_1_T=None, uHs_1_T=None, pH_0=None, vH_0=None, horizon=None): """Ensure all shapes are correct.""" if pHs_1_T is not None: assert pHs_1_T.shape == (horizon, self.n_pH) if vHs_1_T is not None: assert vHs_1_T.shape == (horizon, self.n_vH) if uHs_1_T is not None: assert uHs_1_T.shape == (horizon, self.n_uH) if pH_0 is not None: assert pH_0.shape == (self.n_pH, 1) if vH_0 is not None: assert vH_0.shape == (self.n_vH, 1) def solve_mpc(self, pH_mode, pHs_0_T_ref, dt_ref, vH_0, pR_0=None, plot=False): """ Solve MPC to find a trajectory for the human. Parameters ---------- pH_mode: str pH_indep_pR: H-Indep-R condition in the paper. pH_avoid_pR: H-Away-R condition in the paper. pH_move_to_pR: H-To-R condition in the paper. pHs_0_T_ref: n_time_stepsxn_pH np array, the reference trajectory. In our work, this comes from a human MDP policy rollout. dt_ref: the dt of pHs_0_T_ref. vH_0: n_vHx1 np array = initial human velocity. pR_0: n_pRx1 np array = initial robot position. plot: bool, whether to plot or not (for debugging). Returns ---------- pHs_1_T_opt: horizon x n_pH, human positions computed by the MPC. vHs_1_T_opt: horizon x n_vH, human velocities computed by the MPC. uHs_1_T_opt: horizon x n_uH, controls computed by the MPC. """ assert pH_mode in ["pH_indep_pR", "pH_avoid_pR", "pH_move_to_pR"] if pH_mode in ["pH_avoid_pR", "pH_move_to_pR"]: assert pR_0 is not None # pR, pH have to be in the same space pH_0 = pHs_0_T_ref[0, :] pR_0_sqz = pR_0.squeeze() assert pR_0_sqz.shape == pH_0.shape pw_spliness, dts_pw = waypts_2_pwsplines( wp_traj=pHs_0_T_ref, dt=dt_ref, degree=3, plot=False) pH_0 = np.reshape(pHs_0_T_ref[0, :], (self.n_pH, 1)) assert vH_0.shape == (self.n_vH, 1) for i in range(self.n_pH): tmp = interpolate.splev(x=[0], tck=pw_spliness[i], ext=2) assert abs(tmp[0] - pH_0[i, 0]) < 1e-5 end_time_pwc = dts_pw[-1] # Note: horizon + 1 = the length of traj including x0. horizon = int(np.ceil(end_time_pwc / self.dt)) assert horizon * self.dt >= end_time_pwc # Decision variables pHs_1_T = MX.sym("pHs_1_T", (horizon, self.n_pH)) vHs_1_T = MX.sym("vHs_1_T", (horizon, self.n_vH)) uHs_1_T = MX.sym("uHs_1_T", (horizon, self.n_uH)) # Constraints g = [] lbg = [] ubg = [] g_name = [] # We make terminal goal as in the objective, rather than a constraint. terminal_goal_cst = False g_bd, lbg_bd, ubg_bd, g_names_bd = self.generate_boundary_csts_bounds( pHs_1_T, vHs_1_T, uHs_1_T, horizon, pw_spliness, terminal_goal_cst=terminal_goal_cst) g = vertcat(g, g_bd) lbg += lbg_bd ubg += ubg_bd g_name += g_names_bd # XXX: Collision avoidance with obstacles in the env # is handled by the MDP policy. g_dyn, lbg_dyn, ubg_dyn, g_names_dyn = self.generate_dyn_csts( pHs_1_T, vHs_1_T, uHs_1_T, pH_0, vH_0, horizon) g = vertcat(g, g_dyn) lbg += lbg_dyn ubg += ubg_dyn g_name += g_names_dyn assert g.shape[0] == len(lbg) == len(ubg) == len(g_name) track_traj = True pTarget = None pAvoid = None if pH_mode == "pH_indep_pR": track_traj = True pTarget = None pAvoid = None elif pH_mode == "pH_move_to_pR": track_traj = True pTarget = pR_0 pAvoid = None elif pH_mode == "pH_avoid_pR": track_traj = True pTarget = None pAvoid = pR_0 else: raise ValueError() cost = self.generate_cost_function( pHs_1_T=pHs_1_T, uHs_1_T=uHs_1_T, horizon=horizon, pw_spliness=pw_spliness, track_traj=track_traj, pTarget=pTarget, pAvoid=pAvoid) opt_vars = vertcat( pHs_1_T.reshape((-1, 1)), vHs_1_T.reshape((-1, 1)), uHs_1_T.reshape((-1, 1))) prob = {'f': cost, 'x': opt_vars, 'g': g} if True: opt = {'error_on_fail': False, 'ipopt': { 'print_level': 0, # 'hessian_approximation': 'limited-memory', "max_iter": 400, "expect_infeasible_problem": "no", "acceptable_tol": 1e-4, "acceptable_constr_viol_tol": 1e-5, "bound_frac": 0.5, "start_with_resto": "no", "required_infeasibility_reduction": 0.85, "acceptable_iter": 8}} # ipopt solver = cas.nlpsol('solver', 'ipopt', prob, opt) else: raise ValueError() # -------------------- # Solve end_time = dts_pw[-1] dts = np.linspace(0, end_time, num=horizon+1, endpoint=True) # (horizon + 1) x npH pHs_0_T_init = np.zeros((dts.shape[0], self.n_pH)) for i in range(self.n_pH): tmp = interpolate.splev(x=dts, tck=pw_spliness[i], ext=2) assert pHs_0_T_init[:, i].shape == tmp.shape pHs_0_T_init[:, i] = tmp pHs_1_T_init = pHs_0_T_init[1:, :] assert pHs_1_T_init.shape == pHs_1_T.shape pHs_0_T_minus_1_init = pHs_0_T_init[:-1, :] uHs_1_T_init = (pHs_1_T_init - pHs_0_T_minus_1_init) / self.dt assert uHs_1_T_init.shape == uHs_1_T.shape vHs_1_T_init = np.zeros((horizon, self.n_vH)) assert vHs_1_T_init.shape == vHs_1_T.shape opt_vars_init = vertcat( pHs_1_T_init.reshape((-1, 1)), vHs_1_T_init.reshape((-1, 1)), uHs_1_T_init.reshape((-1, 1))) assert opt_vars.shape == opt_vars_init.shape sol = solver(x0=opt_vars_init, lbg=lbg, ubg=ubg) x_opt = sol['x'] f_opt = sol['f'] print('f_opt = ', f_opt) g_res = np.array(sol["g"]).squeeze() feasible = True # This is not sufficient to determine feasibility, # since casadi gives out wrong feasibility values. if np.any(np.array(lbg) - self.feas_tol > g_res) or np.any( np.array(ubg) + self.feas_tol < g_res): feasible = False if not feasible: print_FAIL("Hmpc is not feasible") # Manually checking feasibility: # Get indices of the respective variables: c = 0 n_pHs_1_T = horizon * self.n_pH idx_pHs_1_T = np.arange(n_pHs_1_T) c += n_pHs_1_T n_vHs_1_T = horizon * self.n_vH idx_vHs_1_T = np.arange(c, c + n_vHs_1_T) c += n_vHs_1_T nH_us_1_T = horizon * self.n_uH idx_us_1_T = np.arange(c, c + nH_us_1_T) c += nH_us_1_T assert c == x_opt.shape[0] pHs_1_T_opt = np.array(cas_reshape(x_opt[idx_pHs_1_T], (horizon, self.n_pH))) assert pHs_1_T.shape == pHs_1_T_opt.shape vHs_1_T_opt = np.array(cas_reshape(x_opt[idx_vHs_1_T], (horizon, self.n_vH))) assert vHs_1_T.shape == vHs_1_T_opt.shape uHs_1_T_opt = np.array(cas_reshape(x_opt[idx_us_1_T], (horizon, self.n_uH))) assert uHs_1_T.shape == uHs_1_T_opt.shape # ui bound if use_human_ui_bound: for i in range(horizon - 1): ui = uHs_1_T_opt[i, :].T if (ui > self.uH_max).any() or (ui < self.uH_min).any(): print_FAIL("At i={}, ui={} is out of bound" .format(i, ui)) uT = uHs_1_T_opt[horizon-1, :].T # if (np.abs(uT) > 1e-5).any(): if (uT > self.uH_max).any() or (uT < self.uH_min).any(): print_FAIL("At i={}, ui={} is out of bound" .format(horizon-1, uT)) # pH bound for i in range(horizon): pH = pHs_1_T_opt[i, :].T if (pH > self.pH_max).any() or (pH < self.pH_min).any(): print_FAIL("At i={}, pH={} is out of bound" .format(i, pH)) # vH bound for i in range(horizon - 1): vHi = vHs_1_T_opt[i, :].T if (vHi > self.vH_max).any() or (vHi < self.vH_min).any(): print_FAIL("At i={}, vHi={} is out of bound" .format(i, vHi)) vHT = vHs_1_T_opt[horizon-1, :].T if (np.abs(vHT) > 1e-5).any(): print_FAIL("At i={}, vHi={} is out of bound" .format(horizon-1, vHT)) # pH ~ vH cur_pH = pH_0 next_pH = np.reshape(pHs_1_T_opt[0, :].T, (self.n_pH, 1)) next_vH = np.reshape(vHs_1_T_opt[0, :].T, (self.n_vH, 1)) assert next_pH.shape == cur_pH.shape == next_vH.shape tmp = next_pH - cur_pH - self.dt * next_vH if ((np.abs(tmp)) > 1e-5).any(): print_FAIL("At i={}, cur_pH={}, next_pH={}, next_vH={} out of bound" .format(0, cur_pH, next_pH, next_vH)) for i in range(horizon - 1): cur_pH = pHs_1_T_opt[i, :].T next_pH = pHs_1_T_opt[i+1, :].T next_vH = vHs_1_T_opt[i+1, :].T assert next_pH.shape == cur_pH.shape == next_vH.shape tmp = next_pH - cur_pH - self.dt * next_vH assert ((np.abs(tmp)) < 1e-5).all() # vH ~ uH cur_vH = vH_0 next_vH = np.reshape(vHs_1_T_opt[0, :].T, (self.n_vH, 1)) next_uH = np.reshape(uHs_1_T_opt[0, :].T, (self.n_uH, 1)) assert next_vH.shape == cur_vH.shape == next_uH.shape tmp = next_vH - cur_vH - self.dt * next_uH / self.mass assert ((np.abs(tmp)) < 1e-5).all() for i in range(horizon - 1): cur_vH = vHs_1_T_opt[i, :].T next_vH = vHs_1_T_opt[i+1, :].T next_uH = uHs_1_T_opt[i+1, :].T assert next_vH.shape == cur_vH.shape == next_uH.shape tmp = next_vH - cur_vH - self.dt * next_uH / self.mass assert ((np.abs(tmp)) < 1e-5).all() # -------------------- if plot: # (horizon + 1) x npH pHs_0_T_int = np.zeros((dts.shape[0], self.n_pH)) for i in range(self.n_pH): tmp = interpolate.splev(x=dts, tck=pw_spliness[i], ext=2) assert pHs_0_T_int[:, i].shape == tmp.shape pHs_0_T_int[:, i] = tmp ref = pHs_0_T_ref intp = pHs_0_T_int opt =
np.vstack((pH_0.T, pHs_1_T_opt))
numpy.vstack
""" Signals and Systems Function Module Copyright (c) March 2017, <NAME> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the FreeBSD Project. Notes ----- The primary purpose of this function library is to support the book Signals and Systems for Dummies. Beyond that it should be useful to anyone who wants to use Pylab for general signals and systems modeling and simulation. There is a good collection of digital communication simulation primitives included in the library. More enhancements are planned over time. The formatted docstrings for the library follow. Click index in the upper right to get an alphabetical listing of the library functions. In all of the example code given it is assumed that ssd has been imported into your workspace. See the examples below for import options. Examples -------- >>> import sk_dsp_comm.sigsys as ssd >>> # Commands then need to be prefixed with ssd., i.e., >>> ssd.tri(t,tau) >>> # A full import of the module, to avoid the the need to prefix with ssd, is: >>> from sk_dsp_comm.sigsys import * Function Catalog ---------------- """ from matplotlib import pylab import numpy as np from numpy import fft import matplotlib.pyplot as plt from scipy import signal from scipy.io import wavfile from logging import getLogger log = getLogger(__name__) import warnings def cic(m, k): """ A functional form implementation of a cascade of integrator comb (CIC) filters. Parameters ---------- m : Effective number of taps per section (typically the decimation factor). k : The number of CIC sections cascaded (larger K gives the filter a wider image rejection bandwidth). Returns ------- b : FIR filter coefficients for a simple direct form implementation using the filter() function. Notes ----- Commonly used in multirate signal processing digital down-converters and digital up-converters. A true CIC filter requires no multiplies, only add and subtract operations. The functional form created here is a simple FIR requiring real coefficient multiplies via filter(). <NAME> July 2013 """ if k == 1: b = np.ones(m) else: h = np.ones(m) b = h for i in range(1, k): b = signal.convolve(b, h) # cascade by convolving impulse responses # Make filter have unity gain at DC return b / np.sum(b) def ten_band_eq_filt(x,GdB,Q=3.5): """ Filter the input signal x with a ten-band equalizer having octave gain values in ndarray GdB. The signal x is filtered using octave-spaced peaking filters starting at 31.25 Hz and stopping at 16 kHz. The Q of each filter is 3.5, but can be changed. The sampling rate is assumed to be 44.1 kHz. Parameters ---------- x : ndarray of the input signal samples GdB : ndarray containing ten octave band gain values [G0dB,...,G9dB] Q : Quality factor vector for each of the NB peaking filters Returns ------- y : ndarray of output signal samples Examples -------- >>> # Test with white noise >>> w = randn(100000) >>> y = ten_band_eq_filt(x,GdB) >>> psd(y,2**10,44.1) """ fs = 44100.0 # Hz NB = len(GdB) if not NB == 10: raise ValueError("GdB length not equal to ten") Fc = 31.25*2**np.arange(NB) B = np.zeros((NB,3)) A = np.zeros((NB,3)) # Create matrix of cascade coefficients for k in range(NB): [b,a] = peaking(GdB[k],Fc[k],Q) B[k,:] = b A[k,:] = a # Pass signal x through the cascade of ten filters y = np.zeros(len(x)) for k in range(NB): if k == 0: y = signal.lfilter(B[k,:],A[k,:],x) else: y = signal.lfilter(B[k,:],A[k,:],y) return y def ten_band_eq_resp(GdB,Q=3.5): """ Create a frequency response magnitude plot in dB of a ten band equalizer using a semilogplot (semilogx()) type plot Parameters ---------- GdB : Gain vector for 10 peaking filters [G0,...,G9] Q : Quality factor for each peaking filter (default 3.5) Returns ------- Nothing : two plots are created Examples -------- >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm import sigsys as ss >>> ss.ten_band_eq_resp([0,10.0,0,0,-1,0,5,0,-4,0]) >>> plt.show() """ fs = 44100.0 # Hz NB = len(GdB) if not NB == 10: raise ValueError("GdB length not equal to ten") Fc = 31.25*2**np.arange(NB) B = np.zeros((NB,3)); A = np.zeros((NB,3)); # Create matrix of cascade coefficients for k in range(NB): b,a = peaking(GdB[k],Fc[k],Q,fs) B[k,:] = b A[k,:] = a # Create the cascade frequency response F = np.logspace(1,np.log10(20e3),1000) H = np.ones(len(F))*np.complex(1.0,0.0) for k in range(NB): w,Htemp = signal.freqz(B[k,:],A[k,:],2*np.pi*F/fs) H *= Htemp plt.figure(figsize=(6,4)) plt.subplot(211) plt.semilogx(F,20*np.log10(abs(H))) plt.axis([10, fs/2, -12, 12]) plt.grid() plt.title('Ten-Band Equalizer Frequency Response') plt.xlabel('Frequency (Hz)') plt.ylabel('Gain (dB)') plt.subplot(212) plt.stem(np.arange(NB),GdB,'b','bs') #plt.bar(np.arange(NB)-.1,GdB,0.2) plt.axis([0, NB-1, -12, 12]) plt.xlabel('Equalizer Band Number') plt.ylabel('Gain Set (dB)') plt.grid() def peaking(GdB, fc, Q=3.5, fs=44100.): """ A second-order peaking filter having GdB gain at fc and approximately and 0 dB otherwise. The filter coefficients returns correspond to a biquadratic system function containing five parameters. Parameters ---------- GdB : Lowpass gain in dB fc : Center frequency in Hz Q : Filter Q which is inversely proportional to bandwidth fs : Sampling frquency in Hz Returns ------- b : ndarray containing the numerator filter coefficients a : ndarray containing the denominator filter coefficients Examples -------- >>> import matplotlib.pyplot as plt >>> import numpy as np >>> from sk_dsp_comm.sigsys import peaking >>> from scipy import signal >>> b,a = peaking(2.0,500) >>> f = np.logspace(1,5,400) >>> w,H = signal.freqz(b,a,2*np.pi*f/44100) >>> plt.semilogx(f,20*np.log10(abs(H))) >>> plt.ylabel("Power Spectral Density (dB)") >>> plt.xlabel("Frequency (Hz)") >>> plt.show() >>> b,a = peaking(-5.0,500,4) >>> w,H = signal.freqz(b,a,2*np.pi*f/44100) >>> plt.semilogx(f,20*np.log10(abs(H))) >>> plt.ylabel("Power Spectral Density (dB)") >>> plt.xlabel("Frequency (Hz)") """ mu = 10**(GdB/20.) kq = 4/(1 + mu)*np.tan(2*np.pi*fc/fs/(2*Q)) Cpk = (1 + kq *mu)/(1 + kq) b1 = -2*np.cos(2*np.pi*fc/fs)/(1 + kq*mu) b2 = (1 - kq*mu)/(1 + kq*mu) a1 = -2*np.cos(2*np.pi*fc/fs)/(1 + kq) a2 = (1 - kq)/(1 + kq) b = Cpk*np.array([1, b1, b2]) a = np.array([1, a1, a2]) return b,a def ex6_2(n): """ Generate a triangle pulse as described in Example 6-2 of Chapter 6. You need to supply an index array n that covers at least [-2, 5]. The function returns the hard-coded signal of the example. Parameters ---------- n : time index ndarray covering at least -2 to +5. Returns ------- x : ndarray of signal samples in x Examples -------- >>> import numpy as np >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm import sigsys as ss >>> n = np.arange(-5,8) >>> x = ss.ex6_2(n) >>> plt.stem(n,x) # creates a stem plot of x vs n """ x = np.zeros(len(n)) for k, nn in enumerate(n): if nn >= -2 and nn <= 5: x[k] = 8 - nn return x def position_cd(Ka, out_type ='fb_exact'): """ CD sled position control case study of Chapter 18. The function returns the closed-loop and open-loop system function for a CD/DVD sled position control system. The loop amplifier gain is the only variable that may be changed. The returned system function can however be changed. Parameters ---------- Ka : loop amplifier gain, start with 50. out_type : 'open_loop' for open loop system function out_type : 'fb_approx' for closed-loop approximation out_type : 'fb_exact' for closed-loop exact Returns ------- b : numerator coefficient ndarray a : denominator coefficient ndarray Notes ----- With the exception of the loop amplifier gain, all other parameters are hard-coded from Case Study example. Examples -------- >>> b,a = position_cd(Ka,'fb_approx') >>> b,a = position_cd(Ka,'fb_exact') """ rs = 10/(2*np.pi) # Load b and a ndarrays with the coefficients if out_type.lower() == 'open_loop': b = np.array([Ka*4000*rs]) a = np.array([1,1275,31250,0]) elif out_type.lower() == 'fb_approx': b = np.array([3.2*Ka*rs]) a = np.array([1, 25, 3.2*Ka*rs]) elif out_type.lower() == 'fb_exact': b = np.array([4000*Ka*rs]) a = np.array([1, 1250+25, 25*1250, 4000*Ka*rs]) else: raise ValueError('out_type must be: open_loop, fb_approx, or fc_exact') return b, a def cruise_control(wn,zeta,T,vcruise,vmax,tf_mode='H'): """ Cruise control with PI controller and hill disturbance. This function returns various system function configurations for a the cruise control Case Study example found in the supplementary article. The plant model is obtained by the linearizing the equations of motion and the controller contains a proportional and integral gain term set via the closed-loop parameters natural frequency wn (rad/s) and damping zeta. Parameters ---------- wn : closed-loop natural frequency in rad/s, nominally 0.1 zeta : closed-loop damping factor, nominally 1.0 T : vehicle time constant, nominally 10 s vcruise : cruise velocity set point, nominally 75 mph vmax : maximum vehicle velocity, nominally 120 mph tf_mode : 'H', 'HE', 'HVW', or 'HED' controls the system function returned by the function 'H' : closed-loop system function V(s)/R(s) 'HE' : closed-loop system function E(s)/R(s) 'HVW' : closed-loop system function V(s)/W(s) 'HED' : closed-loop system function E(s)/D(s), where D is the hill disturbance input Returns ------- b : numerator coefficient ndarray a : denominator coefficient ndarray Examples -------- >>> # return the closed-loop system function output/input velocity >>> b,a = cruise_control(wn,zeta,T,vcruise,vmax,tf_mode='H') >>> # return the closed-loop system function loop error/hill disturbance >>> b,a = cruise_control(wn,zeta,T,vcruise,vmax,tf_mode='HED') """ tau = T/2.*vmax/vcruise g = 9.8 g *= 3*60**2/5280. # m/s to mph conversion Kp = T*(2*zeta*wn-1/tau)/vmax Ki = T*wn**2./vmax K = Kp*vmax/T wn = np.sqrt(K/(Kp/Ki)) zeta = (K + 1/tau)/(2*wn) log.info('wn = %s' % (wn)) log.info('zeta = %s' % (zeta)) a = np.array([1, 2*zeta*wn, wn**2]) if tf_mode == 'H': b = np.array([K, wn**2]) elif tf_mode == 'HE': b = np.array([1, 2*zeta*wn-K, 0.]) elif tf_mode == 'HVW': b = np.array([ 1, wn**2/K+1/tau, wn**2/(K*tau)]) b *= Kp elif tf_mode == 'HED': b = np.array([g, 0]) else: raise ValueError('tf_mode must be: H, HE, HVU, or HED') return b, a def splane(b,a,auto_scale=True,size=[-1,1,-1,1]): """ Create an s-plane pole-zero plot. As input the function uses the numerator and denominator s-domain system function coefficient ndarrays b and a respectively. Assumed to be stored in descending powers of s. Parameters ---------- b : numerator coefficient ndarray. a : denominator coefficient ndarray. auto_scale : True size : [xmin,xmax,ymin,ymax] plot scaling when scale = False Returns ------- (M,N) : tuple of zero and pole counts + plot window Notes ----- This function tries to identify repeated poles and zeros and will place the multiplicity number above and to the right of the pole or zero. The difficulty is setting the tolerance for this detection. Currently it is set at 1e-3 via the function signal.unique_roots. Examples -------- >>> # Here the plot is generated using auto_scale >>> splane(b,a) >>> # Here the plot is generated using manual scaling >>> splane(b,a,False,[-10,1,-10,10]) """ if (isinstance(a,int) or isinstance(a,float)): a = [a] if (isinstance(b,int) or isinstance(b,float)): b = [b] M = len(b) - 1 N = len(a) - 1 plt.figure(figsize=(5,5)) #plt.axis('equal') N_roots = np.array([0.0]) if M > 0: N_roots = np.roots(b) D_roots = np.array([0.0]) if N > 0: D_roots = np.roots(a) if auto_scale: size[0] = min(np.min(np.real(N_roots)),np.min(np.real(D_roots)))-0.5 size[1] = max(np.max(np.real(N_roots)),np.max(np.real(D_roots)))+0.5 size[1] = max(size[1],0.5) size[2] = min(np.min(np.imag(N_roots)),np.min(np.imag(D_roots)))-0.5 size[3] = max(np.max(np.imag(N_roots)),np.max(np.imag(D_roots)))+0.5 plt.plot([size[0],size[1]],[0,0],'k--') plt.plot([0,0],[size[2],size[3]],'r--') # Plot labels if multiplicity greater than 1 x_scale = size[1]-size[0] y_scale = size[3]-size[2] x_off = 0.03 y_off = 0.01 if M > 0: #N_roots = np.roots(b) N_uniq, N_mult=signal.unique_roots(N_roots,tol=1e-3, rtype='avg') plt.plot(np.real(N_uniq),np.imag(N_uniq),'ko',mfc='None',ms=8) idx_N_mult = np.nonzero(np.ravel(N_mult>1))[0] for k in range(len(idx_N_mult)): x_loc = np.real(N_uniq[idx_N_mult[k]]) + x_off*x_scale y_loc =np.imag(N_uniq[idx_N_mult[k]]) + y_off*y_scale plt.text(x_loc,y_loc,str(N_mult[idx_N_mult[k]]),ha='center',va='bottom',fontsize=10) if N > 0: #D_roots = np.roots(a) D_uniq, D_mult=signal.unique_roots(D_roots,tol=1e-3, rtype='avg') plt.plot(np.real(D_uniq),np.imag(D_uniq),'kx',ms=8) idx_D_mult = np.nonzero(np.ravel(D_mult>1))[0] for k in range(len(idx_D_mult)): x_loc = np.real(D_uniq[idx_D_mult[k]]) + x_off*x_scale y_loc =np.imag(D_uniq[idx_D_mult[k]]) + y_off*y_scale plt.text(x_loc,y_loc,str(D_mult[idx_D_mult[k]]),ha='center',va='bottom',fontsize=10) plt.xlabel('Real Part') plt.ylabel('Imaginary Part') plt.title('Pole-Zero Plot') #plt.grid() plt.axis(np.array(size)) return M,N def os_filter(x, h, N, mode=0): """ Overlap and save transform domain FIR filtering. This function implements the classical overlap and save method of transform domain filtering using a length P FIR filter. Parameters ---------- x : input signal to be filtered as an ndarray h : FIR filter coefficients as an ndarray of length P N : FFT size > P, typically a power of two mode : 0 or 1, when 1 returns a diagnostic matrix Returns ------- y : the filtered output as an ndarray y_mat : an ndarray whose rows are the individual overlap outputs. Notes ----- y_mat is used for diagnostics and to gain understanding of the algorithm. Examples -------- >>> from numpy import arange, cos, pi, ones >>> n = arange(0,100) >>> x = cos(2*pi*0.05*n) >>> b = ones(10) >>> y = os_filter(x,h,N) >>> # set mode = 1 >>> y, y_mat = os_filter(x,h,N,1) """ P = len(h) # zero pad start of x so first frame can recover first true samples of x x = np.hstack((np.zeros(P-1),x)) L = N - P + 1 Nx = len(x) Nframe = int(np.ceil(Nx/float(L))) # zero pad end of x to full number of frames needed x = np.hstack((x,np.zeros(Nframe*L-Nx))) y = np.zeros(int(Nframe*N)) # create an instrumentation matrix to observe the overlap and save behavior y_mat = np.zeros((Nframe,int(Nframe*N))) H = fft.fft(h,N) # begin the filtering operation for k in range(Nframe): xk = x[k*L:k*L+N] Xk = fft.fft(xk,N) Yk = H*Xk yk = np.real(fft.ifft(Yk)) # imag part should be zero y[k*L+P-1:k*L+N] = yk[P-1:] y_mat[k,k*L:k*L+N] = yk if mode == 1: return y[P-1:Nx], y_mat[:,P-1:Nx] else: return y[P-1:Nx] def oa_filter(x, h, N, mode=0): """ Overlap and add transform domain FIR filtering. This function implements the classical overlap and add method of transform domain filtering using a length P FIR filter. Parameters ---------- x : input signal to be filtered as an ndarray h : FIR filter coefficients as an ndarray of length P N : FFT size > P, typically a power of two mode : 0 or 1, when 1 returns a diagnostic matrix Returns ------- y : the filtered output as an ndarray y_mat : an ndarray whose rows are the individual overlap outputs. Notes ----- y_mat is used for diagnostics and to gain understanding of the algorithm. Examples -------- >>> import numpy as np >>> from sk_dsp_comm.sigsys import oa_filter >>> n = np.arange(0,100) >>> x = np.cos(2*np.pi*0.05*n) >>> b = np.ones(10) >>> y = oa_filter(x,h,N) >>> # set mode = 1 >>> y, y_mat = oa_filter(x,h,N,1) """ P = len(h) L = int(N) - P + 1 # need N >= L + P -1 Nx = len(x) Nframe = int(np.ceil(Nx/float(L))) # zero pad to full number of frames needed x = np.hstack((x,np.zeros(Nframe*L-Nx))) y = np.zeros(Nframe*N) # create an instrumentation matrix to observe the overlap and add behavior y_mat = np.zeros((Nframe,Nframe*N)) H = fft.fft(h,N) # begin the filtering operation for k in range(Nframe): xk = x[k*L:(k+1)*L] Xk = fft.fft(xk,N) Yk = H*Xk yk = np.real(fft.ifft(Yk)) y[k*L:k*L+N] += yk y_mat[k,k*L:k*L+N] = yk if mode == 1: return y[0:Nx], y_mat[:,0:Nx] else: return y[0:Nx] def lp_samp(fb,fs,fmax,N,shape='tri',fsize=(6,4)): """ Lowpass sampling theorem plotting function. Display the spectrum of a sampled signal after setting the bandwidth, sampling frequency, maximum display frequency, and spectral shape. Parameters ---------- fb : spectrum lowpass bandwidth in Hz fs : sampling frequency in Hz fmax : plot over [-fmax,fmax] shape : 'tri' or 'line' N : number of translates, N positive and N negative fsize : the size of the figure window, default (6,4) Returns ------- Nothing : A plot window opens containing the spectrum plot Examples -------- >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm.sigsys import lp_samp No aliasing as bandwidth 10 Hz < 25/2; fs > fb. >>> lp_samp(10,25,50,10) >>> plt.show() Now aliasing as bandwidth 15 Hz > 25/2; fs < fb. >>> lp_samp(15,25,50,10) """ plt.figure(figsize=fsize) # define the plot interval f = np.arange(-fmax,fmax+fmax/200.,fmax/200.) A = 1.0 line_ampl = A/2.*np.array([0, 1]) # plot the lowpass spectrum in black shapes = ['tri', 'line'] if shape.lower() not in shapes: raise ValueError('shape must be tri or line') if shape.lower() == 'tri': plt.plot(f,lp_tri(f,fb)) # overlay positive and negative frequency translates for n in range(N): plt.plot(f, lp_tri(f - (n + 1) * fs, fb), '--r') plt.plot(f, lp_tri(f + (n + 1) * fs, fb), '--g') elif shape.lower() == 'line': plt.plot([fb, fb],line_ampl,'b', linewidth=2) plt.plot([-fb, -fb],line_ampl,'b', linewidth=2) # overlay positive and negative frequency translates for n in range(N): plt.plot([fb+(n+1)*fs, fb+(n+1)*fs],line_ampl,'--r', linewidth=2) plt.plot([-fb+(n+1)*fs, -fb+(n+1)*fs],line_ampl,'--r', linewidth=2) plt.plot([fb-(n+1)*fs, fb-(n+1)*fs],line_ampl,'--g', linewidth=2) plt.plot([-fb-(n+1)*fs, -fb-(n+1)*fs],line_ampl,'--g', linewidth=2) plt.ylabel('Spectrum Magnitude') plt.xlabel('Frequency in Hz') plt.axis([-fmax,fmax,0,1]) plt.grid() def lp_tri(f, fb): """ Triangle spectral shape function used by :func:`lp_samp`. Parameters ---------- f : ndarray containing frequency samples fb : the bandwidth as a float constant Returns ------- x : ndarray of spectrum samples for a single triangle shape Notes ----- This is a support function for the lowpass spectrum plotting function :func:`lp_samp`. Examples -------- >>> x = lp_tri(f, fb) """ x = np.zeros(len(f)) for k in range(len(f)): if abs(f[k]) <= fb: x[k] = 1 - abs(f[k])/float(fb) return x def sinusoid_awgn(x, SNRdB): """ Add white Gaussian noise to a single real sinusoid. Input a single sinusoid to this function and it returns a noisy sinusoid at a specific SNR value in dB. Sinusoid power is calculated using np.var. Parameters ---------- x : Input signal as ndarray consisting of a single sinusoid SNRdB : SNR in dB for output sinusoid Returns ------- y : Noisy sinusoid return vector Examples -------- >>> # set the SNR to 10 dB >>> n = arange(0,10000) >>> x = cos(2*pi*0.04*n) >>> y = sinusoid_awgn(x,10.0) """ # Estimate signal power x_pwr = np.var(x) # Create noise vector noise = np.sqrt(x_pwr/10**(SNRdB/10.))*np.random.randn(len(x)); return x + noise def simple_quant(x, b_tot, x_max, limit): """ A simple rounding quantizer for bipolar signals having Btot = B + 1 bits. This function models a quantizer that employs Btot bits that has one of three selectable limiting types: saturation, overflow, and none. The quantizer is bipolar and implements rounding. Parameters ---------- x : input signal ndarray to be quantized b_tot : total number of bits in the quantizer, e.g. 16 x_max : quantizer full-scale dynamic range is [-Xmax, Xmax] Limit = Limiting of the form 'sat', 'over', 'none' Returns ------- xq : quantized output ndarray Notes ----- The quantization can be formed as e = xq - x Examples -------- >>> import matplotlib.pyplot as plt >>> from matplotlib.mlab import psd >>> import numpy as np >>> from sk_dsp_comm import sigsys as ss >>> n = np.arange(0,10000) >>> x = np.cos(2*np.pi*0.211*n) >>> y = ss.sinusoid_awgn(x,90) >>> Px, f = psd(y,2**10,Fs=1) >>> plt.plot(f, 10*np.log10(Px)) >>> plt.ylim([-80, 25]) >>> plt.ylabel("Power Spectral Density (dB)") >>> plt.xlabel(r'Normalized Frequency $\omega/2\pi$') >>> plt.show() >>> yq = ss.simple_quant(y,12,1,'sat') >>> Px, f = psd(yq,2**10,Fs=1) >>> plt.plot(f, 10*np.log10(Px)) >>> plt.ylim([-80, 25]) >>> plt.ylabel("Power Spectral Density (dB)") >>> plt.xlabel(r'Normalized Frequency $\omega/2\pi$') >>> plt.show() """ B = b_tot - 1 x = x / x_max if limit.lower() == 'over': xq = (np.mod(np.round(x*2**B) + 2 ** B, 2 ** b_tot) - 2 ** B) / 2 ** B elif limit.lower() == 'sat': xq = np.round(x*2**B)+2**B s1 = np.nonzero(np.ravel(xq >= 2 ** b_tot - 1))[0] s2 = np.nonzero(np.ravel(xq < 0))[0] xq[s1] = (2 ** b_tot - 1) * np.ones(len(s1)) xq[s2] = np.zeros(len(s2)) xq = (xq - 2**B)/2**B elif limit.lower() == 'none': xq = np.round(x*2**B)/2**B else: raise ValueError('limit must be the string over, sat, or none') return xq * x_max def prin_alias(f_in,fs): """ Calculate the principle alias frequencies. Given an array of input frequencies the function returns an array of principle alias frequencies. Parameters ---------- f_in : ndarray of input frequencies fs : sampling frequency Returns ------- f_out : ndarray of principle alias frequencies Examples -------- >>> # Linear frequency sweep from 0 to 50 Hz >>> f_in = arange(0,50,0.1) >>> # Calculate principle alias with fs = 10 Hz >>> f_out = prin_alias(f_in,10) """ return abs(np.rint(f_in/fs)*fs - f_in) """ Principle alias via recursion f_out = np.copy(f_in) for k in range(len(f_out)): while f_out[k] > fs/2.: f_out[k] = abs(f_out[k] - fs) return f_out """ def cascade_filters(b1,a1,b2,a2): """ Cascade two IIR digital filters into a single (b,a) coefficient set. To cascade two digital filters (system functions) given their numerator and denominator coefficients you simply convolve the coefficient arrays. Parameters ---------- b1 : ndarray of numerator coefficients for filter 1 a1 : ndarray of denominator coefficients for filter 1 b2 : ndarray of numerator coefficients for filter 2 a2 : ndarray of denominator coefficients for filter 2 Returns ------- b : ndarray of numerator coefficients for the cascade a : ndarray of denominator coefficients for the cascade Examples -------- >>> from scipy import signal >>> b1,a1 = signal.butter(3, 0.1) >>> b2,a2 = signal.butter(3, 0.15) >>> b,a = cascade_filters(b1,a1,b2,a2) """ return signal.convolve(b1,b2), signal.convolve(a1,a2) def soi_snoi_gen(s,SIR_dB,N,fi,fs = 8000): """ Add an interfering sinusoidal tone to the input signal at a given SIR_dB. The input is the signal of interest (SOI) and number of sinsuoid signals not of interest (SNOI) are addedto the SOI at a prescribed signal-to- intereference SIR level in dB. Parameters ---------- s : ndarray of signal of SOI SIR_dB : interference level in dB N : Trim input signal s to length N + 1 samples fi : ndarray of intereference frequencies in Hz fs : sampling rate in Hz, default is 8000 Hz Returns ------- r : ndarray of combined signal plus intereference of length N+1 samples Examples -------- >>> # load a speech ndarray and trim to 5*8000 + 1 samples >>> fs,s = from_wav('OSR_us_000_0030_8k.wav') >>> r = soi_snoi_gen(s,10,5*8000,[1000, 1500]) """ n = np.arange(0,N+1) K = len(fi) si = np.zeros(N+1) for k in range(K): si += np.cos(2*np.pi*fi[k]/fs*n); s = s[:N+1] Ps = np.var(s) Psi = np.var(si) r = s + np.sqrt(Ps/Psi*10**(-SIR_dB/10))*si return r def lms_ic(r,M,mu,delta=1): """ Least mean square (LMS) interference canceller adaptive filter. A complete LMS adaptive filter simulation function for the case of interference cancellation. Used in the digital filtering case study. Parameters ---------- M : FIR Filter length (order M-1) delta : Delay used to generate the reference signal mu : LMS step-size delta : decorrelation delay between input and FIR filter input Returns ------- n : ndarray Index vector r : ndarray noisy (with interference) input signal r_hat : ndarray filtered output (NB_hat[n]) e : ndarray error sequence (WB_hat[n]) ao : ndarray final value of weight vector F : ndarray frequency response axis vector Ao : ndarray frequency response of filter Examples ---------- >>> # import a speech signal >>> fs,s = from_wav('OSR_us_000_0030_8k.wav') >>> # add interference at 1kHz and 1.5 kHz and >>> # truncate to 5 seconds >>> r = soi_snoi_gen(s,10,5*8000,[1000, 1500]) >>> # simulate with a 64 tap FIR and mu = 0.005 >>> n,r,r_hat,e,ao,F,Ao = lms_ic(r,64,0.005) """ N = len(r)-1; # Form the reference signal y via delay delta y = signal.lfilter(np.hstack((np.zeros(delta), np.array([1]))),1,r) # Initialize output vector x_hat to zero r_hat = np.zeros(N+1) # Initialize error vector e to zero e = np.zeros(N+1) # Initialize weight vector to zero ao = np.zeros(M+1) # Initialize filter memory to zero z = np.zeros(M) # Initialize a vector for holding ym of length M+1 ym = np.zeros(M+1) for k in range(N+1): # Filter one sample at a time r_hat[k],z = signal.lfilter(ao,np.array([1]),np.array([y[k]]),zi=z) # Form the error sequence e[k] = r[k] - r_hat[k] # Update the weight vector ao = ao + 2*mu*e[k]*ym # Update vector used for correlation with e(k) ym = np.hstack((np.array([y[k]]), ym[:-1])) # Create filter frequency response F, Ao = signal.freqz(ao,1,1024) F/= (2*np.pi) Ao = 20*np.log10(abs(Ao)) return np.arange(0,N+1), r, r_hat, e, ao, F, Ao def fir_iir_notch(fi,fs,r=0.95): """ Design a second-order FIR or IIR notch filter. A second-order FIR notch filter is created by placing conjugate zeros on the unit circle at angle corresponidng to the notch center frequency. The IIR notch variation places a pair of conjugate poles at the same angle, but with radius r < 1 (typically 0.9 to 0.95). Parameters ---------- fi : notch frequency is Hz relative to fs fs : the sampling frequency in Hz, e.g. 8000 r : pole radius for IIR version, default = 0.95 Returns ------- b : numerator coefficient ndarray a : denominator coefficient ndarray Notes ----- If the pole radius is 0 then an FIR version is created, that is there are no poles except at z = 0. Examples -------- >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm import sigsys as ss >>> b_FIR, a_FIR = ss.fir_iir_notch(1000,8000,0) >>> ss.zplane(b_FIR, a_FIR) >>> plt.show() >>> b_IIR, a_IIR = ss.fir_iir_notch(1000,8000) >>> ss.zplane(b_IIR, a_IIR) """ w0 = 2*np.pi*fi/float(fs) if r >= 1: raise ValueError('Poles on or outside unit circle.') elif r == 0: a = np.array([1.0]) else: a = np.array([1, -2*r*np.cos(w0), r**2]) b = np.array([1, -2*np.cos(w0), 1]) return b, a def simple_sa(x, NS, NFFT, fs, NAVG=1, window='boxcar'): """ Spectral estimation using windowing and averaging. This function implements averaged periodogram spectral estimation estimation similar to the NumPy's psd() function, but more specialized for the windowing case study of Chapter 16. Parameters ---------- x : ndarray containing the input signal NS : The subrecord length less zero padding, e.g. NS < NFFT NFFT : FFT length, e.g., 1024 = 2**10 fs : sampling rate in Hz NAVG : the number of averages, e.g., 1 for deterministic signals window : hardcoded window 'boxcar' (default) or 'hanning' Returns ------- f : ndarray frequency axis in Hz on [0, fs/2] Sx : ndarray the power spectrum estimate Notes ----- The function also prints the maximum number of averages K possible for the input data record. Examples -------- >>> import matplotlib.pyplot as plt >>> import numpy as np >>> from sk_dsp_comm import sigsys as ss >>> n = np.arange(0,2048) >>> x = np.cos(2*np.pi*1000/10000*n) + 0.01*np.cos(2*np.pi*3000/10000*n) >>> f, Sx = ss.simple_sa(x,128,512,10000) >>> plt.plot(f, 10*np.log10(Sx)) >>> plt.ylim([-80, 0]) >>> plt.xlabel("Frequency (Hz)") >>> plt.ylabel("Power Spectral Density (dB)") >>> plt.show() With a hanning window. >>> f, Sx = ss.simple_sa(x,256,1024,10000,window='hanning') >>> plt.plot(f, 10*np.log10(Sx)) >>> plt.xlabel("Frequency (Hz)") >>> plt.ylabel("Power Spectral Density (dB)") >>> plt.ylim([-80, 0]) """ Nx = len(x) K = int(Nx/NS) log.info('K = ', K) if NAVG > K: warnings.warn('NAVG exceeds number of available subrecords') return 0,0 if window.lower() == 'boxcar' or window.lower() == 'rectangle': w = signal.boxcar(NS) elif window.lower() == 'hanning': w = signal.hanning(NS) xsw = np.zeros((K,NS)) + 1j*np.zeros((K,NS)) for k in range(NAVG): xsw[k,] = w*x[k*NS:(k+1)*NS] Sx = np.zeros(NFFT) for k in range(NAVG): X = fft.fft(xsw[k,],NFFT) Sx += abs(X)**2 Sx /= float(NAVG) Sx /= float(NFFT**2) NFFTby2 = int(NFFT/2) if x.dtype != 'complex128': n = np.arange(NFFTby2) f = fs*n/float(NFFT) Sx = Sx[0:NFFTby2] else: n = np.arange(NFFTby2) f = fs*np.hstack((np.arange(-NFFTby2,0),np.arange(NFFTby2)))/float(NFFT) Sx = np.hstack((Sx[NFFTby2:],Sx[0:NFFTby2])) return f, Sx def line_spectra(fk,Xk,mode,sides=2,linetype='b',lwidth=2,floor_dB=-100,fsize=(6,4)): """ Plot the Fourier series line spectral given the coefficients. This function plots two-sided and one-sided line spectra of a periodic signal given the complex exponential Fourier series coefficients and the corresponding harmonic frequencies. Parameters ---------- fk : vector of real sinusoid frequencies Xk : magnitude and phase at each positive frequency in fk mode : 'mag' => magnitude plot, 'magdB' => magnitude in dB plot, mode cont : 'magdBn' => magnitude in dB normalized, 'phase' => a phase plot in radians sides : 2; 2-sided or 1-sided linetype : line type per Matplotlib definitions, e.g., 'b'; lwidth : 2; linewidth in points fsize : optional figure size in inches, default = (6,4) inches Returns ------- Nothing : A plot window opens containing the line spectrum plot Notes ----- Since real signals are assumed the frequencies of fk are 0 and/or positive numbers. The supplied Fourier coefficients correspond. Examples -------- >>> import matplotlib.pyplot as plt >>> import numpy as np >>> from sk_dsp_comm.sigsys import line_spectra >>> n = np.arange(0,25) >>> # a pulse train with 10 Hz fundamental and 20% duty cycle >>> fk = n*10 >>> Xk = np.sinc(n*10*.02)*np.exp(-1j*2*np.pi*n*10*.01) # 1j = sqrt(-1) >>> line_spectra(fk,Xk,'mag') >>> plt.show() >>> line_spectra(fk,Xk,'phase') """ plt.figure(figsize=fsize) # Eliminate zero valued coefficients idx = np.nonzero(Xk)[0] Xk = Xk[idx] fk = fk[idx] if mode == 'mag': for k in range(len(fk)): if fk[k] == 0 and sides == 2: plt.plot([fk[k], fk[k]],[0, np.abs(Xk[k])],linetype, linewidth=lwidth) elif fk[k] == 0 and sides == 1: plt.plot([fk[k], fk[k]],[0, np.abs(Xk[k])],linetype, linewidth=2*lwidth) elif fk[k] > 0 and sides == 2: plt.plot([fk[k], fk[k]],[0, np.abs(Xk[k])],linetype, linewidth=lwidth) plt.plot([-fk[k], -fk[k]],[0, np.abs(Xk[k])],linetype, linewidth=lwidth) elif fk[k] > 0 and sides == 1: plt.plot([fk[k], fk[k]],[0, 2.*np.abs(Xk[k])],linetype, linewidth=lwidth) else: warnings.warn('Invalid sides type') plt.grid() if sides == 2: plt.axis([-1.2*max(fk), 1.2*max(fk), 0, 1.05*max(abs(Xk))]) elif sides == 1: plt.axis([0, 1.2*max(fk), 0, 1.05*2*max(abs(Xk))]) else: warnings.warn('Invalid sides type') plt.ylabel('Magnitude') plt.xlabel('Frequency (Hz)') elif mode == 'magdB': Xk_dB = 20*np.log10(np.abs(Xk)) for k in range(len(fk)): if fk[k] == 0 and sides == 2: plt.plot([fk[k], fk[k]],[floor_dB, Xk_dB[k]],linetype, linewidth=lwidth) elif fk[k] == 0 and sides == 1: plt.plot([fk[k], fk[k]],[floor_dB, Xk_dB[k]],linetype, linewidth=2*lwidth) elif fk[k] > 0 and sides == 2: plt.plot([fk[k], fk[k]],[floor_dB, Xk_dB[k]],linetype, linewidth=lwidth) plt.plot([-fk[k], -fk[k]],[floor_dB, Xk_dB[k]],linetype, linewidth=lwidth) elif fk[k] > 0 and sides == 1: plt.plot([fk[k], fk[k]],[floor_dB, Xk_dB[k]+6.02],linetype, linewidth=lwidth) else: warnings.warn('Invalid sides type') plt.grid() max_dB = np.ceil(max(Xk_dB/10.))*10 min_dB = max(floor_dB,np.floor(min(Xk_dB/10.))*10) if sides == 2: plt.axis([-1.2*max(fk), 1.2*max(fk), min_dB, max_dB]) elif sides == 1: plt.axis([0, 1.2*max(fk), min_dB, max_dB]) else: warnings.warn('Invalid sides type') plt.ylabel('Magnitude (dB)') plt.xlabel('Frequency (Hz)') elif mode == 'magdBn': Xk_dB = 20*np.log10(np.abs(Xk)/max(np.abs(Xk))) for k in range(len(fk)): if fk[k] == 0 and sides == 2: plt.plot([fk[k], fk[k]],[floor_dB, Xk_dB[k]],linetype, linewidth=lwidth) elif fk[k] == 0 and sides == 1: plt.plot([fk[k], fk[k]],[floor_dB, Xk_dB[k]],linetype, linewidth=2*lwidth) elif fk[k] > 0 and sides == 2: plt.plot([fk[k], fk[k]],[floor_dB, Xk_dB[k]],linetype, linewidth=lwidth) plt.plot([-fk[k], -fk[k]],[floor_dB, Xk_dB[k]],linetype, linewidth=lwidth) elif fk[k] > 0 and sides == 1: plt.plot([fk[k], fk[k]],[floor_dB, Xk_dB[k]+6.02],linetype, linewidth=lwidth) else: warnings.warn('Invalid sides type') plt.grid() max_dB = np.ceil(max(Xk_dB/10.))*10 min_dB = max(floor_dB,np.floor(min(Xk_dB/10.))*10) if sides == 2: plt.axis([-1.2*max(fk), 1.2*max(fk), min_dB, max_dB]) elif sides == 1: plt.axis([0, 1.2*max(fk), min_dB, max_dB]) else: warnings.warn('Invalid sides type') plt.ylabel('Normalized Magnitude (dB)') plt.xlabel('Frequency (Hz)') elif mode == 'phase': for k in range(len(fk)): if fk[k] == 0 and sides == 2: plt.plot([fk[k], fk[k]],[0, np.angle(Xk[k])],linetype, linewidth=lwidth) elif fk[k] == 0 and sides == 1: plt.plot([fk[k], fk[k]],[0, np.angle(Xk[k])],linetype, linewidth=2*lwidth) elif fk[k] > 0 and sides == 2: plt.plot([fk[k], fk[k]],[0, np.angle(Xk[k])],linetype, linewidth=lwidth) plt.plot([-fk[k], -fk[k]],[0, -np.angle(Xk[k])],linetype, linewidth=lwidth) elif fk[k] > 0 and sides == 1: plt.plot([fk[k], fk[k]],[0, np.angle(Xk[k])],linetype, linewidth=lwidth) else: warnings.warn('Invalid sides type') plt.grid() if sides == 2: plt.plot([-1.2*max(fk), 1.2*max(fk)], [0, 0],'k') plt.axis([-1.2*max(fk), 1.2*max(fk), -1.1*max(np.abs(np.angle(Xk))), 1.1*max(np.abs(np.angle(Xk)))]) elif sides == 1: plt.plot([0, 1.2*max(fk)], [0, 0],'k') plt.axis([0, 1.2*max(fk), -1.1*max(np.abs(np.angle(Xk))), 1.1*max(np.abs(np.angle(Xk)))]) else: warnings.warn('Invalid sides type') plt.ylabel('Phase (rad)') plt.xlabel('Frequency (Hz)') else: warnings.warn('Invalid mode type') def fs_coeff(xp,N,f0,one_side=True): """ Numerically approximate the Fourier series coefficients given periodic x(t). The input is assummed to represent one period of the waveform x(t) that has been uniformly sampled. The number of samples supplied to represent one period of the waveform sets the sampling rate. Parameters ---------- xp : ndarray of one period of the waveform x(t) N : maximum Fourier series coefficient, [0,...,N] f0 : fundamental frequency used to form fk. Returns ------- Xk : ndarray of the coefficients over indices [0,1,...,N] fk : ndarray of the harmonic frequencies [0, f0,2f0,...,Nf0] Notes ----- len(xp) >= 2*N+1 as len(xp) is the fft length. Examples -------- >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> import sk_dsp_comm.sigsys as ss >>> t = arange(0,1,1/1024.) >>> # a 20% duty cycle pulse starting at t = 0 >>> x_rect = ss.rect(t-.1,0.2) >>> Xk, fk = ss.fs_coeff(x_rect,25,10) >>> # plot the spectral lines >>> ss.line_spectra(fk,Xk,'mag') >>> plt.show() """ Nint = len(xp) if Nint < 2*N+1: raise ValueError('Number of samples in xp insufficient for requested N.') Xp = fft.fft(xp,Nint)/float(Nint) # To interface with the line_spectra function use one_side mode if one_side: Xk = Xp[0:N+1] fk = f0*np.arange(0,N+1) else: Xk = np.hstack((Xp[-N:],Xp[0:N+1])) fk = f0*np.arange(-N,N+1) return Xk, fk def fs_approx(Xk,fk,t): """ Synthesize periodic signal x(t) using Fourier series coefficients at harmonic frequencies Assume the signal is real so coefficients Xk are supplied for nonnegative indicies. The negative index coefficients are assumed to be complex conjugates. Parameters ---------- Xk : ndarray of complex Fourier series coefficients fk : ndarray of harmonic frequencies in Hz t : ndarray time axis corresponding to output signal array x_approx Returns ------- x_approx : ndarray of periodic waveform approximation over time span t Examples -------- >>> t = arange(0,2,.002) >>> # a 20% duty cycle pulse train >>> n = arange(0,20,1) # 0 to 19th harmonic >>> fk = 1*n % period = 1s >>> t, x_approx = fs_approx(Xk,fk,t) >>> plot(t,x_approx) """ x_approx = np.zeros(len(t)) for k,Xkk in enumerate(Xk): if fk[k] == 0: x_approx += Xkk.real*np.ones(len(t)) else: x_approx += 2*np.abs(Xkk)*np.cos(2*np.pi*fk[k]*t+np.angle(Xkk)) return x_approx def ft_approx(x,t,Nfft): ''' Approximate the Fourier transform of a finite duration signal using scipy.signal.freqz() Parameters ---------- x : input signal array t : time array used to create x(t) Nfft : the number of frdquency domain points used to approximate X(f) on the interval [fs/2,fs/2], where fs = 1/Dt. Dt being the time spacing in array t Returns ------- f : frequency axis array in Hz X : the Fourier transform approximation (complex) Notes ----- The output time axis starts at the sum of the starting values in x1 and x2 and ends at the sum of the two ending values in x1 and x2. The default extents of ('f','f') are used for signals that are active (have support) on or within n1 and n2 respectively. A right-sided signal such as :math:`a^n*u[n]` is semi-infinite, so it has extent 'r' and the convolution output will be truncated to display only the valid results. Examples -------- >>> import matplotlib.pyplot as plt >>> import numpy as np >>> import sk_dsp_comm.sigsys as ss >>> fs = 100 # sampling rate in Hz >>> tau = 1 >>> t = np.arange(-5,5,1/fs) >>> x0 = ss.rect(t-.5,tau) >>> plt.figure(figsize=(6,5)) >>> plt.plot(t,x0) >>> plt.grid() >>> plt.ylim([-0.1,1.1]) >>> plt.xlim([-2,2]) >>> plt.title(r'Exact Waveform') >>> plt.xlabel(r'Time (s)') >>> plt.ylabel(r'$x_0(t)$') >>> plt.show() >>> # FT Exact Plot >>> import matplotlib.pyplot as plt >>> import numpy as np >>> import sk_dsp_comm.sigsys as ss >>> fs = 100 # sampling rate in Hz >>> tau = 1 >>> t = np.arange(-5,5,1/fs) >>> x0 = ss.rect(t-.5,tau) >>> fe = np.arange(-10,10,.01) >>> X0e = tau*np.sinc(fe*tau) >>> plt.plot(fe,abs(X0e)) >>> #plot(f,angle(X0)) >>> plt.grid() >>> plt.xlim([-10,10]) >>> plt.title(r'Exact (Theory) Spectrum Magnitude') >>> plt.xlabel(r'Frequency (Hz)') >>> plt.ylabel(r'$|X_0e(f)|$') >>> plt.show() >>> # FT Approximation Plot >>> import matplotlib.pyplot as plt >>> import numpy as np >>> import sk_dsp_comm.sigsys as ss >>> fs = 100 # sampling rate in Hz >>> tau = 1 >>> t = np.arange(-5,5,1/fs) >>> x0 = ss.rect(t-.5,tau) >>> f,X0 = ss.ft_approx(x0,t,4096) >>> plt.plot(f,abs(X0)) >>> #plt.plot(f,angle(X0)) >>> plt.grid() >>> plt.xlim([-10,10]) >>> plt.title(r'Approximation Spectrum Magnitude') >>> plt.xlabel(r'Frequency (Hz)') >>> plt.ylabel(r'$|X_0(f)|$'); >>> plt.tight_layout() >>> plt.show() ''' fs = 1/(t[1] - t[0]) t0 = (t[-1]+t[0])/2 # time delay at center N0 = len(t)/2 # FFT center in samples f = np.arange(-1./2,1./2,1./Nfft) w, X = signal.freqz(x,1,2*np.pi*f) X /= fs # account for dt = 1/fs in integral X *= np.exp(-1j*2*np.pi*f*fs*t0)# time interval correction X *= np.exp(1j*2*np.pi*f*N0)# FFT time interval is [0,Nfft-1] F = f*fs return F, X def conv_sum(x1,nx1,x2,nx2,extent=('f','f')): """ Discrete convolution of x1 and x2 with proper tracking of the output time axis. Convolve two discrete-time signals using the SciPy function :func:`scipy.signal.convolution`. The time (sequence axis) are managed from input to output. y[n] = x1[n]*x2[n]. Parameters ---------- x1 : ndarray of signal x1 corresponding to nx1 nx1 : ndarray time axis for x1 x2 : ndarray of signal x2 corresponding to nx2 nx2 : ndarray time axis for x2 extent : ('e1','e2') where 'e1', 'e2' may be 'f' finite, 'r' right-sided, or 'l' left-sided Returns ------- y : ndarray of output values y ny : ndarray of the corresponding sequence index n Notes ----- The output time axis starts at the sum of the starting values in x1 and x2 and ends at the sum of the two ending values in x1 and x2. The default extents of ('f','f') are used for signals that are active (have support) on or within n1 and n2 respectively. A right-sided signal such as a^n*u[n] is semi-infinite, so it has extent 'r' and the convolution output will be truncated to display only the valid results. Examples -------- >>> import matplotlib.pyplot as plt >>> import numpy as np >>> import sk_dsp_comm.sigsys as ss >>> nx = np.arange(-5,10) >>> x = ss.drect(nx,4) >>> y,ny = ss.conv_sum(x,nx,x,nx) >>> plt.stem(ny,y) >>> plt.show() Consider a pulse convolved with an exponential. ('r' type extent) >>> h = 0.5**nx*ss.dstep(nx) >>> y,ny = ss.conv_sum(x,nx,h,nx,('f','r')) # note extents set >>> plt.stem(ny,y) # expect a pulse charge and discharge sequence """ nnx1 = np.arange(0,len(nx1)) nnx2 = np.arange(0,len(nx2)) n1 = nnx1[0] n2 = nnx1[-1] n3 = nnx2[0] n4 = nnx2[-1] # Start by finding the valid output support or extent interval to insure that # for no finite extent signals ambiquous results are not returned. # Valid extents are f (finite), r (right-sided), and l (left-sided) if extent[0] == 'f' and extent[1] == 'f': nny = np.arange(n1+n3,n2+1+n4+1-1) ny = np.arange(0,len(x1)+len(x2)-1) + nx1[0]+nx2[0] elif extent[0] == 'f' and extent[1] == 'r': nny = np.arange(n1+n3,n1+1+n4+1-1) ny = nny + nx1[0]+nx2[0] elif extent[0] == 'r' and extent[1] == 'f': nny = np.arange(n1+n3,n2+1+n3+1-1) ny = nny + nx1[0]+nx2[0] elif extent[0] == 'f' and extent[1] == 'l': nny = np.arange(n2+n3,n2+1+n4+1-1) ny = nny + nx1[-1]+nx2[0] elif extent[0] == 'l' and extent[1] == 'f': nny = np.arange(n1+n4,n2+1+n4+1-1) ny = nny + nx1[0]+nx2[-1] elif extent[0] == 'r' and extent[1] == 'r': nny = np.arange(n1+n3,min(n1+1+n4+1,n2+1+n3+1)-1) ny = nny + nx1[0]+nx2[0] elif extent[0] == 'l' and extent[1] == 'l': nny = np.arange(max(n1+n4,n2+n3),n2+1+n4+1-1) ny = nny + max(nx1[0]+nx2[-1],nx1[-1]+nx2[0]) else: raise ValueError('Invalid x1 x2 extents specified or valid extent not found!') # Finally convolve the sequences y = signal.convolve(x1, x2) log.info('Output support: (%+d, %+d)' % (ny[0],ny[-1])) return y[nny], ny def conv_integral(x1,tx1,x2,tx2,extent=('f','f')): """ Continuous-time convolution of x1 and x2 with proper tracking of the output time axis. Appromimate the convolution integral for the convolution of two continuous-time signals using the SciPy function signal. The time (sequence axis) are managed from input to output. y(t) = x1(t)*x2(t). Parameters ---------- x1 : ndarray of signal x1 corresponding to tx1 tx1 : ndarray time axis for x1 x2 : ndarray of signal x2 corresponding to tx2 tx2 : ndarray time axis for x2 extent : ('e1','e2') where 'e1', 'e2' may be 'f' finite, 'r' right-sided, or 'l' left-sided Returns ------- y : ndarray of output values y ty : ndarray of the corresponding time axis for y Notes ----- The output time axis starts at the sum of the starting values in x1 and x2 and ends at the sum of the two ending values in x1 and x2. The time steps used in x1(t) and x2(t) must match. The default extents of ('f','f') are used for signals that are active (have support) on or within t1 and t2 respectively. A right-sided signal such as exp(-a*t)*u(t) is semi-infinite, so it has extent 'r' and the convolution output will be truncated to display only the valid results. Examples -------- >>> import matplotlib.pyplot as plt >>> import numpy as np >>> import sk_dsp_comm.sigsys as ss >>> tx = np.arange(-5,10,.01) >>> x = ss.rect(tx-2,4) # pulse starts at t = 0 >>> y,ty = ss.conv_integral(x,tx,x,tx) >>> plt.plot(ty,y) # expect a triangle on [0,8] >>> plt.show() Now, consider a pulse convolved with an exponential. >>> h = 4*np.exp(-4*tx)*ss.step(tx) >>> y,ty = ss.conv_integral(x,tx,h,tx,extent=('f','r')) # note extents set >>> plt.plot(ty,y) # expect a pulse charge and discharge waveform """ dt = tx1[1] - tx1[0] nx1 = np.arange(0,len(tx1)) nx2 = np.arange(0,len(tx2)) n1 = nx1[0] n2 = nx1[-1] n3 = nx2[0] n4 = nx2[-1] # Start by finding the valid output support or extent interval to insure that # for no finite extent signals ambiquous results are not returned. # Valid extents are f (finite), r (right-sided), and l (left-sided) if extent[0] == 'f' and extent[1] == 'f': ny = np.arange(n1+n3,n2+1+n4+1-1) ty = np.arange(0,len(x1)+len(x2)-1)*dt + tx1[0]+tx2[0] elif extent[0] == 'f' and extent[1] == 'r': ny = np.arange(n1+n3,n1+1+n4+1-1) ty = ny*dt + tx1[0]+tx2[0] elif extent[0] == 'r' and extent[1] == 'f': ny = np.arange(n1+n3,n2+1+n3+1-1) ty = ny*dt + tx1[0]+tx2[0] elif extent[0] == 'f' and extent[1] == 'l': ny = np.arange(n2+n3,n2+1+n4+1-1) ty = ny*dt + tx1[-1]+tx2[0] elif extent[0] == 'l' and extent[1] == 'f': ny = np.arange(n1+n4,n2+1+n4+1-1) ty = ny*dt + tx1[0]+tx2[-1] elif extent[0] == 'r' and extent[1] == 'r': ny = np.arange(n1+n3,min(n1+1+n4+1,n2+1+n3+1)-1) ty = ny*dt + tx1[0]+tx2[0] elif extent[0] == 'l' and extent[1] == 'l': ny = np.arange(max(n1+n4,n2+n3),n2+1+n4+1-1) ty = ny*dt + max(tx1[0]+tx2[-1],tx1[-1]+tx2[0]) else: raise ValueError('Invalid x1 x2 extents specified or valid extent not found!') # Finally convolve the sampled sequences and scale by dt y = signal.convolve(x1, x2)*dt log.info('Output support: (%+2.2f, %+2.2f)' % (ty[0],ty[-1])) return y[ny], ty def delta_eps(t,eps): """ Rectangular pulse approximation to impulse function. Parameters ---------- t : ndarray of time axis eps : pulse width Returns ------- d : ndarray containing the impulse approximation Examples -------- >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> from sk_dsp_comm.sigsys import delta_eps >>> t = np.arange(-2,2,.001) >>> d = delta_eps(t,.1) >>> plt.plot(t,d) >>> plt.show() """ d = np.zeros(len(t)) for k,tt in enumerate(t): if abs(tt) <= eps/2.: d[k] = 1/float(eps) return d def step(t): """ Approximation to step function signal u(t). In this numerical version of u(t) the step turns on at t = 0. Parameters ---------- t : ndarray of the time axis Returns ------- x : ndarray of the step function signal u(t) Examples -------- >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> from sk_dsp_comm.sigsys import step >>> t = arange(-1,5,.01) >>> x = step(t) >>> plt.plot(t,x) >>> plt.ylim([-0.01, 1.01]) >>> plt.show() To turn on at t = 1, shift t. >>> x = step(t - 1.0) >>> plt.ylim([-0.01, 1.01]) >>> plt.plot(t,x) """ x = np.zeros(len(t)) for k,tt in enumerate(t): if tt >= 0: x[k] = 1.0 return x def rect(t,tau): """ Approximation to the rectangle pulse Pi(t/tau). In this numerical version of Pi(t/tau) the pulse is active over -tau/2 <= t <= tau/2. Parameters ---------- t : ndarray of the time axis tau : the pulse width Returns ------- x : ndarray of the signal Pi(t/tau) Examples -------- >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> from sk_dsp_comm.sigsys import rect >>> t = arange(-1,5,.01) >>> x = rect(t,1.0) >>> plt.plot(t,x) >>> plt.ylim([0, 1.01]) >>> plt.show() To turn on the pulse at t = 1 shift t. >>> x = rect(t - 1.0,1.0) >>> plt.plot(t,x) >>> plt.ylim([0, 1.01]) """ x = np.zeros(len(t)) for k,tk in enumerate(t): if np.abs(tk) > tau/2.: x[k] = 0 else: x[k] = 1 return x def tri(t,tau): """ Approximation to the triangle pulse Lambda(t/tau). In this numerical version of Lambda(t/tau) the pulse is active over -tau <= t <= tau. Parameters ---------- t : ndarray of the time axis tau : one half the triangle base width Returns ------- x : ndarray of the signal Lambda(t/tau) Examples -------- >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> from sk_dsp_comm.sigsys import tri >>> t = arange(-1,5,.01) >>> x = tri(t,1.0) >>> plt.plot(t,x) >>> plt.show() To turn on at t = 1, shift t. >>> x = tri(t - 1.0,1.0) >>> plt.plot(t,x) """ x = np.zeros(len(t)) for k,tk in enumerate(t): if np.abs(tk) > tau/1.: x[k] = 0 else: x[k] = 1 - np.abs(tk)/tau return x def dimpulse(n): """ Discrete impulse function delta[n]. Parameters ---------- n : ndarray of the time axis Returns ------- x : ndarray of the signal delta[n] Examples -------- >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> from sk_dsp_comm.sigsys import dimpulse >>> n = arange(-5,5) >>> x = dimpulse(n) >>> plt.stem(n,x) >>> plt.show() Shift the delta left by 2. >>> x = dimpulse(n+2) >>> plt.stem(n,x) """ x = np.zeros(len(n)) for k,nn in enumerate(n): if nn == 0: x[k] = 1.0 return x def dstep(n): """ Discrete step function u[n]. Parameters ---------- n : ndarray of the time axis Returns ------- x : ndarray of the signal u[n] Examples -------- >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> from sk_dsp_comm.sigsys import dstep >>> n = arange(-5,5) >>> x = dstep(n) >>> plt.stem(n,x) >>> plt.show() Shift the delta left by 2. >>> x = dstep(n+2) >>> plt.stem(n,x) """ x = np.zeros(len(n)) for k,nn in enumerate(n): if nn >= 0: x[k] = 1.0 return x def drect(n,N): """ Discrete rectangle function of duration N samples. The signal is active on the interval 0 <= n <= N-1. Also known as the rectangular window function, which is available in scipy.signal. Parameters ---------- n : ndarray of the time axis N : the pulse duration Returns ------- x : ndarray of the signal Notes ----- The discrete rectangle turns on at n = 0, off at n = N-1 and has duration of exactly N samples. Examples -------- >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> from sk_dsp_comm.sigsys import drect >>> n = arange(-5,5) >>> x = drect(n, N=3) >>> plt.stem(n,x) >>> plt.show() Shift the delta left by 2. >>> x = drect(n+2, N=3) >>> plt.stem(n,x) """ x = np.zeros(len(n)) for k,nn in enumerate(n): if nn >= 0 and nn < N: x[k] = 1.0 return x def rc_imp(Ns,alpha,M=6): """ A truncated raised cosine pulse used in digital communications. The pulse shaping factor :math:`0< \\alpha < 1` is required as well as the truncation factor M which sets the pulse duration to be 2*M*Tsymbol. Parameters ---------- Ns : number of samples per symbol alpha : excess bandwidth factor on (0, 1), e.g., 0.35 M : equals RC one-sided symbol truncation factor Returns ------- b : ndarray containing the pulse shape Notes ----- The pulse shape b is typically used as the FIR filter coefficients when forming a pulse shaped digital communications waveform. Examples -------- Ten samples per symbol and alpha = 0.35. >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> from sk_dsp_comm.sigsys import rc_imp >>> b = rc_imp(10,0.35) >>> n = arange(-10*6,10*6+1) >>> plt.stem(n,b) >>> plt.show() """ # Design the filter n = np.arange(-M*Ns,M*Ns+1) b = np.zeros(len(n)); a = alpha; Ns *= 1.0 for i in range(len(n)): if (1 - 4*(a*n[i]/Ns)**2) == 0: b[i] = np.pi/4*np.sinc(1/(2.*a)) else: b[i] = np.sinc(n[i]/Ns)*np.cos(np.pi*a*n[i]/Ns)/(1 - 4*(a*n[i]/Ns)**2) return b def sqrt_rc_imp(Ns,alpha,M=6): """ A truncated square root raised cosine pulse used in digital communications. The pulse shaping factor 0< alpha < 1 is required as well as the truncation factor M which sets the pulse duration to be 2*M*Tsymbol. Parameters ---------- Ns : number of samples per symbol alpha : excess bandwidth factor on (0, 1), e.g., 0.35 M : equals RC one-sided symbol truncation factor Returns ------- b : ndarray containing the pulse shape Notes ----- The pulse shape b is typically used as the FIR filter coefficients when forming a pulse shaped digital communications waveform. When square root raised cosine (SRC) pulse is used generate Tx signals and at the receiver used as a matched filter (receiver FIR filter), the received signal is now raised cosine shaped, this having zero intersymbol interference and the optimum removal of additive white noise if present at the receiver input. Examples -------- >>> # ten samples per symbol and alpha = 0.35 >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> from sk_dsp_comm.sigsys import sqrt_rc_imp >>> b = sqrt_rc_imp(10,0.35) >>> n = arange(-10*6,10*6+1) >>> plt.stem(n,b) >>> plt.show() """ # Design the filter n = np.arange(-M*Ns,M*Ns+1) b = np.zeros(len(n)) Ns *= 1.0 a = alpha for i in range(len(n)): if abs(1 - 16*a**2*(n[i]/Ns)**2) <= np.finfo(np.float).eps/2: b[i] = 1/2.