prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import os import numpy as np import pandas as pd """ This function is used to import the data. Put the data in a folder named all_data in the directory of the code """ def import_data(dt_name): """ :param dt_name: Name of the Dataset :return: Three pandas frames which correspond to training, testing and validation data """ # First we get the directory of our project and then take all the three files and import them to the respective # names. d = os.getcwd() test_data = pd.read_csv(os.path.join(os.path.join(d, "all_data"), "test_{0}.csv".format(dt_name)), header=None) train_data = pd.read_csv(os.path.join(os.path.join(d, "all_data"), "train_{0}.csv".format(dt_name)), header=None) validation_data = pd.read_csv(os.path.join(os.path.join(d, "all_data"), "valid_{0}.csv".format(dt_name)), header=None) # Now we will return the data frames return [test_data, train_data, validation_data] """ This function is defined to get the labels/classes and attribute values in different variables """ def get_attributes_and_labels(data): """ :param data: The dataset to be divided :return: Two panda frames which are in order of classes and attributes """ # Here we divide our attributes and classes features for a given dataset return [data.iloc[:, -1], data.iloc[:, :-1]] """ This function is used to find the entropy which is our impurity heuristic for this algorithm """ def get_entropy(data): """ :param data: THese are the values for which we want to find the entropy of. We pass a whole vector of values which correspond to the attribute of importance and find entropy for that vector. :return: Entropy for the given vector """ entropy_value = 0 temp, unique_count = np.unique(data, return_counts=True) # We will use the formula mentioned in the slides to calculate the value of entropy for both the options (i.e, # 1 and 0) sum_of_counts = np.sum(unique_count) for count in unique_count: entropy_value = entropy_value - ((count / sum_of_counts) * np.log2(count / sum_of_counts)) return entropy_value """ This function is used to find the information gain for the given sub-tree/tree. The information gain is used to find the attribute we will use to do further branching """ def Information_Gain_Heuristic(examples, attributes, target_attribute): """ :param examples: The data for whihc we want to find the information gain :param attributes: the values of the attributes available (the column number) :param target_attribute: the target attribute we are trying to find :return: Information Gain of the given sub-tree. """ # Here we find the entropy for the root node previous_entropy = get_entropy(target_attribute) Information_Gain = [] for each_attribute in attributes: unique_value_of_attribute, counts_of_attribute = np.unique(examples[each_attribute], return_counts=True) try: if counts_of_attribute[0] < counts_of_attribute[1]: counts_of_attribute = np.flipud(counts_of_attribute) unique_value_of_attribute = np.flipud(unique_value_of_attribute) except IndexError: i = 0 # Since I have hardcoded the array_after_division arrays we will try to the first values for 0. if unique_value_of_attribute[0] == 1: counts_of_attribute = np.flipud(counts_of_attribute) unique_value_of_attribute = np.flipud(unique_value_of_attribute) array_after_division_1 = [] array_after_division_0 = [] # This loop is for 0 and 1 # I need to find the number of 1's and 0's in target value when the given attribute value is something # particular total_data = pd.concat([examples, target_attribute], axis=1, sort=False) # Here I concatenated the data frames so that only one df is used to both lookup the value and find the value # to append row_names = total_data.index.values list_of_row_names = list(row_names) for each in list_of_row_names: value_to_append = int(total_data.iloc[:, -1][each]) if examples[each_attribute][each] == 1: array_after_division_1.append(value_to_append) else: array_after_division_0.append(value_to_append) # Here I will use try catch since if the target_attribute have only one unique value then it will give an # error if we try to use the second index (i.e. 2). and if we have only one unique value then our imputrity # is 0 and thus entropy is 0 try: value_of_new_inpurity = (counts_of_attribute[0] / np.size(examples[each_attribute])) * get_entropy( array_after_division_0) + (counts_of_attribute[1] / np.size(examples[each_attribute])) * get_entropy( array_after_division_1) except IndexError: value_of_new_inpurity = 0 temp = previous_entropy - value_of_new_inpurity Information_Gain.append(temp) return Information_Gain """ This function is the main function for our algorithm. The decision_tree function is used recursively to create new nodes and make the tree while doing the training. """ def decision_tree_construction(examples, target_attribute, attributes, depth): """ :param examples: The data we will use to train the tree(x) :param target_attribute: The label we want to classify(y) :param attributes: The number(index) of the labels/attributes of the data-set :return: The tree corresponding to the given data """ # This is the first base condition of the algorithm. It is used if the attributes variable is empty, then we return # the single-node tree Root, with label = most common value of target_attribute in examples # The base condition for the recursion when we check if all the variables are same or not in the node and if they # are same then we return that value as the node if len(attributes) == 0 or len(np.unique(target_attribute)) == 1: unique_value_of_attribute, counts_of_attribute = np.unique(target_attribute, return_counts=True) try: if counts_of_attribute[0] < counts_of_attribute[1]: unique_value_of_attribute = np.flipud(unique_value_of_attribute) except IndexError: i = 0 if unique_value_of_attribute[0] == 1: # More positive values return 1, depth elif unique_value_of_attribute[0] == 0: # More negative values return 0, depth # This is the recursion part of the algorithm in which we try to find the sub-tree's by using recursion and # information gain else: Information_Gain = Information_Gain_Heuristic(examples, attributes, target_attribute) best_attribute_number = attributes[np.argmax(Information_Gain)] # Since we now have the best_attribute(A in algorithm) we will create the root node of the tree/sub-tree with # that and name the root as the best attribute among all Here we make the tree as a dictionary for testing # purposes tree = dict([(best_attribute_number, dict())]) if isinstance(tree, int): # If the given value is a int value then it's definitely a leaf node and if it's a dictionary then its a # node tree[best_attribute_number]["type_of_node"] = "leaf" tree[best_attribute_number]["depth"] = depth unique_value_of_attribute, counts_of_attribute = np.unique(target_attribute, return_counts=True) try: if counts_of_attribute[0] < counts_of_attribute[1]: counts_of_attribute = np.flipud(counts_of_attribute) unique_value_of_attribute = np.flipud(unique_value_of_attribute) except IndexError: # Here we can have an index error since in some case it may happen that the array has only one type # of value and thus accessing the index [1] is not possible i = 0 tree[best_attribute_number]["majority_target_attribute"] = unique_value_of_attribute[0] tree[best_attribute_number]["best_attribute_number"] = best_attribute_number else: tree[best_attribute_number]["type_of_node"] = "node" tree[best_attribute_number]["depth"] = depth unique_value_of_attribute, counts_of_attribute = np.unique(target_attribute, return_counts=True) try: if counts_of_attribute[0] < counts_of_attribute[1]: counts_of_attribute = np.flipud(counts_of_attribute) unique_value_of_attribute = np.flipud(unique_value_of_attribute) except IndexError: # Here we can have an index error since in some case it may happen that the array has only one type # of value and thus accessing the index [1] is not possible i = 0 tree[best_attribute_number]["majority_target_attribute"] = unique_value_of_attribute[0] tree[best_attribute_number]["best_attribute_number"] = best_attribute_number attributes.remove(best_attribute_number) # Now we do the recursive algorithm which will be used to create the tree after the root node. depth_of_node = [] for each_unique_value in
np.unique(examples[best_attribute_number])
numpy.unique
#!/usr/bin/env python # coding: utf-8 # # 波士顿房价预测任务 # # ## 线性回归模型 # # 假设房价和各影响因素之间能够用线性关系来描述: # # $$y = {\sum_{j=1}^Mx_j w_j} + b$$ # # 模型的求解即是通过数据拟合出每个$w_j$和$b$。其中,$w_j$和$b$分别表示该线性模型的权重和偏置。一维情况下,$w_j$ 和 $b$ 是直线的斜率和截距。 # # 线性回归模型使用均方误差作为损失函数(Loss),用以衡量预测房价和真实房价的差异,公式如下: # # $$MSE = \frac{1}{n} \sum_{i=1}^n(\hat{Y_i} - {Y_i})^{2}$$ # # python+numpy # ### 数据处理 # # 数据处理包含五个部分:数据导入、数据形状变换、数据集划分、数据归一化处理和封装`load data`函数。数据预处理后,才能被模型调用。 # #### 读入数据 # 通过如下代码读入数据,了解下波士顿房价的数据集结构,数据存放在本地目录下housing.data文件中。 # #### 数据形状变换 # 由于读入的原始数据是1维的,所有数据都连在一起。因此需要我们将数据的形状进行变换,形成一个2维的矩阵,每行为一个数据样本(14个值),每个数据样本包含13个$X$(影响房价的特征)和一个$Y$(该类型房屋的均价)。 # #### 数据集划分 # 将数据集划分成训练集和测试集,其中训练集用于确定模型的参数,测试集用于评判模型的效果。 # 在本案例中,我们将80%的数据用作训练集,20%用作测试集,实现代码如下。通过打印训练集的形状,可以发现共有404个样本,每个样本含有13个特征和1个预测值。 # #### 数据归一化处理 # 对每个特征进行归一化处理,使得每个特征的取值缩放到0~1之间。这样做有两个好处:一是模型训练更高效;二是特征前的权重大小可以代表该变量对预测结果的贡献度(因为每个特征值本身的范围相同)。 # In[80]: def load_data(): # 从文件导入数据 datafile = './work/housing.data' data = np.fromfile(datafile, sep=' ') # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数 feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ] feature_num = len(feature_names) # 数据形状变换 # 将原始数据进行Reshape,变成[N, 14]这样的形状 data = data.reshape([data.shape[0] // feature_num, feature_num]) # 将原数据集拆分成训练集和测试集 # 这里使用80%的数据做训练,20%的数据做测试 # 测试集和训练集必须是没有交集的 ratio = 0.8 offset = int(data.shape[0] * ratio) training_data = data[:offset] # 计算训练集的最大值,最小值,平均值 maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), training_data.sum(axis=0) / training_data.shape[0] # 对数据进行归一化处理 for i in range(feature_num): #print(maximums[i], minimums[i], avgs[i]) data[:, i] = (data[:, i] - minimums[i]) / (maximums[i] - minimums[i]) # 训练集和测试集的划分比例 training_data = data[:offset] test_data = data[offset:] return training_data, test_data # In[81]: # 获取数据 training_data, test_data = load_data() x = training_data[:, :-1] y = training_data[:, -1:] # ## 模型设计 # # 模型设计是深度学习模型关键要素之一,也称为网络结构设计,相当于模型的假设空间,即实现模型“前向计算”(从输入到输出)的过程。 # # 如果将输入特征和输出预测值均以向量表示,输入特征$x$有13个分量,$y$有1个分量,那么参数权重的形状(shape)是$13\times1$。 # ## 训练过程 # # 上述计算过程描述了如何构建神经网络,通过神经网络完成预测值和损失函数的计算。接下来介绍如何求解参数$w$和$b$的数值,这个过程也称为模型训练过程。训练过程是深度学习模型的关键要素之一,其目标是让定义的损失函数$Loss$尽可能的小,也就是说找到一个参数解$w$和$b$,使得损失函数取得极小值。 # # ### 梯度下降法 # # 在现实中存在大量的函数正向求解容易,但反向求解较难,被称为单向函数,这种函数在密码学中有大量的应用。密码锁的特点是可以迅速判断一个密钥是否是正确的(已知$x$,求$y$很容易),但是即使获取到密码锁系统,无法破解出正确的密钥是什么(已知$y$,求$x$很难)。 # # 这种情况特别类似于一位想从山峰走到坡谷的盲人,他看不见坡谷在哪(无法逆向求解出$Loss$导数为0时的参数值),但可以伸脚探索身边的坡度(当前点的导数值,也称为梯度)。那么,求解Loss函数最小值可以这样实现:从当前的参数取值,一步步的按照下坡的方向下降,直到走到最低点。这就是“梯度下降法”。 # In[161]: import numpy as np def sigmoid(x): # sigmoid激活函数 return 1/(1+np.exp(-x)) def dsigmoid(x): # sigmoid激活函数的导数 return x*(1-x) class Network(object): def __init__(self, num_of_weights,hidden_sum): # 随机产生w的初始值 # 为了保持程序每次运行结果的一致性,此处设置固定的随机数种子 np.random.seed(0) self.w_1 = np.random.randn(num_of_weights, hidden_sum) # 第一个全连接层的网络参数 self.b_1 = np.zeros(hidden_sum) self.w_2 = np.random.randn(hidden_sum,1) # 第二个全连接层的网络参数 self.b_2 = 0. def forward(self, x): z =
np.dot(x, self.w_1)
numpy.dot
import numpy as np from numpy.linalg import norm from .Line import Line class Plane: """Class to represent planes in a three dimensional space. Documentation obtained from: http://commons.apache.org/proper/commons-math /apidocs/org/apache/commons/math4/geometry/euclidean/threed/Plane.html Attributes ---------- u : array-like First vector of the plane frame (in plane). v : array-like Second vector of the plane frame (in plane). w : array-like Third vector of the plane frame (plane normal). origin : array-like Origin of the plane frame. origin_offset : float Offset of the origin with respect to the plane. tolerance : float Tolerance below which points are considered identical. """ def __init__(self, normal=None, tolerance=None, p=None, plane=None, p1=None, p2=None, p3=None): """Function to build a plane normal to a given direction and containing the origin. If p is specified, the plane contains the point. If plane is specified, makes a copy of the plane. Parameters ---------- normal : array-like Normal direction to the plane. tolerance : float Tolerance below which points are considered identical. p : array-like Point belonging to the plane. plane : Plane Plane to copy. p1 : array-like Point belonging to the plane. p2 : array-like Point belonging to the plane. p3 : array-like Point belonging to the plane. Raises ------ Exception If norm is zero. """ if plane is None and normal is not None and tolerance is not None: n = norm(normal) if n < 1e-10: raise Exception("Norm is zero!") # Third vector of the plane frame (plane normal). self.w = normal / n # Tolerance below which points are considered identical. self.tolerance = tolerance # Offset of the origin with respect to the plane. self.origin_offset = -np.dot(p, self.w) if p is not None else 0 # Origin of the plane frame. self.origin = -self.origin_offset * self.w # First vector of the plane frame (in plane). self.u = self.orthogonal(self.w) # Second vector of the plane frame (in plane). self.v = np.cross(self.w, self.u) elif plane is not None: # Offset of the origin with respect to the plane. self.origin_offset = plane.origin_offset # Origin of the plane frame. self.origin = plane.origin # First vector of the plane frame (in plane). self.u = plane.u # Second vector of the plane frame (in plane). self.v = plane.v # Third vector of the plane frame (plane normal). self.w = plane.w # Tolerance below which points are considered identical. self.tolerance = plane.tolerance elif p1 is not None and p2 is not None and p3 is not None and \ tolerance is not None: v1 =
np.array(p1, dtype=float)
numpy.array
# -*- coding: utf-8 -*- # Copyright 2019 the HERA Project # Licensed under the MIT License import warnings import pytest import numpy as np from copy import deepcopy import os import sys import shutil from scipy import constants, interpolate from pyuvdata import UVCal, UVData from hera_sim.interpolators import Beam from hera_sim import DATA_PATH as HS_DATA_PATH from hera_sim import noise from uvtools import dspec from hera_cal import io, datacontainer from hera_cal import vis_clean from hera_cal.vis_clean import VisClean from hera_cal.data import DATA_PATH from hera_cal import frf import glob import copy # test flagging utility funtions def test_truncate_flagged_edges(): Nfreqs = 64 Ntimes = 60 data_in = np.outer(np.arange(1, Ntimes + 1), np.arange(1, Nfreqs + 1)) weights_in = np.abs(data_in).astype(float) data_in = data_in + .3j * data_in # flag channel 30 weights_in[:, 30] = 0. # flag last channel weights_in[:, -1] = 0. # flag last two integrations weights_in[-2:, :] = 0. times = np.arange(60) * 10. freqs = np.arange(64) * 100e3 # test freq truncation xout, dout, wout, edges, _ = vis_clean.truncate_flagged_edges(data_in, weights_in, freqs, ax='freq') assert np.all(np.isclose(xout, freqs[:-1])) assert np.all(np.isclose(dout, data_in[:, :-1])) assert np.all(np.isclose(wout, weights_in[:, :-1])) assert edges == [(0, 1)] # test time truncation xout, dout, wout, edges, _ = vis_clean.truncate_flagged_edges(data_in, weights_in, times, ax='time') assert np.all(np.isclose(xout, times[:-2])) assert np.all(np.isclose(dout, data_in[:-2, :])) assert np.all(np.isclose(wout, weights_in[:-2, :])) assert edges == [(0, 2)] # test truncating both. xout, dout, wout, edges, _ = vis_clean.truncate_flagged_edges(data_in, weights_in, (times, freqs), ax='both') assert np.all(np.isclose(xout[0], times[:-2])) assert np.all(np.isclose(xout[1], freqs[:-1])) assert np.all(np.isclose(dout, data_in[:-2, :-1])) assert np.all(np.isclose(wout, weights_in[:-2, :-1])) assert edges == [[(0, 2)], [(0, 1)]] def test_restore_flagged_edges(): Nfreqs = 64 Ntimes = 60 data_in = np.outer(np.arange(1, Ntimes + 1), np.arange(1, Nfreqs + 1)) weights_in = np.abs(data_in).astype(float) data_in = data_in + .3j * data_in # flag channel 30 weights_in[:, 30] = 0. # flag last channel weights_in[:, -1] = 0. # flag last two integrations weights_in[-2:, :] = 0. times = np.arange(60) * 10. freqs = np.arange(64) * 100e3 # test freq truncation xout, dout, wout, edges, _ = vis_clean.truncate_flagged_edges(data_in, weights_in, freqs, ax='freq') wrest = vis_clean.restore_flagged_edges(xout, wout, edges) assert np.allclose(weights_in[:, :-1], wrest[:, :-1]) assert np.allclose(wrest[:, -1], 0.0) xout, dout, wout, edges, _ = vis_clean.truncate_flagged_edges(data_in, weights_in, times, ax='time') wrest = vis_clean.restore_flagged_edges(xout, wout, edges, ax='time') assert np.allclose(wout, wrest[:-2, :]) assert np.allclose(wrest[-2:, :], 0.0) xout, dout, wout, edges, _ = vis_clean.truncate_flagged_edges(data_in, weights_in, (times, freqs), ax='both') wrest = vis_clean.restore_flagged_edges(xout, wout, edges, ax='both') assert np.allclose(wrest[-2:, :], 0.0) assert np.allclose(wrest[:, -1], 0.0) assert np.allclose(wout, wrest[:-2, :-1]) def test_find_discontinuity_edges(): assert vis_clean.find_discontinuity_edges([0, 1, 4, 9]) == [(0, 2), (2, 3), (3, 4)] assert vis_clean.find_discontinuity_edges([0, 1, 2, 4, 5, 6, 7, 9, 11, 12]) == [(0, 3), (3, 7), (7, 8), (8, 10)] def test_flag_rows_with_flags_within_edge_distance(): Nfreqs = 64 Ntimes = 60 weights_in = np.outer(np.arange(1, Ntimes + 1), np.arange(1, Nfreqs + 1)) weights_in[32, 2] = 0. weights_in[33, 12] = 0. weights_in[2, 30] = 0. weights_in[-10, 20] = 0. freqs = np.arange(Nfreqs) * 100e3 # under the above flagging pattern # freq flagging with min_flag_edge_distance=2 yields 32nd integration flagged only. wout = vis_clean.flag_rows_with_flags_within_edge_distance(freqs, weights_in, min_flag_edge_distance=3, ax='freq') for i in range(wout.shape[0]): if i == 32: assert np.all(np.isclose(wout[i], 0.0)) else: assert np.all(np.isclose(wout[i], weights_in[i])) # extending edge_distance to 12 should yield 33rd integration being flagged as well. wout = vis_clean.flag_rows_with_flags_within_edge_distance(freqs, weights_in, min_flag_edge_distance=13, ax='freq') for i in range(wout.shape[0]): if i == 32 or i == 33: assert np.all(np.isclose(wout[i], 0.0)) else: assert np.all(np.isclose(wout[i], weights_in[i])) # now do time axis. 30th channel should be flagged for this case. wout = vis_clean.flag_rows_with_flags_within_edge_distance(freqs, weights_in, min_flag_edge_distance=3, ax='time') for i in range(wout.shape[1]): if i == 30: assert np.all(np.isclose(wout[:, i], 0.0)) else: assert np.all(np.isclose(wout[:, i], weights_in[:, i])) # 30th and 20th channels should end up flagged for this case. times = np.arange(Ntimes) * 10. wout = vis_clean.flag_rows_with_flags_within_edge_distance(times, weights_in, min_flag_edge_distance=11, ax='time') for i in range(wout.shape[1]): if i == 30 or i == 20: assert np.all(np.isclose(wout[:, i], 0.0)) else: assert np.all(np.isclose(wout[:, i], weights_in[:, i])) # now do both wout = vis_clean.flag_rows_with_flags_within_edge_distance([times, freqs], weights_in, min_flag_edge_distance=(3, 3), ax='both') for i in range(wout.shape[1]): if i == 30: assert np.all(np.isclose(wout[:, i], 0.0)) for i in range(wout.shape[0]): if i == 32: assert np.all(np.isclose(wout[i], 0.0)) def test_flag_rows_with_flags_within_edge_distance_with_breaks(): Nfreqs = 64 Ntimes = 60 freqs = np.hstack([np.arange(23), 30 + np.arange(24), 58 + np.arange(17)]) * 100e3 + 150e6 # freq axis with discontinuities at 23 and 47 integrations. times = np.hstack([np.arange(20) * 11., 41 * 11. + np.arange(27) * 11., 200 * 11. + np.arange(13) * 11.]) # time axis with discontinuities at 29 abd 47 integrations weights_in = np.outer(np.arange(1, Ntimes + 1), np.arange(1, Nfreqs + 1)) # frequency direction and time direction separately. weights_in[2, 30] = 0. # time 2 should not get flagged weights_in[21, 48] = 0. # time 21 should get flagged weights_in[55, 46] = 0. # time 55 should get flagged weights_in[25, -2] = 0. # time 25 should get flagged wout = vis_clean.flag_rows_with_flags_within_edge_distance(freqs, weights_in, min_flag_edge_distance=3, ax='freq') assert list(np.where(np.all(np.isclose(wout, 0.), axis=1))[0]) == [21, 25, 55] weights_in[22, 30] = 0. # channel 30 should be flagged # channel 48 will also be flagged. wout = vis_clean.flag_rows_with_flags_within_edge_distance(times, weights_in, min_flag_edge_distance=3, ax='time') assert list(np.where(np.all(np.isclose(wout, 0.), axis=0))[0]) == [30, 48] weights_in = np.outer(np.arange(1, Ntimes + 1), np.arange(1, Nfreqs + 1)) # both directions weights_in[22, 30] = 0. # time 2 should not get flagged weights_in[55, 46] = 0. # time 55 should get flagged weights_in[25, -2] = 0. # time 25 should get flagged weights_in[22, 30] = 0. # channel 30 should be flagged wout = vis_clean.flag_rows_with_flags_within_edge_distance([times, freqs], weights_in, min_flag_edge_distance=[2, 3], ax='both') assert list(np.where(np.all(np.isclose(wout, 0.), axis=0))[0]) == [30] assert list(np.where(np.all(np.isclose(wout, 0.), axis=1))[0]) == [25, 55] def test_flag_rows_with_contiguous_flags(): Nfreqs = 64 Ntimes = 60 weights_in = np.outer(np.arange(1, Ntimes + 1), np.arange(1, Nfreqs + 1)) weights_in[32, 2:12] = 0. weights_in[35, 12:14] = 0. weights_in[2:12, 30] = 0. weights_in[-10:-8, 20] = 0. wout = vis_clean.flag_rows_with_contiguous_flags(weights_in, max_contiguous_flag=8, ax='freq') for i in range(wout.shape[0]): if i == 32: assert np.all(np.isclose(wout[i], 0.0)) else: assert np.all(np.isclose(wout[i], weights_in[i])) # extending edge_distance to 12 should yield 33rd integration being flagged as well. wout = vis_clean.flag_rows_with_contiguous_flags(weights_in, max_contiguous_flag=2, ax='freq') for i in range(wout.shape[0]): if i == 32 or i == 35: assert np.all(np.isclose(wout[i], 0.0)) else: assert np.all(np.isclose(wout[i], weights_in[i])) # now do time axis. 30th channel should be flagged for this case. wout = vis_clean.flag_rows_with_contiguous_flags(weights_in, max_contiguous_flag=8, ax='time') for i in range(wout.shape[1]): if i == 30: assert np.all(np.isclose(wout[:, i], 0.0)) else: assert np.all(np.isclose(wout[:, i], weights_in[:, i])) # 30th and 20th channels should end up flagged for this case. wout = vis_clean.flag_rows_with_contiguous_flags(weights_in, max_contiguous_flag=2, ax='time') for i in range(wout.shape[1]): if i == 30 or i == 20: assert np.all(np.isclose(wout[:, i], 0.0)) else: assert np.all(np.isclose(wout[:, i], weights_in[:, i])) # now do both wout = vis_clean.flag_rows_with_contiguous_flags(weights_in, max_contiguous_flag=(3, 3), ax='both') for i in range(wout.shape[1]): if i == 30: assert np.all(np.isclose(wout[:, i], 0.0)) for i in range(wout.shape[0]): if i == 32: assert np.all(np.isclose(wout[i], 0.0)) def test_get_max_contiguous_flag_from_filter_periods(): Nfreqs = 64 Ntimes = 60 times = np.arange(60) * 10. freqs = np.arange(64) * 100e3 filter_centers = [[0.], [0.]] filter_half_widths = [[1 / (3. * 10)], [1 / (100e3 * 2)]] mcf = vis_clean.get_max_contiguous_flag_from_filter_periods(freqs, filter_centers[1], filter_half_widths[1]) assert mcf == 2 mcf = vis_clean.get_max_contiguous_flag_from_filter_periods(times, filter_centers[0], filter_half_widths[0]) assert mcf == 3 mcf = vis_clean.get_max_contiguous_flag_from_filter_periods((times, freqs), filter_centers, filter_half_widths) assert tuple(mcf) == (3, 2) # test assertion errors pytest.raises(ValueError, vis_clean.get_max_contiguous_flag_from_filter_periods, [1.], [0.], [.5]) pytest.raises(ValueError, vis_clean.get_max_contiguous_flag_from_filter_periods, [[1.], [0.]], [[0.], [0.]], [[.5], [.5]]) def test_flag_model_rms(): Nfreqs = 64 Ntimes = 60 times = np.arange(60) * 10. freqs = np.arange(64) * 100e3 w = np.ones((Ntimes, Nfreqs), dtype=bool) d = np.random.randn(Ntimes, Nfreqs) * 1e-3 + 1j * np.random.randn(Ntimes, Nfreqs) * 1e-3 d += np.ones_like(d) * 100 d[30, 12] = 3.12315132e6 w[30, 12] = 0. mdl = np.ones_like(d) * 100 mdl[30, 24] = 1e6 skipped = np.zeros_like(mdl, dtype=bool) skipped = vis_clean.flag_model_rms(skipped, d, w, mdl, ax='freq') for i in range(Ntimes): if i == 30: assert np.all(skipped[i]) else: assert np.all(~skipped[i]) skipped = np.zeros_like(mdl, dtype=bool) skipped = vis_clean.flag_model_rms(skipped, d, w, mdl, ax='time') for i in range(Ntimes): if i == 24: assert np.all(skipped[:, i]) else: assert np.all(~skipped[:, i]) skipped = np.zeros_like(mdl, dtype=bool) skipped = vis_clean.flag_model_rms(skipped, d, w, mdl, ax='both') for i in range(Nfreqs): if i == 24: assert np.all(skipped[:, i]) else: assert ~np.all(skipped[:, i]) for i in range(Ntimes): if i == 30: assert np.all(skipped[i]) else: assert ~np.all(skipped[i]) @pytest.mark.filterwarnings("ignore:The default for the `center` keyword has changed") @pytest.mark.filterwarnings("ignore:It seems that the latitude and longitude are in radians") class Test_VisClean(object): def test_init(self): # test basic init fname = os.path.join(DATA_PATH, "zen.2458043.40141.xx.HH.XRAA.uvh5") V = VisClean(fname, filetype='uvh5') assert not hasattr(V, 'data') V.read(bls=[(24, 25, 'ee')]) assert hasattr(V, 'data') assert hasattr(V, 'antpos') assert isinstance(V.hd, io.HERAData) assert isinstance(V.hd.data_array, np.ndarray) # test basic init w/ uvh5 fname = os.path.join(DATA_PATH, 'zen.2458098.43124.subband.uvh5') V = VisClean(fname, filetype='uvh5') assert not hasattr(V, 'data') V.read(bls=[(13, 14, 'ee')]) assert set(V.hd.ant_1_array) == set([13]) assert isinstance(V.hd, io.HERAData) assert isinstance(V.hd.data_array, np.ndarray) # test input cal fname = os.path.join(DATA_PATH, 'zen.2458043.12552.xx.HH.uvORA') uvc = io.HERACal(os.path.join(DATA_PATH, 'zen.2458043.12552.xx.HH.uvORA.abs.calfits')) gains, _, _, _ = uvc.read() V1 = VisClean(fname, filetype='miriad') bl = (52, 53, 'ee') V1.read(bls=[bl]) V2 = VisClean(fname, filetype='miriad', input_cal=uvc) V2.read(bls=[bl]) g = gains[(bl[0], 'Jee')] * gains[(bl[1], 'Jee')].conj() assert np.allclose((V1.data[bl] / g)[30, 30], V2.data[bl][30, 30]) V2.apply_calibration(V2.hc, unapply=True) assert np.allclose(V1.data[bl][30, 30], V2.data[bl][30, 30], atol=1e-5) # test soft copy V1.hello = 'hi' V1.hello_there = 'bye' V1.foo = 'bar' V3 = V1.soft_copy(references=["hello*"]) assert hex(id(V1.data[(52, 53, 'ee')])) == hex(id(V3.data[(52, 53, 'ee')])) assert hasattr(V3, 'hello') assert hasattr(V3, 'hello_there') assert not hasattr(V3, 'foo') assert V3.__class__ == VisClean # test clear V1.clear_containers() assert np.all([len(getattr(V1, c)) == 0 for c in ['data', 'flags', 'nsamples']]) V2.clear_calibration() assert not hasattr(V2, 'hc') @pytest.mark.filterwarnings("ignore:Selected polarization values are not evenly spaced") def test_read_write(self): # test read data can be turned off for uvh5 fname = os.path.join(DATA_PATH, 'zen.2458098.43124.subband.uvh5') V = VisClean(fname, filetype='uvh5') V.read(read_data=False) assert set(V.hd.ant_1_array) == set([1, 11, 12, 13, 14]) # test read-write-read V.read() V.write_data(V.data, "./ex.uvh5", overwrite=True, filetype='uvh5', extra_attrs=dict(vis_units='Jy')) V2 = VisClean("./ex.uvh5", filetype='uvh5') V2.read() assert V2.hd.vis_units == 'Jy' assert 'Thisfilewasproducedbythefunction' in V2.hd.history.replace('\n', '').replace(' ', '') V.hd.history, V2.hd.history, V2.hd.vis_units = '', '', V.hd.vis_units if hasattr(V.hd, "filename"): # make sure filename attributes are what we're expecting assert V.hd.filename == ["zen.2458098.43124.subband.uvh5"] assert V2.hd.filename == ["ex.uvh5"] V.hd.filename = V2.hd.filename assert V.hd == V2.hd os.remove("./ex.uvh5") # exceptions pytest.raises(ValueError, V.write_data, V.data, 'foo', filetype='what') # test write on subset of data V.read(read_data=True) data = datacontainer.DataContainer(dict([(k, V.data[k]) for k in list(V.data.keys())[:2]])) V.write_data(data, "ex.uvh5", overwrite=True, filetype='uvh5') assert os.path.exists("ex.uvh5") os.remove('ex.uvh5') def test_fourier_filter(self): fname = os.path.join(DATA_PATH, "zen.2458043.40141.xx.HH.XRAA.uvh5") V = VisClean(fname, filetype='uvh5') V.read() # test arg errors k = (24, 25, 'ee') fc = [0.] fw = [100e-9] ff = [1e-9] fwt = [1e-3] assert pytest.raises(ValueError, V.fourier_filter, keys=[k], overwrite=True, filter_centers=fc, filter_half_widths=fw, suppression_factors=ff, ax='height', mode='dayenu', fitting_options=None) V.fourier_filter(keys=[k], filter_centers=fc, filter_half_widths=fw, suppression_factors=ff, ax='freq', mode='dayenu', output_prefix='clean', zeropad=10, overwrite=True, max_contiguous_edge_flags=20) # this line is repeated to cover the overwrite skip V.fourier_filter(keys=[k], filter_centers=fc, filter_half_widths=fw, suppression_factors=ff, max_contiguous_edge_flags=20, ax='freq', mode='dayenu', zeropad=10, output_prefix='clean', overwrite=False) assert np.all([V.clean_info[k][(0, V.Nfreqs)]['status']['axis_1'][i] == 'success' for i in V.clean_info[k][(0, V.Nfreqs)]['status']['axis_1']]) # now do a time filter V.fourier_filter(keys=[k], filter_centers=fc, filter_half_widths=fwt, suppression_factors=ff, overwrite=True, ax='time', mode='dayenu', zeropad=10, max_contiguous_edge_flags=20) assert V.clean_info[k][(0, V.Nfreqs)]['status']['axis_0'][0] == 'skipped' assert V.clean_info[k][(0, V.Nfreqs)]['status']['axis_0'][3] == 'success' # check that clean resid is equal to zero in flagged channels assert np.all(V.clean_resid[(24, 25, 'ee')][V.clean_flags[(24, 25, 'ee')] | V.flags[(24, 25, 'ee')]] == 0.) assert np.any(V.clean_resid[(24, 25, 'ee')][~(V.clean_flags[(24, 25, 'ee')] | V.flags[(24, 25, 'ee')])] != 0.) assert np.all(V.clean_model[(24, 25, 'ee')][V.clean_flags[(24, 25, 'ee')]] == 0.) assert np.any(V.clean_model[(24, 25, 'ee')][~V.clean_flags[(24, 25, 'ee')]] != 0.) # check that filtered_data is the same in channels that were not flagged atol = 1e-6 * np.mean(np.abs(V.data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')]]) ** 2.) ** .5 assert np.all(np.isclose(V.clean_data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')] & ~V.clean_flags[(24, 25, 'ee')]], V.data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')] & ~V.clean_flags[(24, 25, 'ee')]], rtol=0., atol=atol)) # raise errors. assert pytest.raises(ValueError, V.fourier_filter, filter_centers=[fc, fc], ax='both', filter_half_widths=[fwt, fw], suppression_factors=[ff, ff], mode='dayenu', zeropad=0, overwrite=True) assert pytest.raises(ValueError, V.fourier_filter, filter_centers=[fc, fc], ax='both', filter_half_widths=[fwt, fw], suppression_factors=[ff, ff], overwrite=True, mode='dayenu', zeropad=['Mathematical Universe', 'Crazy Universe']) # check 2d filter. V.fourier_filter(filter_centers=[fc, fc], filter_half_widths=[fwt, fw], suppression_factors=[ff, ff], mode='dayenu', overwrite=True, zeropad=[20, 10], ax='both', max_contiguous_edge_flags=100) assert V.clean_info[k][(0, V.Nfreqs)]['status']['axis_0'][0] == 'skipped' assert V.clean_info[k][(0, V.Nfreqs)]['status']['axis_0'][3] == 'success' # check that clean resid is equal to zero in flagged channels assert np.all(V.clean_resid[(24, 25, 'ee')][V.clean_flags[(24, 25, 'ee')] | V.flags[(24, 25, 'ee')]] == 0.) assert np.any(V.clean_resid[(24, 25, 'ee')][~(V.clean_flags[(24, 25, 'ee')] | V.flags[(24, 25, 'ee')])] != 0.) assert np.all(V.clean_model[(24, 25, 'ee')][V.clean_flags[(24, 25, 'ee')]] == 0.) assert np.any(V.clean_model[(24, 25, 'ee')][~V.clean_flags[(24, 25, 'ee')]] != 0.) # check that filtered_data is the same in channels that were not flagged atol = 1e-6 * np.mean(np.abs(V.data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')]]) ** 2.) ** .5 assert np.allclose(V.clean_data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')] & ~V.clean_flags[(24, 25, 'ee')]], V.data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')] & ~V.clean_flags[(24, 25, 'ee')]], rtol=0., atol=atol) @pytest.mark.filterwarnings("ignore:.*dspec.vis_filter will soon be deprecated") def test_vis_clean_dayenu(self): fname = os.path.join(DATA_PATH, "zen.2458043.40141.xx.HH.XRAA.uvh5") V = VisClean(fname, filetype='uvh5') V.read() # most coverage is in dspec. Check that args go through here. # similar situation for test_vis_clean. V.vis_clean(keys=[(24, 25, 'ee'), (24, 25, 'ee')], ax='freq', overwrite=True, mode='dayenu') # check that clean resid is equal to zero in flagged channels assert np.all(V.clean_resid[(24, 25, 'ee')][V.clean_flags[(24, 25, 'ee')] | V.flags[(24, 25, 'ee')]] == 0.) assert np.any(V.clean_resid[(24, 25, 'ee')][~(V.clean_flags[(24, 25, 'ee')] | V.flags[(24, 25, 'ee')])] != 0.) assert np.all(V.clean_model[(24, 25, 'ee')][V.clean_flags[(24, 25, 'ee')]] == 0.) assert np.any(V.clean_model[(24, 25, 'ee')][~V.clean_flags[(24, 25, 'ee')]] != 0.) # check that filtered_data is the same in channels that were not flagged # had to set atol=1e-6 here so it won't fail on travis (it runs fine on my laptop). There are some funny # numpy issues. atol = 1e-6 * np.mean(np.abs(V.data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')]]) ** 2.) ** .5 assert np.all(np.isclose(V.clean_data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')] & ~V.clean_flags[(24, 25, 'ee')]], V.data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')] & ~V.clean_flags[(24, 25, 'ee')]], atol=atol, rtol=0.)) assert np.all([V.clean_info[(24, 25, 'ee')][(0, V.Nfreqs)]['status']['axis_1'][i] == 'success' for i in V.clean_info[(24, 25, 'ee')][(0, V.Nfreqs)]['status']['axis_1']]) assert pytest.raises(AssertionError, V.vis_clean, keys=[(24, 25, 'ee')], ax='time', max_frate=None, mode='dayenu') assert pytest.raises(ValueError, V.vis_clean, keys=[(24, 25, 'ee')], ax='time', max_frate='arglebargle', mode='dayenu') # cover no overwrite = False skip lines. V.vis_clean(keys=[(24, 25, 'ee'), (24, 25, 'ee')], ax='freq', overwrite=False, mode='dayenu') V.vis_clean(keys=[(24, 25, 'ee'), (24, 25, 'ee')], ax='time', overwrite=True, max_frate=1.0, mode='dayenu') assert V.clean_info[(24, 25, 'ee')][(0, V.Nfreqs)]['status']['axis_0'][0] == 'skipped' assert V.clean_info[(24, 25, 'ee')][(0, V.Nfreqs)]['status']['axis_0'][3] == 'success' # check that clean resid is equal to zero in flagged channels assert np.all(V.clean_resid[(24, 25, 'ee')][V.clean_flags[(24, 25, 'ee')] | V.flags[(24, 25, 'ee')]] == 0.) assert np.any(V.clean_resid[(24, 25, 'ee')][~(V.clean_flags[(24, 25, 'ee')] | V.flags[(24, 25, 'ee')])] != 0.) assert np.all(V.clean_model[(24, 25, 'ee')][V.clean_flags[(24, 25, 'ee')]] == 0.) assert np.any(V.clean_model[(24, 25, 'ee')][~V.clean_flags[(24, 25, 'ee')]] != 0.) # check that filtered_data is the same in channels that were not flagged atol = 1e-6 * np.mean(np.abs(V.data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')]]) ** 2.) ** .5 assert np.allclose(V.clean_data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')] & ~V.clean_flags[(24, 25, 'ee')]], V.data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')] & ~V.clean_flags[(24, 25, 'ee')]], atol=atol, rtol=0.) V.vis_clean(keys=[(24, 25, 'ee'), (24, 25, 'ee')], ax='both', overwrite=True, max_frate=1.0, mode='dayenu') assert np.all(['success' == V.clean_info[(24, 25, 'ee')][(0, V.Nfreqs)]['status']['axis_1'][i] for i in V.clean_info[(24, 25, 'ee')][(0, V.Nfreqs)]['status']['axis_1']]) assert V.clean_info[(24, 25, 'ee')][(0, V.Nfreqs)]['status']['axis_0'][0] == 'skipped' assert V.clean_info[(24, 25, 'ee')][(0, V.Nfreqs)]['status']['axis_0'][3] == 'success' # check that clean resid is equal to zero in flagged channels assert np.all(V.clean_resid[(24, 25, 'ee')][V.clean_flags[(24, 25, 'ee')] | V.flags[(24, 25, 'ee')]] == 0.) assert np.any(V.clean_resid[(24, 25, 'ee')][~(V.clean_flags[(24, 25, 'ee')] | V.flags[(24, 25, 'ee')])] != 0.) assert np.all(V.clean_model[(24, 25, 'ee')][V.clean_flags[(24, 25, 'ee')]] == 0.) assert np.any(V.clean_model[(24, 25, 'ee')][~V.clean_flags[(24, 25, 'ee')]] != 0.) # check that filtered_data is the same in channels that were not flagged atol = 1e-6 * np.mean(np.abs(V.data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')]]) ** 2.) ** .5 assert np.allclose(V.clean_data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')] & ~V.clean_flags[(24, 25, 'ee')]], V.data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')] & ~V.clean_flags[(24, 25, 'ee')]], atol=atol, rtol=0.) # check whether dayenu filtering axis 1 and then axis 0 is the same as dayenu filtering axis 1 and then filtering the resid. # note that filtering axis orders do not commute, we filter axis 1 (foregrounds) before filtering cross-talk. V.vis_clean(keys=[(24, 25, 'ee'), (24, 25, 'ee')], ax='both', overwrite=True, max_frate=1.0, mode='dayenu') V.vis_clean(keys=[(24, 25, 'ee'), (24, 25, 'ee')], ax='freq', overwrite=True, max_frate=1.0, output_prefix='clean1', mode='dayenu') V.vis_clean(keys=[(24, 25, 'ee'), (24, 25, 'ee')], ax='time', overwrite=True, max_frate=1.0, data=V.clean1_resid, output_prefix='clean0', mode='dayenu') assert np.all(np.isclose(V.clean_resid[(24, 25, 'ee')], V.clean0_resid[(24, 25, 'ee')])) @pytest.mark.filterwarnings("ignore:.