*((1+a)*np.sin((1+a)*np.pi/(4.*a))-(1-a)*np.cos((1-a)*np.pi/(4.*a))+(4*a)/np.pi*np.sin((1-a)*np.pi/(4.*a))) else: b[i] = 4*a/(np.pi*(1 - 16*a**2*(n[i]/Ns)**2)) b[i] = b[i]*(np.cos((1+a)*np.pi*n[i]/Ns) + np.sinc((1-a)*n[i]/Ns)*(1-a)*np.pi/(4.*a)) return b def pn_gen(n_bits, m=5): """ Maximal length sequence signal generator. Generates a sequence 0/1 bits of N_bit duration. The bits themselves are obtained from an m-sequence of length m. Available m-sequence (PN generators) include m = 2,3,...,12, & 16. Parameters ---------- n_bits : the number of bits to generate m : the number of shift registers. 2,3, .., 12, & 16 Returns ------- PN : ndarray of the generator output over N_bits Notes ----- The sequence is periodic having period 2**m - 1 (2^m - 1). Examples -------- >>> # A 15 bit period signal nover 50 bits >>> PN = pn_gen(50,4) """ c = m_seq(m) Q = len(c) max_periods = int(np.ceil(n_bits / float(Q))) PN = np.zeros(max_periods*Q) for k in range(max_periods): PN[k*Q:(k+1)*Q] = c PN = np.resize(PN, (1, n_bits)) return PN.flatten() def m_seq(m): """ Generate an m-sequence ndarray using an all-ones initialization. Available m-sequence (PN generators) include m = 2,3,...,12, & 16. Parameters ---------- m : the number of shift registers. 2,3, .., 12, & 16 Returns ------- c : ndarray of one period of the m-sequence Notes ----- The sequence period is 2**m - 1 (2^m - 1). Examples -------- >>> c = m_seq(5) """ if m == 2: taps = np.array([1, 1, 1]) elif m == 3: taps = np.array([1, 0, 1, 1]) elif m == 4: taps = np.array([1, 0, 0, 1, 1]) elif m == 5: taps = np.array([1, 0, 0, 1, 0, 1]) elif m == 6: taps = np.array([1, 0, 0, 0, 0, 1, 1]) elif m == 7: taps = np.array([1, 0, 0, 0, 1, 0, 0, 1]) elif m == 8: taps = np.array([1, 0, 0, 0, 1, 1, 1, 0, 1]) elif m == 9: taps = np.array([1, 0, 0, 0, 0, 1, 0, 0, 0, 1]) elif m == 10: taps = np.array([1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1]) elif m == 11: taps = np.array([1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1]) elif m == 12: taps = np.array([1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1]) elif m == 16: taps = np.array([1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1]) else: raise ValueError('Invalid length specified') # Load shift register with all ones to start sr = np.ones(m) # M-squence length is: Q = 2**m - 1 c = np.zeros(Q) for n in range(Q): tap_xor = 0 c[n] = sr[-1] for k in range(1,m): if taps[k] == 1: tap_xor = np.bitwise_xor(tap_xor,np.bitwise_xor(int(sr[-1]),int(sr[m-1-k]))) sr[1:] = sr[:-1] sr[0] = tap_xor return c def bpsk_tx(N_bits, Ns, ach_fc=2.0, ach_lvl_dB=-100, pulse='rect', alpha = 0.25, M=6): """ Generates biphase shift keyed (BPSK) transmitter with adjacent channel interference. Generates three BPSK signals with rectangular or square root raised cosine (SRC) pulse shaping of duration N_bits and Ns samples per bit. The desired signal is centered on f = 0, which the adjacent channel signals to the left and right are also generated at dB level relative to the desired signal. Used in the digital communications Case Study supplement. Parameters ---------- N_bits : the number of bits to simulate Ns : the number of samples per bit ach_fc : the frequency offset of the adjacent channel signals (default 2.0) ach_lvl_dB : the level of the adjacent channel signals in dB (default -100) pulse :the pulse shape 'rect' or 'src' alpha : square root raised cosine pulse shape factor (default = 0.25) M : square root raised cosine pulse truncation factor (default = 6) Returns ------- x : ndarray of the composite signal x0 + ach_lvl*(x1p + x1m) b : the transmit pulse shape data0 : the data bits used to form the desired signal; used for error checking Notes ----- Examples -------- >>> x,b,data0 = bpsk_tx(1000,10,pulse='src') """ pulse_types = ['rect', 'src'] if pulse not in pulse_types: raise ValueError('Pulse shape must be \'rect\' or \'src\'''') x0,b,data0 = nrz_bits(N_bits, Ns, pulse, alpha, M) x1p,b,data1p = nrz_bits(N_bits, Ns, pulse, alpha, M) x1m,b,data1m = nrz_bits(N_bits, Ns, pulse, alpha, M) n = np.arange(len(x0)) x1p = x1p*np.exp(1j*2*np.pi*ach_fc/float(Ns)*n) x1m = x1m*np.exp(-1j*2*np.pi*ach_fc/float(Ns)*n) ach_lvl = 10**(ach_lvl_dB/20.) return x0 + ach_lvl*(x1p + x1m), b, data0 def nrz_bits(n_bits, ns, pulse='rect', alpha=0.25, m=6): """ Generate non-return-to-zero (NRZ) data bits with pulse shaping. A baseband digital data signal using +/-1 amplitude signal values and including pulse shaping. Parameters ---------- n_bits : number of NRZ +/-1 data bits to produce ns : the number of samples per bit, pulse_type : 'rect' , 'rc', 'src' (default 'rect') alpha : excess bandwidth factor(default 0.25) m : single sided pulse duration (default = 6) Returns ------- x : ndarray of the NRZ signal values b : ndarray of the pulse shape data : ndarray of the underlying data bits Notes ----- Pulse shapes include 'rect' (rectangular), 'rc' (raised cosine), 'src' (root raised cosine). The actual pulse length is 2*M+1 samples. This function is used by BPSK_tx in the Case Study article. Examples -------- >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm.sigsys import nrz_bits >>> from numpy import arange >>> x,b,data = nrz_bits(100, 10) >>> t = arange(len(x)) >>> plt.plot(t, x) >>> plt.ylim([-1.01, 1.01]) >>> plt.show() """ data = np.random.randint(0, 2, n_bits) n_zeros = np.zeros((n_bits, int(ns) - 1)) x = np.hstack((2 * data.reshape(n_bits, 1) - 1, n_zeros)) x =x.flatten() if pulse.lower() == 'rect': b = np.ones(int(ns)) elif pulse.lower() == 'rc': b = rc_imp(ns, alpha, m) elif pulse.lower() == 'src': b = sqrt_rc_imp(ns, alpha, m) else: raise ValueError('pulse type must be rec, rc, or src') x = signal.lfilter(b,1,x) return x, b / float(ns), data def nrz_bits2(data, Ns, pulse='rect', alpha = 0.25, M=6): """ Generate non-return-to-zero (NRZ) data bits with pulse shaping with user data A baseband digital data signal using +/-1 amplitude signal values and including pulse shaping. The data sequence is user supplied. Parameters ---------- data : ndarray of the data bits as 0/1 values Ns : the number of samples per bit, pulse_type : 'rect' , 'rc', 'src' (default 'rect') alpha : excess bandwidth factor(default 0.25) M : single sided pulse duration (default = 6) Returns ------- x : ndarray of the NRZ signal values b : ndarray of the pulse shape Notes ----- Pulse shapes include 'rect' (rectangular), 'rc' (raised cosine), 'src' (root raised cosine). The actual pulse length is 2*M+1 samples. Examples -------- >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm.sigsys import nrz_bits2 >>> from sk_dsp_comm.sigsys import m_seq >>> from numpy import arange >>> x,b = nrz_bits2(m_seq(5),10) >>> t = arange(len(x)) >>> plt.ylim([-1.01, 1.01]) >>> plt.plot(t,x) """ N_bits = len(data) n_zeros = np.zeros((N_bits,int(Ns)-1)) x = np.hstack((2*data.reshape(N_bits,1)-1,n_zeros)) x = x.flatten() if pulse.lower() == 'rect': b = np.ones(int(Ns)) elif pulse.lower() == 'rc': b = rc_imp(Ns,alpha,M) elif pulse.lower() == 'src': b = sqrt_rc_imp(Ns,alpha,M) else: raise ValueError('pulse type must be rec, rc, or src') x = signal.lfilter(b,1,x) return x,b/float(Ns) def eye_plot(x, l, s=0): """ Eye pattern plot of a baseband digital communications waveform. The signal must be real, but can be multivalued in terms of the underlying modulation scheme. Used for BPSK eye plots in the Case Study article. Parameters ---------- x : ndarray of the real input data vector/array l : display length in samples (usually two symbols) s : start index Returns ------- Nothing : A plot window opens containing the eye plot Notes ----- Increase S to eliminate filter transients. Examples -------- 1000 bits at 10 samples per bit with 'rc' shaping. >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm import sigsys as ss >>> x,b, data = ss.nrz_bits(1000,10,'rc') >>> ss.eye_plot(x,20,60) """ plt.figure(figsize=(6,4)) idx = np.arange(0, l + 1) plt.plot(idx, x[s:s + l + 1], 'b') k_max = int((len(x) - s) / l) - 1 for k in range(1,k_max): plt.plot(idx, x[s + k * l:s + l + 1 + k * l], 'b') plt.grid() plt.xlabel('Time Index - n') plt.ylabel('Amplitude') plt.title('Eye Plot') return 0 def scatter(x, ns, start): """ Sample a baseband digital communications waveform at the symbol spacing. Parameters ---------- x : ndarray of the input digital comm signal ns : number of samples per symbol (bit) start : the array index to start the sampling Returns ------- xI : ndarray of the real part of x following sampling xQ : ndarray of the imaginary part of x following sampling Notes ----- Normally the signal is complex, so the scatter plot contains clusters at points in the complex plane. For a binary signal such as BPSK, the point centers are nominally +/-1 on the real axis. Start is used to eliminate transients from the FIR pulse shaping filters from appearing in the scatter plot. Examples -------- >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm import sigsys as ss >>> x,b, data = ss.nrz_bits(1000,10,'rc') >>> # Add some noise so points are now scattered about +/-1 >>> y = ss.cpx_awgn(x,20,10) >>> yI,yQ = ss.scatter(y,10,60) >>> plt.plot(yI,yQ,'.') >>> plt.axis('equal') >>> plt.ylabel("Quadrature") >>> plt.xlabel("In-Phase") >>> plt.grid() >>> plt.show() """ xI = np.real(x[start::ns]) xQ = np.imag(x[start::ns]) return xI, xQ def bit_errors(z, data, start, ns): """ A simple bit error counting function. In its present form this function counts bit errors between hard decision BPSK bits in +/-1 form and compares them with 0/1 binary data that was transmitted. Timing between the Tx and Rx data is the responsibility of the user. An enhanced version of this function, which features automatic synching will be created in the future. Parameters ---------- z : ndarray of hard decision BPSK data prior to symbol spaced sampling data : ndarray of reference bits in 1/0 format start : timing reference for the received ns : the number of samples per symbol Returns ------- Pe_hat : the estimated probability of a bit error Notes ----- The Tx and Rx data streams are exclusive-or'd and the then the bit errors are summed, and finally divided by the number of bits observed to form an estimate of the bit error probability. This function needs to be enhanced to be more useful. Examples -------- >>> from scipy import signal >>> x,b, data = nrz_bits(1000,10) >>> # set Eb/N0 to 8 dB >>> y = cpx_awgn(x,8,10) >>> # matched filter the signal >>> z = signal.lfilter(b,1,y) >>> # make bit decisions at 10 and Ns multiples thereafter >>> Pe_hat = bit_errors(z,data,10,10) """ Pe_hat = np.sum(data[0:len(z[start::ns])] ^ np.int64((np.sign(np.real(z[start::ns])) + 1) / 2)) / float(len(z[start::ns])) return Pe_hat def cpx_awgn(x, es_n0, ns): """ Apply white Gaussian noise to a digital communications signal. This function represents a complex baseband white Gaussian noise digital communications channel. The input signal array may be real or complex. Parameters ---------- x : ndarray noise free complex baseband input signal. EsNO : set the channel Es/N0 (Eb/N0 for binary) level in dB ns : number of samples per symbol (bit) Returns ------- y : ndarray x with additive noise added. Notes ----- Set the channel energy per symbol-to-noise power spectral density ratio (Es/N0) in dB. Examples -------- >>> x,b, data = nrz_bits(1000,10) >>> # set Eb/N0 = 10 dB >>> y = cpx_awgn(x,10,10) """ w = np.sqrt(ns * np.var(x) * 10 ** (-es_n0 / 10.) / 2.) * (np.random.randn(len(x)) + 1j * np.random.randn(len(x))) return x+w def my_psd(x,NFFT=2**10,Fs=1): """ A local version of NumPy's PSD function that returns the plot arrays. A mlab.psd wrapper function that returns two ndarrays; makes no attempt to auto plot anything. Parameters ---------- x : ndarray input signal NFFT : a power of two, e.g., 2**10 = 1024 Fs : the sampling rate in Hz Returns ------- Px : ndarray of the power spectrum estimate f : ndarray of frequency values Notes ----- This function makes it easier to overlay spectrum plots because you have better control over the axis scaling than when using psd() in the autoscale mode. Examples -------- >>> import matplotlib.pyplot as plt >>> from numpy import log10 >>> from sk_dsp_comm import sigsys as ss >>> x,b, data = ss.nrz_bits(10000,10) >>> Px,f = ss.my_psd(x,2**10,10) >>> plt.plot(f, 10*log10(Px)) >>> plt.ylabel("Power Spectral Density (dB)") >>> plt.xlabel("Frequency (Hz)") >>> plt.show() """ Px,f = pylab.mlab.psd(x,NFFT,Fs) return Px.flatten(), f def am_tx(m,a_mod,fc=75e3): """ AM transmitter for Case Study of Chapter 17. Assume input is sampled at 8 Ksps and upsampling by 24 is performed to arrive at fs_out = 192 Ksps. Parameters ---------- m : ndarray of the input message signal a_mod : AM modulation index, between 0 and 1 fc : the carrier frequency in Hz Returns ------- x192 : ndarray of the upsampled by 24 and modulated carrier t192 : ndarray of the upsampled by 24 time axis m24 : ndarray of the upsampled by 24 message signal Notes ----- The sampling rate of the input signal is assumed to be 8 kHz. Examples -------- >>> n = arange(0,1000) >>> # 1 kHz message signal >>> m = cos(2*pi*1000/8000.*n) >>> x192, t192 = am_tx(m,0.8,fc=75e3) """ m24 = interp24(m) t192 = np.arange(len(m24))/192.0e3 #m24 = np.cos(2*np.pi*2.0e3*t192) m_max = np.max(np.abs(m24)) x192 = (1 + a_mod*m24/m_max)*np.cos(2*np.pi*fc*t192) return x192, t192, m24 def am_rx(x192): """ AM envelope detector receiver for the Chapter 17 Case Study The receiver bandpass filter is not included in this function. Parameters ---------- x192 : ndarray of the AM signal at sampling rate 192 ksps Returns ------- m_rx8 : ndarray of the demodulated message at 8 ksps t8 : ndarray of the time axis at 8 ksps m_rx192 : ndarray of the demodulated output at 192 ksps x_edet192 : ndarray of the envelope detector output at 192 ksps Notes ----- The bandpass filter needed at the receiver front-end can be designed using b_bpf,a_bpf = :func:`am_rx_BPF`. Examples -------- >>> import numpy as np >>> n = np.arange(0,1000) >>> # 1 kHz message signal >>> m = np.cos(2*np.pi*1000/8000.*n) >>> m_rx8,t8,m_rx192,x_edet192 = am_rx(x192) """ x_edet192 = env_det(x192) m_rx8 = deci24(x_edet192) # remove DC offset from the env_det + LPF output m_rx8 -= np.mean(m_rx8) t8 = np.arange(len(m_rx8))/8.0e3 """ For performance testing also filter x_env_det 192e3 using a Butterworth cascade. The filter cutoff is 5kHz, the message BW. """ b192,a192 = signal.butter(5,2*5.0e3/192.0e3) m_rx192 = signal.lfilter(b192,a192,x_edet192) m_rx192 = signal.lfilter(b192,a192,m_rx192) m_rx192 -= np.mean(m_rx192) return m_rx8,t8,m_rx192,x_edet192 def am_rx_bpf(n_order=7, ripple_dB=1, b=10e3, fs=192e3): """ Bandpass filter design for the AM receiver Case Study of Chapter 17. Design a 7th-order Chebyshev type 1 bandpass filter to remove/reduce adjacent channel intereference at the envelope detector input. Parameters ---------- n_order : the filter order (default = 7) ripple_dB : the passband ripple in dB (default = 1) b : the RF bandwidth (default = 10e3) fs : the sampling frequency Returns ------- b_bpf : ndarray of the numerator filter coefficients a_bpf : ndarray of the denominator filter coefficients Examples -------- >>> from scipy import signal >>> import numpy as np >>> import matplotlib.pyplot as plt >>> import sk_dsp_comm.sigsys as ss >>> # Use the default values >>> b_bpf,a_bpf = ss.am_rx_bpf() Pole-zero plot of the filter. >>> ss.zplane(b_bpf,a_bpf) >>> plt.show() Plot of the frequency response. >>> f = np.arange(0,192/2.,.1) >>> w, Hbpf = signal.freqz(b_bpf,a_bpf,2*np.pi*f/192) >>> plt.plot(f*10,20*np.log10(abs(Hbpf))) >>> plt.axis([0,1920/2.,-80,10]) >>> plt.ylabel("Power Spectral Density (dB)") >>> plt.xlabel("Frequency (kHz)") >>> plt.show() """ b_bpf,a_bpf = signal.cheby1(n_order, ripple_dB, 2 * np.array([75e3 - b / 2., 75e3 + b / 2.]) / fs, 'bandpass') return b_bpf,a_bpf def env_det(x): """ Ideal envelope detector. This function retains the positive half cycles of the input signal. Parameters ---------- x : ndarray of the input sugnal Returns ------- y : ndarray of the output signal Examples -------- >>> n = arange(0,100) >>> # 1 kHz message signal >>> m = cos(2*pi*1000/8000.*n) >>> x192, t192, m24 = am_tx(m,0.8,fc=75e3) >>> y = env_det(x192) """ y = np.zeros(len(x)) for k,xx in enumerate(x): if xx >= 0: y[k] = xx return y def interp24(x): """ Interpolate by L = 24 using Butterworth filters. The interpolation is done using three stages. Upsample by L = 2 and lowpass filter, upsample by 3 and lowpass filter, then upsample by L = 4 and lowpass filter. In all cases the lowpass filter is a 10th-order Butterworth lowpass. Parameters ---------- x : ndarray of the input signal Returns ------- y : ndarray of the output signal Notes ----- The cutoff frequency of the lowpass filters is 1/2, 1/3, and 1/4 to track the upsampling by 2, 3, and 4 respectively. Examples -------- >>> y = interp24(x) """ # Stage 1: L = 2 b2,a2 = signal.butter(10,1/2.) y1 = upsample(x,2) y1 = signal.lfilter(b2,a2,2*y1) # Stage 2: L = 3 b3,a3 = signal.butter(10,1/3.) y2 = upsample(y1,3) y2 = signal.lfilter(b3,a3,3*y2) # Stage 3: L = 4 b4,a4 = signal.butter(10,1/4.) y3 = upsample(y2,4) y3 = signal.lfilter(b4,a4,4*y3) return y3 def deci24(x): """ Decimate by L = 24 using Butterworth filters. The decimation is done using two three stages. Downsample sample by L = 2 and lowpass filter, downsample by 3 and lowpass filter, then downsample by L = 4 and lowpass filter. In all cases the lowpass filter is a 10th-order Butterworth lowpass. Parameters ---------- x : ndarray of the input signal Returns ------- y : ndarray of the output signal Notes ----- The cutoff frequency of the lowpass filters is 1/2, 1/3, and 1/4 to track the upsampling by 2, 3, and 4 respectively. Examples -------- >>> y = deci24(x) """ # Stage 1: M = 2 b2,a2 = signal.butter(10,1/2.) y1 = signal.lfilter(b2,a2,x) y1 = downsample(y1,2) # Stage 2: M = 3 b3,a3 = signal.butter(10,1/3.) y2 = signal.lfilter(b3,a3,y1) y2 = downsample(y2,3) # Stage 3: L = 4 b4,a4 = signal.butter(10,1/4.) y3 = signal.lfilter(b4,a4,y2) y3 = downsample(y3,4) return y3 def upsample(x,L): """ Upsample by factor L Insert L - 1 zero samples in between each input sample. Parameters ---------- x : ndarray of input signal values L : upsample factor Returns ------- y : ndarray of the output signal values Examples -------- >>> y = upsample(x,3) """ N_input = len(x) y = np.hstack((x.reshape(N_input,1),np.zeros((N_input, int(L-1))))) y = y.flatten() return y def downsample(x,M,p=0): """ Downsample by factor M Keep every Mth sample of the input. The phase of the input samples kept can be selected. Parameters ---------- x : ndarray of input signal values M : downsample factor p : phase of decimated value, 0 (default), 1, ..., M-1 Returns ------- y : ndarray of the output signal values Examples -------- >>> y = downsample(x,3) >>> y = downsample(x,3,1) """ if not isinstance(M, int): raise TypeError("M must be an int") x = x[0:int(np.floor(len(x)/M))*M] x = x.reshape((int(np.floor(len(x)/M)),M)) y = x[:,p] return y def unique_cpx_roots(rlist,tol = 0.001): """ The average of the root values is used when multiplicity is greater than one. <NAME> October 2016 """ uniq = [rlist[0]] mult = [1] for k in range(1,len(rlist)): N_uniq = len(uniq) for m in range(N_uniq): if abs(rlist[k]-uniq[m]) <= tol: mult[m] += 1 uniq[m] = (uniq[m]*(mult[m]-1) + rlist[k])/float(mult[m]) break uniq = np.hstack((uniq,rlist[k])) mult = np.hstack((mult,[1])) return np.array(uniq), np.array(mult) def zplane(b,a,auto_scale=True,size=2,detect_mult=True,tol=0.001): """ Create an z-plane pole-zero plot. Create an z-plane pole-zero plot using the numerator and denominator z-domain system function coefficient ndarrays b and a respectively. Assume descending powers of z. Parameters ---------- b : ndarray of the numerator coefficients a : ndarray of the denominator coefficients auto_scale : bool (default True) size : plot radius maximum when scale = False Returns ------- (M,N) : tuple of zero and pole counts + plot window Notes ----- This function tries to identify repeated poles and zeros and will place the multiplicity number above and to the right of the pole or zero. The difficulty is setting the tolerance for this detection. Currently it is set at 1e-3 via the function signal.unique_roots. Examples -------- >>> # Here the plot is generated using auto_scale >>> zplane(b,a) >>> # Here the plot is generated using manual scaling >>> zplane(b,a,False,1.5) """ if (isinstance(a,int) or isinstance(a,float)): a = [a] if (isinstance(b,int) or isinstance(b,float)): b = [b] M = len(b) - 1 N = len(a) - 1 # Plot labels if multiplicity greater than 1 x_scale = 1.5*size y_scale = 1.5*size x_off = 0.02 y_off = 0.01 #N_roots = np.array([1.0]) if M > 0: N_roots = np.roots(b) #D_roots = np.array([1.0]) if N > 0: D_roots = np.roots(a) if auto_scale: if M > 0 and N > 0: size = max(np.max(np.abs(N_roots)),np.max(np.abs(D_roots)))+.1 elif M > 0: size = max(np.max(
np.abs(N_roots)
numpy.abs
import operator from enum import Enum from typing import Union, Any, Optional, Hashable import numpy as np import pandas as pd import pandas_flavor as pf from pandas.core.construction import extract_array from pandas.core.dtypes.common import ( is_categorical_dtype, is_datetime64_dtype, is_dtype_equal, is_extension_array_dtype, is_numeric_dtype, is_string_dtype, ) from pandas.core.reshape.merge import _MergeOperation from janitor.utils import check, check_column @pf.register_dataframe_method def conditional_join( df: pd.DataFrame, right: Union[pd.DataFrame, pd.Series], *conditions, how: str = "inner", sort_by_appearance: bool = False, df_columns: Optional[Any] = None, right_columns: Optional[Any] = None, ) -> pd.DataFrame: """ This is a convenience function that operates similarly to `pd.merge`, but allows joins on inequality operators, or a combination of equi and non-equi joins. Join solely on equality are not supported. If the join is solely on equality, `pd.merge` function covers that; if you are interested in nearest joins, or rolling joins, or the first match (lowest or highest) - `pd.merge_asof` covers that. There is also the IntervalIndex, which is usually more efficient for range joins, especially if the intervals do not overlap. Column selection in `df_columns` and `right_columns` is possible using the [`select_columns`][janitor.functions.select_columns.select_columns] syntax. This function returns rows, if any, where values from `df` meet the condition(s) for values from `right`. The conditions are passed in as a variable argument of tuples, where the tuple is of the form `(left_on, right_on, op)`; `left_on` is the column label from `df`, `right_on` is the column label from `right`, while `op` is the operator. For multiple conditions, the and(`&`) operator is used to combine the results of the individual conditions. The operator can be any of `==`, `!=`, `<=`, `<`, `>=`, `>`. A binary search is used to get the relevant rows for non-equi joins; this avoids a cartesian join, and makes the process less memory intensive. For equi-joins, Pandas internal merge function is used. The join is done only on the columns. MultiIndex columns are not supported. For non-equi joins, only numeric and date columns are supported. Only `inner`, `left`, and `right` joins are supported. If the columns from `df` and `right` have nothing in common, a single index column is returned; else, a MultiIndex column is returned. Example: >>> import pandas as pd >>> import janitor >>> df1 = pd.DataFrame({"value_1": [2, 5, 7, 1, 3, 4]}) >>> df2 = pd.DataFrame({"value_2A": [0, 3, 7, 12, 0, 2, 3, 1], ... "value_2B": [1, 5, 9, 15, 1, 4, 6, 3], ... }) >>> df1 value_1 0 2 1 5 2 7 3 1 4 3 5 4 >>> df2 value_2A value_2B 0 0 1 1 3 5 2 7 9 3 12 15 4 0 1 5 2 4 6 3 6 7 1 3 >>> df1.conditional_join( ... df2, ... ("value_1", "value_2A", ">="), ... ("value_1", "value_2B", "<=") ... ) value_1 value_2A value_2B 0 2 1 3 1 2 2 4 2 5 3 5 3 5 3 6 4 7 7 9 5 1 0 1 6 1 0 1 7 1 1 3 8 3 1 3 9 3 2 4 10 3 3 5 11 3 3 6 12 4 2 4 13 4 3 5 14 4 3 6 :param df: A pandas DataFrame. :param right: Named Series or DataFrame to join to. :param conditions: Variable argument of tuple(s) of the form `(left_on, right_on, op)`, where `left_on` is the column label from `df`, `right_on` is the column label from `right`, while `op` is the operator. The operator can be any of `==`, `!=`, `<=`, `<`, `>=`, `>`. For multiple conditions, the and(`&`) operator is used to combine the results of the individual conditions. :param how: Indicates the type of join to be performed. It can be one of `inner`, `left`, `right`. Full join is not supported. Defaults to `inner`. :param sort_by_appearance: Default is `False`. This is useful for strictly non-equi joins, where the user wants the original order maintained. If True, values from `df` and `right` that meet the join condition will be returned in the final dataframe in the same order that they were before the join. :param df_columns: Columns to select from `df`. It can be a single column or a list of columns. It is also possible to rename the output columns via a dictionary. :param right_columns: Columns to select from `right`. It can be a single column or a list of columns. It is also possible to rename the output columns via a dictionary. :returns: A pandas DataFrame of the two merged Pandas objects. """ return _conditional_join_compute( df, right, conditions, how, sort_by_appearance, df_columns, right_columns, ) class _JoinOperator(Enum): """ List of operators used in conditional_join. """ GREATER_THAN = ">" LESS_THAN = "<" GREATER_THAN_OR_EQUAL = ">=" LESS_THAN_OR_EQUAL = "<=" STRICTLY_EQUAL = "==" NOT_EQUAL = "!=" class _JoinTypes(Enum): """ List of join types for conditional_join. """ INNER = "inner" LEFT = "left" RIGHT = "right" operator_map = { _JoinOperator.STRICTLY_EQUAL.value: operator.eq, _JoinOperator.LESS_THAN.value: operator.lt, _JoinOperator.LESS_THAN_OR_EQUAL.value: operator.le, _JoinOperator.GREATER_THAN.value: operator.gt, _JoinOperator.GREATER_THAN_OR_EQUAL.value: operator.ge, _JoinOperator.NOT_EQUAL.value: operator.ne, } less_than_join_types = { _JoinOperator.LESS_THAN.value, _JoinOperator.LESS_THAN_OR_EQUAL.value, } greater_than_join_types = { _JoinOperator.GREATER_THAN.value, _JoinOperator.GREATER_THAN_OR_EQUAL.value, } def _check_operator(op: str): """ Check that operator is one of `>`, `>=`, `==`, `!=`, `<`, `<=`. Used in `conditional_join`. """ sequence_of_operators = {op.value for op in _JoinOperator} if op not in sequence_of_operators: raise ValueError( "The conditional join operator " f"should be one of {sequence_of_operators}" ) def _conditional_join_preliminary_checks( df: pd.DataFrame, right: Union[pd.DataFrame, pd.Series], conditions: tuple, how: str, sort_by_appearance: bool, df_columns: Any, right_columns: Any, ) -> tuple: """ Preliminary checks for conditional_join are conducted here. Checks include differences in number of column levels, length of conditions, existence of columns in dataframe, etc. """ check("right", right, [pd.DataFrame, pd.Series]) df = df.copy() right = right.copy() if isinstance(right, pd.Series): if not right.name: raise ValueError( "Unnamed Series are not supported for conditional_join." ) right = right.to_frame() if df.columns.nlevels != right.columns.nlevels: raise ValueError( "The number of column levels " "from the left and right frames must match. " "The number of column levels from the left dataframe " f"is {df.columns.nlevels}, while the number of column levels " f"from the right dataframe is {right.columns.nlevels}." ) if not conditions: raise ValueError("Kindly provide at least one join condition.") for condition in conditions: check("condition", condition, [tuple]) len_condition = len(condition) if len_condition != 3: raise ValueError( "condition should have only three elements; " f"{condition} however is of length {len_condition}." ) for left_on, right_on, op in conditions: check("left_on", left_on, [Hashable]) check("right_on", right_on, [Hashable]) check("operator", op, [str]) check_column(df, [left_on]) check_column(right, [right_on]) _check_operator(op) if all( (op == _JoinOperator.STRICTLY_EQUAL.value for *_, op in conditions) ): raise ValueError("Equality only joins are not supported.") check("how", how, [str]) checker = {jointype.value for jointype in _JoinTypes} if how not in checker: raise ValueError(f"'how' should be one of {checker}.") check("sort_by_appearance", sort_by_appearance, [bool]) if (df.columns.nlevels > 1) and ( isinstance(df_columns, dict) or isinstance(right_columns, dict) ): raise ValueError( "Column renaming with a dictionary is not supported " "for MultiIndex columns." ) return ( df, right, conditions, how, sort_by_appearance, df_columns, right_columns, ) def _conditional_join_type_check( left_column: pd.Series, right_column: pd.Series, op: str ) -> None: """ Raise error if column type is not any of numeric or datetime or string. """ permitted_types = { is_datetime64_dtype, is_numeric_dtype, is_string_dtype, is_categorical_dtype, } for func in permitted_types: if func(left_column): break else: raise ValueError( "conditional_join only supports " "string, category, numeric, or date dtypes (without timezone) - " f"'{left_column.name} is of type {left_column.dtype}." ) lk_is_cat = is_categorical_dtype(left_column) rk_is_cat = is_categorical_dtype(right_column) if lk_is_cat & rk_is_cat: if not left_column.array._categories_match_up_to_permutation( right_column.array ): raise ValueError( f"'{left_column.name}' and '{right_column.name}' " "should have the same categories, and the same order." ) elif not is_dtype_equal(left_column, right_column): raise ValueError( f"Both columns should have the same type - " f"'{left_column.name}' has {left_column.dtype} type;" f"'{right_column.name}' has {right_column.dtype} type." ) if (op in less_than_join_types.union(greater_than_join_types)) & ( (is_string_dtype(left_column) | is_categorical_dtype(left_column)) ): raise ValueError( "non-equi joins are supported " "only for datetime and numeric dtypes. " f"{left_column.name} in condition " f"({left_column.name}, {right_column.name}, {op}) " f"has a dtype {left_column.dtype}." ) return None def _conditional_join_compute( df: pd.DataFrame, right: pd.DataFrame, conditions: list, how: str, sort_by_appearance: bool, df_columns: Any, right_columns: Any, ) -> pd.DataFrame: """ This is where the actual computation for the conditional join takes place. A pandas DataFrame is returned. """ ( df, right, conditions, how, sort_by_appearance, df_columns, right_columns, ) = _conditional_join_preliminary_checks( df, right, conditions, how, sort_by_appearance, df_columns, right_columns, ) eq_check = False le_lt_check = False for condition in conditions: left_on, right_on, op = condition _conditional_join_type_check(df[left_on], right[right_on], op) if op == _JoinOperator.STRICTLY_EQUAL.value: eq_check = True elif op in less_than_join_types.union(greater_than_join_types): le_lt_check = True df.index = range(len(df)) right.index = range(len(right)) multiple_conditions = len(conditions) > 1 if not multiple_conditions: left_on, right_on, op = conditions[0] result = _generic_func_cond_join( df[left_on], right[right_on], op, multiple_conditions ) if result is None: return _create_conditional_join_empty_frame( df, right, how, df_columns, right_columns ) return _create_conditional_join_frame( df, right, *result, how, sort_by_appearance, df_columns, right_columns, ) if eq_check: result = _multiple_conditional_join_eq(df, right, conditions) elif le_lt_check: result = _multiple_conditional_join_le_lt(df, right, conditions) else: result = _multiple_conditional_join_ne(df, right, conditions) if result is None: return _create_conditional_join_empty_frame( df, right, how, df_columns, right_columns ) return _create_conditional_join_frame( df, right, *result, how, sort_by_appearance, df_columns, right_columns ) def _less_than_indices( left_c: pd.Series, right_c: pd.Series, strict: bool, ) -> tuple: """ Use binary search to get indices where left_c is less than or equal to right_c. If strict is True, then only indices where `left_c` is less than (but not equal to) `right_c` are returned. A tuple of integer indexes for left_c and right_c is returned. """ # no point going through all the hassle if left_c.min() > right_c.max(): return None any_nulls = pd.isna(right_c) if any_nulls.any(): right_c = right_c[~any_nulls] if right_c.empty: return None any_nulls = pd.isna(left_c) if any_nulls.any(): left_c = left_c[~any_nulls] if left_c.empty: return None any_nulls = None if not right_c.is_monotonic_increasing: right_c = right_c.sort_values(kind="stable") left_index = left_c.index.to_numpy(dtype=int, copy=False) left_c = extract_array(left_c, extract_numpy=True) right_index = right_c.index.to_numpy(dtype=int, copy=False) right_c = extract_array(right_c, extract_numpy=True) search_indices = right_c.searchsorted(left_c, side="left") # if any of the positions in `search_indices` # is equal to the length of `right_keys` # that means the respective position in `left_c` # has no values from `right_c` that are less than # or equal, and should therefore be discarded len_right = right_c.size rows_equal = search_indices == len_right if rows_equal.any(): left_c = left_c[~rows_equal] left_index = left_index[~rows_equal] search_indices = search_indices[~rows_equal] # the idea here is that if there are any equal values # shift to the right to the immediate next position # that is not equal if strict: rows_equal = right_c[search_indices] rows_equal = left_c == rows_equal # replace positions where rows are equal # with positions from searchsorted('right') # positions from searchsorted('right') will never # be equal and will be the furthermost in terms of position # example : right_c -> [2, 2, 2, 3], and we need # positions where values are not equal for 2; # the furthermost will be 3, and searchsorted('right') # will return position 3. if rows_equal.any(): replacements = right_c.searchsorted(left_c, side="right") # now we can safely replace values # with strictly less than positions search_indices = np.where(rows_equal, replacements, search_indices) # check again if any of the values # have become equal to length of right_c # and get rid of them rows_equal = search_indices == len_right if rows_equal.any(): left_c = left_c[~rows_equal] left_index = left_index[~rows_equal] search_indices = search_indices[~rows_equal] if not search_indices.size: return None right_c = [right_index[ind:len_right] for ind in search_indices] right_c = np.concatenate(right_c) left_c = np.repeat(left_index, len_right - search_indices) return left_c, right_c def _greater_than_indices( left_c: pd.Series, right_c: pd.Series, strict: bool, multiple_conditions: bool, ) -> tuple: """ Use binary search to get indices where left_c is greater than or equal to right_c. If strict is True, then only indices where `left_c` is greater than (but not equal to) `right_c` are returned. if multiple_conditions is False, a tuple of integer indexes for left_c and right_c is returned; else a tuple of the index for left_c, right_c, as well as the positions of left_c in right_c is returned. """ # quick break, avoiding the hassle if left_c.max() < right_c.min(): return None any_nulls = pd.isna(right_c) if any_nulls.any(): right_c = right_c[~any_nulls] if right_c.empty: return None any_nulls = pd.isna(left_c) if any_nulls.any(): left_c = left_c[~any_nulls] if left_c.empty: return None any_nulls = None if not right_c.is_monotonic_increasing: right_c = right_c.sort_values(kind="stable") left_index = left_c.index.to_numpy(dtype=int, copy=False) left_c = extract_array(left_c, extract_numpy=True) right_index = right_c.index.to_numpy(dtype=int, copy=False) right_c = extract_array(right_c, extract_numpy=True) search_indices = right_c.searchsorted(left_c, side="right") # if any of the positions in `search_indices` # is equal to 0 (less than 1), it implies that # left_c[position] is not greater than any value # in right_c rows_equal = search_indices < 1 if rows_equal.any(): left_c = left_c[~rows_equal] left_index = left_index[~rows_equal] search_indices = search_indices[~rows_equal] # the idea here is that if there are any equal values # shift downwards to the immediate next position # that is not equal if strict: rows_equal = right_c[search_indices - 1] rows_equal = left_c == rows_equal # replace positions where rows are equal with # searchsorted('left'); # however there can be scenarios where positions # from searchsorted('left') would still be equal; # in that case, we shift down by 1 if rows_equal.any(): replacements = right_c.searchsorted(left_c, side="left") # return replacements # `left` might result in values equal to len right_c replacements = np.where( replacements == right_c.size, replacements - 1, replacements ) # now we can safely replace values # with strictly greater than positions search_indices = np.where(rows_equal, replacements, search_indices) # any value less than 1 should be discarded # since the lowest value for binary search # with side='right' should be 1 rows_equal = search_indices < 1 if rows_equal.any(): left_c = left_c[~rows_equal] left_index = left_index[~rows_equal] search_indices = search_indices[~rows_equal] if not search_indices.size: return None if multiple_conditions: return left_index, right_index, search_indices right_c = [right_index[:ind] for ind in search_indices] right_c = np.concatenate(right_c) left_c = np.repeat(left_index, search_indices) return left_c, right_c def _not_equal_indices(left_c: pd.Series, right_c: pd.Series) -> tuple: """ Use binary search to get indices where `left_c` is exactly not equal to `right_c`. It is a combination of strictly less than and strictly greater than indices. A tuple of integer indexes for left_c and right_c is returned. """ dummy = np.array([], dtype=int) # deal with nulls l1_nulls = dummy r1_nulls = dummy l2_nulls = dummy r2_nulls = dummy any_left_nulls = left_c.isna() any_right_nulls = right_c.isna() if any_left_nulls.any(): l1_nulls = left_c.index[any_left_nulls.array] l1_nulls = l1_nulls.to_numpy(copy=False) r1_nulls = right_c.index # avoid NAN duplicates if any_right_nulls.any(): r1_nulls = r1_nulls[~any_right_nulls.array] r1_nulls = r1_nulls.to_numpy(copy=False) nulls_count = l1_nulls.size # blow up nulls to match length of right l1_nulls = np.tile(l1_nulls, r1_nulls.size) # ensure length of right matches left if nulls_count > 1: r1_nulls = np.repeat(r1_nulls, nulls_count) if any_right_nulls.any(): r2_nulls = right_c.index[any_right_nulls.array] r2_nulls = r2_nulls.to_numpy(copy=False) l2_nulls = left_c.index nulls_count = r2_nulls.size # blow up nulls to match length of left r2_nulls = np.tile(r2_nulls, l2_nulls.size) # ensure length of left matches right if nulls_count > 1: l2_nulls = np.repeat(l2_nulls, nulls_count) l1_nulls = np.concatenate([l1_nulls, l2_nulls]) r1_nulls = np.concatenate([r1_nulls, r2_nulls]) outcome = _less_than_indices(left_c, right_c, strict=True) if outcome is None: lt_left = dummy lt_right = dummy else: lt_left, lt_right = outcome outcome = _greater_than_indices( left_c, right_c, strict=True, multiple_conditions=False ) if outcome is None: gt_left = dummy gt_right = dummy else: gt_left, gt_right = outcome left_c = np.concatenate([lt_left, gt_left, l1_nulls]) right_c = np.concatenate([lt_right, gt_right, r1_nulls]) if (not left_c.size) & (not right_c.size): return None return left_c, right_c def _eq_indices( left_c: pd.Series, right_c: pd.Series, ) -> tuple: """ Use binary search to get indices where left_c is equal to right_c. Returns a tuple of the left_index, right_index, lower_boundary and upper_boundary. """ # no point going through all the hassle if left_c.min() > right_c.max(): return None if left_c.max() < right_c.min(): return None any_nulls = pd.isna(right_c) if any_nulls.any(): right_c = right_c[~any_nulls] if right_c.empty: return None any_nulls = pd.isna(left_c) if any_nulls.any(): left_c = left_c[~any_nulls] if left_c.empty: return None any_nulls = None if not right_c.is_monotonic_increasing: right_c = right_c.sort_values(kind="stable") left_index = left_c.index.to_numpy(dtype=int, copy=False) left_c = extract_array(left_c, extract_numpy=True) right_index = right_c.index.to_numpy(dtype=int, copy=False) right_c = extract_array(right_c, extract_numpy=True) lower_boundary = right_c.searchsorted(left_c, side="left") upper_boundary = right_c.searchsorted(left_c, side="right") keep_rows = lower_boundary < upper_boundary if not keep_rows.any(): return None if not keep_rows.all(): left_index = left_index[keep_rows] lower_boundary = lower_boundary[keep_rows] upper_boundary = upper_boundary[keep_rows] return left_index, right_index, lower_boundary, upper_boundary def _generic_func_cond_join( left_c: pd.Series, right_c: pd.Series, op: str, multiple_conditions: bool, ) -> tuple: """ Generic function to call any of the individual functions (_less_than_indices, _greater_than_indices, or _not_equal_indices). """ strict = False if op in { _JoinOperator.GREATER_THAN.value, _JoinOperator.LESS_THAN.value, _JoinOperator.NOT_EQUAL.value, }: strict = True if op in less_than_join_types: return _less_than_indices(left_c, right_c, strict) elif op in greater_than_join_types: return _greater_than_indices( left_c, right_c, strict, multiple_conditions ) elif op == _JoinOperator.NOT_EQUAL.value: return _not_equal_indices(left_c, right_c) def _generate_indices( left_index: np.ndarray, right_index: np.ndarray, conditions: list ) -> tuple: """ Run a for loop to get the final indices. This iteratively goes through each condition, builds a boolean array, and gets indices for rows that meet the condition requirements. `conditions` is a list of tuples, where a tuple is of the form: `(Series from df, Series from right, operator)`. """ for condition in conditions: left_c, right_c, op = condition left_c = extract_array(left_c, extract_numpy=True)[left_index] right_c = extract_array(right_c, extract_numpy=True)[right_index] op = operator_map[op] mask = op(left_c, right_c) if not mask.any(): return None if is_extension_array_dtype(mask): mask = mask.to_numpy(dtype=bool, na_value=False) if not mask.all(): left_index = left_index[mask] right_index = right_index[mask] return left_index, right_index def _multiple_conditional_join_ne( df: pd.DataFrame, right: pd.DataFrame, conditions: list ) -> tuple: """ Get indices for multiple conditions, where all the operators are `!=`. Returns a tuple of (left_index, right_index) """ # currently, there is no optimization option here # not equal typically combines less than # and greater than, so a lot more rows are returned # than just less than or greater than # here we get indices for the first condition in conditions # then use those indices to get the final indices, # using _generate_indices first, *rest = conditions left_on, right_on, op = first # get indices from the first condition result = _generic_func_cond_join( df[left_on], right[right_on], op, multiple_conditions=False ) if result is None: return None rest = ( (df[left_on], right[right_on], op) for left_on, right_on, op in rest ) return _generate_indices(*result, rest) def _multiple_conditional_join_eq( df: pd.DataFrame, right: pd.DataFrame, conditions: list ) -> tuple: """ Get indices for multiple conditions, if any of the conditions has an `==` operator. Returns a tuple of (df_index, right_index) """ # TODO # this uses the idea in the `_range_indices` function # for less than and greater than; # I'd like to believe there is a smarter/more efficient way of doing this # where the filter occurs within the join, and avoids a blow-up # the current implementation uses # a list comprehension to find first matches # in a bid to reduce the blow up size ... # this applies only to integers/dates # and only offers advantages in scenarios # where the right is duplicated # for one to many joins, # or one to one or strings/category, use merge # as it is significantly faster than a binary search eqs = [ (left_on, right_on) for left_on, right_on, op in conditions if op == _JoinOperator.STRICTLY_EQUAL.value ] left_on, right_on = zip(*eqs) left_on = [*left_on] right_on = [*right_on] strings_or_category = any( col for col in left_on if (is_string_dtype(df[col]) | is_categorical_dtype(df[col])) ) if ( strings_or_category | (not right.duplicated(subset=right_on).any(axis=None)) | (not df.duplicated(subset=left_on).any(axis=None)) ): rest = ( (df[left_on], right[right_on], op) for left_on, right_on, op in conditions if op != _JoinOperator.STRICTLY_EQUAL.value ) left_index, right_index = _MergeOperation( df, right, left_on=left_on, right_on=right_on, sort=False, copy=False, )._get_join_indexers() if not left_index.size: return None return _generate_indices(left_index, right_index, rest) left_on, right_on = eqs[0] outcome = _eq_indices(df[left_on], right[right_on]) if not outcome: return None left_index, right_index, lower_boundary, upper_boundary = outcome eq_check = [condition for condition in conditions if condition != eqs[0]] rest = [ (df.loc[left_index, left_on], right.loc[right_index, right_on], op) for left_on, right_on, op in eq_check ] rest = [ ( extract_array(left_c, extract_numpy=True), extract_array(right_c, extract_numpy=True), operator_map[op], ) for left_c, right_c, op in rest ] def _extension_array_check(arr): """ Convert boolean array to numpy array if it is an extension array. """ if is_extension_array_dtype(arr): return arr.to_numpy(dtype=bool, na_value=False, copy=False) return arr pos = np.copy(upper_boundary) upper =
np.copy(upper_boundary)
numpy.copy
""" see: get_sorted_connected_regions input a 3D mask numpy array, output a dict, with key 1, 2, 3, ... (int), which conforms to the ranking of the volume of the connected component. The value of the dict is lists of locations like {1: [(x1, y1, z1), (x2, y2, z2), ...], ...} """ import numpy as np import Tool_Functions.Functions as Functions import Analysis.connected_region2d_and_scale_free_stat as rim_detect np.set_printoptions(precision=10, suppress=True) epsilon = 0.001 class DimensionError(Exception): def __init__(self, array): self.shape = np.shape(array) self.dimension = len(self.shape) def __str__(self): print("invalid dimension of", self.dimension, ", array has shape", self.shape) def get_connected_regions(input_array, threshold=None, strict=False, start_id=None): """ :param input_array: the mask array, with shape [x, y, z] :param threshold: the threshold of cast the mask array to binary :param strict: whether diagonal pixel is considered as adjacent. :param start_id: the connect region id :return: a dict, with key 1, 2, 3, ... (int), value is list of location: {1: [(x1, y1, z1), (x2, y2, z2), ...], ...} a dict, with key 1, 2, 3, ... (int), value is length(list of location) helper_array has shape [a, b, c, 2], first channel is the merge count, second for region id optional: start_id for next stage """ if threshold is not None: input_array = np.array(input_array > threshold, 'float32') shape = np.shape(input_array) helper_array = np.zeros([shape[0], shape[1], shape[2], 2]) # the last dim has two channels, the first is the key, the second is the volume helper_array[:, :, :, 0] = -input_array tracheae_points = np.where(helper_array[:, :, :, 0] < -epsilon) num_checking_points = len(tracheae_points[0]) # print("we will check:", num_checking_points) id_volume_dict = {} id_loc_dict = {} if start_id is None: connected_id = 1 else: connected_id = start_id for index in range(num_checking_points): pixel_location = (tracheae_points[0][index], tracheae_points[1][index], tracheae_points[2][index]) if helper_array[pixel_location[0], pixel_location[1], pixel_location[2], 0] > epsilon: # this means this point has been allocated id and volume continue else: # this means this point has been allocated id and volume if strict: volume, locations = broadcast_connected_component(helper_array, pixel_location, connected_id) else: volume, locations = broadcast_connected_component_2(helper_array, pixel_location, connected_id) # now, the volume and id has been broadcast to this connected component. id_volume_dict[connected_id] = volume id_loc_dict[connected_id] = locations connected_id += 1 # the id is 1, 2, 3, ... if start_id is None: return id_volume_dict, id_loc_dict, helper_array else: return id_volume_dict, id_loc_dict, helper_array, connected_id def get_connected_regions_light(input_flow, strict=False): """ :param input_flow: the binary mask array, with shape [x, y, z], pid_id :param strict: whether diagonal pixel is considered as adjacent. :return: a dict, with key 1, 2, 3, ... (int), value is list of location: {1: [(x1, y1, z1), (x2, y2, z2), ...], ...} """ input_array = input_flow[0] print("processing interval", input_flow[1]) shape =
np.shape(input_array)
numpy.shape
# -*- coding: utf-8 -*- """ Created on Mon Jul 26 12:27:48 2021 @author: bjorn Traininer and Evaluation loops functioning with WandB """ import torch import time from tqdm import tqdm import wandb import numpy as np from sklearn.metrics import confusion_matrix from model_utils import get_rri, plot_grad_flow def train(args, model, optimizer, criterion): model.train() # Turn on the train mode total_loss = 0. batch_nr = 0 start_time = time.time() # src_mask = model.generate_square_subsequent_mask(bptt).to(device) # for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)): # data, targets = get_batch(train_data, i) for batch in tqdm(train_loader): batch_nr += 1 data, targets = batch data = data[:,:,0] # plt.plot(data[0,:]) # plt.show() rri = get_rri(data) data, rri, targets = torch.tensor(data, dtype=torch.float, device=device), torch.tensor(rri, dtype=torch.float, device=device), torch.tensor(targets, dtype=torch.float, device=device) optimizer.zero_grad() # if data.size(0) != bptt: # src_mask = model.generate_square_subsequent_mask(data.size(0)).to(device) # print(data.shape) # print(src_mask.shape) # output = model(data) # if n_class>2, and use cross entropy loss output = model(data, rri)[:,0] # if n_class==2 # output = torch.argmax(output, dim=1) # output = torch.tensor(output, dtype=torch.float, device=device, requires_grad=True) # print('output:', output) # print('targets:', targets) loss = criterion(output, targets) loss.backward() # plot_grad_flow(model.named_parameters()) # torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=2.0 , norm_type=2) optimizer.step() total_loss += loss.item() log_interval = 50 if batch_nr % log_interval == 0 and batch_nr > 0: cur_loss = total_loss / log_interval elapsed = time.time() - start_time # print('| epoch', epoch, # '| train loss', np.round(cur_loss, 4), # '| ms/batch', np.round(elapsed*1000/log_interval, 3), # '| lr', np.round(scheduler.get_last_lr()[0], 4) # ) total_loss = 0. start_time = time.time() # scheduler.step() wandb.log({ "Train Loss": cur_loss}) return model, cur_loss def evaluate(args, eval_model, data_source, criterion): true_label = np.array([]) predictions = np.array([]) loss_list = [] eval_model.eval() # Turn on the evaluation mode tot_val_loss = 0. val_batch_nr = 0 # src_mask = model.generate_square_subsequent_mask(bptt).to(device) with torch.no_grad(): # for i in range(0, data_source.size(0) - 1, bptt): # data, targets = get_batch(data_source, i) for batch in data_source: data, targets = batch data = data[:,:,0] rri = get_rri(data) data, rri, targets = torch.tensor(data, dtype=torch.float, device=device), torch.tensor(rri, dtype=torch.float, device=device), torch.tensor(targets, dtype=torch.float, device=device) # if data.size(0) != bptt: # src_mask = model.generate_square_subsequent_mask(data.size(0)).to(device) output = eval_model(data, rri)[:,0] # output = torch.argmax(output, dim=1) # output = torch.tensor(output, dtype=torch.float, device=device, requires_grad=True) loss = criterion(output, targets) tot_val_loss += loss.item() val_batch_nr+=1 preds = np.round(torch.sigmoid(output).cpu().detach()) # print('val preds:', preds) # print('val targets:', targets.cpu().detach()) predictions = np.append(predictions, preds) true_label = np.append(true_label, targets.cpu().detach()) # Get losses and accuracy cm = confusion_matrix(true_label, predictions, labels=[0,1]) acc = np.sum(
np.diag(cm)
numpy.diag
import numpy as np import scipy as sp from scipy.stats import multivariate_normal import unittest from gp_project import * class TestKronecker(unittest.TestCase): """Test the functions defined in gp_project.kronecker. """ def test_kronecker(self): np.random.seed(1) # Create random matrices [a, b, c] = [np.random.rand(3, 3+i) for i in range(3)] np.testing.assert_array_almost_equal( kronecker([a, b, c]), # Custom version np.kron(a, np.kron(b, c)) # Standard nested version ) def test_cartesian(self): np.random.seed(1) a = [1, 2, 3] b = [0, 2] c = [5, 6] manual_cartesian = np.array( [[1, 0, 5], [1, 0, 6], [1, 2, 5], [1, 2, 6], [2, 0, 5], [2, 0, 6], [2, 2, 5], [2, 2, 6], [3, 0, 5], [3, 0, 6], [3, 2, 5], [3, 2, 6], ] ) auto_cart = cartesian(a, b, c) print(auto_cart) np.testing.assert_array_almost_equal(manual_cartesian, auto_cart) def test_kron_mvprod(self): np.random.seed(1) # Create random matrices Ks = [np.random.rand(3, 3+i) for i in range(3)] # Create random vector with correct shape tot_size = np.prod([k.shape[1] for k in Ks]) x = np.random.rand(tot_size).reshape((tot_size, 1)) # Construct entire kronecker product then multiply big = kronecker(Ks) slow_ans = np.matmul(big, x) # Use tricks to avoid construction of entire kronecker product fast_ans = kron_mvprod(Ks, x) np.testing.assert_array_almost_equal(slow_ans, fast_ans) def test_kron_mmprod(self): np.random.seed(1) # Create random matrices Ks = [np.random.rand(3, 3+i) for i in range(3)] # Create random matrix with correct shape tot_size = np.prod([k.shape[1] for k in Ks]) m = np.random.rand(tot_size, 4) # column size could be anything # Construct entire kronecker product then multiply big = kronecker(Ks) slow_ans = np.matmul(big, m) # Use tricks to avoid construction of entire kronecker product fast_ans = kron_mmprod(Ks, m) np.testing.assert_array_almost_equal(slow_ans, fast_ans) def test_kron_diag(self): np.random.seed(1) # Create random matrices Ks = [np.random.rand(5, 5) for i in range(4)] slow_ans = np.diag(kronecker(Ks)) Kdiags = map(np.diag, Ks) fast_ans = kron_diag(Kdiags) np.testing.assert_array_almost_equal(slow_ans, fast_ans) def test_kron_chol_vsolve(self): np.random.seed(1) # Make mean, covariance, and noise nvars = 3 lenvars = 5 xs = np.random.rand(nvars, lenvars) xs = np.sort(xs) Ks = [gaussian_kernel(x, x, .1) for x in xs] chols = list(map(np.linalg.cholesky, Ks)) tot_size = np.prod([k.shape[1] for k in Ks]) b = np.random.rand(tot_size, 1) fast_ans = kron_chol_vsolve(chols, b) big = kronecker(Ks) big_chol = np.linalg.cholesky(big) slow_ans = sp.linalg.cho_solve((big_chol, True), b) np.testing.assert_array_almost_equal(slow_ans, fast_ans) def test_kron_chol_msolve(self): np.random.seed(1) # Make mean, covariance, and noise nvars = 3 lenvars = 5 xs = np.random.rand(nvars, lenvars) xs = np.sort(xs) Ks = [gaussian_kernel(x, x, .1) for x in xs] chols = list(map(np.linalg.cholesky, Ks)) tot_size = np.prod([k.shape[1] for k in Ks]) b = np.random.rand(tot_size, 4) fast_ans = kron_chol_msolve(chols, b) big = kronecker(Ks) big_chol = np.linalg.cholesky(big) slow_ans = sp.linalg.cho_solve((big_chol, True), b) np.testing.assert_array_almost_equal(slow_ans, fast_ans) def test_KroneckerNormal_EVDs_logp(self): np.random.seed(1) # Make mean, covariance, and noise nvars = 3 lenvars = 5 xs = np.random.rand(nvars, lenvars) xs = np.sort(xs) Ks = [gaussian_kernel(x, x, .1) for x in xs] tot_size =
np.prod([k.shape[1] for k in Ks])
numpy.prod
import numpy as np import main.utils as utils import matplotlib.pyplot as plt from scipy.io import loadmat import cv2 import os from random import sample import pickle # ---------------------------- 说明 ---------------------------------- # 可视化图像检索效果图 # 需要 1. database和query数据集路径 2. xxx.npz文件(其中保存了相似度矩阵) # 3. SMCNTF生成的最优路径文件 pathid.pkl # 4. SeqSLAM生成的相似度矩阵 xxx.mat # 每行打(*)号的需要根据实际情况配置 # 在论文中,对比了pairwise、MCN、SeqSLAM、SMCN和SMCNTF一共5种方法 # ---------------------------- 说明 ---------------------------------- # dataset root dir root = 'E:/project/scut/graduation/datasets/gardens_point/' #(*) # load xxx.npz S_file = './vis3/gp_dlnr.npz' #(*) S = np.load(S_file) S_pw = S['S_pw'] S_mcn = S['S_mcn'] # use SeqSLAM2.0 toolbox from matlab, the similarity matrix has much nan value S_seq = loadmat('../cp3_4/seqslam/gp_dlnr.mat')['S'] #(*) tmp = np.isnan(S_seq) S_seq[tmp] = np.max(S_seq[~tmp]) S_smcn = S['S_smcn'] S_smcntf = S['S_smcntf'] with open('../cp3_4/s_dd.pkl', 'rb') as f: S_dd = pickle.load(f) dbfile = 'day_left/' #(*) database file qfile = 'night_right/' #(*) query file dbn = len(os.listdir(root + dbfile)) qn = len(os.listdir(root + qfile)) qn = min(dbn, qn) numPicToShow = 10 #(*) if root.endswith('scut/'): qn = qn // 4 picid = sample(range(0, qn), numPicToShow) numpic = len(picid) img_format = 'Image%03d.jpg' #(*) err = 3 #(*) saveName = './vis2/gp.png' #(*) if root.endswith('robotcar/'): db_gps = np.load(root + 'gps_snow.npy') q_gps = np.load(root + 'gps_night.npy') _, gt = utils.getGpsGT(db_gps, q_gps, err) else: gt = utils.getGroundTruthMatrix(qn, err) gtl = [] for each in picid: gtl.append(list(np.where(gt[:, each])[0])) id_pw = np.argmax(S_pw[:, picid], axis=0) id_dd =
np.argmax(S_dd[:, picid], axis=0)
numpy.argmax
""" The guts are in: run_transit_inference run_onetransit_inference run_alltransit_inference run_allindivtransit_inference """ import numpy as np, matplotlib.pyplot as plt, pandas as pd, pymc3 as pm import pickle, os from astropy import units as units, constants as const from numpy import array as nparr from functools import partial from collections import OrderedDict import exoplanet as xo from exoplanet.gp import terms, GP import theano.tensor as tt from timmy.plotting import plot_MAP_data as plot_MAP_phot from timmy.plotting import plot_MAP_rv from timmy.paths import RESULTSDIR from timmy.priors import RSTAR, RSTAR_STDEV, LOGG, LOGG_STDEV # factor * 10**logg / r_star = rho factor = 5.141596357654149e-05 class ModelParser: def __init__(self, modelid): self.initialize_model(modelid) def initialize_model(self, modelid): self.modelid = modelid self.modelcomponents = modelid.split('_') self.verify_modelcomponents() def verify_modelcomponents(self): validcomponents = ['transit', 'gprot', 'rv', 'alltransit', 'quad', 'quaddepthvar', 'onetransit', 'allindivtransit', 'tessindivtransit', 'oddindivtransit', 'evenindivtransit'] for i in range(5): validcomponents.append('{}sincosPorb'.format(i)) validcomponents.append('{}sincosProt'.format(i)) assert len(self.modelcomponents) >= 1 for modelcomponent in self.modelcomponents: if modelcomponent not in validcomponents: errmsg = ( 'Got modelcomponent {}. validcomponents include {}.' .format(modelcomponent, validcomponents) ) raise ValueError(errmsg) class ModelFitter(ModelParser): """ Given a modelid of the form "transit", or "rv" and a dataframe containing (time and flux), or (time and rv), run the inference. """ def __init__(self, modelid, data_df, prior_d, N_samples=2000, N_cores=16, target_accept=0.8, N_chains=4, plotdir=None, pklpath=None, overwrite=1, rvdf=None): self.N_samples = N_samples self.N_cores = N_cores self.N_chains = N_chains self.PLOTDIR = plotdir self.OVERWRITE = overwrite if 'transit' == modelid: self.data = data_df self.x_obs = nparr(data_df['x_obs']) self.y_obs = nparr(data_df['y_obs']) self.y_err = nparr(data_df['y_err']) self.t_exp = np.nanmedian(np.diff(self.x_obs)) if modelid in ['alltransit', 'alltransit_quad', 'alltransit_quaddepthvar', 'onetransit', 'allindivtransit', 'tessindivtransit', 'oddindivtransit', 'evenindivtransit']: assert isinstance(data_df, OrderedDict) self.data = data_df if 'rv' in modelid: raise NotImplementedError self.initialize_model(modelid) if modelid not in ['alltransit', 'alltransit_quad', 'alltransit_quaddepthvar', 'onetransit', 'allindivtransit', 'tessindivtransit', 'oddindivtransit', 'evenindivtransit']: self.verify_inputdata() #NOTE threadsafety needn't be hardcoded make_threadsafe = False if modelid == 'transit': self.run_transit_inference( prior_d, pklpath, make_threadsafe=make_threadsafe ) elif modelid == 'onetransit': self.run_onetransit_inference( prior_d, pklpath, make_threadsafe=make_threadsafe ) elif modelid == 'rv': self.run_rv_inference( prior_d, pklpath, make_threadsafe=make_threadsafe ) elif modelid in ['alltransit', 'alltransit_quad', 'alltransit_quaddepthvar']: self.run_alltransit_inference( prior_d, pklpath, make_threadsafe=make_threadsafe ) elif modelid in ['allindivtransit', 'tessindivtransit', 'oddindivtransit', 'evenindivtransit']: self.run_allindivtransit_inference( prior_d, pklpath, make_threadsafe=make_threadsafe, target_accept=target_accept ) def verify_inputdata(self): np.testing.assert_array_equal( self.x_obs, self.x_obs[np.argsort(self.x_obs)] ) assert len(self.x_obs) == len(self.y_obs) assert isinstance(self.x_obs, np.ndarray) assert isinstance(self.y_obs, np.ndarray) def run_transit_inference(self, prior_d, pklpath, make_threadsafe=True): # if the model has already been run, pull the result from the # pickle. otherwise, run it. if os.path.exists(pklpath): d = pickle.load(open(pklpath, 'rb')) self.model = d['model'] self.trace = d['trace'] self.map_estimate = d['map_estimate'] return 1 with pm.Model() as model: # Fixed data errors. sigma = self.y_err # Define priors and PyMC3 random variables to sample over. # Stellar parameters. (Following tess.world notebooks). logg_star = pm.Normal("logg_star", mu=LOGG, sd=LOGG_STDEV) r_star = pm.Bound(pm.Normal, lower=0.0)( "r_star", mu=RSTAR, sd=RSTAR_STDEV ) rho_star = pm.Deterministic( "rho_star", factor*10**logg_star / r_star ) # Transit parameters. mean = pm.Normal( "mean", mu=prior_d['mean'], sd=1e-2, testval=prior_d['mean'] ) t0 = pm.Normal( "t0", mu=prior_d['t0'], sd=2e-3, testval=prior_d['t0'] ) period = pm.Normal( 'period', mu=prior_d['period'], sd=5e-4, testval=prior_d['period'] ) # NOTE: might want to implement kwarg for flexibility # u = xo.distributions.QuadLimbDark( # "u", testval=prior_d['u'] # ) u0 = pm.Uniform( 'u[0]', lower=prior_d['u[0]']-0.15, upper=prior_d['u[0]']+0.15, testval=prior_d['u[0]'] ) u1 = pm.Uniform( 'u[1]', lower=prior_d['u[1]']-0.15, upper=prior_d['u[1]']+0.15, testval=prior_d['u[1]'] ) u = [u0, u1] # # The Espinoza (2018) parameterization for the joint radius ratio and # # impact parameter distribution # r, b = xo.distributions.get_joint_radius_impact( # min_radius=0.001, max_radius=1.0, # testval_r=prior_d['r'], # testval_b=prior_d['b'] # ) # # NOTE: apparently, it's been deprecated. DFM's manuscript notes # that it leads to Rp/Rs values biased high log_r = pm.Uniform('log_r', lower=np.log(1e-2), upper=np.log(1), testval=prior_d['log_r']) r = pm.Deterministic('r', tt.exp(log_r)) b = xo.distributions.ImpactParameter( "b", ror=r, testval=prior_d['b'] ) orbit = xo.orbits.KeplerianOrbit( period=period, t0=t0, b=b, rho_star=rho_star, r_star=r_star ) mu_transit = pm.Deterministic( 'mu_transit', xo.LimbDarkLightCurve(u).get_light_curve( orbit=orbit, r=r, t=self.x_obs, texp=self.t_exp ).T.flatten() ) # # Derived parameters # # planet radius in jupiter radii r_planet = pm.Deterministic( "r_planet", (r*r_star)*( 1*units.Rsun/(1*units.Rjup) ).cgs.value ) # # eq 30 of winn+2010, ignoring planet density. # a_Rs = pm.Deterministic( "a_Rs", (rho_star * period**2)**(1/3) * (( (1*units.gram/(1*units.cm)**3) * (1*units.day**2) * const.G / (3*np.pi) )**(1/3)).cgs.value ) # # cosi. assumes e=0 (e.g., Winn+2010 eq 7) # cosi = pm.Deterministic("cosi", b / a_Rs) # probably safer than tt.arccos(cosi) sini = pm.Deterministic("sini", pm.math.sqrt( 1 - cosi**2 )) # # transit durations (T_14, T_13) for circular orbits. Winn+2010 Eq 14, 15. # units: hours. # T_14 = pm.Deterministic( 'T_14', (period/np.pi)* tt.arcsin( (1/a_Rs) * pm.math.sqrt( (1+r)**2 - b**2 ) * (1/sini) )*24 ) T_13 = pm.Deterministic( 'T_13', (period/np.pi)* tt.arcsin( (1/a_Rs) * pm.math.sqrt( (1-r)**2 - b**2 ) * (1/sini) )*24 ) # # mean model and likelihood # mean_model = mu_transit + mean mu_model = pm.Deterministic('mu_model', mean_model) likelihood = pm.Normal('obs', mu=mean_model, sigma=sigma, observed=self.y_obs) # Optimizing map_estimate = pm.find_MAP(model=model) # start = model.test_point # if 'transit' in self.modelcomponents: # map_estimate = xo.optimize(start=start, # vars=[r, b, period, t0]) # map_estimate = xo.optimize(start=map_estimate) # Plot the simulated data and the maximum a posteriori model to # make sure that our initialization looks ok. self.y_MAP = ( map_estimate['mean'] + map_estimate['mu_transit'] ) if make_threadsafe: pass else: # as described in # https://github.com/matplotlib/matplotlib/issues/15410 # matplotlib is not threadsafe. so do not make plots before # sampling, because some child processes tries to close a # cached file, and crashes the sampler. print(map_estimate) if self.PLOTDIR is None: raise NotImplementedError outpath = os.path.join(self.PLOTDIR, 'test_{}_MAP.png'.format(self.modelid)) plot_MAP_phot(self.x_obs, self.y_obs, self.y_MAP, outpath) # sample from the posterior defined by this model. trace = pm.sample( tune=self.N_samples, draws=self.N_samples, start=map_estimate, cores=self.N_cores, chains=self.N_chains, step=xo.get_dense_nuts_step(target_accept=0.8), ) with open(pklpath, 'wb') as buff: pickle.dump({'model': model, 'trace': trace, 'map_estimate': map_estimate}, buff) self.model = model self.trace = trace self.map_estimate = map_estimate def run_rv_inference(self, prior_d, pklpath, make_threadsafe=True): # if the model has already been run, pull the result from the # pickle. otherwise, run it. if os.path.exists(pklpath): d = pickle.load(open(pklpath, 'rb')) self.model = d['model'] self.trace = d['trace'] self.map_estimate = d['map_estimate'] return 1 with pm.Model() as model: # Fixed data errors. sigma = self.y_err # Define priors and PyMC3 random variables to sample over. # Stellar parameters. (Following tess.world notebooks). logg_star = pm.Normal("logg_star", mu=prior_d['logg_star'][0], sd=prior_d['logg_star'][1]) r_star = pm.Bound(pm.Normal, lower=0.0)( "r_star", mu=prior_d['r_star'][0], sd=prior_d['r_star'][1] ) rho_star = pm.Deterministic( "rho_star", factor*10**logg_star / r_star ) # RV parameters. # Chen & Kipping predicted M: 49.631 Mearth, based on Rp of 8Re. It # could be bigger, e.g., 94m/s if 1 Mjup. # Predicted K: 14.26 m/s #K = pm.Lognormal("K", mu=np.log(prior_d['K'][0]), # sigma=prior_d['K'][1]) log_K = pm.Uniform('log_K', lower=prior_d['log_K'][0], upper=prior_d['log_K'][1]) K = pm.Deterministic('K', tt.exp(log_K)) period = pm.Normal("period", mu=prior_d['period'][0], sigma=prior_d['period'][1]) ecs = xo.UnitDisk("ecs", testval=np.array([0.7, -0.3])) ecc = pm.Deterministic("ecc", tt.sum(ecs ** 2)) omega = pm.Deterministic("omega", tt.arctan2(ecs[1], ecs[0])) phase = xo.UnitUniform("phase") # use time of transit, rather than time of periastron. we do, after # all, know it. t0 = pm.Normal( "t0", mu=prior_d['t0'][0], sd=prior_d['t0'][1], testval=prior_d['t0'][0] ) orbit = xo.orbits.KeplerianOrbit( period=period, t0=t0, rho_star=rho_star, ecc=ecc, omega=omega, r_star=r_star ) #FIXME edit these # noise model parameters: FIXME what are these? S_tot = pm.Lognormal("S_tot", mu=np.log(prior_d['S_tot'][0]), sigma=prior_d['S_tot'][1]) ell = pm.Lognormal("ell", mu=np.log(prior_d['ell'][0]), sigma=prior_d['ell'][1]) # per instrument parameters means = pm.Normal( "means", mu=np.array([np.median(self.y_obs[self.telvec == u]) for u in self.uniqueinstrs]), sigma=500, shape=self.num_inst, ) # different instruments have different intrinsic jitters. assign # those based on the reported error bars. (NOTE: might inflate or # overwrite these, for say, CHIRON) sigmas = pm.HalfNormal( "sigmas", sigma=np.array([np.median(self.y_err[self.telvec == u]) for u in self.uniqueinstrs]), shape=self.num_inst ) # Compute the RV offset and jitter for each data point depending on # its instrument mean = tt.zeros(len(self.x_obs)) diag = tt.zeros(len(self.x_obs)) for i, u in enumerate(self.uniqueinstrs): mean += means[i] * (self.telvec == u) diag += (self.y_err ** 2 + sigmas[i] ** 2) * (self.telvec == u) pm.Deterministic("mean", mean) pm.Deterministic("diag", diag) # NOTE: local function definition is jank def rv_model(x): return orbit.get_radial_velocity(x, K=K) kernel = xo.gp.terms.SHOTerm(S_tot=S_tot, w0=2*np.pi/ell, Q=1.0/3) # NOTE temp gp = xo.gp.GP(kernel, self.x_obs, diag, mean=rv_model) # gp = xo.gp.GP(kernel, self.x_obs, diag, # mean=orbit.get_radial_velocity(self.x_obs, K=K)) # the actual "conditioning" step, i.e. the likelihood definition gp.marginal("obs", observed=self.y_obs-mean) pm.Deterministic("gp_pred", gp.predict()) map_estimate = model.test_point map_estimate = xo.optimize(map_estimate, [means]) map_estimate = xo.optimize(map_estimate, [means, phase]) map_estimate = xo.optimize(map_estimate, [means, phase, log_K]) map_estimate = xo.optimize(map_estimate, [means, t0, log_K, period, ecs]) map_estimate = xo.optimize(map_estimate, [sigmas, S_tot, ell]) map_estimate = xo.optimize(map_estimate) # # Derived parameters # #TODO # # planet radius in jupiter radii # r_planet = pm.Deterministic( # "r_planet", (r*r_star)*( 1*units.Rsun/(1*units.Rjup) ).cgs.value # ) # Plot the simulated data and the maximum a posteriori model to # make sure that our initialization looks ok. # i.e., "detrended". the "rv data" are y_obs - mean. The "trend" model # is a GP. FIXME: AFAIK, it doesn't do much as-implemented. self.y_MAP = ( self.y_obs - map_estimate["mean"] - map_estimate["gp_pred"] ) t_pred = np.linspace( self.x_obs.min() - 10, self.x_obs.max() + 10, 10000 ) with model: # NOTE temp y_pred_MAP = xo.eval_in_model(rv_model(t_pred), map_estimate) # # NOTE temp # y_pred_MAP = xo.eval_in_model( # orbit.get_radial_velocity(t_pred, K=K), map_estimate # ) self.x_pred = t_pred self.y_pred_MAP = y_pred_MAP if make_threadsafe: pass else: # as described in # https://github.com/matplotlib/matplotlib/issues/15410 # matplotlib is not threadsafe. so do not make plots before # sampling, because some child processes tries to close a # cached file, and crashes the sampler. print(map_estimate) if self.PLOTDIR is None: raise NotImplementedError outpath = os.path.join(self.PLOTDIR, 'test_{}_MAP.png'.format(self.modelid)) plot_MAP_rv(self.x_obs, self.y_obs, self.y_MAP, self.y_err, self.telcolors, self.x_pred, self.y_pred_MAP, map_estimate, outpath) with model: # sample from the posterior defined by this model. trace = pm.sample( tune=self.N_samples, draws=self.N_samples, start=map_estimate, cores=self.N_cores, chains=self.N_chains, step=xo.get_dense_nuts_step(target_accept=0.8), ) # with open(pklpath, 'wb') as buff: # pickle.dump({'model': model, 'trace': trace, # 'map_estimate': map_estimate}, buff) self.model = model self.trace = trace self.map_estimate = map_estimate def run_alltransit_inference(self, prior_d, pklpath, make_threadsafe=True): # if the model has already been run, pull the result from the # pickle. otherwise, run it. if os.path.exists(pklpath): d = pickle.load(open(pklpath, 'rb')) self.model = d['model'] self.trace = d['trace'] self.map_estimate = d['map_estimate'] return 1 with pm.Model() as model: # Shared parameters # Stellar parameters. (Following tess.world notebooks). logg_star = pm.Normal("logg_star", mu=LOGG, sd=LOGG_STDEV) r_star = pm.Bound(pm.Normal, lower=0.0)( "r_star", mu=RSTAR, sd=RSTAR_STDEV ) rho_star = pm.Deterministic( "rho_star", factor*10**logg_star / r_star ) # fix Rp/Rs across bandpasses, b/c you're assuming it's a planet if 'quaddepthvar' not in self.modelid: log_r = pm.Uniform('log_r', lower=np.log(1e-2), upper=np.log(1), testval=prior_d['log_r']) r = pm.Deterministic('r', tt.exp(log_r)) else: log_r_Tband = pm.Uniform('log_r_Tband', lower=np.log(1e-2), upper=np.log(1), testval=prior_d['log_r_Tband']) r_Tband = pm.Deterministic('r_Tband', tt.exp(log_r_Tband)) log_r_Rband = pm.Uniform('log_r_Rband', lower=np.log(1e-2), upper=np.log(1), testval=prior_d['log_r_Rband']) r_Rband = pm.Deterministic('r_Rband', tt.exp(log_r_Rband)) log_r_Bband = pm.Uniform('log_r_Bband', lower=np.log(1e-2), upper=np.log(1), testval=prior_d['log_r_Bband']) r_Bband = pm.Deterministic('r_Bband', tt.exp(log_r_Bband)) r = r_Tband # Some orbital parameters t0 = pm.Normal( "t0", mu=prior_d['t0'], sd=5e-3, testval=prior_d['t0'] ) period = pm.Normal( 'period', mu=prior_d['period'], sd=5e-3, testval=prior_d['period'] ) b = xo.distributions.ImpactParameter( "b", ror=r, testval=prior_d['b'] ) orbit = xo.orbits.KeplerianOrbit( period=period, t0=t0, b=b, rho_star=rho_star, r_star=r_star ) # NOTE: limb-darkening should be bandpass specific, but we don't # have the SNR to justify that, so go with TESS-dominated u0 = pm.Uniform( 'u[0]', lower=prior_d['u[0]']-0.15, upper=prior_d['u[0]']+0.15, testval=prior_d['u[0]'] ) u1 = pm.Uniform( 'u[1]', lower=prior_d['u[1]']-0.15, upper=prior_d['u[1]']+0.15, testval=prior_d['u[1]'] ) u = [u0, u1] star = xo.LimbDarkLightCurve(u) # Loop over "instruments" (TESS, then each ground-based lightcurve) parameters = dict() lc_models = dict() roughdepths = dict() for n, (name, (x, y, yerr, texp)) in enumerate(self.data.items()): # Define per-instrument parameters in a submodel, to not need # to prefix the names. Yields e.g., "TESS_mean", # "elsauce_0_mean", "elsauce_2_a2" with pm.Model(name=name, model=model): # Transit parameters. mean = pm.Normal( "mean", mu=prior_d[f'{name}_mean'], sd=1e-2, testval=prior_d[f'{name}_mean'] ) if 'quad' in self.modelid: if name != 'tess': # units: rel flux per day. a1 = pm.Normal( "a1", mu=prior_d[f'{name}_a1'], sd=1, testval=prior_d[f'{name}_a1'] ) # units: rel flux per day^2. a2 = pm.Normal( "a2", mu=prior_d[f'{name}_a2'], sd=1, testval=prior_d[f'{name}_a2'] ) if self.modelid == 'alltransit': lc_models[name] = pm.Deterministic( f'{name}_mu_transit', mean + star.get_light_curve( orbit=orbit, r=r, t=x, texp=texp ).T.flatten() ) elif self.modelid == 'alltransit_quad': if name != 'tess': # midpoint for this definition of the quadratic trend _tmid = np.nanmedian(x) lc_models[name] = pm.Deterministic( f'{name}_mu_transit', mean + a1*(x-_tmid) + a2*(x-_tmid)**2 + star.get_light_curve( orbit=orbit, r=r, t=x, texp=texp ).T.flatten() ) elif name == 'tess': lc_models[name] = pm.Deterministic( f'{name}_mu_transit', mean + star.get_light_curve( orbit=orbit, r=r, t=x, texp=texp ).T.flatten() ) elif self.modelid == 'alltransit_quaddepthvar': if name != 'tess': # midpoint for this definition of the quadratic trend _tmid = np.nanmedian(x) # do custom depth-to- if (name == 'elsauce_20200401' or name == 'elsauce_20200426' ): r = r_Rband elif name == 'elsauce_20200521': r = r_Tband elif name == 'elsauce_20200614': r = r_Bband transit_lc = star.get_light_curve( orbit=orbit, r=r, t=x, texp=texp ).T.flatten() lc_models[name] = pm.Deterministic( f'{name}_mu_transit', mean + a1*(x-_tmid) + a2*(x-_tmid)**2 + transit_lc ) roughdepths[name] = pm.Deterministic( f'{name}_roughdepth', pm.math.abs_(transit_lc).max() ) elif name == 'tess': r = r_Tband transit_lc = star.get_light_curve( orbit=orbit, r=r, t=x, texp=texp ).T.flatten() lc_models[name] = pm.Deterministic( f'{name}_mu_transit', mean + transit_lc ) roughdepths[name] = pm.Deterministic( f'{name}_roughdepth', pm.math.abs_(transit_lc).max() ) # TODO: add error bar fudge likelihood = pm.Normal( f'{name}_obs', mu=lc_models[name], sigma=yerr, observed=y ) # # Derived parameters # if self.modelid == 'alltransit_quaddepthvar': r = r_Tband # planet radius in jupiter radii r_planet = pm.Deterministic( "r_planet", (r*r_star)*( 1*units.Rsun/(1*units.Rjup) ).cgs.value ) # # eq 30 of winn+2010, ignoring planet density. # a_Rs = pm.Deterministic( "a_Rs", (rho_star * period**2)**(1/3) * (( (1*units.gram/(1*units.cm)**3) * (1*units.day**2) * const.G / (3*np.pi) )**(1/3)).cgs.value ) # # cosi. assumes e=0 (e.g., Winn+2010 eq 7) # cosi = pm.Deterministic("cosi", b / a_Rs) # probably safer than tt.arccos(cosi) sini = pm.Deterministic("sini", pm.math.sqrt( 1 - cosi**2 )) # # transit durations (T_14, T_13) for circular orbits. Winn+2010 Eq 14, 15. # units: hours. # T_14 = pm.Deterministic( 'T_14', (period/np.pi)* tt.arcsin( (1/a_Rs) * pm.math.sqrt( (1+r)**2 - b**2 ) * (1/sini) )*24 ) T_13 = pm.Deterministic( 'T_13', (period/np.pi)* tt.arcsin( (1/a_Rs) * pm.math.sqrt( (1-r)**2 - b**2 ) * (1/sini) )*24 ) # Optimizing map_estimate = pm.find_MAP(model=model) # start = model.test_point # if 'transit' in self.modelcomponents: # map_estimate = xo.optimize(start=start, # vars=[r, b, period, t0]) # map_estimate = xo.optimize(start=map_estimate) if make_threadsafe: pass else: # NOTE: would usually plot MAP estimate here, but really # there's not a huge need. print(map_estimate) pass # sample from the posterior defined by this model. trace = pm.sample( tune=self.N_samples, draws=self.N_samples, start=map_estimate, cores=self.N_cores, chains=self.N_chains, step=xo.get_dense_nuts_step(target_accept=0.8), ) with open(pklpath, 'wb') as buff: pickle.dump({'model': model, 'trace': trace, 'map_estimate': map_estimate}, buff) self.model = model self.trace = trace self.map_estimate = map_estimate def run_onetransit_inference(self, prior_d, pklpath, make_threadsafe=True): """ Similar to "run_transit_inference", but with more restrictive priors on ephemeris. Also, it simultaneously fits for quadratic trend. """ # if the model has already been run, pull the result from the # pickle. otherwise, run it. if os.path.exists(pklpath): d = pickle.load(open(pklpath, 'rb')) self.model = d['model'] self.trace = d['trace'] self.map_estimate = d['map_estimate'] return 1 with pm.Model() as model: assert len(self.data.keys()) == 1 name = list(self.data.keys())[0] x_obs = list(self.data.values())[0][0] y_obs = list(self.data.values())[0][1] y_err = list(self.data.values())[0][2] t_exp = list(self.data.values())[0][3] # Fixed data errors. sigma = y_err # Define priors and PyMC3 random variables to sample over. # Stellar parameters. (Following tess.world notebooks). logg_star = pm.Normal("logg_star", mu=LOGG, sd=LOGG_STDEV) r_star = pm.Bound(pm.Normal, lower=0.0)( "r_star", mu=RSTAR, sd=RSTAR_STDEV ) rho_star = pm.Deterministic( "rho_star", factor*10**logg_star / r_star ) # Transit parameters. t0 = pm.Normal( "t0", mu=prior_d['t0'], sd=1e-3, testval=prior_d['t0'] ) period = pm.Normal( 'period', mu=prior_d['period'], sd=3e-4, testval=prior_d['period'] ) # NOTE: might want to implement kwarg for flexibility # u = xo.distributions.QuadLimbDark( # "u", testval=prior_d['u'] # ) u0 = pm.Uniform( 'u[0]', lower=prior_d['u[0]']-0.15, upper=prior_d['u[0]']+0.15, testval=prior_d['u[0]'] ) u1 = pm.Uniform( 'u[1]', lower=prior_d['u[1]']-0.15, upper=prior_d['u[1]']+0.15, testval=prior_d['u[1]'] ) u = [u0, u1] # # The Espinoza (2018) parameterization for the joint radius ratio and # # impact parameter distribution # r, b = xo.distributions.get_joint_radius_impact( # min_radius=0.001, max_radius=1.0, # testval_r=prior_d['r'], # testval_b=prior_d['b'] # ) # # NOTE: apparently, it's been deprecated. DFM's manuscript notes # that it leads to Rp/Rs values biased high log_r = pm.Uniform('log_r', lower=np.log(1e-2), upper=np.log(1), testval=prior_d['log_r']) r = pm.Deterministic('r', tt.exp(log_r)) b = xo.distributions.ImpactParameter( "b", ror=r, testval=prior_d['b'] ) # the transit orbit = xo.orbits.KeplerianOrbit( period=period, t0=t0, b=b, rho_star=rho_star, r_star=r_star ) transit_lc = pm.Deterministic( 'transit_lc', xo.LimbDarkLightCurve(u).get_light_curve( orbit=orbit, r=r, t=x_obs, texp=t_exp ).T.flatten() ) # quadratic trend parameters mean = pm.Normal( f"{name}_mean", mu=prior_d[f'{name}_mean'], sd=1e-2, testval=prior_d[f'{name}_mean'] ) a1 = pm.Normal( f"{name}_a1", mu=prior_d[f'{name}_a1'], sd=1, testval=prior_d[f'{name}_a1'] ) a2 = pm.Normal( f"{name}_a2", mu=prior_d[f'{name}_a2'], sd=1, testval=prior_d[f'{name}_a2'] ) _tmid = np.nanmedian(x_obs) lc_model = pm.Deterministic( 'mu_transit', mean + a1*(x_obs-_tmid) + a2*(x_obs-_tmid)**2 + transit_lc ) roughdepth = pm.Deterministic( f'roughdepth', pm.math.abs_(transit_lc).max() ) # # Derived parameters # # planet radius in jupiter radii r_planet = pm.Deterministic( "r_planet", (r*r_star)*( 1*units.Rsun/(1*units.Rjup) ).cgs.value ) # # eq 30 of winn+2010, ignoring planet density. # a_Rs = pm.Deterministic( "a_Rs", (rho_star * period**2)**(1/3) * (( (1*units.gram/(1*units.cm)**3) * (1*units.day**2) * const.G / (3*np.pi) )**(1/3)).cgs.value ) # # cosi. assumes e=0 (e.g., Winn+2010 eq 7) # cosi = pm.Deterministic("cosi", b / a_Rs) # safer than tt.arccos(cosi) sini = pm.Deterministic("sini", pm.math.sqrt( 1 - cosi**2 )) # # transit durations (T_14, T_13) for circular orbits. Winn+2010 Eq 14, 15. # units: hours. # T_14 = pm.Deterministic( 'T_14', (period/np.pi)* tt.arcsin( (1/a_Rs) * pm.math.sqrt( (1+r)**2 - b**2 ) * (1/sini) )*24 ) T_13 = pm.Deterministic( 'T_13', (period/np.pi)* tt.arcsin( (1/a_Rs) * pm.math.sqrt( (1-r)**2 - b**2 ) * (1/sini) )*24 ) # # mean model and likelihood # # mean_model = mu_transit + mean # mu_model = pm.Deterministic('mu_model', lc_model) likelihood = pm.Normal('obs', mu=lc_model, sigma=sigma, observed=y_obs) # Optimizing map_estimate = pm.find_MAP(model=model) # start = model.test_point # if 'transit' in self.modelcomponents: # map_estimate = xo.optimize(start=start, # vars=[r, b, period, t0]) # map_estimate = xo.optimize(start=map_estimate) if make_threadsafe: pass else: # as described in # https://github.com/matplotlib/matplotlib/issues/15410 # matplotlib is not threadsafe. so do not make plots before # sampling, because some child processes tries to close a # cached file, and crashes the sampler. print(map_estimate) # sample from the posterior defined by this model. trace = pm.sample( tune=self.N_samples, draws=self.N_samples, start=map_estimate, cores=self.N_cores, chains=self.N_chains, step=xo.get_dense_nuts_step(target_accept=0.8), ) with open(pklpath, 'wb') as buff: pickle.dump({'model': model, 'trace': trace, 'map_estimate': map_estimate}, buff) self.model = model self.trace = trace self.map_estimate = map_estimate def run_allindivtransit_inference(self, prior_d, pklpath, make_threadsafe=True, target_accept=0.8): # if the model has already been run, pull the result from the # pickle. otherwise, run it. if os.path.exists(pklpath): d = pickle.load(open(pklpath, 'rb')) self.model = d['model'] self.trace = d['trace'] self.map_estimate = d['map_estimate'] return 1 with pm.Model() as model: # Shared parameters # Stellar parameters. (Following tess.world notebooks). logg_star = pm.Normal("logg_star", mu=LOGG, sd=LOGG_STDEV) r_star = pm.Bound(pm.Normal, lower=0.0)( "r_star", mu=RSTAR, sd=RSTAR_STDEV ) rho_star = pm.Deterministic( "rho_star", factor*10**logg_star / r_star ) # fix Rp/Rs across bandpasses, b/c you're assuming it's a planet # #NOTE: to impose max Rp = 3 Rjup, would uncomment this! # #(20200831 tessindivtransit fit did this) # upper_rprs = pm.Deterministic("upper_rprs", # ( 1*units.Rjup/(1*units.Rsun) ).cgs.value * (3) / r_star # ) upper_rprs = 1 log_r = pm.Uniform('log_r', lower=np.log(1e-2), upper=
np.log(upper_rprs)
numpy.log
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Tests models.parameters """ from __future__ import (absolute_import, division, print_function, unicode_literals) import itertools import pytest import numpy as np from . import irafutil from .. import models, fitting from ..core import Model, FittableModel from ..parameters import Parameter, InputParameterError from ...utils.data import get_pkg_data_filename def setter1(val): return val def setter2(val, model): model.do_something(val) return val * model.p class SetterModel(FittableModel): inputs = ('x', 'y') outputs = ('z',) xc = Parameter(default=1, setter=setter1) yc = Parameter(default=1, setter=setter2) def __init__(self, xc, yc, p): self.p = p # p is a value intended to be used by the setter super(SetterModel, self).__init__() self.xc = xc self.yc = yc def evaluate(self, x, y, xc, yc): return ((x - xc)**2 + (y - yc)**2) def do_something(self, v): pass class TParModel(Model): """ A toy model to test parameters machinery """ coeff = Parameter() e = Parameter() def __init__(self, coeff, e, **kwargs): super(TParModel, self).__init__(coeff=coeff, e=e, **kwargs) @staticmethod def evaluate(coeff, e): pass class MockModel(FittableModel): alpha = Parameter(name='alpha', default=42) @staticmethod def evaluate(*args): pass def test_parameter_properties(): """Test if getting / setting of Parameter properties works.""" m = MockModel() p = m.alpha assert p.name == 'alpha' # Parameter names are immutable with pytest.raises(AttributeError): p.name = 'beta' assert p.fixed is False p.fixed = True assert p.fixed is True assert p.tied is False p.tied = lambda _: 0 p.tied = False assert p.tied is False assert p.min is None p.min = 42 assert p.min == 42 p.min = None assert p.min is None assert p.max is None # TODO: shouldn't setting a max < min give an error? p.max = 41 assert p.max == 41 def test_parameter_operators(): """Test if the parameter arithmetic operators work.""" m = MockModel() par = m.alpha num = 42. val = 3 assert par - val == num - val assert val - par == val - num assert par / val == num / val assert val / par == val / num assert par ** val == num ** val assert val ** par == val ** num assert par < 45 assert par > 41 assert par <= par assert par >= par assert par == par assert -par == -num assert abs(par) == abs(num) class TestParameters(object): def setup_class(self): """ Unit tests for parameters Read an iraf database file created by onedspec.identify. Use the information to create a 1D Chebyshev model and perform the same fit. Create also a gausian model. """ test_file = get_pkg_data_filename('data/idcompspec.fits') f = open(test_file) lines = f.read() reclist = lines.split("begin") f.close() record = irafutil.IdentifyRecord(reclist[1]) self.icoeff = record.coeff order = int(record.fields['order']) self.model = models.Chebyshev1D(order - 1) self.gmodel = models.Gaussian1D(2, mean=3, stddev=4) self.linear_fitter = fitting.LinearLSQFitter() self.x = record.x self.y = record.z self.yy = np.array([record.z, record.z]) def test_set_slice(self): """ Tests updating the parameters attribute with a slice. This is what fitters internally do. """ self.model.parameters[:] = np.array([3, 4, 5, 6, 7]) assert (self.model.parameters == [3., 4., 5., 6., 7.]).all() def test_set_parameters_as_list(self): """Tests updating parameters using a list.""" self.model.parameters = [30, 40, 50, 60, 70] assert (self.model.parameters == [30., 40., 50., 60, 70]).all() def test_set_parameters_as_array(self): """Tests updating parameters using an array.""" self.model.parameters = np.array([3, 4, 5, 6, 7]) assert (self.model.parameters == [3., 4., 5., 6., 7.]).all() def test_set_as_tuple(self): """Tests updating parameters using a tuple.""" self.model.parameters = (1, 2, 3, 4, 5) assert (self.model.parameters == [1, 2, 3, 4, 5]).all() def test_set_model_attr_seq(self): """ Tests updating the parameters attribute when a model's parameter (in this case coeff) is updated. """ self.model.parameters = [0, 0., 0., 0, 0] self.model.c0 = 7 assert (self.model.parameters == [7, 0., 0., 0, 0]).all() def test_set_model_attr_num(self): """Update the parameter list when a model's parameter is updated.""" self.gmodel.amplitude = 7 assert (self.gmodel.parameters == [7, 3, 4]).all() def test_set_item(self): """Update the parameters using indexing.""" self.model.parameters = [1, 2, 3, 4, 5] self.model.parameters[0] = 10. assert (self.model.parameters == [10, 2, 3, 4, 5]).all() assert self.model.c0 == 10 def test_wrong_size1(self): """ Tests raising an error when attempting to reset the parameters using a list of a different size. """ with pytest.raises(InputParameterError): self.model.parameters = [1, 2, 3] def test_wrong_size2(self): """ Tests raising an exception when attempting to update a model's parameter (in this case coeff) with a sequence of the wrong size. """ with pytest.raises(InputParameterError): self.model.c0 = [1, 2, 3] def test_wrong_shape(self): """ Tests raising an exception when attempting to update a model's parameter and the new value has the wrong shape. """ with pytest.raises(InputParameterError): self.gmodel.amplitude = [1, 2] def test_par_against_iraf(self): """ Test the fitter modifies model.parameters. Uses an iraf example. """ new_model = self.linear_fitter(self.model, self.x, self.y) np.testing.assert_allclose( new_model.parameters, np.array([4826.1066602783685, 952.8943813407858, 12.641236013982386, -1.7910672553339604, 0.90252884366711317]), rtol=10 ** (-2)) def testPolynomial1D(self): d = {'c0': 11, 'c1': 12, 'c2': 13, 'c3': 14} p1 = models.Polynomial1D(3, **d) np.testing.assert_equal(p1.parameters, [11, 12, 13, 14]) def test_poly1d_multiple_sets(self): p1 = models.Polynomial1D(3, n_models=3) np.testing.assert_equal(p1.parameters, [0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) np.testing.assert_array_equal(p1.c0, [0, 0, 0]) p1.c0 = [10, 10, 10] np.testing.assert_equal(p1.parameters, [10.0, 10.0, 10.0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) def test_par_slicing(self): """ Test assigning to a parameter slice """ p1 = models.Polynomial1D(3, n_models=3) p1.c0[:2] = [10, 10] np.testing.assert_equal(p1.parameters, [10.0, 10.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) def test_poly2d(self): p2 = models.Polynomial2D(degree=3) p2.c0_0 = 5 np.testing.assert_equal(p2.parameters, [5, 0, 0, 0, 0, 0, 0, 0, 0, 0]) def test_poly2d_multiple_sets(self): kw = {'c0_0': [2, 3], 'c1_0': [1, 2], 'c2_0': [4, 5], 'c0_1': [1, 1], 'c0_2': [2, 2], 'c1_1': [5, 5]} p2 = models.Polynomial2D(2, **kw) np.testing.assert_equal(p2.parameters, [2, 3, 1, 2, 4, 5, 1, 1, 2, 2, 5, 5]) def test_shift_model_parameters1d(self): sh1 = models.Shift(2) sh1.offset = 3 assert sh1.offset == 3 assert sh1.offset.value == 3 def test_scale_model_parametersnd(self): sc1 = models.Scale([2, 2]) sc1.factor = [3, 3] assert np.all(sc1.factor == [3, 3]) np.testing.assert_array_equal(sc1.factor.value, [3, 3]) def test_parameters_wrong_shape(self): sh1 = models.Shift(2) with pytest.raises(InputParameterError): sh1.offset = [3, 3] class TestMultipleParameterSets(object): def setup_class(self): self.x1 = np.arange(1, 10, .1) self.y, self.x = np.mgrid[:10, :7] self.x11 = np.array([self.x1, self.x1]).T self.gmodel = models.Gaussian1D([12, 10], [3.5, 5.2], stddev=[.4, .7], n_models=2) def test_change_par(self): """ Test that a change to one parameter as a set propagates to param_sets. """ self.gmodel.amplitude = [1, 10] np.testing.assert_almost_equal( self.gmodel.param_sets, np.array([[1., 10], [3.5, 5.2], [0.4, 0.7]])) np.all(self.gmodel.parameters == [1.0, 10.0, 3.5, 5.2, 0.4, 0.7]) def test_change_par2(self): """ Test that a change to one single parameter in a set propagates to param_sets. """ self.gmodel.amplitude[0] = 11 np.testing.assert_almost_equal( self.gmodel.param_sets, np.array([[11., 10], [3.5, 5.2], [0.4, 0.7]])) np.all(self.gmodel.parameters == [11.0, 10.0, 3.5, 5.2, 0.4, 0.7]) def test_change_parameters(self): self.gmodel.parameters = [13, 10, 9, 5.2, 0.4, 0.7] np.testing.assert_almost_equal(self.gmodel.amplitude.value, [13., 10.]) np.testing.assert_almost_equal(self.gmodel.mean.value, [9., 5.2]) class TestParameterInitialization(object): """ This suite of tests checks most if not all cases if instantiating a model with parameters of different shapes/sizes and with different numbers of parameter sets. """ def test_single_model_scalar_parameters(self): t = TParModel(10, 1) assert len(t) == 1 assert t.model_set_axis is False assert np.all(t.param_sets == [[10], [1]]) assert np.all(t.parameters == [10, 1]) assert t.coeff.shape == () assert t.e.shape == () def test_single_model_scalar_and_array_parameters(self): t = TParModel(10, [1, 2]) assert len(t) == 1 assert t.model_set_axis is False assert np.issubdtype(t.param_sets.dtype, np.object_) assert len(t.param_sets) == 2 assert np.all(t.param_sets[0] == [10]) assert np.all(t.param_sets[1] == [[1, 2]]) assert np.all(t.parameters == [10, 1, 2]) assert t.coeff.shape == () assert t.e.shape == (2,) def test_single_model_1d_array_parameters(self): t = TParModel([10, 20], [1, 2]) assert len(t) == 1 assert t.model_set_axis is False assert np.all(t.param_sets == [[[10, 20]], [[1, 2]]]) assert np.all(t.parameters == [10, 20, 1, 2]) assert t.coeff.shape == (2,) assert t.e.shape == (2,) def test_single_model_1d_array_different_length_parameters(self): with pytest.raises(InputParameterError): # Not broadcastable t = TParModel([1, 2], [3, 4, 5]) def test_single_model_2d_array_parameters(self): t = TParModel([[10, 20], [30, 40]], [[1, 2], [3, 4]]) assert len(t) == 1 assert t.model_set_axis is False assert np.all(t.param_sets == [[[[10, 20], [30, 40]]], [[[1, 2], [3, 4]]]]) assert np.all(t.parameters == [10, 20, 30, 40, 1, 2, 3, 4]) assert t.coeff.shape == (2, 2) assert t.e.shape == (2, 2) def test_single_model_2d_non_square_parameters(self): coeff = np.array([[10, 20], [30, 40], [50, 60]]) e = np.array([[1, 2], [3, 4], [5, 6]]) t = TParModel(coeff, e) assert len(t) == 1 assert t.model_set_axis is False assert np.all(t.param_sets == [[[[10, 20], [30, 40], [50, 60]]], [[[1, 2], [3, 4], [5, 6]]]]) assert np.all(t.parameters == [10, 20, 30, 40, 50, 60, 1, 2, 3, 4, 5, 6]) assert t.coeff.shape == (3, 2) assert t.e.shape == (3, 2) t2 = TParModel(coeff.T, e.T) assert len(t2) == 1 assert t2.model_set_axis is False assert np.all(t2.param_sets == [[[[10, 30, 50], [20, 40, 60]]], [[[1, 3, 5], [2, 4, 6]]]]) assert np.all(t2.parameters == [10, 30, 50, 20, 40, 60, 1, 3, 5, 2, 4, 6]) assert t2.coeff.shape == (2, 3) assert t2.e.shape == (2, 3) # Not broadcastable with pytest.raises(InputParameterError): TParModel(coeff, e.T) with pytest.raises(InputParameterError): TParModel(coeff.T, e) def test_single_model_2d_broadcastable_parameters(self): t = TParModel([[10, 20, 30], [40, 50, 60]], [1, 2, 3]) assert len(t) == 1 assert t.model_set_axis is False assert len(t.param_sets) == 2 assert np.issubdtype(t.param_sets.dtype, np.object_) assert np.all(t.param_sets[0] == [[[10, 20, 30], [40, 50, 60]]]) assert np.all(t.param_sets[1] == [[1, 2, 3]]) assert np.all(t.parameters == [10, 20, 30, 40, 50, 60, 1, 2, 3]) @pytest.mark.parametrize(('p1', 'p2'), [ (1, 2), (1, [2, 3]), ([1, 2], 3), ([1, 2, 3], [4, 5]), ([1, 2], [3, 4, 5])]) def test_two_model_incorrect_scalar_parameters(self, p1, p2): with pytest.raises(InputParameterError): TParModel(p1, p2, n_models=2) @pytest.mark.parametrize('kwargs', [ {'n_models': 2}, {'model_set_axis': 0}, {'n_models': 2, 'model_set_axis': 0}]) def test_two_model_scalar_parameters(self, kwargs): t = TParModel([10, 20], [1, 2], **kwargs) assert len(t) == 2 assert t.model_set_axis == 0 assert np.all(t.param_sets == [[10, 20], [1, 2]]) assert np.all(t.parameters == [10, 20, 1, 2]) assert t.coeff.shape == () assert t.e.shape == () @pytest.mark.parametrize('kwargs', [ {'n_models': 2}, {'model_set_axis': 0}, {'n_models': 2, 'model_set_axis': 0}]) def test_two_model_scalar_and_array_parameters(self, kwargs): t = TParModel([10, 20], [[1, 2], [3, 4]], **kwargs) assert len(t) == 2 assert t.model_set_axis == 0 assert len(t.param_sets) == 2 assert np.issubdtype(t.param_sets.dtype, np.object_) assert np.all(t.param_sets[0] == [[10], [20]]) assert np.all(t.param_sets[1] == [[1, 2], [3, 4]]) assert np.all(t.parameters == [10, 20, 1, 2, 3, 4]) assert t.coeff.shape == () assert t.e.shape == (2,) def test_two_model_1d_array_parameters(self): t = TParModel([[10, 20], [30, 40]], [[1, 2], [3, 4]], n_models=2) assert len(t) == 2 assert t.model_set_axis == 0 assert np.all(t.param_sets == [[[10, 20], [30, 40]], [[1, 2], [3, 4]]]) assert
np.all(t.parameters == [10, 20, 30, 40, 1, 2, 3, 4])
numpy.all
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Module containing useful metric functions for ROI detection. Created on Mon Nov 12 09:37:00 2018 @author: nicolas """ import numpy as np from skimage import measure def loss_mae(predictions, targets, masks=None, reduction='mean'): """Compute the (Mean) Average Error between predictions and targets.""" if masks is None: masks = np.ones(targets.shape) masks = masks.astype(np.bool) if reduction in ["elementwise_mean", "mean", "ave", "average"]: return np.abs(targets[masks] - predictions[masks]).mean() elif reduction in ["sum"]: return np.abs(targets[masks] - predictions[masks]).sum() elif reduction in ["array", "no_reduction", "full"]: return np.abs(targets[masks] - predictions[masks]) else: raise ValueError("""Unknown reduction method "%s".""" % reduction) def loss_l2(predictions, targets, masks=None, reduction='mean'): """Compute the L2-norm loss between predictions and targets.""" if masks is None: masks = np.ones(targets.shape) masks = masks.astype(np.bool) loss = [] for i in range(len(targets)): loss.append(np.linalg.norm(targets[i][masks[i]] - predictions[i][masks[i]])) if reduction in ["elementwise_mean", "mean", "ave", "average"]: return np.mean(loss) elif reduction in ["sum"]: return np.sum(loss) elif reduction in ["array", "no_reduction", "full"]: return np.array(loss) else: raise ValueError("""Unknown reduction method "%s".""" % reduction) def dice_coef(predictions, targets, masks=None, reduction='mean'): """Compute the Dice coefficient between predictions and targets.""" if masks is None: masks = np.ones(targets.shape) masks = masks.astype(np.bool) dice = [] for i in range(len(targets)): total_pos = targets[i][masks[i]].sum() + predictions[i][masks[i]].sum() if total_pos == 0: # No true positive, and no false positive --> correct dice.append(1.0) else: dice.append(2.0 * np.logical_and(targets[i][masks[i]], predictions[i][masks[i]]).sum() / total_pos) if reduction in ["elementwise_mean", "mean", "ave", "average"]: return np.mean(dice) elif reduction in ["sum"]: return np.sum(dice) elif reduction in ["array", "no_reduction", "full"]: return np.array(dice) else: raise ValueError("""Unknown reduction method "%s".""" % reduction) def crop_metric(metric_fn, predictions, targets, masks=None, scale=4.0, reduction='mean'): """ Compute the metric around the cropped targets' connected regions. Size of the cropped region will be bounding_box * scale. """ metric = [] n_no_positive = 0 # number of target with no positive pixels (fully background) for i in range(len(targets)): labels = measure.label(targets[i]) # If no true positive region, does not consider the image if labels.max() == 0: n_no_positive += 1.0 continue regionprops = measure.regionprops(labels) local_metric = 0.0 # Loop over targets' connected regions for region in regionprops: min_row, min_col, max_row, max_col = region.bbox height = max_row - min_row width = max_col - min_col max_row = int(min(targets[i].shape[0], max_row + height * (scale-1) / 2)) min_row = int(max(0, min_row - height * (scale-1) / 2)) max_col = int(min(targets[i].shape[1], max_col + width * (scale-1) / 2)) min_col = int(max(0, min_col - width * (scale-1) / 2)) if masks is None: local_mask = None else: local_mask =
np.array([masks[i][min_row:max_row, min_col:max_col]], dtype=np.bool)
numpy.array
import numpy as np import cv2 , os import torch from torch.autograd import Variable def preprocess_image(cv2im, resize_im=True): mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] if resize_im: cv2im = cv2.resize(cv2im, (224, 224)) im_as_arr =
np.float32(cv2im)
numpy.float32
# Copyright 2018 Waseda University (<NAME>) # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pyimagesource.abscoeff import ISM_RIRpow_approx import logging # NOQA import numpy as np RIRvec = None TimePoints = None def ISM_RIR_DecayTime(delta_dB_vec, rt_type, rt_val, aa, room, X_src, X_rcv, Fs, cc=343.0): """ISM_RIR_DecayTime RIR decay time using Lehmann & Johansson's EDC approximation method DT = ISM_RIR_DecayTime(DELTA_dB,RT_TYPE,RT_VAL,ALPHA,ROOM,SOURCE,SENSOR,Fs) DT = ISM_RIR_DecayTime(DELTA_dB,RT_TYPE,RT_VAL,ALPHA,ROOM,SOURCE,SENSOR,Fs,C) This function determines the time DT taken by the energy in a RIR to decay by DELTA_dB when using Lehmann & Johansson's image-source method implementation (see: "Prediction of energy decay in room impulse responses simulated with an image-source model", J. Acoust. Soc. Am., vol. 124(1), pp. 269-277, July 2008). The parameter DELTA_dB can be defined as a vector of dB values, in which case this function returns DT as a vector containing the corresponding decay times. Note that DT does not necessarily correspond to the usual definition of quantities such as T20, T30, or T60. The resulting DT values are computed according to Lehmann and Johannson's EDC (energy decay curve) approximation method (see above reference) used in conjunction with a RIR reconstruction method based on diffuse reverberation modeling (see "Diffuse reverberation model for efficient image-source simulation of room impulse responses", IEEE Trans. Audio, Speech, Lang. Process., 2010). The environmental room setting is given via the following parameters: Fs: scalar, sampling frequency (in Hz). Eg: 8000. ALPHA: 1-by-6 vector, corresponding to each wall's absorption coefficient: [x1 x2 y1 y2 z1 z2]. Index 1 indicates wall closest to the origin. E.g.: [0.5 0.5 0.45 0.87 0.84 0.32]. RT_TYPE: character string, measure of reverberation time used for the definition of the coefficients in ALPHA. Set to either 'T60' or 'T20'. RT_VAL: scalar, value of the reverberation time (in seconds) defined by RT_TYPE. E.g.: 0.25. SOURCE: 1-by-3 vector, indicating the location of the source in space (in m): [x y z]. E.g.: [1 1 1.5]. SENSOR: 1-by-3 vector, indicating the location of the microphone in space (in m): [x y z]. E.g.: [2 2 1.5]. ROOM: 1-by-3 vector, indicating the rectangular room dimensions (in m): [x_length y_length z_length]. E.g.: [4 4 3]. C: (optional) scalar (in m/s), propagation speed of sound waves. If omitted, C will default to 343m/s. """ if isinstance(delta_dB_vec, float): delta_dB_vec = np.asarray([delta_dB_vec]) delta_dB_vec = np.abs(delta_dB_vec) # -=:=- Check user input: if np.any(aa > 1) or np.any(aa < 0): raise ValueError('Parameter ''ALPHA'' must be in range (0...1].') elif np.any(delta_dB_vec == 0): raise ValueError('Parameter ''DELTA_dB'' must contain non-zero scalar values.') elif len(delta_dB_vec.shape) > 1: raise ValueError('Parameter ''DELTA_dB'' must be a 1-D vector (float).') if np.all(aa == 1) or rt_val == 0: raise ValueError('ISM_RIR_DecayTime cannot be used for anechoic environments.') if rt_type == 60: t60_appval = rt_val elif rt_type == 20: t60_appval = rt_val * 3 # coarse t60 estimate to determnine end time in EDCapprox computations else: raise ValueError('Unknown ''RT_TYPE'' argument.') # -=:=- Pre-processing -=:=- dp_del = np.linalg.norm(X_src - X_rcv) / cc # direct path delta_dB_max = np.max(delta_dB_vec) n_ddbv = 1 if len(delta_dB_vec.shape) < 1 else len(delta_dB_vec.shape) starttime = np.amax([1.4 * np.mean(room) / cc, dp_del]) # start time t0, ensure >= dp_delay starttime_sind = np.floor(starttime * Fs) # sample index RIR_start_DTime = 2 * starttime # -=:=- select window size -=:=- n_win_meas = 6 # approximate nr of (useful) measurements TT = (RIR_start_DTime - starttime) / n_win_meas w_len = np.floor(TT * Fs) # current window length (samples) w_len = w_len + (w_len % 2) - 1 # make w_len odd w_len_half = int(np.floor(w_len / 2)) # -=:=- pre-compute start of RIR for lambda correction -=:=- RIR = ISM_RoomResp(Fs, np.sqrt(1 - aa), rt_type, rt_val, X_src, X_rcv, room, MaxDelay=RIR_start_DTime, c=cc) RIRlen = len(RIR) # -=:=- Measure average energy -=:=- fit_time_perc = 0.35 we_sind_vec = np.arange(starttime_sind + w_len_half, RIRlen, w_len).astype(np.int) # window end indices wc_sind_vec = we_sind_vec - w_len_half # window centre indices wb_sind_vec = wc_sind_vec - w_len_half - 1 # window beginning indices if wb_sind_vec[0] <= 0: wb_sind_vec[0] = 1 # case where t0 is less than a half window n_win_meas = len(wc_sind_vec) en_vec_meas = np.zeros((n_win_meas,)) for ww in range(n_win_meas): en_vec_meas[ww] = np.mean(RIR[wb_sind_vec[ww]:we_sind_vec[ww]] ** 2) t_vec_meas = wc_sind_vec / Fs fit_starttime = RIRlen * fit_time_perc / Fs fit_start_wind = np.where(t_vec_meas >= fit_starttime)[0][0] # window index of start of fit # -=:=- Decay time estimate -=:=- DTime_vec = np.nan * np.ones(delta_dB_vec.shape) stind = 3 while stind > 0: # compute + lambda-adjust EDC approximation # IMapprox computed up to several times what linear decay predicts stoptime = stind * delta_dB_max / 60 * t60_appval timepts = np.arange(starttime_sind, stoptime * Fs, w_len) / Fs stoptime = timepts[-1] # compute EDC approximation amppts1, timepts, okflag = ISM_RIRpow_approx(aa, room, cc, timepts, rt_type, rt_val) foo = en_vec_meas[fit_start_wind:] / amppts1[fit_start_wind:n_win_meas] # offset compensation (lambda) amppts1 = amppts1 * np.mean(foo) # reconstruct approx. full RIR for proper EDC estimation (logistic noise approx.) amppts1_rec = np.interp(np.arange(RIRlen + 1, stoptime * Fs) / Fs, timepts, amppts1) RIR_rec = np.concatenate([RIR.T, np.sqrt(amppts1_rec)]) RIR_rec_len = len(RIR_rec) # approx. full RIR EDC edc_rec = np.zeros((RIR_rec_len,)) for nn in range(RIR_rec_len): edc_rec[nn] = np.sum(RIR_rec[nn:] ** 2) # Energy decay using Schroeder's integration method edc_rec = 10 * np.log10(edc_rec / edc_rec[0]) # Decay curve in dB. tvec_rec = np.arange(RIR_rec_len) / Fs # Determine time of EDC reaching delta_dB decay: if edc_rec[-1] > -delta_dB_max: stind += 1 if okflag == 0: raise ValueError('Problem computing decay time (parameter ''DELTA_dB'' may be too large)') if stind >= 25: raise ValueError('Problem computing decay time (parameter ''DELTA_dB'' may be too large)') continue for nn in range(n_ddbv): foo = np.where(edc_rec <= -delta_dB_vec[nn])[0][0] DTime_vec[nn] = 1.15 * tvec_rec[foo] # statistical offset correction... # make sure IM approx was computed for more than 3/2 the resulting decay time if np.max(DTime_vec) > stoptime * 2 / 3: stind += 1 # increase time if necessary if okflag == 0: raise ValueError('Problem computing decay time (parameter ''DELTA_dB'' may be too large)') if stind >= 25: raise ValueError('Problem computing decay time (parameter ''DELTA_dB'' may be too large)') continue else: stind = 0 # stop the computations return DTime_vec def Check_nDim(a, b, d, l, m, X_rcv, X_src, Rr, c, MaxDelay, beta, Fs): global RIRvec global TimePoints FoundNValBelowLim = 0 n = 1 # Check delay values for n=1 and above dist = np.linalg.norm([2 * a - 1, 2 * b - 1, 2 * d - 1] * X_src + X_rcv - Rr * [n, l, m]) foo_time = dist / c while foo_time <= MaxDelay: # if delay is below TF length limit for n=1, check n=2,3,4... foo_amplitude = np.prod(beta ** np.abs([n - a, n, l - b, l, m - d, m])) / (4 * np.pi * dist) RIRvec = RIRvec + foo_amplitude *
np.sinc((TimePoints - foo_time) * Fs)
numpy.sinc
""" Bayesian Degree Corrected Stochastic Block Model roughly based on Infinite-degree-corrected stochastic block model by Herlau et. al., but with a fixed number of cluster sizes and a different update equation for the collapsed Gibbs sampler; see accompanying documentation """ import numpy as np import sys sys.path.append("/home/victor/Documents/community_detection/MCMC") from cgs_llhds import diri_multi_llhd from multi_sbm_helpers import comp_edge_cts, softmax from dcsbm_helpers import GD, BD, samp_shape_post_step, samp_rate_post_step, samp_gam_post_step class gen_data: def __init__(self, n, phis, eta): """ :param n: number of vertices in each community :param phis: list of probability distributions, phis[l] should be length n[l] and sum to 1 :param eta: symmetric matrix, eta[k,l] is expected number of edges between vertex in k and vertex in l """ self.n = n self.n_vert = sum(n) self.n_comm = len(n) self.phis = phis self.eta = eta z = np.repeat(0, self.n_vert) acc = 0 for l in range(self.n_comm - 1): acc += self.n[l] z[acc: acc + self.n[l + 1]] = l + 1 self.z = z phi = np.repeat(0., self.n_vert) phi[0:self.n[0]] = phis[0] acc = 0 for l in range(self.n_comm - 1): acc += self.n[l] phi[acc: acc + self.n[l + 1]] = phis[l + 1] self.phi = phi self.A = self.sampleA() def sampleA(self): """ Sample an adjacency matrix conditional on all other parameters :return ndarray, float. Sampled adjacency matrix """ A = np.zeros([self.n_vert, self.n_vert]) for i in range(self.n_vert): for j in range(i + 1, self.n_vert): thetai = self.n[self.z[i]] * self.phi[i] thetaj = self.n[self.z[j]] * self.phi[j] A[i, j] = np.random.poisson(thetai * thetaj * self.eta[self.z[i], self.z[j]]) A[j, i] = A[i, j] return A class gen_data_hypers(gen_data): "Sample a graph from the Bayesian DCSBM" def __init__(self, n_vert, n_comm, alpha, kap, lam, gam): """ :param n_vert: number of vertices in the graph :param n_comm: number of communities :param alpha: dirichlet prior parameter for community memberships :param kap: scalar, gamma dist param :param lam: scalar, gamma dist param :param gam: scalar, param for deg correction dirichlet dist. Basic block model recovered in gamma->inf limit """ self.n_vert = n_vert self.n_comm = n_comm self.alpha = alpha self.kap = kap self.lam = lam self.gam = gam self.n = np.random.multinomial(n_vert, np.random.dirichlet(np.repeat(alpha, n_comm))) z = np.repeat(0,n_vert) acc = 0 for l in range(n_comm-1): acc += self.n[l] z[acc : acc + self.n[l + 1]] = l+1 self.z=z phi_ls = [np.random.dirichlet(np.repeat(gam, nl)) for nl in self.n] phi = np.repeat(0.,self.n_vert) phi[0:self.n[0]] = phi_ls[0] acc = 0 for l in range(n_comm-1): acc += self.n[l] phi[acc : acc + self.n[l + 1]] = phi_ls[l+1] self.phis = phi_ls self.phi = phi eta =
np.random.gamma(kap,1./lam,[n_comm,n_comm])
numpy.random.gamma