*dspec.vis_filter will soon be deprecated") def test_vis_clean_dpss(self): # Relax atol=1e-6 for clean_data and data equalities. there may be some numerical # issues going on. Notebook tests show that distributing minus signs has # consequences. fname = os.path.join(DATA_PATH, "zen.2458043.40141.xx.HH.XRAA.uvh5") V = VisClean(fname, filetype='uvh5') V.read() # most coverage is in dspec. Check that args go through here. # similar situation for test_vis_clean. V.vis_clean(keys=[(24, 25, 'ee'), (24, 25, 'ee')], ax='freq', overwrite=True, mode='dpss_leastsq') # check that clean resid is equal to zero in flagged channels assert np.all(V.clean_resid[(24, 25, 'ee')][V.clean_flags[(24, 25, 'ee')] | V.flags[(24, 25, 'ee')]] == 0.) assert np.any(V.clean_resid[(24, 25, 'ee')][~(V.clean_flags[(24, 25, 'ee')] | V.flags[(24, 25, 'ee')])] != 0.) assert np.all(V.clean_model[(24, 25, 'ee')][V.clean_flags[(24, 25, 'ee')]] == 0.) assert np.any(V.clean_model[(24, 25, 'ee')][~V.clean_flags[(24, 25, 'ee')]] != 0.) # check that filtered_data is the same in channels that were not flagged atol = 1e-6 * np.mean(np.abs(V.data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')]]) ** 2.) ** .5 assert np.all(np.isclose(V.clean_data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')] & ~V.clean_flags[(24, 25, 'ee')]], V.data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')] & ~V.clean_flags[(24, 25, 'ee')]], atol=atol, rtol=0.)) assert np.all([V.clean_info[(24, 25, 'ee')][(0, V.Nfreqs)]['status']['axis_1'][i] == 'success' for i in V.clean_info[(24, 25, 'ee')][(0, V.Nfreqs)]['status']['axis_1']]) assert pytest.raises(AssertionError, V.vis_clean, keys=[(24, 25, 'ee')], ax='time', mode='dpss_leastsq') assert pytest.raises(ValueError, V.vis_clean, keys=[(24, 25, 'ee')], ax='time', max_frate='arglebargle', mode='dpss_leastsq') # cover no overwrite = False skip lines. V.vis_clean(keys=[(24, 25, 'ee'), (24, 25, 'ee')], ax='freq', overwrite=False, mode='dpss_leastsq') V.vis_clean(keys=[(24, 25, 'ee'), (24, 25, 'ee')], ax='time', overwrite=True, max_frate=1.0, mode='dpss_leastsq') assert V.clean_info[(24, 25, 'ee')][(0, V.Nfreqs)]['status']['axis_0'][0] == 'skipped' assert V.clean_info[(24, 25, 'ee')][(0, V.Nfreqs)]['status']['axis_0'][3] == 'success' # check that clean resid is equal to zero in flagged channels assert np.all(V.clean_resid[(24, 25, 'ee')][V.clean_flags[(24, 25, 'ee')] | V.flags[(24, 25, 'ee')]] == 0.) assert np.any(V.clean_resid[(24, 25, 'ee')][~(V.clean_flags[(24, 25, 'ee')] | V.flags[(24, 25, 'ee')])] != 0.) assert np.all(V.clean_model[(24, 25, 'ee')][V.clean_flags[(24, 25, 'ee')]] == 0.) assert np.any(V.clean_model[(24, 25, 'ee')][~V.clean_flags[(24, 25, 'ee')]] != 0.) # check that filtered_data is the same in channels that were not flagged atol = 1e-6 * np.mean(np.abs(V.data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')]]) ** 2.) ** .5 assert np.all(np.isclose(V.clean_data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')] & ~V.clean_flags[(24, 25, 'ee')]], V.data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')] & ~V.clean_flags[(24, 25, 'ee')]], atol=atol, rtol=0.)) V.vis_clean(keys=[(24, 25, 'ee'), (24, 25, 'ee')], ax='both', overwrite=True, max_frate=1.0, mode='dpss_leastsq') assert np.all(['success' == V.clean_info[(24, 25, 'ee')][(0, V.Nfreqs)]['status']['axis_1'][i] for i in V.clean_info[(24, 25, 'ee')][(0, V.Nfreqs)]['status']['axis_1']]) # check that clean resid is equal to zero in flagged channels assert np.all(V.clean_resid[(24, 25, 'ee')][V.clean_flags[(24, 25, 'ee')] | V.flags[(24, 25, 'ee')]] == 0.) assert np.any(V.clean_resid[(24, 25, 'ee')][~(V.clean_flags[(24, 25, 'ee')] | V.flags[(24, 25, 'ee')])] != 0.) assert np.all(V.clean_model[(24, 25, 'ee')][V.clean_flags[(24, 25, 'ee')]] == 0.) assert np.any(V.clean_model[(24, 25, 'ee')][~V.clean_flags[(24, 25, 'ee')]] != 0.) # check that filtered_data is the same in channels that were not flagged atol = 1e-6 * np.mean(np.abs(V.data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')]]) ** 2.) ** .5 assert np.all(np.isclose(V.clean_data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')] & ~V.clean_flags[(24, 25, 'ee')]], V.data[(24, 25, 'ee')][~V.flags[(24, 25, 'ee')] & ~V.clean_flags[(24, 25, 'ee')]], atol=atol, rtol=0.)) # run with flag_model_rms_outliers for ax in ['freq', 'time', 'both']: for k in V.flags: V.flags[k][:] = False V.data[k][:] = np.random.randn(*V.data[k].shape) + 1j * np.random.randn(*V.data[k].shape) # run with rms threshold < 1 which should lead to everything being flagged. V.vis_clean(keys=[(24, 25, 'ee'), (24, 25, 'ee')], ax=ax, overwrite=True, max_frate=1.0, mode='dpss_leastsq', flag_model_rms_outliers=True, model_rms_threshold=0.1) for k in [(24, 25, 'ee'), (24, 25, 'ee')]: assert np.all(V.clean_flags[k]) # now use a threshold which should not lead to any flags. V.vis_clean(keys=[(24, 25, 'ee'), (24, 25, 'ee')], ax=ax, overwrite=True, max_frate=1.0, mode='dpss_leastsq', flag_model_rms_outliers=True, model_rms_threshold=1e6) for k in [(24, 25, 'ee'), (24, 25, 'ee')]: assert not np.any(V.clean_flags[k]) def test_vis_clean_flag_options(self, tmpdir): # tests for time and frequency partial flagging. tmp_path = tmpdir.strpath template = os.path.join(DATA_PATH, "zen.2458043.40141.xx.HH.XRAA.uvh5") # first run flagging channels and frequencies fname_edgeflags = os.path.join(tmp_path, "zen.2458043.40141.xx.HH.XRAA.edgeflags.uvh5") fname_flagged = os.path.join(tmp_path, "zen.2458043.40141.xx.HH.XRAA.allflags.uvh5") hdt = io.HERAData(template) d, f, n = hdt.read() for k in d: f[k][:] = False f[k][:, 0] = True f[k][0, :] = True hdt.update(flags=f) hdt.write_uvh5(fname_edgeflags) for k in d: f[k][:] = True hdt.update(flags=f) hdt.write_uvh5(fname_flagged) V = VisClean(fname_flagged, filetype='uvh5') V.read() V.vis_clean(keys=[(24, 25, 'ee'), (24, 24, 'ee')], ax='freq', overwrite=True, skip_flagged_edges=True) # make sure if no unflagged channels exist, then the clean flags are all flagged. for k in V.clean_flags: assert np.all(V.clean_flags[k]) V.vis_clean(keys=[(24, 25, 'ee'), (24, 24, 'ee')], ax='freq', overwrite=True, skip_contiguous_flags=True) for k in V.clean_flags: assert np.all(V.clean_flags[k]) V.vis_clean(keys=[(24, 25, 'ee'), (24, 24, 'ee')], ax='time', overwrite=True, skip_contiguous_flags=True, max_frate=0.025) for k in V.clean_flags: assert np.all(V.clean_flags[k]) V.vis_clean(keys=[(24, 25, 'ee'), (24, 24, 'ee')], ax='both', overwrite=True, skip_contiguous_flags=True, max_frate=0.025) for k in V.clean_flags: assert np.all(V.clean_flags[k]) # now do file with some edge flags. Make sure the edge flags remain in clean_flags. V = VisClean(fname_edgeflags, filetype='uvh5') V.read() V.vis_clean(keys=[(24, 25, 'ee'), (24, 24, 'ee')], ax='freq', overwrite=True, skip_flagged_edges=True) for k in V.clean_flags: if not np.all(V.flags[k]): assert not np.all(V.clean_flags[k]) assert np.all(V.clean_flags[k][0]) assert np.all(V.clean_flags[k][:, 0]) V.vis_clean(keys=[(24, 25, 'ee'), (24, 24, 'ee')], ax='time', overwrite=True, skip_flagged_edges=True, max_frate=0.025) for k in V.clean_flags: if not np.all(V.flags[k]): assert not np.all(V.clean_flags[k]) assert np.all(V.clean_flags[k][0]) assert np.all(V.clean_flags[k][:, 0]) V.vis_clean(keys=[(24, 25, 'ee'), (24, 24, 'ee')], ax='both', overwrite=True, skip_flagged_edges=True, max_frate=0.025) for k in V.clean_flags: if not np.all(V.flags[k]): assert not np.all(V.clean_flags[k]) assert np.all(V.clean_flags[k][0]) assert np.all(V.clean_flags[k][:, 0]) # now try using skip_contiguous flag gaps. standoff = 1e9 / (np.median(np.diff(V.freqs))) max_frate = datacontainer.DataContainer({(24, 25, 'ee'): 2. / np.abs(np.median(np.diff(V.times)) * 3.6 * 24.), (24, 24, 'ee'): 1. / np.abs(2 * np.median(
np.diff(V.times)
numpy.diff
import numpy ''' compute angle (in degrees) for p0p1p2 corner Inputs: p0,p1,p2 - points in the form of [x,y] ''' def calc_angle(p0, p1, p2): v0 = numpy.array(p0) - numpy.array(p1) v1 =
numpy.array(p2)
numpy.array
############################## # Import necessary libraries # ############################## import numpy as np from scipy.optimize import fsolve ################################## # Define various math functions. # ################################## def norm(v): return np.sqrt(np.dot(v,v)) def S(z): return ( np.sqrt(z) - np.sin(np.sqrt(z)) ) / np.sqrt(z**3) def C(z): return ( 1 - np.cos(np.sqrt(z)) ) / z ###################################### # Define class for celestial bodies. # ###################################### # This works at the moment only for elliptical (generic) orbits. Fix this! class celestial_body: # This class assumes a reference coordinate system such that a large mass is situated at the origin. It might actually assume some more things. ####### Init ####### def __init__(self,mass,mu,semi_major_axis,eccentricity,inclination,longitude_ascending_node,argument_periapsis,true_anomaly_epoch): # Initialization of class using classical orbital elements a, e, i, Omega, omega, nu_0 self.semi_major_axis = semi_major_axis # a self.energy = - mu / ( 2.0 * self.semi_major_axis ) # E self.eccentricity = eccentricity # e if self.energy < 0: if self.eccentricity == 0: self.type = "circular" else: self.type = "elliptical" elif self.energy == 0: self.type = "parabolic" else: self.type = "hyperbolic" self.inclination = inclination # i if inclination == 0: self.planar == True else: self.planar == False if self.planar == False: self.longitude_ascending_node = longitude_ascending_node # Omega self.argument_periapsis = argument_periapsis # omega else: self.longitude_ascending_node = 0 self.argument_periapsis = 0 self.true_anomaly_epoch = true_anomaly_epoch # nu self.mass = mass # m self.parameter = semi_major_axis * (1 - eccentricity**2) # p if ( 0 <= self.true_anomaly_epoch ) and ( self.true_anomaly_epoch <= np.pi): self.eccentric_anomaly = np.arccos((self.eccentricity + np.cos(self.true_anomaly_epoch)) / (1 + self.eccentricity * np.cos(self.true_anomaly_epoch))) # E, at the moment the cases dont't cover everything. else: self.eccentric_anomaly = 2 * np.pi - np.arccos((self.eccentricity + np.cos(self.true_anomaly_epoch)) / (1 + self.eccentricity * np.cos(self.true_anomaly_epoch))) # E self.mean_anomaly = self.eccentric_anomaly - self.eccentricity * np.sin(self.eccentric_anomaly) # M self.mean_motion = np.sqrt(mu / self.semi_major_axis**3 ) # n self.period = 2 * np.pi / np.sqrt(mu) * np.sqrt(self.semi_major_axis**3) # T self.mu = mu # mu self.X = 0 # X for universal formulation of time of flight @classmethod def from_position_velocity(self,mass,mu,position,velocity): # Initialization of class using position and momentum # For this purpose we need to calculate various intermediate objects. Should we save them for later? Is it more clever to just use position and momentum all the time? h = np.cross(position,velocity) # Calculate angular momentum h if h != [0,0,0]: n = np.cross(np.array([0,0,1],float),h) # Calculate node vector e = 1.0 / mu * ((np.dot(velocity,velocity) - mu / norm(position)) * position - np.dot(position,velocity) * velocity) # Calculate eccentricity vector pointing in direction of perihelion p = np.dot(h,h) / mu # Is it better to just save the cosine of the angles? semi_major_axis = p / (1-np.dot(e,e)) eccentricity = norm(e) inclination = np.arccos(h[2] / norm(h)) if position[1] >= 0: longitude_ascending_node = np.arccos(n[0] / norm(n)) else: longitude_ascending_node = 2 * np.pi - np.arccos(n[0] / norm(n)) if e[2] >= 0: argument_periapsis = np.arccos(np.dot(n,e) / (norm(n) * norm(e))) else: argument_periapsis = 2 * np.pi - np.arccos(np.dot(n,e) / (norm(n) * norm(e))) if np.dot(position,velocity) >= 0: true_anomaly_epoch = np.arccos(np.dot(e,position) / (norm(e) * norm(position))) else: true_anomaly_epoch = 2 * np.pi - np.arccos(np.dot(e,position) / (norm(e) * norm(position))) body = celestial_body(mass,mu,semi_major_axis,eccentricity,inclination,longitude_ascending_node,argument_periapsis,true_anomaly_epoch) return body else: return celestial_object.initialize_collision_orbit(mass,mu,position,velocity) @classmethod def initialize_collision_orbit(self,mass,mu,position,velocity): pass ####### Export ####### def export_position_velocity(self): # Exports position and velocity of celestial body. How should time dependence be incorparated? Should it be a parameter for this function? r = self.parameter / ( 1 + self.eccentricity * np.cos(self.true_anomaly_epoch)) # The perifocal coordinate system uses coordinate axes P, Q, W in this order, where P points in the direction of the periapsis and Q is perpendicular in positive direction in the plane of the orbit. position_perifocal_system = np.array([r * np.cos(self.true_anomaly_epoch),r * np.sin(self.true_anomaly_epoch),0],float) velocity_perifocal_system = np.sqrt(self.mu / self.parameter) * np.array([-np.sin(self.true_anomaly_epoch),self.eccentricity + np.cos(self.true_anomaly_epoch),0],float) # Calculate the rotation matrix from perifocal to fixed frame. Bate says, one should avoid this technique. rotation_matrix = np.array([[np.cos(self.longitude_ascending_node) * np.cos(self.argument_periapsis) - np.sin(self.longitude_ascending_node) * np.sin(self.argument_periapsis) * np.cos(self.inclination) , - np.cos(self.longitude_ascending_node) * np.sin(self.argument_periapsis) - np.sin(self.longitude_ascending_node) * np.cos(self.argument_periapsis) * np.cos(self.inclination) , np.sin(self.longitude_ascending_node) * np.sin(self.inclination)],\ [np.sin(self.longitude_ascending_node) * np.cos(self.argument_periapsis) + np.cos(self.longitude_ascending_node) * np.sin(self.argument_periapsis) * np.cos(self.inclination) , - np.sin(self.longitude_ascending_node) * np.sin(self.argument_periapsis) + np.cos(self.longitude_ascending_node) * np.cos(self.argument_periapsis) * np.cos(self.inclination) , - np.cos(self.longitude_ascending_node) * np.sin(self.inclination)],\ [ np.sin(self.argument_periapsis) * np.sin(self.inclination) , np.cos(self.argument_periapsis) * np.sin(self.inclination) , np.cos(self.inclination)]\ ],float) position = np.dot(rotation_matrix,position_perifocal_system) velocity = np.dot(rotation_matrix,velocity_perifocal_system) return position, velocity def export_orbit(self,number_points): # Returns a list of three dimensional coordinates for the orbit. position = np.zeros( (number_points,3) ) interval = 2 * np.pi / number_points for i in range(number_points): position[i,:] = self.calculate_advance_in_true_anomaly(i * interval)[0] return np.vstack( (position,position[0,:]) ) ###### Advance along orbit ####### def advance_in_time(self,delta_t): # This method advances the object on its course by delta t in time. This means that it needs to translate the time difference into changes in the true anomaly at epoch and then add this number to the existing value. # delta_t should be small enough such that the body does not evolve more than one period. Is this necessary? # Update mean anomaly. Ignore full rotations. new_mean_anomaly = self.mean_motion * delta_t + self.mean_anomaly # Solve E-e*sin(E)=M numerically new_eccentric_anomaly = fsolve(lambda E : E - self.eccentricity * np.sin(E) -new_mean_anomaly,new_mean_anomaly) # Calculate new true anomaly at epoch if new_eccentric_anomaly <= np.pi: new_true_anomaly_epoch = np.arccos( ( np.cos(new_eccentric_anomaly) - self.eccentricity ) / ( 1 - self.eccentricity * np.cos(new_eccentric_anomaly))) else: new_true_anomaly_epoch = 2 * np.pi - np.arccos( ( np.cos(new_eccentric_anomaly) - self.eccentricity ) / ( 1 - self.eccentricity * np.cos(new_eccentric_anomaly))) # Update values of true anomaly at epoch and eccentric anomaly and mean anomaly self.true_anomaly_epoch = new_true_anomaly_epoch self.mean_anomaly = new_mean_anomaly self.eccentric_anomaly = new_eccentric_anomaly def t_in_dep_of_X(self, X): r_0, v_0 = self.export_postion_velocity() return 1 / np.sqrt(self.mu) * ( np.dot(r_0,v_0) /np.sqrt(self.mu) * X**2 * C(X) + ( 1 - norm(r_0) / self.semi_major_axis ) * X**3 * S(X) + norm(r_0) * X ) def advance_in_time_universal(self,delta_t): # This method advances the object on its course by delta t in time using the universal time of fligt formulation. This means it should be usable for all kinds of orbits. # Solve for new X new_X = fsolve(lambda X : self.t_in_dep_of_X(X) - delta_t,delta_t) def advance_in_true_anomaly(self,delta_nu): # This method increases the true anomaly by a given input. It can be used to find equi-distant-angle points on the orbit for visualization purposes. It also updates eccentric anomaly and mean anomaly. self.true_anomaly_epoch = self.true_anomaly_epoch + delta_nu if self.true_anomaly_epoch <= np.pi: self.eccentric_anomaly = np.arccos( ( np.cos(self.true_anomaly_epoch) + self.eccentricity ) / ( 1 + self.eccentricity * np.cos(self.true_anomaly_epoch))) else: self.eccentric_anomaly = 2 * np.pi - np.arccos( ( np.cos(self.true_anomaly_epoch) + self.eccentricity ) / ( 1 + self.eccentricity * np.cos(self.true_anomaly_epoch))) self.mean_anomaly = self.eccentric_anomaly - self.eccentricity * np.sin( self.eccentric_anomaly ) def calculate_advance_in_true_anomaly(self,delta_nu): # This method advances the object on its course by delta nu in true anomaly and returns the new position. It is useful for calculating points on the orbit without actually advancing the object itself. new_true_anomaly_epoch = self.true_anomaly_epoch + delta_nu r = self.parameter / ( 1 + self.eccentricity * np.cos(new_true_anomaly_epoch)) # The perifocal coordinate system uses coordinate axes P, Q, W in this order, where P points in the direction of the periapsis and Q is perpendicular in positive direction in the plane of the orbit. position_perifocal_system = np.array([r * np.cos(new_true_anomaly_epoch),r * np.sin(new_true_anomaly_epoch),0],float) velocity_perifocal_system = np.sqrt(self.mu / self.parameter) * np.array([-np.sin(new_true_anomaly_epoch),self.eccentricity + np.cos(new_true_anomaly_epoch),0],float) # Calculate the rotation matrix from perifocal to fixed frame. Bate says, one should avoid this technique. rotation_matrix = np.array([[np.cos(self.longitude_ascending_node) * np.cos(self.argument_periapsis) - np.sin(self.longitude_ascending_node) * np.sin(self.argument_periapsis) * np.cos(self.inclination) , - np.cos(self.longitude_ascending_node) * np.sin(self.argument_periapsis) - np.sin(self.longitude_ascending_node) * np.cos(self.argument_periapsis) * np.cos(self.inclination) , np.sin(self.longitude_ascending_node) * np.sin(self.inclination)],\ [np.sin(self.longitude_ascending_node) *
np.cos(self.argument_periapsis)
numpy.cos
""" Tests for direct function """ import numpy as np import pytest from cayenne.simulation import Simulation @pytest.mark.parametrize("algorithm", ["direct", "tau_leaping", "tau_adaptive"]) @pytest.mark.usefixtures("setup_basic", "setup_large") class TestSanitizeAlg: """ Sanity checks on Simulation class where simulations are attempted. """ def test_null(self, algorithm, setup_basic): species_names, rxn_names, V_r, V_p, X0, k = setup_basic k =
np.array([0.0, 0.0])
numpy.array
# Copyright 2017 Division of Medical Image Computing, German Cancer Research Center (DKFZ) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from builtins import range, zip import random import numpy as np from copy import deepcopy from scipy.ndimage import map_coordinates from scipy.ndimage.filters import gaussian_filter, gaussian_gradient_magnitude from scipy.ndimage.morphology import grey_dilation from skimage.transform import resize from scipy.ndimage.measurements import label as lb def generate_elastic_transform_coordinates(shape, alpha, sigma): n_dim = len(shape) offsets = [] for _ in range(n_dim): offsets.append(gaussian_filter((np.random.random(shape) * 2 - 1), sigma, mode="constant", cval=0) * alpha) tmp = tuple([np.arange(i) for i in shape]) coords = np.meshgrid(*tmp, indexing='ij') indices = [np.reshape(i + j, (-1, 1)) for i, j in zip(offsets, coords)] return indices def create_zero_centered_coordinate_mesh(shape): tmp = tuple([np.arange(i) for i in shape]) coords = np.array(np.meshgrid(*tmp, indexing='ij')).astype(float) for d in range(len(shape)): coords[d] -= ((np.array(shape).astype(float) - 1) / 2.)[d] return coords def convert_seg_image_to_one_hot_encoding(image, classes=None): ''' Takes as input an nd array of a label map (any dimension). Outputs a one hot encoding of the label map. Example (3D): if input is of shape (x, y, z), the output will ne of shape (n_classes, x, y, z) ''' if classes is None: classes = np.unique(image) out_image = np.zeros([len(classes)]+list(image.shape), dtype=image.dtype) for i, c in enumerate(classes): out_image[i][image == c] = 1 return out_image def elastic_deform_coordinates(coordinates, alpha, sigma): n_dim = len(coordinates) offsets = [] for _ in range(n_dim): offsets.append( gaussian_filter((np.random.random(coordinates.shape[1:]) * 2 - 1), sigma, mode="constant", cval=0) * alpha) offsets = np.array(offsets) indices = offsets + coordinates return indices def rotate_coords_3d(coords, angle_x, angle_y, angle_z): rot_matrix = np.identity(len(coords)) rot_matrix = create_matrix_rotation_x_3d(angle_x, rot_matrix) rot_matrix = create_matrix_rotation_y_3d(angle_y, rot_matrix) rot_matrix = create_matrix_rotation_z_3d(angle_z, rot_matrix) coords = np.dot(coords.reshape(len(coords), -1).transpose(), rot_matrix).transpose().reshape(coords.shape) return coords def rotate_coords_2d(coords, angle): rot_matrix = create_matrix_rotation_2d(angle) coords = np.dot(coords.reshape(len(coords), -1).transpose(), rot_matrix).transpose().reshape(coords.shape) return coords def scale_coords(coords, scale): return coords * scale def uncenter_coords(coords): shp = coords.shape[1:] coords = deepcopy(coords) for d in range(coords.shape[0]): coords[d] += (shp[d] - 1) / 2. return coords def interpolate_img(img, coords, order=3, mode='nearest', cval=0.0, is_seg=False): if is_seg and order != 0: unique_labels = np.unique(img) result = np.zeros(coords.shape[1:], img.dtype) for i, c in enumerate(unique_labels): res_new = map_coordinates((img == c).astype(float), coords, order=order, mode=mode, cval=cval) result[res_new >= 0.5] = c return result else: return map_coordinates(img.astype(float), coords, order=order, mode=mode, cval=cval).astype(img.dtype) def generate_noise(shape, alpha, sigma): noise = np.random.random(shape) * 2 - 1 noise = gaussian_filter(noise, sigma, mode="constant", cval=0) * alpha return noise def find_entries_in_array(entries, myarray): entries = np.array(entries) values = np.arange(np.max(myarray) + 1) lut = np.zeros(len(values), 'bool') lut[entries.astype("int")] = True return np.take(lut, myarray.astype(int)) def center_crop_3D_image(img, crop_size): center = np.array(img.shape) / 2. if type(crop_size) not in (tuple, list): center_crop = [int(crop_size)] * len(img.shape) else: center_crop = crop_size assert len(center_crop) == len( img.shape), "If you provide a list/tuple as center crop make sure it has the same len as your data has dims (3d)" return img[int(center[0] - center_crop[0] / 2.):int(center[0] + center_crop[0] / 2.), int(center[1] - center_crop[1] / 2.):int(center[1] + center_crop[1] / 2.), int(center[2] - center_crop[2] / 2.):int(center[2] + center_crop[2] / 2.)] def center_crop_3D_image_batched(img, crop_size): # dim 0 is batch, dim 1 is channel, dim 2, 3 and 4 are x y z center = np.array(img.shape[2:]) / 2. if type(crop_size) not in (tuple, list): center_crop = [int(crop_size)] * (len(img.shape) - 2) else: center_crop = crop_size assert len(center_crop) == (len( img.shape) - 2), "If you provide a list/tuple as center crop make sure it has the same len as your data has dims (3d)" return img[:, :, int(center[0] - center_crop[0] / 2.):int(center[0] + center_crop[0] / 2.), int(center[1] - center_crop[1] / 2.):int(center[1] + center_crop[1] / 2.), int(center[2] - center_crop[2] / 2.):int(center[2] + center_crop[2] / 2.)] def center_crop_2D_image(img, crop_size): center = np.array(img.shape) / 2. if type(crop_size) not in (tuple, list): center_crop = [int(crop_size)] * len(img.shape) else: center_crop = crop_size assert len(center_crop) == len( img.shape), "If you provide a list/tuple as center crop make sure it has the same len as your data has dims (2d)" return img[int(center[0] - center_crop[0] / 2.):int(center[0] + center_crop[0] / 2.), int(center[1] - center_crop[1] / 2.):int(center[1] + center_crop[1] / 2.)] def center_crop_2D_image_batched(img, crop_size): # dim 0 is batch, dim 1 is channel, dim 2 and 3 are x y center = np.array(img.shape[2:]) / 2. if type(crop_size) not in (tuple, list): center_crop = [int(crop_size)] * (len(img.shape) - 2) else: center_crop = crop_size assert len(center_crop) == (len( img.shape) - 2), "If you provide a list/tuple as center crop make sure it has the same len as your data has dims (2d)" return img[:, :, int(center[0] - center_crop[0] / 2.):int(center[0] + center_crop[0] / 2.), int(center[1] - center_crop[1] / 2.):int(center[1] + center_crop[1] / 2.)] def random_crop_3D_image(img, crop_size): if type(crop_size) not in (tuple, list): crop_size = [crop_size] * len(img.shape) else: assert len(crop_size) == len( img.shape), "If you provide a list/tuple as center crop make sure it has the same len as your data has dims (3d)" if crop_size[0] < img.shape[0]: lb_x = np.random.randint(0, img.shape[0] - crop_size[0]) elif crop_size[0] == img.shape[0]: lb_x = 0 else: raise ValueError("crop_size[0] must be smaller or equal to the images x dimension") if crop_size[1] < img.shape[1]: lb_y = np.random.randint(0, img.shape[1] - crop_size[1]) elif crop_size[1] == img.shape[1]: lb_y = 0 else: raise ValueError("crop_size[1] must be smaller or equal to the images y dimension") if crop_size[2] < img.shape[2]: lb_z = np.random.randint(0, img.shape[2] - crop_size[2]) elif crop_size[2] == img.shape[2]: lb_z = 0 else: raise ValueError("crop_size[2] must be smaller or equal to the images z dimension") return img[lb_x:lb_x + crop_size[0], lb_y:lb_y + crop_size[1], lb_z:lb_z + crop_size[2]] def random_crop_3D_image_batched(img, crop_size): if type(crop_size) not in (tuple, list): crop_size = [crop_size] * (len(img.shape) - 2) else: assert len(crop_size) == (len( img.shape) - 2), "If you provide a list/tuple as center crop make sure it has the same len as your data has dims (3d)" if crop_size[0] < img.shape[2]: lb_x = np.random.randint(0, img.shape[2] - crop_size[0]) elif crop_size[0] == img.shape[2]: lb_x = 0 else: raise ValueError("crop_size[0] must be smaller or equal to the images x dimension") if crop_size[1] < img.shape[3]: lb_y = np.random.randint(0, img.shape[3] - crop_size[1]) elif crop_size[1] == img.shape[3]: lb_y = 0 else: raise ValueError("crop_size[1] must be smaller or equal to the images y dimension") if crop_size[2] < img.shape[4]: lb_z = np.random.randint(0, img.shape[4] - crop_size[2]) elif crop_size[2] == img.shape[4]: lb_z = 0 else: raise ValueError("crop_size[2] must be smaller or equal to the images z dimension") return img[:, :, lb_x:lb_x + crop_size[0], lb_y:lb_y + crop_size[1], lb_z:lb_z + crop_size[2]] def random_crop_2D_image(img, crop_size): if type(crop_size) not in (tuple, list): crop_size = [crop_size] * len(img.shape) else: assert len(crop_size) == len( img.shape), "If you provide a list/tuple as center crop make sure it has the same len as your data has dims (2d)" if crop_size[0] < img.shape[0]: lb_x = np.random.randint(0, img.shape[0] - crop_size[0]) elif crop_size[0] == img.shape[0]: lb_x = 0 else: raise ValueError("crop_size[0] must be smaller or equal to the images x dimension") if crop_size[1] < img.shape[1]: lb_y = np.random.randint(0, img.shape[1] - crop_size[1]) elif crop_size[1] == img.shape[1]: lb_y = 0 else: raise ValueError("crop_size[1] must be smaller or equal to the images y dimension") return img[lb_x:lb_x + crop_size[0], lb_y:lb_y + crop_size[1]] def random_crop_2D_image_batched(img, crop_size): if type(crop_size) not in (tuple, list): crop_size = [crop_size] * (len(img.shape) - 2) else: assert len(crop_size) == (len( img.shape) - 2), "If you provide a list/tuple as center crop make sure it has the same len as your data has dims (2d)" if crop_size[0] < img.shape[2]: lb_x = np.random.randint(0, img.shape[2] - crop_size[0]) elif crop_size[0] == img.shape[2]: lb_x = 0 else: raise ValueError("crop_size[0] must be smaller or equal to the images x dimension") if crop_size[1] < img.shape[3]: lb_y = np.random.randint(0, img.shape[3] - crop_size[1]) elif crop_size[1] == img.shape[3]: lb_y = 0 else: raise ValueError("crop_size[1] must be smaller or equal to the images y dimension") return img[:, :, lb_x:lb_x + crop_size[0], lb_y:lb_y + crop_size[1]] def resize_image_by_padding(image, new_shape, pad_value=None): shape = tuple(list(image.shape)) new_shape = tuple(np.max(
np.concatenate((shape, new_shape))
numpy.concatenate
import math import cmath import numpy as np # not necessary import glob, os # for debug def drange(start, stop, step): # equivalent of function range except that it allows float steps r = start while r < stop: yield r r += step def DFT(dataFrame, m): lFrame_ = len(dataFrame) # frame length lFram = 2.Ls in publication t = 0 for n_ in range(lFrame_): t += dataFrame[n_] * cmath.exp(-2 * math.pi * 1j * m * n_ / (lFrame_ - 1)) return t def entropyDFT(dftData, m): p_ = float(dftData[m]) / np.sum(dftData[1:]) return p_ ##---------------------------------------------------------------------------- def getFeatures_Detection(rowData): vector = 0 # Compute features of a data sequence corresponding to one move # Compute derived data (derived curves) based on row data # Slice each data curve to get series of point from each ones # Return a row vector of all features # # Get data # n = rowData.shape[0] # ramp = np.linspace(1, 100, num=n) # accX = rowData[:, 0] * ramp # accY = rowData[:, 1] * ramp # accZ = rowData[:, 2] * ramp # gyrX = rowData[:, 3] * ramp # gyrY = rowData[:, 4] * ramp # gyrZ = rowData[:, 5] * ramp # time = rowData[:, 6] - rowData[0, 6] # Time origin # Get data n = rowData.shape[0] ramp = np.linspace(1, 100, num=n) time = rowData[:, 0] * ramp accX = rowData[:, 1] * ramp accY = rowData[:, 2] * ramp accZ = rowData[:, 3] * ramp gyrX = rowData[:, 4] * ramp gyrY = rowData[:, 5] * ramp gyrZ = rowData[:, 6] * ramp magX = rowData[:, 7] * ramp magY = rowData[:, 8] * ramp magZ = rowData[:, 9] * ramp # time = rowData[:,6] - rowData[0,6] # Time origin # print np.fft.fft(accX), len(np.fft.fft(accX)) absDFTData = np.empty((n, 9)) # matrix containing DFT data from input data absDFTData[:] = np.NaN for i in range(n): for j in range(9): absDFTData[i, j] = np.absolute(DFT(rowData[:, j], i)) #print(absDFTData) #print(absDFTData.shape) ##---------------------------------------------------------------------------- # COMPUTE DERIVED CURVES # integral, double integral, derivative, double derivative # Compute time integral (only to get others integral) timeIntegral = [time[0]] for k in range(1, n): timeIntegral.append(time[k] - time[k - 1]) # Compute data integral (Speed X, Y,Z & Angle X,Y,Z) integralData = np.empty((n, 9)) integralData[:] = np.NAN for k in range(0, n): integralData[k, :] = rowData[k, :9] * timeIntegral[k] if k > 0: integralData[k, :] += integralData[k - 1, :] # Compute data double integral (Position X,Y,Z) doubleIntegralData = np.empty((n, 9)) doubleIntegralData[:] = np.NAN for k in range(0, n): doubleIntegralData[k, :] = integralData[k, :9] * timeIntegral[k] if k > 0: doubleIntegralData[k, :] += doubleIntegralData[k - 1, :] # Compute data derivate derivData = np.empty((n, 9)) derivData[:] = np.NAN for k in range(0, n): if k == 0: derivData[k, :] = (rowData[k + 1, :9] - rowData[k, :9]) / (time[k + 1] - time[k]) elif k == n - 1: derivData[k, :] = (rowData[k, :9] - rowData[k - 1, :9]) / (time[k] - time[k - 1]) else: derivData[k, :] = (rowData[k + 1, :9] - rowData[k - 1, :9]) / (time[k + 1] - time[k - 1]) # Compute double data derivate doubleDerivData = np.empty((n, 9)) doubleDerivData[:] = np.NAN for k in range(0, n): if k == 0: doubleDerivData[k, :] = (derivData[k + 1, :9] - derivData[k, :9]) / (time[k + 1] - time[k]) elif k == n - 1: doubleDerivData[k, :] = (derivData[k, :9] - derivData[k - 1, :9]) / (time[k] - time[k - 1]) else: doubleDerivData[k, :] = (derivData[k + 1, :9] - derivData[k - 1, :9]) / (time[k + 1] - time[k - 1]) # ---------------------------------------------------------------------------- # GET FEATURES # slice curves to get the same number of points on each curve step = 4 # number of slice ech = float(n) / float(step) # sampling timeStep_ = drange(0, n + ech, ech) # generate time steps indStep = [] for i in timeStep_: i = round(i, 2) indStep.append(math.floor(i)) # get index corresponding to time steps x_ = [] # features vector # Generate features for each frame (temporal and frequency domain) for i in range(len(indStep) - 2): # Get range of the frame ind = indStep[i] ind1 = indStep[i + 2] # 1 frame corresponds to 2 injunction if ind == ind1: rg = ind else: rg = range(int(ind), int(ind1)) lengFrame = len(rg) # Get Discrete Fourier Transform (DFT) absDFTData_ = np.empty((lengFrame, 9)) # matrix containing DFT data from input data absDFTData_[:] = np.NaN for i in range(lengFrame): for j in range(9): absDFTData_[i, j] = np.absolute(DFT(rowData[rg, j], i)) # Add DC component as features (for each axis x,y,z) x_ += absDFTData_[0, :].tolist() # Add energy features (exclude DC component) x_ += (np.sum(np.power(absDFTData_[1:, :], 2), axis=0) / (lengFrame - 1)).tolist() # Add entropy features (exclude DC component) entropyDFTData_ = np.empty((lengFrame, 9)) # matrix containing DFT entropy data entropyDFTData_[:] = np.NaN for i in range(lengFrame): for j in range(9): entropyDFTData_[i, j] = entropyDFT(absDFTData_[:, j], i) x_ += np.sum(entropyDFTData_[1:, :] * np.log(1 / entropyDFTData_[1:, :]), axis=0).tolist() # normalize entropy # Add deviation features (time domain) datMean = np.mean(rowData[rg, :-1], axis=0) x_ += np.sum(np.power(rowData[rg, :-1] - datMean, 2), axis=0).tolist() # Add corelation features (time domain) y_ = [] for i in range(9): for j in range(9): if (j > i): # vij = np.sum(np.abs(rowData[rg,i]*rowData[rg,j]))/float(lengFrame) # vii = np.sum(np.abs(rowData[rg,i]*rowData[rg,i]))/float(lengFrame) # vjj = np.sum(np.abs(rowData[rg,j]*rowData[rg,j]))/float(lengFrame) # yij = (vij-datMean[i]*datMean[j]) / float(math.sqrt(vii-datMean[i]**2) * math.sqrt(vjj-datMean[j]**2)) yij = np.sum((rowData[rg, i] - datMean[i]) * (rowData[rg, j] - datMean[j])) if math.sqrt(np.sum(rowData[rg, i] - datMean[i]) ** 2) * math.sqrt( np.sum(rowData[rg, j] - datMean[j]) ** 2) != 0: yij /= float(math.sqrt(np.sum(rowData[rg, i] - datMean[i]) ** 2) * math.sqrt( np.sum(rowData[rg, j] - datMean[j]) ** 2)) else: yij = 0 y_.append(yij) x_ += y_ # print x_ # print len(x_) # Mean data x_.append(np.max(accX) - np.min(accX)) x_.append(np.max(accY) - np.min(accY)) x_.append(np.max(accZ) - np.min(accZ)) x_.append(