import numpy as np import pytest from scipy.stats import (bootstrap, BootstrapDegenerateDistributionWarning, monte_carlo_test, permutation_test) from numpy.testing import assert_allclose, assert_equal, suppress_warnings from scipy import stats from scipy import special from .. import _resampling as _resampling from scipy._lib._util import rng_integers from scipy.optimize import root def test_bootstrap_iv(): message = "`data` must be a sequence of samples." with pytest.raises(ValueError, match=message): bootstrap(1, np.mean) message = "`data` must contain at least one sample." with pytest.raises(ValueError, match=message): bootstrap(tuple(), np.mean) message = "each sample in `data` must contain two or more observations..." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3], [1]), np.mean) message = ("When `paired is True`, all samples must have the same length ") with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3], [1, 2, 3, 4]), np.mean, paired=True) message = "`vectorized` must be `True` or `False`." with pytest.raises(ValueError, match=message): bootstrap(1, np.mean, vectorized='ekki') message = "`axis` must be an integer." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, axis=1.5) message = "could not convert string to float" with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, confidence_level='ni') message = "`n_resamples` must be a positive integer." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, n_resamples=-1000) message = "`n_resamples` must be a positive integer." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, n_resamples=1000.5) message = "`batch` must be a positive integer or None." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, batch=-1000) message = "`batch` must be a positive integer or None." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, batch=1000.5) message = "`method` must be in" with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, method='ekki') message = "`method = 'BCa' is only available for one-sample statistics" def statistic(x, y, axis): mean1 = np.mean(x, axis) mean2 = np.mean(y, axis) return mean1 - mean2 with pytest.raises(ValueError, match=message): bootstrap(([.1, .2, .3], [.1, .2, .3]), statistic, method='BCa') message = "'herring' cannot be used to seed a" with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, random_state='herring') @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) @pytest.mark.parametrize("axis", [0, 1, 2]) def test_bootstrap_batch(method, axis): # for one-sample statistics, batch size shouldn't affect the result np.random.seed(0) x = np.random.rand(10, 11, 12) res1 = bootstrap((x,), np.mean, batch=None, method=method, random_state=0, axis=axis, n_resamples=100) res2 = bootstrap((x,), np.mean, batch=10, method=method, random_state=0, axis=axis, n_resamples=100) assert_equal(res2.confidence_interval.low, res1.confidence_interval.low) assert_equal(res2.confidence_interval.high, res1.confidence_interval.high) assert_equal(res2.standard_error, res1.standard_error) @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) def test_bootstrap_paired(method): # test that `paired` works as expected np.random.seed(0) n = 100 x = np.random.rand(n) y = np.random.rand(n) def my_statistic(x, y, axis=-1): return ((x-y)**2).mean(axis=axis) def my_paired_statistic(i, axis=-1): a = x[i] b = y[i] res = my_statistic(a, b) return res i = np.arange(len(x)) res1 = bootstrap((i,), my_paired_statistic, random_state=0) res2 = bootstrap((x, y), my_statistic, paired=True, random_state=0) assert_allclose(res1.confidence_interval, res2.confidence_interval) assert_allclose(res1.standard_error, res2.standard_error) @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) @pytest.mark.parametrize("axis", [0, 1, 2]) @pytest.mark.parametrize("paired", [True, False]) def test_bootstrap_vectorized(method, axis, paired): # test that paired is vectorized as expected: when samples are tiled, # CI and standard_error of each axis-slice is the same as those of the # original 1d sample if not paired and method == 'BCa': # should re-assess when BCa is extended pytest.xfail(reason="BCa currently for 1-sample statistics only") np.random.seed(0) def my_statistic(x, y, z, axis=-1): return x.mean(axis=axis) + y.mean(axis=axis) + z.mean(axis=axis) shape = 10, 11, 12 n_samples = shape[axis] x = np.random.rand(n_samples) y = np.random.rand(n_samples) z = np.random.rand(n_samples) res1 = bootstrap((x, y, z), my_statistic, paired=paired, method=method, random_state=0, axis=0, n_resamples=100) reshape = [1, 1, 1] reshape[axis] = n_samples x = np.broadcast_to(x.reshape(reshape), shape) y = np.broadcast_to(y.reshape(reshape), shape) z = np.broadcast_to(z.reshape(reshape), shape) res2 = bootstrap((x, y, z), my_statistic, paired=paired, method=method, random_state=0, axis=axis, n_resamples=100) assert_allclose(res2.confidence_interval.low, res1.confidence_interval.low) assert_allclose(res2.confidence_interval.high, res1.confidence_interval.high) assert_allclose(res2.standard_error, res1.standard_error) result_shape = list(shape) result_shape.pop(axis) assert_equal(res2.confidence_interval.low.shape, result_shape) assert_equal(res2.confidence_interval.high.shape, result_shape) assert_equal(res2.standard_error.shape, result_shape) @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) def test_bootstrap_against_theory(method): # based on https://www.statology.org/confidence-intervals-python/ data = stats.norm.rvs(loc=5, scale=2, size=5000, random_state=0) alpha = 0.95 dist = stats.t(df=len(data)-1, loc=np.mean(data), scale=stats.sem(data)) expected_interval = dist.interval(confidence=alpha) expected_se = dist.std() res = bootstrap((data,), np.mean, n_resamples=5000, confidence_level=alpha, method=method, random_state=0) assert_allclose(res.confidence_interval, expected_interval, rtol=5e-4) assert_allclose(res.standard_error, expected_se, atol=3e-4) tests_R = {"basic": (23.77, 79.12), "percentile": (28.86, 84.21), "BCa": (32.31, 91.43)} @pytest.mark.parametrize("method, expected", tests_R.items()) def test_bootstrap_against_R(method, expected): # Compare against R's "boot" library # library(boot) # stat <- function (x, a) { # mean(x[a]) # } # x <- c(10, 12, 12.5, 12.5, 13.9, 15, 21, 22, # 23, 34, 50, 81, 89, 121, 134, 213) # # Use a large value so we get a few significant digits for the CI. # n = 1000000 # bootresult = boot(x, stat, n) # result <- boot.ci(bootresult) # print(result) x = np.array([10, 12, 12.5, 12.5, 13.9, 15, 21, 22, 23, 34, 50, 81, 89, 121, 134, 213]) res = bootstrap((x,), np.mean, n_resamples=1000000, method=method, random_state=0) assert_allclose(res.confidence_interval, expected, rtol=0.005) tests_against_itself_1samp = {"basic": 1780, "percentile": 1784, "BCa": 1784} @pytest.mark.parametrize("method, expected", tests_against_itself_1samp.items()) def test_bootstrap_against_itself_1samp(method, expected): # The expected values in this test were generated using bootstrap # to check for unintended changes in behavior. The test also makes sure # that bootstrap works with multi-sample statistics and that the # `axis` argument works as expected / function is vectorized. np.random.seed(0) n = 100 # size of sample n_resamples = 999 # number of bootstrap resamples used to form each CI confidence_level = 0.9 # The true mean is 5 dist = stats.norm(loc=5, scale=1) stat_true = dist.mean() # Do the same thing 2000 times. (The code is fully vectorized.) n_replications = 2000 data = dist.rvs(size=(n_replications, n)) res = bootstrap((data,), statistic=np.mean, confidence_level=confidence_level, n_resamples=n_resamples, batch=50, method=method, axis=-1) ci = res.confidence_interval # ci contains vectors of lower and upper confidence interval bounds ci_contains_true = np.sum((ci[0] < stat_true) & (stat_true < ci[1])) assert ci_contains_true == expected # ci_contains_true is not inconsistent with confidence_level pvalue = stats.binomtest(ci_contains_true, n_replications, confidence_level).pvalue assert pvalue > 0.1 tests_against_itself_2samp = {"basic": 892, "percentile": 890} @pytest.mark.parametrize("method, expected", tests_against_itself_2samp.items()) def test_bootstrap_against_itself_2samp(method, expected): # The expected values in this test were generated using bootstrap # to check for unintended changes in behavior. The test also makes sure # that bootstrap works with multi-sample statistics and that the # `axis` argument works as expected / function is vectorized. np.random.seed(0) n1 = 100 # size of sample 1 n2 = 120 # size of sample 2 n_resamples = 999 # number of bootstrap resamples used to form each CI confidence_level = 0.9 # The statistic we're interested in is the difference in means def my_stat(data1, data2, axis=-1): mean1 = np.mean(data1, axis=axis) mean2 = np.mean(data2, axis=axis) return mean1 - mean2 # The true difference in the means is -0.1 dist1 = stats.norm(loc=0, scale=1) dist2 = stats.norm(loc=0.1, scale=1) stat_true = dist1.mean() - dist2.mean() # Do the same thing 1000 times. (The code is fully vectorized.) n_replications = 1000 data1 = dist1.rvs(size=(n_replications, n1)) data2 = dist2.rvs(size=(n_replications, n2)) res = bootstrap((data1, data2), statistic=my_stat, confidence_level=confidence_level, n_resamples=n_resamples, batch=50, method=method, axis=-1) ci = res.confidence_interval # ci contains vectors of lower and upper confidence interval bounds ci_contains_true = np.sum((ci[0] < stat_true) & (stat_true < ci[1])) assert ci_contains_true == expected # ci_contains_true is not inconsistent with confidence_level pvalue = stats.binomtest(ci_contains_true, n_replications, confidence_level).pvalue assert pvalue > 0.1 @pytest.mark.parametrize("method", ["basic", "percentile"]) @pytest.mark.parametrize("axis", [0, 1]) def test_bootstrap_vectorized_3samp(method, axis): def statistic(*data, axis=0): # an arbitrary, vectorized statistic return sum((sample.mean(axis) for sample in data)) def statistic_1d(*data): # the same statistic, not vectorized for sample in data: assert sample.ndim == 1 return statistic(*data, axis=0) np.random.seed(0) x = np.random.rand(4, 5) y = np.random.rand(4, 5) z = np.random.rand(4, 5) res1 = bootstrap((x, y, z), statistic, vectorized=True, axis=axis, n_resamples=100, method=method, random_state=0) res2 = bootstrap((x, y, z), statistic_1d, vectorized=False, axis=axis, n_resamples=100, method=method, random_state=0) assert_allclose(res1.confidence_interval, res2.confidence_interval) assert_allclose(res1.standard_error, res2.standard_error) @pytest.mark.xfail_on_32bit("Failure is not concerning; see gh-14107") @pytest.mark.parametrize("method", ["basic", "percentile", "BCa"]) @pytest.mark.parametrize("axis", [0, 1]) def test_bootstrap_vectorized_1samp(method, axis): def statistic(x, axis=0): # an arbitrary, vectorized statistic return x.mean(axis=axis) def statistic_1d(x): # the same statistic, not vectorized assert x.ndim == 1 return statistic(x, axis=0) np.random.seed(0) x = np.random.rand(4, 5) res1 = bootstrap((x,), statistic, vectorized=True, axis=axis, n_resamples=100, batch=None, method=method, random_state=0) res2 = bootstrap((x,), statistic_1d, vectorized=False, axis=axis, n_resamples=100, batch=10, method=method, random_state=0) assert_allclose(res1.confidence_interval, res2.confidence_interval) assert_allclose(res1.standard_error, res2.standard_error) @pytest.mark.parametrize("method", ["basic", "percentile", "BCa"]) def test_bootstrap_degenerate(method): data = 35 * [10000.] if method == "BCa": with np.errstate(invalid='ignore'): with pytest.warns(BootstrapDegenerateDistributionWarning): res = bootstrap([data, ], np.mean, method=method) assert_equal(res.confidence_interval, (np.nan, np.nan)) else: res = bootstrap([data, ], np.mean, method=method) assert_equal(res.confidence_interval, (10000., 10000.)) assert_equal(res.standard_error, 0) @pytest.mark.parametrize("method", ["basic", "percentile", "BCa"]) def test_bootstrap_gh15678(method): # Check that gh-15678 is fixed: when statistic function returned a Python # float, method="BCa" failed when trying to add a dimension to the float rng = np.random.default_rng(354645618886684) dist = stats.norm(loc=2, scale=4) data = dist.rvs(size=100, random_state=rng) data = (data,) res = bootstrap(data, stats.skew, method=method, n_resamples=100, random_state=np.random.default_rng(9563)) # this always worked because np.apply_along_axis returns NumPy data type ref = bootstrap(data, stats.skew, method=method, n_resamples=100, random_state=np.random.default_rng(9563), vectorized=False) assert_allclose(res.confidence_interval, ref.confidence_interval) assert_allclose(res.standard_error, ref.standard_error) assert isinstance(res.standard_error, np.float64) def test_jackknife_resample(): shape = 3, 4, 5, 6 np.random.seed(0) x = np.random.rand(*shape) y = next(_resampling._jackknife_resample(x)) for i in range(shape[-1]): # each resample is indexed along second to last axis # (last axis is the one the statistic will be taken over / consumed) slc = y[..., i, :] expected = np.delete(x, i, axis=-1) assert np.array_equal(slc, expected) y2 = np.concatenate(list(_resampling._jackknife_resample(x, batch=2)), axis=-2) assert np.array_equal(y2, y) @pytest.mark.parametrize("rng_name", ["RandomState", "default_rng"]) def test_bootstrap_resample(rng_name): rng = getattr(np.random, rng_name, None) if rng is None: pytest.skip(f"{rng_name} not available.") rng1 = rng(0) rng2 = rng(0) n_resamples = 10 shape = 3, 4, 5, 6 np.random.seed(0) x = np.random.rand(*shape) y = _resampling._bootstrap_resample(x, n_resamples, random_state=rng1) for i in range(n_resamples): # each resample is indexed along second to last axis # (last axis is the one the statistic will be taken over / consumed) slc = y[..., i, :] js = rng_integers(rng2, 0, shape[-1], shape[-1]) expected = x[..., js] assert np.array_equal(slc, expected) @pytest.mark.parametrize("score", [0, 0.5, 1]) @pytest.mark.parametrize("axis", [0, 1, 2]) def test_percentile_of_score(score, axis): shape = 10, 20, 30 np.random.seed(0) x = np.random.rand(*shape) p = _resampling._percentile_of_score(x, score, axis=-1) def vectorized_pos(a, score, axis): return np.apply_along_axis(stats.percentileofscore, axis, a, score) p2 = vectorized_pos(x, score, axis=-1)/100 assert_allclose(p, p2, 1e-15) def test_percentile_along_axis(): # the difference between _percentile_along_axis and np.percentile is that # np.percentile gets _all_ the qs for each axis slice, whereas # _percentile_along_axis gets the q corresponding with each axis slice shape = 10, 20 np.random.seed(0) x = np.random.rand(*shape) q = np.random.rand(*shape[:-1]) * 100 y = _resampling._percentile_along_axis(x, q) for i in range(shape[0]): res = y[i] expected = np.percentile(x[i], q[i], axis=-1) assert_allclose(res, expected, 1e-15) @pytest.mark.parametrize("axis", [0, 1, 2]) def test_vectorize_statistic(axis): # test that _vectorize_statistic vectorizes a statistic along `axis` def statistic(*data, axis): # an arbitrary, vectorized statistic return sum((sample.mean(axis) for sample in data)) def statistic_1d(*data): # the same statistic, not vectorized for sample in data: assert sample.ndim == 1 return statistic(*data, axis=0) # vectorize the non-vectorized statistic statistic2 = _resampling._vectorize_statistic(statistic_1d) np.random.seed(0) x = np.random.rand(4, 5, 6) y = np.random.rand(4, 1, 6) z = np.random.rand(1, 5, 6) res1 = statistic(x, y, z, axis=axis) res2 = statistic2(x, y, z, axis=axis) assert_allclose(res1, res2) @pytest.mark.xslow() @pytest.mark.parametrize("method", ["basic", "percentile", "BCa"]) def test_vector_valued_statistic(method): # Generate 95% confidence interval around MLE of normal distribution # parameters. Repeat 100 times, each time on sample of size 100. # Check that confidence interval contains true parameters ~95 times. # Confidence intervals are estimated and stochastic; a test failure # does not necessarily indicate that something is wrong. More important # than values of `counts` below is that the shapes of the outputs are # correct. rng = np.random.default_rng(2196847219) params = 1, 0.5 sample = stats.norm.rvs(*params, size=(100, 100), random_state=rng) def statistic(data): return stats.norm.fit(data) res = bootstrap((sample,), statistic, method=method, axis=-1, vectorized=False) counts = np.sum((res.confidence_interval.low.T < params) & (res.confidence_interval.high.T > params), axis=0) assert np.all(counts >= 90) assert np.all(counts <= 100) assert res.confidence_interval.low.shape == (2, 100) assert res.confidence_interval.high.shape == (2, 100) assert res.standard_error.shape == (2, 100) # --- Test Monte Carlo Hypothesis Test --- # class TestMonteCarloHypothesisTest: atol = 2.5e-2 # for comparing p-value def rvs(self, rvs_in, rs): return lambda *args, **kwds: rvs_in(*args, random_state=rs, **kwds) def test_input_validation(self): # test that the appropriate error messages are raised for invalid input def stat(x): return stats.skewnorm(x).statistic message = "`axis` must be an integer." with pytest.raises(ValueError, match=message): monte_carlo_test([1, 2, 3], stats.norm.rvs, stat, axis=1.5) message = "`vectorized` must be `True` or `False`." with pytest.raises(ValueError, match=message): monte_carlo_test([1, 2, 3], stats.norm.rvs, stat, vectorized=1.5) message = "`rvs` must be callable." with pytest.raises(TypeError, match=message): monte_carlo_test([1, 2, 3], None, stat) message = "`statistic` must be callable." with pytest.raises(TypeError, match=message): monte_carlo_test([1, 2, 3], stats.norm.rvs, None) message = "`n_resamples` must be a positive integer." with pytest.raises(ValueError, match=message): monte_carlo_test([1, 2, 3], stats.norm.rvs, stat, n_resamples=-1000) message = "`n_resamples` must be a positive integer." with pytest.raises(ValueError, match=message): monte_carlo_test([1, 2, 3], stats.norm.rvs, stat, n_resamples=1000.5) message = "`batch` must be a positive integer or None." with pytest.raises(ValueError, match=message): monte_carlo_test([1, 2, 3], stats.norm.rvs, stat, batch=-1000) message = "`batch` must be a positive integer or None." with pytest.raises(ValueError, match=message): monte_carlo_test([1, 2, 3], stats.norm.rvs, stat, batch=1000.5) message = "`alternative` must be in..." with pytest.raises(ValueError, match=message): monte_carlo_test([1, 2, 3], stats.norm.rvs, stat, alternative='ekki') def test_batch(self): # make sure that the `batch` parameter is respected by checking the # maximum batch size provided in calls to `statistic` rng = np.random.default_rng(23492340193) x = rng.random(10) def statistic(x, axis): batch_size = 1 if x.ndim == 1 else len(x) statistic.batch_size = max(batch_size, statistic.batch_size) statistic.counter += 1 return stats.skewtest(x, axis=axis).statistic statistic.counter = 0 statistic.batch_size = 0 kwds = {'sample': x, 'statistic': statistic, 'n_resamples': 1000, 'vectorized': True} kwds['rvs'] = self.rvs(stats.norm.rvs, np.random.default_rng(32842398)) res1 = monte_carlo_test(batch=1, **kwds) assert_equal(statistic.counter, 1001) assert_equal(statistic.batch_size, 1) kwds['rvs'] = self.rvs(stats.norm.rvs, np.random.default_rng(32842398)) statistic.counter = 0 res2 = monte_carlo_test(batch=50, **kwds) assert_equal(statistic.counter, 21) assert_equal(statistic.batch_size, 50) kwds['rvs'] = self.rvs(stats.norm.rvs, np.random.default_rng(32842398)) statistic.counter = 0 res3 = monte_carlo_test(**kwds) assert_equal(statistic.counter, 2) assert_equal(statistic.batch_size, 1000) assert_equal(res1.pvalue, res3.pvalue) assert_equal(res2.pvalue, res3.pvalue) @pytest.mark.parametrize('axis', range(-3, 3)) def test_axis(self, axis): # test that Nd-array samples are handled correctly for valid values # of the `axis` parameter rng = np.random.default_rng(2389234) norm_rvs = self.rvs(stats.norm.rvs, rng) size = [2, 3, 4] size[axis] = 100 x = norm_rvs(size=size) expected = stats.skewtest(x, axis=axis) def statistic(x, axis): return stats.skewtest(x, axis=axis).statistic res = monte_carlo_test(x, norm_rvs, statistic, vectorized=True, n_resamples=20000, axis=axis) assert_allclose(res.statistic, expected.statistic) assert_allclose(res.pvalue, expected.pvalue, atol=self.atol) @pytest.mark.parametrize('alternative', ("less", "greater")) @pytest.mark.parametrize('a', np.linspace(-0.5, 0.5, 5)) # skewness def test_against_ks_1samp(self, alternative, a): # test that monte_carlo_test can reproduce pvalue of ks_1samp rng = np.random.default_rng(65723433) x = stats.skewnorm.rvs(a=a, size=30, random_state=rng) expected = stats.ks_1samp(x, stats.norm.cdf, alternative=alternative) def statistic1d(x): return stats.ks_1samp(x, stats.norm.cdf, mode='asymp', alternative=alternative).statistic norm_rvs = self.rvs(stats.norm.rvs, rng) res = monte_carlo_test(x, norm_rvs, statistic1d, n_resamples=1000, vectorized=False, alternative=alternative) assert_allclose(res.statistic, expected.statistic) if alternative == 'greater': assert_allclose(res.pvalue, expected.pvalue, atol=self.atol) elif alternative == 'less': assert_allclose(1-res.pvalue, expected.pvalue, atol=self.atol) @pytest.mark.parametrize('hypotest', (stats.skewtest, stats.kurtosistest)) @pytest.mark.parametrize('alternative', ("less", "greater", "two-sided")) @pytest.mark.parametrize('a', np.linspace(-2, 2, 5)) # skewness def test_against_normality_tests(self, hypotest, alternative, a): # test that monte_carlo_test can reproduce pvalue of normality tests rng = np.random.default_rng(85723405) x = stats.skewnorm.rvs(a=a, size=150, random_state=rng) expected = hypotest(x, alternative=alternative) def statistic(x, axis): return hypotest(x, axis=axis).statistic norm_rvs = self.rvs(stats.norm.rvs, rng) res = monte_carlo_test(x, norm_rvs, statistic, vectorized=True, alternative=alternative) assert_allclose(res.statistic, expected.statistic) assert_allclose(res.pvalue, expected.pvalue, atol=self.atol) @pytest.mark.parametrize('a', np.arange(-2, 3)) # skewness parameter def test_against_normaltest(self, a): # test that monte_carlo_test can reproduce pvalue of normaltest rng = np.random.default_rng(12340513) x = stats.skewnorm.rvs(a=a, size=150, random_state=rng) expected = stats.normaltest(x) def statistic(x, axis): return stats.normaltest(x, axis=axis).statistic norm_rvs = self.rvs(stats.norm.rvs, rng) res = monte_carlo_test(x, norm_rvs, statistic, vectorized=True, alternative='greater') assert_allclose(res.statistic, expected.statistic) assert_allclose(res.pvalue, expected.pvalue, atol=self.atol) @pytest.mark.parametrize('a', np.linspace(-0.5, 0.5, 5)) # skewness def test_against_cramervonmises(self, a): # test that monte_carlo_test can reproduce pvalue of cramervonmises rng = np.random.default_rng(234874135) x = stats.skewnorm.rvs(a=a, size=30, random_state=rng) expected = stats.cramervonmises(x, stats.norm.cdf) def statistic1d(x): return stats.cramervonmises(x, stats.norm.cdf).statistic norm_rvs = self.rvs(stats.norm.rvs, rng) res = monte_carlo_test(x, norm_rvs, statistic1d, n_resamples=1000, vectorized=False, alternative='greater') assert_allclose(res.statistic, expected.statistic) assert_allclose(res.pvalue, expected.pvalue, atol=self.atol) @pytest.mark.parametrize('dist_name', ('norm', 'logistic')) @pytest.mark.parametrize('i', range(5)) def test_against_anderson(self, dist_name, i): # test that monte_carlo_test can reproduce results of `anderson`. Note: # `anderson` does not provide a p-value; it provides a list of # significance levels and the associated critical value of the test # statistic. `i` used to index this list. # find the skewness for which the sample statistic matches one of the # critical values provided by `stats.anderson` def fun(a): rng = np.random.default_rng(394295467) x = stats.tukeylambda.rvs(a, size=100, random_state=rng) expected = stats.anderson(x, dist_name) return expected.statistic - expected.critical_values[i] with suppress_warnings() as sup: sup.filter(RuntimeWarning) sol = root(fun, x0=0) assert(sol.success) # get the significance level (p-value) associated with that critical # value a = sol.x[0] rng = np.random.default_rng(394295467) x = stats.tukeylambda.rvs(a, size=100, random_state=rng) expected = stats.anderson(x, dist_name) expected_stat = expected.statistic expected_p = expected.significance_level[i]/100 # perform equivalent Monte Carlo test and compare results def statistic1d(x): return stats.anderson(x, dist_name).statistic dist_rvs = self.rvs(getattr(stats, dist_name).rvs, rng) with suppress_warnings() as sup: sup.filter(RuntimeWarning) res = monte_carlo_test(x, dist_rvs, statistic1d, n_resamples=1000, vectorized=False, alternative='greater') assert_allclose(res.statistic, expected_stat) assert_allclose(res.pvalue, expected_p, atol=2*self.atol) class TestPermutationTest: rtol = 1e-14 # -- Input validation -- # def test_permutation_test_iv(self): def stat(x, y, axis): return stats.ttest_ind((x, y), axis).statistic message = "each sample in `data` must contain two or more ..." with pytest.raises(ValueError, match=message): permutation_test(([1, 2, 3], [1]), stat) message = "`data` must be a tuple containing at least two samples" with pytest.raises(ValueError, match=message): permutation_test((1,), stat) with pytest.raises(TypeError, match=message): permutation_test(1, stat) message = "`axis` must be an integer." with pytest.raises(ValueError, match=message): permutation_test(([1, 2, 3], [1, 2, 3]), stat, axis=1.5) message = "`permutation_type` must be in..." with pytest.raises(ValueError, match=message): permutation_test(([1, 2, 3], [1, 2, 3]), stat, permutation_type="ekki") message = "`vectorized` must be `True` or `False`." with pytest.raises(ValueError, match=message): permutation_test(([1, 2, 3], [1, 2, 3]), stat, vectorized=1.5) message = "`n_resamples` must be a positive integer." with pytest.raises(ValueError, match=message): permutation_test(([1, 2, 3], [1, 2, 3]), stat, n_resamples=-1000) message = "`n_resamples` must be a positive integer." with pytest.raises(ValueError, match=message): permutation_test(([1, 2, 3], [1, 2, 3]), stat, n_resamples=1000.5) message = "`batch` must be a positive integer or None." with pytest.raises(ValueError, match=message): permutation_test(([1, 2, 3], [1, 2, 3]), stat, batch=-1000) message = "`batch` must be a positive integer or None." with pytest.raises(ValueError, match=message): permutation_test(([1, 2, 3], [1, 2, 3]), stat, batch=1000.5) message = "`alternative` must be in..." with pytest.raises(ValueError, match=message): permutation_test(([1, 2, 3], [1, 2, 3]), stat, alternative='ekki') message = "'herring' cannot be used to seed a" with pytest.raises(ValueError, match=message): permutation_test(([1, 2, 3], [1, 2, 3]), stat, random_state='herring') # -- Test Parameters -- # @pytest.mark.parametrize('permutation_type', ['pairings', 'samples', 'independent']) def test_batch(self, permutation_type): # make sure that the `batch` parameter is respected by checking the # maximum batch size provided in calls to `statistic` np.random.seed(0) x = np.random.rand(10) y = np.random.rand(10) def statistic(x, y, axis): batch_size = 1 if x.ndim == 1 else len(x) statistic.batch_size = max(batch_size, statistic.batch_size) statistic.counter += 1 return np.mean(x, axis=axis) - np.mean(y, axis=axis) statistic.counter = 0 statistic.batch_size = 0 kwds = {'n_resamples': 1000, 'permutation_type': permutation_type, 'vectorized': True, 'random_state': 0} res1 = stats.permutation_test((x, y), statistic, batch=1, **kwds) assert_equal(statistic.counter, 1001)
assert_equal(statistic.batch_size, 1)
numpy.testing.assert_equal
import pandas as pd import datetime as datetime import numpy as np import matplotlib.pyplot as plt from statsmodels.nonparametric.smoothers_lowess import lowess """ cgmquantify package Description: The cgmquantify package is a comprehensive library for computing metrics from continuous glucose monitors. Requirements: pandas, datetime, numpy, matplotlib, statsmodels Functions: importdexcom(): Imports data from Dexcom continuous glucose monitor devices interdaycv(): Computes and returns the interday coefficient of variation of glucose interdaysd(): Computes and returns the interday standard deviation of glucose intradaycv(): Computes and returns the intraday coefficient of variation of glucose intradaysd(): Computes and returns the intraday standard deviation of glucose TIR(): Computes and returns the time in range TOR(): Computes and returns the time outside range PIR(): Computes and returns the percent time in range POR(): Computes and returns the percent time outside range MGE(): Computes and returns the mean of glucose outside specified range MGN(): Computes and returns the mean of glucose inside specified range MAGE(): Computes and returns the mean amplitude of glucose excursions J_index(): Computes and returns the J-index LBGI(): Computes and returns the low blood glucose index HBGI(): Computes and returns the high blood glucose index ADRR(): Computes and returns the average daily risk range, an assessment of total daily glucose variations within risk space MODD(): Computes and returns the mean of daily differences. Examines mean of value + value 24 hours before CONGA24(): Computes and returns the continuous overall net glycemic action over 24 hours GMI(): Computes and returns the glucose management index eA1c(): Computes and returns the American Diabetes Association estimated HbA1c summary(): Computes and returns glucose summary metrics, including interday mean glucose, interday median glucose, interday minimum glucose, interday maximum glucose, interday first quartile glucose, and interday third quartile glucose plotglucosesd(): Plots glucose with specified standard deviation lines plotglucosebounds(): Plots glucose with user-defined boundaries plotglucosesmooth(): Plots smoothed glucose plot (with LOWESS smoothing) """ def importdexcom(filename): """ Imports data from Dexcom continuous glucose monitor devices Args: filename (String): path to file Returns: (pd.DataFrame): dataframe of data with Time, Glucose, and Day columns """ data = pd.read_csv(filename) df = pd.DataFrame() df['Time'] = data['Timestamp (YYYY-MM-DDThh:mm:ss)'] df['Glucose'] = pd.to_numeric(data['Glucose Value (mg/dL)']) df.drop(df.index[:12], inplace=True) df['Time'] = pd.to_datetime(df['Time'], format='%Y-%m-%dT%H:%M:%S') df['Day'] = df['Time'].dt.date df = df.reset_index() return df def importfreestylelibre(filename): """ Imports data from Abbott FreeStyle Libre continuous glucose monitor devices Args: filename (String): path to file Returns: (pd.DataFrame): dataframe of data with Time, Glucose, and Day columns """ data = pd.read_csv(filename, header=1, parse_dates=['Device Timestamp']) df = pd.DataFrame() historic_id = 0 df['Time'] = data.loc[data['Record Type'] == historic_id, 'Device Timestamp'] df['Glucose'] = pd.to_numeric(data.loc[data['Record Type'] == historic_id, 'Historic Glucose mg/dL']) df['Day'] = df['Time'].dt.date return df def interdaycv(df): """ Computes and returns the interday coefficient of variation of glucose Args: (pd.DataFrame): dataframe of data with DateTime, Time and Glucose columns Returns: cvx (float): interday coefficient of variation averaged over all days """ cvx = (np.std(df['Glucose']) / (np.mean(df['Glucose'])))*100 return cvx def interdaysd(df): """ Computes and returns the interday standard deviation of glucose Args: (pd.DataFrame): dataframe of data with DateTime, Time and Glucose columns Returns: interdaysd (float): interday standard deviation averaged over all days """ interdaysd = np.std(df['Glucose']) return interdaysd def intradaycv(df): """ Computes and returns the intraday coefficient of variation of glucose Args: (pd.DataFrame): dataframe of data with DateTime, Time and Glucose columns Returns: intradaycv_mean (float): intraday coefficient of variation averaged over all days intradaycv_medan (float): intraday coefficient of variation median over all days intradaycv_sd (float): intraday coefficient of variation standard deviation over all days """ intradaycv = [] for i in pd.unique(df['Day']): intradaycv.append(interdaycv(df[df['Day']==i])) intradaycv_mean = np.mean(intradaycv) intradaycv_median = np.median(intradaycv) intradaycv_sd = np.std(intradaycv) return intradaycv_mean, intradaycv_median, intradaycv_sd def intradaysd(df): """ Computes and returns the intraday standard deviation of glucose Args: (pd.DataFrame): dataframe of data with DateTime, Time and Glucose columns Returns: intradaysd_mean (float): intraday standard deviation averaged over all days intradaysd_medan (float): intraday standard deviation median over all days intradaysd_sd (float): intraday standard deviation standard deviation over all days """ intradaysd =[] for i in pd.unique(df['Day']): intradaysd.append(np.std(df[df['Day']==i])) intradaysd_mean = np.mean(intradaysd) intradaysd_median = np.median(intradaysd) intradaysd_sd =
np.std(intradaysd)
numpy.std
# This code aims to draw 3 activation function # Engineer: <NAME> # Last Update: 8/3/2021 import matplotlib.pyplot as plt import numpy as np def sigmoid(x): s = 1 / (1 + np.exp(-x)) return s def tanh(x): s1 = np.exp(x) - np.exp(-x) s2 =
np.exp(x)
numpy.exp
#+ # # This file is part of h5py, a low-level Python interface to the HDF5 library. # # Copyright (C) 2008 <NAME> # http://h5py.alfven.org # License: BSD (See LICENSE.txt for full license) # # $Date$ # #- """ Contains code to "bootstrap" HDF5 files for the test suite. Since it uses the same code that will eventually be tested, the files it produces are manually inspected using HDFView, and distributed with the package. """ import numpy as np import h5py class Group(dict): def __init__(self, *args, **kwds): dict.__init__(self, *args, **kwds) self.attrs = {} class File(Group): def __init__(self, name, *args, **kwds): Group.__init__(self, *args, **kwds) self.name = name class Dataset(object): argnames = ('shape', 'dtype', 'data','chunks', 'compression', 'shuffle', 'fletcher32', 'maxshape') def __init__(self, *args, **kwds): kwds.update(zip(self.argnames, args)) self.kwds = kwds self.attrs = {} class Datatype(object): def __init__(self, dtype): self.dtype = dtype self.attrs = {} def compile_hdf5(fileobj): """ Take a "model" HDF5 tree and write it to an actual file. """ def update_attrs(hdf_obj, attrs_dict): for name in sorted(attrs_dict): val = attrs_dict[name] hdf_obj.attrs[name] = val def store_dataset(group, name, obj): """ Create and store a dataset in the given group """ dset = group.create_dataset(name, **obj.kwds) update_attrs(dset, obj.attrs) def store_type(group, name, obj): """ Commit the given datatype to the group """ group[name] = obj.dtype htype = group[name] update_attrs(htype, obj.attrs) def store_group(group, name, obj): """ Create a new group inside this existing group. """ # First create the new group (if it's not the root group) if name is not None: hgroup = group.create_group(name) else: hgroup = group # Now populate it for new_name in sorted(obj): new_obj = obj[new_name] if isinstance(new_obj, Dataset): store_dataset(hgroup, new_name, new_obj) elif isinstance(new_obj, Datatype): store_type(hgroup, new_name, new_obj) elif isinstance(new_obj, Group): store_group(hgroup, new_name, new_obj) update_attrs(hgroup, obj.attrs) f = h5py.File(fileobj.name, 'w') store_group(f['/'], None, fileobj) f.close() def file_attrs(): """ "Attributes" test file (also used by group tests) """ sg1 = Group() sg2 = Group() sg3 = Group() grp = Group({'Subgroup1': sg1, 'Subgroup2': sg2, 'Subgroup3': sg3}) grp.attrs = {'String Attribute': np.asarray("This is a string.", '|S18'), 'Integer': np.asarray(42, '<i4'), 'Integer Array': np.asarray([0,1,2,3], '<i4'), 'Byte':
np.asarray(-34, '|i1')
numpy.asarray
from src.vehicle import Vehicle from src.visualiser import Vis from src.track import TrackHandler from src.nn import NeuralNetwork from sandbox.game_pad_inputs import GamePad from src.lidar import Lidar import numpy as np from time import sleep import time # #################### # NN OUTPUT HANDLING # # #################### def update_nn_outputs( outputs, nn): """ Assumes outputs are [Thr/Brake, Steering] """ thr_brake = max(0.0, min(1.0, nn.outputs[0])) * 2 - 1 if thr_brake >= 0: outputs[0] = thr_brake outputs[1] = 0.0 else: outputs[0] = 0.0 outputs[1] = thr_brake outputs[2] = (max(0.0, min(1.0, nn.outputs[1])) * 2 - 1) * 360.0 # ################### # NN INPUT HANDLING # # ################### def update_nn_inputs(inputs, veh): """ Fixes the order of the inputs Lidar is scaled 0-1 - out of range lidar is set to max distance. """ collArr =
np.hstack((veh.lidar_front.collision_array, veh.lidar_left.collision_array, veh.lidar_right.collision_array))
numpy.hstack
import numpy as np import matplotlib.pyplot as plt import scipy.stats as stats def plot_gam(a, b): ''' :param a: gamma shape parameter n :param b: gamma scale parameter ℷ ''' x =
np.linspace(0, 15, 10000)
numpy.linspace
__author__ = '<NAME>' import numpy as np import lasagne def batch_generator(data, target, BATCH_SIZE, shuffle=False): if shuffle: while True: ids = np.random.choice(len(data), BATCH_SIZE) yield data[ids], target[ids] else: for idx in range(0, len(data), BATCH_SIZE): ids = slice(idx, idx + BATCH_SIZE) yield data[ids], target[ids] def batch_generator_old(data, target, BATCH_SIZE, shuffle=False): ''' just a simple batch iterator, no cropping, no rotation, no anything ''' np.random.seed() idx = np.arange(data.shape[0]) if shuffle: np.random.shuffle(idx) idx_2 = np.array(idx) # if BATCH_SIZE is larger than len(data) we need to artificially enlarge the idx array (loop around) while BATCH_SIZE > len(idx): idx_2 = np.concatenate((idx_2, idx)) del(idx) while True: ctr = 0 yield np.array(data[idx_2[ctr:ctr+BATCH_SIZE]]), np.array(target[idx_2[ctr:ctr+BATCH_SIZE]]) ctr += BATCH_SIZE if ctr >= data.shape[0]: ctr -= data.shape[0] def center_crop_generator(generator, output_size): ''' yields center crop of size output_size (may be 1d or 2d) from data and seg ''' '''if type(output_size) not in (tuple, list): center_crop = [output_size, output_size] elif len(output_size) == 2: center_crop = list(output_size) else: raise ValueError("invalid output_size")''' center_crop = lasagne.utils.as_tuple(output_size, 2, int) for data, seg in generator: center = np.array(data.shape[2:])/2 yield data[:, :, int(center[0]-center_crop[0]/2.):int(center[0]+center_crop[0]/2.), int(center[1]-center_crop[1]/2.):int(center[1]+center_crop[1]/2.)], seg[:, :, int(center[0]-center_crop[0]/2.):int(center[0]+center_crop[0]/2.), int(center[1]-center_crop[1]/2.):int(center[1]+center_crop[1]/2.)] def random_crop_generator(generator, crop_size=(128, 128)): ''' yields a random crop of size crop_size ''' if type(crop_size) not in (tuple, list): crop_size = [crop_size, crop_size] elif len(crop_size) == 2: crop_size = list(crop_size) else: raise ValueError("invalid crop_size") for data, seg in generator: lb_x = np.random.randint(0, data.shape[2]-crop_size[0]) lb_y =
np.random.randint(0, data.shape[3]-crop_size[1])
numpy.random.randint
""" Implementation of DOGRE / WOGRE approach. Notice projection==embedding. """ import numpy as np from sklearn.linear_model import Ridge import time from state_of_the_art.state_of_the_art_embedding import final from math import pow from utils import get_initial_proj_nodes_by_k_core, get_initial_proj_nodes_by_degrees import heapq import networkx as nx def user_print(item, user_wish): """ A function to show the user the state of the our_embeddings_methods. If you want a live update of the current state of code and some details: set user wish to True else False """ if user_wish is True: print(item, sep=' ', end='', flush=True) time.sleep(3) print(" ", end='\r') def create_sub_G(proj_nodes, G): """ Creating a new graph from the nodes in the initial embedding so we can do the initial embedding on it :param proj_nodes: The nodes in the initial embedding :param G: Our graph :return: A sub graph of G that its nodes are the nodes in the initial embedding. """ sub_G = G.subgraph(list(proj_nodes)) return sub_G def create_dict_neighbors(G): """ Create a dictionary of neighbors. :param G: Our graph :return: neighbors_dict where key==node and value==set_of_neighbors (both incoming and outgoing) """ G_nodes = list(G.nodes()) neighbors_dict = {} for i in range(len(G_nodes)): node = G_nodes[i] neighbors_dict.update({node: set(G[node])}) return neighbors_dict def create_dicts_same_nodes(my_set, neighbors_dict, node, dict_out, dict_in): """ A function to create useful dictionaries to represent connections between nodes that have the same type, i.e between nodes that are in the embedding and between nodes that aren't in the embedding. It depends on the input. :param my_set: Set of the nodes that aren't currently in the embedding OR Set of the nodes that are currently in the embedding :param neighbors_dict: Dictionary of all nodes and neighbors (both incoming and outgoing) :param node: Current node :param dict_out: explained below :param dict_in: explained below :return: There are 4 possibilities (2 versions, 2 to every version): A) 1. dict_node_node_out: key == nodes not in embedding, value == set of outgoing nodes not in embedding (i.e there is a directed edge (i,j) when i is the key node and j isn't in the embedding) 2. dict_node_node_in: key == nodes not in embedding , value == set of incoming nodes not in embedding (i.e there is a directed edge (j,i) when i is the key node and j isn't in the embedding) B) 1. dict_enode_enode_out: key == nodes in embedding , value == set of outgoing nodes in embedding (i.e there is a directed edge (i,j) when i is the key node and j is in the embedding) 2. dict_enode_enode_in: key == nodes in embedding , value == set of incoming nodes in embedding (i.e there is a directed edge (j,i) when i is the key node and j is in the embedding) """ set1 = neighbors_dict[node].intersection(my_set) count_1 = 0 count_2 = 0 if (len(set1)) > 0: count_1 += 1 dict_out.update({node: set1}) neigh = list(set1) for j in range(len(neigh)): if dict_in.get(neigh[j]) is None: dict_in.update({neigh[j]: set([node])}) else: dict_in[neigh[j]].update(set([node])) else: count_2 += 1 return dict_out, dict_in def create_dict_node_enode(set_proj_nodes, neighbors_dict, H, node, dict_node_enode, dict_enode_node): """ A function to create useful dictionaries to represent connections between nodes that are in the embedding and nodes that are not in the embedding. :param set_proj_nodes: Set of the nodes that are in the embedding :param neighbors_dict: Dictionary of all nodes and neighbors (both incoming and outgoing) :param H: H is the undirected version of our graph :param node: Current node :param dict_node_enode: explained below :param dict_enode_node: explained below :return: 1. dict_node_enode: key == nodes not in embedding, value == set of outdoing nodes in embedding (i.e there is a directed edge (i,j) when i is the key node and j is in the embedding) 2. dict_enode_node: key == nodes not in embedding, value == set of incoming nodes in embedding (i.e there is a directed edge (j,i) when i is the key node and j is in the embedding) """ set2 = neighbors_dict[node].intersection(set_proj_nodes) set_all = set(H[node]).intersection(set_proj_nodes) set_in = set_all - set2 if len(set2) > 0: dict_node_enode.update({node: set2}) if len(set_in) > 0: dict_enode_node.update({node: set_in}) return dict_node_enode, dict_enode_node def create_dicts_of_connections(set_proj_nodes, set_no_proj_nodes, neighbors_dict, G): """ A function that creates 6 dictionaries of connections between different types of nodes. :param set_proj_nodes: Set of the nodes that are in the projection :param set_no_proj_nodes: Set of the nodes that aren't in the projection :param neighbors_dict: Dictionary of neighbours :return: 6 dictionaries, explained above (in the two former functions) """ dict_node_node_out = {} dict_node_node_in = {} dict_node_enode = {} dict_enode_node = {} dict_enode_enode_out = {} dict_enode_enode_in = {} list_no_proj = list(set_no_proj_nodes) list_proj = list(set_proj_nodes) H = G.to_undirected() for i in range(len(list_no_proj)): node = list_no_proj[i] dict_node_node_out, dict_node_node_in = create_dicts_same_nodes(set_no_proj_nodes, neighbors_dict, node, dict_node_node_out, dict_node_node_in) dict_node_enode, dict_enode_node = create_dict_node_enode(set_proj_nodes, neighbors_dict, H, node, dict_node_enode, dict_enode_node) for i in range(len(list_proj)): node = list_proj[i] dict_enode_enode_out, dict_enode_enode_in = create_dicts_same_nodes(set_proj_nodes, neighbors_dict, node, dict_enode_enode_out, dict_enode_enode_in) return dict_node_node_out, dict_node_node_in, dict_node_enode, dict_enode_node, dict_enode_enode_out, dict_enode_enode_in def calculate_average_projection_second_order(dict_proj, node, dict_enode_enode, average_two_order_proj, dim, G): """ A function to calculate the average embeddings of the second order neighbors, both outgoing and incoming, depends on the input. :param dict_proj: Dict of embeddings (key==node, value==its embedding) :param node: Current node we're dealing with :param dict_enode_enode: key==node in embedding , value==set of neighbors that are in the embedding. Direction (i.e outgoing or incoming depends on the input) :param average_two_order_proj: explained below :return: Average embedding of second order neighbours, outgoing or incoming. """ two_order_neighs = dict_enode_enode.get(node) k2 = 0 # if the neighbors in the projection also have neighbors in the projection calculate the average projection if two_order_neighs is not None: two_order_neighs_in = list(two_order_neighs) k2 += len(two_order_neighs_in) two_order_projs = [] for i in range(len(two_order_neighs_in)): if G[node].get(two_order_neighs_in[i]) is not None: two_order_proj = G[node][two_order_neighs_in[i]]["weight"]*dict_proj[two_order_neighs_in[i]] else: two_order_proj = G[two_order_neighs_in[i]][node]["weight"]*dict_proj[two_order_neighs_in[i]] two_order_projs.append(two_order_proj) two_order_projs = np.array(two_order_projs) two_order_projs = np.mean(two_order_projs, axis=0) # else, the average projection is 0 else: two_order_projs = np.zeros(dim) average_two_order_proj.append(two_order_projs) return average_two_order_proj, k2 def calculate_projection_of_neighbors(current_node, proj_nodes, dict_proj, dict_enode_enode_in, dict_enode_enode_out, dim, G): """ A function to calculate average degree of first order neighbors and second order neighbors, direction (outgoing or incoming) depends on the input. :param proj_nodes: Neighbors that are in the embedding, direction depends on the input. :param dict_proj: Dict of embeddings (key==node, value==embedding) :return: Average degree of first order neighbors and second order neighbors """ proj = [] # average projections of the two order neighbors, both incoming and outgoing average_two_order_proj_in = [] average_two_order_proj_out = [] list_proj_nodes = list(proj_nodes) # the number of first order neighbors k1 = len(proj_nodes) # to calculate the number of the second order neighbors k2_in = 0 k2_out = 0 # to calculate the average projection of the second order neighbors for k in range(len(list_proj_nodes)): node = list_proj_nodes[k] average_two_order_proj_in, a = calculate_average_projection_second_order(dict_proj, node, dict_enode_enode_in, average_two_order_proj_in, dim, G) k2_in += a average_two_order_proj_out, b = calculate_average_projection_second_order(dict_proj, node, dict_enode_enode_out, average_two_order_proj_out, dim, G) k2_out += b proj.append(dict_proj[node]) if G[current_node].get(node) is not None: proj.append(G[current_node][node]["weight"] * dict_proj[node]) else: proj.append(G[node][current_node]["weight"] * dict_proj[node]) # for every neighbor we have the average projection of its neighbors, so now do average on all of them average_two_order_proj_in = np.array(average_two_order_proj_in) average_two_order_proj_in = np.mean(average_two_order_proj_in, axis=0) average_two_order_proj_out = np.array(average_two_order_proj_out) average_two_order_proj_out = np.mean(average_two_order_proj_out, axis=0) proj = np.array(proj) # find the average proj proj = np.mean(proj, axis=0) return proj, average_two_order_proj_in, average_two_order_proj_out, k1, k2_in, k2_out def calculate_projection(current_node, G, proj_nodes_in, proj_nodes_out, dict_proj, dict_enode_enode_in, dict_enode_enode_out, dim, alpha1, alpha2, beta_11, beta_12, beta_21, beta_22): """ A function to calculate the final embedding of the node by D-VERSE method as explained in the pdf file in github. :param proj_nodes_in: embeddings of first order incoming neighbors. :param proj_nodes_out: embeddings of first order outgoing neighbors. :param dict_proj: Dict of embeddings (key==node, value==projection) :param dim: Dimension of the embedding :param alpha1, alpha2, beta_11, beta_12, beta_21, beta_22: Parameters to calculate the final projection. :return: The final projection of our node. """ if len(proj_nodes_in) > 0: x_1, z_11, z_12, k1, k2_in_in, k2_in_out = calculate_projection_of_neighbors(current_node, proj_nodes_in, dict_proj, dict_enode_enode_in, dict_enode_enode_out, dim, G) else: x_1, z_11, z_12 = np.zeros(dim), np.zeros(dim),
np.zeros(dim)
numpy.zeros
# -*- coding: utf-8 -*- import numpy as np import seawater as sw # =========================================================== # DYNAMICAL MODES AMPLITUDE # =========================================================== def vmode_amp(A,vi): ''' This function makes the projection of every vertical mode to timeseries or section matrix to obtain its amplitude. It will be used to data reconstruction. Operation: ((A'*A)^-1)*(A'*vi) ============================================================= INPUT: A = vi = OUTPUT: AMP = ============================================================== ''' return np.dot(np.linalg.inv(np.dot(A.T,A)),np.dot(A.T,vi)) # =========================================================== # RELATIVE VORTICITY # =========================================================== def zeta(x,y,U,V): ''' ZETA k-component of rotational by velocity field Returns the scalar field of vorticity from U and V velocity components. X and Y are longitude and latitude matrices, respectively, as U and V. All matrices have same dimension. Grid could be curvilinear, but the error will increase. --> !!! IMPORTANT !!! <----------------------------------------- The grid indexes IM and JM must have origin on the left-inferior corner, increasing to right and to up, respectively. GRID : : : : | | | | (JM = 2) o ---------- o ---------- o ---------- o --- ... | | | | | | | | (JM = 1) o ---------- o ---------- o ---------- o --- ... | | | | | | | | (JM = 0) o ---------- o ---------- o ---------- o --- ... (IM = 0) (IM = 1) (IM = 2) (IM = 3) ================================================================ USAGE: ZETA = zeta(x,y,u,v) INPUT: x = decimal degrees (+ve E, -ve W) [-180..+180] y = decimal degrees (+ve N, -ve S) [- 90.. +90] u = velocity zonal component [m s^-1] v = velocity meridional component [m s^-1] OUTPUT: ZETA = Relative vorticity field [s^-1] ================================================================ ''' #função para cálculo de ângulos angcalc = lambda dy,dx: np.math.atan2(dy,dx) #funções para os diferenciais com borda dX = lambda d: np.hstack([(d[:,1]-d[:,0])[:,None], d[:,2:]-d[:,:-2],(d[:,-1]-d[:,-2])[:,None]]) dY = lambda d: np.vstack([(d[1,:]-d[0,:])[None,:], d[2:,:]-d[:-2,:],(d[-1,:]-d[-2,:])[None,:]]) # x = coordenada natural i # y = coordenada natural j # X = coordenada zonal cartesiana # Y = coordenada meridional cartesiana dyX = dX(y)*60*1852*np.cos(y*np.pi/180) dyY = dY(y)*60*1852 dxX = dX(x)*60*1852*np.cos(y*np.pi/180) dxY = dY(x)*60*1852 dsx = np.sqrt(dxX**2 + dyX**2) dsy = np.sqrt(dxY**2 + dyY**2) #Derivadas naturais de U dUy = dY(U) dUx = dX(U) #Derivadas naturais de V dVy = dY(V) dVx = dX(V) #a função map aplicará a função lambda angcalc em todos os elementos #indicados depois da virgula e armazenará em uma lista angX = list(map(angcalc,dyX.ravel(),dxX.ravel())) angY = list(map(angcalc,dyY.ravel(),dxY.ravel())) #fazendo rechape dos ângulos para o formato das matrizes de distâncias angX = np.reshape(angX,dsx.shape) angY = np.reshape(angY,dsy.shape) #calculando as componentes X e Y das derivadas dv1,dv2 = (dVy/dsy)*np.cos(angY), (dVx/dsx)*np.cos(angX) du1,du2 = -(dUy/dsy)*np.sin(angY), -(dUx/dsx)*np.sin(angX) # zerando valores aos quais a derivada tendeu ao infinito: # isto só acontece se uma das dimensões da grade for paralalela a um # eixo cartesiano dv1[np.isinf(dv1)] = 0 dv2[np.isinf(dv2)] = 0 du1[np.isinf(du1)] = 0 du2[np.isinf(du2)] = 0 #somando as componentes ZETA = dv1+dv2+du1+du2 return ZETA # =========================================================== # U AND V FROM STREAMFUNCTION # =========================================================== def psi2uv(x,y,psi): ''' PSI2UV Velocity components from streamfunction Returns the velocity components U and V from streamfunction PSI. X and Y are longitude and latitude matrices, respectively, as PSI. All matrices have same dimension. --> !!! IMPORTANT !!! <----------------------------------- The grid indexes IM and JM must have origin on the lower-left corner, increasing to right and to up. GRID : : : : | | | | (JM = 2) o ---------- o ---------- o ---------- o --- ... | | | | | | | | (JM = 1) o ---------- o ---------- o ---------- o --- ... | | | | | | | | (JM = 0) o ---------- o ---------- o ---------- o --- ... (IM = 0) (IM = 1) (IM = 2) (IM = 3) ============================================================== USAGE: u,v = psi2uv(x,y,psi) INPUT: x = decimal degrees (+ve E, -ve W) [-180..+180] y = decimal degrees (+ve N, -ve S) [- 90.. +90] psi = streamfunction [m^2 s^-1] OUTPUT: u = velocity zonal component [m s^-1] v = velocity meridional component [m s^-1] ========================================================== ''' #função para cálculo de ângulos angcalc = lambda dy,dx: np.math.atan2(dy,dx) #funções para os diferenciais com borda dX = lambda d: np.hstack([(d[:,1]-d[:,0])[:,None], d[:,2:]-d[:,:-2],(d[:,-1]-d[:,-2])[:,None]]) dY = lambda d: np.vstack([(d[1,:]-d[0,:])[None,:], d[2:,:]-d[:-2,:],(d[-1,:]-d[-2,:])[None,:]]) # x = coordenada natural i # y = coordenada natural j # X = coordenada zonal cartesiana # Y = coordenada meridional cartesiana dyX = dX(y)*60*1852*np.cos(y*np.pi/180) dyY = dY(y)*60*1852 dxX = dX(x)*60*1852*np.cos(y*np.pi/180) dxY = dY(x)*60*1852 dsX = np.sqrt(dxX**2 + dyX**2) dsY = np.sqrt(dxY**2 + dyY**2) dpx = dX(psi) dpy = dY(psi) #a função map aplicará a função lambda angcalc em todos os elementos #indicados depois da virgula e armazenará em uma lista angX = list(map(angcalc,dyX.ravel(),dxX.ravel())) angY = list(map(angcalc,dyY.ravel(),dxY.ravel())) #fazendo rechape dos ângulos para o formato das matrizes de distâncias angX = np.reshape(angX,dsX.shape) angY = np.reshape(angY,dsY.shape) #calculando as componentes u e v das velocidades calculadas em JM e IM v1,u1 = (dpy/dsY)*np.cos(angY), -(dpy/dsY)*np.sin(angY) u2,v2 = -(dpx/dsX)*np.sin(angX), (dpx/dsX)*np.cos(angX) # zerando valores aos quais a derivada tendeu ao infinito: # isto só acontece se uma das dimensões da grade for paralalela a um # eixo cartesiano v1[np.isinf(v1)] = 0 v2[np.isinf(v2)] = 0 u1[np.isinf(u1)] = 0 u2[np.isinf(u2)] = 0 #somando as componentes U = u1+u2 V = v1+v2 return U,V # =========================================================== # EQUATORIAL MODES # =========================================================== def eqmodes(N2,z,nm,lat,pmodes=False): ''' This function computes the equatorial velocity modes ============================================================ INPUT: N2 = Brunt-Vaisala frequency data array z = Depth data array (equaly spaced) lat = Latitude scalar nm = Number of modes to be computed pmodes = If the return of pressure modes is required. (Default is False) OUTPUT: Si = Equatorial modes matrix with MxN dimension being: M = z array size N = nm Rdi = Deformation Radii array Fi = Pressure modes matrix with MxN dimension being: M = z array size N = nm (Returned only if input pmodes=True) ============================================================ ''' #nm will be the number of baroclinic modes nm -= 1 #Barotropic mode will be added #defines the orthonormalization function onorm = lambda f: f/np.sqrt(dz*((np.array(f[1:])**2+\ np.array(f[:-1])**2)/(2*H)).sum()) # defines function to keep consistency multiply by plus/minus # to make the leading term positive plus_minus = lambda f: -f if (np.sign(f[1]) < 0) else f dz = np.abs(z[1] - z[0]) # assembling matrices # N2 matrix N2 = np.diag(N2[1:-1],0) # 2nd order difference matrix A = np.diag(np.ones(z.size-2)*-2.,0)+\ np.diag(np.ones(z.size-3)*1.,-1)+\ np.diag(np.ones(z.size-3)*1.,1) A = A/(dz**2) A = np.matrix(A) N2 =
np.matrix(N2)
numpy.matrix
import numpy as np x = np.load('../data/processed/one_hot_seqs.npy') y = np.load('../data/processed/cell_type_array.npy') peak_names =
np.load('../data/processed/peak_names.npy')
numpy.load
import cv2 as cv import numpy as np import numpy as np import math import imutils import os beta = 0.75 class BodyPart(): def __init__(self, name='part'): self.name = name self.x = 0 self.y = 0 self.theta = 0 self.l = 0 self.w = 0 self.children = [] self.parent = None self.left_upper_corner = None self.right_upper_corner = None self.left_lower_corner = None self.right_lower_corner = None self.priority = 0 self.area = 0 self.Si = 0 # intersection of synthesized body part with foreground self.visited = 0 # number of time this body part was updated def setData(self, x, y, theta, l, w): self.x = x self.y = y self.theta = theta self.l = l self.w = w self.area = l * w self.setCorners() def updateValue(self, indx, lamda): if indx == 0: self.x += int(lamda) elif indx == 1: self.y += int(lamda) elif indx == 2: self.theta += lamda elif indx == 3: self.l += int(lamda) self.area = self.l * self.w else: self.w += int(lamda) self.area = self.l * self.w self.setCorners() def addChildren(self, children): for child in children: self.children.append(child) def setParent(self, parent): self.parent = parent def getData(self): return (self.x, self.y, self.theta, self.l, self.w) def setCorners(self): if self.name == 'Torso': center = True else: center = False self.left_upper_corner = get_left_upper_corner(self.x, self.y, self.theta, self.l, self.w, center) self.right_upper_corner = get_right_upper_corner(self.x, self.y, self.theta, self.l, self.w, center) self.left_lower_corner = get_left_lower_corner(self.x, self.y, self.theta, self.l, self.w, center) self.right_lower_corner = get_right_lower_corner(self.x, self.y, self.theta, self.l, self.w, center) # input : frame , initial background with no human in it # output: binary image def segmentation (frame, background): if len(frame.shape) > 2: frame = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) if len(background.shape) > 2: background = cv.cvtColor(background, cv.COLOR_BGR2GRAY) diff = cv.absdiff(frame, background) diff[diff > 35] = 255 diff[diff <= 35] = 0 return diff def get_body_height(fore): miniy = 0 maxiy = 0 for i in range(fore.shape[0]): r= fore[i] x = np.argmax(r) if r[x] == 255: miniy = i break for i in reversed(range(fore.shape[0])): r = fore[i] x = np.argmax(r) if r[x] == 255: maxiy = i break height = abs(maxiy - miniy) return height def get_torso_center(foreImage): distMap= cv.distanceTransform(foreImage, cv.DIST_L2, 5) (yTorso, xTorso) = np.where(distMap == np.amax(distMap)) return (xTorso[0], yTorso[0]) ####################length of torso############################# def get_torso_length(foreImage, lBody): meanLTorso = .33 varLTorso = .001 mu = meanLTorso * lBody sigma = np.sqrt(varLTorso * (lBody**2)) lTorso = np.random.normal(mu, sigma) return lTorso ################################################################## ####################width of torso############################# def get_torso_width(foreImage, wBody): meanWTorso = 1 varWTorso = .001 mu = meanWTorso * wBody sigma = np.sqrt(varWTorso * (wBody**2)) wTorso = np.random.normal(mu, sigma) return wTorso ################################################################## def get_torso_angle(foreImage): fore = foreImage.copy() # get horizontal histogram num_rows = foreImage.shape[0] distMap= cv.distanceTransform(foreImage, cv.DIST_L2, 5) (yFirst, xFirst) = np.where(distMap == np.amax(distMap)) xFirst = int(xFirst[0]) yFirst = int(yFirst[0]) cropped_image = fore[min(yFirst + 5, num_rows - 1):, ] distMap= cv.distanceTransform(cropped_image, cv.DIST_L2, 5) (ySecond, xSecond) = np.where(distMap == np.amax(distMap)) xSecond = int(xSecond[0]) ySecond = int(ySecond[0]) + min(yFirst + 5, num_rows - 1) if abs(ySecond - yFirst) < 30: cropped_image = fore[0:max(yFirst - 5, 0), ] distMap = cv.distanceTransform(cropped_image, cv.DIST_L2, 5) if not distMap is None: (ySecond, xSecond) = np.where(distMap == np.amax(distMap)) xSecond = int(xSecond[0]) ySecond = int(ySecond[0]) deltaY = ySecond - yFirst deltaX = xSecond - xFirst if deltaX != 0: theta = np.arctan(deltaY/deltaX) * 180.0 / np.pi else: theta = 90.0 return 360 #return abs(90 - theta) def get_torso_model(image_R,face,img): lBody = get_body_height(img) wBody = 0.17 * lBody l = get_torso_length(img, lBody) w = get_torso_width(img, wBody) x,y= get_TFH(image_R,face,l) theta = get_torso_angle(img) torso_data = (x, y, theta, l, w) return torso_data def get_right_upper_arm_model(torso_center_x, torso_center_y, torso_theta,torso_height, torso_w): meanHeight = .55 * torso_height varHeight = .02 height = np.random.normal(meanHeight, varHeight) meanW = .2 * torso_w varW = .1 width = np.random.normal(meanW, varW) (top_right_x,top_right_y) = get_right_upper_corner(torso_center_x, torso_center_y, torso_theta, torso_height, torso_w,True) top_right_y = top_right_y + (.5 * width) sigma_x = 1 right_x = top_right_x right_y = top_right_y theta = np.random.normal(45,10) return right_x, right_y, theta, height, width def get_left_upper_arm_model(torso_center_x, torso_center_y,torso_theta, torso_height, torso_w): meanHeight = .55 * torso_height varHeight = .02 height = np.random.normal(meanHeight, varHeight) meanW = .2 * torso_w varW = .1 width = np.random.normal(meanW, varW) (top_left_x,top_left_y) = get_left_upper_corner(torso_center_x, torso_center_y, torso_theta, torso_height, torso_w,True) top_left_y = top_left_y+(.5 * width) sigma_x = 3 left_x = top_left_x left_y = top_left_y theta = np.random.normal(125, 10) return left_x, left_y, theta, height, width def get_right_lower_arm_model(end_x, end_y, torso_height, torso_w): meanHeight = .55 * torso_height varHeight = .02 height = np.random.normal(meanHeight, varHeight) meanW = .2 * torso_w varW = .1 width = np.random.normal(meanW, varW) top_right_x = end_x top_right_y = end_y sigma_x = 1 right_x = np.random.normal(top_right_x, sigma_x) right_y = np.random.normal(top_right_y, sigma_x) theta = np.random.normal(45, 10) return right_x, right_y, theta, height, width def get_left_lower_arm_model(end_x, end_y, torso_height, torso_w): meanHeight = .55 * torso_height varHeight = .02 height = np.random.normal(meanHeight, varHeight) meanW = .2 * torso_w varW = .1 width = np.random.normal(meanW, varW) top_left_x = end_x top_left_y = end_y sigma_x = 3 left_x = np.random.normal(top_left_x, sigma_x) left_y = np.random.normal(top_left_y, sigma_x) theta = np.random.normal(125, 10) return left_x, left_y, theta, height, width def get_left_upper_leg_model(torso_center_x,torso_center_y,torso_theta,torso_height,torso_w): meanHeight = .7* torso_height varHeight = .01 height = np.random.normal(meanHeight, varHeight) meanW = .35 * torso_w varW = .1 width = np.random.normal(meanW, varW) (bottom_left_x,bottom_left_y) = get_left_lower_corner(torso_center_x, torso_center_y, torso_theta, torso_height, torso_w,True) bottom_left_x = bottom_left_x+(.5 * width) sigma_x = 0 left_x = np.random.normal(bottom_left_x, sigma_x) left_y = np.random.normal(bottom_left_y, sigma_x) theta = np.random.normal(100, 10) return left_x, left_y, theta, height, width def get_right_upper_leg_model(torso_center_x, torso_center_y,torso_theta, torso_height, torso_w): meanHeight = .7 * torso_height varHeight = .01 height = np.random.normal(meanHeight, varHeight) meanW = .34 * torso_w varW = .1 width= np.random.normal(meanW, varW) (top_right_x,top_right_y) = get_right_lower_corner(torso_center_x, torso_center_y, torso_theta, torso_height, torso_w,True) top_right_x = top_right_x - (.5 * width) sigma_x = 0 right_x = np.random.normal(top_right_x, sigma_x) right_y = np.random.normal(top_right_y, sigma_x) theta = np.random.normal(80, 10) return right_x, right_y, theta, height, width def get_left_lower_leg_model(end_x, end_y, torso_height, torso_w): meanHeight = .7 * torso_height varHeight = .01 height = np.random.normal(meanHeight, varHeight) meanW = .35* torso_w varW = .1 width= np.random.normal(meanW, varW) bottom_left_x = end_x bottom_left_y = end_y sigma_x = 0 left_x = np.random.normal(bottom_left_x, sigma_x) left_y = np.random.normal(bottom_left_y, sigma_x) theta = np.random.normal(110, 10) return left_x, left_y, theta, height, width def get_right_lower_leg_model(end_x, end_y, torso_height, torso_w): meanHeight = .7 * torso_height varHeight = .01 height = np.random.normal(meanHeight, varHeight) meanW = .34 * torso_w varW = .1 width= np.random.normal(meanW, varW) top_right_x = end_x top_right_y = end_y sigma_x = 0 right_x =
np.random.normal(top_right_x, sigma_x)
numpy.random.normal