np.max(gyrX)
numpy.max
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Oct 14 21:31:56 2017 @author: Franz """ import scipy.signal import numpy as np import scipy.io as so import os.path import re import matplotlib.pylab as plt import h5py import matplotlib.patches as patches import numpy.random as rand import seaborn as sns import pandas as pd from functools import reduce import random import pdb class Mouse : def __init__(self, idf, list=None, typ='') : self.recordings = [] self.recordings.append(list) self.typ = typ self.idf = idf def add(self, rec) : self.recordings.append(rec) def __len__(self) : return len(self.recordings) def __repr__(self) : return ", ".join(self.recordings) ### PROCESSING OF RECORDING DATA ############################################## def load_stateidx(ppath, name, ann_name=''): """ load the sleep state file of recording (folder) $ppath/$name @Return: M,K sequence of sleep states, sequence of 0'1 and 1's indicating non- and annotated states """ ddir = os.path.join(ppath, name) ppath, name = os.path.split(ddir) if ann_name == '': ann_name = name sfile = os.path.join(ppath, name, 'remidx_' + ann_name + '.txt') f = open(sfile, 'r') lines = f.readlines() f.close() n = 0 for l in lines: if re.match('\d', l): n += 1 M = np.zeros(n, dtype='int') K = np.zeros(n, dtype='int') i = 0 for l in lines : if re.search('^\s+$', l) : continue if re.search('\s*#', l) : continue if re.match('\d+\s+-?\d+', l) : a = re.split('\s+', l) M[i] = int(a[0]) K[i] = int(a[1]) i += 1 return M,K def load_recordings(ppath, rec_file) : """ load_recordings(ppath, rec_file) load recording listing with syntax: [E|C] \s+ recording_name #COMMENT @RETURN: (list of controls, lis of experiments) """ exp_list = [] ctr_list = [] rfile = os.path.join(ppath, rec_file) f = open(rfile, newline=None) lines = f.readlines() f.close() for l in lines : if re.search('^\s+$', l) : continue if re.search('^\s*#', l) : continue a = re.split('\s+', l) if re.search('E', a[0]) : exp_list.append(a[1]) if re.search('C', a[0]) : ctr_list.append(a[1]) return ctr_list, exp_list def load_dose_recordings(ppath, rec_file): """ load recording list with following syntax: A line is either control or experiments; Control recordings look like: C \s recording_name Experimental recordings also come with an additional dose parameter (allowing for comparison of multiple doses with controls) E \s recording_name \s dose_1 E \s recording_name \s dose_2 """ rfile = os.path.join(ppath, rec_file) f = open(rfile, newline=None) lines = f.readlines() f.close() # first get all potential doses doses = {} ctr_list = [] for l in lines : if re.search('^\s+$', l): continue if re.search('^\s*#', l): continue a = re.split('\s+', l) if re.search('E', a[0]): if a[2] in doses: doses[a[2]].append(a[1]) else: doses[a[2]] = [a[1]] if re.search('C', a[0]): ctr_list.append(a[1]) return ctr_list, doses def get_snr(ppath, name): """ read and return sampling rate (SR) from file $ppath/$name/info.txt """ fid = open(os.path.join(ppath, name, 'info.txt'), newline=None) lines = fid.readlines() fid.close() values = [] for l in lines : a = re.search("^" + 'SR' + ":" + "\s+(.*)", l) if a : values.append(a.group(1)) return float(values[0]) def get_infoparam(ifile, field): """ NOTE: field is a single string and the function does not check for the type of the values for field. In fact, it just returns the string following field """ fid = open(ifile, newline=None) lines = fid.readlines() fid.close() values = [] for l in lines : a = re.search("^" + field + ":" + "\s+(.*)", l) if a : values.append(a.group(1)) return values def add_infoparam(ifile, field, vals): """ :param ifile: info file :param field: Parameters specifier, e.g. 'SR' :param vals: list with parameters """ fid = open(ifile, 'a') vals = [str(s) for s in vals] param = " ".join(vals) fid.write('%s:\t%s' % (field, param)) fid.write(os.linesep) fid.close() def laser_start_end(laser, SR=1525.88, intval=5): """laser_start_end(ppath, name) print start and end index of laser stimulation trains: For example, if you was stimulated for 2min every 20 min with 20 Hz, return the start and end index of the each 2min stimulation period (train) returns the tuple (istart, iend), both indices are inclusive, i.e. part of the sequence @Param: laser - laser, vector of 0s and 1s intval - minimum time separation [s] between two laser trains @Return: (istart, iend) - tuple of two np.arrays with laser start and end indices """ idx = np.where(laser > 0.5)[0] if len(idx) == 0 : return ([], []) idx2 = np.nonzero(np.diff(idx)*(1./SR) > intval)[0] istart = np.hstack([idx[0], idx[idx2+1]]) iend = np.hstack([idx[idx2], idx[-1]]) return (istart, iend) def load_laser(ppath, name): """ load laser from recording ppath/name @RETURN: @laser, vector of 0's and 1's """ # laser might be .mat or h5py file # perhaps we could find a better way of testing that file = os.path.join(ppath, name, 'laser_'+name+'.mat') try: laser = np.array(h5py.File(file,'r').get('laser')) except: laser = so.loadmat(file)['laser'] return np.squeeze(laser) def laser_protocol(ppath, name): """ What was the stimulation frequency and the inter-stimulation interval for recording $ppath/$name? @Return: iinter-stimulation intervals, avg. inter-stimulation interval, frequency """ laser = load_laser(ppath, name) SR = get_snr(ppath, name) # first get inter-stimulation interval (istart, iend) = laser_start_end(laser, SR) intv = np.diff(np.array(istart/float(SR))) d = intv/60.0 print("The laser was turned on in average every %.2f min," % (np.mean(d))) print("with a min. interval of %.2f min and max. interval of %.2f min." % (np.min(d), np.max(d))) print("Laser stimulation lasted for %f s." % (np.mean(np.array(iend/float(SR)-istart/float(SR)).mean()))) # print laser start times print("Start time of each laser trial:") j=1 for t in istart: print("trial %d: %.2f" % (j, (t / float(SR)) / 60)) j += 1 # for each laser stimulation interval, check laser stimulation frequency dt = 1/float(SR) freq = [] laser_up = [] laser_down = [] for (i,j) in zip(istart, iend): part = laser[i:j+1] (a,b) = laser_start_end(part, SR, 0.005) dur = (j-i+1)*dt freq.append(len(a) / dur) up_dur = (b-a+1)*dt*1000 down_dur = (a[1:]-b[0:-1]-1)*dt*1000 laser_up.append(np.mean(up_dur)) laser_down.append(np.mean(down_dur)) print(os.linesep + "Laser stimulation freq. was %.2f Hz," % np.mean(np.array(freq))) print("with laser up and down duration of %.2f and %.2f ms." % (np.mean(np.array(laser_up)), np.mean(np.array(laser_down)))) return d, np.mean(d), np.mean(np.array(freq)) def swap_eeg(ppath, rec, ch='EEG'): """ swap EEG and EEG2 or EMG with EMG2 if $ch='EMG' """ if ch == 'EEG': name = 'EEG' else: name = ch EEG = so.loadmat(os.path.join(ppath, rec, name+'.mat'))[name] EEG2 = so.loadmat(os.path.join(ppath, rec, name+'2.mat'))[name + '2'] tmp = EEG EEG = EEG2 EEG2 = tmp file_eeg1 = os.path.join(ppath, rec, '%s.mat' % name) file_eeg2 = os.path.join(ppath, rec, '%s2.mat' % name) so.savemat(file_eeg1, {name : EEG}) so.savemat(file_eeg2, {name+'2' : EEG2}) def eeg_conversion(ppath, rec, conv_factor=0.195): """ multiply all EEG and EMG channels with the given conversion factor and write the conversion factor as parameter (conversion:) into the info file. Only if there's no conversion factor in the info file specified, the conversion will be executed :param ppath: base filder :param rec: recording :param conv_factor: conversion factor :return: n/s """ ifile = os.path.join(ppath, rec, 'info.txt') conv = get_infoparam(ifile, 'conversion') if len(conv) > 0: print("found conversion: parameter in info file") print("returning: no conversion necessary!!!") return else: files = os.listdir(os.path.join(ppath, rec)) files = [f for f in files if re.match('^EEG', f)] for f in files: name = re.split('\.', f)[0] EEG = so.loadmat(os.path.join(ppath, rec, name+'.mat'), squeeze_me=True)[name] if EEG[0].dtype == 'int16': EEG = EEG * conv_factor file_eeg = os.path.join(ppath, rec, '%s.mat' % name) print(file_eeg) so.savemat(file_eeg, {name: EEG}) else: print('Wrong datatype! probably already converted; returning...') return files = os.listdir(os.path.join(ppath, rec)) files = [f for f in files if re.match('^EMG', f)] for f in files: name = re.split('\.', f)[0] EMG = so.loadmat(os.path.join(ppath, rec, name+'.mat'), squeeze_me=True)[name] if EMG[0].dtype == 'int16': EMG = EMG * conv_factor file_emg = os.path.join(ppath, rec, '%s.mat' % name) print(file_emg) so.savemat(file_emg, {name: EMG}) else: print('Wrong datatype! probably already converted; returning...') return add_infoparam(ifile, 'conversion', [conv_factor]) calculate_spectrum(ppath, rec) ### DEPRICATED ############################################ def video_pulse_detection(ppath, rec, SR=1000, iv = 0.01): """ return index of each video frame onset ppath/rec - recording @Optional SR - sampling rate of EEG(!) recording iv - minimum time inverval (in seconds) between two frames @Return index of each video frame onset """ V = np.squeeze(so.loadmat(os.path.join(ppath, rec, 'videotime_' + rec + '.mat'))['video']) TS = np.arange(0, len(V)) # indices where there's a jump in the signal t = TS[np.where(V<0.5)]; if len(t) == 0: idx = [] return idx # time points where the interval between jumps is longer than iv t2 = np.where(np.diff(t)*(1.0/SR)>=iv)[0] idx = np.concatenate(([t[0]],t[t2+1])) return idx # SIGNAL PROCESSING ########################################################### def my_lpfilter(x, w0, N=4): """ create a lowpass Butterworth filter with a cutoff of w0 * the Nyquist rate. The nice thing about this filter is that is has zero-phase distortion. A conventional lowpass filter would introduce a phase lag. w0 - filter cutoff; value between 0 and 1, where 1 corresponds to nyquist frequency. So if you want a filter with cutoff at x Hz, the corresponding w0 value is given by w0 = 2 * x / sampling_rate N - order of filter @Return: low-pass filtered signal See also my hp_filter, or my_bpfilter """ from scipy import signal b,a = signal.butter(N, w0) y = signal.filtfilt(b,a, x) return y def my_hpfilter(x, w0, N=4): """ create an N-th order highpass Butterworth filter with cutoff frequency w0 * sampling_rate/2 """ from scipy import signal # use scipy.signal.firwin to generate filter #taps = signal.firwin(numtaps, w0, pass_zero=False) #y = signal.lfilter(taps, 1.0, x) b,a = signal.butter(N, w0, 'high') y = signal.filtfilt(b,a, x, padlen = x.shape[0]-1) return y def my_bpfilter(x, w0, w1, N=4,bf=True): """ create N-th order bandpass Butterworth filter with corner frequencies w0*sampling_rate/2 and w1*sampling_rate/2 """ #from scipy import signal #taps = signal.firwin(numtaps, w0, pass_zero=False) #y = signal.lfilter(taps, 1.0, x) #return y from scipy import signal b,a = signal.butter(N, [w0, w1], 'bandpass') if bf: y = signal.filtfilt(b,a, x) else: y = signal.lfilter(b,a, x) return y def my_notchfilter(x, sr=1000, band=5, freq=60, ripple=10, order=3, filter_type='butter'): from scipy.signal import iirfilter,lfilter fs = sr nyq = fs/2.0 low = freq - band/2.0 high = freq + band/2.0 low = low/nyq high = high/nyq b, a = iirfilter(order, [low, high], rp=ripple, btype='bandstop', analog=False, ftype=filter_type) filtered_data = lfilter(b, a, x) return filtered_data def downsample_vec(x, nbin): """ y = downsample_vec(x, nbin) downsample the vector x by replacing nbin consecutive \ bin by their mean \ @RETURN: the downsampled vector """ n_down = int(np.floor(len(x) / nbin)) x = x[0:n_down*nbin] x_down = np.zeros((n_down,)) # 0 1 2 | 3 4 5 | 6 7 8 for i in range(nbin) : idx = list(range(i, int(n_down*nbin), int(nbin))) x_down += x[idx] return x_down / nbin def smooth_data(x, sig): """ y = smooth_data(x, sig) smooth data vector @x with gaussian kernel with standard deviation $sig """ sig = float(sig) if sig == 0.0: return x # gaussian: gauss = lambda x, sig : (1/(sig*np.sqrt(2.*np.pi)))*np.exp(-(x*x)/(2.*sig*sig)) bound = 1.0/10000 L = 10. p = gauss(L, sig) while (p > bound): L = L+10 p = gauss(L, sig) #F = map(lambda x: gauss((x, sig)), np.arange(-L, L+1.)) # py3: F = [gauss(x, sig) for x in np.arange(-L, L+1.)] F = F / np.sum(F) return scipy.signal.fftconvolve(x, F, 'same') def power_spectrum(data, length, dt): """ scipy's implementation of Welch's method using hanning window to estimate the power spectrum The function returns power density with units V**2/Hz see also https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.welch.html The label on the y-axis should say PSD [V**2/Hz] @Parameters data - time series; float vector! length - length of hanning window, even integer! @Return: power density, frequencies The function returns power density in units V^2 / Hz Note that np.var(data) ~ np.sum(power density) * (frequencies[1]-frequencies[0]) """ f, pxx = scipy.signal.welch(data, fs=1.0/dt, window='hanning', nperseg=int(length), noverlap=int(length/2)) return pxx, f def spectral_density(data, length, nfft, dt): """ calculate the spectrogram for the time series given by data with time resolution dt The powerspectrum for each window of length $length is computed using Welch's method. The windows for the powerspectrum calculation are half-overlapping. If length contains 5s of data, then the first windows goes from 0s to 5s, the second window from 2.5 to 7.5s, ... The last window ends at ceil(len(data)/length)*5s Another example, assume we have 13 s of data, with 5 s windows, the the powerdensity is calculated for the following time windows: 0 -- 5, 2.5 -- 7.5, 5 -- 10, 7.5 -- 12.5, 10 -- 15 In total there are thus 2*ceil(13/5)-1 = 5 windows The last window starts at 2*3-2 * (5/2) = 10 s Note: the returned time axis starts at time point goes from 0 to 10s in 2.5s steps @Parameters: data - time series length - window length of data used to calculate powerspectrum. Note that the time resolution of the spectrogram is length/2 nfft - size of the window used to calculate the powerspectrum. determines the frequency resolution. @Return: Powspectrum, frequencies, time axis """ n = len(data) k = int(np.ceil((1.0*n)/length)) data = np.concatenate((data, np.zeros((length*k-n,)))) fdt = length*dt/2 # time step for spectrogram t = np.arange(0, fdt*(2*k-2)+fdt/2.0, fdt) # frequency axis of spectrogram f = np.linspace(0, 1, int(np.ceil(nfft/2.0))+1) * (0.5/dt) # the power spectrum is calculated for 2*k-1 time points Pow = np.zeros((len(f), k*2-1)) j = 0 for i in range(0, k-2+1): w1=data[(length*i):(i+1)*length] w2=data[length*i+int(length/2):(i+1)*length+int(length/2)] Pow[:,j] = power_spectrum(w1, nfft, dt)[0] Pow[:,j+1] = power_spectrum(w2, nfft, dt)[0] j += 2 # last time point Pow[:,j],f = power_spectrum(data[length*(k-1):k*length], nfft, dt) return Pow, f, t def calculate_spectrum(ppath, name, fres=0.5): """ calculate EEG and EMG spectrogram used for sleep stage detection. Function assumes that data vectors EEG.mat and EMG.mat exist in recording folder ppath/name; these are used to calculate the powerspectrum fres - resolution of frequency axis all data saved in "true" mat files :return EEG Spectrogram, EMG Spectrogram, frequency axis, time axis """ SR = get_snr(ppath, name) swin = round(SR)*5 fft_win = round(swin/5) # approximate number of data points per second if (fres == 1.0) or (fres == 1): fft_win = int(fft_win) elif fres == 0.5: fft_win = 2*int(fft_win) else: print("Resolution %f not allowed; please use either 1 or 0.5" % fres) (peeg2, pemg2) = (False, False) # Calculate EEG spectrogram EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG.mat'))['EEG']) Pxx, f, t = spectral_density(EEG, int(swin), int(fft_win), 1/SR) if os.path.isfile(os.path.join(ppath, name, 'EEG2.mat')): peeg2 = True EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG2.mat'))['EEG2']) Pxx2, f, t = spectral_density(EEG, int(swin), int(fft_win), 1/SR) #save the stuff to a .mat file spfile = os.path.join(ppath, name, 'sp_' + name + '.mat') if peeg2 == True: so.savemat(spfile, {'SP':Pxx, 'SP2':Pxx2, 'freq':f, 'dt':t[1]-t[0],'t':t}) else: so.savemat(spfile, {'SP':Pxx, 'freq':f, 'dt':t[1]-t[0],'t':t}) # Calculate EMG spectrogram EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG.mat'))['EMG']) Qxx, f, t = spectral_density(EMG, int(swin), int(fft_win), 1/SR) if os.path.isfile(os.path.join(ppath, name, 'EMG2.mat')): pemg2 = True EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG2.mat'))['EMG2']) Qxx2, f, t = spectral_density(EMG, int(swin), int(fft_win), 1/SR) # save the stuff to .mat file spfile = os.path.join(ppath, name, 'msp_' + name + '.mat') if pemg2 == True: so.savemat(spfile, {'mSP':Qxx, 'mSP2':Qxx2, 'freq':f, 'dt':t[1]-t[0],'t':t}) else: so.savemat(spfile, {'mSP':Qxx, 'freq':f, 'dt':t[1]-t[0],'t':t}) return Pxx, Qxx, f, t def whiten_spectrogram(ppath, name, fmax=50): """ experimental :param ppath: :param name: :param fmax: :return: """ P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat'), squeeze_me=True) SPE = P['SP'] freq = P['freq'] ifreq = np.where(freq <= fmax)[0] SPE = SPE[ifreq,:] nfilt = 5 filt = np.ones((nfilt, nfilt)) filt = np.divide(filt, filt.sum()) #SPE = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same') m = np.mean(SPE,axis=1) SPE -= np.tile(m, (SPE.shape[1], 1)).T SPE = SPE.T C = np.dot(SPE.T, SPE) [evals, L] = np.linalg.eigh(C) idx = np.argsort(evals) D = np.diag(np.sqrt(evals[idx])) L = L[:,idx] W = np.dot(L, np.dot(np.linalg.inv(D),np.dot(L.T,SPE.T))) nfilt = 2 filt = np.ones((nfilt,nfilt)) filt = np.divide(filt, filt.sum()) W = scipy.signal.convolve2d(W, filt, boundary='symm', mode='same') return W, D, L def normalize_spectrogram(ppath, name, fmax=0, band=[], vm=5, pplot=True, sptype='', filt_dim=[]): """ Normalize EEG spectrogram by deviding each frequency band by its average value. :param ppath, name: base folder, recording name :param fmax: maximum frequency; frequency axis of spectrogram goes from 0 to fmax if fmax=0, use complete frequency axis :param band: list or tuple, define lower and upper range of a frequency band, if pplot=True, plot band, along with spectrogram; if band=[], disregard :param vm: color range for plotting spectrogram :pplot: if True, plot spectrogram along with power band :sptype: if sptype='fine' plot 'special' spectrogram, save under sp_fine_$name.mat; otherwise plot 'normal' spectrogram sp_$name.mat :filt_dim: list or tuple; the two values define the dimensions of box filter used to filter the normalized spectrogram; if filt_dim=[], then no filtering :return SPE, t, freq: normalized spectrogram (np.array), time axis, frequency axis """ if (len(sptype) == 0) or (sptype=='std'): P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat'), squeeze_me=True) elif sptype == 'fine': P = so.loadmat(os.path.join(ppath, name, 'sp_fine_' + name + '.mat'), squeeze_me=True) SPE = P['SP'] freq = P['freq'] t = P['t'] if fmax > 0: ifreq = np.where(freq <= fmax)[0] else: ifreq = np.arange(0, len(freq)) freq = freq[ifreq] nfilt = 4 filt = np.ones((nfilt,nfilt)) filt = np.divide(filt, filt.sum()) SPE = SPE[ifreq,:] # before #SPE = SPE[ifreq] #W = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same') #sp_mean = W.mean(axis=1) sp_mean = SPE.mean(axis=1) SPE = np.divide(SPE, np.tile(sp_mean, (SPE.shape[1], 1)).T) if len(filt_dim) > 0: filt = np.ones(filt_dim) filt = np.divide(filt, filt.sum()) SPE = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same') # get high gamma peaks if len(band) > 0: iband = np.where((freq >= band[0]) & (freq <= band[-1]))[0] pow_band = SPE[iband,:].mean(axis=0) thr = pow_band.mean() + pow_band.std() idx = np.where(pow_band > thr)[0] # plot normalized spectrogram, along with band if pplot: plt.ion() plt.figure() if len(band) > 0: med = np.median(SPE.mean(axis=0)) ax1 = plt.subplot(211) plt.pcolormesh(t, freq, SPE, vmin=0, vmax=vm*med, cmap='jet') plt.subplot(212, sharex=ax1) plt.plot(t,SPE[iband,:].mean(axis=0)) plt.plot(t[idx], pow_band[idx], '.') plt.draw() return SPE, t, freq[ifreq] def recursive_spectrogram(ppath, name, sf=0.3, alpha=0.3, pplot=True): """ calculate EEG/EMG spectrogram in a way that can be implemented by a closed-loop system. The spectrogram is temporally filtered using a recursive implementation of a lowpass filter @Parameters: ppath/name - mouse EEG recording sf - smoothing factor along frequency axis alpha - temporal lowpass filter time constant pplot - if pplot==True, plot figure @Return: SE, SM - EEG, EMG spectrogram """ EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG.mat'))['EEG']) EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG.mat'))['EMG']) len_eeg = len(EEG) fdt = 2.5 SR = get_snr(ppath, name) # we calculate the powerspectrum for 5s windows swin = int(np.round(SR) * 5.0) # but we sample new data each 2.5 s swinh = int(swin/2.0) fft_win = int(swin / 5.0) # number of 2.5s long samples spoints = int(np.floor(len_eeg / swinh)) SE = np.zeros((int(fft_win/2+1), spoints)) SM = np.zeros((int(fft_win/2+1), spoints)) print("Starting calculating spectrogram for %s..." % name) for i in range(2, spoints): # we take the last two swinh windows (the new 2.5 s long sample and the one from # the last iteration) x = EEG[(i-2)*swinh:i*swinh] [p, f] = power_spectrum(x.astype('float'), fft_win, 1.0/SR) p = smooth_data(p, sf) # recursive low pass filtering of spectrogram: # the current state is an estimate of the current sample and the previous state SE[:,i] = alpha*p + (1-alpha) * SE[:,i-1] # and the same of EMG x = EMG[(i-2)*swinh:i*swinh] [p, f] = power_spectrum(x.astype('float'), fft_win, 1.0/SR) p = smooth_data(p, sf) SM[:,i] = alpha*p + (1-alpha) * SM[:,i-1] if pplot: # plot EEG spectrogram t = np.arange(0, SM.shape[1])*fdt plt.figure() ax1 = plt.subplot(211) im = np.where((f>=0) & (f<=30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2) plt.xticks(()) ix = list(range(0, 30, 10)) fi = f[im][::-1] plt.yticks(ix, list(map(int, fi[ix]))) box_off(ax1) plt.axis('tight') plt.ylabel('Freq (Hz)') # plot EMG amplitude ax2 = plt.subplot(212) im = np.where((f>=10) & (f<100))[0] df = np.mean(np.diff(f)) # amplitude is the square root of the integral ax2.plot(t, np.sqrt(SM[im,:].sum(axis=0)*df)/1000.0) plt.xlim((0, t[-1])) plt.ylabel('EMG Ampl (mV)') plt.xlabel('Time (s)') box_off(ax2) plt.show(block=False) return SE, SM, f def recursive_sleepstate_rem(ppath, recordings, sf=0.3, alpha=0.3, past_mu=0.2, std_thdelta = 1.5, past_len=120, sdt=2.5, psave=False, xemg=False): """ predict a REM period only based on EEG/EMG history; the same algorithm is also used for closed-loop REM sleep manipulation. The algorithm uses for REM sleep detection a threshold on delta power, EMG power, and theta/delta power. For theta/delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially, theta/delta has to cross the hard threshold to initiate a REM period. Then, as long as, theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues. @Parameters: ppath base folder with recordings recordings list of recordings sf smoothing factor for each powerspectrum alpha smoothing factor along time dimension past_mu percentage (0 .. 1) of brain states that are allowed to have EMG power larger than threshold during the last $past_len seconds past_len window to calculate $past_mu std_thdelta the hard theta/delta threshold is given by, mean(theta/delta) + $std_thdelta * std(theta/delta) sdt time bin for brain sttate, typically 2.5s psave if True, save threshold parameters to file. """ idf = re.split('_', recordings[0])[0] # 02/05/2020 changed from int to float: past_len = float(np.round(past_len/sdt)) # calculate spectrogram (SE, SM) = ([],[]) for rec in recordings: A,B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha) SE.append(A) SM.append(B) # fuse lists SE and SM SE = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SE)) if not xemg: SM = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SM)) else: SM = SE # EEG, EMG bands ntbins = SE.shape[1] r_delta = [0.5, 4] r_theta = [5,12] # EMG band r_mu = [300, 500] i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] pow_delta = np.sum(SE[i_delta,:], axis=0) pow_theta = np.sum(SE[i_theta,:], axis=0) pow_mu = np.sum(SM[i_mu,:], axis=0) # theta/delta th_delta = np.divide(pow_theta, pow_delta) thr_th_delta1 = np.nanmean(th_delta) + std_thdelta*np.nanstd(th_delta) thr_th_delta2 = np.nanmean(th_delta) + 0.0*np.nanstd(th_delta) thr_delta = pow_delta.mean() thr_mu = pow_mu.mean() + 0.5*np.nanstd(pow_mu) ### The actual algorithm for REM detection rem_idx = np.zeros((ntbins,)) prem = 0 # whether or not we are in REM for i in range(ntbins): if prem == 0 and pow_delta[i] < thr_delta and pow_mu[i] < thr_mu: ### could be REM if th_delta[i] > thr_th_delta1: ### we are potentially entering REM if (i - past_len) >= 0: sstart = int(i-past_len) else: sstart = 0 # count the percentage of brainstate bins with elevated EMG power c_mu = np.sum( np.where(pow_mu[sstart:i]>thr_mu)[0] ) / (past_len*1.0) if c_mu < past_mu: ### we are in REM prem = 1 # turn laser on rem_idx[i] = 1 # We are currently in REM; do we stay there? if prem == 1: ### REM continues, if theta/delta is larger than soft threshold and if there's ### no EMG activation if (th_delta[i] > thr_th_delta2) and (pow_mu[i] < thr_mu): rem_idx[i] = 1 else: prem = 0 #turn laser off # for loop ends # Determine which channel is EEG, EMG ch_alloc = get_infoparam(os.path.join(ppath, recordings[0], 'info.txt'), 'ch_alloc')[0] # plot the whole stuff: # (1) spectrogram # (2) EMG Power # (3) Delta # (4) TH_Delta plt.figure() t = np.arange(0, sdt*(ntbins-1)+sdt/2.0, sdt) ax1 = plt.subplot(411) im = np.where((freq>=0) & (freq<=30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2) plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10))) plt.ylabel('Freq. (Hz)') plt.axis('tight') ax2 = plt.subplot(412) ax2.plot(t, pow_mu, color='black') ax2.plot(t, np.ones((len(t),))*thr_mu, color='red') plt.ylabel('EMG Pow.') plt.xlim((t[0], t[-1])) ax3 = plt.subplot(413, sharex=ax2) ax3.plot(t, pow_delta, color='black') ax3.plot(t, np.ones((len(t),))*thr_delta, color='red') plt.ylabel('Delta Pow.') plt.xlim((t[0], t[-1])) ax4 = plt.subplot(414, sharex=ax3) ax4.plot(t, th_delta, color='black') ax4.plot(t, np.ones((len(t),))*thr_th_delta1, color='red') ax4.plot(t, np.ones((len(t),))*thr_th_delta2, color='pink') ax4.plot(t, rem_idx*thr_th_delta1, color='blue') plt.ylabel('Theta/Delta') plt.xlabel('Time (s)') plt.xlim((t[0], t[-1])) plt.show(block=False) # write config file if psave: cfile = os.path.join(ppath, idf + '_rem.txt') fid = open(cfile, 'w') fid.write(('IDF: %s'+os.linesep) % idf) fid.write(('ch_alloc: %s'+os.linesep) % ch_alloc) fid.write(('THR_DELTA: %.2f'+os.linesep) % thr_delta) fid.write(('THR_MU: %.2f'+os.linesep) % thr_mu) fid.write(('THR_TH_DELTA: %.2f %.2f'+os.linesep) % (thr_th_delta1, thr_th_delta2)) fid.write(('STD_THDELTA: %.2f'+os.linesep) % std_thdelta) fid.write(('PAST_MU: %.2f'+os.linesep) % past_mu) fid.write(('SF: %.2f'+os.linesep) % sf) fid.write(('ALPHA: %.2f'+os.linesep) % alpha) fid.write(('Bern: %.2f' + os.linesep) % 0.5) if xemg: fid.write(('XEMG: %d'+os.linesep) % 1) else: fid.write(('XEMG: %d' + os.linesep) % 0) fid.close() print('wrote file %s' % cfile) def recursive_sleepstate_rem_control(ppath, recordings, past_len=120, sdt=2.5, delay=120): """ algorithm running laser control for REM sleep dependent activation/inhibtion. $delay s after a detected REM sleep period, the laser is turned on for the same duration. If a new REM period starts, the laser stops, but we keep track of the missing time. The next time is laser turns on again, it stays on for the duration of the most recent REM period + the remaining time. The algorithm for REM detection is the same as used forclosed-loop REM sleep manipulation. The function reads in the required parameters from the configuration file (MOUSEID_rem.txt) The algorithm uses for REM sleep detection a threshold on delta power, EMG power, and theta/delta power. For theta/delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially, theta/delta has to cross the hard threshold to initiate a REM period. Then, as long as, theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues. @Parameters: ppath base folder with recordings recordings list of recordings past_len window to calculate $past_mu sdt time bin for brain sttate, typically 2.5s delay delay to wait after a REM sleep periods ends, till the laser is turned on. """ idf = re.split('_', recordings[0])[0] past_len = int(np.round(past_len/sdt)) # load parameters cfile = os.path.join(ppath, idf + '_rem.txt') params = load_sleep_params(ppath, cfile) thr_th_delta1 = params['THR_TH_DELTA'][0] thr_th_delta2 = params['THR_TH_DELTA'][1] thr_delta = params['THR_DELTA'][0] thr_mu = params['THR_MU'][0] alpha = params['ALPHA'][0] sf = params['SF'][0] past_mu = params['PAST_MU'][0] xemg = params['XEMG'][0] # calculate spectrogram (SE, SM) = ([], []) for rec in recordings: A, B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha) SE.append(A) SM.append(B) # fuse lists SE and SM SE = np.squeeze(reduce(lambda x, y: np.concatenate((x, y)), SE)) if not xemg: SM = np.squeeze(reduce(lambda x, y: np.concatenate((x, y)), SM)) else: SM = SE # EEG, EMG bands ntbins = SE.shape[1] r_delta = [0.5, 4] r_theta = [5, 12] # EMG band r_mu = [300, 500] i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] pow_delta = np.sum(SE[i_delta, :], axis=0) pow_theta = np.sum(SE[i_theta, :], axis=0) pow_mu = np.sum(SM[i_mu, :], axis=0) th_delta = np.divide(pow_theta, pow_delta) ### The actual algorithm for REM detection rem_idx = np.zeros((ntbins,)) prem = 0 # whether or not we are in REM # NEW variables: laser_idx = np.zeros((ntbins,)) delay = int(np.round(delay/sdt)) delay_count = 0 curr_rem_dur = 0 dur_count = 0 on_delay = False laser_on = False for i in range(ntbins): if prem == 0 and pow_delta[i] < thr_delta and pow_mu[i] < thr_mu: ### could be REM if th_delta[i] > thr_th_delta1: ### we are potentially entering REM if (i - past_len) >= 0: sstart = i - past_len else: sstart = 0 # count the percentage of brainstate bins with elevated EMG power c_mu = np.sum(np.where(pow_mu[sstart:i] > thr_mu)[0]) / past_len if c_mu < past_mu: ### we are in REM prem = 1 # turn laser on rem_idx[i] = 1 curr_rem_dur += 1 #NEW # We are currently in REM; do we stay there? if prem == 1: ### REM continues, if theta/delta is larger than soft threshold and if there's ### no EMG activation if (th_delta[i] > thr_th_delta2) and (pow_mu[i] < thr_mu): rem_idx[i] = 1 curr_rem_dur += 1 else: prem = 0 # turn laser off dur_count += curr_rem_dur #NEW delay_count = delay #NEW curr_rem_dur = 0 #NEW on_delay = True #NEW # NEW: if on_delay: if prem == 0: delay_count -=1 if delay_count == 0: laser_on = True on_delay = False if laser_on: if prem == 0: if dur_count >= 0: dur_count -= 1 laser_idx[i] = 1 else: laser_on = False else: laser_on = False # plot the whole stuff: # (1) spectrogram # (2) EMG Power # (3) Delta # (4) TH_Delta plt.figure() t = np.arange(0, sdt*(ntbins-1)+sdt/2.0, sdt) ax1 = plt.subplot(411) im = np.where((freq>=0) & (freq<=30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2) plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10))) plt.ylabel('Freq. (Hz)') plt.axis('tight') ax2 = plt.subplot(412) ax2.plot(t, pow_mu, color='black') ax2.plot(t, np.ones((len(t),))*thr_mu, color='red') plt.ylabel('EMG Pow.') plt.xlim((t[0], t[-1])) ax3 = plt.subplot(413, sharex=ax2) ax3.plot(t, pow_delta, color='black') ax3.plot(t, np.ones((len(t),))*thr_delta, color='red') plt.ylabel('Delta Pow.') plt.xlim((t[0], t[-1])) ax4 = plt.subplot(414, sharex=ax3) ax4.plot(t, th_delta, color='black') ax4.plot(t, np.ones((len(t),))*thr_th_delta1, color='red') ax4.plot(t, np.ones((len(t),))*thr_th_delta2, color='pink') ax4.plot(t, rem_idx*thr_th_delta1, color='green', label='REM') ax4.plot(t, laser_idx * thr_th_delta1, color='blue', label='Laser') plt.ylabel('Theta/Delta') plt.xlabel('Time (s)') plt.xlim((t[0], t[-1])) plt.legend() plt.show(block=False) def load_sleep_params(path, param_file): """ load parameter file generated by &recursive_sleepstate_rem || &recursive_sleepstate_nrem @Return: Dictionary: Parameter --> Value """ fid = open(os.path.join(path, param_file), 'r') lines = fid.readlines() params = {} for line in lines: if re.match('^[\S_]+:', line): a = re.split('\s+', line) key = a[0][:-1] params[key] = a[1:-1] # transform number strings to floats for k in params: vals = params[k] new_vals = [] for v in vals: if re.match('^[\d\.]