import matplotlib.pyplot as plt import numpy as np from itertools import cycle, islice from sklearn import cluster figsize = (10,10) point_size=150 point_border=0.8 from scipy.spatial.distance import euclidean, cdist from scipy.sparse.csgraph import minimum_spanning_tree from scipy.sparse import csgraph def DBCV(X, labels, dist_function=euclidean): """ Density Based clustering validation Args: X (np.ndarray): ndarray with dimensions [n_samples, n_features] data to check validity of clustering labels (np.array): clustering assignments for data X dist_dunction (func): function to determine distance between objects func args must be [np.array, np.array] where each array is a point Returns: cluster_validity (float) score in range[-1, 1] indicating validity of clustering assignments """ graph = _mutual_reach_dist_graph(X, labels, dist_function) mst = _mutual_reach_dist_MST(graph) cluster_validity = _clustering_validity_index(mst, labels) return cluster_validity def _core_dist(point, neighbors, dist_function): """ Computes the core distance of a point. Core distance is the inverse density of an object. Args: point (np.array): array of dimensions (n_features,) point to compute core distance of neighbors (np.ndarray): array of dimensions (n_neighbors, n_features): array of all other points in object class dist_dunction (func): function to determine distance between objects func args must be [np.array, np.array] where each array is a point Returns: core_dist (float) inverse density of point """ n_features = np.shape(point)[0] n_neighbors = np.shape(neighbors)[1] distance_vector = cdist(point.reshape(1, -1), neighbors) distance_vector = distance_vector[distance_vector != 0] numerator = ((1/distance_vector)**n_features).sum() core_dist = (numerator / (n_neighbors)) ** (-1/n_features) return core_dist def _mutual_reachability_dist(point_i, point_j, neighbors_i, neighbors_j, dist_function): """. Computes the mutual reachability distance between points Args: point_i (np.array): array of dimensions (n_features,) point i to compare to point j point_j (np.array): array of dimensions (n_features,) point i to compare to point i neighbors_i (np.ndarray): array of dims (n_neighbors, n_features): array of all other points in object class of point i neighbors_j (np.ndarray): array of dims (n_neighbors, n_features): array of all other points in object class of point j dist_dunction (func): function to determine distance between objects func args must be [np.array, np.array] where each array is a point Returns: mutual_reachability (float) mutual reachability between points i and j """ core_dist_i = _core_dist(point_i, neighbors_i, dist_function) core_dist_j = _core_dist(point_j, neighbors_j, dist_function) dist = dist_function(point_i, point_j) mutual_reachability = np.max([core_dist_i, core_dist_j, dist]) return mutual_reachability def _mutual_reach_dist_graph(X, labels, dist_function): """ Computes the mutual reach distance complete graph. Graph of all pair-wise mutual reachability distances between points Args: X (np.ndarray): ndarray with dimensions [n_samples, n_features] data to check validity of clustering labels (np.array): clustering assignments for data X dist_dunction (func): function to determine distance between objects func args must be [np.array, np.array] where each array is a point Returns: graph (np.ndarray) array of dimensions (n_samples, n_samples) Graph of all pair-wise mutual reachability distances between points. """ n_samples = np.shape(X)[0] graph = [] counter = 0 for row in range(n_samples): graph_row = [] for col in range(n_samples): point_i = X[row] point_j = X[col] class_i = labels[row] class_j = labels[col] members_i = _get_label_members(X, labels, class_i) members_j = _get_label_members(X, labels, class_j) dist = _mutual_reachability_dist(point_i, point_j, members_i, members_j, dist_function) graph_row.append(dist) counter += 1 graph.append(graph_row) graph = np.array(graph) return graph def _mutual_reach_dist_MST(dist_tree): """ Computes minimum spanning tree of the mutual reach distance complete graph Args: dist_tree (np.ndarray): array of dimensions (n_samples, n_samples) Graph of all pair-wise mutual reachability distances between points. Returns: minimum_spanning_tree (np.ndarray) array of dimensions (n_samples, n_samples) minimum spanning tree of all pair-wise mutual reachability distances between points. """ mst = minimum_spanning_tree(dist_tree).toarray() return mst + np.transpose(mst) def _cluster_density_sparseness(MST, labels, cluster): """ Computes the cluster density sparseness, the minimum density within a cluster Args: MST (np.ndarray): minimum spanning tree of all pair-wise mutual reachability distances between points. labels (np.array): clustering assignments for data X cluster (int): cluster of interest Returns: cluster_density_sparseness (float) value corresponding to the minimum density within a cluster """ indices = np.where(labels == cluster)[0] cluster_MST = MST[indices][:, indices] cluster_density_sparseness = np.max(cluster_MST) return cluster_density_sparseness def _cluster_density_separation(MST, labels, cluster_i, cluster_j): """ Computes the density separation between two clusters, the maximum density between clusters. Args: MST (np.ndarray): minimum spanning tree of all pair-wise mutual reachability distances between points. labels (np.array): clustering assignments for data X cluster_i (int): cluster i of interest cluster_j (int): cluster j of interest Returns: density_separation (float): value corresponding to the maximum density between clusters """ indices_i = np.where(labels == cluster_i)[0] indices_j =
np.where(labels == cluster_j)
numpy.where
import random import numpy as np class OrnsteinUhlenbeckAndEpsilonGreedy: """ See https://github.com/keras-rl/keras-rl/blob/master/rl/random.py """ def __init__(self, theta, mu: float = 0, sigma: float = 1, dt=1e-2, size: int = 1, epsilon_actions: int = 0): self.mu = mu self.sigma = sigma self.size = size self.theta = theta self.dt = dt self.previous_noise = None self.epsilon_actions = epsilon_actions self.reset_states() def get_action(self, action: np.ndarray): action = action + self.sample() for i in range(self.epsilon_actions): if random.random() < 0.1: action[-i - 1] = random.getrandbits(1) - 0.5 return action def sample(self): noise = self.previous_noise + \ self.theta * (self.mu - self.previous_noise) * self.dt + \ self.sigma * np.sqrt(self.dt) * np.random.normal(size=self.size) self.previous_noise = noise return noise def reset_states(self): self.previous_noise = np.random.normal(self.mu, self.sigma, size=self.size) if __name__ == '__main__': size = 5 ou = OrnsteinUhlenbeckAndEpsilonGreedy(theta=0.15, sigma=0.05, size=size) for i in range(100): action = ou.get_action(
np.zeros(size)
numpy.zeros
# general imports import numpy as np from abc import ABC, abstractmethod # local module imports from . import interpolation as ip, global_functions as g_func, \ channel as chl, output_object as oo class ParallelFlowCircuit(ABC, oo.OutputObject): def __new__(cls, dict_flow_circuit, manifolds, channels, n_subchannels=1.0, **kwargs): circuit_type = dict_flow_circuit.get('type', 'Koh') if circuit_type == 'Koh': return super(ParallelFlowCircuit, cls).\ __new__(KohFlowCircuit) elif circuit_type == 'ModifiedKoh': return super(ParallelFlowCircuit, cls).\ __new__(ModifiedKohFlowCircuit) elif circuit_type == 'UpdatedKoh': return super(ParallelFlowCircuit, cls).\ __new__(UpdatedKohFlowCircuit) elif circuit_type == 'Wang': return super(ParallelFlowCircuit, cls).\ __new__(WangFlowCircuit) else: raise NotImplementedError def __init__(self, dict_flow_circuit, manifolds, channels, n_subchannels=1.0, **kwargs): name = dict_flow_circuit['name'] super().__init__(name) assert isinstance(dict_flow_circuit, dict) assert isinstance(manifolds, (list, tuple)) assert isinstance(channels, (list, tuple)) err_message = 'manifolds must be tuple or list with two objects of ' \ 'class Channel' if len(manifolds) != 2: raise ValueError(err_message) elif not isinstance(manifolds[0], chl.Channel): raise TypeError(err_message) if not isinstance(channels[0], chl.Channel): raise TypeError(err_message) self.print_variables = \ { 'names': ['normalized_flow_distribution'], 'units': ['-'], 'sub_names': ['None'] } self.combine_print_variables(self.print_variables, kwargs.get('print_variables', None)) self.manifolds = manifolds self.manifolds[0].name = self.name + ': Inlet Manifold' self.manifolds[0].fluid.name = self.manifolds[0].name + ': ' \ + self.manifolds[0].fluid.TYPE_NAME self.manifolds[1].name = self.name + ': Outlet Manifold' self.manifolds[1].fluid.name = self.manifolds[1].name + ': ' \ + self.manifolds[1].fluid.TYPE_NAME self.channels = channels self.manifolds[0].flow_direction = 1 self.shape = dict_flow_circuit.get('shape', 'U') if self.shape not in ('U', 'Z'): raise ValueError('shape of flow circuit must be either U or Z') if self.shape == 'U': self.manifolds[1].flow_direction = -1 else: self.manifolds[1].flow_direction = 1 if hasattr(self.manifolds[0].fluid, 'mass_fraction'): self.multi_component = True else: self.multi_component = False self.n_channels = len(self.channels) self.n_subchannels = n_subchannels self.tolerance = dict_flow_circuit.get('tolerance', 1e-6) self.max_iter = dict_flow_circuit.get('max_iter', 20) self.min_iter = dict_flow_circuit.get('min_iter', 3) self.calc_distribution = \ dict_flow_circuit.get('calc_distribution', True) self.mass_flow_in = \ self.manifolds[0].mass_flow_total[self.manifolds[0].id_in] self.vol_flow_in = 0.0 self.channel_mass_flow = \ np.ones(self.n_channels) * self.mass_flow_in / self.n_channels self.channel_vol_flow = np.zeros(self.channel_mass_flow.shape) self.channel_vol_flow_old = np.zeros(self.channel_vol_flow.shape) self.channel_length = \ np.asarray([channel.length for channel in channels]) self.channel_cross_area = \ np.asarray([channel.cross_area for channel in channels]) self.initialize = True self.update_channels(update_fluid=True) self.normalized_flow_distribution = \ np.zeros(self.channel_vol_flow.shape) self.iteration = 0 self.add_print_variables(self.print_variables) def update(self, inlet_mass_flow=None, calc_distribution=None, update_fluid=False, **kwargs): """ Update the flow circuit """ if inlet_mass_flow is not None: id_in = self.manifolds[0].id_in self.vol_flow_in = \ inlet_mass_flow / self.manifolds[0].fluid.density[id_in] if self.initialize: # homogeneous distribution self.channel_mass_flow[:] = inlet_mass_flow / self.n_channels self.channel_vol_flow[:] = self.vol_flow_in / self.n_channels else: # use previous distribution scaled to new mass flow self.channel_mass_flow[:] *= inlet_mass_flow / self.mass_flow_in self.channel_vol_flow[:] *= inlet_mass_flow / self.mass_flow_in # set new mass and volume flows self.mass_flow_in = inlet_mass_flow if self.initialize: self.update_channels(update_fluid=True) self.channel_vol_flow_old[:] = 1e8 # channel_vol_flow_old = np.zeros(self.channel_vol_flow.shape) if calc_distribution is None: calc_distribution = self.calc_distribution if calc_distribution and self.n_channels > 1: for i in range(self.max_iter): # print(self.name + ' Iteration # ', str(i+1)) self.iteration = i self.single_loop() if i == 0: self.initialize = False error = \ np.sum( np.divide(self.channel_vol_flow - self.channel_vol_flow_old[:], self.channel_vol_flow, where=self.channel_vol_flow != 0.0) ** 2.0) # print(channel_vol_flow_old) # print(self.channel_vol_flow) self.channel_vol_flow_old[:] = self.channel_vol_flow # print(error) if error < self.tolerance and i >= self.min_iter: break if i == (self.max_iter - 1): print('maximum number of iterations n = {} ' 'with error = {} in update() of {} ' 'reached'.format(self.max_iter, error, self)) else: self.initialize = False # final channel updates within flow circuit iteration self.update_channels(update_fluid=True) try: self.normalized_flow_distribution[:] = \ self.channel_mass_flow / np.average(self.channel_mass_flow) except FloatingPointError: self.normalized_flow_distribution[:] = 0.0 @abstractmethod def single_loop(self, inlet_mass_flow=None, update_channels=True): pass def update_channels(self, update_fluid=True): if self.initialize: channel_mass_flow_in = np.ones(self.n_channels) \ * self.mass_flow_in / self.n_channels channel_mass_flow_out = channel_mass_flow_in else: channel_mass_flow_in = self.channel_mass_flow # channel_mass_flow_out = \ # np.array([channel.mass_flow_total[channel.id_out] # for channel in self.channels]) # channel_mass_flow_out *= self.n_subchannels channel_mass_flow_out = self.channel_mass_flow if self.multi_component: mass_fraction = \ np.array([channel.fluid.mass_fraction[:, channel.id_out] for channel in self.channels]).transpose() else: mass_fraction = 1.0 mass_source = channel_mass_flow_out * mass_fraction # mass_source = self.channel_mass_flow * mass_fraction channel_enthalpy_out = \ np.asarray([ch.g_fluid[ch.id_out] * ch.temperature[ch.id_out] for ch in self.channels]) * self.n_subchannels self.manifolds[1].update(mass_flow_in=0.0, mass_source=mass_source, update_mass=True, update_flow=True, update_heat=False, update_fluid=update_fluid, enthalpy_source=channel_enthalpy_out) # Channel update for i, channel in enumerate(self.channels): channel.p_out = ip.interpolate_1d(self.manifolds[1].pressure)[i] channel.temperature[channel.id_in] = self.manifolds[0].temp_ele[i] channel.update(mass_flow_in= channel_mass_flow_in[i] / self.n_subchannels, update_mass=True, update_flow=True, update_heat=False, update_fluid=update_fluid) # Inlet header update id_in = self.channels[-1].id_in self.manifolds[0].p_out = self.channels[-1].pressure[id_in] if self.multi_component: mass_fraction = self.manifolds[0].fluid.mass_fraction[:, :-1] else: mass_fraction = 1.0 mass_source = -self.channel_mass_flow * mass_fraction self.manifolds[0].update(mass_flow_in=self.mass_flow_in, # * 1.00000, mass_source=mass_source, update_mass=True, update_flow=True, update_heat=False, update_fluid=update_fluid) id_in = self.manifolds[0].id_in self.vol_flow_in = \ self.mass_flow_in / self.manifolds[0].fluid.density[id_in] class KohFlowCircuit(ParallelFlowCircuit): def __init__(self, dict_flow_circuit, manifolds, channels, n_subchannels=1.0): super().__init__(dict_flow_circuit, manifolds, channels, n_subchannels) # Distribution factor self.alpha = np.ones(self.n_channels) id_in = self.channels[-1].id_in id_out = self.channels[-1].id_out self.dp_ref = \ self.channels[-1].pressure[id_in] \ - self.channels[-1].pressure[id_out] self.k_perm = np.zeros(self.n_channels) self.l_by_a = np.array([channel.length / channel.cross_area for channel in self.channels]) self.visc_channel = np.zeros(self.n_channels) self.dp_channel =
np.zeros(self.n_channels)
numpy.zeros
import numpy as np from numpy.linalg import norm __all__ = [ 'FLOAT_EPSILON', 'constants', 'geom_units', 'Ray', 'NullRay', 'Plane', 'Sphere', 'plane_intersect', 'sphere_intersect', 'rotate3D', 'wrap', 'unwrap', 'sph2pix', 'pix2sph', ] # This error tolerance will maintain accuracy up to 10 meters in units of c # or about 5 kilometers in astronomical units FLOAT_EPSILON = 3.3356409519815204e-08 constants = { 'c': 299792458.0, 'G': 6.67408e-11, 'gravitational constant': 6.67408e-11, 'solar_mass': 1.98847e+30, 'au': 149597870691.0, 'astronomical unit': 149597870691.0, 'parsec': 3.0856775813057292e+16, 'ly': 9460730472580800.0, 'light year': 9460730472580800.0, } # geometrized units geom_units = { 'm': 1.0, 'length': 1.0, 's': 299792458.0, 'time': 299792458.0, 'kg': 7.425915486106335e-28, # G/c**2 'mass': 7.425915486106335e-28, 'velocity': 3.3356409519815204e-09, # 1/c 'acceleration': 1.1126500560536185e-17, # 1/c**2 'energy': 8.262445281865645e-45, # G/c**4 } class Ray (object): """ Basic Ray object containing both an origin and a direction. Does not contain information on length, however, allows parameterization. When called, returns the location of the ray's endpoint if it had the magnitude specified by the input parameter. Parameters ========== origin: iterable 3D coordinate specified by either a list, tuple, or ndarray. direction: iterable Either described by a pair of angles or a 3D coordinate. In either case, it must be a list, tuple, or ndarray. """ def __init__(self, origin, direction): # type check origin; direction will be checked in the _build method if (not isinstance(origin, (list, tuple, np.ndarray)) or len(origin) is not 3): raise TypeError('origin must be a 3D cartesian coordinate') self.origin = np.array(origin, dtype=np.float) self._angles = None self._dir = None if len(direction) is 2: self.angles = direction elif len(direction) is 3: self.dir = direction else: raise TypeError('direction must be given as either a pair of '\ 'angles or a 3D vector') @property def angles(self): return self._angles @property def dir(self): return self._dir @angles.setter def angles(self, direction): if len(direction) is 2: mod_theta = np.clip(direction[0],0,np.pi) mod_phi = unwrap(direction[1]) self._angles = np.array([mod_theta, mod_phi]) self._dir = np.array([ np.sin(self._angles[0])*np.cos(self._angles[1]), np.sin(self._angles[0])*np.sin(self._angles[1]), np.cos(self._angles[0])]) self._dir = self._dir/np.linalg.norm(self._dir) # np.isclose helps remedy floating point precision errors. for idx, elem in enumerate(self._dir): if np.isclose(elem, 0, atol=FLOAT_EPSILON): self._dir[idx] = 0. else: raise TypeError('direction must be given as a pair of angles') @dir.setter def dir(self, direction): if len(direction) is 3: self._dir = np.array(direction)/np.linalg.norm(direction) self._angles = np.array([np.arccos(self._dir[2]), np.arctan2(self._dir[1], self._dir[0])]) # np.isclose helps remedy floating point precision errors. for idx, elem in enumerate(self._angles): if np.isclose(elem, 0, atol=FLOAT_EPSILON): self._angles[idx] = 0. else: raise TypeError('direction must be given as a 3D vector') def rotate(self, angle, axis=[0,0,1]): self.dir = rotate3D(angle, axis) @ self.dir def __call__(self, param): return self.dir*param + self.origin def __str__(self): return '{}(O:{}, D:{})'.format( self.__class__.__name__, self.origin, self.angles) def __repr__(self): return str(self.__class__) class NullRay (Ray): def __init__(self, origin=3*[np.NaN]): super(NullRay, self).__init__(origin, 2*[np.NaN]) class Plane (object): """ Represents a plane in 3D space. Specified by a plane origin and a normal. A plane can be defined by a single Ray argument, otherwise requires two separate 3D vectors. We should consider allowing for planes to be confined to a specified height and width. """ def __init__(self, *args): if len(args) is 1: if not isinstance(args[0], Ray): raise TypeError('a single argument must be a Ray') self.origin = args[0].origin self.normal = args[0].dir elif len(args) is 2: # I really abuse the hell out of all(map(...)) if (not all(map(isinstance, args, len(args)*((list,tuple,np.ndarray),))) or not all(map(lambda a: len(a) is 3, args))): raise TypeError('multiple arguments must be '\ '3D cartesian coordinates') self.origin = np.array(args[0]) self.normal = np.array(args[1])/norm(args[1]) def __str__(self): return '{}(O:{}, N:{})'.format( self.__class__.__name__, self.origin, self.normal) def __repr__(self): return str(self.__class__) class Sphere (object): """ Very simple sphere object; should consider expanding in the near future. """ def __init__(self, origin, radius): if (not isinstance(origin, (list, tuple, np.ndarray)) or len(origin) is not 3): raise TypeError('origin must be a 3D cartesian coordinate') if not isinstance(radius, (int, float)): raise TypeError('radius must be a numerical value') self.origin = origin self.radius = radius def __str__(self): return '{}(O:{}, R:{})'.format( self.__class__.__name__, self.origin, self.radius) def __repr__(self): return str(self.__class__) def plane_intersect(plane, ray): """ Returns the ray parameter associated with the ray's intersection with a plane. """ numer = (plane.origin - ray.origin) @ plane.normal denom = ray.dir @ plane.normal if numer == 0 or denom == 0: return np.NaN ret = numer/denom return ret if ret > 0 else np.NaN def sphere_intersect(ray, sphere): """ Returns the ray parameter associated with the ray's intersection with a sphere. """ OS = ray.origin - sphere.origin B = 2*ray.dir @ OS C = OS @ OS - sphere.radius**2 disc = B**2 - 4*C if disc > 0: dist = np.sqrt(disc) Q = (-B - dist)/2 if B < 0 else (-B + dist)/2 ret0, ret1 = sorted([Q, C/Q]) if ret1 >= 0: return ret1 if ret0 < 0 else ret0 return np.NaN def rotate3D(angle, axis=[0,0,1]): """ Returns the rotation matrix about a given axis. """ axis = np.array(axis)/
norm(axis)
numpy.linalg.norm
''' ############################################################################### "MajoranaNanowire" Python3 Module v 1.0 (2020) Created by <NAME> (2018) ############################################################################### "H_class/Lutchyn_Oreg/builders" submodule This sub-package builds Lutchyn-Oreg Hamiltonians. ############################################################################### ''' #%%############################################################################ ######################## Required Packages ############################ ############################################################################### import numpy as np import scipy.sparse import scipy.sparse.linalg import scipy.linalg import scipy.constants as cons from MajoranaNanowires.Functions import diagonal #%% def LO_1D_builder(N,dis,m_eff,mu,B,aR,d, space='position', k_vec=np.nan ,sparse='no'): """ 1D Lutchy-Oreg Hamiltonian builder. It obtaines the Hamiltoninan for a 1D Lutchy-Oreg chain with superconductivity. Parameters ---------- N: int or arr Number of sites. dis: int or arr Distance (in nm) between sites. m_eff: int or arr Effective mass. If it is an array, each element is the on-site effective mass. mu: float or arr Chemical potential. If it is an array, each element is the on-site chemical potential B: float or arr Zeeman splitting. If it is an array, each element is the Zeeman splitting in each direction. aR: float or arr Rashba coupling. -If aR is a float, aR is the Rashba coupling along the z-direction, with the same value in every site. -If aR is a 1D array with length=3, each element of the array is the rashba coupling in each direction. -If aR is an array of arrays (3 x N), each element of aR[i] is an array with the on-site Rashba couplings in the direction i. d: float or arr Superconductor paring amplitud. -If d is a float, d is the Rashba coupling along the y-direction, with the same value in every site. -If d is an array, each element of the array is the on-site superconducting paring amplitud space: {"position","momentum"} Space in which the Hamiltonian is built. "position" means real-space (r-space). In this case the boundary conditions are open. On the other hand, "momentum" means reciprocal space (k-space). In this case the built Hamiltonian corresponds to the Hamiltonian of the unit cell, with periodic boundary conditions along the x-direction. k_vec: arr If space=='momentum', k_vec is the (discretized) momentum vector, usually in the First Brillouin Zone. sparse: {"yes","no"} Sparsety of the built Hamiltonian. "yes" builds a dok_sparse matrix, while "no" builds a dense matrix. Returns ------- H: arr Hamiltonian matrix. """ #Make sure that the onsite parameters are arrays: if np.isscalar(m_eff): m_eff = m_eff * np.ones(N) if np.isscalar(mu): mu = mu * np.ones(N) if np.isscalar(B): Bx=B By=0 Bz=0 Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) elif np.ndim(B)==1 and len(B)==3: Bx=B[0] By=B[1] Bz=B[2] Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) if np.ndim(aR)==0: aRy=np.zeros(N) aRz=aR*np.ones(N)/(2*dis) elif np.ndim(aR)==1: if len(aR)==3: aRy=aR[1]*np.ones(N)/(2*dis) aRz=aR[2]*np.ones(N)/(2*dis) else: aRy=np.zeros(N) aRz=aR/(2*dis) else: aRy=aR[1]/(2*dis) aRz=aR[2]/(2*dis) if np.isscalar(d): d = d * np.ones(N) if space=='momentum': n_k=len(k_vec) #Obtain the hopping and on-site energies: t=cons.hbar**2/(2*m_eff*cons.m_e*(dis*1e-9)**2)/cons.e*1e3 e = 2 * t - mu ##Build the Hamiltonian: if sparse=='no': H = np.zeros((int(4 * N), int(4 * N)),dtype=complex) elif sparse=='yes': H=scipy.sparse.dok_matrix((int(4*N),int(4*N)),dtype=complex) t, aRy, Bz = np.repeat(t,2), np.repeat(aRy,2), np.repeat(Bz,2) Bz[1::2], aRy[1::2] = -Bz[::2], -aRy[::2] for i in range(2): H[diagonal(2*N*(i+1),init=2*N*i,k=1,step=2)], H[diagonal(2*N*(i+1),init=2*N*i,k=-1,step=2)] = (-1)**(i)*Bx-1j*By, (-1)**(i)*Bx+1j*By H[diagonal(2*N*(i+1),init=2*N*i)] = (-1)**i*(Bz+np.repeat(e,2)) H[diagonal(2*N*(i+1),init=2*N*i,k=-2)] = -1*(-1)**i*t[2::]+1j*aRy[2::] H[diagonal(2*N*(i+1),init=2*N*i,k=2)] = -1*(-1)**i*t[2::]-1j*aRy[2::] H[diagonal(2*N*(i+1),k=1,step=2,init=1+2*N*i)] += -1*(-1)**i*aRz[1::] H[diagonal(2*N*(i+1),k=-1,step=2,init=1+2*N*i)] += -1*(-1)**i*aRz[1::] H[diagonal(2*N*(i+1),init=2*N*i,k=3,step=2)] += (-1)**i*aRz[1::] H[diagonal(2*N*(i+1),init=2*N*i,k=-3,step=2)] += (-1)**i*aRz[1::] H[diagonal(4*N,k=2*N+1,step=2)], H[diagonal(4*N,k=-2*N-1,step=2)] = -np.conj(d), -d H[diagonal(4*N,k=2*N-1,step=2,init=1)], H[diagonal(4*N,k=-2*N+1,step=2,init=1)] = np.conj(d), d #Build it in momentum space if required: if space=='momentum': if sparse=='no': H_k = np.zeros((int(4 * N), int(4 * N), int(n_k)),dtype=complex) for i in range(n_k): H_k[:,:,i]=H H_k[2 * (N - 1):2 * (N - 1) + 2, 0: 2,i] += np.array([[-t[2]-1j*aRy[2], aRz[1]], [-aRz[1], -t[2]+1j*aRy[2]]])*np.exp(-1j*k_vec[i]*N) H_k[2 * (N - 1)+2*N:2 * (N - 1) + 2+2*N, 2*N: 2+2*N,i] += -np.array([[-t[2]+1j*aRy[2], aRz[1]], [-aRz[1], -t[2]-1j*aRy[2]]])*np.exp(1j*k_vec[i]*N) H_k[0: 2, 2 * (N - 1):2 * (N - 1) + 2,i] += np.array([[-t[2]+1j*aRy[2], -aRz[1]], [aRz[1], -t[2]-1j*aRy[2]]])*np.exp(1j*k_vec[i]*N) H_k[2*N: 2+2*N, 2 * (N - 1)+2*N:2 * (N - 1) + 2+2*N,i] += -np.array([[-t[2]-1j*aRy[2], -aRz[1]], [aRz[1], -t[2]+1j*aRy[2]]])*np.exp(-1j*k_vec[i]*N) return (H_k) elif sparse=='yes': return(H) else: return (H) #%% def LO_1D_builder_NoSC(N,dis,m_eff,mu,B,aR, space='position', k_vec=np.nan ,sparse='no'): """ 1D Lutchy-Oreg Hamiltonian builder. It obtaines the Hamiltoninan for a 1D Lutchy-Oreg chain without superconductivity. Parameters ---------- N: int or arr Number of sites. dis: int or arr Distance (in nm) between sites. m_eff: int or arr Effective mass. If it is an array, each element is the on-site effective mass. mu: float or arr Chemical potential. If it is an array, each element is the on-site chemical potential B: float or arr Zeeman splitting. If it is an array, each element is the Zeeman splitting in each direction. aR: float or arr Rashba coupling. -If aR is a float, aR is the Rashba coupling along the z-direction, with the same value in every site. -If aR is a 1D array with length=3, each element of the array is the rashba coupling in each direction. -If aR is an array of arrays (3 x N), each element of aR[i] is an array with the on-site Rashba couplings in the direction i. space: {"position","momentum"} Space in which the Hamiltonian is built. "position" means real-space (r-space). In this case the boundary conditions are open. On the other hand, "momentum" means reciprocal space (k-space). In this case the built Hamiltonian corresponds to the Hamiltonian of the unit cell, with periodic boundary conditions along the x-direction. k_vec: arr If space=='momentum', k_vec is the (discretized) momentum vector, usually in the First Brillouin Zone. sparse: {"yes","no"} Sparsety of the built Hamiltonian. "yes" builds a dok_sparse matrix, while "no" builds a dense matrix. Returns ------- H: arr Hamiltonian matrix. """ #Make sure that the onsite parameters are arrays: if np.isscalar(m_eff): m_eff = m_eff * np.ones(N) if np.isscalar(mu): mu = mu * np.ones(N) if np.isscalar(B): Bx=B By=0 Bz=0 Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) elif np.ndim(B)==1 and len(B)==3: Bx=B[0] By=B[1] Bz=B[2] Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) if np.ndim(aR)==0: aRy=np.zeros(N) aRz=aR*np.ones(N)/(2*dis) elif np.ndim(aR)==1: if len(aR)==3: aRy=aR[1]*np.ones(N)/(2*dis) aRz=aR[2]*np.ones(N)/(2*dis) else: aRy=np.zeros(N) aRz=aR/(2*dis) else: aRy=aR[1]/(2*dis) aRz=aR[2]/(2*dis) if space=='momentum': n_k=len(k_vec) #Obtain the hopping and the on-site energies: t=cons.hbar**2/(2*m_eff*cons.m_e*(dis*1e-9)**2)/cons.e*1e3 e = 2 * t - mu ##Build the Hamiltonian: if sparse=='no': H = np.zeros((int(2 * N), int(2 * N)),dtype=complex) elif sparse=='yes': H=scipy.sparse.dok_matrix((int(2*N),int(2*N)),dtype=complex) Bz,Bx,By=np.repeat(Bz,2),np.repeat(Bx,2), 1j*np.repeat(By,2) Bx[1::2], By[1::2], Bz[1::2] = 0, 0, -Bz[::2] H[diagonal(2*N,k=1)], H[diagonal(2*N,k=-1)] = Bx[:-1]-By[:-1], Bx[:-1]+By[:-1] H[diagonal(2*N)]=Bz+np.repeat(e,2) t=-np.repeat(t,2) aRy=np.repeat(aRy,2) aRy[1::2]= -aRy[::2] H[diagonal(2*N,k=-2)], H[diagonal(2*N,k=2)] = t[2::]+1j*aRy[2::], t[2::]-1j*aRy[2::] H[diagonal(2*N,k=1,step=2,init=1)] += -aRz[1::] H[diagonal(2*N,k=-1,step=2,init=1)] += -aRz[1::] H[diagonal(2*N,k=3,step=2)] += aRz[1::] H[diagonal(2*N,k=-3,step=2)] += aRz[1::] #Build it in momentum space if required: if space=='momentum': if sparse=='no': H_k = np.zeros((int(2 * N), int(2 * N), int(n_k)),dtype=complex) for i in range(n_k): H_k[:,:,i]=H H_k[2 * (N - 1):2 * (N - 1) + 2, 0: 2,i] += np.array([[-t[2]-1j*aRy[2], aRz[1]], [-aRz[1], -t[2]+1j*aRy[2]]])*np.exp(-1j*k_vec[i]*N) H_k[0: 2, 2 * (N - 1):2 * (N - 1) + 2,i] += np.array([[-t[2]+1j*aRy[2], -aRz[1]], [aRz[1], -t[2]-1j*aRy[2]]])*np.exp(1j*k_vec[i]*N) return (H_k) elif sparse=='yes': return (H) else: return (H) #%% def LO_2D_builder(N,dis,m_eff,mu,B,aR, d, space='position', k_vec=np.nan ,sparse='no'): """ 2D Lutchy-Oreg Hamiltonian builder. It obtaines the Hamiltoninan for a 2D Lutchy-Oreg chain with superconductivity. Parameters ---------- N: arr Number of sites in each direction. dis: int or arr Distance (in nm) between sites. m_eff: int or arr Effective mass. If it is a 2D array, each element is the on-site effective mass. mu: float or arr Chemical potential. If it is a 2D array, each element is the on-site chemical potential B: float or arr Zeeman splitting. If it is an array, each element is the Zeeman splitting in each direction. aR: float or arr Rashba coupling. -If aR is a float, aR is the Rashba coupling along the z-direction, with the same value in every site. -If aR is a 1D array with length=3, each element of the array is the rashba coupling in each direction. -If aR is an array of arrays (3 x N), each element of aR[i] is a 2D array with the on-site Rashba couplings in the direction i. d: float or arr Superconductor paring amplitud. -If d is a float, d is the Rashba coupling along the y-direction, with the same value in every site. -If d is a 2D array, each element of the array is the on-site superconducting paring amplitud space: {"position","momentum"} Space in which the Hamiltonian is built. "position" means real-space (r-space). In this case the boundary conditions are open. On the other hand, "momentum" means reciprocal space (k-space). In this case the built Hamiltonian corresponds to the Hamiltonian of the unit cell, with periodic boundary conditions along the x-direction. k_vec: arr If space=='momentum', k_vec is the (discretized) momentum vector, usually in the First Brillouin Zone. sparse: {"yes","no"} Sparsety of the built Hamiltonian. "yes" builds a dok_sparse matrix, while "no" builds a dense matrix. Returns ------- H: arr Hamiltonian matrix. """ #Obtain the dimensions: Ny, Nz = N[0], N[1] if np.ndim(dis)==0: dis_y, dis_z = dis, dis else: dis_y, dis_z = dis[0], dis[1] m = 4 * Ny * Nz #Make sure that the onsite parameters are arrays: if np.isscalar(m_eff): m_eff = m_eff * np.ones((Ny,Nz)) if np.isscalar(mu): mu = mu * np.ones((Ny,Nz)) if np.isscalar(B): Bx=B By=0 Bz=0 Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) elif np.ndim(B)==1 and len(B)==3: Bx=B[0] By=B[1] Bz=B[2] Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) if np.ndim(aR)==0: aRx=np.zeros(N) aRy=np.zeros(N) aRz=aR*np.ones(N) elif np.ndim(aR)==1: if len(aR)==3: aRx=aR[0]*np.ones(N) aRy=aR[1]*np.ones(N) aRz=aR[2]*np.ones(N) else: aRx=np.zeros(N) aRy=np.zeros(N) aRz=aR*np.ones(N) else: aRx=aR[0] aRy=aR[1] aRz=aR[2] if np.isscalar(d): d = d * np.ones(N) #Obtain the eigenenergies: ty=cons.hbar**2/(2*(m_eff[1::,:]+m_eff[:-1,:])/2*cons.m_e*(dis_y*1e-9)**2)/cons.e*1e3 tz=cons.hbar**2/(2*(m_eff[:,1::]+m_eff[:,:-1])/2*cons.m_e*(dis_z*1e-9)**2)/cons.e*1e3 e = - mu e += np.append(2*ty[0,:].reshape(1,Nz),np.append(ty[1::,:]+ty[:-1,:],2*ty[-1,:].reshape(1,Nz),axis=0),axis=0) e += np.append(2*tz[:,0].reshape(Ny,1),np.append(tz[:,1::]+tz[:,:-1],2*tz[:,-1].reshape(Ny,1),axis=1),axis=1) #Build the Hamiltonian: if sparse=='no': H = np.zeros((int(m), int(m)),dtype=complex) elif sparse=='yes': H = scipy.sparse.dok_matrix((int(m),int(m)),dtype=complex) e,d,Bx,By,Bz=e.flatten(),d.flatten(),Bx.flatten(),By.flatten(),Bz.flatten() Bz=np.repeat(Bz,2) Bz[1::2] = -Bz[::2] ty, aRx_ky, aRz_ky = np.repeat(ty.flatten(),2), np.repeat(((aRx[1::,:]+aRx[:-1,:])/(4*dis_y)).flatten(),2), ((aRz[1::,:]+aRz[:-1,:])/(4*dis_y)).flatten() tz, aRx_kz, aRy_kz = np.repeat(tz.flatten(),2), ((aRx[:,1::]+aRx[:,:-1])/(4*dis_z)).flatten(), ((aRy[:,1::]+aRy[:,:-1])/(4*dis_z)).flatten() aRx_ky[1::2] = -aRx_ky[::2] tz, aRx_kz, aRy_kz=np.insert(tz,np.repeat(np.arange(2*(Nz-1),2*(Nz-1)*Ny,2*(Nz-1)),2),np.zeros(2*(Ny-1))), np.insert(aRx_kz,np.arange((Nz-1),(Nz-1)*Ny,(Nz-1)),np.zeros((Ny-1))), np.insert(aRy_kz,np.arange((Nz-1),(Nz-1)*Ny,(Nz-1)),np.zeros((Ny-1))) for i in range(2): H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=1,step=2)], H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-1,step=2)] = (-1)**(i)*Bx-1j*By, (-1)**(i)*Bx+1j*By H[diagonal(int(m/2)*(i+1),init=int(m/2)*i)] = (-1)**(i)*(np.repeat(e,2) + Bz) H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=2*Nz)] = -1*(-1)**(i)*ty+1j*aRx_ky H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-2*Nz)] = -1*(-1)**(i)*ty-1j*aRx_ky H[diagonal(int(m/2)*(i+1),k=2*Nz-1,step=2,init=1+int(m/2)*i)] += -1j*aRz_ky H[diagonal(int(m/2)*(i+1),k=-2*Nz+1,step=2,init=1+int(m/2)*i)] += 1j*aRz_ky H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=1+2*Nz,step=2)] += -1j*aRz_ky H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-1-2*Nz,step=2)] += 1j*aRz_ky H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=2)] = -1*(-1)**(i)*tz H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-2)] = -1*(-1)**(i)*tz H[diagonal(int(m/2)*(i+1),k=1,step=2,init=1+int(m/2)*i)] += (-1)**(i)*aRx_kz+1j*aRy_kz H[diagonal(int(m/2)*(i+1),k=-1,step=2,init=1+int(m/2)*i)] += (-1)**(i)*aRx_kz-1j*aRy_kz H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=3,step=2)] += -1*(-1)**(i)*aRx_kz+1j*aRy_kz H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-3,step=2)] += -1*(-1)**(i)*aRx_kz-1j*aRy_kz H[diagonal(m,k=int(m/2)+1,step=2)], H[diagonal(m,k=-int(m/2)-1,step=2)] = -np.conj(d), -d H[diagonal(m,k=int(m/2)-1,step=2,init=1)], H[diagonal(m,k=-int(m/2)+1,step=2,init=1)] = np.conj(d), d return (H) #%% def LO_2D_builder_NoSC(N,dis,m_eff,mu,B,aR, space='position', k_vec=np.nan ,sparse='no'): """ 2D Lutchy-Oreg Hamiltonian builder. It obtaines the Hamiltoninan for a 2D Lutchy-Oreg chain without superconductivity. Parameters ---------- N: arr Number of sites in each direction. dis: int or arr Distance (in nm) between sites. m_eff: int or arr Effective mass. If it is a 2D array, each element is the on-site effective mass. mu: float or arr Chemical potential. If it is a 2D array, each element is the on-site chemical potential B: float or arr Zeeman splitting. If it is an array, each element is the Zeeman splitting in each direction. aR: float or arr Rashba coupling. -If aR is a float, aR is the Rashba coupling along the z-direction, with the same value in every site. -If aR is a 1D array with length=3, each element of the array is the rashba coupling in each direction. -If aR is an array of arrays (3 x N), each element of aR[i] is a 2D array with the on-site Rashba couplings in the direction i. space: {"position","momentum"} Space in which the Hamiltonian is built. "position" means real-space (r-space). In this case the boundary conditions are open. On the other hand, "momentum" means reciprocal space (k-space). In this case the built Hamiltonian corresponds to the Hamiltonian of the unit cell, with periodic boundary conditions along the x-direction. k_vec: arr If space=='momentum', k_vec is the (discretized) momentum vector, usually in the First Brillouin Zone. sparse: {"yes","no"} Sparsety of the built Hamiltonian. "yes" builds a dok_sparse matrix, while "no" builds a dense matrix. Returns ------- H: arr Hamiltonian matrix. """ #Obtain the dimensions: Ny, Nz = N[0], N[1] if np.ndim(dis)==0: dis_y, dis_z = dis, dis else: dis_y, dis_z = dis[0], dis[1] m = 2 * Ny * Nz #Make sure that the onsite parameters are arrays: if np.isscalar(m_eff): m_eff = m_eff * np.ones((Ny,Nz)) if np.isscalar(mu): mu = mu * np.ones((Ny,Nz)) if np.isscalar(B): Bx=B By=0 Bz=0 Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) elif np.ndim(B)==1 and len(B)==3: Bx=B[0] By=B[1] Bz=B[2] Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) if np.ndim(aR)==0: aRx=np.zeros(N) aRy=np.zeros(N) aRz=aR*np.ones(N) elif np.ndim(aR)==1: if len(aR)==3: aRx=aR[0]*np.ones(N) aRy=aR[1]*np.ones(N) aRz=aR[2]*np.ones(N) else: aRx=np.zeros(N) aRy=np.zeros(N) aRz=aR*np.ones(N) else: aRx=aR[0] aRy=aR[1] aRz=aR[2] #Obtain the eigenenergies: ty=cons.hbar**2/(2*(m_eff[1::,:]+m_eff[:-1,:])/2*cons.m_e*(dis_y*1e-9)**2)/cons.e*1e3 tz=cons.hbar**2/(2*(m_eff[:,1::]+m_eff[:,:-1])/2*cons.m_e*(dis_z*1e-9)**2)/cons.e*1e3 e = - mu e += np.append(2*ty[0,:].reshape(1,Nz),np.append(ty[1::,:]+ty[:-1,:],2*ty[-1,:].reshape(1,Nz),axis=0),axis=0) e += np.append(2*tz[:,0].reshape(Ny,1),np.append(tz[:,1::]+tz[:,:-1],2*tz[:,-1].reshape(Ny,1),axis=1),axis=1) #Build the Hamiltonian: if sparse=='no': H = np.zeros((int(m), int(m)),dtype=complex) elif sparse=='yes': H = scipy.sparse.dok_matrix((int(m),int(m)),dtype=complex) e,Bx,By,Bz=e.flatten(),Bx.flatten(),By.flatten(),Bz.flatten() Bz=np.repeat(Bz,2) Bz[1::2] = -Bz[::2] ty, aRx_ky, aRz_ky = np.repeat(ty.flatten(),2), np.repeat(((aRx[1::,:]+aRx[:-1,:])/(4*dis_y)).flatten(),2), ((aRz[1::,:]+aRz[:-1,:])/(4*dis_y)).flatten() tz, aRx_kz, aRy_kz = np.repeat(tz.flatten(),2), ((aRx[:,1::]+aRx[:,:-1])/(4*dis_z)).flatten(), ((aRy[:,1::]+aRy[:,:-1])/(4*dis_z)).flatten() aRx_ky[1::2] = -aRx_ky[::2] H[diagonal(m,k=1,step=2)], H[diagonal(m,k=-1,step=2)] = Bx-1j*By, Bx+1j*By H[diagonal(m)] = np.repeat(e,2) + Bz H[diagonal(m,k=2*Nz)] = -ty+1j*aRx_ky H[diagonal(m,k=-2*Nz)] = -ty-1j*aRx_ky H[diagonal(m,k=2*Nz-1,step=2,init=1)] += -1j*aRz_ky H[diagonal(m,k=-2*Nz+1,step=2,init=1)] += 1j*aRz_ky H[diagonal(m,k=1+2*Nz,step=2)] += -1j*aRz_ky H[diagonal(m,k=-1-2*Nz,step=2)] += 1j*aRz_ky tz, aRx_kz, aRy_kz=np.insert(tz,np.repeat(np.arange(2*(Nz-1),2*(Nz-1)*Ny,2*(Nz-1)),2),np.zeros(2*(Ny-1))), np.insert(aRx_kz,np.arange((Nz-1),(Nz-1)*Ny,(Nz-1)),np.zeros((Ny-1))), np.insert(aRy_kz,np.arange((Nz-1),(Nz-1)*Ny,(Nz-1)),np.zeros((Ny-1))) H[diagonal(m,k=2)] = -tz H[diagonal(m,k=-2)] = -tz H[diagonal(m,k=1,step=2,init=1)] += aRx_kz+1j*aRy_kz H[diagonal(m,k=-1,step=2,init=1)] += aRx_kz-1j*aRy_kz H[diagonal(m,k=3,step=2)] += -aRx_kz+1j*aRy_kz H[diagonal(m,k=-3,step=2)] += -aRx_kz-1j*aRy_kz return (H) #%% def LO_3D_builder(N,dis,m_eff,mu,B,aR,d, space='position', k_vec=np.nan ,sparse='yes'): """ 3D Lutchy-Oreg Hamiltonian builder. It obtaines the Hamiltoninan for a 3D Lutchy-Oreg chain with superconductivity. Parameters ---------- N: arr Number of sites in each direction. dis: int or arr Distance (in nm) between sites. m_eff: int or arr Effective mass. If it is a 3D array, each element is the on-site effective mass. mu: float or arr Chemical potential. If it is a 3D array, each element is the on-site chemical potential B: float or arr Zeeman splitting. If it is an array, each element is the Zeeman splitting in each direction. aR: float or arr Rashba coupling. -If aR is a float, aR is the Rashba coupling along the z-direction, with the same value in every site. -If aR is a 1D array with length=3, each element of the array is the rashba coupling in each direction. -If aR is an array of arrays (3 x N), each element of aR[i] is a 3D array with the on-site Rashba couplings in the direction i. d: float or arr Superconductor paring amplitud. -If d is a float, d is the Rashba coupling along the y-direction, with the same value in every site. -If d is a 3D array, each element of the array is the on-site superconducting paring amplitud space: {"position","momentum"} Space in which the Hamiltonian is built. "position" means real-space (r-space). In this case the boundary conditions are open. On the other hand, "momentum" means reciprocal space (k-space). In this case the built Hamiltonian corresponds to the Hamiltonian of the unit cell, with periodic boundary conditions along the x-direction. k_vec: arr If space=='momentum', k_vec is the (discretized) momentum vector, usually in the First Brillouin Zone. sparse: {"yes","no"} Sparsety of the built Hamiltonian. "yes" builds a dok_sparse matrix, while "no" builds a dense matrix. Returns ------- H: arr Hamiltonian matrix. """ #Obtain the dimensions: Nx, Ny, Nz = N[0], N[1], N[2] if np.ndim(dis)==0: dis_x, dis_y, dis_z = dis, dis, dis else: dis_x, dis_y, dis_z = dis[0], dis[1], dis[2] m = 4 * Nx * Ny * Nz #Make sure that the onsite parameters are arrays: if np.isscalar(m_eff): m_eff = m_eff * np.ones((Nx,Ny,Nz)) if np.isscalar(mu): mu = mu * np.ones((Nx,Ny,Nz)) if np.isscalar(B): Bx=B By=0 Bz=0 Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) elif np.ndim(B)==1 and len(B)==3: Bx=B[0] By=B[1] Bz=B[2] Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) if np.ndim(aR)==0: aRx=np.zeros((Nx,Ny,Nz)) aRy=np.zeros((Nx,Ny,Nz)) aRz=aR*np.ones((Nx,Ny,Nz)) elif np.ndim(aR)==1: if len(aR)==3: aRx=aR[0]*np.ones((Nx,Ny,Nz)) aRy=aR[1]*np.ones((Nx,Ny,Nz)) aRz=aR[2]*np.ones((Nx,Ny,Nz)) else: aRx=np.zeros((Nx,Ny,Nz)) aRy=np.zeros((Nx,Ny,Nz)) aRz=aR*np.ones((Nx,Ny,Nz)) else: aRx=aR[0] aRy=aR[1] aRz=aR[2] if np.isscalar(d): d = d * np.ones((Nx,Ny,Nz)) if space=='momentum': n_k=len(k_vec) #Obtain the hoppings and the on-site energies: tx=cons.hbar**2/(2*(m_eff[1::,:,:]+m_eff[:-1,:,:])/2*cons.m_e*(dis_x*1e-9)**2)/cons.e*1e3 ty=cons.hbar**2/(2*(m_eff[:,1::,:]+m_eff[:,:-1,:])/2*cons.m_e*(dis_y*1e-9)**2)/cons.e*1e3 tz=cons.hbar**2/(2*(m_eff[:,:,1::]+m_eff[:,:,:-1])/2*cons.m_e*(dis_z*1e-9)**2)/cons.e*1e3 e = - mu e += np.append(2*tx[0,:,:].reshape(1,Ny,Nz),np.append(tx[1::,:,:]+tx[:-1,:,:],2*tx[-1,:,:].reshape(1,Ny,Nz),axis=0),axis=0) e += np.append(2*ty[:,0,:].reshape(Nx,1,Nz),np.append(ty[:,1::,:]+ty[:,:-1,:],2*ty[:,-1,:].reshape(Nx,1,Nz),axis=1),axis=1) e += np.append(2*tz[:,:,0].reshape(Nx,Ny,1),np.append(tz[:,:,1::]+tz[:,:,:-1],2*tz[:,:,-1].reshape(Nx,Ny,1),axis=2),axis=2) #Built the Hamiltonian: if sparse=='no': H = np.zeros((int(m), int(m)),dtype=complex) elif sparse=='yes': H = scipy.sparse.dok_matrix((int(m),int(m)),dtype=complex) e,d,Bx,By,Bz=e.flatten(),d.flatten(),Bx.flatten(),By.flatten(),Bz.flatten() Bz=np.repeat(Bz,2) Bz[1::2] = -Bz[::2] tx, aRy_kx, aRz_kx = np.repeat(tx.flatten(),2), np.repeat(((aRy[1::,:,:]+aRy[:-1,:,:])/(4*dis_x)).flatten(),2), ((aRz[1::,:,:]+aRz[:-1,:,:])/(4*dis_x)).flatten() ty, aRx_ky, aRz_ky = np.repeat(ty.flatten(),2), np.repeat(((aRx[:,1::,:]+aRx[:,:-1,:])/(4*dis_y)).flatten(),2), ((aRz[:,1::,:]+aRz[:,:-1,:])/(4*dis_y)).flatten() tz, aRx_kz, aRy_kz = np.repeat(tz.flatten(),2), ((aRx[:,:,1::]+aRx[:,:,:-1])/(4*dis_z)).flatten(), ((aRy[:,:,1::]+aRy[:,:,:-1])/(4*dis_z)).flatten() aRy_kx[1::2], aRx_ky[1::2] = -aRy_kx[::2], -aRx_ky[::2] ty, aRx_ky, aRz_ky = np.insert(ty,np.repeat(np.arange(2*(Nz*Ny-Nz),2*(Ny*Nz-Nz)*Nx,2*(Ny*Nz-Nz)),2*Nz),np.zeros(2*Nz*(Nx-1))), np.insert(aRx_ky,np.repeat(np.arange(2*(Nz*Ny-Nz),2*(Ny*Nz-Nz)*Nx,2*(Ny*Nz-Nz)),2*Nz),np.zeros(2*Nz*(Nx-1))),np.insert(aRz_ky,np.repeat(np.arange((Nz*Ny-Nz),(Ny*Nz-Nz)*Nx,(Ny*Nz-Nz)),Nz),np.zeros(Nz*(Nx-1))) tz, aRx_kz, aRy_kz=np.insert(tz,np.repeat(np.arange(2*(Nz-1),2*(Nz-1)*Ny*Nx,2*(Nz-1)),2),np.zeros(2*Nx*(Ny-1)+2*(Nx-1))), np.insert(aRx_kz,np.arange((Nz-1),(Nz-1)*Ny*Nx,(Nz-1)),np.zeros(Nx*(Ny-1)+(Nx-1))), np.insert(aRy_kz,np.arange((Nz-1),(Nz-1)*Ny*Nx,(Nz-1)),np.zeros(Nx*(Ny-1)+(Nx-1))) for i in range(2): H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=1,step=2)], H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-1,step=2)] = (-1)**(i)*Bx-1j*By, (-1)**(i)*Bx+1j*By H[diagonal(int(m/2)*(i+1),init=int(m/2)*i)] = (-1)**(i)*np.repeat(e,2) + (-1)**(i)*Bz H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=2*Ny*Nz)] = -1*(-1)**(i)*tx-1j*aRy_kx H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-2*Ny*Nz)] = -1*(-1)**(i)*tx+1j*aRy_kx H[diagonal(int(m/2)*(i+1),k=2*Ny*Nz-1,step=2,init=1+int(m/2)*i)] += -1*(-1)**(i)*aRz_kx H[diagonal(int(m/2)*(i+1),k=-2*Ny*Nz+1,step=2,init=1+int(m/2)*i)] += -1*(-1)**(i)*aRz_kx H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=1+2*Ny*Nz,step=2)] += (-1)**(i)*aRz_kx H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-1-2*Ny*Nz,step=2)] += (-1)**(i)*aRz_kx H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=2*Nz)] = -1*(-1)**(i)*ty+1j*aRx_ky H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-2*Nz)] = -1*(-1)**(i)*ty-1j*aRx_ky H[diagonal(int(m/2)*(i+1),k=2*Nz-1,step=2,init=1+int(m/2)*i)] += -1j*aRz_ky H[diagonal(int(m/2)*(i+1),k=-2*Nz+1,step=2,init=1+int(m/2)*i)] += 1j*aRz_ky H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=1+2*Nz,step=2)] += -1j*aRz_ky H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-1-2*Nz,step=2)] += 1j*aRz_ky H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=2)] = -1*(-1)**(i)*tz H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-2)] = -1*(-1)**(i)*tz H[diagonal(int(m/2)*(i+1),k=1,step=2,init=1+int(m/2)*i)] += (-1)**(i)*aRx_kz+1j*aRy_kz H[diagonal(int(m/2)*(i+1),k=-1,step=2,init=1+int(m/2)*i)] += (-1)**(i)*aRx_kz-1j*aRy_kz H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=3,step=2)] += -1*(-1)**(i)*aRx_kz+1j*aRy_kz H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-3,step=2)] += -1*(-1)**(i)*aRx_kz-1j*aRy_kz H[diagonal(m,k=int(m/2)+1,step=2)], H[diagonal(m,k=-int(m/2)-1,step=2)] = -np.conj(d), -d H[diagonal(m,k=int(m/2)-1,step=2,init=1)], H[diagonal(m,k=-int(m/2)+1,step=2,init=1)] = np.conj(d), d #Build it in momentum space if required: if space=='momentum': if sparse=='no': H_k = np.zeros((int(m), int(m), int(n_k)),dtype=complex) for i in range(n_k): H_k[:,:,i] = H for j in range(2): H_k[diagonal(int(m/2)*(j+1),init=int(m/2)*j,k=m-2*Ny*Nz),i] = (-1*(-1)**(j)*tx-1j*aRy_kx)*np.exp(-1j*(-1)**(i)*k_vec[i]*Nx) H_k[diagonal(int(m/2)*(j+1),init=int(m/2)*j,k=-m+2*Ny*Nz),i] = (-1*(-1)**(j)*tx+1j*aRy_kx)*np.exp(1j*(-1)**(i)*k_vec[i]*Nx) H_k[diagonal(int(m/2)*(j+1),k=m-2*Ny*Nz-1,step=2,init=1+int(m/2)*j),i] += (-1)**(j)*(-aRz_kx)*np.exp(-1j*(-1)**(i)*k_vec[i]*Nx) H_k[diagonal(int(m/2)*(j+1),k=-m+2*Ny*Nz+1,step=2,init=1+int(m/2)*j),i] += (-1)**(j)*(-aRz_kx)*np.exp(1j*(-1)**(i)*k_vec[i]*Nx) H_k[diagonal(int(m/2)*(j+1),init=int(m/2)*j,k=m+1-2*Ny*Nz,step=2),i] += (-1)**(j)*(aRz_kx)*np.exp(-1j*(-1)**(i)*k_vec[i]*Nx) H_k[diagonal(int(m/2)*(j+1),init=int(m/2)*j,k=-m-1+2*Ny*Nz,step=2),i] += (-1)**(j)*(aRz_kx)*np.exp(1j*(-1)**(i)*k_vec[i]*Nx) return (H_k) elif sparse=='yes': return(H) else: return (H) #%% def LO_3D_builder_NoSC(N,dis,m_eff,mu,B,aR, space='position', k_vec=np.nan ,sparse='no'): """ 3D Lutchy-Oreg Hamiltonian builder. It obtaines the Hamiltoninan for a 3D Lutchy-Oreg chain with superconductivity. Parameters ---------- N: arr Number of sites in each direction. dis: int or arr Distance (in nm) between sites. m_eff: int or arr Effective mass. If it is a 3D array, each element is the on-site effective mass. mu: float or arr Chemical potential. If it is a 3D array, each element is the on-site chemical potential B: float or arr Zeeman splitting. If it is an array, each element is the Zeeman splitting in each direction. aR: float or arr Rashba coupling. -If aR is a float, aR is the Rashba coupling along the z-direction, with the same value in every site. -If aR is a 1D array with length=3, each element of the array is the rashba coupling in each direction. -If aR is an array of arrays (3 x N), each element of aR[i] is a 3D array with the on-site Rashba couplings in the direction i. space: {"position","momentum"} Space in which the Hamiltonian is built. "position" means real-space (r-space). In this case the boundary conditions are open. On the other hand, "momentum" means reciprocal space (k-space). In this case the built Hamiltonian corresponds to the Hamiltonian of the unit cell, with periodic boundary conditions along the x-direction. k_vec: arr If space=='momentum', k_vec is the (discretized) momentum vector, usually in the First Brillouin Zone. sparse: {"yes","no"} Sparsety of the built Hamiltonian. "yes" builds a dok_sparse matrix, while "no" builds a dense matrix. Returns ------- H: arr Hamiltonian matrix. """ #Obtain the dimensions: Nx, Ny, Nz = N[0], N[1], N[2] if np.ndim(dis)==0: dis_x, dis_y, dis_z = dis, dis, dis else: dis_x, dis_y, dis_z = dis[0], dis[1], dis[2] m = 2 * Nx * Ny * Nz #Make sure that the onsite parameters are arrays: if np.isscalar(m_eff): m_eff = m_eff * np.ones((Nx,Ny,Nz)) if np.isscalar(mu): mu = mu * np.ones((Nx,Ny,Nz)) if np.isscalar(B): Bx=B By=0 Bz=0 Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) elif np.ndim(B)==1 and len(B)==3: Bx=B[0] By=B[1] Bz=B[2] Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) if np.ndim(aR)==0: aRx=np.zeros((Nx,Ny,Nz)) aRy=np.zeros((Nx,Ny,Nz)) aRz=aR*np.ones((Nx,Ny,Nz)) elif np.ndim(aR)==1: if len(aR)==3: aRx=aR[0]*
np.ones((Nx,Ny,Nz))
numpy.ones
#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ ============================================= fMRI: OpenfMRI.org data, FSL, ANTS, c3daffine ============================================= A growing number of datasets are available on `OpenfMRI <http://openfmri.org>`_. This script demonstrates how to use nipype to analyze a data set:: python fmri_ants_openfmri.py --datasetdir ds107 This workflow also requires 2mm subcortical templates that are available from `MindBoggle <http://mindboggle.info/data.html>`_. Specifically the 2mm version of the `MNI template <http://mindboggle.info/data/templates/atropos/OASIS-30_Atropos_template_in_MNI152_2mm.nii.gz>`_. Import necessary modules from nipype. """ from __future__ import division, unicode_literals from builtins import open, range, str, bytes from glob import glob import os from nipype import config from nipype import LooseVersion from nipype import Workflow, Node, MapNode from nipype.utils.filemanip import filename_to_list import nipype.pipeline.engine as pe import nipype.algorithms.modelgen as model import nipype.algorithms.rapidart as ra from nipype.algorithms.misc import TSNR, CalculateMedian from nipype.interfaces.c3 import C3dAffineTool from nipype.interfaces import fsl, Function, ants, freesurfer as fs import nipype.interfaces.io as nio from nipype.interfaces.io import FreeSurferSource import nipype.interfaces.utility as niu from nipype.interfaces.utility import Merge, IdentityInterface from niflow.nipype1.workflows.fmri.fsl import (create_featreg_preproc, create_modelfit_workflow, create_fixed_effects_flow) config.enable_provenance() version = 0 if (fsl.Info.version() and LooseVersion(fsl.Info.version()) > LooseVersion('5.0.6')): version = 507 fsl.FSLCommand.set_default_output_type('NIFTI_GZ') imports = ['import os', 'import nibabel as nb', 'import numpy as np', 'import scipy as sp', 'from nipype.utils.filemanip import filename_to_list, list_to_filename, split_filename', 'from scipy.special import legendre' ] def create_reg_workflow(name='registration'): """Create a FEAT preprocessing workflow together with freesurfer Parameters ---------- name : name of workflow (default: 'registration') Inputs: inputspec.source_files : files (filename or list of filenames to register) inputspec.mean_image : reference image to use inputspec.anatomical_image : anatomical image to coregister to inputspec.target_image : registration target Outputs: outputspec.func2anat_transform : FLIRT transform outputspec.anat2target_transform : FLIRT+FNIRT transform outputspec.transformed_files : transformed files in target space outputspec.transformed_mean : mean image in target space Example ------- See code below """ register = pe.Workflow(name=name) inputnode = pe.Node( interface=niu.IdentityInterface(fields=[ 'source_files', 'mean_image', 'anatomical_image', 'target_image', 'target_image_brain', 'config_file' ]), name='inputspec') outputnode = pe.Node( interface=niu.IdentityInterface(fields=[ 'func2anat_transform', 'anat2target_transform', 'transformed_files', 'transformed_mean', 'anat2target', 'mean2anat_mask' ]), name='outputspec') """ Estimate the tissue classes from the anatomical image. But use spm's segment as FSL appears to be breaking. """ stripper = pe.Node(fsl.BET(), name='stripper') register.connect(inputnode, 'anatomical_image', stripper, 'in_file') fast = pe.Node(fsl.FAST(), name='fast') register.connect(stripper, 'out_file', fast, 'in_files') """ Binarize the segmentation """ binarize = pe.Node( fsl.ImageMaths(op_string='-nan -thr 0.5 -bin'), name='binarize') pickindex = lambda x, i: x[i] register.connect(fast, ('partial_volume_files', pickindex, 2), binarize, 'in_file') """ Calculate rigid transform from mean image to anatomical image """ mean2anat = pe.Node(fsl.FLIRT(), name='mean2anat') mean2anat.inputs.dof = 6 register.connect(inputnode, 'mean_image', mean2anat, 'in_file') register.connect(stripper, 'out_file', mean2anat, 'reference') """ Now use bbr cost function to improve the transform """ mean2anatbbr = pe.Node(fsl.FLIRT(), name='mean2anatbbr') mean2anatbbr.inputs.dof = 6 mean2anatbbr.inputs.cost = 'bbr' mean2anatbbr.inputs.schedule = os.path.join( os.getenv('FSLDIR'), 'etc/flirtsch/bbr.sch') register.connect(inputnode, 'mean_image', mean2anatbbr, 'in_file') register.connect(binarize, 'out_file', mean2anatbbr, 'wm_seg') register.connect(inputnode, 'anatomical_image', mean2anatbbr, 'reference') register.connect(mean2anat, 'out_matrix_file', mean2anatbbr, 'in_matrix_file') """ Create a mask of the median image coregistered to the anatomical image """ mean2anat_mask = Node(fsl.BET(mask=True), name='mean2anat_mask') register.connect(mean2anatbbr, 'out_file', mean2anat_mask, 'in_file') """ Convert the BBRegister transformation to ANTS ITK format """ convert2itk = pe.Node(C3dAffineTool(), name='convert2itk') convert2itk.inputs.fsl2ras = True convert2itk.inputs.itk_transform = True register.connect(mean2anatbbr, 'out_matrix_file', convert2itk, 'transform_file') register.connect(inputnode, 'mean_image', convert2itk, 'source_file') register.connect(stripper, 'out_file', convert2itk, 'reference_file') """ Compute registration between the subject's structural and MNI template * All parameters are set using the example from: #https://github.com/stnava/ANTs/blob/master/Scripts/newAntsExample.sh * This is currently set to perform a very quick registration. However, the registration can be made significantly more accurate for cortical structures by increasing the number of iterations. """ reg = pe.Node(ants.Registration(), name='antsRegister') reg.inputs.output_transform_prefix = "output_" reg.inputs.transforms = ['Rigid', 'Affine', 'SyN'] reg.inputs.transform_parameters = [(0.1, ), (0.1, ), (0.2, 3.0, 0.0)] reg.inputs.number_of_iterations = [[10000, 11110, 11110]] * 2 + [[ 100, 30, 20 ]] reg.inputs.dimension = 3 reg.inputs.write_composite_transform = True reg.inputs.collapse_output_transforms = True reg.inputs.initial_moving_transform_com = True reg.inputs.metric = ['Mattes'] * 2 + [['Mattes', 'CC']] reg.inputs.metric_weight = [1] * 2 + [[0.5, 0.5]] reg.inputs.radius_or_number_of_bins = [32] * 2 + [[32, 4]] reg.inputs.sampling_strategy = ['Regular'] * 2 + [[None, None]] reg.inputs.sampling_percentage = [0.3] * 2 + [[None, None]] reg.inputs.convergence_threshold = [1.e-8] * 2 + [-0.01] reg.inputs.convergence_window_size = [20] * 2 + [5] reg.inputs.smoothing_sigmas = [[4, 2, 1]] * 2 + [[1, 0.5, 0]] reg.inputs.sigma_units = ['vox'] * 3 reg.inputs.shrink_factors = [[3, 2, 1]] * 2 + [[4, 2, 1]] reg.inputs.use_estimate_learning_rate_once = [True] * 3 reg.inputs.use_histogram_matching = [False] * 2 + [True] reg.inputs.winsorize_lower_quantile = 0.005 reg.inputs.winsorize_upper_quantile = 0.995 reg.inputs.args = '--float' reg.inputs.output_warped_image = 'output_warped_image.nii.gz' reg.inputs.num_threads = 4 reg.plugin_args = { 'qsub_args': '-pe orte 4', 'sbatch_args': '--mem=6G -c 4' } register.connect(stripper, 'out_file', reg, 'moving_image') register.connect(inputnode, 'target_image_brain', reg, 'fixed_image') """ Concatenate the affine and ants transforms into a list """ merge = pe.Node(niu.Merge(2), iterfield=['in2'], name='mergexfm') register.connect(convert2itk, 'itk_transform', merge, 'in2') register.connect(reg, 'composite_transform', merge, 'in1') """ Transform the mean image. First to anatomical and then to target """ warpmean = pe.Node(ants.ApplyTransforms(), name='warpmean') warpmean.inputs.input_image_type = 0 warpmean.inputs.interpolation = 'Linear' warpmean.inputs.invert_transform_flags = [False, False] warpmean.terminal_output = 'file' register.connect(inputnode, 'target_image_brain', warpmean, 'reference_image') register.connect(inputnode, 'mean_image', warpmean, 'input_image') register.connect(merge, 'out', warpmean, 'transforms') """ Transform the remaining images. First to anatomical and then to target """ warpall = pe.MapNode( ants.ApplyTransforms(), iterfield=['input_image'], name='warpall') warpall.inputs.input_image_type = 0 warpall.inputs.interpolation = 'Linear' warpall.inputs.invert_transform_flags = [False, False] warpall.terminal_output = 'file' register.connect(inputnode, 'target_image_brain', warpall, 'reference_image') register.connect(inputnode, 'source_files', warpall, 'input_image') register.connect(merge, 'out', warpall, 'transforms') """ Assign all the output files """ register.connect(reg, 'warped_image', outputnode, 'anat2target') register.connect(warpmean, 'output_image', outputnode, 'transformed_mean') register.connect(warpall, 'output_image', outputnode, 'transformed_files') register.connect(mean2anatbbr, 'out_matrix_file', outputnode, 'func2anat_transform') register.connect(mean2anat_mask, 'mask_file', outputnode, 'mean2anat_mask') register.connect(reg, 'composite_transform', outputnode, 'anat2target_transform') return register def get_aparc_aseg(files): """Return the aparc+aseg.mgz file""" for name in files: if 'aparc+aseg.mgz' in name: return name raise ValueError('aparc+aseg.mgz not found') def create_fs_reg_workflow(name='registration'): """Create a FEAT preprocessing workflow together with freesurfer Parameters ---------- name : name of workflow (default: 'registration') Inputs: inputspec.source_files : files (filename or list of filenames to register) inputspec.mean_image : reference image to use inputspec.target_image : registration target Outputs: outputspec.func2anat_transform : FLIRT transform outputspec.anat2target_transform : FLIRT+FNIRT transform outputspec.transformed_files : transformed files in target space outputspec.transformed_mean : mean image in target space Example ------- See code below """ register = Workflow(name=name) inputnode = Node( interface=IdentityInterface(fields=[ 'source_files', 'mean_image', 'subject_id', 'subjects_dir', 'target_image' ]), name='inputspec') outputnode = Node( interface=IdentityInterface(fields=[ 'func2anat_transform', 'out_reg_file', 'anat2target_transform', 'transforms', 'transformed_mean', 'transformed_files', 'min_cost_file', 'anat2target', 'aparc', 'mean2anat_mask' ]), name='outputspec') # Get the subject's freesurfer source directory fssource = Node(FreeSurferSource(), name='fssource') fssource.run_without_submitting = True register.connect(inputnode, 'subject_id', fssource, 'subject_id') register.connect(inputnode, 'subjects_dir', fssource, 'subjects_dir') convert = Node(freesurfer.MRIConvert(out_type='nii'), name="convert") register.connect(fssource, 'T1', convert, 'in_file') # Coregister the median to the surface bbregister = Node( freesurfer.BBRegister(registered_file=True), name='bbregister') bbregister.inputs.init = 'fsl' bbregister.inputs.contrast_type = 't2' bbregister.inputs.out_fsl_file = True bbregister.inputs.epi_mask = True register.connect(inputnode, 'subject_id', bbregister, 'subject_id') register.connect(inputnode, 'mean_image', bbregister, 'source_file') register.connect(inputnode, 'subjects_dir', bbregister, 'subjects_dir') # Create a mask of