+$', v): new_vals.append(float(v)) else: new_vals.append(v) params[k] = new_vals return params def recursive_sleepstate_nrem(ppath, recordings, sf=0.3, alpha=0.3, std_thdelta = 1.5, sdt=2.5, psave=False, xemg=False): """ predict NREMs period only based on EEG/EMG history; the same algorithm is also used for closed-loop NREM sleep manipulation. The algorithm uses for NREM sleep detection thresholds for delta power, EMG power, and theta/delta power. For delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially, theta/delta has to cross the hard threshold to initiate a NREM period. Then, as long as, theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues. The values for hard and soft threshold are fitted using a Gaussian mixture model :param ppath: base folder :param recordings: list of recordings :param sf: smoothing factor for each powerspectrum :param alpha: spatial smoothing factor :param std_thdelta: factor to set threshold for theta/delta :param sdt: time step of brain state classification, typically 2.5 s :param psave: save parameters to text file? :param xemg: use EEG instead of EMG? """ # to fit Gaussian mixture model to delta power distributino from sklearn import mixture idf = re.split('_', recordings[0])[0] # calculate spectrogram (SE, SM) = ([],[]) for rec in recordings: A,B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha) SE.append(A) SM.append(B) # fuse lists SE and SM SE = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SE)) if not xemg: SM = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SM)) else: SM = SE # EEG, EMG bands ntbins = SE.shape[1] r_delta = [0.5, 4] r_theta = [5,12] # EMG band r_mu = [300, 500] i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] pow_delta = np.sum(SE[i_delta,:], axis=0) pow_theta = np.sum(SE[i_theta,:], axis=0) pow_mu = np.sum(SM[i_mu,:], axis=0) # theta/delta th_delta = np.divide(pow_theta, pow_delta) thr_th_delta1 = np.nanmean(th_delta) + std_thdelta*np.nanstd(th_delta) thr_th_delta2 = np.nanmean(th_delta) + 0.0*np.nanstd(th_delta) thr_mu = pow_mu.mean() + 0.5*np.nanstd(pow_mu) med_delta = np.median(pow_delta) pow_delta_fit = pow_delta[np.where(pow_delta<=3*med_delta)] # fit Gaussian mixture model to delta power # see http://www.astroml.org/book_figures/chapter4/fig_GMM_1D.html gm = mixture.GaussianMixture(n_components=2) fit = gm.fit(pow_delta_fit.reshape(-1, 1)) means = np.squeeze(fit.means_) x = np.arange(0, med_delta*3, 100) plt.figure() plt.hist(pow_delta_fit, 100, normed=True, histtype='stepfilled', alpha=0.4) logprob = fit.score_samples(x.reshape(-1,1)) responsibilities = fit.predict_proba(x.reshape((-1,1))) pdf = np.exp(logprob) pdf_individual = responsibilities * pdf[:, np.newaxis] plt.plot(x, pdf, '-k') plt.plot(x, pdf_individual, '--k') plt.xlim((0, med_delta*3)) plt.ylabel('p(x)') plt.xlabel('x = Delta power') # get point where curves cut each other if means[0] < means[1]: idx = np.where((x>= means[0]) & (x<= means[1]))[0] else: idx = np.where((x >= means[1]) & (x <= means[0]))[0] imin = np.argmin(pdf[idx]) xcut = x[idx[0]+imin] plt.plot(xcut, pdf[idx[0]+imin], 'ro') ilow = np.argmin(np.abs(x-means[0])) plt.plot(x[ilow], pdf[ilow], 'bo') ihigh = np.argmin(np.abs(x-means[1])) plt.plot(x[ihigh], pdf[ihigh], 'go') plt.show(block=False) # set parameters for hard and soft delta thresholds tmp = np.array([x[ihigh], xcut, x[ilow]]) tmp.sort() thr_delta1 = tmp[-1] # x[ihigh]; right peak of distribution thr_delta2 = tmp[1] # trough of distribution # NREM yes or no according to thresholds # However, this variable does not directly control whether laser should # be on or off; whether NREM sleep is really on or off is determined # by nrem_idx; if pnrem_hidden == 1, then all threshold critera, but not # sleep history criteria are fulfilled pnrem_hidden = 0 # if nrem_idx[i] == 1, time point i is NREM nrem_idx = np.zeros((ntbins,), dtype='int8') # NREM stays on after thresholds are NOT fulfilled to avoid interruptions by microarousals grace_period = int(20 / sdt) # nrem_delay: NREM only starts with some delay nrem_delay = int(10 / sdt) grace_count = grace_period delay_count = nrem_delay for i in range(ntbins): if pnrem_hidden == 0: ### Entering NREM: # Delta power laser than high threshold if pow_delta[i] > thr_delta1 and pow_mu[i] < thr_mu and th_delta[i] < thr_th_delta1: ### NOT-NREM -> NREM pnrem_hidden = 1 nrem_idx[i] = 0 delay_count -= 1 # we are fully in NREM, that's why grace_count is reset: grace_count = grace_period else: ### NOT-NREM -> NOT-NREM if grace_count > 0: grace_count -= 1 nrem_idx[i] = 1 else: nrem_idx[i] = 0 else: ### pnrem_hidden == 1 if pow_delta[i] > thr_delta2 and pow_mu[i] < thr_mu and th_delta[i] < thr_th_delta1: if delay_count > 0: delay_count -= 1 nrem_idx[i] = 0 else : nrem_idx[i] = 1 else: ### Exit NREM -> NOT-NREM # were are fully out of NREM, so delay_count can be reset: delay_count = nrem_delay pnrem_hidden = 0 if grace_count > 0: grace_count -= 1 nrem_idx[i] = 1 #### figure ############################################## plt.figure() t = np.arange(0, sdt * (ntbins - 1) + sdt / 2.0, sdt) ax1 = plt.subplot(411) im = np.where((freq >= 0) & (freq <= 30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im, :]), vmin=0, vmax=med * 2, cmap='jet') ax1.pcolorfast(t, freq[im], np.flipud(SE[im, :]), vmin=0, vmax=med * 2, cmap='jet') plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10))) plt.ylabel('Freq. (Hz)') plt.axis('tight') ax2 = plt.subplot(412, sharex=ax1) ax2.plot(t, pow_mu, color='black') ax2.plot(t, np.ones((len(t),)) * thr_mu, color='red') plt.ylabel('EMG Pow.') plt.xlim((t[0], t[-1])) ax3 = plt.subplot(413, sharex=ax2) ax3.plot(t, pow_delta, color='black') ax3.plot(t, np.ones((len(t),)) * thr_delta1, color='red') ax3.plot(t, np.ones((len(t),)) * thr_delta2, color=[1, 0.6, 0.6]) ax3.plot(t, nrem_idx * thr_delta1, color=[0.6, 0.6, 0.6]) plt.ylabel('Delta Pow.') plt.xlim((t[0], t[-1])) ax4 = plt.subplot(414, sharex=ax3) ax4.plot(t, th_delta, color='black') ax4.plot(t, np.ones((len(t),)) * thr_th_delta1, color='red') plt.ylabel('Theta/Delta') plt.xlabel('Time (s)') plt.xlim((t[0], t[-1])) plt.show(block=False) # Determine which channel is EEG, EMG ch_alloc = get_infoparam(os.path.join(ppath, recordings[0], 'info.txt'), 'ch_alloc')[0] # write config file if psave: cfile = os.path.join(ppath, idf + '_nrem.txt') fid = open(cfile, 'w') fid.write(('IDF: %s' + os.linesep) % idf) fid.write(('ch_alloc: %s' + os.linesep) % ch_alloc) fid.write(('THR_DELTA: %.2f %.2f' + os.linesep) % (thr_delta1, thr_delta2)) fid.write(('THR_MU: %.2f' + os.linesep) % thr_mu) fid.write(('THR_TH_DELTA: %.2f %.2f' + os.linesep) % (thr_th_delta1, thr_th_delta2)) fid.write(('STD_THDELTA: %.2f' + os.linesep) % std_thdelta) fid.write(('SF: %.2f' + os.linesep) % sf) fid.write(('ALPHA: %.2f' + os.linesep) % alpha) if xemg: fid.write(('XEMG: %d' + os.linesep) % 1) else: fid.write(('XEMG: %d' + os.linesep) % 0) fid.close() print('wrote file %s' % cfile) def rem_online_analysis(ppath, recordings, backup='', single_mode=False, fig_file='', overlap=0): """ analyze results from closed-loop experiments :param ppath: base folder :param recordings: list of strings, recordinds :param backup: string, potential second backup folder with recordings :param single_mode: boolean, if True, average across all REM periods (irrespective of mouse) and plot each single REM period as dot :param overlap: float between 0 and 100; specifices percentage by which the online detected REM period has to overlap with real (annotated) REM period to be further consided for analysis; if overlap == 0, then any overlap counts, i.e. this parameter has no influence :return: df, pd.DataFrame, with control and experimental REM durations as data columns """ if type(recordings) != list: recordings = [recordings] overlap = overlap / 100.0 paths = dict() for rec in recordings: if os.path.isdir(os.path.join(ppath, rec)): paths[rec] = ppath else: paths[rec] = backup mice = dict() for rec in recordings: idf = re.split('_', rec)[0] if not idf in mice: mice[idf] = 1 mice = list(mice.keys()) if len(mice) == 1: single_mode=True dur_exp = {m:[] for m in mice} dur_ctr = {m:[] for m in mice} for rec in recordings: idf = re.split('_', rec)[0] M,S = load_stateidx(paths[rec], rec) sr = get_snr(paths[rec], rec) nbin = int(np.round(sr)*2.5) dt = (1.0/sr)*nbin laser = load_laser(paths[rec], rec) rem_trig = so.loadmat(os.path.join(paths[rec], rec, 'rem_trig_%s.mat'%rec), squeeze_me=True)['rem_trig'] laser = downsample_vec(laser, nbin) laser[np.where(laser>0)] = 1 rem_trig = downsample_vec(rem_trig, nbin) rem_trig[np.where(rem_trig>0)] = 1 laser_idx = np.where(laser==1)[0] rem_idx = np.where(rem_trig==1)[0] # REM sequences from offline analysis (assumed to be the # "ground truth" seq = get_sequences(np.where(M==1)[0]) for s in seq: # check true REM sequences overlapping with online detected sequences isect = np.intersect1d(s, rem_idx) #print(len(isect)/ len(s)) # test if real REM period s overlaps with online detected REM periods and, # if yes, make sure that the overlap is at least overlap *100 percent if len(np.intersect1d(s, rem_idx)) > 0 and float(len(isect)) / len(s) >= overlap: drn = (s[-1]-s[0]+1)*dt # does the sequence overlap with laser? if len(np.intersect1d(isect, laser_idx))>0: dur_exp[idf].append(drn) else: dur_ctr[idf].append(drn) data = {'exp':[], 'ctr':[]} # if single_mode put all REM periods together, # otherwise average across REM periods for each mouse if len(mice) == 1 or single_mode==True: for m in mice: data['exp'] += dur_exp[m] data['ctr'] += dur_ctr[m] else: for idf in dur_ctr: dur_ctr[idf] = np.array(dur_ctr[idf]).mean() dur_exp[idf] = np.array(dur_exp[idf]).mean() data['exp'] = np.array(list(dur_exp.values())) data['ctr'] = np.array(list(dur_ctr.values())) df = pd.DataFrame({'ctr':pd.Series(data['ctr']), 'exp' : pd.Series(data['exp'])}) # plot everything if not single_mode: plt.ion() plt.figure() ax = plt.axes([0.2, 0.15, 0.3, 0.7]) df_mean = df.mean() plt.bar([1], [df_mean['ctr']], color='grey', label='W/o Laser') plt.bar([2], [df_mean['exp']], color='blue', label='With laser') plt.xticks([1,2]) box_off(ax) #ax.set_xticklabels(['ctr', 'exp'], rotation=30) plt.ylabel('REM duration (s)') for (a,b) in zip(df['ctr'], df['exp']): plt.plot([1,2], [a,b], color='black') plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=1, frameon=False) else: plt.figure() ax = plt.axes([0.2, 0.15, 0.3, 0.7]) df_mean = df.mean() plt.bar([1], [df_mean['ctr']], color='grey') plt.bar([2], [df_mean['exp']], color='blue') plt.xticks([1,2]) box_off(ax) #ax.set_xticklabels(['ctr', 'exp'], rotation=30) plt.ylabel('REM duration (s)') a = df['ctr'] b = df['exp'] plt.plot(np.ones((len(a),)), a, '.', color='black', label='W/o Laser') plt.plot(2*np.ones((len(b),)), b, '.', color='black', label='With laser') plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=1, frameon=False) plt.show() if len(fig_file) > 0: save_figure(fig_file) return df def online_homeostasis(ppath, recordings, backup='', mode=0, single_mode=False, pplot=True, overlap=0, ma_thr=0): """ Further analysis of data obtained from closed loop stimulation Assume the sleep structure looks like this R R R R W W N N N N N W W N N N N R R R R R REM_pre -- inter REM ---- REM_post REM_pre is the duration of the first REM period, inter-REM is everything between REM_pre and the next REM period REM_post. The function calculates the inter REM duration after REM periods with laser and after REM periods w/o laser :param ppath: base folder :param recordings: list of recording, or file listing :param backup: backup folder for $ppath :param mode: mode == 0, calculate complete inter REM duration mode == 2, only calculate duration of wake in inter REM periods mode == 3, only calculate duration of NREM in inter REM periods :param single_mode: consider each single recording, instead of mice :param overlap: percentage (number between 0 and 100). Defines the percentage how much a true (offline annotated) REM period should overlap with laser to be considered as REM sleep with laser. Of note, REM periods w/o laser have to have 0 overlap with laser. All remaining REM periods are discarded. :param pplot: if True, plot figure; errorbars show 95% confidence intervals, calculated using bootstrapping :param ma: :return: df, if single_mode == True $df is a pandas DataFrame: REM iREM laser mouse - mouse ID REM - REM duration iREM - inter REM duration after REM periods with laser laser - 'y' or 'n'; depending on whether laser was on during REM sleep period (for "REM") or during the preceding REM sleep period (for "iREM") if single_mode == False, mouse is the data frame index """ if type(recordings) != list: recordings = [recordings] if overlap > 0: overlap = overlap / 100 paths = dict() for rec in recordings: if os.path.isdir(os.path.join(ppath, rec)): paths[rec] = ppath else: paths[rec] = backup mice = dict() for rec in recordings: idf = re.split('_', rec)[0] if not idf in mice: mice[idf] = 1 mice = list(mice.keys()) if len(mice) == 1: single_mode=True remdur_exp = {m:[] for m in mice} remdur_ctr = {m:[] for m in mice} itdur_exp = {m:[] for m in mice} itdur_ctr = {m:[] for m in mice} for rec in recordings: idf = re.split('_', rec)[0] M = load_stateidx(paths[rec], rec)[0] sr = get_snr(paths[rec], rec) nbin = int(np.round(sr)*2.5) dt = (1.0/sr)*nbin if ma_thr>0: seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt <= ma_thr: M[s] = 3 laser = load_laser(paths[rec], rec) rem_trig = so.loadmat(os.path.join(paths[rec], rec, 'rem_trig_%s.mat' % rec), squeeze_me=True)['rem_trig'] laser = downsample_vec(laser, nbin) laser[np.where(laser>0)] = 1 rem_trig = downsample_vec(rem_trig, nbin) rem_trig[np.where(rem_trig>0)] = 1 laser_idx = np.where(laser==1)[0] rem_idx = np.where(rem_trig==1)[0] # REM sequences from offline analysis (assumed to be the # "ground truth" seq = get_sequences(np.where(M==1)[0]) for (p,q) in zip(seq[0:-1], seq[1:]): # check if true REM sequences do overlap with online detected sequences # and only continue working with those: if len(np.intersect1d(p, rem_idx)) > 0: drn = (p[-1]-p[0]+1)*dt it_M = M[p[-1]+1:q[0]] if mode == 0: it_drn = len(it_M)*dt elif mode == 2: it_drn = len(np.where(it_M==2)[0]) * dt else: it_drn = len(np.where(it_M == 3)[0]) * dt # does the true REM sequence overlap with laser? # by setting overlap to a value > 0, you can # set a percentage how much the REM period should overlap with laser # NEW 08/26/21 if len(np.intersect1d(p, laser_idx)) / len(p) > overlap: remdur_exp[idf].append(drn) itdur_exp[idf].append(it_drn) elif len(np.intersect1d(p, laser_idx)) == 0: remdur_ctr[idf].append(drn) itdur_ctr[idf].append(it_drn) else: pass # if single_mode put all REM periods together, # otherwise average across REM periods for each mouse if len(mice) == 1 or single_mode==True: data = {'itexp':[], 'itctr':[], 'remexp':[], 'remctr':[]} for m in mice: data['itexp'] += itdur_exp[m] data['itctr'] += itdur_ctr[m] data['remexp'] += remdur_exp[m] data['remctr'] += remdur_ctr[m] df = pd.DataFrame({'REM': data['remexp']+data['remctr'], 'iREM':data['itexp']+data['itctr'], 'laser': ['y']*len(data['remexp']) + ['n']*len(data['remctr'])}) else: for idf in mice: itdur_ctr[idf] = np.array(itdur_ctr[idf]).mean() itdur_exp[idf] = np.array(itdur_exp[idf]).mean() remdur_ctr[idf] = np.array(remdur_ctr[idf]).mean() remdur_exp[idf] = np.array(remdur_exp[idf]).mean() data = {} for s in ['itexp', 'itctr', 'remexp', 'remctr']: data[s] = np.zeros((len(mice),)) i = 0 for m in mice: data['itexp'][i] = itdur_exp[m] data['itctr'][i] = itdur_ctr[m] data['remexp'][i] = remdur_exp[m] data['remctr'][i] = remdur_ctr[m] i += 1 df = pd.DataFrame({'REM': np.concatenate((data['remexp'], data['remctr'])), 'iREM': np.concatenate((data['itexp'], data['itctr'])), 'laser': ['y']*len(mice) + ['n']*len(mice), 'mouse': mice+mice}) if pplot and not single_mode: dfm = pd.melt(df, id_vars=['laser', 'mouse'], var_name='state') sns.set_style('whitegrid') plt.ion() plt.figure() sns.barplot(data=dfm, hue='laser', x='state', y='value', palette=['blue', 'gray']) sns.swarmplot(data=dfm, hue='laser', x='state', y='value', dodge=True, color='black') sns.despine() plt.ylabel('Duration (s)') if pplot and single_mode: dfm = pd.melt(df, id_vars=['laser'], var_name='state') plt.ion() plt.figure() sns.set(style="whitegrid") #sns.swarmplot(data=df[['itctr', 'itexp']], color='black') #sns.barplot(data=df[['itctr', 'itexp']], palette=['gray', 'blue'], errcolor='black') sns.barplot(data=dfm, hue='laser', x='state', y='value', palette=['blue', 'gray']) sns.swarmplot(data=dfm, hue='laser', x='state', y='value', dodge=True, color='black') sns.despine() plt.ylabel('Duration (s)') return df ### FUNCTIONS USED BY SLEEP_STATE ##################################################### def get_sequences(idx, ibreak=1) : """ get_sequences(idx, ibreak=1) idx - np.vector of indices @RETURN: seq - list of np.vectors """ diff = idx[1:] - idx[0:-1] breaks = np.nonzero(diff>ibreak)[0] breaks = np.append(breaks, len(idx)-1) seq = [] iold = 0 for i in breaks: r = list(range(iold, i+1)) seq.append(idx[r]) iold = i+1 return seq def threshold_crossing(data, th, ilen, ibreak, m): """ seq = threshold_crossing(data, th, ilen, ibreak, m) """ if m>=0: idx = np.where(data>=th)[0] else: idx = np.where(data<=th)[0] # gather sequences j = 0 seq = [] while (j <= len(idx)-1): s = [idx[j]] for k in range(j+1,len(idx)): if (idx[k] - idx[k-1]-1) <= ibreak: # add j to sequence s.append(idx[k]) else: break if (s[-1] - s[0]+1) >= ilen and not(s[0] in [i[1] for i in seq]): seq.append((s[0], s[-1])) if j == len(idx)-1: break j=k return seq def closest_precessor(seq, i): """ find the preceding element in seq which is closest to i helper function for sleep_state """ tmp = seq-i; d = np.where(tmp<0)[0] if len(d)>0: id = seq[d[-1]]; else: id = 0; return id def write_remidx(M, K, ppath, name, mode=1) : """ rewrite_remidx(idx, states, ppath, name) replace the indices idx in the remidx file of recording name with the assignment given in states """ if mode == 0 : outfile = os.path.join(ppath, name, 'remidx_' + name + '.txt') else : outfile = os.path.join(ppath, name, 'remidx_' + name + '_corr.txt') f = open(outfile, 'w') s = ["%d\t%d\n" % (i,j) for (i,j) in zip(M[0,:],K)] f.writelines(s) f.close() ####################################################################################### ### MANIPULATING FIGURES ############################################################## def set_fontsize(fs): import matplotlib matplotlib.rcParams.update({'font.size': fs}) def set_fontarial(): """ set Arial as default font """ import matplotlib matplotlib.rcParams['font.sans-serif'] = "Arial" def save_figure(fig_file): # alternative way of setting nice fonts: #matplotlib.rcParams['pdf.fonttype'] = 42 #matplotlib.rcParams['ps.fonttype'] = 42 #matplotlib.pylab.savefig(fig_file, dpi=300) #matplotlib.rcParams['text.usetex'] = False #matplotlib.rcParams['text.usetex'] = True plt.savefig(fig_file, bbox_inches="tight", dpi=200) #matplotlib.rcParams['text.usetex'] = False def box_off(ax): """ similar to Matlab's box off """ ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() ####################################################################################### def sleep_state(ppath, name, th_delta_std=1, mu_std=0, sf=1, sf_delta=3, pwrite=0, pplot=True, pemg=True, vmax=2.5, pspec_norm=False, use_idx=[]): """ automatic sleep state detection based on delta, theta, sigma, gamma and EMG power. New: use also sigma band: that's very helpful to classify pre-REM periods as NREM; otherwise they tend to be classified as wake. Gamma peaks nicely pick up during microarousals. My strategy is the following: I smooth delta band a lot to avoid strong fragmentation of sleep; but to still pick up microarousals I use the gamma power. spectrogram data has to be calculated before using calculate_spectrum Each bin in the spectrogram gets assigned one of four states: 1-REM 2-Wake 3-NREM 0-undef :param ppath: base folder :param name: recording name :param th_delta_std: threshold for theta/delta band is calculated as mean(theta/delta) + th_delta_std*std(theta/delta) :param mu_std: threshold for EMG power is calculate as "mean(EMG) + mu_std * mean(EMG) :param sf: smoothing factor for gamma and sigma power :param sf_delta: smoothing factor for delta power :param pwrite: if True, save sleep classification to file remidx_$name.txt :param pplot: if True, plot figures :param pemg: if True, use EMG as EMG, otherwise use EEG gamma power instead :param vmax: float, set maximum of color range of EEG heatmap. :param pspec_norm: boolean, if True, normalized EEG spectrogram by deviding each frequency band by its mean; only affects plotting, no effect on sleep state calculation :param use_idx: list, if not empty, use only given indices to calculate sleep state :return: """ PRE_WAKE_REM = 30.0 # Minimum Duration and Break in # high theta/delta, high emg, high delta, high sigma and gamma sequences # # duration[i,0] is the minimum duration of sequence of state i # duration[i,1] is maximal break duration allowed in a sequence of state i duration = np.zeros((5,2)) # high theta/delta duration[0,:] = [5,15] # high emg duration[1,:] = [0, 5] # high delta duration[2,:] = [10, 10] # high sigma duration[3,:] = [10, 10] # gamma duration[4,:] = [0, 5] # Frequency Bands/Ranges for delta, theta, and, gamma r_delta = [0.5, 4] r_sigma = [12, 20] r_theta = [5,12] # EMG band r_mu = [50, 500] if not pemg: r_mu = [250, 500] # high gamma power r_gamma = [100, 150] #load EEG and EMG spectrum, calculated by calculate_spectrum P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat')) if pemg: Q = so.loadmat(os.path.join(ppath, name, 'msp_' + name + '.mat')) else: Q = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat')) SPEEG = np.squeeze(P['SP']) if pemg == 1: SPEMG = np.squeeze(Q['mSP']) else: SPEMG = np.squeeze(P['SP']) if use_idx == []: use_idx = range(0, SPEEG.shape[1]) freq = np.squeeze(P['freq']) t = np.squeeze(P['t']) dt = float(np.squeeze(P['dt'])) N = len(t) duration = np.divide(duration,dt) # get indices for frequency bands i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] i_sigma = np.where((freq >= r_sigma[0]) & (freq <= r_sigma[1]))[0] i_gamma = np.where((freq >= r_gamma[0]) & (freq <= r_gamma[1]))[0] p_delta = smooth_data( SPEEG[i_delta,:].mean(axis=0), sf_delta ) p_theta = smooth_data( SPEEG[i_theta,:].mean(axis=0), 0 ) # now filtering for EMG to pick up microarousals p_mu = smooth_data( SPEMG[i_mu,:].mean(axis=0), sf ) p_sigma = smooth_data( SPEEG[i_sigma,:].mean(axis=0), sf ) p_gamma = smooth_data( SPEEG[i_gamma,:].mean(axis=0), 0 ) th_delta = np.divide(p_theta, p_delta) #th_delta = smooth_data(th_delta, 2); seq = {} seq['high_theta'] = threshold_crossing(th_delta, np.nanmean(th_delta[use_idx])+th_delta_std*np.nanstd(th_delta[use_idx]), duration[0,1], duration[0,1], 1) seq['high_emg'] = threshold_crossing(p_mu, np.nanmean(p_mu[use_idx])+mu_std*
np.nanstd(p_mu[use_idx])
numpy.nanstd
""" Somes utilities function """ import numpy as np import scipy.linalg import numpy.polynomial.polynomial as poly import scipy.integrate def memory_kernel(ntimes, dt, coeffs, dim_x, noDirac=False): """ Return the value of the estimated memory kernel Parameters ---------- ntimes,dt: Number of timestep and timestep coeffs : Coefficients for diffusion and friction dim_x: Dimension of visible variables noDirac: Remove the dirac at time zero Returns ------- timespan : array-like, shape (n_samples, ) Array of time to evaluate memory kernel kernel_evaluated : array-like, shape (n_samples, dim_x,dim_x) Array of values of the kernel at time provided """ Avv = coeffs["A"][:dim_x, :dim_x] Ahv = coeffs["A"][dim_x:, :dim_x] Avh = coeffs["A"][:dim_x, dim_x:] Ahh = coeffs["A"][dim_x:, dim_x:] Kernel = np.zeros((ntimes, dim_x, dim_x)) for n in np.arange(ntimes): Kernel[n, :, :] = -np.matmul(Avh, np.matmul(scipy.linalg.expm(-1 * n * dt * Ahh), Ahv)) if not noDirac: Kernel[0, :, :] = Kernel[0, :, :] + Avv return dt * np.arange(ntimes), Kernel def memory_kernel_logspace(dt, coeffs, dim_x, noDirac=False): """ Return the value of the estimated memory kernel Parameters ---------- dt: Timestep coeffs : Coefficients for diffusion and friction dim_x: Dimension of visible variables noDirac: Remove the dirac at time zero Returns ------- timespan : array-like, shape (n_samples, ) Array of time to evaluate memory kernel kernel_evaluated : array-like, shape (n_samples, dim_x,dim_x) Array of values of the kernel at time provided """ Avv = coeffs["A"][:dim_x, :dim_x] Ahv = coeffs["A"][dim_x:, :dim_x] Avh = coeffs["A"][:dim_x, dim_x:] Ahh = coeffs["A"][dim_x:, dim_x:] eigs = np.linalg.eigvals(Ahh) Kernel = np.zeros((150, dim_x, dim_x)) final_time = 25 / np.min(np.abs(np.real(eigs))) times = np.logspace(np.log10(dt), np.log10(final_time), num=150) for n, t in enumerate(times): Kernel[n, :, :] = -np.matmul(Avh, np.matmul(scipy.linalg.expm(-1 * t * Ahh), Ahv)) if not noDirac: Kernel[0, :, :] = Kernel[0, :, :] + Avv return times, Kernel def memory_timescales(coeffs, dim_x): """ Compute the eigenvalues of A_hh to get the timescale of the memory """ return np.linalg.eigvals(coeffs["A"][dim_x:, dim_x:]) def friction_matrix(coeffs, dim_x): """ Compute integral of memory kernel to get friction matrix """ Avv = coeffs["A"][:dim_x, :dim_x] Ahv = coeffs["A"][dim_x:, :dim_x] Avh = coeffs["A"][:dim_x, dim_x:] Ahh = coeffs["A"][dim_x:, dim_x:] return Avv - np.matmul(Avh, np.matmul(np.linalg.inv(Ahh), Ahv)) def diagonalC(coeffs, dim_x): """ Return A and C after putting C in diagonal form """ C = coeffs["C"] lamb, vect = np.linalg.eigh(C[dim_x:, dim_x:]) vect_ext = np.identity(C.shape[0]) vect_ext[dim_x:, dim_x:] = vect C_bis = vect_ext.T @ C @ vect_ext A_bis = vect_ext.T @ coeffs["A"] @ vect_ext return A_bis, C_bis def prony_splitting(coeffs, dim_x): """ Compute the Kernel under prony series form """ Ahv = coeffs["A"][dim_x:, :dim_x] Avh = coeffs["A"][:dim_x, dim_x:] eigs, right_vect = np.linalg.eig(coeffs["A"][dim_x:, dim_x:]) right_coeffs =
np.linalg.inv(right_vect)
numpy.linalg.inv
import numpy as np import scipy.stats from scipy.signal.windows import * import datetime def generateRandomBits(n_bits): ''' Generates a numpy array of 0's and 1's. ''' return np.random.randint(0,high=2,size=n_bits,dtype='int') def bitsToSymbols(bits, M): ''' Takes an array of bits and converts them to their corresponding symbols. M is the number of points in the constellation. e.g. 0101 0000 1111 1010 -> 5 0 15 10 ''' n = int(np.log2(M)) nsym = int(len(bits)/n) symbols = np.zeros((nsym,),dtype='int') w = (2**np.arange(n-1,-1,-1)).astype('int') for i in range(0,nsym): symbols[i] = sum(bits[i*n:(i+1)*n] * w) return symbols def symbolsToIq(syms, constellation): """ Converts symbol indexes to complex values according to the given constellation """ return constellation[syms] def matchedFilter(x, p): """ Given a signal x, performs matched filtering based on pulse shape p """ return np.convolve(x,np.flip(np.conj(p))) def symbolsToBits(syms, M): ''' Takes a series of symbols and converts them to their corresponding bits. M is the number of points in the constellation. e.g. 5 0 15 10 -> 0101 0000 1111 1010 ''' n = int(np.log2(M)) bits = np.zeros(len(syms)*n, dtype='int') for i in range(0,len(syms)): s = format(syms[i], '0'+str(n)+'b') # represent symbol as binary string for j in range(0,n): bits[i*n+j] = s[j] return bits def calculateBer(b1,b2): """ Calculates the number of nonzero elements in the difference of the two arrays, and computes the bit error rate """ return np.count_nonzero(b1 - b2) / len(b1) def noiseVariance(SNR, Eb): """ Given an SNR in dB and an energy per bit Eb, calculate the noise variance N0. Note: This calculates Eb / gamma, where gamma is the SNR on a linear scale. """ return Eb / (10 ** (SNR/10)) # calculates N0 def addNoise(iqs, **kwargs): ''' adds additive white gaussian noise to an array of complex IQ samples in **kwargs, you must specify a. SNR (dB) and Eb (the energy per bit), or b. N0, the noise variance ''' if 'SNR' and 'Eb' in kwargs.keys(): SNR = kwargs['SNR'] Eb = kwargs['Eb'] N0 = noiseVariance(SNR, Eb) elif 'N0' in kwargs.keys(): N0 = kwargs['N0'] else: raise Exception("addNoise(): must specify N0 or SNR & Eb in kwargs.") var = N0 / 2 nr = np.random.normal(scale=np.sqrt(var), size=(len(iqs),)) ni = np.random.normal(scale=np.sqrt(var), size=(len(iqs),)) return iqs + (nr + 1j*ni) def addFrequencyOffset(iqs, nuT=0.0): ''' Adds a frequency nuT in terms of cycles/sample. ''' return iqs * np.exp(1j*2.0*np.pi*np.arange(0,len(iqs))*nuT) def addPhaseOffset(iqs, phase=None): ''' Adds a random phase to a list of complex values. If none is specifed, a random phase is chosen. ''' if phase == None: phase = 2*np.pi*np.random.rand() return iqs * np.exp(1j*phase) def phaseAmbiguity(rx,uw): ''' Returns angle between received samples and the provided unique word. ''' return np.angle(np.sum(rx*np.conj(uw))) def phaseAmbiguityResolution(rx, rxuw, uw): ''' Returns the received data with the phase ambiguity removed. rxuw are the received symbols corresponding to the unique word uw is the unique word itself ''' a = phaseAmbiguity(rxuw,uw) return addPhaseOffset(rx, phase=-a) def makeDecision(iq, constellation): ''' returns the index of nearest constellation point ''' return np.argmin(abs(constellation - iq)) def makeDecisions(iqs, constellation): ''' returns the indexes of the nearest constellation points ''' idxs = np.zeros(len(iqs), dtype='int8') for i in range(0,len(iqs)): idxs[i] = makeDecision(iqs[i], constellation) return idxs def freqOffsetEstimation16Apsk(rx, mode='gauss'): ''' Various methods for estimating a frequency offset when using a 16-APSK constellation Returns the normalized frequency offset in terms of cycles/sample Available modes: 'coarse' 'gauss' 'interp_1' 'interp_2' ''' def nonLinearXform(z): zz_m = z * np.conj(z); zz_p = 12 * np.angle(z); return zz_m * np.exp(1j*zz_p); z = nonLinearXform(rx) Lfft = 2*len(z) ZZ = np.fft.fft(z,Lfft) PP2 = ZZ * np.conj(ZZ) idx_max = np.argmax(PP2) if idx_max >= Lfft/2: vhat2 = (idx_max-Lfft)/(Lfft*12) else: vhat2 = idx_max/(Lfft*12) II1 = abs(PP2[idx_max-1]) II2 = abs(PP2[idx_max]) II3 = abs(PP2[idx_max+1]) II0 = np.maximum(II1, II3) if mode == 'interp_1': return vhat2 + 1/(12*Lfft) * 0.5*(II1-II3)/(II1-2*II2+II3) # D'Amico elif mode == 'interp_2': return vhat2 + np.sign(II3 - II1) / Lfft * II0 / (II2 - II0) / 2 / 2 / np.pi / 12 elif mode == 'gauss': return vhat2 + ( (1 / Lfft) * (np.log(II1) - np.log(II3)) / (np.log(II1) - 2*np.log(II2) + np.log(II3)) ) / (24 * np.pi) elif mode == 'coarse': return vhat2 else: raise Exception('Invalid mode.') def freqOffsetEstimationQpsk(rx, mode='interp_2'): ''' Various methods for estimating a frequency offset when using a QPSK constellation Returns the normalized frequency offset in terms of cycles/sample Available modes: 'coarse' 'gauss' 'interp_1' 'interp_2' Note: none of these have been derived from first princples. I modified the 16-APSK frequency estimators and they appear to work. There are probably more efficient/better frequency estimation methods available for QPSK. I simply haven't looked for them. ''' def nonLinearXform(z): zz_m = z * np.conj(z); zz_p = 4 * np.angle(z); return zz_m * np.exp(1j*zz_p); z = nonLinearXform(rx) Lfft = 2*len(z) ZZ = np.fft.fft(z,Lfft) PP2 = ZZ * np.conj(ZZ) idx_max = np.argmax(PP2) if idx_max >= Lfft/2: vhat2 = (idx_max-Lfft)/(Lfft*4) else: vhat2 = idx_max/(Lfft*4) II1 = abs(PP2[idx_max-1]) II2 = abs(PP2[idx_max]) II3 = abs(PP2[idx_max+1]) II0 = np.maximum(II1, II3) if mode == 'interp_1': return vhat2 + 1/(4*Lfft) * 0.5*(II1-II3)/(II1-2*II2+II3) # D'Amico elif mode == 'interp_2': return vhat2 + np.sign(II3 - II1) / Lfft * II0 / (II2 - II0) / 2 / 2 / np.pi / 4 elif mode == 'gauss': return vhat2 + ( (1 / Lfft) * (np.log(II1) - np.log(II3)) / (np.log(II1) - 2*np.log(II2) + np.log(II3)) ) / (2 * 4 * np.pi) elif mode == 'coarse': return vhat2 else: raise Exception('Invalid mode.') def createDerivativeFilter(N=51,Tsamp=1): ''' Calculates the coefficients for a derivative filter. N must be odd ''' if (N+1)%4 != 0: raise Exception("createDerivativeFilter: N must be of form 4*n-1") ndmin = -(N-1)/2 ndmax = (N-1)/2 nd = np.arange(ndmin, ndmax+1) d = np.zeros(nd.shape) ndnz = nd != 0 # nonzero indexes d[ndnz] = 1 / Tsamp * ((-1)**nd[ndnz]) / nd[ndnz] d = d * blackman(N) return d def derivativeFilter2(x, N=51,Tsamp=1,zero_edge=False): ''' Calculates the derivative of a discrete-time signal x with sample time Tsamp using a filter of length N. Because convolution results in values that are not correct near the edges, I decided to zero out those values as they can be quite large. So don't be surpised by the zeros at the beginning and end of the array. ''' d = createDerivativeFilter(N=N,Tsamp=Tsamp) pad = int((N-1)/2) # this is the number of samples at the beginning/end of the signal that aren't quite correct due to blurring from convolution xd = (np.convolve(x,d))[pad:-pad] if zero_edge: xd[0:pad] = 0 xd[-pad:-1] = 0 xd[-1] = 0 return xd def derivativeFilter(x,N=51,Tsamp=1): ''' Calculates the derivative of a discrete-time signal x with sample time Tsamp using a filter of length N. Because convolution results in values that are not correct near the edges, this function appends a linear extrapolation on either end prior to convolution to avoid strange filter behavior. This might not work well in the presence of even mild noise, but seems to work better than the original function I wrote. ''' d = createDerivativeFilter(N=N,Tsamp=Tsamp) pad = int((N-1)/2) # this is the number of samples at the beginning/end of the signal that aren't quite correct due to blurring from convolution # extend x with linear extrapolation on both ends x2 = np.zeros((len(x)+2*pad,)) x2[pad:-pad] = x # insert sequence in middle x2[0:pad] = x[0] - np.arange(pad,0,step=-1) * (x[1] - x[0]) # left side extrapolation x2[len(x2)-pad:len(x2)] = x[-1] + np.arange(1,pad+1) * (x[-1] - x[-2]) # right side extrapolation # valid values xd = (np.convolve(x2,d))[2*pad:-2*pad] return xd def fractionalDelayCoeffs(T, dT, L): """ Produces fractional delay filter coefficients. """ n =
np.arange(-L,L+1)
numpy.arange