the median coregistered to the anatomical image mean2anat_mask = Node(fsl.BET(mask=True), name='mean2anat_mask') register.connect(bbregister, 'registered_file', mean2anat_mask, 'in_file') """ use aparc+aseg's brain mask """ binarize = Node( fs.Binarize(min=0.5, out_type="nii.gz", dilate=1), name="binarize_aparc") register.connect(fssource, ("aparc_aseg", get_aparc_aseg), binarize, "in_file") stripper = Node(fsl.ApplyMask(), name='stripper') register.connect(binarize, "binary_file", stripper, "mask_file") register.connect(convert, 'out_file', stripper, 'in_file') """ Apply inverse transform to aparc file """ aparcxfm = Node( freesurfer.ApplyVolTransform(inverse=True, interp='nearest'), name='aparc_inverse_transform') register.connect(inputnode, 'subjects_dir', aparcxfm, 'subjects_dir') register.connect(bbregister, 'out_reg_file', aparcxfm, 'reg_file') register.connect(fssource, ('aparc_aseg', get_aparc_aseg), aparcxfm, 'target_file') register.connect(inputnode, 'mean_image', aparcxfm, 'source_file') """ Convert the BBRegister transformation to ANTS ITK format """ convert2itk = Node(C3dAffineTool(), name='convert2itk') convert2itk.inputs.fsl2ras = True convert2itk.inputs.itk_transform = True register.connect(bbregister, 'out_fsl_file', convert2itk, 'transform_file') register.connect(inputnode, 'mean_image', convert2itk, 'source_file') register.connect(stripper, 'out_file', convert2itk, 'reference_file') """ Compute registration between the subject's structural and MNI template * All parameters are set using the example from: #https://github.com/stnava/ANTs/blob/master/Scripts/newAntsExample.sh * This is currently set to perform a very quick registration. However, the registration can be made significantly more accurate for cortical structures by increasing the number of iterations. """ reg = Node(ants.Registration(), name='antsRegister') reg.inputs.output_transform_prefix = "output_" reg.inputs.transforms = ['Rigid', 'Affine', 'SyN'] reg.inputs.transform_parameters = [(0.1, ), (0.1, ), (0.2, 3.0, 0.0)] reg.inputs.number_of_iterations = [[10000, 11110, 11110]] * 2 + [[ 100, 30, 20 ]] reg.inputs.dimension = 3 reg.inputs.write_composite_transform = True reg.inputs.collapse_output_transforms = True reg.inputs.initial_moving_transform_com = True reg.inputs.metric = ['Mattes'] * 2 + [['Mattes', 'CC']] reg.inputs.metric_weight = [1] * 2 + [[0.5, 0.5]] reg.inputs.radius_or_number_of_bins = [32] * 2 + [[32, 4]] reg.inputs.sampling_strategy = ['Regular'] * 2 + [[None, None]] reg.inputs.sampling_percentage = [0.3] * 2 + [[None, None]] reg.inputs.convergence_threshold = [1.e-8] * 2 + [-0.01] reg.inputs.convergence_window_size = [20] * 2 + [5] reg.inputs.smoothing_sigmas = [[4, 2, 1]] * 2 + [[1, 0.5, 0]] reg.inputs.sigma_units = ['vox'] * 3 reg.inputs.shrink_factors = [[3, 2, 1]] * 2 + [[4, 2, 1]] reg.inputs.use_estimate_learning_rate_once = [True] * 3 reg.inputs.use_histogram_matching = [False] * 2 + [True] reg.inputs.winsorize_lower_quantile = 0.005 reg.inputs.winsorize_upper_quantile = 0.995 reg.inputs.float = True reg.inputs.output_warped_image = 'output_warped_image.nii.gz' reg.inputs.num_threads = 4 reg.plugin_args = { 'qsub_args': '-pe orte 4', 'sbatch_args': '--mem=6G -c 4' } register.connect(stripper, 'out_file', reg, 'moving_image') register.connect(inputnode, 'target_image', reg, 'fixed_image') """ Concatenate the affine and ants transforms into a list """ merge = Node(Merge(2), iterfield=['in2'], name='mergexfm') register.connect(convert2itk, 'itk_transform', merge, 'in2') register.connect(reg, 'composite_transform', merge, 'in1') """ Transform the mean image. First to anatomical and then to target """ warpmean = Node(ants.ApplyTransforms(), name='warpmean') warpmean.inputs.input_image_type = 0 warpmean.inputs.interpolation = 'Linear' warpmean.inputs.invert_transform_flags = [False, False] warpmean.terminal_output = 'file' warpmean.inputs.args = '--float' # warpmean.inputs.num_threads = 4 # warpmean.plugin_args = {'sbatch_args': '--mem=4G -c 4'} """ Transform the remaining images. First to anatomical and then to target """ warpall = pe.MapNode( ants.ApplyTransforms(), iterfield=['input_image'], name='warpall') warpall.inputs.input_image_type = 0 warpall.inputs.interpolation = 'Linear' warpall.inputs.invert_transform_flags = [False, False] warpall.terminal_output = 'file' warpall.inputs.args = '--float' warpall.inputs.num_threads = 2 warpall.plugin_args = {'sbatch_args': '--mem=6G -c 2'} """ Assign all the output files """ register.connect(warpmean, 'output_image', outputnode, 'transformed_mean') register.connect(warpall, 'output_image', outputnode, 'transformed_files') register.connect(inputnode, 'target_image', warpmean, 'reference_image') register.connect(inputnode, 'mean_image', warpmean, 'input_image') register.connect(merge, 'out', warpmean, 'transforms') register.connect(inputnode, 'target_image', warpall, 'reference_image') register.connect(inputnode, 'source_files', warpall, 'input_image') register.connect(merge, 'out', warpall, 'transforms') """ Assign all the output files """ register.connect(reg, 'warped_image', outputnode, 'anat2target') register.connect(aparcxfm, 'transformed_file', outputnode, 'aparc') register.connect(bbregister, 'out_fsl_file', outputnode, 'func2anat_transform') register.connect(bbregister, 'out_reg_file', outputnode, 'out_reg_file') register.connect(bbregister, 'min_cost_file', outputnode, 'min_cost_file') register.connect(mean2anat_mask, 'mask_file', outputnode, 'mean2anat_mask') register.connect(reg, 'composite_transform', outputnode, 'anat2target_transform') register.connect(merge, 'out', outputnode, 'transforms') return register """ Get info for a given subject """ def get_subjectinfo(subject_id, base_dir, task_id, model_id): """Get info for a given subject Parameters ---------- subject_id : string Subject identifier (e.g., sub001) base_dir : string Path to base directory of the dataset task_id : int Which task to process model_id : int Which model to process Returns ------- run_ids : list of ints Run numbers conds : list of str Condition names TR : float Repetition time """ from glob import glob import os import numpy as np condition_info = [] cond_file = os.path.join(base_dir, 'models', 'model%03d' % model_id, 'condition_key.txt') with open(cond_file, 'rt') as fp: for line in fp: info = line.strip().split() condition_info.append([info[0], info[1], ' '.join(info[2:])]) if len(condition_info) == 0: raise ValueError('No condition info found in %s' % cond_file) taskinfo = np.array(condition_info) n_tasks = len(np.unique(taskinfo[:, 0])) conds = [] run_ids = [] if task_id > n_tasks: raise ValueError('Task id %d does not exist' % task_id) for idx in range(n_tasks): taskidx = np.where(taskinfo[:, 0] == 'task%03d' % (idx + 1)) conds.append([ condition.replace(' ', '_') for condition in taskinfo[taskidx[0], 2] ]) # if 'junk' not in condition]) files = sorted( glob( os.path.join(base_dir, subject_id, 'BOLD', 'task%03d_run*' % (idx + 1)))) runs = [int(val[-3:]) for val in files] run_ids.insert(idx, runs) json_info = os.path.join(base_dir, subject_id, 'BOLD', 'task%03d_run%03d' % (task_id, run_ids[task_id - 1][0]), 'bold_scaninfo.json') if os.path.exists(json_info): import json with open(json_info, 'rt') as fp: data = json.load(fp) TR = data['global']['const']['RepetitionTime'] / 1000. else: task_scan_key = os.path.join( base_dir, subject_id, 'BOLD', 'task%03d_run%03d' % (task_id, run_ids[task_id - 1][0]), 'scan_key.txt') if os.path.exists(task_scan_key): TR = np.genfromtxt(task_scan_key)[1] else: TR = np.genfromtxt(os.path.join(base_dir, 'scan_key.txt'))[1] return run_ids[task_id - 1], conds[task_id - 1], TR """ Analyzes an open fmri dataset """ def analyze_openfmri_dataset(data_dir, subject=None, model_id=None, task_id=None, output_dir=None, subj_prefix='*', hpcutoff=120., use_derivatives=True, fwhm=6.0, subjects_dir=None, target=None): """Analyzes an open fmri dataset Parameters ---------- data_dir : str Path to the base data directory work_dir : str Nipype working directory (defaults to cwd) """ """ Load nipype workflows """ preproc = create_featreg_preproc(whichvol='first') modelfit = create_modelfit_workflow() fixed_fx = create_fixed_effects_flow() if subjects_dir: registration = create_fs_reg_workflow() else: registration = create_reg_workflow() """ Remove the plotting connection so that plot iterables don't propagate to the model stage """ preproc.disconnect( preproc.get_node('plot_motion'), 'out_file', preproc.get_node('outputspec'), 'motion_plots') """ Set up openfmri data specific components """ subjects = sorted([ path.split(os.path.sep)[-1] for path in glob(os.path.join(data_dir, subj_prefix)) ]) infosource = pe.Node( niu.IdentityInterface(fields=['subject_id', 'model_id', 'task_id']), name='infosource') if len(subject) == 0: infosource.iterables = [('subject_id', subjects), ('model_id', [model_id]), ('task_id', task_id)] else: infosource.iterables = [('subject_id', [ subjects[subjects.index(subj)] for subj in subject ]), ('model_id', [model_id]), ('task_id', task_id)] subjinfo = pe.Node( niu.Function( input_names=['subject_id', 'base_dir', 'task_id', 'model_id'], output_names=['run_id', 'conds', 'TR'], function=get_subjectinfo), name='subjectinfo') subjinfo.inputs.base_dir = data_dir """ Return data components as anat, bold and behav """ contrast_file = os.path.join(data_dir, 'models', 'model%03d' % model_id, 'task_contrasts.txt') has_contrast = os.path.exists(contrast_file) if has_contrast: datasource = pe.Node( nio.DataGrabber( infields=['subject_id', 'run_id', 'task_id', 'model_id'], outfields=['anat', 'bold', 'behav', 'contrasts']), name='datasource') else: datasource = pe.Node( nio.DataGrabber( infields=['subject_id', 'run_id', 'task_id', 'model_id'], outfields=['anat', 'bold', 'behav']), name='datasource') datasource.inputs.base_directory = data_dir datasource.inputs.template = '*' if has_contrast: datasource.inputs.field_template = { 'anat': '%s/anatomy/T1_001.nii.gz', 'bold': '%s/BOLD/task%03d_r*/bold.nii.gz', 'behav': ('%s/model/model%03d/onsets/task%03d_' 'run%03d/cond*.txt'), 'contrasts': ('models/model%03d/' 'task_contrasts.txt') } datasource.inputs.template_args = { 'anat': [['subject_id']], 'bold': [['subject_id', 'task_id']], 'behav': [['subject_id', 'model_id', 'task_id', 'run_id']], 'contrasts': [['model_id']] } else: datasource.inputs.field_template = { 'anat': '%s/anatomy/T1_001.nii.gz', 'bold': '%s/BOLD/task%03d_r*/bold.nii.gz', 'behav': ('%s/model/model%03d/onsets/task%03d_' 'run%03d/cond*.txt') } datasource.inputs.template_args = { 'anat': [['subject_id']], 'bold': [['subject_id', 'task_id']], 'behav': [['subject_id', 'model_id', 'task_id', 'run_id']] } datasource.inputs.sort_filelist = True """ Create meta workflow """ wf = pe.Workflow(name='openfmri') wf.connect(infosource, 'subject_id', subjinfo, 'subject_id') wf.connect(infosource, 'model_id', subjinfo, 'model_id') wf.connect(infosource, 'task_id', subjinfo, 'task_id') wf.connect(infosource, 'subject_id', datasource, 'subject_id') wf.connect(infosource, 'model_id', datasource, 'model_id') wf.connect(infosource, 'task_id', datasource, 'task_id') wf.connect(subjinfo, 'run_id', datasource, 'run_id') wf.connect([ (datasource, preproc, [('bold', 'inputspec.func')]), ]) def get_highpass(TR, hpcutoff): return hpcutoff / (2. * TR) gethighpass = pe.Node( niu.Function( input_names=['TR', 'hpcutoff'], output_names=['highpass'], function=get_highpass), name='gethighpass') wf.connect(subjinfo, 'TR', gethighpass, 'TR') wf.connect(gethighpass, 'highpass', preproc, 'inputspec.highpass') """ Setup a basic set of contrasts, a t-test per condition """ def get_contrasts(contrast_file, task_id, conds): import numpy as np import os contrast_def = [] if os.path.exists(contrast_file): with open(contrast_file, 'rt') as fp: contrast_def.extend([ np.array(row.split()) for row in fp.readlines() if row.strip() ]) contrasts = [] for row in contrast_def: if row[0] != 'task%03d' % task_id: continue con = [ row[1], 'T', ['cond%03d' % (i + 1) for i in range(len(conds))], row[2:].astype(float).tolist() ] contrasts.append(con) # add auto contrasts for each column for i, cond in enumerate(conds): con = [cond, 'T', ['cond%03d' % (i + 1)], [1]] contrasts.append(con) return contrasts contrastgen = pe.Node( niu.Function( input_names=['contrast_file', 'task_id', 'conds'], output_names=['contrasts'], function=get_contrasts), name='contrastgen') art = pe.MapNode( interface=ra.ArtifactDetect( use_differences=[True, False], use_norm=True, norm_threshold=1, zintensity_threshold=3, parameter_source='FSL', mask_type='file'), iterfield=['realigned_files', 'realignment_parameters', 'mask_file'], name="art") modelspec = pe.Node(interface=model.SpecifyModel(), name="modelspec") modelspec.inputs.input_units = 'secs' def check_behav_list(behav, run_id, conds): import numpy as np num_conds = len(conds) if isinstance(behav, (str, bytes)): behav = [behav] behav_array = np.array(behav).flatten() num_elements = behav_array.shape[0] return behav_array.reshape(int(num_elements / num_conds), num_conds).tolist() reshape_behav = pe.Node( niu.Function( input_names=['behav', 'run_id', 'conds'], output_names=['behav'], function=check_behav_list), name='reshape_behav') wf.connect(subjinfo, 'TR', modelspec, 'time_repetition') wf.connect(datasource, 'behav', reshape_behav, 'behav') wf.connect(subjinfo, 'run_id', reshape_behav, 'run_id') wf.connect(subjinfo, 'conds', reshape_behav, 'conds') wf.connect(reshape_behav, 'behav', modelspec, 'event_files') wf.connect(subjinfo, 'TR', modelfit, 'inputspec.interscan_interval') wf.connect(subjinfo, 'conds', contrastgen, 'conds') if has_contrast: wf.connect(datasource, 'contrasts', contrastgen, 'contrast_file') else: contrastgen.inputs.contrast_file = '' wf.connect(infosource, 'task_id', contrastgen, 'task_id') wf.connect(contrastgen, 'contrasts', modelfit, 'inputspec.contrasts') wf.connect([(preproc, art, [('outputspec.motion_parameters', 'realignment_parameters'), ('outputspec.realigned_files', 'realigned_files'), ('outputspec.mask', 'mask_file')]), (preproc, modelspec, [('outputspec.highpassed_files', 'functional_runs'), ('outputspec.motion_parameters', 'realignment_parameters')]), (art, modelspec, [('outlier_files', 'outlier_files')]), (modelspec, modelfit, [ ('session_info', 'inputspec.session_info') ]), (preproc, modelfit, [('outputspec.highpassed_files', 'inputspec.functional_data')])]) # Comute TSNR on realigned data regressing polynomials upto order 2 tsnr = MapNode(TSNR(regress_poly=2), iterfield=['in_file'], name='tsnr') wf.connect(preproc, "outputspec.realigned_files", tsnr, "in_file") # Compute the median image across runs calc_median = Node(CalculateMedian(), name='median') wf.connect(tsnr, 'detrended_file', calc_median, 'in_files') """ Reorder the copes so that now it combines across runs """ def sort_copes(copes, varcopes, contrasts): import numpy as np if not isinstance(copes, list): copes = [copes] varcopes = [varcopes] num_copes = len(contrasts) n_runs = len(copes) all_copes = np.array(copes).flatten() all_varcopes =
np.array(varcopes)
numpy.array
#!/usr/bin/env python # coding: utf-8 import argparse import os import pickle import random from tqdm import tqdm import pandas as pd import numpy as np import torch from gmm_tree import gmm_clustering from transformers import AutoConfig, AutoModelWithLMHead def main(save_dir, transformers_cache_dir, sample_cols): model_name = 'bert-base-cased' model = AutoModelWithLMHead.from_pretrained( model_name, from_tf=bool(".ckpt" in model_name), config= AutoConfig.from_pretrained( model_name, cache_dir=transformers_cache_dir), cache_dir=transformers_cache_dir ) corr_path = os.path.join(save_dir, 'corr_matrix.pkl') if os.path.isfile(corr_path): print('> loading the correlation matrix') with open(corr_path, 'rb') as handle: corr_df = pickle.load(handle) else: print('> building the correlation matrix') corr_df = pd.DataFrame.corr(pd.DataFrame(model.cls.predictions.decoder.weight.cpu().detach().numpy().T)) with open(corr_path, 'wb') as handle: pickle.dump(corr_df, handle, protocol=pickle.HIGHEST_PROTOCOL) print(corr_df.shape) print('> creating the trees') n_trees = 50 n_partitions = 16 cuts = np.linspace(0, corr_df.shape[0], n_partitions + 1).astype(int) idx = np.arange(corr_df.shape[0]) idx_dict = {} pbar = tqdm(range(n_trees)) for i in pbar:
np.random.shuffle(idx)
numpy.random.shuffle
''' Deep Learning for Data Science: Assignment 3 Submitted by: <NAME> (<EMAIL>) Description - Generalize to k-layer Neural Network - Implement Batch Normalization - Implement moving average - Training using mini batch Gradient Descent ''' import numpy as np from numpy import genfromtxt import matplotlib.pyplot as plt import matplotlib.image as mpimg import random from scipy.spatial import distance from sklearn import preprocessing import copy import os import pickle class kLayerNN(object): def __init__(self, filePath, GradCheckParams, GradDescentParams, NNParams): if NNParams['loadAllBatches']: # Call LoadBatch function to get training, validation and test set data X1, Y1, y1 = self.LoadBatch( filePath + '/Datasets/cifar-10-python/cifar-10-batches-py/data_batch_1') X2, Y2, y2 = self.LoadBatch( filePath + '/Datasets/cifar-10-python/cifar-10-batches-py/data_batch_2') X3, Y3, y3 = self.LoadBatch( filePath + '/Datasets/cifar-10-python/cifar-10-batches-py/data_batch_3') X4, Y4, y4 = self.LoadBatch( filePath + '/Datasets/cifar-10-python/cifar-10-batches-py/data_batch_4') X5, Y5, y5 = self.LoadBatch( filePath + '/Datasets/cifar-10-python/cifar-10-batches-py/data_batch_5') X6, Y6, y6 = self.LoadBatch( filePath + '/Datasets/cifar-10-python/cifar-10-batches-py/test_batch') self.Xtrain = np.concatenate((X1, X2, X3, X4, X5[:, 0:9000]), axis=1) self.Ytrain = np.concatenate((Y1, Y2, Y3, Y4, Y5[:, 0:9000]), axis=1) self.ytrain = np.concatenate((y1, y2, y3, y4, y5[0:9000])) self.Xval = X5[:, 9000:10000] self.Yval = Y5[:, 9000:10000] self.yval = y5[9000:10000] self.Xtest = X6 self.Ytest = Y6 self.ytest = y6 else: # Call LoadBatch function to get training, validation and test set data self.Xtrain, self.Ytrain, self.ytrain = self.LoadBatch(filePath + '/Datasets/cifar-10-python/cifar-10-batches-py/data_batch_1') self.Xval, self.Yval, self.yval = self.LoadBatch(filePath + '/Datasets/cifar-10-python/cifar-10-batches-py/data_batch_2') self.Xtest, self.Ytest, self.ytest = self.LoadBatch(filePath + '/Datasets/cifar-10-python/cifar-10-batches-py/test_batch') # Normalize Data by subtracting mean self.ZeroMean() # Assign all GradCheckParams self.h = GradCheckParams['h'] self.eps = GradCheckParams['eps'] self.tol1 = GradCheckParams['tol1'] # Assign all GradDescentParams self.sigma = GradDescentParams['sigma'] self.eta = GradDescentParams['eta'] self.lmbda = GradDescentParams['lmbda'] self.rho = GradDescentParams['rho'] self.nEpoch = GradDescentParams['nEpoch'] self.nBatch = GradDescentParams['nBatch'] #self.BatchSize = round(self.Xtrain.shape[1]/self.nBatch) self.epsilon = GradDescentParams['epsilon'] self.alpha = GradDescentParams['alpha'] # Assign all NNParams self.d = NNParams['d'] self.k = NNParams['k'] self.n = NNParams['n'] self.m = NNParams['m'] self.nLayers = len(self.m) + 1 self.batchNorm = NNParams['batchNorm'] # Initialize Weights self.InitializeWeightAndBias('Gaussian') # Initialize mu_avg and var_avg for exponential moving average self.mu_avg = [np.zeros_like(self.b[i]) for i in range(1,self.nLayers)] self.var_avg = [np.zeros_like(self.b[i]) for i in range(1,self.nLayers)] def unpickle(self, file): ''' Function: unpickle Input: file name Output: data in form of dictionary ''' with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='bytes') return dict def LoadBatch(self, fileName): ''' Function: LoadBatch Input: path to a file Output: Images (X), labels (y) and one-hot encoding (Y) ''' dict = self.unpickle(fileName) X = np.array(dict[b'data']/255) y = np.array(dict[b'labels']) binarizer = preprocessing.LabelBinarizer() binarizer.fit(range(max(y.astype(int)) + 1)) Y1 = np.array(binarizer.transform(y.astype(int))).T return np.transpose(X), np.transpose(Y1.T), y def ZeroMean(self): mean_Xtrain = np.reshape(np.mean(self.Xtrain, 1), (-1, 1)) self.Xtrain -= mean_Xtrain self.Xval -= mean_Xtrain self.Xtest -= mean_Xtrain def InitializeWeightAndBias(self, type='Gaussian'): ''' Input: Type of weights. Possible choices: Gaussian, Javier, He Output: W and b; both are lists ''' if type == 'Gaussian': np.random.seed(400) self.W = [] self.W.append([]) self.b = [] self.b.append([]) self.W.append(np.random.randn( list(self.m)[0], self.d) * self.sigma) self.b.append(np.zeros((list(self.m)[0], 1))) for i in range(self.nLayers - 2): self.W.append(np.random.randn( self.m[i+1], self.m[i]) * self.sigma) self.b.append(np.zeros((self.m[i+1], 1))) self.W.append(np.random.randn( self.k, list(self.m)[-1]) * self.sigma) self.b.append(np.zeros((self.k, 1))) # FUTURE: Add other initializations def BatchNormalize(self, s, mu, var): V = np.array([var + self.epsilon]) Vinv0_5 = V**-0.5 sHat = np.multiply((s-mu), Vinv0_5.T) return sHat def BatchNormBackPass(self, dJdsHat, s, mu, var): ''' Input: g (dJ/dsHat), s, mu, var Output: g (dJ/ds) Comments: Refer to last slide of Lec 4 ''' N = dJdsHat.shape[0] V = np.array([var + self.epsilon]) Vinv1_5 = V**-1.5 dJdvar = -0.5 * np.sum(np.multiply(np.multiply(dJdsHat, Vinv1_5),(s-mu).T), axis = 0) Vinv0_5 = V**-0.5 dJdmu = - np.sum(np.multiply(dJdsHat, Vinv0_5), axis = 0) dJds = np.multiply(dJdsHat, Vinv0_5) + 2/N * np.multiply(dJdvar, (s-mu).T) + dJdmu/N return dJds def EvaluateClassifier2(self, x, Wt, bias): N = x.shape[1] if x.ndim == 1: x = np.reshape(x, (-1, 1)) h = [] s = [] sHat = [] mu = [] var = [] mu.append([]) var.append([]) h.append(x) s.append([]) sHat.append([]) for i in range(self.nLayers-1): s.append(np.dot(Wt[i+1], h[i]) + bias[i+1]) # calculate mu and variance mu.append(np.reshape(np.mean(s[i+1], axis = 1), (-1, 1))) # var.append(np.reshape(np.sum(((s[i+1]-mu[i+1])**2), 1)/N, (-1, 1))) #DIAG OF THIS IS SCALAR!!! # DIAG OF THIS IS SQUARE MATRIX!!! var.append(np.sum(((s[i+1]-mu[i+1])**2), 1)/N) # Exponential Moving Average # temp_var = 0 # for j in range(self.nLayers): # if self.mu_avg[j].all() == 0: # temp_var = temp_var + 1 if self.mu_avg[i].all() == 0: # all elements are zero, so this is first ever evaluation step self.mu_avg[i] = mu[i+1] self.var_avg[i] = var[i+1] else: self.mu_avg[i] = self.alpha * self.mu_avg[i] + (1 - self.alpha) * mu[i+1] self.var_avg[i] = self.alpha * self.var_avg[i] + (1 - self.alpha) * var[i+1] sHat.append(self.BatchNormalize(s[i+1], mu[i+1], var[i+1])) if self.batchNorm: h.append(np.maximum(0, sHat[i+1])) ###CHANGE TO sHat else: h.append(np.maximum(0, s[i+1])) # for final layer: s.append(np.dot(Wt[self.nLayers], h[self.nLayers-1]) + bias[self.nLayers]) # compute softmax function of s p = np.exp(s[self.nLayers]) p = p / np.sum(p, axis=0) return p, s, sHat, h, mu, var def ComputeCost2(self, X, Y, Wt, bias): N = X.shape[1] p, _, _, _, _, _ = self.EvaluateClassifier2(X, Wt, bias) A = np.diag(np.dot(Y.T, p)) B = -np.log(A) C = np.sum(B) Sum = 0 for i in range(self.nLayers): Sum += np.sum(np.square(Wt[i])) #D = self.lmbda * (np.sum(np.square(Wt[0]))+np.sum(np.square(Wt[1]))) D = self.lmbda * Sum J = C/N + D # J = (np.sum(-np.log(np.dot(Y.T, p))))/M + lmbda * np.sum(np.square(W)) return J def ComputeAccuracy2(self, X, y, Wt, bias): N = X.shape[1] p, _, _, _, _, _ = self.EvaluateClassifier2(X, Wt, bias) k = np.argmax(p, axis=0) a = np.where((k.T - y) == 0, 1, 0) acc = sum(a)/N return acc def PerformanceEval(self, grad_W, grad_b, numgrad_W, numgrad_b): '''Method 2: Check absolute difference''' # Layer 1 abs_W = [] abs_b = [] for i in range(self.nLayers): abs_W.append(abs(np.array(grad_W[i+1]) - np.array(numgrad_W[i+1]))) abs_b.append(abs(np.array(grad_b[i+1]) - np.array(numgrad_b[i+1]))) '''Method 1: check if relative error is small''' # Layer1 rel_W = [] rel_b = [] for i in range(self.nLayers): rel_W.append(np.divide(abs(grad_W[i+1] - numgrad_W[i+1]), max(self.eps, (abs(grad_W[i+1]) + abs(numgrad_W[i+1])).all()))) rel_b.append(np.divide(abs(grad_b[i+1] - numgrad_b[i+1]), max(self.eps, (abs(grad_b[i+1]) + abs(numgrad_b[i+1])).all()))) avg_abs_W = np.zeros(self.nLayers) avg_abs_b = np.zeros(self.nLayers) avg_rel_W = np.zeros(self.nLayers) avg_rel_b = np.zeros(self.nLayers) for k in range(self.nLayers): avg_abs_W[k] = np.mean(abs_W[k]) avg_abs_b[k] = np.mean(abs_b[k]) avg_rel_W[k] = np.mean(rel_W[k]) avg_rel_b[k] = np.mean(rel_b[k]) return np.mean(avg_abs_W), np.mean(avg_abs_b), np.mean(avg_rel_W), np.mean(avg_rel_b) def ComputeGradients(self, X, Y, Wt, bias): N = X.shape[1] grad_W = [] grad_W.append([]) grad_b = [] grad_b.append([]) grad_W.append(np.zeros((list(self.m)[0], Wt[1].shape[1]))) grad_b.append(np.zeros((list(self.m)[0], 1))) for i in range(self.nLayers - 2): grad_W.append(np.zeros((list(self.m)[i], list(self.m)[i+1]))) grad_b.append(np.zeros((list(self.m)[i+1], 1))) grad_W.append(np.zeros((self.k, list(self.m)[-1]))) grad_b.append(np.zeros((self.k, 1))) # Forward Pass p, s, sHat, h, mu, var = self.EvaluateClassifier2(X, Wt, bias) # Backward Pass # gradients for last layer g = - (Y - p).T grad_b[self.nLayers] = np.sum(g.T, 1)/N grad_b[self.nLayers] = np.reshape(grad_b[self.nLayers], (-1, 1)) grad_W[self.nLayers] = ( np.dot(g.T, h[self.nLayers-1].T))/N + 2 * self.lmbda * Wt[self.nLayers] # Propogate gradient vector gi to previous layer: g = np.dot(g, Wt[self.nLayers]) if self.batchNorm: ### CHANGE s to sHat sTemp = np.where(sHat[self.nLayers-1] > 0, 1, 0) else: sTemp = np.where(s[self.nLayers-1] > 0, 1, 0) ''' THERE IS AN ERROR IN ASSIGNMENT NOTES: ref eq 22 on page 4. instead of g_i * diag(Ind(ŝ_i(k-1)> 0)) it was g_i * Ind(ŝ_i(k-1)> 0) which finally gave convergence of analytical and numerical gradients. I wasted at least 50 hours on finding out this bug!! ''' # if g.shape[0] < self.m[self.nLayers-2]: # g = np.multiply(g, np.reshape(np.diag(sTemp), (-1, 1))) # else: # g = np.multiply(g, np.diag(sTemp)) if g.shape[0] < self.m[self.nLayers-2]: g = np.multiply(g, np.reshape(np.diag(sTemp), (-1, 1))) else: g = np.multiply(g, sTemp.T) for i in range(self.nLayers-1, 0, -1): if self.batchNorm: ### UNCOMMENT THIS LINE IF NOT BATCH NORM g = self.BatchNormBackPass(g, s[i], mu[i], var[i]) grad_b[i] =
np.sum(g.T, 1)
numpy.sum
# # LAMMPS.py # # Interface to LAMMPS (http://lammps.sandia.gov) # # Copyright (c) 2017 <NAME> # # This file is distributed under the terms of the MIT license. # Please see the file 'LICENCE.txt' in the root directory # or http://opensource.org/licenses/mit-license.php for information. # import numpy as np def read_lammps_structure(file_in): f = open(file_in, 'r') header_comment = f.readline() common_settings = [] for line in f: if "Atoms" in line: break common_settings.append(line.rstrip()) atoms = [] for line in f: if line.strip(): atoms.append(line.rstrip().split()) atoms = np.array(atoms) nat = len(atoms) kd = np.array(atoms[:, 1], dtype=np.int) x = np.array(atoms[:, 2:5], dtype=np.float64) return common_settings, nat, x, kd def write_lammps_structure(prefix, counter, header, nzerofills, common_settings, nat, kd, x_cart, disp): filename = prefix + str(counter).zfill(nzerofills) + ".lammps" f = open(filename, 'w') f.write("%s\n" % header) for line in common_settings: f.write("%s\n" % line) f.write("%s\n\n" % "Atoms") for i in range(nat): f.write("%5d %3d" % (i + 1, kd[i])) for j in range(3): f.write("%20.15f" % (x_cart[i][j] + disp[i][j])) f.write("\n") f.write("\n") f.close() def get_coordinate_LAMMPS(lammps_dump_file): add_flag = False coord = [] with open(lammps_dump_file) as f: for line in f: if "ITEM:" in line and "ITEM: ATOMS id xu yu zu" not in line: add_flag = False continue elif "ITEM: ATOMS id xu yu zu" in line: add_flag = True continue if add_flag: if line.strip(): entries = line.strip().split() coord_atom = [int(entries[0]), [float(t) for t in entries[1:]]] coord.append(coord_atom) # This sort is necessary since the order atoms of LAMMPS dump files # may change from the input structure file. coord_sorted = sorted(coord) coord = [] for coord_atom in coord_sorted: coord.extend(coord_atom[1]) return np.array(coord) def get_atomicforces_LAMMPS(lammps_dump_file): add_flag = False force = [] with open(lammps_dump_file) as f: for line in f: if "ITEM:" in line and "ITEM: ATOMS id fx fy fz " not in line: add_flag = False continue elif "ITEM: ATOMS id fx fy fz " in line: add_flag = True continue if add_flag: if line.strip(): entries = line.strip().split() force_atom = [int(entries[0]), [float(t) for t in entries[1:]]] force.append(force_atom) force_sorted = sorted(force) force = [] for force_atom in force_sorted: force.extend(force_atom[1]) return np.array(force) def get_coordinate_and_force_LAMMPS(lammps_dump_file): add_flag = False ret = [] with open(lammps_dump_file) as f: for line in f: if "ITEM:" in line and "ITEM: ATOMS id xu yu zu fx fy fz" not in line: add_flag = False continue elif "ITEM: ATOMS id xu yu zu fx fy fz" in line: add_flag = True continue if add_flag: if line.strip(): entries = line.strip().split() data_atom = [int(entries[0]), [float(t) for t in entries[1:4]], [float(t) for t in entries[4:]]] ret.append(data_atom) # This sort is necessary since the order atoms of LAMMPS dump files # may change from the input structure file. ret_sorted = sorted(ret) ret_x = [] ret_f = [] for ret_atom in ret_sorted: ret_x.extend(ret_atom[1]) ret_f.extend(ret_atom[2]) return np.array(ret_x), np.array(ret_f) def print_displacements_LAMMPS(lammps_files, nat, x_cart0, conversion_factor, file_offset): if file_offset is None: disp_offset = np.zeros((nat, 3)) else: _, nat_tmp, x0_offset, _ = read_lammps_structure(file_offset) if nat_tmp != nat: print("File %s contains too many/few position entries" % file_offset) disp_offset = x0_offset - x_cart0 # Automatic detection of the input format is_dumped_file = False f = open(lammps_files[0], 'r') for line in f: if "ITEM: TIMESTEP" in line: is_dumped_file = True break f.close() if is_dumped_file: # This version supports reading the data from MD trajectory for search_target in lammps_files: x = get_coordinate_LAMMPS(search_target) ndata = len(x) // (3 * nat) x = np.reshape(x, (ndata, nat, 3)) for idata in range(ndata): disp = x[idata, :, :] - x_cart0 - disp_offset disp *= conversion_factor for i in range(nat): print("%20.14f %20.14f %20.14f" % (disp[i, 0], disp[i, 1], disp[i, 2])) else: for search_target in lammps_files: _, nat_tmp, x_cart, _ = read_lammps_structure(search_target) if nat_tmp != nat: print("File %s contains too many/few position entries" % search_target) disp = x_cart - x_cart0 - disp_offset disp *= conversion_factor for i in range(nat): print("%20.14f %20.14f %20.14f" % (disp[i, 0], disp[i, 1], disp[i, 2])) def print_atomicforces_LAMMPS(lammps_files, nat, conversion_factor, file_offset): if file_offset is None: force_offset = np.zeros((nat, 3)) else: data = get_atomicforces_LAMMPS(file_offset) try: force_offset = np.reshape(data, (nat, 3)) except: print("File %s contains too many position entries" % file_offset) # Automatic detection of the input format is_dumped_file = False f = open(lammps_files[0], 'r') for line in f: if "ITEM: TIMESTEP" in line: is_dumped_file = True break f.close() for search_target in lammps_files: force = get_atomicforces_LAMMPS(search_target) ndata = len(force) // (3 * nat) force = np.reshape(force, (ndata, nat, 3)) for idata in range(ndata): f = force[idata, :, :] - force_offset f *= conversion_factor for i in range(nat): print("%19.11E %19.11E %19.11E" % (f[i][0], f[i][1], f[i][2])) def print_displacements_and_forces_LAMMPS(lammps_files, nat, x_cart0, conversion_factor_disp, conversion_factor_force, file_offset): if file_offset is None: disp_offset = np.zeros((nat, 3)) force_offset = np.zeros((nat, 3)) else: x0_offset, force_offset = get_coordinate_and_force_LAMMPS(file_offset) try: x0_offset = np.reshape(x0_offset, (nat, 3)) force_offset =
np.reshape(force_offset, (nat, 3))
numpy.reshape
import pandas as pd import numpy as np def _calc_class_accuracy(y_true=None, y_pred=None): """ this is the name used for balanced accuracy where the average of the accuracys of all respective classes is taken. This is used to counter imbalanced datasets. Returns ------- float the accuracy array k dim accuracy of each class """ self._model_metrics = True from sklearn.metrics import confusion_matrix state_count = self._model.K lbls = np.arange(0, state_count) # a_ij, observations to be in class i, but are predicted to be in class j conf_mat = confusion_matrix(y_true, y_pred, labels=lbls) # type: np.ndarray K, _ = conf_mat.shape total = conf_mat.sum() overall_tpr = conf_mat.diagonal().sum()/total class_accs = np.zeros((K), dtype=np.float64) for k in range(K): kth_col_sum = conf_mat[:,k].sum() kth_row_sum = conf_mat[k,:].sum() # true alarm, it is true and i say true tp = conf_mat[k][k] # it is true but i say false tn = kth_row_sum - conf_mat[k][k] # false alarm, it is false but i say true fp = kth_row_sum - conf_mat[k][k] assert fp >= 0 and tp >= 0 and tn >= 0 # it is false and i say false fn = total - (kth_row_sum + kth_col_sum - conf_mat[k][k]) class_accs[k] = (tp + tn) / (fp + fn + tn + tp) class_acc = class_accs.sum()/K return class_acc, class_accs import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib.ticker as ticker def time2numeric_day(time, res='1ms'): """ maps a time to a numeric value for a day """ diff = time - time.floor('d') return int(diff/pd.Timedelta(res)) def create_y(tmp2, t_res='ms'): """ Parameters ---------- tmp2 : pd.DataFrame dataframe with timestamp index and one column for the predictions t_res: String string specifying the sampling rate """ assert t_res in ['ms', 's', 'h', 'min'] tmp = tmp2.copy() col_name = tmp.columns[0] # create start and end last_row = pd.Series(data={col_name : tmp.iloc[-1,:][col_name]}, name=tmp.iloc[-1,:].name.ceil('d')) first_row = pd.Series(data={col_name : np.nan}, name=tmp.iloc[-1,:].name.floor('d')) tmp = tmp.append(first_row) tmp = tmp.append(last_row) tmp = tmp.resample(t_res).ffill() return tmp def create_cmap(cmap, n=20): assert n <= 20 new_colors = cmap(np.arange(0, n)) new_cmap = colors.ListedColormap(new_colors) return new_cmap def plot_true_vs_inf_y(enc_lbl, y_true, y_pred, index=None): """ Parameters ---------- enc_lbl: scikit learn model y_true: pd.DataFrame time index and activity labels y_pred: array like activity labels Returns ------- """ assert len(y_true) == len(y_pred) assert isinstance(y_true, pd.Series) assert isinstance(y_pred, np.ndarray) if isinstance(y_pred[0], str): y_pred_vals = enc_lbl.transform(y_pred) elif isinstance(y_pred[0], float) or isinstance(y_pred[0], int) \ or isinstance(y_pred[0], np.int64): y_pred_vals = y_pred else: print(y_pred[0]) print(type(y_pred[0])) raise ValueError if isinstance(y_true.iloc[0], str): y_true_vals = enc_lbl.transform(y_true.values) elif isinstance(y_true.iloc[0]): y_true_vals = y_true.values else: raise ValueError title = 'True vs. inferred labels' # Plot the true and inferred discrete states n_classes = len(enc_lbl._lbl_enc.classes_) if index is not None: df_ypred = pd.DataFrame(data=y_pred_vals, index=index, columns=['y_pred']) df_ypred = create_y(df_ypred, t_res='s') df_ytrue = pd.DataFrame(data=y_true_vals, index=index, columns=['y_true']) df_ytrue = create_y(df_ytrue, t_res='s') # plot fig, axs = plt.subplots(2, figsize=(15, 5)) cmap = create_cmap(plt.get_cmap("tab20"), n_classes-1) axs[0].imshow(df_ytrue.T.values, aspect="auto", interpolation='none', cmap=cmap, vmin=0, vmax=n_classes-1) axs[0].set_ylabel("$y_{\\mathrm{true}}$") axs[0].set_yticks([]) axs[0].set_xticks([]) im = axs[1].imshow(df_ypred.T, aspect="auto", interpolation='none', cmap=cmap, vmin=0, vmax=n_classes-1) axs[1].set_ylabel("$y_{\\mathrm{pred}}$") axs[1].set_yticks([]) # format the colorbar def formatter_func(x, pos): 'The two args are the value and tick position' val = val_lookup[x] return val ticks = np.arange(n_classes) val_lookup = dict(zip(ticks, enc_lbl.inverse_transform(ticks))) formatter = plt.FuncFormatter(formatter_func) fig.subplots_adjust(right=0.8) cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7]) fig.colorbar(im, cax=cbar_ax, ticks=ticks, format=formatter) im.set_clim(-0.5, n_classes-1.5) # format the x-axis def func(x,p): if True: if int(x/k) < 10: return '0{}:00'.format(int(x/k)+1) else: return '{}:00'.format(int(x/k)+1) # calculate the tick positions for lower image a,b = axs[1].get_xlim() k = (b-a)/24 tcks_pos = np.arange(0,24)*k + (-0.5 + k) x_locator = ticker.FixedLocator(tcks_pos) axs[1].xaxis.set_major_formatter(ticker.FuncFormatter(func)) axs[1].xaxis.set_major_locator(x_locator) axs[1].set_aspect(aspect='auto') axs[1].tick_params(labelrotation=45) fig.suptitle(title) plt.show() else: # just plot the sequences after another and ignore time information fig, axs = plt.subplots(2, figsize=(15, 5)) cmap = create_cmap(plt.get_cmap("tab20"), n_classes-1) y_true_vals = np.expand_dims(y_true_vals, axis=1) y_pred_vals = np.expand_dims(y_pred_vals, axis=1) axs[0].imshow(y_true_vals.T, aspect="auto", interpolation='none', cmap=cmap, vmin=0, vmax=n_classes-1) axs[0].set_ylabel("$y_{\\mathrm{true}}$") axs[0].set_yticks([]) axs[0].set_xticks([]) im = axs[1].imshow(y_pred_vals.T, aspect="auto", interpolation='none', cmap=cmap, vmin=0, vmax=n_classes-1) axs[1].set_ylabel("$y_{\\mathrm{pred}}$") axs[1].set_yticks([]) # format the colorbar def formatter_func(x, pos): 'The two args are the value and tick position' val = val_lookup[x] return val ticks =
np.arange(n_classes)
numpy.arange
from __future__ import print_function import numpy as np import astropy.convolution __all__ = ['shiftnd', 'cross_correlation_shifts'] try: import fftw3 has_fftw = True def fftwn(array, nthreads=1): array = array.astype('complex').copy() outarray = array.copy() fft_forward = fftw3.Plan(array, outarray, direction='forward', flags=['estimate'], nthreads=nthreads) fft_forward.execute() return outarray def ifftwn(array, nthreads=1): array = array.astype('complex').copy() outarray = array.copy() fft_backward = fftw3.Plan(array, outarray, direction='backward', flags=['estimate'], nthreads=nthreads) fft_backward.execute() return outarray / np.size(array) except ImportError: fftn = np.fft.fftn ifftn = np.fft.ifftn has_fftw = False # I performed some fft speed tests and found that scipy is slower than numpy # http://code.google.com/p/agpy/source/browse/trunk/tests/test_ffts.py However, # the speed varied on machines - YMMV. If someone finds that scipy's fft is # faster, we should add that as an option here... not sure how exactly def get_ffts(nthreads=1, use_numpy_fft=not has_fftw): """ Returns fftn,ifftn using either numpy's fft or fftw """ if has_fftw and not use_numpy_fft: def fftn(*args, **kwargs): return fftwn(*args, nthreads=nthreads, **kwargs) def ifftn(*args, **kwargs): return ifftwn(*args, nthreads=nthreads, **kwargs) elif use_numpy_fft: fftn = np.fft.fftn ifftn = np.fft.ifftn else: # yes, this is redundant, but I feel like there could be a third option... fftn = np.fft.fftn ifftn = np.fft.ifftn return fftn,ifftn def shiftnd(data, offset, phase=0, nthreads=1, use_numpy_fft=False, return_abs=False, return_real=True): """ FFT-based sub-pixel image shift. Will turn NaNs into zeros Shift Theorem: .. math:: FT[f(t-t_0)](x) = e^{-2 \pi i x t_0} F(x) Parameters ---------- data : np.ndarray Data to shift offset : (int,)*ndim Offsets in each direction. Must be iterable. phase : float Phase, in radians Other Parameters ---------------- use_numpy_fft : bool Force use numpy's fft over fftw? (only matters if you have fftw installed) nthreads : bool Number of threads to use for fft (only matters if you have fftw installed) return_real : bool Return the real component of the shifted array return_abs : bool Return the absolute value of the shifted array Returns ------- The input array shifted by offsets """ fftn,ifftn = get_ffts(nthreads=nthreads, use_numpy_fft=use_numpy_fft) if np.any(np.isnan(data)): data = np.nan_to_num(data) freq_grid = np.sum( [off*
np.fft.fftfreq(nx)
numpy.fft.fftfreq
#!/usr/bin/python3 # -*- coding: utf-8 -*- """Python wrapper for synspec Calculation of synthetic spectra of stars and convolution with a rotational/Gaussian kernel. Makes the use of synspec simpler, and retains the main functionalities (when used from python). The command line interface is even simpler but fairly limited. For information on synspec visit http://nova.astro.umd.edu/Synspec43/synspec.html. Example ------- To compute the solar spectrum between 6160 and 6164 angstroms, using a model atmosphere in the file sun.mod (provided with the distribution), with the output going into the file sun.syn $synple.py sun.mod 6160. 6164. To force a micro of 1.1 km/s, and convolve the spectrum with a Gaussian kernel with a fwhm of 0.1 angstroms $synple.py sun.mod 6160. 6164. 1.1 0.1 To perform the calculations above in python and compare the emergent normalized profiles >>> from synple import syn >>> x, y, z = syn('sun.mod', (6160.,6164.)) >>> x2, y2, z2 = syn('sun.mod', (6160.,6164.), vmicro=1.1, fwhm=0.1) in plain python >>> import matplotlib.pyplot as plt >>> plt.ion() >>> plt.plot(x,y/z, x2, y2/z2) or ipython In [1]: %pylab In [2]: plot(x,y/z, x2, y2/z2) """ import os import sys import subprocess import numpy as np import glob import time import copy import gzip from scipy import interpolate import matplotlib.pyplot as plt from itertools import product #configuration #synpledir = /home/callende/synple synpledir = os.path.dirname(os.path.realpath(__file__)) #relative paths modeldir = synpledir + "/models" modelatomdir = synpledir + "/data" linelistdir = synpledir + "/linelists" bindir = synpledir + "/bin" synspec = bindir + "/s54d" rotin = bindir + "/rotin3" #other stuff clight = 299792.458 epsilon = 0.6 #clv coeff. bolk = 1.38054e-16 # erg/ K zero = " 0 " one = " 1 " two = " 2 " def syn(modelfile, wrange, dw=None, strength=1e-4, vmicro=None, abu=None, \ linelist=['gfallx3_bpo.19','kmol3_0.01_30.20'], atom='ap18', vrot=0.0, fwhm=0.0, \ steprot=0.0, stepfwhm=0.0, clean=True, save=False, synfile=None, compute=True, tmpdir=None): """Computes a synthetic spectrum Interface to the fortran codes synspec/rotin that only requires two mandatory inputs: a model atmosphere (modelfile) and the limits of the spectral range (wrange). The code recognizes Kurucz, MARCS and Phoenix LTE model atmospheres. The sampling of the frequency grid is chosen internally, but can also be set by adding a constant wavelength step (dw). The abundances and microturbulence velocity can be set through the abu and vmicro parameters, but default values will be taken from the model atmosphere. Rotational and Gaussian broadening can be introduced (vrot and fwhm parameters). The computed spectrum can be written to a file (save == True). Parameters ---------- modelfile : str file with a model atmosphere wrange: tuple or list of two floats initial and ending wavelengths (angstroms) dw: float, optional wavelength step for the output fluxes this will be the maximum interval for the radiative transfer, and will trigger interpolation at the end (default is None for automatic selection) strength: float, optional threshold in the line-to-continuum opacity ratio for selecting lines (default is 1e-4) vmicro: float, optional microturbulence (km/s) (default is taken from the model atmosphere) abu: array of floats (99 elements), optional chemical abundances relative to hydrogen (N(X)/N(H)) (default taken from input model atmosphere) linelist: array of str filenames of the line lists, the first one corresponds to the atomic lines and all the following ones (optional) to molecular lines (default ['gfallx3_bpo.19','kmol3_0.01_30.20'] from Allende Prieto+ 2018) atom: str 'ap18' -- generic opacities used in Allende Prieto+ 2018 'yo19' -- restricted set for NLTE calculations for APOGEE 2019 (Osorio+ 2019) 'hhm' -- continuum opacity is simplified to H and H- (default 'ap18') vrot: float projected rotational velocity (km/s) (default 0.) steprot: float wavelength step for convolution with rotational kernel (angstroms) set to 0. for automatic adjustment (default 0.) fwhm: float Gaussian broadening: macroturbulence, instrumental, etc. (angstroms) (default 0.) stepfwhm: float wavelength step for Gaussian convolution (angstroms) set to 0. for automatic adjustment (default 0.) clean: bool True by the default, set to False to avoid the removal of the synspec temporary files/links (default True) save: bool set to True to save the computed spectrum to a file (default False) the root of the model atmosphere file, with an extension ".syn" will be used but see the parameter synfile to change that synfile: str when save is True, this can be used to set the name of the output file (default None) compute: bool set to False to skip the actual synspec run, triggering clean=False (default True) tmpdir: string when is not None a temporary directory with this name will be created to store the temporary synspec input/output files, and the synple log file (usually named syn.log) will be named as tmpdir_syn.log. Returns ------- wave: numpy array of floats wavelengths (angstroms) flux: numpy array of floats flux (H_lambda in ergs/s/cm2/A) cont: numpy array of floats continuum flux (same units as flux) """ #basic checks on the line list and model atmosphere checksynspec(linelist,modelfile) #read model atmosphere atmostype, teff, logg, vmicro2, abu2, nd, atmos = read_model(modelfile) if vmicro == None: vmicro = vmicro2 if abu == None: abu = abu2 if dw == None: #space = 1e-2 space = np.mean(wrange) * np.sqrt(9.12e-15 * np.min(atmos['t']) + vmicro** 2) / clight / 3. else: space = dw #check input parameters are valid imode = checkinput(wrange, vmicro, linelist) print ('teff,logg,vmicro=',teff,logg,vmicro) #print ('abu=',abu) #print (len(abu)) #print ('nd=',nd) #print ('linelist=',linelist) #print ('wrange=',wrange) logfile = 'syn.log' if tmpdir is not None: startdir = os.getcwd() logfile = os.path.join(startdir,os.path.split(tmpdir)[-1]) + "_" + logfile try: os.mkdir(tmpdir) except OSError: print( "cannot create tmpdir %s " % (tmpdir) ) try: os.chdir(tmpdir) except OSError: print("cannot enter tmpdir %s " % (tmpdir) ) cleanup() writetas('tas',nd,linelist) #non-std param. file write5(teff,logg,abu,atom) #abundance/opacity file write8(teff,logg,nd,atmos,atmostype) #model atmosphere write55(wrange,space,imode,2,strength,vmicro,linelist,atmostype) #synspec control file create_links(linelist) #auxiliary data if compute == False: wave = None flux = None cont = None else: synin = open('fort.5') synout = open(logfile,'w') start = time.time() p = subprocess.Popen([synspec], stdin=synin, stdout = synout, stderr= synout, shell=True) p.wait() synout.flush() synout.close() synin.close() assert (os.path.isfile('fort.7')), 'Error: I cannot read the file *fort.7* in '+tmpdir+' -- looks like synspec has crashed, please look at syn.log' assert (os.path.isfile('fort.17')), 'Error: I cannot read the file *fort.17* in '+tmpdir+' -- looks like synspec has crashed, please look at syn.log' wave, flux = np.loadtxt('fort.7', unpack=True) wave2, flux2 = np.loadtxt('fort.17', unpack=True) if dw == None and fwhm <= 0. and vrot <= 0.: cont = np.interp(wave, wave2, flux2) end = time.time() print('syn ellapsed time ',end - start, 'seconds') if fwhm > 0. or vrot > 0.: start = time.time() print( vrot, fwhm, space, steprot, stepfwhm) wave, flux = call_rotin (wave, flux, vrot, fwhm, space, steprot, stepfwhm, clean=False, reuseinputfiles=True) if dw == None: cont = np.interp(wave, wave2, flux2) end = time.time() print('convol ellapsed time ',end - start, 'seconds') if (dw != None): nsamples = int((wrange[1] - wrange[0])/dw) + 1 wave3 = np.arange(nsamples)*dw + wrange[0] #flux = np.interp(wave3, wave, flux) flux = interp_spl(wave3, wave, flux) cont = np.interp(wave3, wave2, flux2) wave = wave3 if clean == True: cleanup() if tmpdir is not None: try: os.chdir(startdir) except OSError: print("cannot change directory from tmpdir %s to startdir %s" % (tmpdir,startdir) ) if clean == True: try: os.rmdir(tmpdir) except OSError: print("cannot remove directory tmpdir %s" % (tmpdir) ) if save == True: if synfile == None: tmpstr = os.path.split(modelfile)[-1] synfile = tmpstr[:tmpstr.rfind('.')]+'.syn' np.savetxt(synfile,(wave,flux,cont)) return(wave, flux, cont) def mpsyn(modelfile, wrange, dw=None, strength=1e-4, vmicro=None, abu=None, \ linelist=['gfallx3_bpo.19','kmol3_0.01_30.20'],atom='ap18', vrot=0.0, fwhm=0.0, \ steprot=0.0, stepfwhm=0.0, clean=True, save=False, synfile=None, compute=True, nthreads=1): """Computes a synthetic spectrum, splitting the spectral range in nthreads parallel calculations Wrapper for syn, using multiprocessing, to speed-up the calculation of a broad spectral range Parameters ---------- modelfile : str file with a model atmosphere wrange: tuple or list of two floats initial and ending wavelengths (angstroms) dw: float, optional wavelength step for the output fluxes this will be the maximum interval for the radiative transfer, and will trigger interpolation at the end (default is None for automatic selection) strength: float, optional threshold in the line-to-continuum opacity ratio for selecting lines (default is 1e-4) vmicro: float, optional microturbulence (km/s) (default is taken from the model atmosphere) abu: array of floats (99 elements), optional chemical abundances relative to hydrogen (N(X)/N(H)) (default taken from input model atmosphere) linelist: array of str filenames of the line lists, the first one corresponds to the atomic lines and all the following ones (optional) to molecular lines (default ['gfallx3_bpo.19','kmol3_0.01_30.20'] from Allende Prieto+ 2018) atom: str 'ap18' -- generic opacities used in Allende Prieto+ 2018 'yo19' -- restricted set for NLTE calculations for APOGEE 2019 (Osorio+ 2019) 'hhm' -- continuum opacity is simplified to H and H- (default 'ap18') vrot: float projected rotational velocity (km/s) (default 0.) steprot: float wavelength step for convolution with rotational kernel (angstroms) set to 0. for automatic adjustment (default 0.) fwhm: float Gaussian broadening: macroturbulence, instrumental, etc. (angstroms) (default 0.) stepfwhm: float wavelength step for Gaussian convolution (angstroms) set to 0. for automatic adjustment (default 0.) clean: bool True by the default, set to False to avoid the removal of the synspec temporary files/links (default True) save: bool set to True to save the computed spectrum to a file (default False) the root of the model atmosphere file, with an extension ".syn" will be used but see the parameter synfile to change that synfile: str when save is True, this can be used to set the name of the output file (default None) compute: bool set to False to skip the actual synspec run, triggering clean=False (default True) nthreads: int choose the number of cores to use in the calculation (default 1, 0 has the meaning that the code should take all the cores available) Returns ------- wave: numpy array of floats wavelengths (angstroms) flux: numpy array of floats flux (H_lambda in ergs/s/cm2/A) cont: numpy array of floats continuum flux (same units as flux) """ from multiprocessing import Pool,cpu_count if nthreads == 0: nthreads = cpu_count() delta = (wrange[1]-wrange[0])/nthreads pars = [] for i in range(nthreads): wrange1 = (wrange[0]+delta*i,wrange[0]+delta*(i+1)) pararr = [modelfile, wrange1, dw, strength, vmicro, abu, \ linelist, atom, vrot, fwhm, \ steprot, stepfwhm, clean, save, synfile, compute, 'par'+str(i) ] pars.append(pararr) pool = Pool(nthreads) results = pool.starmap(syn,pars) pool.close() pool.join() x = results[0][0] y = results[0][1] z = results[0][2] if len(results) > 1: for i in range(len(results)-1): x = np.concatenate((x, results[i+1][0][1:]) ) y = np.concatenate((y, results[i+1][1][1:]) ) z = np.concatenate((z, results[i+1][2][1:]) ) return(x,y,z) def raysyn(modelfile, wrange, dw=None, strength=1e-4, vmicro=None, abu=None, \ linelist=['gfallx3_bpo.19','kmol3_0.01_30.20'], atom='ap18', vrot=0.0, fwhm=0.0, \ steprot=0.0, stepfwhm=0.0, clean=True, save=False, synfile=None, compute=True, nthreads=1): """Computes a synthetic spectrum, splitting the spectral range in nthreads parallel calculations Wrapper for syn, using ray, to speed-up the calculation of a broad spectral range Parameters ---------- modelfile : str file with a model atmosphere wrange: tuple or list of two floats initial and ending wavelengths (angstroms) dw: float, optional wavelength step for the output fluxes this will be the maximum interval for the radiative transfer, and will trigger interpolation at the end (default is None for automatic selection) strength: float, optional threshold in the line-to-continuum opacity ratio for selecting lines (default is 1e-4) vmicro: float, optional microturbulence (km/s) (default is taken from the model atmosphere) abu: array of floats (99 elements), optional chemical abundances relative to hydrogen (N(X)/N(H)) (default taken from input model atmosphere) linelist: array of str filenames of the line lists, the first one corresponds to the atomic lines and all the following ones (optional) to molecular lines (default ['gfallx3_bpo.19','kmol3_0.01_30.20'] from Allende Prieto+ 2018) atom: str 'ap18' -- generic opacities used in Allende Prieto+ 2018 'yo19' -- restricted set for NLTE calculations for APOGEE 2019 (Osorio+ 2019) 'hhm' -- continuum opacity is simplified to H and H- (default 'ap18') vrot: float projected rotational velocity (km/s) (default 0.) steprot: float wavelength step for convolution with rotational kernel (angstroms) set to 0. for automatic adjustment (default 0.) fwhm: float Gaussian broadening: macroturbulence, instrumental, etc. (angstroms) (default 0.) stepfwhm: float wavelength step for Gaussian convolution (angstroms) set to 0. for automatic adjustment (default 0.) clean: bool True by the default, set to False to avoid the removal of the synspec temporary files/links (default True) save: bool set to True to save the computed spectrum to a file (default False) the root of the model atmosphere file, with an extension ".syn" will be used but see the parameter synfile to change that synfile: str when save is True, this can be used to set the name of the output file (default None) compute: bool set to False to skip the actual synspec run, triggering clean=False (default True) nthreads: int choose the number of cores to use in the calculation (default 1, 0 has the meaning that the code should take all the cores available) Returns ------- wave: numpy array of floats wavelengths (angstroms) flux: numpy array of floats flux (H_lambda in ergs/s/cm2/A) cont: numpy array of floats continuum flux (same units as flux) """ import psutil import ray @ray.remote def fun(vari,cons): wrange,tmpdir = vari modelfile,dw,strength,vmicro,abu,linelist, \ atom,vrot,fwhm,steprot,stepfwhm,clean,save,synfile,compute = cons x, y, z = syn(modelfile, wrange, dw, strength, vmicro, abu, \ linelist, atom, vrot, fwhm, \ steprot, stepfwhm, clean, save, synfile, compute, tmpdir) return(x,y,z) if nthreads == 0: nthreads = psutil.cpu_count(logical=False) print('nthreads=',nthreads) ray.init(num_cpus=nthreads) rest = [ modelfile,dw,strength,vmicro,abu,linelist, \ atom,vrot,fwhm,steprot,stepfwhm,clean,save,synfile,compute ] constants = ray.put(rest) delta = (wrange[1]-wrange[0])/nthreads pars = [] for i in range(nthreads): wrange1 = (wrange[0]+delta*i,wrange[0]+delta*(i+1)) folder = 'par'+str(i) pararr = [wrange1, 'par'+str(i) ] pars.append(pararr) results = ray.get([fun.remote(pars[i],constants) for i in range(nthreads)]) x = results[0][0] y = results[0][1] z = results[0][2] if len(results) > 1: for i in range(len(results)-1): x = np.concatenate((x, results[i+1][0][1:]) ) y = np.concatenate((y, results[i+1][1][1:]) ) z = np.concatenate((z, results[i+1][2][1:]) ) return(x,y,z) def multisyn(modelfiles, wrange, dw=None, strength=1e-4, abu=None, \ vmicro=None, vrot=0.0, fwhm=0.0, nfe=0.0, \ linelist=['gfallx3_bpo.19','kmol3_0.01_30.20'], atom='ap18', \ steprot=0.0, stepfwhm=0.0, clean=True, save=None, nthreads=1): """Computes synthetic spectra for a list of files. The values of vmicro, vrot, fwhm, and nfe can be iterables. Whether or not dw is specified the results will be placed on a common wavelength scale by interpolation. When not specified, dw will be chosen as appropriate for the first model in modelfiles. Parameters ---------- modelfiles : list of str files with model atmospheres wrange: tuple or list of two floats initial and ending wavelengths (angstroms) dw: float wavelength step for the output fluxes. Unlike in 'syn' this will not be used to set the maximum wavelength step for synthesizing any of the spectra; the appropriate step will be chosen dynamically. Unlike in 'syn', interpolation to a constant step will always be done (default is None for automatic selection based on the first model of the list) strength: float, optional threshold in the line-to-continuum opacity ratio for selecting lines (default is 1e-4) abu: array of floats (99 elements), optional chemical abundances relative to hydrogen (N(X)/N(H)) (default taken from input model atmosphere) vmicro: float, optional, can be an iterable microturbulence (km/s) (default is taken from the model atmosphere) vrot: float, can be an iterable projected rotational velocity (km/s) (default 0.) fwhm: float, can be an iterable Gaussian broadening: macroturbulence, instrumental, etc. (angstroms) (default 0.) nfe: float, can be an iterable [N/Fe] nitrogen abundance change from the one specified in the array 'abu' (dex) (default 0.) linelist: array of str filenames of the line lists, the first one corresponds to the atomic lines and all the following ones (optional) to molecular lines (default ['gfallx3_bpo.19','kmol3_0.01_30.20'] from Allende Prieto+ 2018) atom: str 'ap18' -- generic opacities used in Allende Prieto+ 2018 'yo19' -- restricted set for NLTE calculations for APOGEE 2019 (Osorio+ 2019) 'hhm' -- continuum opacity is simplified to H and H- (default 'ap18') steprot: float wavelength step for convolution with rotational kernel (angstroms) set to 0. for automatic adjustment (default 0.) stepfwhm: float wavelength step for Gaussian convolution (angstroms) set to 0. for automatic adjustment (default 0.) clean: bool True by the default, set to False to avoid the removal of the synspec temporary files/links (default True) save: bool set to True to save the computed spectra to files (default False) the root of the model atmosphere file, with an extension ".syn" will be used if multiple values of vmicro, vrot, fwhm or nfe are used, their values are prepended to the file names (default None) nthreads: int choose the number of cores to use in the calculation (default 1, 0 has the meaning that the code should take all the cores available) Returns ------- wave: numpy array of floats (1D) wavelengths (angstroms) flux: numpy array of floats (2D -- as many rows as models input) flux (H_lambda in ergs/s/cm2/A) cont: numpy array of floats (2D -- as many rows as models input) continuum flux (same units as flux) """ #when vmicro, vrot, fwhm or nitrogen are not iterables, we create ones, otherwise we copy them try: nvmicro = len(vmicro) vmicros = vmicro except TypeError: nvmicro = 1 vmicros = [ vmicro ] try: nvrot = len(vrot) vrots = vrots except TypeError: nvrot = 1 vrots = [ vrot ] try: nfwhm = len(fwhm) fwhms = fwhm except TypeError: nfwhm = 1 fwhms = [ fwhm ] try: nnfe = len(nfe) nnfes = nfe except TypeError: nnfe = 1 nfes = [ nfe ] assert (len(modelfiles) > 0), 'multisyn needs at least one model to work with' wave = None flux = None cont = None for entry in modelfiles: for vmicro1 in vmicros: for nfe1 in nfes: abu1 = copy.copy(abu) #if need be, adjust nitrogen abundance according to nfe if (abs(nfe1) > 1e-7): if (abu1 == None): checksynspec(linelist,entry) atmostype, teff, logg, vmicro2, abu1, nd, atmos = read_model(entry) abu1[6] = abu1[6] * 10.**nfe1 x, y, z = mpsyn(entry, wrange, dw=None, strength=strength, \ vmicro=vmicro1, abu=abu1, linelist=linelist, atom=atom, \ clean=clean, save=save, nthreads=nthreads) space = np.mean(np.diff(x)) for vrot1 in vrots: for fwhm1 in fwhms: if fwhm1> 0. or vrot1 > 0.: start = time.time() print( entry, vmicro1, nfe1, vrot1, fwhm1, space) x2, y2 = call_rotin (x, y, vrot, fwhm, space, steprot, stepfwhm, \ clean=False, reuseinputfiles=True) z2 = np.interp(x2, x, z) end = time.time() print('convol ellapsed time ',end - start, 'seconds') else: x2, y2, z2 = x, y, z if entry == modelfiles[0] and vmicro1 == vmicros[0] and vrot1 == vrots[0] and fwhm1 == fwhms[0] and nfe1 == nfes[0]: if dw == None: dw = np.median(np.diff(x2)) nsamples = int((wrange[1] - wrange[0])/dw) + 1 wave = np.arange(nsamples)*dw + wrange[0] #flux = np.interp(wave, x2, y2) flux = interp_spl(wave, x2, y2) cont = np.interp(wave, x2, z2) else: #flux = np.vstack ( (flux, np.interp(wave, x, y) ) ) flux = np.vstack ( (flux, interp_spl(wave, x, y) ) ) cont = np.vstack ( (cont, np.interp(wave, x, z) ) ) return(wave, flux, cont) def polysyn(modelfiles, wrange, dw=None, strength=1e-4, abu=None, \ vmicro=None, vrot=0.0, fwhm=0.0, nfe=0.0, \ linelist=['gfallx3_bpo.19','kmol3_0.01_30.20'],atom='ap18', \ steprot=0.0, stepfwhm=0.0, clean=True, save=None): """Sets up a directory tree for computing synthetic spectra for a list of files in parallel. The values of vmicro, vrot, fwhm, and nfe can be iterables. Whether or not dw is specified the results will be placed on a common wavelength scale by interpolation. When not specified, dw will be chosen as appropriate for the first model in modelfiles. Parameters ---------- modelfiles : list of str files with model atmospheres wrange: tuple or list of two floats initial and ending wavelengths (angstroms) dw: float Unlike in 'syn' this will not be used to set the maximum wavelength step for synthesizing any of the spectra; the appropriate step will be chosen dynamically. Unlike in 'syn', interpolation to a constant step will always be done (default is None for automatic selection based on the first model of the list) strength: float, optional threshold in the line-to-continuum opacity ratio for selecting lines (default is 1e-4) abu: array of floats (99 elements), optional chemical abundances relative to hydrogen (N(X)/N(H)) (default taken from input model atmosphere) vmicro: float, optional, can be an iterable microturbulence (km/s) (default is taken from the model atmosphere) vrot: float, can be an iterable projected rotational velocity (km/s) (default 0.) fwhm: float, can be an iterable Gaussian broadening: macroturbulence, instrumental, etc. (angstroms) (default 0.) nfe: float, can be an iterable [N/Fe] nitrogen abundance change from the one specified in the array 'abu' (dex) (default 0.) linelist: array of str filenames of the line lists, the first one corresponds to the atomic lines and all the following ones (optional) to molecular lines (default ['gfallx3_bpo.19','kmol3_0.01_30.20'] from Allende Prieto+ 2018) atom: str 'ap18' -- generic opacities used in Allende Prieto+ 2018 'yo19' -- restricted set for NLTE calculations for APOGEE 2019 (Osorio+ 2019) 'hhm' -- continuum opacity is simplified to H and H- (default 'ap18') steprot: float wavelength step for convolution with rotational kernel (angstroms) set to 0. for automatic adjustment (default 0.) stepfwhm: float wavelength step for Gaussian convolution (angstroms) set to 0. for automatic adjustment (default 0.) clean: bool True by the default, set to False to avoid the removal of the synspec temporary files/links (default True) save: bool set to True to save the computed spectra to files (default False) the root of the model atmosphere file, with an extension ".syn" will be used if multiple values of vmicro, vrot, fwhm or nfe are used, their values are prepended to the file names (default None) Returns ------- wave: numpy array of floats (1D) wavelengths (angstroms) flux: numpy array of floats (2D -- as many rows as models input) flux (H_lambda in ergs/s/cm2/A) cont: numpy array of floats (2D -- as many rows as models input) continuum flux (same units as flux) """ #synspec does not currently run in parallel nthreads = 1 #when vmicro, vrot, fwhm or nitrogen are not iterables, we create ones, otherwise we copy them try: nvmicro = len(vmicro) vmicros = vmicro except TypeError: nvmicro = 1 vmicros = [ vmicro ] try: nvrot = len(vrot) vrots = vrots except TypeError: nvrot = 1 vrots = [ vrot ] try: nfwhm = len(fwhm) fwhms = fwhm except TypeError: nfwhm = 1 fwhms = [ fwhm ] try: nnfe = len(nfe) nnfes = nfe except TypeError: nnfe = 1 nfes = [ nfe ] idir = 0 for entry in modelfiles: for vmicro1 in vmicros: for nfe1 in nfes: idir = idir + 1 dir = ( "hyd%07d" % (idir) ) try: os.mkdir(dir) except OSError: print( "cannot create dir hyd%07d" % (idir) ) try: os.chdir(dir) except OSError: print( "cannot change dir to hyd%07d" % (idir) ) if entry == 'missing': pass else: #setup the slurm script sfile = dir+".job" now=time.strftime("%c") s = open(sfile ,"w") s.write("#!/bin/bash \n") s.write("#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# \n") s.write("#This script was written by synple on "+now+" \n") s.write("#SBATCH -J "+dir+" \n") s.write("#SBATCH -o "+dir+"_%j.out"+" \n") s.write("#SBATCH -e "+dir+"_%j.err"+" \n") s.write("#SBATCH -n "+str(nthreads)+" \n") s.write("#SBATCH -t 04:00:00"+" \n") #hh:mm:ss s.write("#SBATCH -D "+os.path.abspath(os.curdir)+" \n") s.write("#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# \n\n\n") abu1 = copy.copy(abu) #if need be, adjust nitrogen abundance according to nfe if (abs(nfe1) > 1e-7): if (abu1 == None): checksynspec(linelist,entry) atmostype, teff, logg, vmicro2, abu1, nd, atmos = read_model(entry) abu1[6] = abu1[6] * 10.**nfe1 x, y, z = syn(entry, wrange, dw=None, strength=strength, vmicro=vmicro1, \ abu=abu1, linelist=linelist, atom=atom, compute=False) s.write(synspec+" < "+"fort.5"+"\n") si = open("fort.55",'r') for i in range(6): line = si.readline() entries = line.split() space = float(entries[5]) si.close() iconv = 0 for vrot1 in vrots: for fwhm1 in fwhms: print('iconv=',iconv) iconv = iconv + 1 inconv = ("%07dfort.5" % (iconv) ) outconv = ("'%07dfort.7'" % (iconv) ) if fwhm1> 0. or vrot1 > 0.: f = open(inconv,'w') f.write( ' %s %s %s \n' % ("'fort.7'", "'fort.17'", outconv) ) f.write( ' %f %f %f \n' % (vrot1, space, steprot) ) f.write( ' %f %f \n' % (fwhm1, stepfwhm) ) print('stepfwhm=',stepfwhm) f.write( ' %f %f %i \n' % (wrange[0], wrange[1], 0) ) f.close() s.write(rotin+" < "+inconv+"\n") else: s.write("cp "+" fort.7 "+outconv[1:-1]+"\n") s.close() os.chmod(sfile ,0o755) try: os.chdir('..') except OSError: print( "cannot exit dir hyd%07d" % (idir) ) return(None,None,None) def polyopt(wrange=(9.e2,1.e5),dw=0.1,strength=1e-3, linelist=['gfallx3_bpo.19','kmol3_0.01_30.20'], \ tlt = (20,3.08,0.068), tlrho = (20,-14.0,0.59), \ tfeh=(1,0.0,0.0), tafe=(1,0.0,0.0), tcfe=(1,0.0,0.0), tnfe=(1,0.0,0.0), \ tofe=(1,0.0,0.0), trfe=(1,0.0,0.0), tsfe=(1,0.0,0.0), tvmicro=(1,1.0,0.0), \ zexclude=None, atom='ap18'): """Sets up a directory tree for computing opacity tables for TLUSTY. The table collection forms a regular grid defined by triads in various parameters. Each triad has three values (n, llimit, step) that define an array x = np.range(n)*step + llimit. Triads in teff (tteff) and logg (tlogg) are mandatory. Triads in [Fe/H] (tfeh), [alpha/Fe] (tafe), [C/Fe] (tcfe), [N/Fe] (tnfe), [O/Fe] (tofe), [r/Fe] (rfe), and [s/Fe] (sfe) are optional since arrays with just one 0.0 are included by default. Parameters ---------- wrange: tuple or list of two floats initial and ending wavelengths (angstroms) dw: float Unlike in 'syn' this will not be used to set the maximum wavelength step for synthesizing any of the spectra; the appropriate step will be chosen dynamically. Unlike in 'syn', interpolation to a constant step will always be done (default is None for automatic selection based on the first model of the list) strength: float, optional threshold in the line-to-continuum opacity ratio for selecting lines (default is 1e-4) linelist: array of str filenames of the line lists, the first one corresponds to the atomic lines and all the following ones (optional) to molecular lines (default ['gfallx3_bpo.19','kmol3_0.01_30.20'] from Allende Prieto+ 2018) atom: str 'ap18' -- generic opacities used in Allende Prieto+ 2018 'yo19' -- restricted set for NLTE calculations for APOGEE 2019 (Osorio+ 2019) 'hhm' -- continuum opacity is simplified to H and H- (default 'ap18') tlt: tuple log10(T) triad (n, llimit, step) for opacity grid (default values chosen for grid lt = np.arange(20)*0.068 + 3.08, to cover the range in the DR16 APOGEE MARCS grids) tlrho: tuple log10(rho) triad (n, llimit, step) for opacity grid (default values chosen for grid lrho = np.arange(20)*0.59 -14.0, to cover the range in the DR16 APOGEE MARCS grids) tteff: tuple Teff triad (n, llimit, step) tlogg: tuple logg triad (n, llimit, step) tfeh: tuple [Fe/H] triad tafe: tuple [alpha/Fe] triad tcfe: tuple [C/Fe] triad tnfe: tuple [N/Fe] triad tofe: tuple [O/Fe] triad rfeh: tuple [r/Fe] triad (r-elements abundance ratio) sfeh: tuple [s.Fe] triad (s-elements abundance ratio) zexclude: list atomic numbers of the elements whose opacity is NOT to be included in the table (default None) """ #pynspec does not currently run in parallel nthreads = 1 #expanding the triads t* into iterables try: nfeh = len(tfeh) assert (nfeh == 3), 'Error: feh triad must have three elements (n, llimit, step)' fehs = np.arange(tfeh[0])*tfeh[2] + tfeh[1] except TypeError: print('Error: feh triad must have three elements (n, llimit, step)') return () try: nafe = len(tafe) assert (nafe == 3), 'Error: afe triad must have three elements (n, llimit, step)' afes = np.arange(tafe[0])*tafe[2] + tafe[1] except TypeError: print('Error: afe triad must have three elements (n, llimit, step)') return () try: ncfe = len(tcfe) assert (ncfe == 3), 'Error: cfe triad must have three elements (n, llimit, step)' cfes = np.arange(tcfe[0])*tcfe[2] + tcfe[1] except TypeError: print('Error: cfe triad must have three elements (n, llimit, step)') return () try: nnfe = len(tnfe) assert (nnfe == 3), 'Error: nfe triad must have three elements (n, llimit, step)' nfes = np.arange(tnfe[0])*tnfe[2] + tnfe[1] except TypeError: print('Error: nfe triad must have three elements (n, llimit, step)') return () try: nofe = len(tofe) assert (nofe == 3), 'Error: ofe triad must have three elements (n, llimit, step)' ofes = np.arange(tofe[0])*tofe[2] + tofe[1] except TypeError: print('Error: ofe triad must have three elements (n, llimit, step)') return () try: nrfe = len(trfe) assert (nrfe == 3), 'Error: rfe triad must have three elements (n, llimit, step)' rfes = np.arange(trfe[0])*trfe[2] + trfe[1] except TypeError: print('Error: rfe triad must have three elements (n, llimit, step)') return () try: nsfe = len(tsfe) assert (nsfe == 3), 'Error: sfe triad must have three elements (n, llimit, step)' sfes = np.arange(tsfe[0])*tsfe[2] + tsfe[1] except TypeError: print('Error: sfe triad must have three elements (n, llimit, step)') return () try: nvmicro = len(tvmicro) assert (nvmicro == 3), 'Error: vmicro triad must have three elements (n, llimit, step)' vmicros = np.arange(tvmicro[0])*tvmicro[2] + tvmicro[1] except TypeError: print('Error: vmicro triad must have three elements (n, llimit, step)') return () #ranges for the opacity table try: nlt = len(tlt) assert (nlt == 3), 'Error: lt triad must have three elements (n, llimit, step)' lt = np.arange(tlt[0])*tlt[2] + tlt[1] #log10(T) except TypeError: print('Error: tlt triad must have three elements (n, llimit, step)') return () try: nlrho = len(tlrho) assert (nlrho == 3), 'Error: lrho triad must have three elements (n, llimit, step)' lrho = np.arange(tlrho[0])*tlrho[2] + tlrho[1] #log10(density) except TypeError: print('Error: tlrho triad must have three elements (n, llimit, step)') return () symbol, mass, sol = elements() z_metals = np.arange(97,dtype=int) + 3 #Ar usually included among alphas in MARCS and not in Kurucz/Meszaros z_alphas = np.array([8,10,12,14,16,18,20,22],dtype=int) # rs increases: notes and data below from comments in the MARCS code (provided by B.Edvardsson) # Fractional r-process abundance for Ga-Bi (r+s simply assumed == 100%) | Date 2000-01-18 # (Note: Ga-Sr (31-38) was just copied from Kaeppeler et al. 1989, below) # s-process from Stellar models: <NAME>., <NAME>., <NAME>., # <NAME>., <NAME>., <NAME>., 1999, Astrophys J. 525, 886-900 # Fractions corrected to the revised meteoritic abundances # of <NAME>., <NAME>. 1998, Space Science Review 85, 161-174 # -0.99 is assigned to unstable elements z_rs =
np.arange(62,dtype=int)
numpy.arange
import transform import unittest import numpy as np import sys sys.path.insert(0, '../') import pdb import rotateCorrection as rc # another crude transformation computer def _angle(x1, y1, x2, y2): # inputs are in angle dx = x2 - x1 dy = y2 - y1 if dy < 0: return np.arctan(abs(dy)/dx) else: return -np.arctan(abs(dy)/dx) def simple_angle_converter(pointpx, top_right, top_left, bottom_left, bottom_right, imagesize): """ All coordinate tuples are in (x, y) i.e. (lon, lat) convention. pointpx (x, y): pixel coordinates counted from top left corner. top_right, top_left, bottom_left, bottom_right: (lon, lat) pairs imagesize: (width, height) tuple """ # first wrangle inputs image_width, image_height = imagesize px, py = pointpx tr, tl, bl, br = top_right, top_left, bottom_left, bottom_right # now start converting image_width_in_lon = (tr[0] - tl[0] + br[0] - bl[0])/2 image_height_in_lat = (tl[1] - bl[1] + tr[1] - br[1])/2 top_left_lon, top_left_lat = tl # 2. now convert (px, py) -> (dlon, dlat) dlon = px*image_width_in_lon/image_width dlat = py*image_height_in_lat/image_height # compute the angle via simple trig. angle_est1 = _angle(tl[0], tl[1], tr[0], tr[1]) angle_est2 = _angle(bl[0], bl[1], br[0], br[1]) angle = (angle_est1+angle_est2)/2 print(f"angle: {angle}") rot_matrix = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]) # apply reverse rotation: x2, y2 (unit: meter) x2, y2 = np.dot(rot_matrix, np.array([dlon, dlat])) # convert x2, y2 to lon, lat actual_lon = top_left_lon + x2 actual_lat = top_left_lat - y2 return actual_lon, actual_lat class TestTransformLukas(unittest.TestCase): def test_unrotated_picture(self): width = 10 height = 60 lon_min = 20 lon_max = 30 lat_min = 10 lat_max = 70 top_left = np.array([lon_min, lat_max]) top_right = np.array([lon_max, lat_max]) bottom_left = np.array([lon_min, lat_min]) bottom_right = np.array([lon_max, lat_min]) # check that top left is sane res = transform.transform(np.array([0, 0]), top_right, top_left, bottom_left, bottom_right, np.array([width, height])) self.assertTrue(np.allclose(res, top_left)) # check that top right is sane res = transform.transform(np.array([width,0]), top_right, top_left, bottom_left, bottom_right, np.array([width, height])) self.assertTrue(np.allclose(res, top_right)) # check that bottom left is sane res = transform.transform(np.array([0,height]), top_right, top_left, bottom_left, bottom_right, np.array([width, height])) self.assertTrue(np.allclose(res, bottom_left)) # check that bottom right is sane res = transform.transform(np.array([width,height]), top_right, top_left, bottom_left, bottom_right, np.array([width, height])) self.assertTrue(np.allclose(res, bottom_right)) class TestBasicTransform(unittest.TestCase): def test_unrotated_picture(self): width = 10 height = 60 lon_min = 20 lon_max = 30 lat_min = 10 lat_max = 70 top_left = np.array([lon_min, lat_max]) top_right = np.array([lon_max, lat_max]) bottom_left = np.array([lon_min, lat_min]) bottom_right = np.array([lon_max, lat_min]) # check that top left is sane res = simple_angle_converter(np.array([0, 0]), top_right, top_left, bottom_left, bottom_right, np.array([width, height])) self.assertTrue(np.allclose(res, top_left)) # check that top right is sane res = simple_angle_converter(np.array([width,0]), top_right, top_left, bottom_left, bottom_right, np.array([width, height])) self.assertTrue(np.allclose(res, top_right)) # check that bottom left is sane res = simple_angle_converter(np.array([0,height]), top_right, top_left, bottom_left, bottom_right, np.array([width, height])) self.assertTrue(np.allclose(res, bottom_left)) # check that bottom right is sane res = simple_angle_converter(np.array([width,height]), top_right, top_left, bottom_left, bottom_right, np.array([width, height])) self.assertTrue(np.allclose(res, bottom_right)) def test_fourtyFive_deg(self): width = 100 height = 100 top_left = np.array([50,50]) bottom_left = np.array([40,40]) bottom_right = np.array([50,30]) top_right = np.array([60,40]) res = simple_angle_converter((50,50),top_right,top_left, bottom_left, bottom_right, (width,height)) self.assertTrue(np.allclose(res, (40,40))) class TestTransformVectorTransform(unittest.TestCase): def test_unrotated_picture(self): width = 10 height = 60 lon_min = 20 lon_max = 30 lat_min = 10 lat_max = 70 top_left = np.array([lon_min, lat_max]) top_right = np.array([lon_max, lat_max]) bottom_left = np.array([lon_min, lat_min]) bottom_right = np.array([lon_max, lat_min]) # check that top left is sane res = rc.vector_converter(np.array([0, 0]), top_right, top_left, bottom_left, bottom_right, np.array([width, height])) self.assertTrue(np.allclose(res, top_left)) # check that top right is sane res = rc.vector_converter(np.array([width,0]), top_right, top_left, bottom_left, bottom_right, np.array([width, height])) self.assertTrue(np.allclose(res, top_right)) # check that bottom left is sane res = rc.vector_converter(np.array([0,height]), top_right, top_left, bottom_left, bottom_right, np.array([width, height])) self.assertTrue(
np.allclose(res, bottom_left)
numpy.allclose
# Copyright 2019 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pytest import matplotlib.pyplot as plt from cirq import GridQubit from cirq import circuits, ops, sim from cirq.experiments import (rabi_oscillations, single_qubit_randomized_benchmarking, two_qubit_randomized_benchmarking, single_qubit_state_tomography, two_qubit_state_tomography) def test_rabi_oscillations(): # Check that the excited state population matches the ideal case within a # small statistical error. simulator = sim.Simulator() qubit = GridQubit(0, 0) results = rabi_oscillations(simulator, qubit, np.pi, repetitions=1000) data = np.asarray(results.data) angles = data[:, 0] actual_pops = data[:, 1] target_pops = 0.5 - 0.5 * np.cos(angles) rms_err = np.sqrt(np.mean((target_pops - actual_pops) ** 2)) assert rms_err < 0.1 def test_single_qubit_randomized_benchmarking(): # Check that the ground state population at the end of the Clifford # sequences is always unity. simulator = sim.Simulator() qubit = GridQubit(0, 0) num_cfds = range(5, 20, 5) results = single_qubit_randomized_benchmarking(simulator, qubit, num_clifford_range=num_cfds, repetitions=100) g_pops =
np.asarray(results.data)
numpy.asarray
import unittest import numpy as np import tensorflow as tf import tensorflow_probability import mvg_distributions.covariance_representations as cov_rep from mvg_distributions.sqrt_gamma_gaussian import SqrtGammaGaussian, SparseSqrtGammaGaussian from mvg_distributions.test.test_losses_base import LossesTestBase tfd = tensorflow_probability.distributions tfb = tensorflow_probability.bijectors class TestSqrtGammaGaussian(LossesTestBase): def setUp(self): super().setUp() self.x, self.x_cov_obj, self.sqrt_w_tfd, self.sqrt_gamma_gaussian = self._create_single_sqrt_wishart_pair() def _create_single_sqrt_wishart_pair(self, add_sparse_gamma=False): # Create a random scale matrix for the Wishart distribution diag_precision_prior = np.abs(
np.random.normal(size=(self.batch_size, self.features_size))
numpy.random.normal
from typing import Any, Dict, Union import numpy as np from numpy.core.defchararray import center import panda_gym from panda_gym.envs.core import Task from panda_gym.utils import distance class ReachBimanual(Task): def __init__( self, sim, get_ee_position0, get_ee_position1, reward_type="sparse", distance_threshold=0.05, goal_range=0.35, has_object = False, absolute_pos = False, obj_not_in_hand_rate = 1, ) -> None: super().__init__(sim) self.has_object = has_object self.absolute_pos = absolute_pos self.object_size = 0.04 self.reward_type = reward_type self.distance_threshold = distance_threshold self.obj_not_in_hand_rate = obj_not_in_hand_rate self.get_ee_position0 = get_ee_position0 self.get_ee_position1 = get_ee_position1 self.goal_range_low = np.array([goal_range / 4, goal_range / 4, -goal_range/1.5]) self.goal_range_high = np.array([goal_range, goal_range, goal_range/1.5]) obj_xyz_range=[0.3, 0.3, 0] self.obj_range_low = np.array([0.1, -obj_xyz_range[1] / 2, self.object_size/2]) self.obj_range_high = np.array(obj_xyz_range) + self.obj_range_low with self.sim.no_rendering(): self._create_scene() self.sim.place_visualizer(target_position=np.zeros(3), distance=0.9, yaw=45, pitch=-30) self._max_episode_steps = 50 def _create_scene(self) -> None: self.sim.create_plane(z_offset=-0.4) self.sim.create_table(length=1., width=0.7, height=0.4, x_offset=-0.575) self.sim.create_table(length=1., width=0.7, height=0.4, x_offset=0.575) self.sim.create_sphere( body_name="target0", radius=0.02, mass=0.0, ghost=True, position=np.zeros(3), rgba_color=np.array([0.1, 0.9, 0.1, 0.3]), ) self.sim.create_sphere( body_name="target1", radius=0.02, mass=0.0, ghost=True, position=np.zeros(3), rgba_color=np.array([0.9, 0.1, 0.1, 0.3]), ) self.sim.create_sphere( body_name="target2", radius=0.03, mass=0.0, ghost=True, position=np.zeros(3), rgba_color=np.array([0.1, 0.1, 0.9, 0.5]), ) if self.has_object: self.sim.create_box( body_name="object0", half_extents=np.ones(3) * self.object_size / 2, mass=0.5, position=np.array([0.0, 0.0, self.object_size / 2]), rgba_color=np.array([0.1, 0.9, 0.1, 1.0]), ) self.sim.create_box( body_name="object1", half_extents=np.ones(3) * self.object_size / 2, mass=0.5, position=np.array([0.0, 0.0, self.object_size / 2]), rgba_color=np.array([0.9, 0.1, 0.1, 1.0]), ) # LOAD SHAPE TAMP # self.sim.physics_client.setAdditionalSearchPath(panda_gym.assets.get_data_path()) # self.sim.loadURDF( # body_name='object01', # fileName='plate.urdf', # basePosition=[-0.2,0,0.02], # baseOrientation = [0,0,0,1], # useFixedBase=False, # ) # self.sim.loadURDF( # body_name='object11', # fileName='cup.urdf', # basePosition=[0.2,0,0.02], # baseOrientation = [0,0,0,1], # useFixedBase=False, # ) def get_obs(self) -> np.ndarray: if self.has_object: # position, rotation of the object object1_position = np.array(self.sim.get_base_position("object1")) object1_rotation = np.array(self.sim.get_base_rotation("object1")) object1_velocity = np.array(self.sim.get_base_velocity("object1")) object1_angular_velocity = np.array(self.sim.get_base_angular_velocity("object1")) object0_position = np.array(self.sim.get_base_position("object0")) object0_rotation = np.array(self.sim.get_base_rotation("object0")) object0_velocity = np.array(self.sim.get_base_velocity("object0")) object0_angular_velocity = np.array(self.sim.get_base_angular_velocity("object0")) self.assemble_done = self.assemble_done or \ (np.linalg.norm(object1_position-object0_position-self.goal[3:]) < self.distance_threshold) if self.assemble_done: object1_position = object0_position + self.goal[3:] observation = np.concatenate( [ object0_position, object0_rotation, object0_velocity, object0_angular_velocity, object1_position, object1_rotation, object1_velocity, object1_angular_velocity, ] ) return observation else: return np.array([]) # no tasak-specific observation def get_achieved_goal(self) -> np.ndarray: if self.has_object: object0_position = self.sim.get_base_position("object0") if self.assemble_done: object1_position = object0_position + self.goal[3:] else: object1_position = self.sim.get_base_position("object1") obj_center = (object1_position + object0_position)/2 if self.absolute_pos: self.sim.set_base_pose("target0", -self.goal[3:]/2 + obj_center, np.array([0.0, 0.0, 0.0, 1.0])) self.sim.set_base_pose("target1", self.goal[3:]/2 + obj_center, np.array([0.0, 0.0, 0.0, 1.0])) ag = np.append(object0_position, object1_position-object0_position) else: self.sim.set_base_pose("target0", -self.goal/2 + obj_center, np.array([0.0, 0.0, 0.0, 1.0])) self.sim.set_base_pose("target1", self.goal/2 + obj_center, np.array([0.0, 0.0, 0.0, 1.0])) ag = (object1_position - object0_position) # CHANGE TAMP # for i in range(2): # pos = self.sim.get_base_positigiton("object"+str(i)) # ori = np.array([0, self.sim.get_base_rotation("object"+str(i))[1], 0]) # self.sim.set_base_pose("object"+str(i), pos, ori) # self.sim.set_base_pose("object"+str(i)+"1",pos,np.array([0.0, 0.0, 0.0, 1.0])) else: ee_position0 = np.array(self.get_ee_position0()) ee_position1 = np.array(self.get_ee_position1()) ee_center = (ee_position0 + ee_position1)/2 self.sim.set_base_pose("target0", -self.goal/2 + ee_center, np.array([0.0, 0.0, 0.0, 1.0])) self.sim.set_base_pose("target1", self.goal/2 + ee_center, np.array([0.0, 0.0, 0.0, 1.0])) ag = (ee_position1 - ee_position0) return ag def reset(self) -> None: self.goal = self._sample_goal() object0_position, object1_position = self._sample_objects() if self.has_object: self.sim.set_base_pose("object0", object0_position, np.array([0.0, 0.0, 0.0, 1.0])) self.sim.set_base_pose("object1", object1_position, np.array([0.0, 0.0, 0.0, 1.0])) if self.absolute_pos: self.sim.set_base_pose("target2", self.goal[:3], np.array([0.0, 0.0, 0.0, 1.0])) self.assemble_done = False def _sample_goal(self) -> np.ndarray: """Randomize goal.""" if self.absolute_pos: goal_abs = self.np_random.uniform(self.obj_range_low, self.obj_range_high) goal_abs[0] = -goal_abs[0] goal_abs[2] += self.np_random.uniform(0, 0.27) goal_relative = self.np_random.uniform(self.goal_range_low, self.goal_range_high) # goal_relative = [0.12, 0, 0.08] # TAMP # goal_abs = [-0.4, 0.18, 0.18] # TAMP goal = np.append(goal_abs, goal_relative) else: goal = self.np_random.uniform(self.goal_range_low, self.goal_range_high) return goal def _sample_objects(self): # while True: # make sure that cubes are distant enough if self.np_random.uniform()<self.obj_not_in_hand_rate: object0_position = self.np_random.uniform(self.obj_range_low, self.obj_range_high) object0_position[0] =- object0_position[0] object1_position = self.np_random.uniform(self.obj_range_low, self.obj_range_high) else: object0_position = np.array(self.get_ee_position0()) object1_position = np.array(self.get_ee_position1()) return object0_position, object1_position def is_success(self, achieved_goal: np.ndarray, desired_goal: np.ndarray) -> Union[np.ndarray, float]: if self.absolute_pos: return np.array(\ distance(achieved_goal[..., :3], desired_goal[..., :3]) < self.distance_threshold and \ distance(achieved_goal[..., 3:], desired_goal[..., 3:]) < self.distance_threshold , dtype=np.float64) else: d = distance(achieved_goal, desired_goal) return np.array(d < self.distance_threshold, dtype=np.float64) def compute_reward(self, achieved_goal, desired_goal, info: Dict[str, Any]) -> Union[np.ndarray, float]: if self.absolute_pos: # if info['assemble_done']: d = distance(achieved_goal[..., :3], desired_goal[..., :3]) rew = -np.array(d > self.distance_threshold, dtype=np.float64).flatten() # else: d = distance(achieved_goal[...,3:], desired_goal[..., 3:]) rew -=
np.array(d > self.distance_threshold, dtype=np.float64)
numpy.array
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. import math import random import numpy as np import matplotlib.pyplot as plt from scipy.constants import N_A from numba import jit import copy __author__ = "<NAME>, <NAME>, <NAME>" __email__ = "<EMAIL>" __copyright__ = "Copyright 2020, The Materials Project" __version__ = "0.1" """ Kinetic Monte Carlo (kMC) simulation for a reaction network, assuming spatial homogeneity. Simulation can be performed with and without ReactionNetwork objects. The version without ReactionNetwork objects is computationally cheaper. The algorithm is described by Gillespie (1976). """ def initialize_simulation(reaction_network, initial_cond, volume=10 ** -24): """ Initial loop through reactions to create lists, mappings, and initial states needed for simulation without reaction network objects. Args: reaction_network: Fully generated ReactionNetwork initial_cond: dict mapping mol_index to initial concentration [M]. mol_index is entry position in reaction_network.entries_list volume: float of system volume :return: initial_state: array of initial molecule amounts, indexed corresponding to reaction_network.entries_list initial_state_dict: dict mapping molecule index to initial molecule amounts species_rxn_mapping: 2d array; each row i contains reactions which molecule_i takes part in molid_index_mapping: mapping between species entry id and its molecule index reactants_array: (n_rxns x 2) array, each row containing reactant mol_index of forward reaction products_array: (n_rxns x 2) array, each row containing product mol_index of forward reaction coord_array: (2*n_rxns x 1) array, with coordination number of each for and rev rxn: [c1_f, c1_r, c2_f, c2_r...] rate_constants: (2*n_rxns x 1) array, with rate constant of each for and rev rxn: [k1_f, k1_r, k2_f, k2_r ...] propensities: (2*n_rxns x 1) array of reaction propensities, defined as coord_num*rate_constant """ num_rxns = len(reaction_network.reactions) num_species = len(reaction_network.entries_list) molid_index_mapping = dict() initial_state = [0 for i in range(num_species)] initial_state_dict = dict() for ind, mol in enumerate(reaction_network.entries_list): molid_index_mapping[mol.entry_id] = ind this_c = initial_cond.get(mol.entry_id, 0) this_mol_amt = int(volume * N_A * 1000 * this_c) initial_state[ind] = this_mol_amt if mol.entry_id in initial_cond: initial_state_dict[ind] = this_mol_amt # Initially compile each species' reactions in lists, later convert to a 2d array species_rxn_mapping_list = [[] for j in range(num_species)] reactant_array = -1 * np.ones((num_rxns, 2), dtype=int) product_array = -1 * np.ones((num_rxns, 2), dtype=int) coord_array = np.zeros(2 * num_rxns) rate_constants = np.zeros(2 * num_rxns) for id, reaction in enumerate(reaction_network.reactions): # Keep track of reactant amounts, for later calculating coordination number num_reactants_for = list() num_reactants_rev = list() rate_constants[2 * id] = reaction.k_A rate_constants[2 * id + 1] = reaction.k_B for idx, react in enumerate(reaction.reactants): # for each reactant, need to find the corresponding mol_id with the index mol_ind = molid_index_mapping[react.entry_id] reactant_array[id, idx] = mol_ind species_rxn_mapping_list[mol_ind].append(2 * id) num_reactants_for.append(initial_state[mol_ind]) for idx, prod in enumerate(reaction.products): mol_ind = molid_index_mapping[prod.entry_id] product_array[id, idx] = mol_ind species_rxn_mapping_list[mol_ind].append(2 * id + 1) num_reactants_rev.append(initial_state[mol_ind]) if len(reaction.reactants) == 1: coord_array[2 * id] = num_reactants_for[0] elif (len(reaction.reactants) == 2) and ( reaction.reactants[0] == reaction.reactants[1] ): coord_array[2 * id] = num_reactants_for[0] * (num_reactants_for[0] - 1) elif (len(reaction.reactants) == 2) and ( reaction.reactants[0] != reaction.reactants[1] ): coord_array[2 * id] = num_reactants_for[0] * num_reactants_for[1] else: raise RuntimeError( "Only single and bimolecular reactions supported by this simulation" ) # For reverse reaction if len(reaction.products) == 1: coord_array[2 * id + 1] = num_reactants_rev[0] elif (len(reaction.products) == 2) and ( reaction.products[0] == reaction.products[1] ): coord_array[2 * id + 1] = num_reactants_rev[0] * (num_reactants_rev[0] - 1) elif (len(reaction.products) == 2) and ( reaction.products[0] != reaction.products[1] ): coord_array[2 * id + 1] = num_reactants_rev[0] * num_reactants_rev[1] else: raise RuntimeError( "Only single and bimolecular reactions supported by this simulation" ) rxn_mapping_lengths = [len(rxn_list) for rxn_list in species_rxn_mapping_list] max_mapping_length = max(rxn_mapping_lengths) species_rxn_mapping = -1 * np.ones((num_species, max_mapping_length), dtype=int) for index, rxn_list in enumerate(species_rxn_mapping_list): this_map_length = rxn_mapping_lengths[index] if this_map_length == max_mapping_length: species_rxn_mapping[index, :] = rxn_list else: species_rxn_mapping[ index, : this_map_length - max_mapping_length ] = rxn_list propensities = np.multiply(coord_array, rate_constants) return [ np.array(initial_state, dtype=int), initial_state_dict, species_rxn_mapping, reactant_array, product_array, coord_array, rate_constants, propensities, molid_index_mapping, ] @jit(nopython=True, parallel=True) def kmc_simulate( time_steps, coord_array, rate_constants, propensity_array, species_rxn_mapping, reactants, products, state, ): """ KMC Simulation of reaction network and specified initial conditions. Args are all Numpy arrays, to allow computational speed up with Numba. Args: time_steps: int number of time steps desired to run coord_array: array containing coordination numbers of for and rev rxns. rate_constants: array containing rate constants of for and rev rxns propensity_array: array containing propensities of for and rev rxns species_rxn_mapping: 2d array; each row i contains reactions which molecule_i takes part in reactants: (n_rxns x 2) array, each row containing reactant mol_index of forward reaction products: (n_rxns x 2) array, each row containing product mol_index of forward reaction state: array of initial molecule amounts, indexed corresponding to reaction_network.entries_list :return: A (2 x time_steps) Numpy array. First row contains the indeces of reactions that occurred. Second row are the time steps generated at each iteration. """ total_propensity = np.sum(propensity_array) reaction_history = [0 for step in range(time_steps)] times = [0.0 for step in range(time_steps)] relevant_ind = np.where(propensity_array > 0)[ 0 ] # Take advantage of sparsity - many propensities will be 0. for step_counter in range(time_steps): r1 = random.random() r2 = random.random() tau = -np.log(r1) / total_propensity random_propensity = r2 * total_propensity abrgd_reaction_choice_ind = np.where( np.cumsum(propensity_array[relevant_ind]) >= random_propensity )[0][0] reaction_choice_ind = relevant_ind[abrgd_reaction_choice_ind] converted_rxn_ind = math.floor(reaction_choice_ind / 2) if reaction_choice_ind % 2: reverse = True else: reverse = False state = update_state(reactants, products, state, converted_rxn_ind, reverse) # Log the reactions that need to be altered after reaction is performed, for the coordination array reactions_to_change = list() for reactant_id in reactants[converted_rxn_ind, :]: if reactant_id == -1: continue else: reactions_to_change.extend(list(species_rxn_mapping[reactant_id, :])) for product_id in products[converted_rxn_ind, :]: if product_id == -1: continue else: reactions_to_change.extend(list(species_rxn_mapping[product_id, :])) rxns_change = set(reactions_to_change) for rxn_ind in rxns_change: if rxn_ind == -1: continue elif rxn_ind % 2: this_reverse = True else: this_reverse = False this_h = get_coordination( reactants, products, state, math.floor(rxn_ind / 2), this_reverse ) coord_array[rxn_ind] = this_h propensity_array = np.multiply(rate_constants, coord_array) relevant_ind = np.where(propensity_array > 0)[0] total_propensity = np.sum(propensity_array[relevant_ind]) reaction_history[step_counter] = int(reaction_choice_ind) times[step_counter] = tau return np.vstack((np.array(reaction_history), np.array(times))) @jit(nopython=True) def update_state(reactants, products, state, rxn_ind, reverse): """ Updating the system state based on chosen reaction, during kMC simulation. Args: reactants: (n_rxns x 2) array, each row containing reactant mol_index of forward reaction products: (n_rxns x 2) array, each row containing product mol_index of forward reaction state: array of initial molecule amounts, indexed corresponding to reaction_network.entries_list rxn_ind: int of reaction index, corresponding to position in reaction_network.reactions list reverse: bool of whether this is the reverse reaction or not :return: updated state array, after performing the specified reaction """ if rxn_ind == -1: raise RuntimeError("Incorrect reaction index when updating state") if reverse: for reactant_id in products[rxn_ind, :]: if reactant_id == -1: continue else: state[reactant_id] -= 1 if state[reactant_id] < 0: raise ValueError("State invalid! Negative specie encountered") for product_id in reactants[rxn_ind, :]: if product_id == -1: continue else: state[product_id] += 1 else: for reactant_id in reactants[rxn_ind, :]: if reactant_id == -1: continue else: state[reactant_id] -= 1 if state[reactant_id] < 0: raise ValueError("State invalid! Negative specie encountered") for product_id in products[rxn_ind, :]: if product_id == -1: continue else: state[product_id] += 1 return state @jit(nopython=True) def get_coordination(reactants, products, state, rxn_id, reverse): """ Calculate the coordination number of a reaction, for reactions involving two reactions of less. They are defined as follows: A -> B; coord = n(A) A + A --> B; coord = n(A) * (n(A) - 1) A + B --> C; coord = n(A) * n(B) Args: reactants: (n_rxns x 2) array, each row containing reactant mol_index of forward reaction products: (n_rxns x 2) array, each row containing product mol_index of forward reaction state: array of initial molecule amounts, indexed corresponding to reaction_network.entries_list rxn_ind: int of reaction index, corresponding to position in reaction_network.reactions list reverse: bool of whether this is the reverse reaction or not :return: float of reaction coordination number """ if reverse: reactant_array = products[rxn_id, :] num_reactants = len(np.where(reactant_array != -1)[0]) else: reactant_array = reactants[rxn_id, :] num_reactants = len(np.where(reactant_array != -1)[0]) num_mols_list = list() for reactant_id in reactant_array: num_mols_list.append(state[reactant_id]) if num_reactants == 1: h_prop = num_mols_list[0] elif (num_reactants == 2) and (reactant_array[0] == reactant_array[1]): h_prop = num_mols_list[0] * (num_mols_list[0] - 1) / 2 elif (num_reactants == 2) and (reactant_array[0] != reactant_array[1]): h_prop = num_mols_list[0] * num_mols_list[1] else: raise RuntimeError( "Only single and bimolecular reactions supported by this simulation" ) return h_prop class KmcDataAnalyzer: """ Functions to analyze (function-based) KMC outputs from many simulation runs. Ideally, the reaction history and time history data are list of arrays. Args: reaction_network: fully generated ReactionNetwork, used for kMC simulation molid_ind_mapping: dict mapping each entry's id to its index; of form {entry_id: mol_index, ... } species_rxn_mapping: 2d array; each row i contains reactions which molecule_i takes part in initial_state_dict: dict mapping mol_id to its initial amount {mol1_id: amt_1, mol2_id: amt2 ... } products: (n_rxns x 2) array, each row containing product mol_index of forward reaction reactants: (n_rxns x 2) array, each row containing reactant mol_index of forward reaction reaction_history: list of arrays of reaction histories of each simulation. time_history: list of arrays of time histories of each simulation. """ def __init__( self, reaction_network, molid_ind_mapping, species_rxn_mapping, initial_state_dict, products, reactants, reaction_history, time_history, ): self.reaction_network = reaction_network self.molid_ind_mapping = molid_ind_mapping self.species_rxn_mapping = species_rxn_mapping self.initial_state_dict = initial_state_dict self.products = products self.reactants = reactants self.reaction_history = reaction_history self.time_history = time_history self.num_sims = len(self.reaction_history) if self.num_sims != len(self.time_history): raise RuntimeError( "Number of datasets for rxn history and time step history should be same!" ) self.molind_id_mapping = [ mol.entry_id for mol in self.reaction_network.entries_list ] def generate_time_dep_profiles(self): """ Generate plottable time-dependent profiles of species and rxns from raw KMC output, obtain final states. :return dict containing species profiles, reaction profiles, and final states from each simulation. {species_profiles: [ {mol_ind1: [(t0, n(t0)), (t1, n(t1)...], mol_ind2: [...] , ... }, {...}, ... ] reaction_profiles: [ {rxn_ind1: [t0, t1, ...], rxn_ind2: ..., ...}, {...}, ...] final_states: [ {mol_ind1: n1, mol_ind2: ..., ...}, {...}, ...] } """ species_profiles = list() reaction_profiles = list() final_states = list() for n_sim in range(self.num_sims): sim_time_history = self.time_history[n_sim] sim_rxn_history = self.reaction_history[n_sim] sim_species_profile = dict() sim_rxn_profile = dict() cumulative_time = list(np.cumsum(np.array(sim_time_history))) state = copy.deepcopy(self.initial_state_dict) for mol_ind in state: sim_species_profile[mol_ind] = [(0.0, self.initial_state_dict[mol_ind])] total_iterations = len(sim_rxn_history) for iter in range(total_iterations): rxn_ind = sim_rxn_history[iter] t = cumulative_time[iter] if rxn_ind not in sim_rxn_profile: sim_rxn_profile[rxn_ind] = [t] else: sim_rxn_profile[rxn_ind].append(t) converted_ind = math.floor(rxn_ind / 2) if rxn_ind % 2: reacts = self.products[converted_ind, :] prods = self.reactants[converted_ind, :] else: reacts = self.reactants[converted_ind, :] prods = self.products[converted_ind, :] for r_ind in reacts: if r_ind == -1: continue else: try: state[r_ind] -= 1 if state[r_ind] < 0: raise ValueError( "State invalid: negative specie: {}".format(r_ind) ) sim_species_profile[r_ind].append((t, state[r_ind])) except KeyError: raise ValueError( "Reactant specie {} given is not in state!".format( r_ind ) ) for p_ind in prods: if p_ind == -1: continue else: if (p_ind in state) and (p_ind in sim_species_profile): state[p_ind] += 1 sim_species_profile[p_ind].append((t, state[p_ind])) else: state[p_ind] = 1 sim_species_profile[p_ind] = [(0.0, 0), (t, state[p_ind])] # for plotting convenience, add data point at final time for mol_ind in sim_species_profile: sim_species_profile[mol_ind].append( (cumulative_time[-1], state[mol_ind]) ) species_profiles.append(sim_species_profile) reaction_profiles.append(sim_rxn_profile) final_states.append(state) return { "species_profiles": species_profiles, "reaction_profiles": reaction_profiles, "final_states": final_states, } def final_state_analysis(self, final_states): """ Gather statistical analysis of the final states of simulation. Args: final_states: list of dicts of final states, as generated in generate_time_dep_profiles() :return: list of tuples containing statistical data for each species, sorted from highest to low avg occurrence """ state_arrays = ( dict() ) # For each molecule, compile an array of its final amounts for iter, final_state in enumerate(final_states): for mol_ind, amt in final_state.items(): # Store the amount, and convert key from mol_ind to entry_id if self.molind_id_mapping[mol_ind] not in state_arrays: state_arrays[self.molind_id_mapping[mol_ind]] = np.zeros( self.num_sims ) state_arrays[self.molind_id_mapping[mol_ind]][iter] = amt analyzed_states = dict() # will contain statistical results of final states for mol_entry, state_array in state_arrays.items(): analyzed_states[mol_entry] = (np.mean(state_array), np.std(state_array)) # Sort from highest avg final amount to lowest sorted_analyzed_states = sorted( [(entry_id, data_tup) for entry_id, data_tup in analyzed_states.items()], key=lambda x: x[1][0], reverse=True, ) return sorted_analyzed_states def plot_species_profiles( self, species_profiles, final_states, num_label=12, num_plots=None, filename=None, file_dir=None, ): """ Sorting and plotting species profiles for a specified number of simulations. The profiles might be very similar, so may not need to plot all of the runs for good understanding of results. Args: species_profiles: list of dicts of species as function of time, for each simulation final_states: list of dicts of final states of each simulation num_label: integer number of species in the legend filename (str) file_dir (str) """ if num_plots is None: num_plots = self.num_sims elif num_plots > self.num_sims: num_plots = self.num_sims for n_sim in range(num_plots): # Sorting and plotting: fig, ax = plt.subplots() sorted_state = sorted( [(k, v) for k, v in final_states[n_sim].items()], key=lambda x: x[1], reverse=True, ) sorted_inds = [mol_tuple[0] for mol_tuple in sorted_state] sorted_ind_id_mapping = dict() iter_counter = 0 for id, ind in self.molid_ind_mapping.items(): if ind in sorted_inds[:num_label]: sorted_ind_id_mapping[ind] = id iter_counter += 1 if iter_counter == num_label: break colors = plt.cm.get_cmap("hsv", num_label) this_id = 0 t_end = sum(self.time_history[n_sim]) for mol_ind in species_profiles[n_sim]: # ts = np.append(np.array([e[0] for e in species_profiles[n_sim][mol_ind]]), t_end) ts = np.array([e[0] for e in species_profiles[n_sim][mol_ind]]) nums = np.array([e[1] for e in species_profiles[n_sim][mol_ind]]) if mol_ind in sorted_inds[:num_label]: mol_id = sorted_ind_id_mapping[mol_ind] for entry in self.reaction_network.entries_list: if mol_id == entry.entry_id: this_composition = ( entry.molecule.composition.alphabetical_formula ) this_charge = entry.molecule.charge this_label = this_composition + " " + str(this_charge) this_color = colors(this_id) this_id += 1 break ax.plot(ts, nums, label=this_label, color=this_color) else: ax.plot(ts, nums) title = "KMC simulation, total time {}".format(t_end) ax.set(title=title, xlabel="Time (s)", ylabel="# Molecules") ax.legend( loc="upper right", bbox_to_anchor=(1, 1), ncol=2, fontsize="small" ) sim_filename = filename + "_run_" + str(n_sim + 1) if file_dir is None: plt.show() else: plt.savefig(file_dir + "/" + sim_filename) def analyze_intermediates(self, species_profiles, cutoff=0.9): """ Identify intermediates from species vs time profiles. Species are intermediates if consumed nearly as much as they are created. Args: species_profile: Dict of list of tuples, as generated in generate_time_dep_profiles() cutoff: (float) fraction to adjust definition of intermediate :return: Analyzed data in a dict, of the form: {mol1: {'freqency': (float), 'lifetime': (avg, std), 't_max': (avg, std), 'amt_produced': (avg, std)}, mol2: {...}, ... } """ intermediates = dict() for n_sim in range(self.num_sims): for mol_ind, prof in species_profiles[n_sim].items(): history = np.array([t[1] for t in prof]) diff_history = np.diff(history) max_amt = max(history) amt_produced = np.sum(diff_history == 1) amt_consumed = np.sum(diff_history == -1) # Identify the intermediate, accounting for fluctuations if (amt_produced >= 3) and (amt_consumed > amt_produced * cutoff): if mol_ind not in intermediates: intermediates[mol_ind] = dict() intermediates[mol_ind]["lifetime"] = list() intermediates[mol_ind]["amt_produced"] = list() intermediates[mol_ind]["t_max"] = list() intermediates[mol_ind]["amt_consumed"] = list() # Intermediate lifetime is approximately the time from its max amount to when nearly all consumed max_ind = np.where(history == max_amt)[0][0] t_max = prof[max_ind][0] for state in prof[max_ind + 1 :]: if state[1] < (1 - cutoff) * amt_produced + history[0]: intermediates[mol_ind]["lifetime"].append(state[0] - t_max) intermediates[mol_ind]["t_max"].append(t_max) intermediates[mol_ind]["amt_produced"].append(amt_produced) intermediates[mol_ind]["amt_consumed"].append(amt_consumed) break intermediates_analysis = dict() for mol_ind in intermediates: entry_id = self.molind_id_mapping[mol_ind] intermediates_analysis[entry_id] = dict() # convert keys to entry id if len(intermediates[mol_ind]["lifetime"]) != len( intermediates[mol_ind]["t_max"] ): raise RuntimeError("Intermediates data should be of the same length") intermediates_analysis[entry_id]["frequency"] = ( len(intermediates[mol_ind]["lifetime"]) / self.num_sims ) lifetime_array = np.array(intermediates[mol_ind]["lifetime"]) intermediates_analysis[entry_id]["lifetime"] = ( np.mean(lifetime_array), np.std(lifetime_array), ) t_max_array = np.array(intermediates[mol_ind]["t_max"]) intermediates_analysis[entry_id]["t_max"] = ( np.mean(t_max_array), np.std(t_max_array), ) amt_produced_array = np.array(intermediates[mol_ind]["amt_produced"]) intermediates_analysis[entry_id]["amt_produced"] = ( np.mean(amt_produced_array), np.std(amt_produced_array), ) amt_consumed_array = np.array(intermediates[mol_ind]["amt_consumed"]) intermediates_analysis[entry_id]["amt_consumed"] = ( np.mean(amt_consumed_array), np.std(amt_produced_array), ) # Sort by highest average amount produced sorted_intermediates_analysis = sorted( [ (entry_id, mol_data) for entry_id, mol_data in intermediates_analysis.items() ], key=lambda x: x[1]["amt_produced"][0], reverse=True, ) return sorted_intermediates_analysis def correlate_reactions(self, reaction_inds): """ Correlate two reactions, by finding the average time and steps elapsed for rxn2 to fire after rxn1, and vice-versa. Args: reaction_inds: list, array, or tuple of two reaction indexes :return: dict containing analysis of how reactions are correlated {rxn1: {'time': (float), 'steps': (float), 'occurrences': float}, rxn2: {...} } """ correlation_data = dict() correlation_analysis = dict() for rxn_ind in reaction_inds: correlation_data[rxn_ind] = dict() correlation_data[rxn_ind]["time"] = list() correlation_data[rxn_ind]["steps"] = list() correlation_data[rxn_ind]["occurrences"] = list() correlation_analysis[rxn_ind] = dict() for n_sim in range(self.num_sims): cum_time = np.cumsum(self.time_history[n_sim]) rxn_locations = dict() # Find the step numbers when reactions fire in the simulation for rxn_ind in reaction_inds: rxn_locations[rxn_ind] = list( np.where(self.reaction_history[n_sim] == rxn_ind)[0] ) rxn_locations[rxn_ind].append(len(self.reaction_history[n_sim])) # Correlate between each reaction for (rxn_ind, location_list) in rxn_locations.items(): time_elapse = list() step_elapse = list() occurrences = 0 for (rxn_ind_j, location_list_j) in rxn_locations.items(): if rxn_ind == rxn_ind_j: continue for i in range(1, len(location_list)): for loc_j in location_list_j: # Find location where reaction j happens after reaction i, before reaction i fires again if (loc_j > location_list[i - 1]) and ( loc_j < location_list[i] ): time_elapse.append( cum_time[loc_j] - cum_time[location_list[i - 1]] ) step_elapse.append(loc_j - location_list[i - 1]) occurrences += 1 break if len(time_elapse) == 0: correlation_data[rxn_ind]["occurrences"].append(0) else: correlation_data[rxn_ind]["time"].append( np.mean(np.array(time_elapse)) ) correlation_data[rxn_ind]["steps"].append( np.mean(np.array(step_elapse)) ) correlation_data[rxn_ind]["occurrences"].append(occurrences) for rxn_ind, data_dict in correlation_data.items(): if len(data_dict["time"]) != 0: correlation_analysis[rxn_ind]["time"] = ( np.mean(np.array(data_dict["time"])), np.std(np.array(data_dict["time"])), ) correlation_analysis[rxn_ind]["steps"] = ( np.mean(np.array(data_dict["steps"])), np.std(np.array(data_dict["steps"])), ) correlation_analysis[rxn_ind]["occurrences"] = ( np.mean(np.array(data_dict["occurrences"])), np.std(np.array(data_dict["occurrences"])), ) else: print( "Reaction ", rxn_ind, "does not lead to the other reaction in simulation ", n_sim, ) return correlation_analysis def quantify_specific_reaction(self, reaction_history, reaction_index): """ Quantify a reaction from one simulation reaction history Args: reaction_history: array containing sequence of reactions fired during a simulation. reaction_index: integer of reaction index of interest :return: integer number of times reaction is fired """ if reaction_index not in reaction_history: reaction_count = 0 else: reaction_count = len(reaction_history[reaction_index]) return reaction_count def quantify_rank_reactions(self, reaction_type=None, num_rxns=None): """ Given reaction histories, identify the most commonly occurring reactions, on average. Can rank generally, or by reactions of a certain type. Args: reaction_profiles (list of dicts): reactions fired as a function of time reaction_type (string) num_rxns (int): the amount of reactions interested in collecting data on. If None, record for all. Returns: reaction_data: list of reactions and their avg, std of times fired. Sorted by the average times fired. [(rxn1, (avg, std)), (rxn2, (avg, std)) ... ] """ allowed_rxn_types = [ "One electron reduction", "One electron oxidation", "Intramolecular single bond breakage", "Intramolecular single bond formation", "Coordination bond breaking AM -> A+M", "Coordination bond forming A+M -> AM", "Molecular decomposition breaking one bond A -> B+C", "Molecular formation from one new bond A+B -> C", "Concerted", ] if reaction_type is not None: rxns_of_type = list() if reaction_type not in allowed_rxn_types: raise RuntimeError( "This reaction type does not (yet) exist in our reaction networks." ) for ind, rxn in enumerate(self.reaction_network.reactions): if rxn.reaction_type()["rxn_type_A"] == reaction_type: rxns_of_type.append(2 * ind) elif rxn.reaction_type()["rxn_type_B"] == reaction_type: rxns_of_type.append(2 * ind + 1) reaction_data = dict() # keeping record of each iteration # Loop to count all reactions fired for n_sim in range(self.num_sims): rxns_fired = set(self.reaction_history[n_sim]) if reaction_type is not None: relevant_rxns = [r for r in rxns_fired if r in rxns_of_type] else: relevant_rxns = rxns_fired for rxn_ind in relevant_rxns: if rxn_ind not in reaction_data: reaction_data[rxn_ind] = list() reaction_data[rxn_ind].append( np.sum(self.reaction_history[n_sim] == rxn_ind) ) reaction_analysis = dict() for rxn_ind, counts in reaction_data.items(): reaction_analysis[rxn_ind] = ( np.mean(np.array(counts)), np.std(np.array(counts)), ) # Sort reactions by the average amount fired sorted_reaction_analysis = sorted( [(i, c) for i, c in reaction_analysis.items()], key=lambda x: x[1][0], reverse=True, ) if num_rxns is None: return sorted_reaction_analysis else: return sorted_reaction_analysis[:num_rxns] def frequency_analysis(self, rxn_inds, spec_inds, partitions=100): """ Calculate the frequency of reaction and species formation as a function of time. Simulation data is discretized into time intervals, and probabilities in each set are obtained. Args: rxn_inds: list of indeces of reactions of interest spec_inds: list of molecule indexes of interest partitions: number of intervals in which to discretize time :return: dict of dicts containing the statistics of reaction fired, product formed at each time interval. {reaction_data: {rxn_ind1: [(t0, avg0, std0), (t1, avg1, std1), ...], rxn_ind2: [...], ... rxn_ind_n: [...]} {species_data: {spec1: [(t0, avg0, std0), (t1, avg1, std1), ...], spec2: [...], ... specn: [...]}} """ reaction_frequency_data = dict() reaction_frequency_array = ( dict() ) # Growing arrays of reaction frequencies as fxn of time species_frequency_data = dict() species_frequency_array = dict() new_species_counters = dict() for ind in rxn_inds: reaction_frequency_data[ind] = [0 for j in range(partitions)] for ind in spec_inds: species_frequency_data[ind] = [0 for j in range(partitions)] new_species_counters[ind] = 0 for n_sim in range(self.num_sims): delta_t = np.sum(self.time_history[n_sim]) / partitions ind_0 = 0 t = 0 n = 0 # for tracking which time interval we are in species_counters = copy.deepcopy( new_species_counters ) # for counting species as they appear rxn_freq_data = copy.deepcopy(reaction_frequency_data) spec_freq_data = copy.deepcopy(species_frequency_data) for step_num, tau in enumerate(self.time_history[n_sim]): t += tau this_rxn_ind = int(self.reaction_history[n_sim][step_num]) if this_rxn_ind % 2: # reverse reaction prods = self.reactants[math.floor(this_rxn_ind / 2), :] else: prods = self.products[math.floor(this_rxn_ind / 2), :] for spec_ind in spec_inds: if spec_ind in prods: species_counters[spec_ind] += 1 # When t reaches the next discretized time step, or end of the simulation if (t >= (n + 1) * delta_t) or ( step_num == len(self.reaction_history[n_sim]) - 1 ): n_to_fill = n if t >= (n + 2) * delta_t: n += math.floor(t / delta_t - n) else: n += 1 steps = step_num - ind_0 + 1 for spec_ind in spec_inds: spec_freq_data[spec_ind][n_to_fill] = ( species_counters[spec_ind] / steps ) for rxn_ind in rxn_inds: rxn_freq = ( np.count_nonzero( self.reaction_history[n_sim][ind_0 : step_num + 1] == rxn_ind ) / steps ) # t_mdpt = (self.time_history[n_sim][step_num] + self.time_history[n_sim][ind_0]) / 2 rxn_freq_data[rxn_ind][n_to_fill] = rxn_freq # Reset and update counters species_counters = copy.deepcopy(new_species_counters) ind_0 = step_num + 1 for rxn_ind in rxn_inds: if n_sim == 0: reaction_frequency_array[rxn_ind] = np.array(rxn_freq_data[rxn_ind]) else: reaction_frequency_array[rxn_ind] = np.vstack( (reaction_frequency_array[rxn_ind], rxn_freq_data[rxn_ind]) ) # print('reaction freq array', reaction_frequency_array) for spec_ind in spec_inds: if n_sim == 0: species_frequency_array[spec_ind] = np.array( spec_freq_data[spec_ind] ) else: species_frequency_array[spec_ind] = np.vstack( (species_frequency_array[spec_ind], spec_freq_data[spec_ind]) ) # Statistical analysis statistical_rxn_data = dict() statistical_spec_data = dict() avg_delta_t = ( np.mean(np.array([sum(self.time_history[i]) for i in range(self.num_sims)])) / partitions ) time_list = [i * avg_delta_t + avg_delta_t / 2 for i in range(partitions)] # print('time_list: ', time_list) for rxn_ind in rxn_inds: if self.num_sims == 1: avgs = reaction_frequency_array[rxn_ind] stds = np.zeros(partitions) else: avgs =
np.mean(reaction_frequency_array[rxn_ind], 0)
numpy.mean