# Practice sites #https://www.machinelearningplus.com/python/101-numpy-exercises-python/ #http://www.cs.umd.edu/~nayeem/courses/MSML605/files/04_Lec4_List_Numpy.pdf #https://www.gormanalysis.com/blog/python-numpy-for-your-grandma/ #https://nickmccullum.com/advanced-python/numpy-indexing-assignment/ # 1. Import numpy as np and see the version # Difficulty Level: L1 # Q. Import numpy as np and print the version number. ##? 1. Import numpy as np and see the version # Difficulty Level: L1 # Q. Import numpy as np and print the version number. import numpy as np print(np.__version__) ##? 2. How to create a 1D array? # Difficulty Level: L1 # Q. Create a 1D array of numbers from 0 to 9 arr = np.arange(10) arr ##? 3. How to create a boolean array? # Difficulty Level: L1 # Q. Create a 3×3 numpy array of all True’s arr = np.full((3,3), True, dtype=bool) arr ##? 4. How to extract items that satisfy a given condition from 1D array? # Difficulty Level: L1 # Q. Extract all odd numbers from arr arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) arr[arr % 2 == 1] ##? 5. How to replace items that satisfy a condition with another value in numpy array? # Difficulty Level: L1 # Q. Replace all odd numbers in arr with -1 arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) arr[arr % 2 == 1] = -1 arr ##? 6. How to replace items that satisfy a condition without affecting the original array? # Difficulty Level: L2 # Q. Replace all odd numbers in arr with -1 without changing arr arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) #1 np.where out = np.where(arr % 2 == 1, -1, arr) out #2 list comp out = np.array([-1 if x % 2 == 1 else x for x in arr]) out ##? 7. How to reshape an array? # Difficulty Level: L1 # Q. Convert a 1D array to a 2D array with 2 rows arr = np.arange(10) arr.reshape(2, -1) # Setting y to -1 automatically decides number of columns. # Could do the same with arr.reshape(2, 5) ##? 8. How to stack two arrays vertically? # Difficulty Level: L2 # Q. Stack arrays a and b vertically a = np.arange(10).reshape(2, -1) b = np.repeat(1, 10).reshape(2, -1) #1 np.vstack([a, b]) #2 np.concatenate([a, b], axis=0) #3 np.r_[a, b] # 9. How to stack two arrays horizontally? # Difficulty Level: L2 # Q. Stack the arrays a and b horizontally. a = np.arange(10).reshape(2, -1) b = np.repeat(1, 10).reshape(2, -1) #1 np.hstack([a, b]) #2 np.concatenate([a, b], axis=1) #3 np.c_[a, b] ##? 10. How to generate custom sequences in numpy without hardcoding? # Difficulty Level: L2 # Q. Create the following pattern without hardcoding. # Use only numpy functions and the below input array a. a = np.array([1,2,3]) np.r_[np.repeat(a,3), np.tile(a, 3)] ##? 11. How to get the common items between two python numpy arrays? # Difficulty Level: L2 # Q. Get the common items between a and b a = np.array([1,2,3,2,3,4,3,4,5,6]) b = np.array([7,2,10,2,7,4,9,4,9,8]) np.intersect1d(a, b) ##? 12. How to remove from one array those items that exist in another? # Difficulty Level: L2 # Q. From array a remove all items present in array b a = np.array([1,2,3,4,5]) b = np.array([5,6,7,8,9]) # From 'a' remove all of 'b' np.setdiff1d(a,b) ##? 13. How to get the positions where elements of two arrays match? # Difficulty Level: L2 # Q. Get the positions where elements of a and b match a = np.array([1,2,3,2,3,4,3,4,5,6]) b = np.array([7,2,10,2,7,4,9,4,9,8]) np.where(a==b) # 14. How to extract all numbers between a given range from a numpy array? # Difficulty Level: L2 # Q. Get all items between 5 and 10 from a. a = np.array([2, 6, 1, 9, 10, 3, 27]) #1 idx = np.where((a>=5) & (a<=10)) a[idx] #2 idx = np.where(np.logical_and(a >= 5, a <= 10)) a[idx] #3 a[(a >= 5) & (a <= 10)] ##? 15. How to make a python function that handles scalars to work on numpy arrays? # Difficulty Level: L2 # Q. Convert the function maxx that works on two scalars, to work on two arrays. def maxx(x:np.array, y:np.array): """Get the maximum of two items""" if x >= y: return x else: return y a = np.array([5, 7, 9, 8, 6, 4, 5]) b = np.array([6, 3, 4, 8, 9, 7, 1]) pair_max = np.vectorize(maxx, otypes=[float]) pair_max(a, b) ##? 16. How to swap two columns in a 2d numpy array? # Difficulty Level: L2 # Q. Swap columns 1 and 2 in the array arr. arr = np.arange(9).reshape(3,3) arr arr[:, [1, 0, 2]] #by putting brackets inside the column slice. You have access to column indices ##? 17. How to swap two rows in a 2d numpy array? # Difficulty Level: L2 # Q. Swap rows 1 and 2 in the array arr: arr = np.arange(9).reshape(3,3) arr arr[[0, 2, 1], :] #same goes here for the rows ##? 18. How to reverse the rows of a 2D array? # Difficulty Level: L2 # Q. Reverse the rows of a 2D array arr. # Input arr = np.arange(9).reshape(3,3) arr arr[::-1, :] #or arr[::-1] # 19. How to reverse the columns of a 2D array? # Difficulty Level: L2 # Q. Reverse the columns of a 2D array arr. # Input arr = np.arange(9).reshape(3,3) arr arr[:,::-1] ##? 20. How to create a 2D array containing random floats between 5 and 10? # Difficulty Level: L2 # Q. Create a 2D array of shape 5x3 to contain random decimal numbers between 5 and 10. arr = np.arange(9).reshape(3,3) #1 rand_arr = np.random.randint(low=5, high=10, size=(5,3)) + np.random.random((5,3)) rand_arr #2 rand_arr = np.random.uniform(5, 10, size=(5,3)) rand_arr ##? 21. How to print only 3 decimal places in python numpy array? # Difficulty Level: L1 # Q. Print or show only 3 decimal places of the numpy array rand_arr. rand_arr = np.random.random((5,3)) rand_arr rand_arr = np.random.random([5,3]) np.set_printoptions(precision=3) rand_arr[:4] ##? 22. How to pretty print a numpy array by suppressing the scientific notation (like 1e10)? # Difficulty Level: L1 # Q. Pretty print rand_arr by suppressing the scientific notation (like 1e10) #Reset printoptions np.set_printoptions(suppress=False) # Create the random array np.random.seed(100) rand_arr = np.random.random([3,3])/1e3 rand_arr #Set precision and suppress e notation np.set_printoptions(suppress=True, precision=6) rand_arr ##? 23. How to limit the number of items printed in output of numpy array? # Difficulty Level: L1 # Q. Limit the number of items printed in python numpy array a to a maximum of 6 elements. a = np.arange(15) #set the elements to print in threshold np.set_printoptions(threshold=6) a # reset the threshold to default np.set_printoptions(threshold=1000) ##? 24. How to print the full numpy array without truncating # Difficulty Level: L1 # Q. Print the full numpy array a without truncating. a = np.arange(15) # reset the threshold to default np.set_printoptions(threshold=1000) a ##? 25. How to import a dataset with numbers and texts keeping the text intact in python numpy? # Difficulty Level: L2 # Q. Import the iris dataset keeping the text intact. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris = np.genfromtxt(url, delimiter=',', dtype="object") names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species') iris[:3] ##? 26. How to extract a particular column from 1D array of tuples? # Difficulty Level: L2 # Q. Extract the text column species from the 1D iris imported in previous question. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_1d = np.genfromtxt(url, delimiter=',', dtype=None, encoding = "UTF-8") species = np.array([col[4] for col in iris_1d]) species[:5] ##? 27. How to convert a 1d array of tuples to a 2d numpy array? # Difficulty Level: L2 # Q. Convert the 1D iris to 2D array iris_2d by omitting the species text field. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_1d = np.genfromtxt(url, delimiter=',', dtype=None, encoding = "UTF-8") #1 no_species_2d = np.array([row.tolist()[:4] for row in iris_1d]) no_species_2d[:3] #2 # Can directly specify columns to use with the "usecols" method url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' no_species_2d = np.genfromtxt(url, delimiter=',', dtype=None, encoding = "UTF-8", usecols=[0,1,2,3]) no_species_2d[:3] ##? 28. How to compute the mean, median, standard deviation of a numpy array? # Difficulty: L1 # Q. Find the mean, median, standard deviation of iris's sepallength (1st column) url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_1d = np.genfromtxt(url, delimiter=',', dtype=None, encoding="utf-8") sepal = np.genfromtxt(url, delimiter=',', dtype=float, usecols=[0]) # or sepal = np.array([col[0] for col in iris_1d]) # or sepal = np.array([col.tolist()[0] for col in iris_1d]) mu, med, sd = np.mean(sepal), np.median(sepal), np.std(sepal) np.set_printoptions(precision=2) print(f'The mean is {mu} \nThe median is {med} \nThe standard deviation is {sd}') ##? 29. How to normalize an array so the values range exactly between 0 and 1? # Difficulty: L2 # Q. Create a normalized form of iris's sepallength whose values range exactly between 0 and 1 so that the minimum has value 0 and maximum has value 1. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_1d = np.genfromtxt(url, delimiter=',', dtype=None, encoding="utf-8") sepal = np.genfromtxt(url, delimiter=',', dtype=float, usecols=[0]) #1 smax, smin = np.max(sepal), np.min(sepal) S = (sepal-smin)/(smax-smin) S #2 S = (sepal-smin)/sepal.ptp() S ##? 30. How to compute the softmax score? # Difficulty Level: L3 # Q. Compute the softmax score of sepallength. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' sepal = np.genfromtxt(url, delimiter=',', dtype=float, usecols=[0], encoding="utf-8") #or sepal = np.genfromtxt(url, delimiter=',', dtype='object') sepal = np.array([float(row[0]) for row in sepal]) # https://stackoverflow.com/questions/34968722/how-to-implement-the-softmax-function-in-python""" #1 def softmax(x): e_x = np.exp(x - np.max(x)) return e_x/ e_x.sum(axis=0) softmax(sepal) ##? 31. How to find the percentile scores of a numpy array? # Difficulty Level: L1 # Q. Find the 5th and 95th percentile of iris's sepallength url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' sepal = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0]) np.percentile(sepal, q=[5, 95]) ##? 32. How to insert values at random positions in an array? # Difficulty Level: L2 # Q. Insert np.nan values at 20 random positions in iris_2d dataset url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', encoding="utf-8") #Can change object to float if you want #1 i, j = np.where(iris_2d) # i, j contain the row numbers and column numbers of the 600 elements of Irix_x np.random.seed(100) iris_2d[np.random.choice(i, 20), np.random.choice((j), 20)] = np.nan #Checking nans in 2nd column np.isnan(iris_2d[:, 1]).sum() #Looking over all rows/columns np.isnan(iris_2d[:, :]).sum() #2 np.random.seed(100) iris_2d[np.random.randint(150, size=20), np.random.randint(4, size=20)]=np.nan #Looking over all rows/columns np.isnan(iris_2d[:, :]).sum() ##? 33. How to find the position of missing values in numpy array? # Difficulty Level: L2 # Q. Find the number and position of missing values in iris_2d's sepallength (1st column) # ehh already did that? Lol. Using above filtered array from method 2 in # question 32 np.isnan(iris_2d[:, 0]).sum() #Indexes of which can be found with np.where(np.isnan(iris_2d[:, 0])) ##? 34. How to filter a numpy array based on two or more conditions? # Difficulty Level: L3 # Q. Filter the rows of iris_2d that has petallength (3rd column) > 1.5 # and sepallength (1st column) < 5.0 url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3]) filt_cond = (iris_2d[:,0] < 5.0) & (iris_2d[:, 2] > 1.5) iris_2d[filt_cond] ##? 35. How to drop rows that contain a missing value from a numpy array? # Difficulty Level: L3: # Q. Select the rows of iris_2d that does not have any nan value. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3]) iris_2d[np.random.randint(150, size=20), np.random.randint(4, size=20)] = np.nan #1 #No direct numpy implementation iris_drop = np.array([~np.any(np.isnan(row)) for row in iris_2d]) #Look at first 5 rows of drop iris_2d[iris_drop][:5] #2 iris_2d[np.sum(np.isnan(iris_2d), axis=1)==0][:5] ##? 36. How to find the correlation between two columns of a numpy array? # Difficulty Level: L2 # Q. Find the correlation between SepalLength(1st column) and PetalLength(3rd column) in iris_2d url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3]) #1 np.corrcoef(iris_2d[:, 0], iris_2d[:, 2])[0, 1] #2 from scipy.stats.stats import pearsonr corr, p_val = pearsonr(iris_2d[:, 0], iris_2d[:, 2]) print(corr) # Correlation coef indicates the degree of linear relationship between two numeric variables. # It can range between -1 to +1. # The p-value roughly indicates the probability of an uncorrelated system producing # datasets that have a correlation at least as extreme as the one computed. # The lower the p-value (<0.01), greater is the significance of the relationship. # It is not an indicator of the strength. #> 0.871754157305 ##? 37. How to find if a given array has any null values? # Difficulty Level: L2 # Q. Find out if iris_2d has any missing values. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3]) np.isnan(iris_2d[:, :]).any() ##? 38. How to replace all missing values with 0 in a numpy array? # Difficulty Level: L2 # Q. Replace all occurrences of nan with 0 in numpy array url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3]) iris_2d[np.random.randint(150, size=20), np.random.randint(4, size=20)] = np.nan #Check for nans np.any(~np.isnan(iris_2d[:, :])) #Set Indexes of of the nans = 0 iris_2d[np.isnan(iris_2d)] = 0 #Check the same indexes np.where(iris_2d==0) #Check first 10 rows iris_2d[:10] ##? 39. How to find the count of unique values in a numpy array? # Difficulty Level: L2 # Q. Find the unique values and the count of unique values in iris's species # Input url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris = np.genfromtxt(url, delimiter=',', dtype='object', encoding="utf-8") names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species') #1 species = np.array([row.tolist()[4] for row in iris]) np.unique(species, return_counts=True) #2 np.unique(iris[:, 4], return_counts=True) ##? 40. How to convert a numeric to a categorical (text) array? # Difficulty Level: L2 # Q. Bin the petal length (3rd) column of iris_2d to form a text array, such that if petal length is: # Less than 3 --> 'small' # 3-5 --> 'medium' # '>=5 --> 'large' # Input url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris = np.genfromtxt(url, delimiter=',', dtype='object') names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species') #1 #Bin the petal length petal_length_bin = np.digitize(iris[:, 2].astype('float'), [0, 3, 5, 10]) #Map it to respective category. label_map = {1: 'small', 2: 'medium', 3: 'large', 4: np.nan} petal_length_cat = [label_map[x] for x in petal_length_bin] petal_length_cat[:4] #or petal_length_cat = np.array(list(map(lambda x: label_map[x], petal_length_bin))) petal_length_cat[:4] ##? 41. How to create a new column from existing columns of a numpy array? # Difficulty Level: L2 # Q. Create a new column for volume in iris_2d, # where volume is (pi x petallength x sepal_length^2)/3 # Input url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_2d = np.genfromtxt(url, delimiter=',', dtype='object') # Compute volume sepallength = iris_2d[:, 0].astype('float') petallength = iris_2d[:, 2].astype('float') volume = (np.pi * petallength*sepallength**2)/3 # Introduce new dimension to match iris_2d's volume = volume[:, np.newaxis] # Add the new column out = np.hstack([iris_2d, volume]) out[:4] ##? 42. How to do probabilistic sampling in numpy? # Difficulty Level: L3 # Q. Randomly sample iris's species such that setosa # is twice the number of versicolor and virginica # Import iris keeping the text column intact url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris = np.genfromtxt(url, delimiter=',', dtype='object') #Get species column species = iris[:, 4] #1 Generate Probablistically. np.random.seed(100) a = np.array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']) out = np.random.choice(a, 150, p=[0.5, 0.25, 0.25]) #Checking counts np.unique(out[:], return_counts=True) #2 Probablistic Sampling #preferred np.random.seed(100) probs = np.r_[np.linspace(0, 0.500, num=50), np.linspace(0.501, .0750, num=50), np.linspace(.751, 1.0, num=50)] index = np.searchsorted(probs, np.random.random(150)) species_out = species[index] print(np.unique(species_out, return_counts=True)) # Approach 2 is preferred because it creates an index variable that can be # used to sample 2d tabular data. ##? 43. How to get the second largest value of an array when grouped by another array? # Difficulty Level: L2 # Q. What is the value of second longest petallength of species setosa # Input url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris = np.genfromtxt(url, delimiter=',', dtype='object') names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species') petal_setosa = iris[iris[:, 4]==b'Iris-setosa', [2]].astype('float') #1 #Note. Option 1 will return the second largest value 1.7, but with no repeats (np.unique() np.unique(np.sort(petal_setosa))[-2] #Note, options 2 and 3. these will return 1.9 because that is the second largest value. #2 petal_setosa[np.argpartition(petal_setosa, -2)[-2]] #3 petal_setosa[petal_setosa.argsort()[-2]] #4 unq = np.unique(petal_setosa) unq[np.argpartition(unq, -2)[-2]] #Note: This method still gives back 1.9. As that is the 2nd largest value, #So you'd have to filter for unique values. Then do the argpart on the unq array ##? 44. How to sort a 2D array by a column # Difficulty Level: L2 # Q. Sort the iris dataset based on sepallength column. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' # dtype = [('sepallength', float), ('sepalwidth', float), ('petallength', float), ('petalwidth', float),('species', 'S10')] iris = np.genfromtxt(url, delimiter=',', dtype="object") names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species') #1 print(iris[iris[:,0].argsort()][:20]) #2 #!Only captures first column to sort np.sort(iris[:, 0], axis=0) #3 sorted(iris, key=lambda x: x[0]) ##? 45. How to find the most frequent value in a numpy array? # Difficulty Level: L1 # Q. Find the most frequent value of petal length (3rd column) in iris dataset. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris = np.genfromtxt(url, delimiter=',', dtype='object') names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species') vals, counts = np.unique(iris[:, 2], return_counts=True) print(vals[np.argmax(counts)]) ##? 46. How to find the position of the first occurrence of a value greater than a given value? # Difficulty Level: L2 # Q. Find the position of the first occurrence of a value greater than 1.0 in petalwidth 4th column of iris dataset. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris = np.genfromtxt(url, delimiter=',', dtype='object') #1 np.argwhere(iris[:, 3].astype(float) > 1.0)[0] # 47. How to replace all values greater than a given value to a given cutoff? # Difficulty Level: L2 # Q. From the array a, replace all values greater than 30 to 30 and less than 10 to 10. np.set_printoptions(precision=2) np.random.seed(100) a = np.random.uniform(1,50, 20) #1 np.clip(a, a_min=10, a_max=30) #2 np.where(a < 10, 10, np.where(a > 30, 30, a)) #Tangent - Filtering condition #Say we only want the values above 10 and below 30. Or operator | should help there. filt_cond = (a < 10) | (a > 30) a[filt_cond] ##? 48. How to get the positions of top n values from a numpy array? # Difficulty Level: L2 # Q. Get the positions of top 5 maximum values in a given array a. np.random.seed(100) a = np.random.uniform(1,50, 20) #1 a.argsort()[:5] #2 np.argpartition(-a, 5)[:5] # or (order is reversed though) np.argpartition(a, -5)[-5:] #To get the values. #1 a[a.argsort()][-5:] #2 np.sort(a)[-5:] #3 np.partition(a, kth=-5)[-5:] #4 a[np.argpartition(-a, 5)][:5] #or a[np.argpartition(a, -5)][-5:] ##? 49. How to compute the row wise counts of all possible values in an array? # Difficulty Level: L4 # Q. Compute the counts of unique values row-wise. np.random.seed(100) arr = np.random.randint(1,11,size=(6, 10)) #Add a column of of the counts of each row #Tangent fun counts = np.array([np.unique(row).size for row in arr]) counts = counts.reshape(arr.shape[0], 1) arr = np.hstack([arr, counts]) arr #1 def row_counts(arr2d): count_arr = [np.unique(row, return_counts=True) for row in arr2d] return [[int(b[a==i]) if i in a else 0 for i in np.unique(arr2d)] for a, b in count_arr] print(np.arange(1, 11)) row_counts(arr) #2 arr = np.array([np.array(list('<NAME>')), np.array(list('narendramodi')), np.array(list('jjayalalitha'))]) print(np.unique(arr)) row_counts(arr) ##? 50. How to convert an array of arrays into a flat 1d array? # Difficulty Level: 2 # Q. Convert array_of_arrays into a flat linear 1d array. # Input: arr1 = np.arange(3) arr2 = np.arange(3,7) arr3 = np.arange(7,10) array_of_arrays = np.array([arr1, arr2, arr3]) array_of_arrays #1 - List comp arr_2d = [a for arr in array_of_arrays for a in arr] arr_2d #2 - concatenate arr_2d = np.concatenate([arr1, arr2, arr3]) arr_2d #3 - hstack arr_2d = np.hstack([arr1, arr2, arr3]) arr_2d #4 - ravel arr_2d = np.concatenate(array_of_arrays).ravel() #ravel flattens the array arr_2d ##? 51. How to generate one-hot encodings for an array in numpy? # Difficulty Level L4 # Q. Compute the one-hot encodings (dummy binary variables for each unique value in the array) # Input np.random.seed(101) arr = np.random.randint(1,11, size=20) arr #1 def one_hot_encode(arr): uniqs = np.unique(arr) out = np.zeros((arr.shape[0], uniqs.shape[0])) for i, k in enumerate(arr): out[i, k-1] = 1 return out print("\t",np.arange(1, 11)) one_hot_encode(arr) #2 (arr[:, None] == np.unique(arr)).view(np.int8) ##? 52. How to create row numbers grouped by a categorical variable? # Difficulty Level: L3 # Q. Create row numbers grouped by a categorical variable. # Use the following sample from iris species as input. #Input url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' species = np.genfromtxt(url, delimiter=',', dtype='str', usecols=4) #choose 20 species randomly species_small = np.sort(np.random.choice(species, size=20)) species_small #1 print([i for val in np.unique(species_small) for i, grp in enumerate(species_small[species_small==val])]) ##? 53. How to create group ids based on a given categorical variable? # Difficulty Level: L4 # Q. Create group ids based on a given categorical variable. # Use the following sample from iris species as input. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' species = np.genfromtxt(url, delimiter=',', dtype='str', usecols=4) species_small = np.sort(np.random.choice(species, size=20)) species_small #1 [np.argwhere(np.unique(species_small) == s).tolist()[0][0] for val in np.unique(species_small) for s in species_small[species_small==val]] #2 # Solution: For Loop version output = [] uniqs = np.unique(species_small) for val in uniqs: # uniq values in group for s in species_small[species_small==val]: # each element in group groupid = np.argwhere(uniqs == s).tolist()[0][0] # groupid output.append(groupid) print(output) ##? 54. How to rank items in an array using numpy? # Difficulty Level: L2 # Q. Create the ranks for the given numeric array a. #Input np.random.seed(10) a = np.random.randint(20, size=10) print(a) a.argsort().argsort() ##? 55. How to rank items in a multidimensional array using numpy? # Difficulty Level: L3 # Q. Create a rank array of the same shape as a given numeric array a. #Input np.random.seed(10) a = np.random.randint(20, size=[5,5]) print(a) #1 print(a.ravel().argsort().argsort().reshape(a.shape)) #2 #Ranking the rows tmp = a.argsort()[::-1] np.arange(len(a))[tmp]+1 #2b #Alternate ranking of rows (8x faster) sidx = np.argsort(a, axis=1) # Store shape info m,n = a.shape # Initialize output array out = np.empty((m,n),dtype=int) # Use sidx as column indices, while a range array for the row indices # to select one element per row. Since sidx is a 2D array of indices # we need to use a 2D extended range array for the row indices out[np.arange(m)[:,None], sidx] = np.arange(n) #3 #Ranking the columns sidx = np.argsort(a, axis=0) out[sidx, np.arange(n)] = np.arange(m)[:,None] #4 #Ranking all the columns tmp = a.argsort(axis=0).argsort(axis=0)[::-1] np.arange(len(a))[tmp]+1 #3b Ranks for first column tmp[:,0] #3c Ranks for second column tmp[:,1] ##? 56. How to find the maximum value in each row of a numpy array 2d? # DifficultyLevel: L2 # Q. Compute the maximum for each row in the given array. #Input np.random.seed(100) a = np.random.randint(1,10, [5,3]) a #1 [np.max(row) for row in a] #2 np.amax(a, axis=1) #3
np.apply_along_axis(np.max, arr=a, axis=1)
numpy.apply_along_axis
from .ConfidenceIntervalsOnlySamples import ConfidenceIntervalsOnlySamples import numpy as np class ConfidenceIntervalsOnlySamplesClassification(ConfidenceIntervalsOnlySamples): def _stats_and_plot(self, baseName, batch_samples_list, real_valu_list, extra_batch_dict): all_samples = np.concatenate(batch_samples_list, axis=0) y = np.concatenate(real_valu_list, axis=0) nb, no, ns = all_samples.shape cumulative_preds = np.sum(all_samples, axis=2) predictions_forced =
np.argmax(cumulative_preds, axis=1)
numpy.argmax
# -*- coding: utf-8 -*- from darkflow.net.build import TFNet import cv2 import os import json import numpy as np from PIL import Image import random import csv import sys import math from scipy import genfromtxt from sklearn.cluster import KMeans import pandas as pd from sklearn.externals import joblib from sklearn import svm import matplotlib save_path = 'sample_img/output/' open_path = 'sample_img/' #detection関数 def inputdata(image_name): os.chdir('/var/www/KB_1810/learn/') options = {"model": "/var/www/KB_1810/learn/cfg/yolov2-voc.cfg", "load": "/var/www/KB_1810/learn/bin/yolo_learn.weights", "threshold": 0.4, "gpu": 0.3} tfnet = TFNet(options) input_image = image_name image_folder = "sample_img" current_path = os.getcwd() output_file = "out" current_path = os.path.join(current_path,image_folder) output_path = os.path.join(current_path,output_file) if not os.path.exists(output_path): print('Creating output path {}'.format(output_path)) os.mkdir(output_path) src = cv2.imread(os.path.join(current_path,input_image)) dst = src #cv2.imshow("img", src) result, result1 = tfnet.return_predict(src,dst) print(result) #cv2.imshow("img_out", dst) cv2.waitKey() cv2.imwrite(output_path + '\\' + input_image, dst) cv2.imwrite("result1.png",dst) return result1 #detectionされた部分を画像にする def image_split(img_name): global save_path global open_path #save_path1 = 'sample_img' img = img_name #detectionする boxdataにはobjectの座標が入る boxdata = inputdata(img) subregion = list() pic = Image.open(open_path + img) #detection画像の分割 for boxs in boxdata: box = (int(boxs[0]), int(boxs[2]), int(boxs[1]), int(boxs[3])) #print(box) subregion.append(pic.crop(box)) for num in range(len(boxdata)): subregion[num].save(save_path +str(num) + 'bus.jpg',"JPEG") return boxdata # 点p0に一番近い点を点群psから抽出 def serch_neighbourhood(p0, ps): L = np.array([]) for i in range(ps.shape[0]): L = np.append(L,np.linalg.norm(ps[i]-p0)) return ps[
np.argmin(L)
numpy.argmin
import inspect import logging from abc import ABCMeta, abstractmethod from collections import OrderedDict from copy import deepcopy import gym import numpy as np import pybullet as p from future.utils import with_metaclass from igibson.controllers import ControlType, create_controller from igibson.external.pybullet_tools.utils import get_joint_info from igibson.object_states.utils import clear_cached_states from igibson.objects.stateful_object import StatefulObject from igibson.utils.python_utils import assert_valid_key, merge_nested_dicts from igibson.utils.utils import rotate_vector_3d log = logging.getLogger(__name__) # Global dicts that will contain mappings REGISTERED_ROBOTS = {} ROBOT_TEMPLATE_CLASSES = { "BaseRobot", "ActiveCameraRobot", "TwoWheelRobot", "ManipulationRobot", "LocomotionRobot", } def register_robot(cls): if cls.__name__ not in REGISTERED_ROBOTS and cls.__name__ not in ROBOT_TEMPLATE_CLASSES: REGISTERED_ROBOTS[cls.__name__] = cls class BaseRobot(StatefulObject): """ Base class for mujoco xml/ROS urdf based robot agents. This class handles object loading, and provides method interfaces that should be implemented by subclassed robots. """ def __init_subclass__(cls, **kwargs): """ Registers all subclasses as part of this registry. This is useful to decouple internal codebase from external user additions. This way, users can add their custom robot by simply extending this Robot class, and it will automatically be registered internally. This allows users to then specify their robot directly in string-from in e.g., their config files, without having to manually set the str-to-class mapping in our code. """ if not inspect.isabstract(cls): register_robot(cls) def __init__( self, name=None, control_freq=None, action_type="continuous", action_normalize=True, proprio_obs="default", reset_joint_pos=None, controller_config=None, base_name=None, scale=1.0, self_collision=False, **kwargs ): """ :param name: None or str, name of the robot object :param control_freq: float, control frequency (in Hz) at which to control the robot. If set to be None, simulator.import_object will automatically set the control frequency to be 1 / render_timestep by default. :param action_type: str, one of {discrete, continuous} - what type of action space to use :param action_normalize: bool, whether to normalize inputted actions. This will override any default values specified by this class. :param proprio_obs: str or tuple of str, proprioception observation key(s) to use for generating proprioceptive observations. If str, should be exactly "default" -- this results in the default proprioception observations being used, as defined by self.default_proprio_obs. See self._get_proprioception_dict for valid key choices :param reset_joint_pos: None or Array[float], if specified, should be the joint positions that the robot should be set to during a reset. If None (default), self.default_joint_pos will be used instead. :param controller_config: None or Dict[str, ...], nested dictionary mapping controller name(s) to specific controller configurations for this robot. This will override any default values specified by this class. :param base_name: None or str, robot link name that will represent the entire robot's frame of reference. If not None, this should correspond to one of the link names found in this robot's corresponding URDF / MJCF file. None defaults to the base link name used in @model_file :param scale: int, scaling factor for model (default is 1) :param self_collision: bool, whether to enable self collision :param **kwargs: see StatefulObject """ if type(name) == dict: raise ValueError( "Robot name is a dict. You are probably using the deprecated constructor API which takes in robot_config (a dict) as input. Check the new API in BaseRobot." ) super(BaseRobot, self).__init__(name=name, category="agent", abilities={"robot": {}}, **kwargs) self.base_name = base_name self.control_freq = control_freq self.scale = scale self.self_collision = self_collision assert_valid_key(key=action_type, valid_keys={"discrete", "continuous"}, name="action type") self.action_type = action_type self.action_normalize = action_normalize self.proprio_obs = self.default_proprio_obs if proprio_obs == "default" else list(proprio_obs) self.reset_joint_pos = reset_joint_pos if reset_joint_pos is None else np.array(reset_joint_pos) self.controller_config = {} if controller_config is None else controller_config # Initialize internal attributes that will be loaded later # These will have public interfaces self.simulator = None self.model_type = None self.action_list = None # Array of discrete actions to deploy self._last_action = None self._links = None self._joints = None self._controllers = None self._mass = None self._joint_state = { # This is filled in periodically every time self.update_state() is called "unnormalized": { "position": None, "velocity": None, "torque": None, }, "normalized": { "position": None, "velocity": None, "torque": None, }, "at_limits": None, } def _load(self, simulator): """ Loads this pybullet model into the simulation. Should return a list of unique body IDs corresponding to this model. :param simulator: Simulator, iGibson simulator reference :return Array[int]: List of unique pybullet IDs corresponding to this model. This will usually only be a single value """ log.debug("Loading robot model file: {}".format(self.model_file)) # A persistent reference to simulator is needed for AG in ManipulationRobot self.simulator = simulator # Set the control frequency if one was not provided. expected_control_freq = 1.0 / simulator.render_timestep if self.control_freq is None: log.debug( "Control frequency is None - being set to default of 1 / render_timestep: %.4f", expected_control_freq ) self.control_freq = expected_control_freq else: assert np.isclose( expected_control_freq, self.control_freq ), "Stored control frequency does not match environment's render timestep." # Set flags for loading model flags = p.URDF_USE_MATERIAL_COLORS_FROM_MTL if self.self_collision: flags = flags | p.URDF_USE_SELF_COLLISION | p.URDF_USE_SELF_COLLISION_EXCLUDE_PARENT # Run some sanity checks and load the model model_file_type = self.model_file.split(".")[-1] if model_file_type == "urdf": self.model_type = "URDF" body_ids = (p.loadURDF(self.model_file, globalScaling=self.scale, flags=flags),) else: self.model_type = "MJCF" assert self.scale == 1.0, ( "robot scale must be 1.0 because pybullet does not support scaling " "for MJCF model (p.loadMJCF)" ) body_ids = p.loadMJCF(self.model_file, flags=flags) # Load into simulator and initialize states for body_id in body_ids: simulator.load_object_in_renderer(self, body_id, self.class_id, **self._rendering_params) return body_ids def load(self, simulator): # Call the load function on the BaseObject through StatefulObject. This sets up the body_ids member. body_ids = super(BaseRobot, self).load(simulator) # Grab relevant references from the body IDs self._setup_references() # Disable collisions for names in self.disabled_collision_pairs: link_a = self._links[names[0]] link_b = self._links[names[1]] p.setCollisionFilterPair(link_a.body_id, link_b.body_id, link_a.link_id, link_b.link_id, 0) # Load controllers self._load_controllers() # Setup action space self._action_space = ( self._create_discrete_action_space() if self.action_type == "discrete" else self._create_continuous_action_space() ) # Validate this robot configuration self._validate_configuration() # Reset the robot and keep all joints still after loading self.reset() self.keep_still() # Return the body IDs return body_ids def _setup_references(self): """ Parse the set of robot @body_ids to get properties including joint information and mass """ # Initialize link and joint dictionaries for this robot self._links, self._joints, self._mass = OrderedDict(), OrderedDict(), 0.0 # Grab model base info body_ids = self.get_body_ids() assert ( self.base_name is not None or len(body_ids) == 1 ), "Base name can be inferred only for single-body robots." for body_id in body_ids: base_name = p.getBodyInfo(body_id)[0].decode("utf8") assert ( base_name not in self._links ), "Links of a robot, even if on different bodies, must be uniquely named." self._links[base_name] = RobotLink(self, base_name, -1, body_id) # if base_name is unspecified, use this link as robot_body (base_link). if self.base_name is None: self.base_name = base_name # Loop through all robot links and infer relevant link / joint / mass references for j in range(p.getNumJoints(body_id)): self._mass += p.getDynamicsInfo(body_id, j)[0] p.setJointMotorControl2(body_id, j, p.POSITION_CONTROL, positionGain=0.1, velocityGain=0.1, force=0) _, joint_name, joint_type, _, _, _, _, _, _, _, _, _, link_name, _, _, _, _ = p.getJointInfo(body_id, j) log.debug("Robot joint: {}".format(p.getJointInfo(body_id, j))) joint_name = joint_name.decode("utf8") assert ( joint_name not in self._joints ), "Joints of a robot, even if on different bodies, must be uniquely named." link_name = link_name.decode("utf8") assert ( link_name not in self._links ), "Links of a robot, even if on different bodies, must be uniquely named." self._links[link_name] = RobotLink(self, link_name, j, body_id) # We additionally create joint references if they are (not) of certain types if joint_name[:6] == "ignore": # We don't save a reference to this joint, but we disable its motor PhysicalJoint(joint_name, j, body_id).disable_motor() elif joint_name[:8] == "jointfix" or joint_type == p.JOINT_FIXED: # Fixed joint, so we don't save a reference to this joint pass else: # Default case, we store a reference self._joints[joint_name] = PhysicalJoint(joint_name, j, body_id) # Assert that the base link is link -1 of one of the robot's bodies. assert self._links[self.base_name].link_id == -1, "Robot base link should be link -1 of some body." # Set up any virtual joints for any non-base bodies. virtual_joints = {joint.joint_name: joint for joint in self._setup_virtual_joints()} assert self._joints.keys().isdisjoint(virtual_joints.keys()) self._joints.update(virtual_joints) # Populate the joint states self.update_state() # Update the configs for group in self.controller_order: group_controller_name = ( self.controller_config[group]["name"] if group in self.controller_config and "name" in self.controller_config[group] else self._default_controllers[group] ) self.controller_config[group] = merge_nested_dicts( base_dict=self._default_controller_config[group][group_controller_name], extra_dict=self.controller_config.get(group, {}), ) # Update the reset joint pos if self.reset_joint_pos is None: self.reset_joint_pos = self.default_joint_pos def _setup_virtual_joints(self): """Create and return any virtual joints a robot might need. Subclasses can implement this as necessary.""" return [] def _validate_configuration(self): """ Run any needed sanity checks to make sure this robot was created correctly. """ pass def update_state(self): """ Updates the internal proprioceptive state of this robot, and returns the raw values :return Tuple[Array[float], Array[float]]: The raw joint states, normalized joint states for this robot """ # Grab raw values joint_states = np.array([j.get_state() for j in self._joints.values()]).astype(np.float32).flatten() joint_states_normalized = ( np.array([j.get_relative_state() for j in self._joints.values()]).astype(np.float32).flatten() ) # Get raw joint values and normalized versions self._joint_state["unnormalized"]["position"] = joint_states[0::3] self._joint_state["unnormalized"]["velocity"] = joint_states[1::3] self._joint_state["unnormalized"]["torque"] = joint_states[2::3] self._joint_state["normalized"]["position"] = joint_states_normalized[0::3] self._joint_state["normalized"]["velocity"] = joint_states_normalized[1::3] self._joint_state["normalized"]["torque"] = joint_states_normalized[2::3] # Infer whether joints are at their limits self._joint_state["at_limits"] = 1.0 * (np.abs(self.joint_positions_normalized) > 0.99) # Return the raw joint states return joint_states, joint_states_normalized def calc_state(self): """ Calculate proprioceptive states for the robot. By default, this is: [pos, rpy, lin_vel, ang_vel, joint_states] :return Array[float]: Flat array of proprioceptive states (e.g.: [position, orientation, ...]) """ # Update states joint_states, _ = self.update_state() pos = self.get_position() rpy = self.get_rpy() # rotate linear and angular velocities to local frame lin_vel = rotate_vector_3d(self.base_link.get_linear_velocity(), *rpy) ang_vel = rotate_vector_3d(self.base_link.get_angular_velocity(), *rpy) state = np.concatenate([pos, rpy, lin_vel, ang_vel, joint_states]) return state def can_toggle(self, toggle_position, toggle_distance_threshold): """ Returns True if the part of the robot that can toggle a toggleable is within the given range of a point corresponding to a toggle marker by default, we assume robot cannot toggle toggle markers :param toggle_position: Array[float], (x,y,z) cartesian position values as a reference point for evaluating whether a toggle can occur :param toggle_distance_threshold: float, distance value below which a toggle is allowed :return bool: True if the part of the robot that can toggle a toggleable is within the given range of a point corresponding to a toggle marker. By default, we assume robot cannot toggle toggle markers """ return False def reset(self): """ Reset function for each specific robot. Can be overwritten by subclass By default, sets all joint states (pos, vel) to 0, and resets all controllers. """ for joint, joint_pos in zip(self._joints.values(), self.reset_joint_pos): joint.reset_state(joint_pos, 0.0) for controller in self._controllers.values(): controller.reset() def _load_controllers(self): """ Loads controller(s) to map inputted actions into executable (pos, vel, and / or torque) signals on this robot. Stores created controllers as dictionary mapping controller names to specific controller instances used by this robot. """ # Initialize controllers to create self._controllers = OrderedDict() # Loop over all controllers, in the order corresponding to @action dim for name in self.controller_order: assert_valid_key(key=name, valid_keys=self.controller_config, name="controller name") cfg = self.controller_config[name] # If we're using normalized action space, override the inputs for all controllers if self.action_normalize: cfg["command_input_limits"] = "default" # default is normalized (-1, 1) # Create the controller self._controllers[name] = create_controller(**cfg) @abstractmethod def _create_discrete_action_space(self): """ Create a discrete action space for this robot. Should be implemented by the subclass (if a subclass does not support this type of action space, it should raise an error). :return gym.space: Robot-specific discrete action space """ raise NotImplementedError def _create_continuous_action_space(self): """ Create a continuous action space for this robot. By default, this loops over all controllers and appends their respective input command limits to set the action space. Any custom behavior should be implemented by the subclass (e.g.: if a subclass does not support this type of action space, it should raise an error). :return gym.space.Box: Robot-specific continuous action space """ # Action space is ordered according to the order in _default_controller_config control low, high = [], [] for controller in self._controllers.values(): limits = controller.command_input_limits low.append(np.array([-np.inf] * controller.command_dim) if limits is None else limits[0]) high.append(np.array([np.inf] * controller.command_dim) if limits is None else limits[1]) return gym.spaces.Box( shape=(self.action_dim,), low=np.concatenate(low), high=np.concatenate(high), dtype=np.float32 ) def apply_action(self, action): """ Converts inputted actions into low-level control signals and deploys them on the robot :param action: Array[float], n-DOF length array of actions to convert and deploy on the robot """ self._last_action = action # Update state self.update_state() # If we're using discrete action space, we grab the specific action and use that to convert to control if self.action_type == "discrete": action = np.array(self.action_list[action]) # Run convert actions to controls control, control_type = self._actions_to_control(action=action) # Deploy control signals self._deploy_control(control=control, control_type=control_type) def _actions_to_control(self, action): """ Converts inputted @action into low level control signals to deploy directly on the robot. This returns two arrays: the converted low level control signals and an array corresponding to the specific ControlType for each signal. :param action: Array[float], n-DOF length array of actions to convert and deploy on the robot :return Tuple[Array[float], Array[ControlType]]: The (1) raw control signals to send to the robot's joints and (2) control types for each joint """ # First, loop over all controllers, and calculate the computed control control = OrderedDict() idx = 0 for name, controller in self._controllers.items(): # Compose control_dict control_dict = self.get_control_dict() # Set command, then take a controller step controller.update_command(command=action[idx : idx + controller.command_dim]) control[name] = { "value": controller.step(control_dict=control_dict), "type": controller.control_type, } # Update idx idx += controller.command_dim # Compose controls u_vec = np.zeros(self.n_joints) u_type_vec = np.array([ControlType.POSITION] * self.n_joints) for group, ctrl in control.items(): idx = self._controllers[group].joint_idx u_vec[idx] = ctrl["value"] u_type_vec[idx] = ctrl["type"] # Return control return u_vec, u_type_vec def _deploy_control(self, control, control_type): """ Deploys control signals @control with corresponding @control_type on this robot :param control: Array[float], raw control signals to send to the robot's joints :param control_type: Array[ControlType], control types for each joint """ # Run sanity check joints = self._joints.values() assert len(control) == len(control_type) == len(joints), ( "Control signals, control types, and number of joints should all be the same!" "Got {}, {}, and {} respectively.".format(len(control), len(control_type), len(joints)) ) # Loop through all control / types, and deploy the signal for joint, ctrl, ctrl_type in zip(joints, control, control_type): if ctrl_type == ControlType.TORQUE: joint.set_torque(ctrl) elif ctrl_type == ControlType.VELOCITY: joint.set_vel(ctrl) elif ctrl_type == ControlType.POSITION: joint.set_pos(ctrl) else: raise ValueError("Invalid control type specified: {}".format(ctrl_type)) def get_proprioception(self): """ :return Array[float]: numpy array of all robot-specific proprioceptive observations. """ proprio_dict = self._get_proprioception_dict() return np.concatenate([proprio_dict[obs] for obs in self.proprio_obs]) def get_position_orientation(self): """ :return Tuple[Array[float], Array[float]]: pos (x,y,z) global cartesian coordinates, quat (x,y,z,w) global orientation in quaternion form of this model's body (as taken at its body_id) """ pos, orn = p.getBasePositionAndOrientation(self.base_link.body_id) return np.array(pos), np.array(orn) def get_rpy(self): """ Return robot orientation in roll, pitch, yaw :return: roll, pitch, yaw """ return self.base_link.get_rpy() def set_joint_positions(self, joint_positions): """Set this robot's joint positions, where @joint_positions is an array""" for joint, joint_pos in zip(self._joints.values(), joint_positions): joint.reset_state(pos=joint_pos, vel=0.0) def set_joint_states(self, joint_states): """Set this robot's joint states in the format of Dict[String: (q, q_dot)]]""" for joint_name, joint in self._joints.items(): joint_position, joint_velocity = joint_states[joint_name] joint.reset_state(pos=joint_position, vel=joint_velocity) def get_joint_states(self): """Get this robot's joint states in the format of Dict[String: (q, q_dot)]]""" joint_states = {} for joint_name, joint in self._joints.items(): joint_position, joint_velocity, _ = joint.get_state() joint_states[joint_name] = (joint_position, joint_velocity) return joint_states def get_linear_velocity(self): """ Get linear velocity of this robot (velocity associated with base link) :return Array[float]: linear (x,y,z) velocity of this robot """ return self.base_link.get_linear_velocity() def get_angular_velocity(self): """ Get angular velocity of this robot (velocity associated with base link) :return Array[float]: angular (ax,ay,az) velocity of this robot """ return self.base_link.get_angular_velocity() def set_position_orientation(self, pos, quat): """ Set model's global position and orientation :param pos: Array[float], corresponding to (x,y,z) global cartesian coordinates to set :param quat: Array[float], corresponding to (x,y,z,w) global quaternion orientation to set """ p.resetBasePositionAndOrientation(self.base_link.body_id, pos, quat) clear_cached_states(self) def set_base_link_position_orientation(self, pos, orn): """Set object base link position and orientation in the format of Tuple[Array[x, y, z], Array[x, y, z, w]]""" dynamics_info = p.getDynamicsInfo(self.base_link.body_id, -1) inertial_pos, inertial_orn = dynamics_info[3], dynamics_info[4] pos, orn = p.multiplyTransforms(pos, orn, inertial_pos, inertial_orn) self.set_position_orientation(pos, orn) def get_base_link_position_orientation(self): """Get object base link position and orientation in the format of Tuple[Array[x, y, z], Array[x, y, z, w]]""" dynamics_info = p.getDynamicsInfo(self.base_link.body_id, -1) inertial_pos, inertial_orn = dynamics_info[3], dynamics_info[4] inv_inertial_pos, inv_inertial_orn = p.invertTransform(inertial_pos, inertial_orn) pos, orn = p.getBasePositionAndOrientation(self.base_link.body_id) base_link_position, base_link_orientation = p.multiplyTransforms(pos, orn, inv_inertial_pos, inv_inertial_orn) return np.array(base_link_position), np.array(base_link_orientation) def get_control_dict(self): """ Grabs all relevant information that should be passed to each controller during each controller step. :return Dict[str, Array[float]]: Keyword-mapped control values for this robot. By default, returns the following: - joint_position: (n_dof,) joint positions - joint_velocity: (n_dof,) joint velocities - joint_torque: (n_dof,) joint torques - base_pos: (3,) (x,y,z) global cartesian position of the robot's base link - base_quat: (4,) (x,y,z,w) global cartesian orientation of ths robot's base link """ return { "joint_position": self.joint_positions, "joint_velocity": self.joint_velocities, "joint_torque": self.joint_torques, "base_pos": self.get_position(), "base_quat": self.get_orientation(), } def dump_action(self): """Dump the last action applied to this robot. For use in demo collection.""" return self._last_action def dump_config(self): """Dump robot config""" return { "name": self.name, "control_freq": self.control_freq, "action_type": self.action_type, "action_normalize": self.action_normalize, "proprio_obs": self.proprio_obs, "reset_joint_pos": self.reset_joint_pos, "controller_config": self.controller_config, "base_name": self.base_name, "scale": self.scale, "self_collision": self.self_collision, } def dump_state(self): """Dump the state of the object other than what's not included in pybullet state.""" return { "parent_state": super(BaseRobot, self).dump_state(), "controllers": { controller_name: controller.dump_state() for controller_name, controller in self._controllers.items() }, } def load_state(self, dump): """Dump the state of the object other than what's not included in pybullet state.""" super(BaseRobot, self).load_state(dump["parent_state"]) controller_dump = dump["controllers"] for controller_name, controller in self._controllers.items(): controller.load_state(controller_dump[controller_name]) def _get_proprioception_dict(self): """ :return dict: keyword-mapped proprioception observations available for this robot. Can be extended by subclasses """ return { "joint_qpos": self.joint_positions, "joint_qpos_sin": np.sin(self.joint_positions), "joint_qpos_cos": np.cos(self.joint_positions), "joint_qvel": self.joint_velocities, "joint_qtor": self.joint_torques, "robot_pos": self.get_position(), "robot_rpy": self.get_rpy(), "robot_quat": self.get_orientation(), "robot_lin_vel": self.get_linear_velocity(), "robot_ang_vel": self.get_angular_velocity(), } @property def proprioception_dim(self): """ :return int: Size of self.get_proprioception() vector """ return len(self.get_proprioception()) @property def links(self): """ Links belonging to this robot. :return OrderedDict[str, RobotLink]: Ordered Dictionary mapping robot link names to corresponding RobotLink objects owned by this robot """ return self._links @property def joints(self): """ Joints belonging to this robot. :return OrderedDict[str, RobotJoint]: Ordered Dictionary mapping robot joint names to corresponding RobotJoint objects owned by this robot """ return self._joints @property def n_links(self): """ :return int: Number of links for this robot """ return len(list(self._links.keys())) @property def n_joints(self): """ :return int: Number of joints for this robot """ return len(list(self._joints.keys())) @property def base_link(self): """ Returns the RobotLink body corresponding to the link as defined by self.base_name. Note that if base_name was not specified during this robot's initialization, this will default to be the first link in the underlying robot model file. :return RobotLink: robot's base link corresponding to self.base_name. """ assert self.base_name in self._links, "Cannot find base link '{}' in links! Valid options are: {}".format( self.base_name, list(self._links.keys()) ) return self._links[self.base_name] @property def eyes(self): """ Returns the RobotLink corresponding to the robot's camera. Assumes that there is a link with name "eyes" in the underlying robot model. If not, an error will be raised. :return RobotLink: link containing the robot's camera """ assert "eyes" in self._links, "Cannot find 'eyes' in links, current link names are: {}".format( list(self._links.keys()) ) return self._links["eyes"] @property def mass(self): """ Returns the mass of this robot. Default is 0.0 kg :return float: Mass of this robot, in kg """ return self._mass @property def joint_position_limits(self): """ :return Tuple[Array[float], Array[float]]: (min, max) joint position limits, where each is an n-DOF length array """ return (self.joint_lower_limits, self.joint_upper_limits) @property def joint_velocity_limits(self): """ :return Tuple[Array[float], Array[float]]: (min, max) joint velocity limits, where each is an n-DOF length array """ return ( -np.array([j.max_velocity for j in self._joints.values()]), np.array([j.max_velocity for j in self._joints.values()]), ) @property def joint_torque_limits(self): """ :return Tuple[Array[float], Array[float]]: (min, max) joint torque limits, where each is an n-DOF length array """ return ( -np.array([j.max_torque for j in self._joints.values()]), np.array([j.max_torque for j in self._joints.values()]), ) @property def joint_positions(self): """ :return Array[float]: n-DOF length array of this robot's joint positions """ return deepcopy(self._joint_state["unnormalized"]["position"]) @property def joint_velocities(self): """ :return Array[float]: n-DOF length array of this robot's joint velocities """ return deepcopy(self._joint_state["unnormalized"]["velocity"]) @property def joint_torques(self): """ :return Array[float]: n-DOF length array of this robot's joint torques """ return deepcopy(self._joint_state["unnormalized"]["torque"]) @property def joint_positions_normalized(self): """ :return Array[float]: n-DOF length array of this robot's normalized joint positions in range [-1, 1] """ return deepcopy(self._joint_state["normalized"]["position"]) @property def joint_velocities_normalized(self): """ :return Array[float]: n-DOF length array of this robot's normalized joint velocities in range [-1, 1] """ return deepcopy(self._joint_state["normalized"]["velocity"]) @property def joint_torques_normalized(self): """ :return Array[float]: n-DOF length array of this robot's normalized joint torques in range [-1, 1] """ return deepcopy(self._joint_state["normalized"]["torque"]) @property def joint_at_limits(self): """ :return Array[float]: n-DOF length array specifying whether joint is at its limit, with 1.0 --> at limit, otherwise 0.0 """ return deepcopy(self._joint_state["at_limits"]) @property def joint_has_limits(self): """ :return Array[bool]: n-DOF length array specifying whether joint has a limit or not """ return np.array([j.has_limit for j in self._joints.values()]) @property @abstractmethod def model_name(self): """ :return str: robot model name """ raise NotImplementedError @property def action_dim(self): """ :return int: Dimension of action space for this robot. By default, is the sum over all controller action dimensions """ return sum([controller.command_dim for controller in self._controllers.values()]) @property def action_space(self): """ Action space for this robot. :return gym.space: Action space, either discrete (Discrete) or continuous (Box) """ return deepcopy(self._action_space) @property @abstractmethod def controller_order(self): """ :return Tuple[str]: Ordering of the actions, corresponding to the controllers. e.g., ["base", "arm", "gripper"], to denote that the action vector should be interpreted as first the base action, then arm command, then gripper command """ raise NotImplementedError @property def controller_action_idx(self): """ :return: Dict[str, Array[int]]: Mapping from controller names (e.g.: head, base, arm, etc.) to corresponding indices in the action vector """ dic = {} idx = 0 for controller in self.controller_order: cmd_dim = self._controllers[controller].command_dim dic[controller] = np.arange(idx, idx + cmd_dim) idx += cmd_dim return dic @property def control_limits(self): """ :return: Dict[str, Any]: Keyword-mapped limits for this robot. Dict contains: position: (min, max) joint limits, where min and max are N-DOF arrays velocity: (min, max) joint velocity limits, where min and max are N-DOF arrays torque: (min, max) joint torque limits, where min and max are N-DOF arrays has_limit: (n_dof,) array where each element is True if that corresponding joint has a position limit (otherwise, joint is assumed to be limitless) """ return { "position": (self.joint_lower_limits, self.joint_upper_limits), "velocity": (-self.max_joint_velocities, self.max_joint_velocities), "torque": (-self.max_joint_torques, self.max_joint_torques), "has_limit": self.joint_has_limits, } @property def default_proprio_obs(self): """ :return Array[str]: Default proprioception observations to use """ return [] @property @abstractmethod def default_joint_pos(self): """ :return Array[float]: Default joint positions for this robot """ raise NotImplementedError @property @abstractmethod def _default_controller_config(self): """ :return Dict[str, Any]: default nested dictionary mapping controller name(s) to specific controller configurations for this robot. Note that the order specifies the sequence of actions to be received from the environment. Expected structure is as follows: group1: controller_name1: controller_name1_params ... controller_name2: ... group2: ... The @group keys specify the control type for various aspects of the robot, e.g.: "head", "arm", "base", etc. @controller_name keys specify the supported controllers for that group. A default specification MUST be specified for each controller_name. e.g.: IKController, DifferentialDriveController, JointController, etc. """ return {} @property @abstractmethod def _default_controllers(self): """ :return Dict[str, str]: Maps robot group (e.g. base, arm, etc.) to default controller class name to use (e.g. IKController, JointController, etc.) """ return {} @property def joint_damping(self): """ :return: Array[float], joint damping values for this robot """ return np.array([joint.damping for joint in self._joints.values()]) @property def joint_lower_limits(self): """ :return: Array[float], minimum values for this robot's joints. If joint does not have a range, returns -1000 for that joint """ return np.array([joint.lower_limit if joint.has_limit else -1000.0 for joint in self._joints.values()]) @property def joint_upper_limits(self): """ :return: Array[float], maximum values for this robot's joints. If joint does not have a range, returns 1000 for that joint """ return np.array([joint.upper_limit if joint.has_limit else 1000.0 for joint in self._joints.values()]) @property def joint_range(self): """ :return: Array[float], joint range values for this robot's joints """ return self.joint_upper_limits - self.joint_lower_limits @property def max_joint_velocities(self): """ :return: Array[float], maximum velocities for this robot's joints """ return np.array([joint.max_velocity for joint in self._joints.values()]) @property def max_joint_torques(self): """ :return: Array[float], maximum torques for this robot's joints """ return np.array([joint.max_torque for joint in self._joints.values()]) @property def disabled_collision_pairs(self): """ :return Tuple[Tuple[str, str]]: List of collision pairs to disable. Default is None (empty list) """ return [] @property @abstractmethod def model_file(self): """ :return str: absolute path to robot model's URDF / MJCF file """ raise NotImplementedError def keep_still(self): """ Keep the robot still. Apply zero velocity to all joints. """ for joint in self._joints.values(): joint.set_vel(0.0) class RobotLink: """ Body part (link) of Robots """ def __init__(self, robot, link_name, link_id, body_id): """ :param robot: BaseRobot, the robot this link belongs to. :param link_name: str, name of the link corresponding to @link_id :param link_id: int, ID of this link within the link(s) found in the body corresponding to @body_id :param body_id: Robot body ID containing this link """ # Store args and initialize state self.robot = robot self.link_name = link_name self.link_id = link_id self.body_id = body_id self.initial_pos, self.initial_quat = self.get_position_orientation() self.movement_cid = -1 def get_name(self): """ Get name of this link """ return self.link_name def get_position_orientation(self): """ Get pose of this link :return Tuple[Array[float], Array[float]]: pos (x,y,z) cartesian coordinates, quat (x,y,z,w) orientation in quaternion form of this link """ if self.link_id == -1: pos, quat = p.getBasePositionAndOrientation(self.body_id) else: _, _, _, _, pos, quat = p.getLinkState(self.body_id, self.link_id) return np.array(pos), np.array(quat) def get_position(self): """ :return Array[float]: (x,y,z) cartesian coordinates of this link """ return self.get_position_orientation()[0] def get_orientation(self): """ :return Array[float]: (x,y,z,w) orientation in quaternion form of this link """ return self.get_position_orientation()[1] def get_local_position_orientation(self): """ Get pose of this link in the robot's base frame. :return Tuple[Array[float], Array[float]]: pos (x,y,z) cartesian coordinates, quat (x,y,z,w) orientation in quaternion form of this link """ base = self.robot.base_link return p.multiplyTransforms( *p.invertTransform(*base.get_position_orientation()), *self.get_position_orientation() ) def get_rpy(self): """ :return Array[float]: (r,p,y) orientation in euler form of this link """ return np.array(p.getEulerFromQuaternion(self.get_orientation())) def set_position(self, pos): """ Sets the link's position :param pos: Array[float], corresponding to (x,y,z) cartesian coordinates to set """ old_quat = self.get_orientation() self.set_position_orientation(pos, old_quat) def set_orientation(self, quat): """ Set the link's global orientation :param quat: Array[float], corresponding to (x,y,z,w) quaternion orientation to set """ old_pos = self.get_position() self.set_position_orientation(old_pos, quat) def set_position_orientation(self, pos, quat): """ Set model's global position and orientation. Note: only supported if this is the base link (ID = -1!) :param pos: Array[float], corresponding to (x,y,z) global cartesian coordinates to set :param quat: Array[float], corresponding to (x,y,z,w) global quaternion orientation to set """ assert self.link_id == -1, "Can only set pose for a base link (id = -1)! Got link id: {}.".format(self.link_id) p.resetBasePositionAndOrientation(self.body_id, pos, quat) def get_velocity(self): """ Get velocity of this link :return Tuple[Array[float], Array[float]]: linear (x,y,z) velocity, angular (ax,ay,az) velocity of this link """ if self.link_id == -1: lin, ang = p.getBaseVelocity(self.body_id) else: _, _, _, _, _, _, lin, ang = p.getLinkState(self.body_id, self.link_id, computeLinkVelocity=1) return np.array(lin), np.array(ang) def get_linear_velocity(self): """ Get linear velocity of this link :return Array[float]: linear (x,y,z) velocity of this link """ return self.get_velocity()[0] def get_angular_velocity(self): """ Get angular velocity of this link :return Array[float]: angular (ax,ay,az) velocity of this link """ return self.get_velocity()[1] def contact_list(self): """ Get contact points of the body part :return Array[ContactPoints]: list of contact points seen by this link """ return p.getContactPoints(self.body_id, -1, self.link_id, -1) def force_wakeup(self): """ Forces a wakeup for this robot. Defaults to no-op. """ p.changeDynamics(self.body_id, self.link_id, activationState=p.ACTIVATION_STATE_WAKE_UP) class RobotJoint(with_metaclass(ABCMeta, object)): """ Joint of a robot """ @property @abstractmethod def joint_name(self): pass @property @abstractmethod def joint_type(self): pass @property @abstractmethod def lower_limit(self): pass @property @abstractmethod def upper_limit(self): pass @property @abstractmethod def max_velocity(self): pass @property @abstractmethod def max_torque(self): pass @property @abstractmethod def damping(self): pass @abstractmethod def get_state(self): """ Get the current state of the joint :return Tuple[float, float, float]: (joint_pos, joint_vel, joint_tor) observed for this joint """ pass @abstractmethod def get_relative_state(self): """ Get the normalized current state of the joint :return Tuple[float, float, float]: Normalized (joint_pos, joint_vel, joint_tor) observed for this joint """ pass @abstractmethod def set_pos(self, pos): """ Set position of joint (in metric space) :param pos: float, desired position for this joint, in metric space """ pass @abstractmethod def set_vel(self, vel): """ Set velocity of joint (in metric space) :param vel: float, desired velocity for this joint, in metric space """ pass @abstractmethod def set_torque(self, torque): """ Set torque of joint (in metric space) :param torque: float, desired torque for this joint, in metric space """ pass @abstractmethod def reset_state(self, pos, vel): """ Reset pos and vel of joint in metric space :param pos: float, desired position for this joint, in metric space :param vel: float, desired velocity for this joint, in metric space """ pass @property def has_limit(self): """ :return bool: True if this joint has a limit, else False """ return self.lower_limit < self.upper_limit class PhysicalJoint(RobotJoint): """ A robot joint that exists in the physics simulation (e.g. in pybullet). """ def __init__(self, joint_name, joint_id, body_id): """ :param joint_name: str, name of the joint corresponding to @joint_id :param joint_id: int, ID of this joint within the joint(s) found in the body corresponding to @body_id :param body_id: Robot body ID containing this link """ # Store args and initialize state self._joint_name = joint_name self.joint_id = joint_id self.body_id = body_id # read joint type and joint limit from the URDF file # lower_limit, upper_limit, max_velocity, max_torque = <limit lower=... upper=... velocity=... effort=.../> # "effort" is approximately torque (revolute) / force (prismatic), but not exactly (ref: http://wiki.ros.org/pr2_controller_manager/safety_limits). # if <limit /> does not exist, the following will be the default value # lower_limit, upper_limit, max_velocity, max_torque = 0.0, -1.0, 0.0, 0.0 info = get_joint_info(self.body_id, self.joint_id) self._joint_type = info.jointType self._lower_limit = info.jointLowerLimit self._upper_limit = info.jointUpperLimit self._max_torque = info.jointMaxForce self._max_velocity = info.jointMaxVelocity self._damping = info.jointDamping # if joint torque and velocity limits cannot be found in the model file, set a default value for them if self._max_torque == 0.0: self._max_torque = 100.0 if self._max_velocity == 0.0: # if max_velocity and joint limit are missing for a revolute joint, # it's likely to be a wheel joint and a high max_velocity is usually supported. self._max_velocity = 15.0 if self._joint_type == p.JOINT_REVOLUTE and not self.has_limit else 1.0 @property def joint_name(self): return self._joint_name @property def joint_type(self): return self._joint_type @property def lower_limit(self): return self._lower_limit @property def upper_limit(self): return self._upper_limit @property def max_velocity(self): return self._max_velocity @property def max_torque(self): return self._max_torque @property def damping(self): return self._damping def __str__(self): return "idx: {}, name: {}".format(self.joint_id, self.joint_name) def get_state(self): """ Get the current state of the joint :return Tuple[float, float, float]: (joint_pos, joint_vel, joint_tor) observed for this joint """ x, vx, _, trq = p.getJointState(self.body_id, self.joint_id) return x, vx, trq def get_relative_state(self): """ Get the normalized current state of the joint :return Tuple[float, float, float]: Normalized (joint_pos, joint_vel, joint_tor) observed for this joint """ pos, vel, trq = self.get_state() # normalize position to [-1, 1] if self.has_limit: mean = (self.lower_limit + self.upper_limit) / 2.0 magnitude = (self.upper_limit - self.lower_limit) / 2.0 pos = (pos - mean) / magnitude # (trying to) normalize velocity to [-1, 1] vel /= self.max_velocity # (trying to) normalize torque / force to [-1, 1] trq /= self.max_torque return pos, vel, trq def set_pos(self, pos): """ Set position of joint (in metric space) :param pos: float, desired position for this joint, in metric space """ if self.has_limit: pos =
np.clip(pos, self.lower_limit, self.upper_limit)
numpy.clip