import math import numpy import warnings warnings.simplefilter('ignore', DeprecationWarning) import scipy import scipy.special import scipy.optimize warnings.simplefilter('default', DeprecationWarning) def sqr(z): return z*z def faddeeva(z, NT=None): """computes w(z) = exp(-z^2) erfc(iz) according to <NAME>, "Computation of the Complex Error Function," NT: number of terms to evaluate in approximation Weideman claims that NT=16 yields about 6 digits, NT=32 yields about 12 digits, for Im(z) >= 0. However, faddeeva(100.,16) yields only 8 accurate digits. For Im(z)>=0: By graphing, we see that NT=16 does yield errors < 10^{-6} and NT=32 errors < 10^{-12} NT=36 yields errors < 10^{-14}. For NT>=40, the errors will never be (everywhere) smaller than 10^{-14}...values oscillate as NT increases above 40. For Im(z)<0, the relative accuracy suffers near zeros of w(z). """ if (type(z) != numpy.ndarray): return faddeeva(numpy.array([z]), NT) if (NT==None): NT = 42 numSamplePts = 2*NT ind = numpy.arange(-numSamplePts+1.,numSamplePts) L = numpy.sqrt(NT/numpy.sqrt(2)) theta = (math.pi / numSamplePts) * ind t = L * numpy.tan(0.5*theta) fn = numpy.empty((ind.size+1,),dtype = t.dtype) fn[0] = 0. fn[1:] = numpy.exp(-t*t) * (L*L + t*t) polyCoefs = numpy.fft.fft(numpy.fft.fftshift(fn)).real / (2*numSamplePts) polyCoefs = numpy.flipud(polyCoefs[1:(NT+1)]) negzInd = z.imag < 0 signs = numpy.ones(z.shape, dtype=z.dtype) signs[negzInd] *= -1. # first use of z follows polyArgs = (L + (0.+1.j)*signs*z)/(L-(0.+1.j)*signs*z) polyVals = numpy.polyval(polyCoefs,polyArgs) res = 2.*polyVals/ sqr(L-(0.+1.j)*signs*z) \ + (1./math.sqrt(math.pi)) / (L-(0.+1.j)*signs*z) res *= signs res[negzInd] += 2.*numpy.exp(-z[negzInd]*z[negzInd]) #res=res.squeeze() if not res.ndim: res=res.tolist() return res def graphFaddeevaAccuracy(nt1, nt2): import pylab xmin = 0.01 xmax = 100.3 nx = 437 ymin = 0.0099 ymax = 100.1 ny = 439 logxmin = numpy.log10(xmin) logxmax = numpy.log10(xmax) logymin = numpy.log10(ymin) logymax = numpy.log10(ymax) xs =
numpy.arange(logxmin,logxmax,(logxmax-logxmin)/nx)
numpy.arange
import numpy as np from gym import spaces from gym import Env class PointEnv(Env): """ point mass on a 2-D plane goals are sampled randomly from a square """ def __init__(self, num_tasks=1, checkerboard_size=0.1): self.checkerboard_size = checkerboard_size self.reset_task() self.reset() self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=(2,), dtype=np.float32) self.action_space = spaces.Box(low=-0.1, high=0.1, shape=(2,), dtype=np.float32) self._state = None def reset_task(self, is_evaluation=False): ''' sample a new task randomly Problem 3: make training and evaluation goals disjoint sets if `is_evaluation` is true, sample from the evaluation set, otherwise sample from the training set ''' # ==================================================================== # # ----------PROBLEM 3---------- # ==================================================================== # STATIC_SIZE = 10 # final normalized board range: -10..10 x_cell = np.random.uniform(0, 1) y_cell = np.random.uniform(0, 1) if self.checkerboard_size == 0: # normalize to -10..10 self._goal = np.array([x_cell, y_cell]) * STATIC_SIZE * 2 - STATIC_SIZE else: # NB, size of the checkerboard should be quadratic and even to stay fair WIDTH = HEIGHT = int(1. / self.checkerboard_size) BLACK = int(np.ceil(WIDTH * HEIGHT / 2.)) # evaluation WHITE = int(np.floor(WIDTH * HEIGHT / 2.)) # train ROW_WIDTH = int(np.ceil(WIDTH / 2)) if is_evaluation: pos =
np.random.randint(0, BLACK)
numpy.random.randint
import collections import csv import datetime import itertools import logging import math import numpy import os import sys import utility MOVIE_COUNT = 17770 USER_COUNT = 480189 MAX_USER_ID = 2649429 NUM_RATING = 100480507 Datasets = collections.namedtuple('Datasets', ['train', 'validation', 'test']) class DataSet(object): @staticmethod def fromfile(filename): data = numpy.load(filename) return DataSet(data['movie_ids'], data['user_ids'], data['dates'], data['ratings'], data['user_map']) def __init__(self, movie_ids, user_ids, dates, ratings, user_map): self.movie_ids_ = numpy.asarray(movie_ids) self.user_ids_ = numpy.asarray(user_ids) self.dates_ = numpy.asarray(dates) self.ratings_ = numpy.asarray(ratings) self.user_map_ = user_map @property def num_examples(self): return len(self.ratings_) @property def movie_ids(self): return self.movie_ids_ @property def user_ids(self): return self.user_ids_ @property def dates(self): return self.dates_ @property def ratings(self): return self.ratings_ @property def user_map(self): return self.user_map_ def iter_batch(self, batch_size, shuffle=True): while True: indices = numpy.random.choice(self.num_examples, batch_size) movie_ids = self.movie_ids_[indices] user_ids = self.user_ids_[indices] dates = self.dates_[indices] ratings = self.ratings_[indices] yield DataSet(movie_ids, user_ids, dates, ratings, self.user_map) def split(self, validation_size, test_size): assert validation_size + test_size <= self.num_examples train_size = self.num_examples - validation_size - test_size perm = numpy.arange(self.num_examples) numpy.random.shuffle(perm) def genenerate_datasets(): for i,j in utility.pairwise(itertools.accumulate([0, train_size, validation_size, test_size, 1.0])): indices = perm[i:j] movie_ids = self.movie_ids_[indices] user_ids = self.user_ids_[indices] dates = self.dates_[indices] ratings = self.ratings_[indices] yield DataSet(movie_ids, user_ids, dates, ratings, self.user_map) datasets = genenerate_datasets() train = next(datasets) validation = next(datasets) test = next(datasets) return Datasets(train=train, validation=validation, test=test) def save(self, filename): numpy.savez(filename, movie_ids = self.movie_ids_, user_ids = self.user_ids_, dates = self.dates_, ratings = self.ratings_, user_map = self.user_map_) def find_dense_subset(self, n_users, n_movies): user_ratings = numpy.zeros(USER_COUNT) movie_ratings = numpy.zeros(MOVIE_COUNT) for user, movie in zip(self.user_ids_, self.movie_ids_): user_ratings[user] += 1 movie_ratings[movie] += 1 user_subset = set(numpy.argpartition(user_ratings, -n_users)[-n_users:]) movie_subset = set(numpy.argpartition(movie_ratings, -n_movies)[-n_movies:]) n_couples = 0 for user, movie in zip(self.user_ids_, self.movie_ids_): if user in user_subset and movie in movie_subset: n_couples += 1 ratings = numpy.zeros(n_couples, dtype=numpy.int8) movie_ids = numpy.zeros(n_couples, dtype=numpy.int16) user_ids =
numpy.zeros(n_couples, dtype=numpy.int32)
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Fri Mar 5 21:02:07 2021 @author: lukepinkel """ import patsy import numpy as np import scipy as sp import scipy.stats import pandas as pd import scipy.interpolate import matplotlib.pyplot as plt from .smooth_setup import parse_smooths, get_parametric_formula, get_smooth from ..pyglm.families import Gaussian from ..utilities.splines import (crspline_basis, bspline_basis, ccspline_basis, absorb_constraints) class GaussianAdditiveModel: def __init__(self, formula, data): family = Gaussian() smooth_info = parse_smooths(formula, data) formula = get_parametric_formula(formula) y, Xp = patsy.dmatrices(formula, data, return_type='dataframe', eval_env=1) varnames = Xp.columns.tolist() smooths = {} start = p = Xp.shape[1] ns = 0 for key, val in smooth_info.items(): slist = get_smooth(**val) if len(slist)==1: smooths[key], = slist p_i = smooths[key]['X'].shape[1] varnames += [f"{key}{j}" for j in range(1, p_i+1)] p += p_i ns += 1 else: for i, x in enumerate(slist): by_key = f"{key}_{x['by_cat']}" smooths[by_key] = x p_i = x['X'].shape[1] varnames += [f"{by_key}_{j}" for j in range(1, p_i+1)] p += p_i ns += 1 X, S, Sj, ranks, ldS = [Xp], np.zeros((ns, p, p)), [], [], [] for i, (var, s) in enumerate(smooths.items()): p_i = s['X'].shape[1] Si, ix = np.zeros((p, p)), np.arange(start, start+p_i) start += p_i Si[ix, ix.reshape(-1, 1)] = s['S'] smooths[var]['ix'], smooths[var]['Si'] = ix, Si X.append(smooths[var]['X']) S[i] = Si Sj.append(s['S']) ranks.append(np.linalg.matrix_rank(Si)) u = np.linalg.eigvals(s['S']) ldS.append(np.log(u[u>np.finfo(float).eps]).sum()) self.X, self.Xp, self.y = np.concatenate(X, axis=1), Xp.values, y.values[:, 0] self.S, self.Sj, self.ranks, self.ldS = S, Sj, ranks, ldS self.f, self.smooths = family, smooths self.ns, self.n_obs, self.nx = ns, self.X.shape[0], self.X.shape[1] self.mp = self.nx - np.sum(self.ranks) self.data = data theta = np.zeros(self.ns+1) for i, (var, s) in enumerate(smooths.items()): ix = smooths[var]['ix'] a = self.S[i][ix, ix[:, None].T] d = np.diag(self.X[:, ix].T.dot(self.X[:, ix])) lam = (1.5 * (d / a)[a>0]).mean() theta[i] = np.log(lam) varnames += [f"log_smooth_{var}"] theta[-1] = 1.0 varnames += ["log_scale"] self.theta = theta self.varnames = varnames self.smooth_info = smooth_info def get_wz(self, eta): mu = self.f.inv_link(eta) v = self.f.var_func(mu=mu) dg = self.f.dinv_link(eta) r = self.y - mu a = 1.0 + r * (self.f.dvar_dmu(mu) / v + self.f.d2link(mu) * dg) z = eta + r / (dg * a) w = a * dg**2 / v return z, w def solve_pls(self, eta, S): z, w = self.get_wz(eta) Xw = self.X * w[:, None] beta_new = np.linalg.solve(Xw.T.dot(self.X)+S, Xw.T.dot(z)) return beta_new def pirls(self, alpha, n_iters=200, tol=1e-7): beta = np.zeros(self.X.shape[1]) S = self.get_penalty_mat(alpha) eta = self.X.dot(beta) dev = self.f.deviance(self.y, mu=self.f.inv_link(eta)).sum() success = False for i in range(n_iters): beta_new = self.solve_pls(eta, S) eta_new = self.X.dot(beta_new) dev_new = self.f.deviance(self.y, mu=self.f.inv_link(eta_new)).sum() if dev_new > dev: success=False break if abs(dev - dev_new) / dev_new < tol: success = True break eta = eta_new dev = dev_new beta = beta_new return beta, eta, dev, success, i def get_penalty_mat(self, alpha): Sa = np.einsum('i,ijk->jk', alpha, self.S) return Sa def logdetS(self, alpha, phi): logdet = 0.0 for i, (r, lds) in enumerate(list(zip(self.ranks, self.ldS))): logdet += r * np.log(alpha[i]/phi) + lds return logdet def grad_beta_rho(self, beta, alpha): S = self.get_penalty_mat(alpha) A = np.linalg.inv(self.hess_dev_beta(beta, S)) dbdr = np.zeros((beta.shape[0], alpha.shape[0])) for i in range(self.ns): Si = self.S[i] dbdr[:, i] = -alpha[i] * A.dot(Si.dot(beta))*2.0 return dbdr def hess_dev_beta(self, beta, S): mu = self.f.inv_link(self.X.dot(beta)) v0, g1 = self.f.var_func(mu=mu), self.f.dlink(mu) v1, g2 = self.f.dvar_dmu(mu), self.f.d2link(mu) r = self.y - mu w = (1.0 + r * (v1 / v0 + g2 / g1)) / (v0 * g1**2) d2Ddb2 = 2.0 * (self.X * w[:, None]).T.dot(self.X) + 2.0 * S return d2Ddb2 def reml(self, theta): lam, phi = np.exp(theta[:-1]), np.exp(theta[-1]) S, X, y = self.get_penalty_mat(lam), self.X, self.y XtX = X.T.dot(X) beta = np.linalg.solve(XtX + S, X.T.dot(y)) r = y - X.dot(beta) rss = r.T.dot(r) bsb = beta.T.dot(S).dot(beta) _, ldh = np.linalg.slogdet(XtX / phi + S / phi) lds = self.logdetS(lam, phi) Dp = (rss + bsb) / phi K = ldh - lds ls = (self.n_obs) *
np.log(2.0*np.pi*phi)
numpy.log
import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import os.path as osp import joblib MAIN_PATH = '/scratch/gobi2/kamyar/oorl_rlkit/output' WHAT_TO_PLOT = 'faster_all_eval_stats.pkl' # WHAT_TO_PLOT = 'faster_all_eval_stats.pkl' # WHAT_TO_PLOT = 'faster_all_eval_stats.pkl' data_dirs = { 'np_airl': { 0.2: 'correct-saving-np-airl-KL-0p2-disc-512-dim-rew-2-NO-TARGET-ANYTHING-over-10-epochs', 0.15: 'correct-saving-np-airl-KL-0p15-disc-512-dim-rew-2-NO-TARGET-ANYTHING-over-10-epochs', 0.1: 'correct-saving-np-airl-KL-0p1-disc-512-dim-rew-2-NO-TARGET-ANYTHING-over-10-epochs', 0.05: 'correct-saving-np-airl-KL-0p05-disc-512-dim-rew-2-NO-TARGET-ANYTHING-over-10-epochs', 0.0: 'correct-saving-np-airl-KL-0-disc-512-dim-rew-2-NO-TARGET-ANYTHING-over-10-epochs' }, 'np_bc': { 0.2: 'np-bc-KL-0p2-FINAL-WITHOUT-TARGETS', 0.15: 'np-bc-KL-0p15-FINAL-WITHOUT-TARGETS', 0.1: 'np-bc-KL-0p1-FINAL-WITHOUT-TARGETS', 0.05: 'np-bc-KL-0p05-FINAL-WITHOUT-TARGETS', 0.0: 'np-bc-KL-0-FINAL-WITHOUT-TARGETS' } } # fig, ax = plt.subplots(1, 5) for i, beta in enumerate([0.0, 0.05, 0.1, 0.15, 0.2]): fig, ax = plt.subplots(1) ax.set_xlabel('$\\beta = %.2f$' % beta) # np_airl all_stats = joblib.load(osp.join(MAIN_PATH, data_dirs['np_airl'][beta], WHAT_TO_PLOT))['faster_all_eval_stats'] good_reaches_means = [] good_reaches_stds = [] solves_means = [] solves_stds = [] for c_size in range(1,7): good_reaches = [] solves = [] for d in all_stats: good_reaches.append(d[c_size]['Percent_Good_Reach']) solves.append(d[c_size]['Percent_Solved']) good_reaches_means.append(np.mean(good_reaches)) good_reaches_stds.append(np.std(good_reaches)) solves_means.append(np.mean(solves)) solves_stds.append(np.std(solves)) # ax.errorbar(list(range(1,7)), good_reaches_means, good_reaches_stds) ax.errorbar(np.array(list(range(1,7))) + 0.1, solves_means, solves_stds, elinewidth=2.0, capsize=4.0, barsabove=True, linewidth=2.0, label='Meta-AIRL' ) # np_bc all_stats = joblib.load(osp.join(MAIN_PATH, data_dirs['np_bc'][beta], WHAT_TO_PLOT))['faster_all_eval_stats'] good_reaches_means = [] good_reaches_stds = [] solves_means = [] solves_stds = [] for c_size in range(1,7): good_reaches = [] solves = [] for d in all_stats: good_reaches.append(d[c_size]['Percent_Good_Reach']) solves.append(d[c_size]['Percent_Solved']) good_reaches_means.append(np.mean(good_reaches)) good_reaches_stds.append(
np.std(good_reaches)
numpy.std
#!/software/et_env/bin python import numpy as np from sklearn.decomposition import PCA import argparse def orig_to_trans(pars): gamma=pars[6] logM_env=pars[8] beta=pars[7] incl=pars[14] pars[6]=np.log10(2.1-1*gamma) pars[8]=np.log10(-1.5-1*logM_env) s=np.sin(0.7) c=np.cos(0.7) pars[7]=1-np.cos(((beta*c) + (incl*s/60)-.5)*np.pi/2) pars[14]=(-beta*s) + (incl*c/60) return pars param_names = ["Tstar","logLstar","logMdisk","logRdisk","h0","logRin",\ "gamma","beta","logMenv","logRenv","fcav","ksi","logamax","p","incl"] seds_dict=np.load("./etgrid/et_dictionary_seds.npy",allow_pickle=True) seds=np.load("./etgrid/seds.npy",allow_pickle=True)[:,100:500] nanseds=np.load("./etgrid/seds.npy",allow_pickle=True)[:,100:500] xvals=np.load("./etgrid/xvals.npy",allow_pickle=True) # fix -infs: powerlaw cutoff for i in range(len(seds)): if -np.inf in seds[i]: a = seds[i].tolist() a.reverse() ind = len(a)-a.index(-np.inf) x1 = xvals[ind] y1 = seds[i][ind] for j in range(ind): seds[i][j]=(100*(np.log10(xvals[j]/x1)))+y1 np.save("./etgrid/sedsflat.npy",np.ndarray.flatten(seds)) # subtracting from each SED its sample mean nanseds[nanseds<-20]=np.nan seds_msub = seds - np.nanmean(nanseds,axis=1)[:,np.newaxis] # run PCA pca = PCA(n_components=40).fit(seds_msub) print("PCA finished") eigenseds=np.array(pca.components_) # compile PCA weight data fitdata=[] for i in range(len(seds)): fitdata.append(pca.transform(seds_msub[i].reshape(1,-1))[0][0:15]) # first 15 weights for each SED params_bypoint=[] weights_bypoint=[] means=[] for i in range(len(seds)): pars_orig=[] for j in range(len(param_names)): pars_orig.append(seds_dict[i][param_names[j]]) pars_trans=orig_to_trans(pars_orig) params_bypoint.append(pars_trans) # coordinates in transformed parameter space weights_bypoint.append(fitdata[i]) # set of first 15 weights means.append(np.nanmean(nanseds,axis=1)[i]) # mean weights_byweight=np.ndarray.tolist(np.transpose(weights_bypoint)) weights_byweight.append(means) print("weights calculated") parser=argparse.ArgumentParser() parser.add_argument("--name", help="pca instance nickname",type=str) args=parser.parse_args() name=args.name
np.save("./etgrid/"+name+"_coords.npy",params_bypoint)
numpy.save
from collections import OrderedDict import numpy as np from robosuite_extra.env_base.sawyer import SawyerEnv from robosuite.models.arenas import TableArena from robosuite.models.objects import BoxObject, CylinderObject from robosuite_extra.models.generated_objects import FullyFrictionalBoxObject from robosuite_extra.models.tasks import UniformSelectiveSampler from robosuite.utils.mjcf_utils import array_to_string from robosuite_extra.push_env.push_task import PushTask from robosuite_extra.utils import transform_utils as T from robosuite_extra.controllers import SawyerEEFVelocityController import copy from collections import deque class SawyerPush(SawyerEnv): """ This class corresponds to a Pushing task for the sawyer robot arm. This task consists of pushing a rectangular puck from some initial position to a final goal. The goal and initial positions are chosen randomly within some starting bounds """ def __init__( self, gripper_type="PushingGripper", parameters_to_randomise=None, randomise_initial_conditions=True, table_full_size=(0.8, 1.6, 0.719), table_friction=(1e-4, 5e-3, 1e-4), use_camera_obs=False, use_object_obs=True, reward_shaping=True, placement_initializer=None, gripper_visualization=True, use_indicator_object=False, has_renderer=False, has_offscreen_renderer=True, render_collision_mesh=False, render_visual_mesh=True, control_freq=10, horizon=80, ignore_done=False, camera_name="frontview", camera_height=256, camera_width=256, camera_depth=False, pid=True, ): """ Args: gripper_type (str): type of gripper, used to instantiate gripper models from gripper factory. parameters_to_randomise [string,] : List of keys for parameters to randomise, None means all the available parameters are randomised randomise_initial_conditions [bool,]: Whether or not to randomise the starting configuration of the task. table_full_size (3-tuple): x, y, and z dimensions of the table. table_friction (3-tuple): the three mujoco friction parameters for the table. use_camera_obs (bool): if True, every observation includes a rendered image. use_object_obs (bool): if True, include object (cube) information in the observation. reward_shaping (bool): if True, use dense rewards. placement_initializer (ObjectPositionSampler instance): if provided, will be used to place objects on every reset, else a UniformRandomSampler is used by default. gripper_visualization (bool): True if using gripper visualization. Useful for teleoperation. use_indicator_object (bool): if True, sets up an indicator object that is useful for debugging. has_renderer (bool): If true, render the simulation state in a viewer instead of headless mode. has_offscreen_renderer (bool): True if using off-screen rendering. render_collision_mesh (bool): True if rendering collision meshes in camera. False otherwise. render_visual_mesh (bool): True if rendering visual meshes in camera. False otherwise. control_freq (float): how many control signals to receive in every second. This sets the amount of simulation time that passes between every action input. horizon (int): Every episode lasts for exactly @horizon timesteps. ignore_done (bool): True if never terminating the environment (ignore @horizon). camera_name (str): name of camera to be rendered. Must be set if @use_camera_obs is True. camera_height (int): height of camera frame. camera_width (int): width of camera frame. camera_depth (bool): True if rendering RGB-D, and RGB otherwise. pid (bool) : True if using a velocity PID controller for controlling the arm, false if using a mujoco-implemented proportional controller. """ self.initialised = False # settings for table self.table_full_size = table_full_size self.table_friction = table_friction # whether to use ground-truth object states self.use_object_obs = use_object_obs # reward configuration self.reward_shaping = reward_shaping if (self.reward_shaping): self.reward_range = [-np.inf, horizon * (0.1)] else: self.reward_range = [0, 1] # Domain Randomisation Parameters self.parameters_to_randomise = parameters_to_randomise self.randomise_initial_conditions = randomise_initial_conditions self.dynamics_parameters = OrderedDict() self.default_dynamics_parameters = OrderedDict() self.parameter_sampling_ranges = OrderedDict() self.factors_for_param_randomisation = OrderedDict() # object placement initializer if placement_initializer: self.placement_initializer = placement_initializer else: self.placement_initializer = UniformSelectiveSampler( x_range=None, y_range=None, ensure_object_boundary_in_range=True, z_rotation=None, np_random=None ) # Param for storing a specific goal and object starting positions self.specific_goal_position = None self.specific_gripper_position = None self.gripper_pos_neutral = [0.44969246, 0.16029991, 1.00875409] super().__init__( gripper_type=gripper_type, gripper_visualization=gripper_visualization, use_indicator_object=use_indicator_object, has_renderer=has_renderer, has_offscreen_renderer=has_offscreen_renderer, render_collision_mesh=render_collision_mesh, render_visual_mesh=render_visual_mesh, control_freq=control_freq, horizon=horizon, ignore_done=ignore_done, use_camera_obs=use_camera_obs, camera_name=camera_name, camera_height=camera_height, camera_width=camera_width, camera_depth=camera_depth, pid=pid, ) self._set_default_dynamics_parameters(pid) self._set_default_parameter_sampling_ranges() self._set_dynamics_parameters(self.default_dynamics_parameters) self._set_factors_for_param_randomisation(self.default_dynamics_parameters) # Check that the parameters to randomise are within the allowed parameters if (self.parameters_to_randomise is not None): self._check_allowed_parameters(self.parameters_to_randomise) # IK solver for placing the arm at desired locations during reset self.IK_solver = SawyerEEFVelocityController() self.placement_initializer.set_random_number_generator(self.np_random) self.init_control_timestep = self.control_timestep self.init_qpos = self.mujoco_robot.init_qpos # Storing parameters for temporary switching self.cached_parameters_to_randomise = None self.cached_dynamics_parameters = None self.initialised = True self.reset() def _set_dynamics_parameters(self, parameters): self.dynamics_parameters = copy.deepcopy(parameters) def _default_damping_params(self): # return np.array([0.01566, 1.171, 0.4906, 0.1573, 1.293, 0.08688, 0.1942]) # -real world calibration # return np.array([0.8824,2.3357,1.1729, 0.0 , 0.5894, 0.0 ,0.0082]) #- command calibration return np.array([8.19520686e-01, 1.25425414e+00, 1.04222253e+00, 0.00000000e+00, 1.43146116e+00, 1.26807887e-01, 1.53680244e-01, ]) # - command calibration 2 def _default_armature_params(self): return np.array([0.00000000e+00, 0.00000000e+00, 2.70022664e-02, 5.35581203e-02, 3.31204140e-01, 2.59623415e-01, 2.81964631e-01, ]) def _default_joint_friction_params(self): return np.array([4.14390483e-03, 9.30938506e-02, 2.68656509e-02, 0.00000000e+00, 0.00000000e+00, 4.24867204e-04, 8.62040317e-04]) def _set_default_dynamics_parameters(self, use_pid): """ Setting the the default environment parameters. """ self.default_dynamics_parameters['joint_forces'] = np.zeros((7,)) self.default_dynamics_parameters['acceleration_forces'] = np.zeros((7,)) self.default_dynamics_parameters['eef_forces'] = np.zeros((6,)) self.default_dynamics_parameters['obj_forces'] = np.zeros((6,)) self.default_dynamics_parameters['eef_timedelay'] = np.asarray(0) self.default_dynamics_parameters['obj_timedelay'] = np.asarray(0) self.default_dynamics_parameters['timestep_parameter'] = np.asarray(0.0) self.default_dynamics_parameters['pid_iteration_time'] = np.asarray(0.) self.default_dynamics_parameters['mujoco_timestep'] = np.asarray(0.002) self.default_dynamics_parameters['action_additive_noise'] = np.asarray(0.0) self.default_dynamics_parameters['action_multiplicative_noise'] = np.asarray(0.0) self.default_dynamics_parameters['action_systematic_noise'] = np.asarray(0.0) self.default_dynamics_parameters['eef_obs_position_noise'] = np.asarray(0.0) self.default_dynamics_parameters['eef_obs_velocity_noise'] = np.asarray(0.0) self.default_dynamics_parameters['obj_obs_position_noise'] = np.asarray(0.0) self.default_dynamics_parameters['obj_obs_velocity_noise'] = np.asarray(0.0) self.default_dynamics_parameters['obj_angle_noise'] = np.asarray(0.0) self.default_dynamics_parameters['obj_density'] = np.asarray(400) self.default_dynamics_parameters['obj_size'] = np.array([0.0555 / 2, 0.0555 / 2, 0.03 / 2]) self.default_dynamics_parameters['obj_sliding_friction'] = np.asarray(0.4) self.default_dynamics_parameters['obj_torsional_friction'] = np.asarray(0.01) link_masses = np.zeros((7,)) for link_name, idx, body_node, mass_node, joint_node in self._robot_link_nodes_generator(): if (mass_node is not None): dynamics_parameter_value = float(mass_node.get("mass")) link_masses[idx] = dynamics_parameter_value self.default_dynamics_parameters['link_masses'] = link_masses self.default_dynamics_parameters['joint_dampings'] = self._default_damping_params() self.default_dynamics_parameters['armatures'] = self._default_armature_params() self.default_dynamics_parameters['joint_frictions'] = self._default_joint_friction_params() if (use_pid): gains = self.mujoco_robot.velocity_pid_gains kps = np.array([gains['right_j{}'.format(actuator)]['p'] for actuator in range(7)]) kis = np.array([gains['right_j{}'.format(actuator)]['i'] for actuator in range(7)]) kds = np.array([gains['right_j{}'.format(actuator)]['d'] for actuator in range(7)]) # self.default_dynamics_parameters['kps'] = kps self.default_dynamics_parameters['kis'] = kis self.default_dynamics_parameters['kds'] = kds else: kvs = np.zeros((7,)) for target_joint, jnt_idx, node in self._velocity_actuator_nodes_generator(): gains_value = float(node.get("kv")) kvs[jnt_idx] = gains_value self.default_dynamics_parameters['kvs'] = kvs def _set_default_parameter_sampling_ranges(self): """ Returns the parameter ranges to draw samples from in the domain randomisation. """ parameter_ranges = { 'joint_forces': np.array([[0.,0.,0.,0.,0.,0.,0.], [1.5,1.5,1.5,1.5,1.5,1.5,1.5]]),# 'acceleration_forces': np.array([[0.,0.,0.,0.,0.,0.,0.], [0.05,0.05,0.05,0.05,0.05,0.05,0.05]]),# 'eef_forces': np.array([[0.,0.,0.,0.,0.,0.], [0.06 ,0.06,0.06,0.01,0.01,0.01,]]), # 'obj_forces': np.array([[0., 0., 0., 0., 0., 0., ], [0.0011, 0.0011, 0.0011, 0.0005, 0.0005, 0.0005, ]]), 'eef_timedelay': np.array([0, 1]), 'obj_timedelay': np.array([0,2]), 'timestep_parameter': np.array([0.0, 0.01]), 'pid_iteration_time': np.array([0., 0.04]), 'mujoco_timestep': np.array([0.001,0.002]), 'action_additive_noise': np.array([0.01, 0.1]), 'action_multiplicative_noise': np.array([0.005,0.02]), 'action_systematic_noise': np.array([-0.05, 0.05]), 'eef_obs_position_noise': np.array([0.0005, 0.001]), 'eef_obs_velocity_noise': np.array([0.0005, 0.001]), 'obj_obs_position_noise': np.array([0.0005, 0.001]), 'obj_obs_velocity_noise': np.array([0.0005, 0.0015]), 'obj_angle_noise': np.array([0.005, 0.05]), 'obj_density': np.array([100, 800]), 'obj_size': np.array([0.995, 1.005]), 'obj_sliding_friction': np.array([0.01, 0.8]), 'obj_torsional_friction': np.array([0.001, 0.3]), 'link_masses':
np.array([0.98, 1.02])
numpy.array
import pandas as pd import numpy as np import os from sim.Bus import Bus from sim.Route import Route from sim.Busstop import Bus_stop from sim.Passenger import Passenger import matplotlib.pyplot as plt pd.options.mode.chained_assignment = None def getBusRoute(data): my_path = os.path.abspath(os.path.dirname(__file__)) path = my_path + "/data/" + data + "/" _path_trips = path + 'trips.txt' _path_st = path + 'stop_times.txt' trips = pd.DataFrame(pd.read_csv(_path_trips)) stop_times = pd.DataFrame(pd.read_csv(_path_st)) stop_times.dropna(subset=['arrival_time'], inplace=True) bus_routes = {} trip_ids = set(stop_times['trip_id']) try: service_id = trips.iloc[np.random.randint(0, trips.shape[0])]['service_id'] trips = trips[trips['service_id'] == service_id] except: pass # each route_id may correspond to multiple trip_id for trip_id in trip_ids: # A completely same route indicates the same shape_id in trip file, but this field is not 100% provided by opendata try: if 'shape_id' in trips.columns: route_id = str(trips[trips['trip_id'] == trip_id].iloc[0]['shape_id']) block_id = '' dir = '' else: route_id = str(trips[trips['trip_id'] == trip_id].iloc[0]['route_id']) block_id = str(trips[trips['trip_id'] == trip_id].iloc[0]['block_id']) dir = str(trips[trips['trip_id'] == trip_id].iloc[0]['trip_headsign']) except: continue # Identifies a set of dates when service is available for one or more routes. trip = stop_times[stop_times['trip_id'] == trip_id] try: trip['arrival_time'] = pd.to_datetime(trip['arrival_time'], format='%H:%M:%S') except: trip['arrival_time'] = pd.to_datetime(trip['arrival_time'], format="%Y-%m-%d %H:%M:%S") trip = trip.sort_values(by='arrival_time') trip_dist = trip.iloc[:]['shape_dist_traveled'].to_list() if len(trip_dist) <= 0 or np.isnan(trip_dist[0]): continue schedule = ((trip.iloc[:]['arrival_time'].dt.hour * 60 + trip.iloc[:]['arrival_time'].dt.minute) * 60 + trip.iloc[:]['arrival_time'].dt.second).to_list() if len(schedule) <= 2 or np.isnan(schedule[0]): continue b = Bus(id=trip_id, route_id=route_id, stop_list=trip.iloc[:]['stop_id'].to_list(), dispatch_time=schedule[0], block_id=block_id, dir=dir) b.left_stop = [] b.speed = (trip_dist[1] - trip_dist[0]) / (schedule[1] - schedule[0]) b.c_speed = b.speed for i in range(len(trip_dist)): if str(b.stop_list[i]) in b.stop_dist: b.left_stop.append(str(b.stop_list[i]) + '_' + str(i)) b.stop_dist[str(b.stop_list[i]) + '_' + str(i)] = trip_dist[i] b.schedule[str(b.stop_list[i]) + '_' + str(i)] = schedule[i] else: b.left_stop.append(str(b.stop_list[i])) b.stop_dist[str(b.stop_list[i])] = trip_dist[i] b.schedule[str(b.stop_list[i])] = schedule[i] b.stop_list = b.left_stop[:] b.set() if route_id in bus_routes: bus_routes[route_id].append(b) else: bus_routes[route_id] = [b] # Do not consider the route with only 1 trip bus_routes_ = {} for k, v in bus_routes.items(): if len(v) > 1: bus_routes_[k] = v return bus_routes_ def getStopList(data, read=0): my_path = os.path.abspath(os.path.dirname(__file__)) path = my_path + "/data/" + data + "/" _path_stops = path + 'stops.txt' _path_st = path + 'stop_times.txt' _path_trips = path + 'trips.txt' stops = pd.DataFrame(pd.read_csv(_path_stops)) stop_times = pd.DataFrame(pd.read_csv(_path_st)) trips = pd.DataFrame(pd.read_csv(_path_trips)) stop_list = {} select_stops = pd.merge(stops, stop_times, on=['stop_id'], how='left') select_stops = select_stops.sort_values(by='shape_dist_traveled', ascending=False) select_stops = select_stops.drop_duplicates(subset='stop_id', keep="first").sort_values(by='shape_dist_traveled', ascending=True) for i in range(select_stops.shape[0]): stop = Bus_stop(id=str(select_stops.iloc[i]['stop_id']), lat=select_stops.iloc[i]['stop_lat'], lon=select_stops.iloc[i]['stop_lon']) stop.loc = select_stops.iloc[i]['shape_dist_traveled'] try: stop.next_stop = str(select_stops.iloc[i + 1]['stop_id']) except: stop.next_stop = None stop_list[str(select_stops.iloc[i]['stop_id'])] = stop _path_demand = path + 'demand.csv' pax_num = 0 try: demand = pd.DataFrame(pd.read_csv(_path_demand)) except: print('No available demand file') return stop_list, 0 try: demand['Ride_Start_Time'] = pd.to_datetime(demand['Ride_Start_Time'], format='%H:%M:%S') except: demand['Ride_Start_Time'] = pd.to_datetime(demand['Ride_Start_Time'], format="%Y-%m-%d %H:%M:%S") demand['Ride_Start_Time_sec'] = (demand.iloc[:]['Ride_Start_Time'].dt.hour * 60 + demand.iloc[:][ 'Ride_Start_Time'].dt.minute) * 60 + demand.iloc[:]['Ride_Start_Time'].dt.second demand.dropna(subset=['ALIGHTING_STOP_STN'], inplace=True) demand = demand[demand.ALIGHTING_STOP_STN != demand.BOARDING_STOP_STN] demand = demand.sort_values(by='Ride_Start_Time_sec') for stop_id, stop in stop_list.items(): demand_by_stop = demand[demand['BOARDING_STOP_STN'] == int(stop_id)] # macro demand setting if read == 0: t = 0 while t < 24: d = demand_by_stop[(demand_by_stop['Ride_Start_Time_sec'] >= t * 3600) & ( demand_by_stop['Ride_Start_Time_sec'] < (t + 1) * 3600)] stop.dyna_arr_rate.append(d.shape[0] / 3600.) for dest_id in stop_list.keys(): od = d[demand['ALIGHTING_STOP_STN'] == int(dest_id)] if od.empty: continue if dest_id not in stop.dest: stop.dest[dest_id] = [0 for _ in range(24)] stop.dest[dest_id][t] = od.shape[0] / 3600. t += 1 else: # micro demand setting for i in range(demand_by_stop.shape[0]): pax = Passenger(id=demand_by_stop.iloc[i]['TripID'], origin=stop_id, plan_board_time=float(demand_by_stop.iloc[i]['Ride_Start_Time_sec'])) pax.dest = str(int(demand_by_stop.iloc[i]['ALIGHTING_STOP_STN'])) pax.realcost = float(demand_by_stop.iloc[i]['Ride_Time']) * 60. pax.route = str(demand_by_stop.iloc[i]['Srvc_Number']) + '_' + str( int(demand_by_stop.iloc[i]['Direction'])) stop.pax[pax.id] = pax pax_num += 1 return stop_list, pax_num def demand_analysis(engine=None): if engine is not None: stop_list = list(engine.busstop_list.keys()) stop_hash = {} i = 0 for p in stop_list: stop_hash[p] = i i += 1 # output data for stack area graph demand = [] for t in range(24): d = np.zeros(len(stop_list)) for s in stop_list: for pid, pax in engine.busstop_list[s].pax.items(): if int((pax.plan_board_time - 0) / 3600) == t: d[stop_hash[s]] += 1 demand.append(d) df = pd.DataFrame(demand, columns=[str(i) for i in range(len(stop_list))]) df.to_csv('demand.csv') return def sim_validate(engine, data): actual_onboard = [] sim_onboard = [] sim_travel_cost = [] actual_travel_cost = [] for pid, pax in engine.pax_list.items(): actual_onboard.append(pax.plan_board_time) sim_onboard.append(pax.onboard_time) sim_travel_cost.append(abs(pax.onboard_time - pax.alight_time)) actual_travel_cost.append(pax.realcost) actual_onboard = np.array(actual_onboard) sim_onboard = np.array(sim_onboard) actual_travel_cost = np.array(actual_travel_cost) sim_travel_cost = np.array(sim_travel_cost) print('Boarding RMSE:%g' % (np.sqrt(np.mean((actual_onboard - sim_onboard) ** 2)))) print('Travel RMSE:%g' % (np.sqrt(np.mean((actual_travel_cost - sim_travel_cost) ** 2)))) sim_comp = pd.DataFrame() sim_comp['actual_onboard'] = actual_onboard sim_comp['sim_onboard'] = sim_onboard sim_comp['sim_travel_cost'] = sim_travel_cost sim_comp['actual_travel_cost'] = actual_travel_cost sim_comp.to_csv('G:\\mcgill\\MAS\\gtfs_testbed\\result\\sim_comp' + str(data) + '.csv') print('ok') def visualize_pax(engine): for pax_id, pax in engine.pax_list.items(): if pax.onboard_time < 999999999: plt.plot([int(pax_id), int(pax_id)], [pax.arr_time, pax.onboard_time]) plt.show() def train_result_track(eng, ep, qloss_log, ploss_log, log, name='', seed=0): reward_bus_wise = [] reward_bus_wisep1 = [] reward_bus_wisep2 = [] rs = [] wait_cost = log['wait_cost'] travel_cost = log['travel_cost'] delay = log['delay'] hold_cost = log['hold_cost'] headways_var = log['headways_var'] headways_mean = log['headways_mean'] AOD = log["AOD"] for bid, r in eng.reward_signal.items(): if len(r) > 0: # .bus_list[bid].forward_bus!=None and engine.bus_list[bid].backward_bus!=None : reward_bus_wise.append(np.mean(r)) rs += r reward_bus_wisep1.append(np.mean(eng.reward_signalp1[bid])) reward_bus_wisep2.append(np.mean(eng.reward_signalp2[bid])) if ep % 1 == 0: train_log = pd.DataFrame() train_log['bunching'] = [log['bunching']] train_log['ploss'] = [np.mean(ploss_log)] train_log['qloss'] = [np.mean(qloss_log)] train_log['reward'] = [np.mean(reward_bus_wise)] train_log['reward1'] = [np.mean(reward_bus_wisep1)] train_log['reward2'] = [np.mean(reward_bus_wisep2)] train_log['avg_hold'] = np.mean(hold_cost) train_log['action'] = np.mean(np.array(eng.action_record)) train_log['wait'] = [np.mean(wait_cost)] train_log['travel'] = [np.mean(travel_cost)] train_log['delay'] = [np.mean(delay)] train_log['AOD'] = AOD for k, v in headways_mean.items(): train_log['headway_mean' + str(k)] = [np.mean(v)] for k, v in headways_var.items(): train_log['headway_var' + str(k)] = [np.mean(v)] res = pd.DataFrame() res['stw'] = log['stw'] res['sto'] = log['sto'] res['sth'] = log['sth'] print( 'Episode: %g | reward: %g | reward_var: %g | reward1: %g | reward2: %g | ploss: %g | qloss: %g |\n wait ' 'cost: %g | travel cost: %g | max hold :%g| min hold :%g| avg hold :%g | var hold :%g' % ( ep - 1, np.mean(reward_bus_wise), np.var(rs), np.mean(reward_bus_wisep1), np.mean(reward_bus_wisep2), np.mean(ploss_log), np.mean(qloss_log), np.mean(wait_cost), np.mean(travel_cost), np.max(hold_cost),
np.min(hold_cost)
numpy.min
from __future__ import division import collections import re import time R_C_thres = 0.999 # file = codecs.open('out2.txt', 'r','utf-8') # for original utf with diacritics, does not help much file = open('out2.txt', 'r') texts = file.readlines() file.close() # taken from winLen.xls -- the numbers of documents for the individual days # sum(ocNum) must match with len(texts) # docNumDecJan=[7366,6591,6780,6640,6094,3542,3405,6405,6352,6586,6537,6166,3290,3335,6531,6227,6547,6873,6060,3276,3110,5582,4824,2704,2692,2878,2922,2947,5052,4750,3887,3123,4821,3291,3293,6550,6636,6599,6601,6410,3862,3759,6684,6589,6446,6498,6193,3416,3459,6626,6615,6625,6869,6544,3709,3701,6870,6586,6838,6765,6657,3882] docNum = [3002, 5442, 5559, 3059, 3163, 6089, 6013, 6284, 5918, 5916, 3221, 3304, 6139, 5978, 6293, 6103, 5821, 3463, 3204, 6128, 6018, 6328, 6168, 3855, 4847, 3269, 6252, 5989, 6343, 6036, 6197, 3343, 3408, 6258, 6279, 6202, 6215, 5798, 3359, 3105, 6224, 6093, 6253, 6349, 5975, 3064, 3141, 6076, 6227, 6242, 6218, 5804, 3568, 3347, 6333, 6121, 6330, 6105, 6325, 3208, 3639, 6385, 6519, 6415, 6335, 5821, 3426, 3443, 6195, 6296, 6378, 6174, 6011, 3433, 3532, 6273, 6384, 6586, 6127, 6119, 3455, 3438, 6253, 6226, 6263, 6353, 6008, 3328, 2974, 6422, 6433, 6560, 6508, 6079, 3310, 3431, 6286, 6334, 6347, 6622, 5988, 3394, 3299, 6598, 6345, 6336, 6226, 5369, 3143, 2932, 3239, 6237, 6257, 6273, 6226, 3682, 3633, 6615, 6567, 6414, 4094, 5606, 3542, 3498, 6439, 6212, 6532, 3746, 5586, 3480, 3573, 6698, 6478, 6588, 6460, 5848, 3501, 3500, 6223, 6117, 6078, 6221, 5811, 3580, 3519, 6497, 6129, 6309, 6007, 5854, 3467, 3552, 6302, 6291, 6056, 6167, 5794, 3086, 3110, 6212, 6283, 6076, 6144, 5758, 3424, 3317, 6046, 6195, 5829, 5952, 5833, 3236, 2997, 5972, 5900, 6206, 6119, 5674, 3163, 2971, 5907, 5944, 5801, 5673, 5313, 3264, 2986, 5499, 3084, 7636, 5650, 5517, 3220, 3117, 5617, 5928, 5554, 5687, 5503, 3015, 2939, 5960, 5690, 5750, 6016, 5453, 3265, 3062, 5786, 6213, 5902, 5906, 5292, 3097, 3029, 5688, 5817, 5718, 5755, 5373, 2999, 2959, 5664, 5743, 5712, 5755, 5426, 3304, 3120, 5666, 5738, 5493, 5816, 5246, 3228, 3283, 5638, 5857, 5782, 5922, 5649, 3288, 3343, 6299, 6107, 6193, 6435, 5837, 3263, 3378, 6344, 6024, 6240, 6013, 5627, 3333, 3367, 6133, 6114, 6012, 6287, 6180, 3409, 3432, 6161, 6206, 6350, 6112, 6197, 3555, 3442, 6275, 6370, 6770, 6689, 6552, 3376, 3489, 6772, 6748, 6659, 6754, 6493, 3982, 3719, 6749, 6517, 6597, 6524, 6395, 3747, 3187, 6858, 6354, 6434, 3409, 8686, 3330, 3294, 5740, 3959, 6280, 6623, 6327, 3526, 3469, 6440, 6381, 6443, 6408, 6119, 3565, 3392, 6555, 6257, 6706, 6222, 6264, 3407, 3183, 3826, 6424, 6658, 6568, 6065, 3427, 3466, 6558, 6653, 6452, 6501, 6111, 3463, 3570, 7366, 6591, 6780, 6640, 6094, 3542, 3405, 6405, 6352, 6586, 6537, 6166, 3290, 3335, 6531, 6227, 6547, 6873, 6060, 3276, 3110, 5582, 4824, 2704, 2692, 2878, 2922, 2947, 5052, 4750, 3887, 3123, 4821, 3291, 3293, 6550, 6636, 6599, 6601, 6410, 3862, 3759, 6684, 6589, 6446, 6498, 6193, 3416, 3459, 6626, 6615, 6625, 6869, 6544, 3709, 3701, 6870, 6586, 6838, 6765, 6657, 3882] N = round(sum(docNum) / len(docNum)) # set N to normalize the window sizes docScale = [x / N for x in docNum] print(texts[1].decode('string_escape')) # pouziti pro nacteni bez codecs, zobrazuje ceske znaky # pomala varianta pres collections # cte ve formatu: texts = ['John likes to watch movies. Mary likes too.','John also likes to watch football games.'] bagsofwords = [collections.Counter(re.findall(r'\w+', txt)) for txt in texts] bagsofwords[0] # get the document sums for the individual days, measue time start = time.time() sumbags = sum(bagsofwords[501:1000], collections.Counter()) # time consuming, 500 docs takes 76s end = time.time() print(end - start) # rychlejsi varianta pres sparse matrices from sklearn.feature_extraction.text import CountVectorizer import numpy as np c = CountVectorizer(min_df=30, max_df=100000) # ignore all the words that appear in fewer than min_df docs # 2 months ... takes less than 1min, size 328468x450642, 30740640 stored elements for min_df=1, about 1/3 of the words # for min_df=3, for the annual data and min_df=20 shape 2090635 x 157556 bow_matrix = c.fit_transform(texts).astype(bool) # bow_matrix = c.fit_transform(texts[0:7366]) # sparse numpy int64 matrix originates, scipy.sparse.coo_matrix # c.vocabulary_ # get mapping between words and column indices, for complete data extremely large to print c.vocabulary_['rebel'] # index 127576 c.vocabulary_.keys()[127576] # list of keys but not the same order as in coo matrix print(c.vocabulary_.keys()[c.vocabulary_.values().index(127576)]) # this works inv_vocabulary = {v: k for k, v in c.vocabulary_.items()} # general vocabulary transpose inv_vocabulary[127576] # rebel inv_vocabulary[183107] # rebel def annot_list(ind): return [inv_vocabulary[k] for k in ind] bow_matrix.sum(1) # total word counts in each document, fast word_sums = bow_matrix.sum(0) # the counts of each word in all documents, slower but still works bow_matrix.sum(0).shape # get the counts for the individual days offset = 0 sum_matrix = np.empty([len(docNum), bow_matrix.shape[1]], dtype=int) offset_store = [0] for i in range(len(docNum)): sum_matrix[i] = bow_matrix[offset:offset + docNum[i]].sum(0) offset += docNum[i] offset_store.append(offset) # dfidf ad He et al.: Analyzing feature trajectories for event detection # idf ... word importance, more frequent words are less important idf = np.log(sum(docNum) / sum_matrix.sum(0)) dfidf = sum_matrix / np.tile(docNum, [sum_matrix.shape[1], 1]).T * np.tile(idf, [len(docNum), 1]) # normalize to uniform N, round to simplify e.g. future computations of binomial coeffiecients sum_matrix_norm = (np.round(sum_matrix / np.tile(docScale, [sum_matrix.shape[1], 1]).T)).astype(int) # the final check, the sum of window counts must be the total sum # the last window has to be +1 to make it work check = sum_matrix.sum(0) - word_sums check.sum() from scipy.special import binom from scipy.stats import binom as binm from scipy.stats import logistic # turn frequencies into probs p_o = sum_matrix / np.tile(docNum, [sum_matrix.shape[1], 1]).T # observed word probs, check that "from __future__ import division" was called p_o_norm = np.divide(sum_matrix, N) # observed word probs for normalized sum_matrix # p_j = p_o.mean(0) # mean word observed prob vector, rewrite, zero probs do not count def get_pj_slow(obs): pj = np.empty(obs.shape[1]) for i in range(len(pj)): pj[i] = obs[:, i][obs[:, i] > 0].mean() return pj def get_pj(obs): obs[obs == 0] = np.nan return np.nanmean(obs, 0) p_j = get_pj(p_o) # for normalized sum_matrix only, docNum replaced by N, faster but approximate probs only # robust towards high binom coefficients, log approach taken def get_p_g_norm_robust(N, sum_matrix, p_j): # precompute binom coefs up to max number in sum_matrix def mylogbc(max): mylogbc = np.zeros(max + 1) for i in range(max): mylogbc[i + 1] = mylogbc[i] + np.log(N - i) - np.log(i + 1) return mylogbc def mylogbin(n, p): return preclogbin[n] + n * np.log(p) + (N - n) * np.log(1 - p) mylogbin = np.vectorize(mylogbin) preclogbin = mylogbc(np.max(sum_matrix)) p_g = np.empty(sum_matrix.shape) for words in range(p_g.shape[1]): p_g[:, words] = mylogbin(sum_matrix[:, words], p_j[words]) return np.exp(p_g) # for normalized sum_matrix only, docNum replaced by N, faster but approximate probs only # fails for word counts and thus overflow binom coefficients!!! def get_p_g_norm(N, sum_matrix, p_j): def mybin(n, p): return binom(N, n) * p ** n * (1 - p) ** (N - n) mybin = np.vectorize(mybin) p_g = np.empty(sum_matrix.shape) for words in range(p_g.shape[1]): p_g[:, words] = mybin(sum_matrix[:, words], p_j[words]) return p_g # for normalized sum_matrix only, docNum replaced by N, faster but approximate probs only def get_r_c_thres_norm(N, sum_matrix, p_j): r_c_thres = np.empty(sum_matrix.shape[1]) for words in range(sum_matrix.shape[1]): r_c_thres[words] = binm.ppf(R_C_thres, N, p_j[words]) return r_c_thres # at the moment, the most time consuming part # can be made faster by normalizing to the same window size -- use docScale np.mean(p_o, axis=0) # p_o.mean(0) changes p_o, places nans there p_g = np.empty([len(docNum), bow_matrix.shape[ 1]]) # prob that the given number of words is observed in the given day purely randomly r_c_thres = np.empty(p_g.shape) for days in range(len(docNum)): for words in range(len(p_j)): p_g[days, words] = binom(docNum[days], sum_matrix[days, words]) * p_j[words] ** sum_matrix[days, words] * (1 - p_j[ words]) ** ( docNum[ days] - sum_matrix[ days, words]) # find the border of R_C region r_c_thres[days, words] = binm.ppf(R_C_thres, docNum[days], p_j[words]) p_g_norm = get_p_g_norm_robust(N, sum_matrix_norm, p_j) r_c_thres_norm = get_r_c_thres_norm(N, sum_matrix_norm, p_j) # construct bursty features, start with the individual ones p_b = np.zeros(p_o.shape) # p_b[p_o>np.tile(p_j,[p_o.shape[0],1])]=1 # the initial necessary condition, not in R_A region # p_b[sum_matrix>r_c_thres]=1 # the sufficient condition, in R_C region p_b[sum_matrix_norm > np.tile(r_c_thres_norm, [sum_matrix_norm.shape[0], 1])] = 1 # the sufficient condition, in R_C region # sigmoid function for R_B region # p_b[np.logical_and(sum_matrix<r_c_thres,p_o>np.tile(p_j,[p_o.shape[0],1]))]=... for days in range(len(docNum)): for words in range(len(p_j)): # if sum_matrix[days,words]<r_c_thres[days,words] and p_o[days,words]>p_j[words]: # p_b[days,words] = logistic.cdf(sum_matrix[days,words]-(r_c_thres[days,words]+p_j[words]*docNum[days])/2) if sum_matrix_norm[days, words] < r_c_thres_norm[words] and p_o[days, words] > p_j[words]: p_b[days, words] = logistic.cdf(sum_matrix_norm[days, words] - (r_c_thres_norm[words] + p_j[words] * N) / 2) # find the most striking bursts # there are many features with at least one non-zero burst signal ..., get their indeces [j for (i, j) in zip(sum(p_b), range(p_b.shape[1])) if i > 0] # find bursty features, those whose mean burstyness is more than thres times above average -- this rather promotes high frequency features def get_bwords_mean(p_b, thres): bbool = p_b.mean(0) > thres * np.mean(p_b) return np.where(bbool)[0] def docOverlap(bow_matrix_bin, w1, w2): # tests the document overlap between twor words, i.e., in what percentage of docs the words appear together # the calculation is limited to a specific period under consideration intersec = np.logical_and(bow_matrix_bin[:, w1], bow_matrix_bin[:, w2]).sum() if intersec > 0: intersec = intersec / min(bow_matrix_bin[:, w1].sum(), bow_matrix_bin[:, w2].sum()) return (intersec) # an alternative definition would be to find at least one strong burst -- a consecutive series of non-zero series in its p_b vector # it makes no sense to search for individual days, nearly every word is bursty at least in one day # thres gives the minimum length of the series (in days here) def get_bwords_series(p_b, thres): def bseries(a): # count the longest nonzero series in array a return np.max(np.diff(np.where(a == 0))) - 1 bbool = [False] * p_b.shape[1] for words in range(p_b.shape[1]): bbool[words] = bseries(p_b[:, words]) > thres return np.where(bbool)[0] def wherebseries(a): # find where is the longest bseries ls = np.diff(np.where(a == 0))[0] l = np.max(ls) # take the first occurence only f = np.sum(ls[0:np.where(ls == l)[0][0]]) return [f + 1, f + l] def wheretseries(a, thres): # find where are all the above-threshold series ls = np.diff(np.where(a == 0))[0] ts = np.where(ls > thres)[0] w = [] for t in ts: # repeat for every subseries f = np.sum(ls[0:t]) w.append([f + 1, f + ls[t]]) return w # identify events based on the overlaps between words with a long series of above-average days # thres is the minimum length of series in days # sim_thres is the minimum time overlap bwetween a pair of series in % # doc_sim_thres is the minimum overlap bwetween a pair of words in the given period in terms of the particular documkents in % def get_series_overlaps(p_b_slice, bwords, thres, sim_thres, doc_sim_thres): def getOverlap(a, b): # finds the overlap between two ranges in terms of the percentage of the size of the smaller range return max(0, min(a[1], b[1]) - max(a[0], b[0])) / max(a[1] - a[0], b[1] - b[0]) def newEvent(e, eList): # tests whether e is contained in the list or not newEvent = True for eL in eList: if len(np.intersect1d(e, eL[1])) == min(len(e), len(eL[1])): newEvent = False break return (newEvent) # find all the individual bword series (i.e., the longest consecutive range where p_b is non-zero for each feature) # bseries is a list of lists, for each bursty word there is a list of its continuous bursty periods longer than the threshold bseries = [] for b in range(p_b_slice.shape[1]): bseries.append(wheretseries(p_b_slice[:, b], thres)) # make a flat equivalent bseries_flat = [item for sublist in bseries for item in sublist] bseries_len = [len(x) for x in bseries] # map bseries_flat back to the bursty words bseries_ind = [] for i in range(len(bseries_len)): bseries_ind += [i] * bseries_len[i] bseries_ind = np.array(bseries_ind) # get an overlap similarity matrix, for each pair of periods in bseries_flat overmat = np.triu([1.0] * len(bseries_flat)) for r in range(len(bseries_flat)): for c in range(r + 1, len(bseries_flat)): overmat[r, c] = getOverlap(bseries_flat[r], bseries_flat[c]) # merge the bursty periods/series into events # for each event, build the list of words whose overlap is higher than sim_thres bevents = [] for r in range(len(bseries_flat)): # iterate over all the bursty perioeds and all the bursty words e_periods = np.where(overmat[r, :] > sim_thres)[0] # there is a chance to build an event for the given word and period if len(e_periods) > 1: e_words = bseries_ind[e_periods] # pruning based on coocurence in the same docs, relate to the core (first) word only period_slice = bow_matrix[offset_store[bseries_flat[r][0]]:offset_store[bseries_flat[r][1]], bwords[e_words]].todense() todel = [] for w in range(1, len(e_words)): # skip the period index if docOverlap(period_slice, 0, w) < doc_sim_thres: todel.append(w) e_words = np.delete(e_words, todel) if (newEvent(e_words, bevents) and len(e_words) > 1): e = [bseries_flat[r], e_words.tolist()] bevents.append(e) return (bevents) # get a binary word vector for an event, return p(ek) # the unioin of burst probability series is given by their total sum # the intersection of burst probability series is given by sum of miinimum values achieved in all the windows def get_p_ek(p_b, E): return np.log(sum(p_b[:, E].min(1)) / np.sum(p_b[:, E])) # no infinity values def get_p_ek_nolog(p_b, E): return sum(p_b[:, E].min(1)) / np.sum(p_b[:, E]) # get a binary word vector for the list of bursty features and a specific bursty event, return p(d|ek) def get_p_d_ek(D_sizes_norm, D_sizes_all, E): # E=np.searchsorted(bwords,ewords) # find local event indices in bwords and thus D_sezes array negE = np.delete(np.arange(np.alen(range(len(D_sizes_norm)))), E) # find its complement return np.sum(np.log(np.concatenate([D_sizes_norm[E], 1 - D_sizes_all[negE]]))) # finds the optimal event a subset of bursty features that minimizes -log(p_ek_d), ie. maximizes the prob # employs greedy stepwise search def find_ek(bow_slice, p_b_slice, D_sizes, D_all): best_p_ek_d = float("inf") # find the best pair of bursty features first for i in range(len(D_sizes)): for j in range(i + 1, len(D_sizes)): # get sum of docs that contain any of the event words M_size = np.sum(bow_slice[:, [i, j]].sum( 1) > 0) # sums the ewords in the individual documents first, then gets the number of docs that have non-zero sums D_sizes_norm = D_sizes / float(M_size) D_sizes_all = D_sizes / float(D_all) # M_size=np.sum(D_sizes) # not the same as previous row, uses D-sizes, does not implement union p_ek_d = (-get_p_ek(p_b_slice, [i, j]) - get_p_d_ek(D_sizes_norm, D_sizes_all, [i, j])) if p_ek_d < best_p_ek_d: best_p_ek_d = p_ek_d ek = [i, j] print(ek) # extend the best pair while True: extendable = False # tests that the last extension helped for i in np.delete(range(len(D_sizes)), ek): ek_cand = np.concatenate([ek, [i]]) M_size = np.sum(bow_slice[:, ek_cand].sum( 1) > 0) # sums the ewords in the individual documents first, then gets the number of docs that have non-zero sums D_sizes_norm = D_sizes / float(M_size) D_sizes_all = D_sizes / float(D_all) p_ek_d = (-get_p_ek(p_b_slice, ek_cand) - get_p_d_ek(D_sizes_norm, D_sizes_all, ek_cand)) if p_ek_d < best_p_ek_d: best_p_ek_d = p_ek_d ek = np.concatenate([ek, i]) extendable = True if not extendable: break return ek # finds the optimal split of bursty words into events, HB event algorithm def find_all_ek(bow_matrix, p_b, bwords): # get sums of docs that contain individual bursty words D_sizes = np.squeeze( np.asarray((bow_matrix[:, bwords] > 0).sum(0))) # squeeze and asarray to turn [1,n] matrix into array ek_list = [] while True: ek = find_ek(bow_matrix[:, bwords], p_b[:, bwords], D_sizes, bow_matrix.shape[0]) ek_list.append(bwords[ek]) bwords = np.delete(bwords, ek) D_sizes = np.delete(D_sizes, ek) if len(bwords) < 2: break return (ek_list) # performs a greedy search through a dist matrix starting at the position where # return all the words who match the pair of seed words above threshold def greedyMat(p_ek_mat, where, thres): ek = np.intersect1d(np.where(p_ek_mat[where[0], :] > thres), np.where(p_ek_mat[where[1], :] > thres)) return (np.union1d(where, ek)) # finds the optimal split of bursty words into events, based on calculation of pairwise p_ek and greedy search def find_all_ek_fast(bow_matrix, p_b, bwords): # get an p_ek pairwise matrix, for each pair of bwords # p_ek_mat=np.triu([0.0]*len(bwords)) p_ek_mat = np.zeros([len(bwords), len(bwords)]) for r in range(len(bwords)): for c in range(r + 1, len(bwords)): p_ek_mat[r, c] = get_p_ek_nolog(p_b, [r, c]) p_ek_mat[c, r] = p_ek_mat[r, c] ek_list = [] thres = np.percentile(np.triu(p_ek_mat), 95) while True: seed_val = np.max(p_ek_mat) if seed_val < thres: break where = np.where(p_ek_mat == seed_val) where = [where[0][0], where[1][0]] ek = greedyMat(p_ek_mat, where, thres) # validate against document overlap # find the longest common peridd for the seed ek_period = wherebseries(p_b[:, where].min(1)) seed = np.where(np.logical_or(ek == where[0], ek == where[1])) period_slice = bow_matrix[offset_store[ek_period[0]]:offset_store[ek_period[1]], bwords[ek]].todense() todel = [] for w in range(len(ek)): # skip the period index if (docOverlap(period_slice, seed[0][0], w) < 0.2) | (docOverlap(period_slice, seed[0][1], w) < 0.2): todel.append(w) ek = np.delete(ek, todel) if len(ek) > 1: ek_list.append([ek_period, ek.tolist()]) # delete the event from the p_ek_mat in order not to repeat it for w1 in ek: for w2 in ek: p_ek_mat[w1, w2] = 0 # delete the seed anyway p_ek_mat[where] = 0 p_ek_mat[where[1], where[0]] = 0 # perform DBSCAN, does not need prior k # db=DBSCAN(eps=2,metric='precomputed').fit(p_ek_mat) # however, results seem weird # labels=db.labels_ return (ek_list) import matplotlib.pyplot as plt # red dashes, blue squares and green triangles # plt.plot(range(len(docNum)), sum_matrix[:,0], 'r--', range(len(docNum)), sum_matrix[:,183107], 'bs-', range(len(docNum)), sum_matrix[:,127576], 'g^-') def comp_freq_plot(words, mode='f', tofile=False, num='', period=''): l = list() a = annot_list(words) if mode == 'f': toplot = sum_matrix title = 'Word frequency in time windows' ylabel = 'frequency' elif mode == 'p': toplot = p_g_norm title = 'Prob that the given frequency was observed randomly' ylabel = 'rand prob' else: toplot = p_o title = 'Observed prob, the burst period' + period ylabel = 'prob' for i in range(len(words)): temp, = plt.plot(toplot[:, words[i]], label=a[i]) l.append(temp) plt.xlabel('day') plt.ylabel(ylabel) plt.title(title) plt.grid(True) plt.legend(l, a) if tofile: fig = plt.gcf() fig.savefig('graphs/' + num + '_' + a[0] + '.png') plt.close(fig) else: plt.show() def bevents_plots(bevents, bwords): # generates and saves a set of plots for all the bevents for e in bevents: comp_freq_plot(bwords[e[1]], 'o', True, str(e[1][0]), str(e[0])) # the approach ad Fung bwords = get_bwords_mean(p_b, 5) # generate a short list of bursty words, words must have x times higher mean burstyness than the average bevents = find_all_ek(bow_matrix, p_b, bwords) # slow, use the next call instead bevents = find_all_ek_fast(bow_matrix, p_b, bwords) bevents_plots(bevents, bwords) # period-based approach # the minimum length of bursty event len_thres = 12 bwords = get_bwords_series(p_b, len_thres) # generate a short list of bursty words, a high threshold selected bevents = get_series_overlaps(p_b[:, bwords], bwords, len_thres, 0.9, 0.1) bevents_plots(bevents, bwords) annot_list(bwords) comp_freq_plot( bwords) # plot frequencies in the individual windows, it is not informative as e.g. weekend windows are shorter comp_freq_plot(bwords, 'p') # plot observed probs eks = find_all_ek(bow_matrix, p_b, bwords) comp_freq_plot([4025, 15300, 37341, 73946, 73617, 85483, 87802, 95719, 111648, 118184], 'o') # u'async', u'configuration', u'pasting', u'push', u'replac', u'size', u'variables', u'webpag' comp_freq_plot([14441, 31984, 86332], 'o') # u'civilista', u'hamas', u'raketa comp_freq_plot([70027, 76395], 'o') # u'off, u'play comp_freq_plot([7025, 17222, 76429, 80995, 84213, 101669, 111570], 'o') # u'betlem', u'darek', u'pleas', u'predplatit', u'prosinec', u'stromecek', u'vanoce comp_freq_plot(bwords[[0, 2]], 'o') comp_freq_plot(eks[0], 'o') l1, = plt.plot(p_g[:, 127576], label=inv_vocabulary[127576]) l2, = plt.plot(p_g[:, 183107], label=inv_vocabulary[183107]) plt.xlabel('day') plt.ylabel('rand prob') plt.title('Prob that the given frequency was observed randomly') plt.grid(True) plt.legend([l1, l2], [inv_vocabulary[127576], inv_vocabulary[183107]]) plt.show() # fft approach def get_dps(t): # for a time series finds its dominant period and dominant power spectrum fft = np.fft.fft(t, n=int(len(t) / 2)) dps = max(fft) dp = len(t) / (np.where(fft == dps)[0][0] + 1) return ([fft, dp, abs(dps)]) dps = [] for w in range(dfidf.shape[1]): dps.append(get_dps(dfidf[:, w])) # turning to dense format is not possible ba = bow_matrix[0:7366].toarray() # for the whole matrix a memory error ba.shape np.sum(ba, axis=0)
np.where()
numpy.where
import numpy as np def RotX(th): sth, cth = np.sin(th), np.cos(th) return np.array([[1,0,0],[0,cth,-sth],[0,sth,cth]]) def RotY(th): sth, cth = np.sin(th), np.cos(th) return np.array([[cth,0,sth],[0,1,0],[-sth,0,cth]]) def RotZ(th): sth, cth = np.sin(th), np.cos(th) return np.array([[cth,-sth,0],[sth,cth,0],[0,0,1]]) class CoordSys: """A coordinate system against which to measure surfaces or rays. Coordinate systems consist of an origin and a rotation. The ``origin`` attribute specifies where in 3D space the current coordinate system's origin lands in the global coordinate system. The rotation ``rot`` specifies the 3D rotation matrix to apply to the global coordinate axes to yield the axes of the this coordinate system. Parameters ---------- origin : ndarray of float, shape (3,) Origin of coordinate system in global coordinates. rot : ndarray of float, shape (3, 3) Rotation matrix taking global axes into current system axes. """ def __init__(self, origin=None, rot=None): if origin is None: origin =
np.zeros(3, dtype=float)
numpy.zeros