import numpy as np from unittest import expectedFailure from unittest import TestCase from zlib import crc32 from pycqed.measurement.randomized_benchmarking.clifford_group import( clifford_lookuptable, clifford_group_single_qubit, X,Y,Z, H, S, S2, CZ) import pycqed.measurement.randomized_benchmarking.randomized_benchmarking \ as rb from pycqed.measurement.randomized_benchmarking.clifford_decompositions \ import(gate_decomposition, epstein_fixed_length_decomposition) from pycqed.measurement.randomized_benchmarking import \ two_qubit_clifford_group as tqc from pycqed.measurement.randomized_benchmarking.generate_clifford_hash_tables import construct_clifford_lookuptable np.random.seed(0) test_indices_2Q = np.random.randint(0, high=11520, size=50) # To test all elements of the 2 qubit clifford group use: # test_indices_2Q = np.arange(11520) class TestLookuptable(TestCase): def test_unique_mapping(self): for row in clifford_lookuptable: self.assertFalse(len(row) > len(set(row))) def test_sum_of_rows(self): expected_sum = np.sum(range(len(clifford_group_single_qubit))) for row in clifford_lookuptable: self.assertEqual(np.sum(row), expected_sum) def test_element_index_in_group(self): for row in clifford_lookuptable: for el in row: self.assertTrue(el < len(clifford_group_single_qubit)) class TestCalculateNetClifford(TestCase): def test_identity_does_nothing(self): id_seq = np.zeros(5) net_cl = rb.calculate_net_clifford(id_seq) self.assertEqual(net_cl, 0) for i in range(len(clifford_group_single_qubit)): id_seq[3] = i net_cl = rb.calculate_net_clifford(id_seq) self.assertEqual(net_cl, i) def test_pauli_squared_is_ID(self): for cl in [0, 3, 6, 9, 12]: # 12 is Hadamard net_cl = rb.calculate_net_clifford([cl, cl]) self.assertEqual(net_cl, 0) class TestRecoveryClifford(TestCase): def testInversionRandomSequence(self): random_cliffords = np.random.randint(0, len(clifford_group_single_qubit), 100) net_cl = rb.calculate_net_clifford(random_cliffords) for des_cl in range(len(clifford_group_single_qubit)): rec_cliff = rb.calculate_recovery_clifford(net_cl, des_cl) comb_seq = np.append(random_cliffords, rec_cliff) comb_net_cl_simple = rb.calculate_net_clifford([net_cl, rec_cliff]) comb_net_cl = rb.calculate_net_clifford(comb_seq) self.assertEqual(comb_net_cl, des_cl) self.assertEqual(comb_net_cl_simple, des_cl) class TestRB_sequence(TestCase): def test_net_cliff(self): for i in range(len(clifford_group_single_qubit)): rb_seq = rb.randomized_benchmarking_sequence(500, desired_net_cl=i) net_cliff = rb.calculate_net_clifford(rb_seq) self.assertEqual(net_cliff, i) def test_seed_reproduces(self): rb_seq_a = rb.randomized_benchmarking_sequence(500, seed=5) rb_seq_b = rb.randomized_benchmarking_sequence(500, seed=None) rb_seq_c = rb.randomized_benchmarking_sequence(500, seed=5) rb_seq_d = rb.randomized_benchmarking_sequence(500, seed=None) self.assertTrue((rb_seq_a == rb_seq_c).all()) self.assertTrue((rb_seq_a != rb_seq_b).any) self.assertTrue((rb_seq_c != rb_seq_b).any) self.assertTrue((rb_seq_b != rb_seq_d).any) class TestGateDecomposition(TestCase): def test_unique_elements(self): for gate in gate_decomposition: self.assertEqual(gate_decomposition.count(gate), 1) def test_average_number_of_gates_epst_efficient(self): from itertools import chain avg_nr_gates = len(list(chain(*gate_decomposition)))/24 self.assertEqual(avg_nr_gates, 1.875) def test_average_number_of_gates_epst_fixed_length(self): from itertools import chain avg_nr_gates = len(list(chain(*epstein_fixed_length_decomposition)))/24 self.assertEqual(avg_nr_gates, 3) ###################################################################### # Two qubit clifford group below ###################################################################### class TestHashedLookuptables(TestCase): def test_single_qubit_hashtable_constructed(self): hash_table = construct_clifford_lookuptable(tqc.SingleQubitClifford, np.arange(24)) for i in range(24): Cl = tqc.SingleQubitClifford(i) target_hash = crc32(Cl.pauli_transfer_matrix.round().astype(int)) table_idx = hash_table.index(target_hash) self.assertEqual(table_idx, i) def test_single_qubit_hashtable_file(self): hash_table = tqc.get_single_qubit_clifford_hash_table() for i in range(24): Cl = tqc.SingleQubitClifford(i) target_hash = crc32(Cl.pauli_transfer_matrix.round().astype(int)) table_idx = hash_table.index(target_hash) self.assertEqual(table_idx, i) def test_two_qubit_hashtable_constructed(self): hash_table = construct_clifford_lookuptable(tqc.TwoQubitClifford, np.arange(11520)) for i in test_indices_2Q: Cl = tqc.TwoQubitClifford(i) target_hash = crc32(Cl.pauli_transfer_matrix.round().astype(int)) table_idx = hash_table.index(target_hash) self.assertEqual(table_idx, i) def test_two_qubit_hashtable_file(self): hash_table = tqc.get_two_qubit_clifford_hash_table() for i in test_indices_2Q: Cl = tqc.TwoQubitClifford(i) target_hash = crc32(Cl.pauli_transfer_matrix.round().astype(int)) table_idx = hash_table.index(target_hash) self.assertEqual(table_idx, i) def test_get_clifford_id(self): for i in range(24): Cl = tqc.SingleQubitClifford(i) idx = tqc.get_clifford_id(Cl.pauli_transfer_matrix) self.assertEqual(idx, Cl.idx) for i in test_indices_2Q: Cl = tqc.TwoQubitClifford(i) idx = tqc.get_clifford_id(Cl.pauli_transfer_matrix) self.assertEqual(idx, Cl.idx) class Test_CliffordGroupProperties(TestCase): def test_single_qubit_group(self): hash_table = tqc.get_single_qubit_clifford_hash_table() self.assertEqual(len(hash_table), 24) self.assertEqual(len(np.unique(hash_table)), 24) # Testing the subgroups of the Clifford group def test_single_qubit_like_PTM(self): hash_table = [] for idx in np.arange(24**2): clifford = tqc.single_qubit_like_PTM(idx) hash_val = crc32(clifford.round().astype(int)) hash_table.append(hash_val) self.assertEqual(len(hash_table), 24**2) self.assertEqual(len(np.unique(hash_table)), 24**2) with self.assertRaises(AssertionError): clifford = tqc.single_qubit_like_PTM(24**2+1) def test_CNOT_like_PTM(self): hash_table = [] for idx in np.arange(5184): clifford = tqc.CNOT_like_PTM(idx) hash_val = crc32(clifford.round().astype(int)) hash_table.append(hash_val) self.assertEqual(len(hash_table), 5184) self.assertEqual(len(np.unique(hash_table)), 5184) with self.assertRaises(AssertionError): clifford = tqc.CNOT_like_PTM(5184**2+1) def test_iSWAP_like_PTM(self): hash_table = [] for idx in np.arange(5184): clifford = tqc.iSWAP_like_PTM(idx) hash_val = crc32(clifford.round().astype(int)) hash_table.append(hash_val) self.assertEqual(len(hash_table), 5184) self.assertEqual(len(np.unique(hash_table)), 5184) with self.assertRaises(AssertionError): clifford = tqc.iSWAP_like_PTM(5184+1) def test_SWAP_like_PTM(self): hash_table = [] for idx in np.arange(24**2): clifford = tqc.SWAP_like_PTM(idx) hash_val = crc32(clifford.round().astype(int)) hash_table.append(hash_val) self.assertEqual(len(hash_table), 24**2) self.assertEqual(len(np.unique(hash_table)), 24**2) with self.assertRaises(AssertionError): clifford = tqc.SWAP_like_PTM(24**2+1) def test_two_qubit_group(self): hash_table = tqc.get_two_qubit_clifford_hash_table() self.assertEqual(len(hash_table), 11520) self.assertEqual(len(np.unique(hash_table)), 11520) class TestCliffordCalculus(TestCase): def test_products(self): Cl_3 = tqc.SingleQubitClifford(3) Cl_3*Cl_3 self.assertEqual(Cl_3.idx, 3) # Pauli X self.assertEqual((Cl_3*Cl_3).idx, 0) # The identity Cl_3 = tqc.TwoQubitClifford(3) self.assertEqual(Cl_3.idx, 3) # Pauli X on q0 self.assertEqual((Cl_3*Cl_3).idx, 0) # The identity product_hash = crc32((Cl_3*Cl_3).pauli_transfer_matrix.round().astype(int)) target_hash = crc32(tqc.TwoQubitClifford(0).pauli_transfer_matrix.round().astype(int)) self.assertEqual(product_hash, target_hash) def test_product_order(self): """ Tests that the order of multiplying matrices is the same as what is defined in numpy.dot """ Cl_528 = tqc.TwoQubitClifford(528) Cl_9230 = tqc.TwoQubitClifford(9230) Cliff_prod = Cl_528*Cl_9230 dot_prod = np.dot(Cl_528.pauli_transfer_matrix, Cl_9230.pauli_transfer_matrix) np.testing.assert_array_equal(Cliff_prod.pauli_transfer_matrix, dot_prod) def test_inverse_single_qubit_clifford(self): for i in range(24): Cl = tqc.SingleQubitClifford(i) Cl_inv = Cl.get_inverse() self.assertEqual((Cl_inv*Cl).idx, 0) def test_inverse_two_qubit_clifford(self): for i in test_indices_2Q: Cl = tqc.TwoQubitClifford(i) Cl_inv = Cl.get_inverse() self.assertEqual((Cl_inv*Cl).idx, 0) class TestCliffordGateDecomposition(TestCase): def test_single_qubit_gate_decomposition(self): for i in range(24): CL = tqc.SingleQubitClifford(i) gate_dec = CL.gate_decomposition self.assertIsInstance(gate_dec, list) for g in gate_dec: self.assertIsInstance(g[0], str) self.assertEqual(g[1], 'q0') def test_two_qubit_gate_decomposition(self): for idx in (test_indices_2Q): CL = tqc.TwoQubitClifford(idx) gate_dec = CL.gate_decomposition print(idx, gate_dec) self.assertIsInstance(gate_dec, list) for g in gate_dec: self.assertIsInstance(g[0], str) if g[0] == 'CZ': self.assertEqual(g[1], ['q0', 'q1']) else: self.assertIn(g[1], ['q0', 'q1']) def test_gate_decomposition_unique_single_qubit(self): hash_table = [] for i in range(24): CL = tqc.SingleQubitClifford(i) gate_dec = CL.gate_decomposition hash_table.append(crc32(bytes(str(gate_dec), 'utf-8'))) self.assertEqual(len(hash_table),24) self.assertEqual(len(np.unique(hash_table)),24) def test_gate_decomposition_unique_two_qubit(self): hash_table = [] for i in range(11520): CL = tqc.TwoQubitClifford(i) gate_dec = CL.gate_decomposition hash_table.append(crc32(bytes(str(gate_dec), 'utf-8'))) self.assertEqual(len(hash_table), 11520) self.assertEqual(len(np.unique(hash_table)), 11520) class TestCliffordClassRBSeqs(TestCase): """ """ def test_single_qubit_randomized_benchmarking_sequence(self): """ """ seeds = [0, 100, 200, 300, 400] net_cliffs = np.arange(len(seeds)) for seed, net_cl in zip(seeds, net_cliffs): cliffords_single_qubit_class = rb.randomized_benchmarking_sequence( n_cl=20, desired_net_cl=0, number_of_qubits=1, seed=0) cliffords = rb.randomized_benchmarking_sequence_old( n_cl=20, desired_net_cl=0, seed=0)
np.testing.assert_array_equal(cliffords_single_qubit_class, cliffords)
numpy.testing.assert_array_equal
import scipy.signal import numpy as np import random import tensorflow as tf def set_global_seeds(env, seed): tf.set_random_seed(seed) np.random.seed(seed) random.seed(seed) env_seeds = np.random.randint(low=0, high=1e6, size=env.num_envs) env.set_random_seed(env_seeds) class RunningMeanStd(object): def __init__(self, epsilon=1e-4, shape=()): self.mean = np.zeros(shape, 'float64') self.var = np.ones(shape, 'float64') self.count = epsilon def update(self, x): batch_mean = np.mean(x, axis=0) batch_var = np.var(x, axis=0) batch_count = x.shape[0] delta = batch_mean - self.mean tot_count = self.count + batch_count new_mean = self.mean + delta * batch_count / tot_count m_a = self.var * (self.count) m_b = batch_var * (batch_count) M2 = m_a + m_b + np.square(delta) * self.count * batch_count / (self.count + batch_count) new_var = M2 / (self.count + batch_count) new_count = batch_count + self.count self.mean = new_mean self.var = new_var self.count = new_count def sf01(arr): """ swap and then flatten axes 0 and 1 """ s = arr.shape return arr.swapaxes(0, 1).reshape(s[0] * s[1], *s[2:]) def discount(x, gamma): return scipy.signal.lfilter([1.0], [1.0, -gamma], x[::-1], axis=0)[::-1] # ================================================================ # Network components # ================================================================ def ortho_init(scale=1.0): def _ortho_init(shape, dtype, partition_info=None): shape = tuple(shape) if len(shape) == 2: flat_shape = shape elif len(shape) == 4: flat_shape = (np.prod(shape[:-1]), shape[-1]) else: raise NotImplementedError a = np.random.normal(0.0, 1.0, flat_shape) u, _, v =
np.linalg.svd(a, full_matrices=False)
numpy.linalg.svd
import numpy as np import matplotlib.pyplot as plt from astropy.coordinates import SkyCoord, SkyOffsetFrame import astropy.units as u from astropy.coordinates.erfa_astrom import erfa_astrom, ErfaAstromInterpolator from fact.analysis.statistics import li_ma_significance def theta2( theta2_on, theta2_off, scaling, cut, threshold="", source="", ontime=None, ax=None, window=[0, 1], bins=100, on_weights=None, off_weights=None, ): if on_weights is None: on_weights = np.full_like(theta2_on, 1).astype('bool') if off_weights is None: off_weights = np.full_like(theta2_off, 1).astype('bool') ax = ax or plt.gca() bins_=np.linspace(window[0], window[1], bins) #from IPython import embed; embed() ax.hist(theta2_on, bins=bins_, range=window, histtype="step", color="r", label="ON") ax.hist( theta2_off, bins=bins_, range=window, histtype="stepfilled", color="tab:blue", alpha=0.5, label="OFF", weights=np.full_like(theta2_off, scaling), ) print(theta2_on.shape, theta2_off.shape) print(np.count_nonzero(on_weights), np.count_nonzero(off_weights)) n_off = np.count_nonzero(theta2_off[off_weights] < cut) n_on = np.count_nonzero(theta2_on[on_weights] < cut) li_ma = li_ma_significance(n_on, n_off, scaling) n_exc_mean = n_on - scaling * n_off n_exc_std =
np.sqrt(n_on + scaling ** 2 * n_off)
numpy.sqrt
# python3 # Copyright 2021 InstaDeep Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Wraps a Flatland MARL environment to be used as a dm_env environment.""" import types as tp import typing from functools import partial from typing import Any, Callable, Dict, List, Sequence, Tuple, Union import dm_env import numpy as np from acme import specs from acme.wrappers.gym_wrapper import _convert_to_spec try: from flatland.envs.observations import GlobalObsForRailEnv, Node, TreeObsForRailEnv from flatland.envs.rail_env import RailEnv from flatland.utils.rendertools import AgentRenderVariant, RenderTool _has_flatland = True except ModuleNotFoundError: _has_flatland = False pass from gym.spaces import Discrete from gym.spaces.box import Box from mava.types import OLT, Observation from mava.utils.sort_utils import sort_str_num from mava.utils.wrapper_utils import ( convert_dm_compatible_observations, convert_np_type, parameterized_restart, ) from mava.wrappers.env_wrappers import ParallelEnvWrapper if _has_flatland: # noqa: C901 class FlatlandEnvWrapper(ParallelEnvWrapper): """Environment wrapper for Flatland environments. All environments would require an observation preprocessor, except for 'GlobalObsForRailEnv'. This is because flatland gives users the flexibility of designing custom observation builders. 'TreeObsForRailEnv' would use the normalize_observation function from the flatland baselines if none is supplied. The supplied preprocessor should return either an array, tuple of arrays or a dictionary of arrays for an observation input. The obervation, for an agent, returned by this wrapper could consist of both the agent observation and agent info. This is because flatland also provides informationn about the agents at each step. This information include; 'action_required', 'malfunction', 'speed', and 'status', and it can be appended to the observation, by this wrapper, as an array. action_required is a boolean, malfunction is an int denoting the number of steps for which the agent would remain motionless, speed is a float and status can be any of the below; READY_TO_DEPART = 0 ACTIVE = 1 DONE = 2 DONE_REMOVED = 3 This would be included in the observation if agent_info is set to True """ # Note: we don't inherit from base.EnvironmentWrapper because that class # assumes that the wrapped environment is a dm_env.Environment. def __init__( self, environment: RailEnv, preprocessor: Callable[ [Any], Union[np.ndarray, Tuple[np.ndarray], Dict[str, np.ndarray]] ] = None, agent_info: bool = True, ): """Wrap Flatland environment. Args: environment: underlying RailEnv preprocessor: optional preprocessor. Defaults to None. agent_info: include agent info. Defaults to True. """ self._environment = environment decorate_step_method(self._environment) self._agents = [get_agent_id(i) for i in range(self.num_agents)] self._possible_agents = self.agents[:] self._reset_next_step = True self._step_type = dm_env.StepType.FIRST self.num_actions = 5 self.action_spaces = { agent: Discrete(self.num_actions) for agent in self.possible_agents } # preprocessor must be for observation builders other than global obs # treeobs builders would use the default preprocessor if none is # supplied self.preprocessor: Callable[ [Dict[int, Any]], Dict[int, Any] ] = self._obtain_preprocessor(preprocessor) self._include_agent_info = agent_info # observation space: # flatland defines no observation space for an agent. Here we try # to define the observation space. All agents are identical and would # have the same observation space. # Infer observation space based on returned observation obs, _ = self._environment.reset() obs = self.preprocessor(obs) self.observation_spaces = { get_agent_id(i): infer_observation_space(ob) for i, ob in obs.items() } self._env_renderer = RenderTool( self._environment, agent_render_variant=AgentRenderVariant.ONE_STEP_BEHIND, show_debug=False, screen_height=600, # Adjust these parameters to fit your resolution screen_width=800, ) # Adjust these parameters to fit your resolution @property def agents(self) -> List[str]: """Return list of active agents.""" return self._agents @property def possible_agents(self) -> List[str]: """Return list of all possible agents.""" return self._possible_agents def render(self, mode: str = "human") -> np.ndarray: """Renders the environment.""" if mode == "human": show = True else: show = False return self._env_renderer.render_env( show=show, show_observations=False, show_predictions=False, return_image=True, ) def env_done(self) -> bool: """Checks if the environment is done.""" return self._environment.dones["__all__"] or not self.agents def reset(self) -> dm_env.TimeStep: """Resets the episode.""" # Reset the rendering sytem self._env_renderer.reset() self._reset_next_step = False self._agents = self.possible_agents[:] observe, info = self._environment.reset() observations = self._create_observations( observe, info, self._environment.dones ) rewards_spec = self.reward_spec() rewards = { agent: convert_np_type(rewards_spec[agent].dtype, 0) for agent in self.possible_agents } discount_spec = self.discount_spec() self._discounts = { agent: convert_np_type(discount_spec[agent].dtype, 1) for agent in self.possible_agents } return parameterized_restart(rewards, self._discounts, observations) def step(self, actions: Dict[str, np.ndarray]) -> dm_env.TimeStep: """Steps the environment.""" self._pre_step() if self._reset_next_step: return self.reset() self._agents = [ agent for agent in self.agents if not self._environment.dones[get_agent_handle(agent)] ] observations, rewards, dones, infos = self._environment.step(actions) rewards_spec = self.reward_spec() # Handle empty rewards if not rewards: rewards = { agent: convert_np_type(rewards_spec[agent].dtype, 0) for agent in self.possible_agents } else: rewards = { get_agent_id(agent): convert_np_type( rewards_spec[get_agent_id(agent)].dtype, reward ) for agent, reward in rewards.items() } if observations: observations = self._create_observations(observations, infos, dones) if self.env_done(): self._step_type = dm_env.StepType.LAST self._reset_next_step = True # Zero discount when env done discounts = { agent: convert_np_type( self.discount_spec()[agent].dtype, 0 ) # Zero discount on final step for agent in self.possible_agents } else: self._step_type = dm_env.StepType.MID discounts = self._discounts return dm_env.TimeStep( observation=observations, reward=rewards, discount=discounts, step_type=self._step_type, ) # Convert Flatland observation so it's dm_env compatible. Also, the list # of legal actions must be converted to a legal actions mask. def _convert_observations( self, observes: Dict[str, Tuple[np.ndarray, np.ndarray]], dones: Dict[str, bool], ) -> Observation: return convert_dm_compatible_observations( observes, # type: ignore dones, self.observation_spec(), self.env_done(), self.possible_agents, ) # collate agent info and observation into a tuple, making the agents obervation # to be a tuple of the observation from the env and the agent info def _collate_obs_and_info( self, observes: Dict[int, np.ndarray], info: Dict[str, Dict[int, Any]] ) -> Dict[str, Tuple[np.ndarray, np.ndarray]]: observations: Dict[str, Tuple[np.ndarray, np.ndarray]] = {} observes = self.preprocessor(observes) for agent, obs in observes.items(): agent_id = get_agent_id(agent) agent_info = np.array( [info[k][agent] for k in sort_str_num(info.keys())], dtype=np.float32, ) obs = (obs, agent_info) if self._include_agent_info else obs # type: ignore # noqa: E501 observations[agent_id] = obs # type: ignore return observations def _create_observations( self, obs: Dict[int, np.ndarray], info: Dict[str, Dict[int, Any]], dones: Dict[int, bool], ) -> Observation: """Convert observation.""" observations_ = self._collate_obs_and_info(obs, info) dones_ = {get_agent_id(k): v for k, v in dones.items()} observations = self._convert_observations(observations_, dones_) return observations def _obtain_preprocessor( self, preprocessor: Any ) -> Callable[[Dict[int, Any]], Dict[int, np.ndarray]]: """Obtains the actual preprocessor. Obtains the actual preprocessor to be used based on the supplied preprocessor and the env's obs_builder object """ if not isinstance(self.obs_builder, GlobalObsForRailEnv): _preprocessor = preprocessor if preprocessor else lambda x: x if isinstance(self.obs_builder, TreeObsForRailEnv): _preprocessor = ( partial( normalize_observation, tree_depth=self.obs_builder.max_depth ) if not preprocessor else preprocessor ) assert _preprocessor is not None else: def _preprocessor( x: Tuple[np.ndarray, np.ndarray, np.ndarray] ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: return x def returned_preprocessor(obs: Dict[int, Any]) -> Dict[int, np.ndarray]: temp_obs = {} for agent_id, ob in obs.items(): temp_obs[agent_id] = _preprocessor(ob) return temp_obs return returned_preprocessor # set all parameters that should be available before an environment step # if no available agent, then environment is done and should be reset def _pre_step(self) -> None: if not self.agents: self._step_type = dm_env.StepType.LAST def observation_spec(self) -> Dict[str, OLT]: """Return observation spec.""" observation_specs = {} for agent in self.agents: observation_specs[agent] = OLT( observation=tuple( ( _convert_to_spec(self.observation_spaces[agent]), agent_info_spec(), ) ) if self._include_agent_info else _convert_to_spec(self.observation_spaces[agent]), legal_actions=_convert_to_spec(self.action_spaces[agent]), terminal=specs.Array((1,), np.float32), ) return observation_specs def action_spec( self, ) -> Dict[str, Union[specs.DiscreteArray, specs.BoundedArray]]: """Get action spec.""" action_specs = {} action_spaces = self.action_spaces for agent in self.possible_agents: action_specs[agent] = _convert_to_spec(action_spaces[agent]) return action_specs def reward_spec(self) -> Dict[str, specs.Array]: """Get the reward spec.""" reward_specs = {} for agent in self.possible_agents: reward_specs[agent] = specs.Array((), np.float32) return reward_specs def discount_spec(self) -> Dict[str, specs.BoundedArray]: """Get the discount spec.""" discount_specs = {} for agent in self.possible_agents: discount_specs[agent] = specs.BoundedArray( (), np.float32, minimum=0, maximum=1.0 ) return discount_specs def extra_spec(self) -> Dict[str, specs.BoundedArray]: """Get the extras spec.""" return {} def seed(self, seed: int = None) -> None: """Seed the environment.""" self._environment._seed(seed) @property def environment(self) -> RailEnv: """Returns the wrapped environment.""" return self._environment @property def num_agents(self) -> int: """Returns the number of trains/agents in the flatland environment""" return int(self._environment.number_of_agents) def __getattr__(self, name: str) -> Any: """Expose any other attributes of the underlying environment.""" return getattr(self._environment, name) # Utility functions def infer_observation_space( obs: Union[tuple, np.ndarray, dict] ) -> Union[Box, tuple, dict]: """Infer a gym Observation space from a sample observation from flatland""" if isinstance(obs, np.ndarray): return Box( -np.inf, np.inf, shape=obs.shape, dtype=obs.dtype, ) elif isinstance(obs, tuple): return tuple(infer_observation_space(o) for o in obs) elif isinstance(obs, dict): return {key: infer_observation_space(value) for key, value in obs.items()} else: raise ValueError( f"Unexpected observation type: {type(obs)}. " f"Observation should be of either of this types " f"(np.ndarray, tuple, or dict)" ) def agent_info_spec() -> specs.BoundedArray: """Create the spec for the agent_info part of the observation""" return specs.BoundedArray((4,), dtype=np.float32, minimum=0.0, maximum=10) def get_agent_id(handle: int) -> str: """Obtain the string that constitutes the agent id from an agent handle""" return f"train_{handle}" def get_agent_handle(id: str) -> int: """Obtain an agents handle given its id""" return int(id.split("_")[-1]) def decorate_step_method(env: RailEnv) -> None: """Step method decorator. Enable the step method of the env to take action dictionaries where agent keys are the agent ids. Flatland uses the agent handles as keys instead. This function decorates the step method so that it accepts an action dict where the keys are the agent ids. """ env.step_ = env.step def _step( self: RailEnv, actions: Dict[str, Union[int, float, Any]] ) -> dm_env.TimeStep: actions_ = {get_agent_handle(k): int(v) for k, v in actions.items()} return self.step_(actions_) env.step = tp.MethodType(_step, env) # The block of code below is obtained from the flatland starter-kit # at https://gitlab.aicrowd.com/flatland/flatland-starter-kit/-/blob/master/ # utils/observation_utils.py # this is done just to obtain the normalize_observation function that would # serve as the default preprocessor for the Tree obs builder. def max_lt(seq: Sequence, val: Any) -> Any: """Get max in sequence. Return greatest item in seq for which item < val applies. None is returned if seq was empty or all items in seq were >= val. """ max = 0 idx = len(seq) - 1 while idx >= 0: if seq[idx] < val and seq[idx] >= 0 and seq[idx] > max: max = seq[idx] idx -= 1 return max def min_gt(seq: Sequence, val: Any) -> Any: """Gets min in a sequence. Return smallest item in seq for which item > val applies. None is returned if seq was empty or all items in seq were >= val. """ min = np.inf idx = len(seq) - 1 while idx >= 0: if seq[idx] >= val and seq[idx] < min: min = seq[idx] idx -= 1 return min @typing.no_type_check def norm_obs_clip( obs: np.ndarray, clip_min: int = -1, clip_max: int = 1, fixed_radius: int = 0, normalize_to_range: bool = False, ) -> np.ndarray: """Normalize observation. This function returns the difference between min and max value of an observation :param obs: Observation that should be normalized :param clip_min: min value where observation will be clipped :param clip_max: max value where observation will be clipped :return: returnes normalized and clipped observatoin """ if fixed_radius > 0: max_obs = fixed_radius else: max_obs = max(1, max_lt(obs, 1000)) + 1 min_obs = 0 # min(max_obs, min_gt(obs, 0)) if normalize_to_range: min_obs = min_gt(obs, 0) if min_obs > max_obs: min_obs = max_obs if max_obs == min_obs: return np.clip(np.array(obs) / max_obs, clip_min, clip_max) norm = np.abs(max_obs - min_obs) return np.clip((np.array(obs) - min_obs) / norm, clip_min, clip_max) def _split_node_into_feature_groups( node: Node, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Splits node into features.""" data = np.zeros(6) distance = np.zeros(1) agent_data = np.zeros(4) data[0] = node.dist_own_target_encountered data[1] = node.dist_other_target_encountered data[2] = node.dist_other_agent_encountered data[3] = node.dist_potential_conflict data[4] = node.dist_unusable_switch data[5] = node.dist_to_next_branch distance[0] = node.dist_min_to_target agent_data[0] = node.num_agents_same_direction agent_data[1] = node.num_agents_opposite_direction agent_data[2] = node.num_agents_malfunctioning agent_data[3] = node.speed_min_fractional return data, distance, agent_data @typing.no_type_check def _split_subtree_into_feature_groups( node: Node, current_tree_depth: int, max_tree_depth: int ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Split subtree.""" if node == -np.inf: remaining_depth = max_tree_depth - current_tree_depth # reference: # https://stackoverflow.com/questions/515214/total-number-of-nodes-in-a-tree-data-structure num_remaining_nodes = int((4 ** (remaining_depth + 1) - 1) / (4 - 1)) return ( [-np.inf] * num_remaining_nodes * 6, [-np.inf] * num_remaining_nodes, [-np.inf] * num_remaining_nodes * 4, ) data, distance, agent_data = _split_node_into_feature_groups(node) if not node.childs: return data, distance, agent_data for direction in TreeObsForRailEnv.tree_explored_actions_char: sub_data, sub_distance, sub_agent_data = _split_subtree_into_feature_groups( node.childs[direction], current_tree_depth + 1, max_tree_depth ) data = np.concatenate((data, sub_data)) distance = np.concatenate((distance, sub_distance)) agent_data =
np.concatenate((agent_data, sub_agent_data))
numpy.concatenate
# Copyright (c) 2003-2015 by <NAME> # # TreeCorr is free software: redistribution and use in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions, and the disclaimer given in the accompanying LICENSE # file. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the disclaimer given in the documentation # and/or other materials provided with the distribution. from __future__ import print_function import numpy import treecorr import os from numpy import pi from test_helper import get_from_wiki def test_ascii(): nobj = 5000 numpy.random.seed(8675309) x = numpy.random.random_sample(nobj) y = numpy.random.random_sample(nobj) z = numpy.random.random_sample(nobj) ra = numpy.random.random_sample(nobj) dec = numpy.random.random_sample(nobj) r = numpy.random.random_sample(nobj) w = numpy.random.random_sample(nobj) g1 = numpy.random.random_sample(nobj) g2 = numpy.random.random_sample(nobj) k = numpy.random.random_sample(nobj) flags = numpy.zeros(nobj).astype(int) for flag in [ 1, 2, 4, 8, 16 ]: sub = numpy.random.random_sample(nobj) < 0.1 flags[sub] = numpy.bitwise_or(flags[sub], flag) file_name = os.path.join('data','test.dat') with open(file_name, 'w') as fid: # These are intentionally in a different order from the order we parse them. fid.write('# ra,dec,x,y,k,g1,g2,w,flag,z,r\n') for i in range(nobj): fid.write((('%.8f '*10)+'%d\n')%( ra[i],dec[i],x[i],y[i],k[i],g1[i],g2[i],w[i],z[i],r[i],flags[i])) # Check basic input config = { 'x_col' : 3, 'y_col' : 4, 'z_col' : 9, 'x_units' : 'rad', 'y_units' : 'rad', 'w_col' : 8, 'g1_col' : 6, 'g2_col' : 7, 'k_col' : 5, } cat1 = treecorr.Catalog(file_name, config) numpy.testing.assert_almost_equal(cat1.x, x) numpy.testing.assert_almost_equal(cat1.y, y) numpy.testing.assert_almost_equal(cat1.z, z) numpy.testing.assert_almost_equal(cat1.w, w) numpy.testing.assert_almost_equal(cat1.g1, g1) numpy.testing.assert_almost_equal(cat1.g2, g2) numpy.testing.assert_almost_equal(cat1.k, k) # Check flags config['flag_col'] = 11 cat2 = treecorr.Catalog(file_name, config) numpy.testing.assert_almost_equal(cat2.w[flags==0], w[flags==0]) numpy.testing.assert_almost_equal(cat2.w[flags!=0], 0.) # Check ok_flag config['ok_flag'] = 4 cat3 = treecorr.Catalog(file_name, config) numpy.testing.assert_almost_equal(cat3.w[numpy.logical_or(flags==0, flags==4)], w[numpy.logical_or(flags==0, flags==4)]) numpy.testing.assert_almost_equal(cat3.w[numpy.logical_and(flags!=0, flags!=4)], 0.) # Check ignore_flag del config['ok_flag'] config['ignore_flag'] = 16 cat4 = treecorr.Catalog(file_name, config) numpy.testing.assert_almost_equal(cat4.w[flags < 16], w[flags < 16]) numpy.testing.assert_almost_equal(cat4.w[flags >= 16], 0.) # Check different units for x,y config['x_units'] = 'arcsec' config['y_units'] = 'arcsec' del config['z_col'] cat5 = treecorr.Catalog(file_name, config) numpy.testing.assert_almost_equal(cat5.x, x * (pi/180./3600.)) numpy.testing.assert_almost_equal(cat5.y, y * (pi/180./3600.)) config['x_units'] = 'arcmin' config['y_units'] = 'arcmin' cat5 = treecorr.Catalog(file_name, config) numpy.testing.assert_almost_equal(cat5.x, x * (pi/180./60.)) numpy.testing.assert_almost_equal(cat5.y, y * (pi/180./60.)) config['x_units'] = 'deg' config['y_units'] = 'deg' cat5 = treecorr.Catalog(file_name, config) numpy.testing.assert_almost_equal(cat5.x, x * (pi/180.)) numpy.testing.assert_almost_equal(cat5.y, y * (pi/180.)) del config['x_units'] # Default is radians del config['y_units'] cat5 = treecorr.Catalog(file_name, config) numpy.testing.assert_almost_equal(cat5.x, x) numpy.testing.assert_almost_equal(cat5.y, y) # Check ra,dec del config['x_col'] del config['y_col'] config['ra_col'] = 1 config['dec_col'] = 2 config['r_col'] = 10 config['ra_units'] = 'rad' config['dec_units'] = 'rad' cat6 = treecorr.Catalog(file_name, config) numpy.testing.assert_almost_equal(cat6.ra, ra) numpy.testing.assert_almost_equal(cat6.dec, dec) config['ra_units'] = 'deg' config['dec_units'] = 'deg' cat6 = treecorr.Catalog(file_name, config) numpy.testing.assert_almost_equal(cat6.ra, ra * (pi/180.)) numpy.testing.assert_almost_equal(cat6.dec, dec * (pi/180.)) config['ra_units'] = 'hour' config['dec_units'] = 'deg' cat6 = treecorr.Catalog(file_name, config) numpy.testing.assert_almost_equal(cat6.ra, ra * (pi/12.)) numpy.testing.assert_almost_equal(cat6.dec, dec * (pi/180.)) # Check using a different delimiter, comment marker csv_file_name = os.path.join('data','test.csv') with open(csv_file_name, 'w') as fid: # These are intentionally in a different order from the order we parse them. fid.write('% This file uses commas for its delimiter') fid.write('% And more than one header line.') fid.write('% Plus some extra comment lines every so often.') fid.write('% And we use a weird comment marker to boot.') fid.write('% ra,dec,x,y,k,g1,g2,w,flag\n') for i in range(nobj): fid.write((('%.8f,'*10)+'%d\n')%( ra[i],dec[i],x[i],y[i],k[i],g1[i],g2[i],w[i],z[i],r[i],flags[i])) if i%100 == 0: fid.write('%%%% Line %d\n'%i) config['delimiter'] = ',' config['comment_marker'] = '%' cat7 = treecorr.Catalog(csv_file_name, config) numpy.testing.assert_almost_equal(cat7.ra, ra * (pi/12.)) numpy.testing.assert_almost_equal(cat7.dec, dec * (pi/180.)) numpy.testing.assert_almost_equal(cat7.r, r) numpy.testing.assert_almost_equal(cat7.g1, g1) numpy.testing.assert_almost_equal(cat7.g2, g2) numpy.testing.assert_almost_equal(cat7.w[flags < 16], w[flags < 16]) numpy.testing.assert_almost_equal(cat7.w[flags >= 16], 0.) # Check flip_g1, flip_g2 del config['delimiter'] del config['comment_marker'] config['flip_g1'] = True cat8 = treecorr.Catalog(file_name, config) numpy.testing.assert_almost_equal(cat8.g1, -g1) numpy.testing.assert_almost_equal(cat8.g2, g2) config['flip_g2'] = 'true' cat8 = treecorr.Catalog(file_name, config) numpy.testing.assert_almost_equal(cat8.g1, -g1) numpy.testing.assert_almost_equal(cat8.g2, -g2) config['flip_g1'] = 'n' config['flip_g2'] = 'yes' cat8 = treecorr.Catalog(file_name, config) numpy.testing.assert_almost_equal(cat8.g1, g1) numpy.testing.assert_almost_equal(cat8.g2, -g2) # Check overriding values with kwargs cat8 = treecorr.Catalog(file_name, config, flip_g1=True, flip_g2=False) numpy.testing.assert_almost_equal(cat8.g1, -g1) numpy.testing.assert_almost_equal(cat8.g2, g2) def test_fits(): get_from_wiki('Aardvark.fit') file_name = os.path.join('data','Aardvark.fit') config = treecorr.read_config('Aardvark.yaml') config['verbose'] = 1 # Just test a few random particular values cat1 = treecorr.Catalog(file_name, config) numpy.testing.assert_equal(len(cat1.ra), 390935) numpy.testing.assert_equal(cat1.nobj, 390935) numpy.testing.assert_almost_equal(cat1.ra[0], 56.4195 * (pi/180.)) numpy.testing.assert_almost_equal(cat1.ra[390934], 78.4782 * (pi/180.))
numpy.testing.assert_almost_equal(cat1.dec[290333], 83.1579 * (pi/180.))
numpy.testing.assert_almost_equal
#!/usr/bin/env python import unittest import numpy as np import simweights info_dtype = [ ("primary_type", np.int32), ("n_flux_events", np.int32), ("global_probability_scale", np.float64), ("cylinder_radius", np.float64), ("min_zenith", np.float64), ("max_zenith", np.float64), ("min_energy", np.float64), ("max_energy", np.float64), ("power_law_index", np.float64), ] result_dtype = [("neu", np.int32), ("Ev", np.float64), ("wght", np.float64)] class TestCorsikaWeighter(unittest.TestCase): def test_triggered_corsika(self): nevents = 10000 pdgid = 12 c1 = simweights.CircleInjector(300, 0, 1) p1 = simweights.PowerLaw(0, 1e3, 1e4) weight = np.zeros(nevents, dtype=result_dtype) weight["neu"] = pdgid weight["Ev"] = p1.ppf(np.linspace(0, 1, nevents)) for event_weight in [1e-6, 1e-3, 1]: weight["wght"] = event_weight for nfiles in [1, 5, 50]: rows = nfiles * [ ( pdgid, nevents, 1, c1.radius,
np.arccos(c1.cos_zen_max)
numpy.arccos
################################################################################ # Copyright (C) 2013-2014 <NAME> # # This file is licensed under the MIT License. ################################################################################ """ Unit tests for `dot` module. """ import unittest import numpy as np import scipy from numpy import testing from ..dot import Dot, SumMultiply from ..gaussian import Gaussian, GaussianARD from bayespy.nodes import GaussianGamma from ...vmp import VB from bayespy.utils import misc from bayespy.utils import linalg from bayespy.utils import random from bayespy.utils.misc import TestCase class TestSumMultiply(TestCase): def test_parent_validity(self): """ Test that the parent nodes are validated properly in SumMultiply """ V = GaussianARD(1, 1) X = Gaussian(np.ones(1), np.identity(1)) Y = Gaussian(np.ones(3), np.identity(3)) Z = Gaussian(np.ones(5), np.identity(5)) A = SumMultiply(X, ['i']) self.assertEqual(A.dims, ((), ())) A = SumMultiply('i', X) self.assertEqual(A.dims, ((), ())) A = SumMultiply(X, ['i'], ['i']) self.assertEqual(A.dims, ((1,), (1,1))) A = SumMultiply('i->i', X) self.assertEqual(A.dims, ((1,), (1,1))) A = SumMultiply(X, ['i'], Y, ['j'], ['i','j']) self.assertEqual(A.dims, ((1,3), (1,3,1,3))) A = SumMultiply('i,j->ij', X, Y) self.assertEqual(A.dims, ((1,3), (1,3,1,3))) A = SumMultiply(V, [], X, ['i'], Y, ['i'], []) self.assertEqual(A.dims, ((), ())) A = SumMultiply(',i,i->', V, X, Y) self.assertEqual(A.dims, ((), ())) # Gaussian-gamma parents C = GaussianGamma(np.ones(3), np.identity(3), 1, 1) A = SumMultiply(Y, ['i'], C, ['i'], ['i']) self.assertEqual(A.dims, ((3,), (3,3), (), ())) A = SumMultiply('i,i->i', Y, C) self.assertEqual(A.dims, ((3,), (3,3), (), ())) C = GaussianGamma(np.ones(3), np.identity(3), 1, 1) A = SumMultiply(Y, ['i'], C, ['i'], []) self.assertEqual(A.dims, ((), (), (), ())) A = SumMultiply('i,i->', Y, C) self.assertEqual(A.dims, ((), (), (), ())) # Error: not enough inputs self.assertRaises(ValueError, SumMultiply) self.assertRaises(ValueError, SumMultiply, X) # Error: too many keys self.assertRaises(ValueError, SumMultiply, Y, ['i', 'j']) self.assertRaises(ValueError, SumMultiply, 'ij', Y) # Error: not broadcastable self.assertRaises(ValueError, SumMultiply, Y, ['i'], Z, ['i']) self.assertRaises(ValueError, SumMultiply, 'i,i', Y, Z) # Error: output key not in inputs self.assertRaises(ValueError, SumMultiply, X, ['i'], ['j']) self.assertRaises(ValueError, SumMultiply, 'i->j', X) # Error: non-unique input keys self.assertRaises(ValueError, SumMultiply, X, ['i','i']) self.assertRaises(ValueError, SumMultiply, 'ii', X) # Error: non-unique output keys self.assertRaises(ValueError, SumMultiply, X, ['i'], ['i','i']) self.assertRaises(ValueError, SumMultiply, 'i->ii', X) # String has too many '->' self.assertRaises(ValueError, SumMultiply, 'i->i->i', X) # String has too many input nodes self.assertRaises(ValueError, SumMultiply, 'i,i->i', X) # Same parent several times self.assertRaises(ValueError, SumMultiply, 'i,i->i', X, X) # Same parent several times via deterministic node Xh = SumMultiply('i->i', X) self.assertRaises(ValueError, SumMultiply, 'i,i->i', X, Xh) def test_message_to_child(self): """ Test the message from SumMultiply to its children. """ def compare_moments(u0, u1, *args): Y = SumMultiply(*args) u_Y = Y.get_moments() self.assertAllClose(u_Y[0], u0) self.assertAllClose(u_Y[1], u1) # Test constant parent y = np.random.randn(2,3,4) compare_moments(y, linalg.outer(y, y, ndim=2), 'ij->ij', y) # Do nothing for 2-D array Y = GaussianARD(np.random.randn(5,2,3), np.random.rand(5,2,3), plates=(5,), shape=(2,3)) y = Y.get_moments() compare_moments(y[0], y[1], 'ij->ij', Y) compare_moments(y[0], y[1], Y, [0,1], [0,1]) # Sum over the rows of a matrix Y = GaussianARD(np.random.randn(5,2,3), np.random.rand(5,2,3), plates=(5,), shape=(2,3)) y = Y.get_moments() mu = np.einsum('...ij->...j', y[0]) cov = np.einsum('...ijkl->...jl', y[1]) compare_moments(mu, cov, 'ij->j', Y) compare_moments(mu, cov, Y, [0,1], [1]) # Inner product of three vectors X1 = GaussianARD(np.random.randn(2), np.random.rand(2), plates=(), shape=(2,)) x1 = X1.get_moments() X2 = GaussianARD(np.random.randn(6,1,2), np.random.rand(6,1,2), plates=(6,1), shape=(2,)) x2 = X2.get_moments() X3 = GaussianARD(np.random.randn(7,6,5,2), np.random.rand(7,6,5,2), plates=(7,6,5), shape=(2,)) x3 = X3.get_moments() mu = np.einsum('...i,...i,...i->...', x1[0], x2[0], x3[0]) cov = np.einsum('...ij,...ij,...ij->...', x1[1], x2[1], x3[1]) compare_moments(mu, cov, 'i,i,i', X1, X2, X3) compare_moments(mu, cov, 'i,i,i->', X1, X2, X3) compare_moments(mu, cov, X1, [9], X2, [9], X3, [9]) compare_moments(mu, cov, X1, [9], X2, [9], X3, [9], []) # Outer product of two vectors X1 = GaussianARD(np.random.randn(2), np.random.rand(2), plates=(5,), shape=(2,)) x1 = X1.get_moments() X2 = GaussianARD(np.random.randn(6,1,2), np.random.rand(6,1,2), plates=(6,1), shape=(2,)) x2 = X2.get_moments() mu = np.einsum('...i,...j->...ij', x1[0], x2[0]) cov = np.einsum('...ik,...jl->...ijkl', x1[1], x2[1]) compare_moments(mu, cov, 'i,j->ij', X1, X2) compare_moments(mu, cov, X1, [9], X2, [7], [9,7]) # Matrix product Y1 = GaussianARD(np.random.randn(3,2), np.random.rand(3,2), plates=(), shape=(3,2)) y1 = Y1.get_moments() Y2 = GaussianARD(np.random.randn(5,2,3), np.random.rand(5,2,3), plates=(5,), shape=(2,3)) y2 = Y2.get_moments() mu = np.einsum('...ik,...kj->...ij', y1[0], y2[0]) cov = np.einsum('...ikjl,...kmln->...imjn', y1[1], y2[1]) compare_moments(mu, cov, 'ik,kj->ij', Y1, Y2) compare_moments(mu, cov, Y1, ['i','k'], Y2, ['k','j'], ['i','j']) # Trace of a matrix product Y1 = GaussianARD(np.random.randn(3,2), np.random.rand(3,2), plates=(), shape=(3,2)) y1 = Y1.get_moments() Y2 = GaussianARD(np.random.randn(5,2,3), np.random.rand(5,2,3), plates=(5,), shape=(2,3)) y2 = Y2.get_moments() mu = np.einsum('...ij,...ji->...', y1[0], y2[0]) cov = np.einsum('...ikjl,...kilj->...', y1[1], y2[1]) compare_moments(mu, cov, 'ij,ji', Y1, Y2) compare_moments(mu, cov, 'ij,ji->', Y1, Y2) compare_moments(mu, cov, Y1, ['i','j'], Y2, ['j','i']) compare_moments(mu, cov, Y1, ['i','j'], Y2, ['j','i'], []) # Vector-matrix-vector product X1 = GaussianARD(np.random.randn(3), np.random.rand(3), plates=(), shape=(3,)) x1 = X1.get_moments() X2 = GaussianARD(np.random.randn(6,1,2), np.random.rand(6,1,2), plates=(6,1), shape=(2,)) x2 = X2.get_moments() Y = GaussianARD(np.random.randn(3,2), np.random.rand(3,2), plates=(), shape=(3,2)) y = Y.get_moments() mu = np.einsum('...i,...ij,...j->...', x1[0], y[0], x2[0]) cov = np.einsum('...ia,...ijab,...jb->...', x1[1], y[1], x2[1]) compare_moments(mu, cov, 'i,ij,j', X1, Y, X2) compare_moments(mu, cov, X1, [1], Y, [1,2], X2, [2]) # Complex sum-product of 0-D, 1-D, 2-D and 3-D arrays V = GaussianARD(np.random.randn(7,6,5), np.random.rand(7,6,5), plates=(7,6,5), shape=()) v = V.get_moments() X = GaussianARD(np.random.randn(6,1,2), np.random.rand(6,1,2), plates=(6,1), shape=(2,)) x = X.get_moments() Y = GaussianARD(np.random.randn(3,4), np.random.rand(3,4), plates=(5,), shape=(3,4)) y = Y.get_moments() Z = GaussianARD(np.random.randn(4,2,3), np.random.rand(4,2,3), plates=(6,5), shape=(4,2,3)) z = Z.get_moments() mu = np.einsum('...,...i,...kj,...jik->...k', v[0], x[0], y[0], z[0]) cov = np.einsum('...,...ia,...kjcb,...jikbac->...kc', v[1], x[1], y[1], z[1]) compare_moments(mu, cov, ',i,kj,jik->k', V, X, Y, Z) compare_moments(mu, cov, V, [], X, ['i'], Y, ['k','j'], Z, ['j','i','k'], ['k']) # Test with constant nodes N = 10 D = 5 a = np.random.randn(N, D) B = Gaussian( np.random.randn(D), random.covariance(D), ) X = SumMultiply('i,i->', B, a) np.testing.assert_allclose( X.get_moments()[0], np.einsum('ni,i->n', a, B.get_moments()[0]), ) np.testing.assert_allclose( X.get_moments()[1], np.einsum('ni,nj,ij->n', a, a, B.get_moments()[1]), ) # # Gaussian-gamma parents # # Outer product of vectors X1 = GaussianARD(np.random.randn(2), np.random.rand(2), shape=(2,)) x1 = X1.get_moments() X2 = GaussianGamma( np.random.randn(6,1,2), random.covariance(2), np.random.rand(6,1), np.random.rand(6,1), plates=(6,1) ) x2 = X2.get_moments() Y = SumMultiply('i,j->ij', X1, X2) u = Y._message_to_child() y = np.einsum('...i,...j->...ij', x1[0], x2[0]) yy = np.einsum('...ik,...jl->...ijkl', x1[1], x2[1]) self.assertAllClose(u[0], y) self.assertAllClose(u[1], yy) self.assertAllClose(u[2], x2[2]) self.assertAllClose(u[3], x2[3]) # Test with constant nodes N = 10 M = 8 D = 5 a = np.random.randn(N, 1, D) B = GaussianGamma( np.random.randn(M, D), random.covariance(D, size=(M,)), np.random.rand(M), np.random.rand(M), ndim=1, ) X = SumMultiply('i,i->', B, a) np.testing.assert_allclose( X.get_moments()[0], np.einsum('nmi,mi->nm', a, B.get_moments()[0]), ) np.testing.assert_allclose( X.get_moments()[1], np.einsum('nmi,nmj,mij->nm', a, a, B.get_moments()[1]), ) np.testing.assert_allclose( X.get_moments()[2], B.get_moments()[2], ) np.testing.assert_allclose( X.get_moments()[3], B.get_moments()[3], ) pass def test_message_to_parent(self): """ Test the message from SumMultiply node to its parents. """ data = 2 tau = 3 def check_message(true_m0, true_m1, parent, *args, F=None): if F is None: A = SumMultiply(*args) B = GaussianARD(A, tau) B.observe(data*np.ones(A.plates + A.dims[0])) else: A = F (A_m0, A_m1) = A._message_to_parent(parent) self.assertAllClose(true_m0, A_m0) self.assertAllClose(true_m1, A_m1) pass # Check: different message to each of multiple parents X1 = GaussianARD(np.random.randn(2), np.random.rand(2), ndim=1) x1 = X1.get_moments() X2 = GaussianARD(np.random.randn(2), np.random.rand(2), ndim=1) x2 = X2.get_moments() m0 = tau * data * x2[0] m1 = -0.5 * tau * x2[1] * np.identity(2) check_message(m0, m1, 0, 'i,i->i', X1, X2) check_message(m0, m1, 0, X1, [9], X2, [9], [9]) m0 = tau * data * x1[0] m1 = -0.5 * tau * x1[1] * np.identity(2) check_message(m0, m1, 1, 'i,i->i', X1, X2) check_message(m0, m1, 1, X1, [9], X2, [9], [9]) # Check: key not in output X1 = GaussianARD(np.random.randn(2), np.random.rand(2), ndim=1) x1 = X1.get_moments() m0 = tau * data * np.ones(2) m1 = -0.5 * tau * np.ones((2,2)) check_message(m0, m1, 0, 'i', X1) check_message(m0, m1, 0, 'i->', X1) check_message(m0, m1, 0, X1, [9]) check_message(m0, m1, 0, X1, [9], []) # Check: key not in some input X1 = GaussianARD(np.random.randn(), np.random.rand()) x1 = X1.get_moments() X2 = GaussianARD(np.random.randn(2), np.random.rand(2), ndim=1) x2 = X2.get_moments() m0 = tau * data * np.sum(x2[0], axis=-1) m1 = -0.5 * tau * np.sum(x2[1] * np.identity(2), axis=(-1,-2)) check_message(m0, m1, 0, ',i->i', X1, X2) check_message(m0, m1, 0, X1, [], X2, [9], [9]) m0 = tau * data * x1[0] * np.ones(2) m1 = -0.5 * tau * x1[1] * np.identity(2) check_message(m0, m1, 1, ',i->i', X1, X2) check_message(m0, m1, 1, X1, [], X2, [9], [9]) # Check: keys in different order Y1 = GaussianARD(np.random.randn(3,2), np.random.rand(3,2), ndim=2) y1 = Y1.get_moments() Y2 = GaussianARD(np.random.randn(2,3), np.random.rand(2,3), ndim=2) y2 = Y2.get_moments() m0 = tau * data * y2[0].T m1 = -0.5 * tau * np.einsum('ijlk->jikl', y2[1] * misc.identity(2,3)) check_message(m0, m1, 0, 'ij,ji->ij', Y1, Y2) check_message(m0, m1, 0, Y1, ['i','j'], Y2, ['j','i'], ['i','j']) m0 = tau * data * y1[0].T m1 = -0.5 * tau * np.einsum('ijlk->jikl', y1[1] * misc.identity(3,2)) check_message(m0, m1, 1, 'ij,ji->ij', Y1, Y2) check_message(m0, m1, 1, Y1, ['i','j'], Y2, ['j','i'], ['i','j']) # Check: plates when different dimensionality X1 = GaussianARD(np.random.randn(5), np.random.rand(5), shape=(), plates=(5,)) x1 = X1.get_moments() X2 = GaussianARD(np.random.randn(5,3), np.random.rand(5,3), shape=(3,), plates=(5,)) x2 = X2.get_moments() m0 = tau * data * np.sum(np.ones((5,3)) * x2[0], axis=-1) m1 = -0.5 * tau * np.sum(x2[1] * misc.identity(3), axis=(-1,-2)) check_message(m0, m1, 0, ',i->i', X1, X2) check_message(m0, m1, 0, X1, [], X2, ['i'], ['i']) m0 = tau * data * x1[0][:,np.newaxis] * np.ones((5,3)) m1 = -0.5 * tau * x1[1][:,np.newaxis,np.newaxis] * misc.identity(3) check_message(m0, m1, 1, ',i->i', X1, X2) check_message(m0, m1, 1, X1, [], X2, ['i'], ['i']) # Check: other parent's moments broadcasts over plates when node has the # same plates X1 = GaussianARD(np.random.randn(5,4,3), np.random.rand(5,4,3), shape=(3,), plates=(5,4)) x1 = X1.get_moments() X2 = GaussianARD(np.random.randn(3), np.random.rand(3), shape=(3,), plates=(5,4)) x2 = X2.get_moments() m0 = tau * data * np.ones((5,4,3)) * x2[0] m1 = -0.5 * tau * x2[1] * misc.identity(3) check_message(m0, m1, 0, 'i,i->i', X1, X2) check_message(m0, m1, 0, X1, ['i'], X2, ['i'], ['i']) # Check: other parent's moments broadcasts over plates when node does # not have that plate X1 = GaussianARD(np.random.randn(3), np.random.rand(3), shape=(3,), plates=()) x1 = X1.get_moments() X2 = GaussianARD(np.random.randn(3), np.random.rand(3), shape=(3,), plates=(5,4)) x2 = X2.get_moments() m0 = tau * data * np.sum(np.ones((5,4,3)) * x2[0], axis=(0,1)) m1 = -0.5 * tau * np.sum(np.ones((5,4,1,1)) * misc.identity(3) * x2[1], axis=(0,1)) check_message(m0, m1, 0, 'i,i->i', X1, X2) check_message(m0, m1, 0, X1, ['i'], X2, ['i'], ['i']) # Check: other parent's moments broadcasts over plates when the node # only broadcasts that plate X1 = GaussianARD(np.random.randn(3), np.random.rand(3), shape=(3,), plates=(1,1)) x1 = X1.get_moments() X2 = GaussianARD(np.random.randn(3), np.random.rand(3), shape=(3,), plates=(5,4)) x2 = X2.get_moments() m0 = tau * data * np.sum(np.ones((5,4,3)) * x2[0], axis=(0,1), keepdims=True) m1 = -0.5 * tau * np.sum(
np.ones((5,4,1,1))
numpy.ones
import numpy as np import numpy.ma as ma import numpy.testing as npt import sharppy.sharptab.thermo as thermo from sharppy.sharptab.constants import * def test_ctof(): # single pass input_c = 0 correct_f = 32 returned_f = thermo.ctof(input_c) npt.assert_almost_equal(returned_f, correct_f) # array_like pass input_c = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100] input_c = np.asanyarray(input_c) correct_f = [32, 50, 68, 86, 104, 122, 140, 158, 176, 194, 212] correct_f = np.asanyarray(correct_f) returned_f = thermo.ctof(input_c) npt.assert_almost_equal(returned_f, correct_f) # single masked input_c = ma.masked correct_f = ma.masked returned_f = thermo.ctof(input_c) npt.assert_(type(returned_f), type(correct_f)) # array_like pass inds = [0, 5, 7] input_c = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100] input_c = np.ma.asanyarray(input_c) correct_f = [32, 50, 68, 86, 104, 122, 140, 158, 176, 194, 212] correct_f = np.ma.asanyarray(correct_f) input_c[inds] = ma.masked correct_f[inds] = ma.masked returned_f = thermo.ctof(input_c) npt.assert_almost_equal(returned_f, correct_f) def test_ftoc(): # single pass input_f = 32 correct_c = 0 returned_c = thermo.ftoc(input_f) npt.assert_almost_equal(returned_c, correct_c) # array_like pass input_f = [32, 50, 68, 86, 104, 122, 140, 158, 176, 194, 212] input_f = np.asanyarray(input_f) correct_c = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100] correct_c = np.asanyarray(correct_c) returned_c = thermo.ftoc(input_f) npt.assert_almost_equal(returned_c, correct_c) # single masked input_f = ma.masked correct_c = ma.masked returned_c = thermo.ftoc(input_f) npt.assert_(type(returned_c), type(correct_c)) # array_like pass inds = [0, 5, 7] input_f = [32, 50, 68, 86, 104, 122, 140, 158, 176, 194, 212] input_f = np.ma.asanyarray(input_f) correct_c = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100] correct_c = np.ma.asanyarray(correct_c) input_f[inds] = ma.masked correct_c[inds] = ma.masked returned_c = thermo.ftoc(input_f) npt.assert_almost_equal(returned_c, correct_c) def test_ktoc(): # single pass input_k = 0 correct_c = -273.15 returned_c = thermo.ktoc(input_k) npt.assert_almost_equal(returned_c, correct_c) # array_like pass input_k = [0, 50, 100, 150, 200, 250, 300] input_k = np.asanyarray(input_k) correct_c = [-273.15, -223.15, -173.15, -123.15, -73.15, -23.15, 26.85] correct_c = np.asanyarray(correct_c) returned_c = thermo.ktoc(input_k) npt.assert_almost_equal(returned_c, correct_c) # single masked input_k = ma.masked correct_c = ma.masked returned_c = thermo.ktoc(input_k) npt.assert_(type(returned_c), type(correct_c)) # array_like pass inds = [0, 2, 3] input_k = [0, 50, 100, 150, 200, 250, 300] input_k = np.ma.asanyarray(input_k) correct_c = [-273.15, -223.15, -173.15, -123.15, -73.15, -23.15, 26.85] correct_c = np.ma.asanyarray(correct_c) input_k[inds] = ma.masked correct_c[inds] = ma.masked returned_c = thermo.ktoc(input_k) npt.assert_almost_equal(returned_c, correct_c) def test_ctok(): # single pass input_c = -273.15 correct_k = 0 returned_k = thermo.ctok(input_c) npt.assert_almost_equal(returned_k, correct_k) # array_like pass input_c = [-273.15, -223.15, -173.15, -123.15, -73.15, -23.15, 26.85] input_c = np.asanyarray(input_c) correct_k = [0, 50, 100, 150, 200, 250, 300] correct_k = np.asanyarray(correct_k) returned_k = thermo.ctok(input_c) npt.assert_almost_equal(returned_k, correct_k) # single masked input_c = ma.masked correct_k = ma.masked returned_k = thermo.ctok(input_c) npt.assert_(type(returned_k), type(correct_k)) # array_like pass inds = [0, 2, 3] input_c = [-273.15, -223.15, -173.15, -123.15, -73.15, -23.15, 26.85] input_c = np.ma.asanyarray(input_c) correct_k = [0, 50, 100, 150, 200, 250, 300] correct_k = np.ma.asanyarray(correct_k) input_c[inds] = ma.masked correct_k[inds] = ma.masked returned_k = thermo.ctok(input_c) npt.assert_almost_equal(returned_k, correct_k) def test_ktof(): # single pass input_k = 0 correct_f = -459.67 returned_f = thermo.ktof(input_k) npt.assert_almost_equal(returned_f, correct_f) # array_like pass input_k = [0, 50, 100, 150, 200, 250, 300] input_k = np.asanyarray(input_k) correct_f = [-459.67, -369.67, -279.67, -189.67, -99.67, -9.67, 80.33] correct_f = np.asanyarray(correct_f) returned_f = thermo.ktof(input_k) npt.assert_almost_equal(returned_f, correct_f) # single masked input_k = ma.masked correct_f = ma.masked returned_f = thermo.ktof(input_k) npt.assert_(type(returned_f), type(correct_f)) # array_like pass inds = [0, 2, 3] input_k = [0, 50, 100, 150, 200, 250, 300] input_k = np.ma.asanyarray(input_k) correct_f = [-459.67, -369.67, -279.67, -189.67, -99.67, -9.67, 80.33] correct_f = np.ma.asanyarray(correct_f) input_k[inds] = ma.masked correct_f[inds] = ma.masked returned_f = thermo.ktof(input_k) npt.assert_almost_equal(returned_f, correct_f) def test_ftok(): # single pass input_f = -459.67 correct_k = 0 returned_k = thermo.ftok(input_f) npt.assert_almost_equal(returned_k, correct_k) # array_like pass input_f = [-459.67, -369.67, -279.67, -189.67, -99.67, -9.67, 80.33] input_f = np.asanyarray(input_f) correct_k = [0, 50, 100, 150, 200, 250, 300] correct_k = np.asanyarray(correct_k) returned_k = thermo.ftok(input_f) npt.assert_almost_equal(returned_k, correct_k) # single masked input_f = ma.masked correct_k = ma.masked returned_k = thermo.ftok(input_f) npt.assert_(type(returned_k), type(correct_k)) # array_like pass inds = [0, 2, 3] input_f = [-459.67, -369.67, -279.67, -189.67, -99.67, -9.67, 80.33] input_f = np.ma.asanyarray(input_f) correct_k = [0, 50, 100, 150, 200, 250, 300] correct_k = np.ma.asanyarray(correct_k) input_f[inds] = ma.masked correct_k[inds] = ma.masked returned_k = thermo.ftok(input_f) npt.assert_almost_equal(returned_k, correct_k) def test_theta(): # single input_p = 940 input_t = 5 input_p2 = 1000. correct_theta = 9.961049492262532 returned_theta = thermo.theta(input_p, input_t, input_p2) npt.assert_almost_equal(returned_theta, correct_theta) # array input_p = np.asarray([940, 850]) input_t = np.asarray([5, 10]) input_p2 = np.asarray([1000., 1000.]) correct_theta = [9.961049492262532, 23.457812111895066] returned_theta = thermo.theta(input_p, input_t, input_p2) npt.assert_almost_equal(returned_theta, correct_theta) def test_wobf(): input_t = 10 correct_c = 10.192034543230415 returned_c = thermo.wobf(input_t) npt.assert_almost_equal(returned_c, correct_c) input_t = [10, 0, -10] input_t = np.asanyarray(input_t) correct_c = [10.192034543230415, 6.411053315058521, 3.8633154447163114] correct_c = np.asanyarray(correct_c) returned_c = thermo.wobf(input_t) npt.assert_almost_equal(returned_c, correct_c) def test_lcltemp(): input_t = 10 input_td = 5 correct_t = 3.89818375 returned_t = thermo.lcltemp(input_t, input_td) npt.assert_almost_equal(returned_t, correct_t) input_t = np.asanyarray([20, 10, 0, -5]) input_td = np.asanyarray([15, 8, -1, -10]) correct_t = [13.83558375, 7.54631416, -1.21632173, -11.00791625] correct_t = np.asanyarray(correct_t) returned_t = thermo.lcltemp(input_t, input_td) npt.assert_almost_equal(returned_t, correct_t) def test_thalvl(): input_theta = 10 input_t = 5 correct_p = 939.5475008003834 returned_p = thermo.thalvl(input_theta, input_t) npt.assert_almost_equal(returned_p, correct_p) input_theta = np.asanyarray([5, 12, 25]) input_t = np.asanyarray([5, 10, 0.]) correct_p = [1000., 975.6659847653189, 736.0076986893786] correct_p = np.asanyarray(correct_p) returned_p = thermo.thalvl(input_theta, input_t) npt.assert_almost_equal(returned_p, correct_p) def test_drylift(): input_p = 950 input_t = 30 input_td = 25 correct_p = 883.4367363248148 correct_t = 23.77298375 returned_p, returned_t = thermo.drylift(input_p, input_t, input_td) npt.assert_almost_equal(returned_p, correct_p) npt.assert_almost_equal(returned_t, correct_t) input_p = np.asarray([950, 975, 1013, 900]) input_t = np.asarray([30, 10, 22, 40]) input_td = np.asarray([25, -10, 18, 0]) correct_p = np.asarray([883.4367363248148, 716.8293994988512, 954.7701032005202, 504.72627541064145]) correct_t = np.asarray([23.77298375, -13.822639999999996, 17.04965568, -7.6987199999999945]) returned_p, returned_t = thermo.drylift(input_p, input_t, input_td) npt.assert_almost_equal(returned_p, correct_p) npt.assert_almost_equal(returned_t, correct_t) def test_satlift(): input_p = 850 input_thetam = 20 correct_t = 13.712979340608157 returned_t = thermo.satlift(input_p, input_thetam) npt.assert_almost_equal(returned_t, correct_t) def test_wetlift(): input_p = 700 input_t = 15 input_p2 = 100 correct_t = -81.27400812504021 returned_t = thermo.wetlift(input_p, input_t, input_p2) npt.assert_almost_equal(returned_t, correct_t) def test_lifted(): input_p = 950 input_t = 30 input_td = 25 input_lev = 100 correct_t = -79.05621246586672 returned_t = thermo.lifted(input_p, input_t, input_td, input_lev) npt.assert_almost_equal(returned_t, correct_t) def test_vappres(): input_t = 25 correct_p = 31.670078513287617 returned_p = thermo.vappres(input_t) npt.assert_almost_equal(returned_p, correct_p) input_t = np.asanyarray([0, 5, 10, 15, 20, 25]) correct_p = [6.107954896017587, 8.719365306196854, 12.2722963940349, 17.04353238898728, 23.37237439430437, 31.670078513287617] correct_p = np.asanyarray(correct_p) returned_p = thermo.vappres(input_t) npt.assert_almost_equal(returned_p, correct_p) def test_mixratio(): input_p = 950 input_t = 25 correct_w = 21.549675456205275 returned_w = thermo.mixratio(input_p, input_t) npt.assert_almost_equal(returned_w, correct_w) input_p = np.asanyarray([1013, 1000, 975, 950, 900]) input_t = np.asanyarray([26, 15, 20, 10, 10]) correct_w = [21.448870702611913, 10.834359059077558, 15.346544211592512, 8.17527964576288, 8.633830400361578] correct_w = np.asanyarray(correct_w) returned_w = thermo.mixratio(input_p, input_t) npt.assert_almost_equal(returned_w, correct_w) def test_temp_at_mixrat(): input_w = 14 input_p = 950 correct_t = 18.25602418045935 returned_t = thermo.temp_at_mixrat(input_w, input_p)
npt.assert_almost_equal(returned_t, correct_t)
numpy.testing.assert_almost_equal
"""IO methods for raw wind data, which may come from 4 different sources: - HFMETARs (high-frequency [1- and 5-minute] meteorological aerodrome reports) - MADIS (Meteorological Assimilation Data Ingest System) - Oklahoma Mesonet stations - Storm Events (dataset with local storm reports) """ import copy import os.path import numpy import pandas from gewittergefahr.gg_utils import time_conversion from gewittergefahr.gg_utils import time_periods from gewittergefahr.gg_utils import geodetic_utils from gewittergefahr.gg_utils import longitude_conversion as lng_conversion from gewittergefahr.gg_utils import number_rounding as rounder from gewittergefahr.gg_utils import file_system_utils from gewittergefahr.gg_utils import error_checking TOLERANCE = 1e-6 WIND_DIR_DEFAULT_DEG = 0. DEGREES_TO_RADIANS = numpy.pi / 180 RADIANS_TO_DEGREES = 180. / numpy.pi HOURS_TO_SECONDS = 3600 KT_TO_METRES_PER_SECOND = 1.852 / 3.6 TIME_FORMAT_MONTH_YEAR = '%Y%m' TIME_FORMAT_SECOND = '%Y-%m-%d-%H%M%S' PROCESSED_FILE_PREFIX = 'wind-observations' PROCESSED_FILE_EXTENSION = '.csv' HFMETAR_DATA_SOURCE = 'hfmetar' MADIS_DATA_SOURCE = 'madis' OK_MESONET_DATA_SOURCE = 'ok_mesonet' STORM_EVENTS_DATA_SOURCE = 'storm_events' MERGED_DATA_SOURCE = 'merged' PRIMARY_UNMERGED_DATA_SOURCES = [ HFMETAR_DATA_SOURCE, MADIS_DATA_SOURCE, OK_MESONET_DATA_SOURCE, STORM_EVENTS_DATA_SOURCE ] PRIMARY_DATA_SOURCES = PRIMARY_UNMERGED_DATA_SOURCES + [MERGED_DATA_SOURCE] MADIS_COOP_DATA_SOURCE = 'coop' MADIS_CRN_DATA_SOURCE = 'crn' MADIS_HCN_DATA_SOURCE = 'hcn' MADIS_HFMETAR_DATA_SOURCE = 'hfmetar' MADIS_MARITIME_DATA_SOURCE = 'maritime' MADIS_MESONET_DATA_SOURCE = 'mesonet' MADIS_METAR_DATA_SOURCE = 'metar' MADIS_NEPP_DATA_SOURCE = 'nepp' MADIS_SAO_DATA_SOURCE = 'sao' MADIS_URBANET_DATA_SOURCE = 'urbanet' SECONDARY_DATA_SOURCES = [ MADIS_COOP_DATA_SOURCE, MADIS_CRN_DATA_SOURCE, MADIS_HCN_DATA_SOURCE, MADIS_HFMETAR_DATA_SOURCE, MADIS_MARITIME_DATA_SOURCE, MADIS_MESONET_DATA_SOURCE, MADIS_METAR_DATA_SOURCE, MADIS_NEPP_DATA_SOURCE, MADIS_SAO_DATA_SOURCE, MADIS_URBANET_DATA_SOURCE ] PRIMARY_SOURCE_COLUMN = 'primary_source' SECONDARY_SOURCE_COLUMN = 'secondary_source' MIN_WIND_DIRECTION_DEG = 0. MAX_WIND_DIRECTION_DEG = 360. - TOLERANCE MIN_SIGNED_WIND_SPEED_M_S01 = -100. * KT_TO_METRES_PER_SECOND MIN_ABSOLUTE_WIND_SPEED_M_S01 = 0. MAX_WIND_SPEED_M_S01 = 100. * KT_TO_METRES_PER_SECOND MIN_ELEVATION_M_ASL = -418. # Lowest point on land (shore of Dead Sea). MAX_ELEVATION_M_ASL = 8848. # Highest point on land (Mount Everest). MIN_LATITUDE_DEG = -90. MAX_LATITUDE_DEG = 90. MIN_LONGITUDE_DEG = -180. MAX_LONGITUDE_DEG = 360. MIN_LNG_NEGATIVE_IN_WEST_DEG = -180. MAX_LNG_NEGATIVE_IN_WEST_DEG = 180. MIN_LNG_POSITIVE_IN_WEST_DEG = 0. MAX_LNG_POSITIVE_IN_WEST_DEG = 360. STATION_ID_COLUMN = 'station_id' STATION_NAME_COLUMN = 'station_name' LATITUDE_COLUMN = 'latitude_deg' LONGITUDE_COLUMN = 'longitude_deg' ELEVATION_COLUMN = 'elevation_m_asl' UTC_OFFSET_COLUMN = 'utc_offset_hours' WIND_SPEED_COLUMN = 'wind_speed_m_s01' WIND_DIR_COLUMN = 'wind_direction_deg' WIND_GUST_SPEED_COLUMN = 'wind_gust_speed_m_s01' WIND_GUST_DIR_COLUMN = 'wind_gust_direction_deg' U_WIND_COLUMN = 'u_wind_m_s01' V_WIND_COLUMN = 'v_wind_m_s01' TIME_COLUMN = 'unix_time_sec' REQUIRED_STATION_METADATA_COLUMNS = [ STATION_ID_COLUMN, STATION_NAME_COLUMN, LATITUDE_COLUMN, LONGITUDE_COLUMN, ELEVATION_COLUMN ] STATION_METADATA_COLUMNS = ( REQUIRED_STATION_METADATA_COLUMNS + [UTC_OFFSET_COLUMN] ) STATION_METADATA_COLUMN_TYPE_DICT = { STATION_ID_COLUMN: str, STATION_NAME_COLUMN: str, LATITUDE_COLUMN: numpy.float64, LONGITUDE_COLUMN: numpy.float64, ELEVATION_COLUMN: numpy.float64, UTC_OFFSET_COLUMN: numpy.float64} WIND_COLUMNS = REQUIRED_STATION_METADATA_COLUMNS + [ TIME_COLUMN, U_WIND_COLUMN, V_WIND_COLUMN ] WIND_COLUMN_TYPE_DICT = copy.deepcopy(STATION_METADATA_COLUMN_TYPE_DICT) WIND_COLUMN_TYPE_DICT.update({ TIME_COLUMN: numpy.int64, U_WIND_COLUMN: numpy.float64, V_WIND_COLUMN: numpy.float64 }) def _primary_and_secondary_sources_to_table(): """Creates pandas DataFrame with all pairs of primary/secondary data source. :return: primary_and_secondary_source_pairs_as_table: pandas DataFrame with columns listed below. primary_and_secondary_source_pairs_as_table.primary_source: Name of primary data source. primary_and_secondary_source_pairs_as_table.secondary_source: Name of secondary source (None if primary_source != "madis"). """ unique_primary_sources = set(PRIMARY_UNMERGED_DATA_SOURCES) unique_primary_sources.remove(MADIS_DATA_SOURCE) unique_primary_sources = list(unique_primary_sources) num_secondary_sources = len(SECONDARY_DATA_SOURCES) primary_sources_to_append = [MADIS_DATA_SOURCE] * num_secondary_sources secondary_sources_to_prepend = [None] * len(unique_primary_sources) primary_source_by_pair = unique_primary_sources + primary_sources_to_append secondary_source_by_pair = ( secondary_sources_to_prepend + SECONDARY_DATA_SOURCES) primary_and_secondary_source_pairs_as_dict = { PRIMARY_SOURCE_COLUMN: primary_source_by_pair, SECONDARY_SOURCE_COLUMN: secondary_source_by_pair} return pandas.DataFrame.from_dict( primary_and_secondary_source_pairs_as_dict) def _check_elevations(elevations_m_asl): """Finds invalid surface elevations. N = number of elevations :param elevations_m_asl: length-N numpy array of elevations (metres above sea level). :return: invalid_indices: 1-D numpy array with indices of invalid surface elevations. For example, if 5th and 12th elevations are invalid, this array will contain 4 and 11. """ error_checking.assert_is_real_numpy_array(elevations_m_asl) error_checking.assert_is_numpy_array(elevations_m_asl, num_dimensions=1) valid_flags = numpy.logical_and(elevations_m_asl >= MIN_ELEVATION_M_ASL, elevations_m_asl <= MAX_ELEVATION_M_ASL) return numpy.where(numpy.invert(valid_flags))[0] def _check_wind_directions(wind_directions_deg): """Finds invalid wind directions. N = number of observations :param wind_directions_deg: length-N numpy array of wind directions (degrees of origin). :return: invalid_indices: 1-D numpy array with indices of invalid directions. """ error_checking.assert_is_real_numpy_array(wind_directions_deg) error_checking.assert_is_numpy_array(wind_directions_deg, num_dimensions=1) valid_flags = numpy.logical_and( wind_directions_deg >= MIN_WIND_DIRECTION_DEG, wind_directions_deg <= MAX_WIND_DIRECTION_DEG) return numpy.where(numpy.invert(valid_flags))[0] def _remove_duplicate_observations(wind_table): """Removes duplicate wind observations. :param wind_table: See documentation for write_processed_file. :return: wind_table: Same as input, but maybe with fewer rows. """ wind_speeds_m_s01 = numpy.sqrt( wind_table[U_WIND_COLUMN].values ** 2 + wind_table[V_WIND_COLUMN].values ** 2) num_observations = len(wind_speeds_m_s01) observation_strings = [''] * num_observations for i in range(num_observations): observation_strings[i] = '{0:.2f}_{1:.2f}_{2:d}_{3:.2f}'.format( wind_table[LATITUDE_COLUMN].values[i], wind_table[LONGITUDE_COLUMN].values[i], wind_table[TIME_COLUMN].values[i], wind_speeds_m_s01[i]) _, unique_indices = numpy.unique( numpy.asarray(observation_strings), return_index=True) return wind_table.iloc[unique_indices] def _get_pathless_processed_file_name(start_time_unix_sec=None, end_time_unix_sec=None, primary_source=None, secondary_source=None): """Generates pathless name for processed wind file. :param start_time_unix_sec: Start time. :param end_time_unix_sec: End time. :param primary_source: String ID for primary data source. :param secondary_source: String ID for secondary data source. :return: pathless_processed_file_name: Pathless name for processed wind file. """ if primary_source == MADIS_DATA_SOURCE: combined_source = '{0:s}_{1:s}'.format(primary_source, secondary_source) else: combined_source = primary_source.replace('_', '-') return '{0:s}_{1:s}_{2:s}_{3:s}{4:s}'.format( PROCESSED_FILE_PREFIX, combined_source, time_conversion.unix_sec_to_string( start_time_unix_sec, TIME_FORMAT_SECOND), time_conversion.unix_sec_to_string( end_time_unix_sec, TIME_FORMAT_SECOND), PROCESSED_FILE_EXTENSION ) def check_wind_speeds(wind_speeds_m_s01, one_component=False): """Finds invalid wind speeds. N = number of observations. :param wind_speeds_m_s01: length-N numpy array of wind speeds (m/s). :param one_component: Boolean flag. If True, wind speeds are only one component (either u or v), which means that they can be negative. If False, wind speeds are absolute (vector magnitudes), so they cannot be negative. :return: invalid_indices: 1-D numpy array with indices of invalid speeds. """ error_checking.assert_is_real_numpy_array(wind_speeds_m_s01) error_checking.assert_is_numpy_array(wind_speeds_m_s01, num_dimensions=1) error_checking.assert_is_boolean(one_component) if one_component: this_min_wind_speed_m_s01 = MIN_SIGNED_WIND_SPEED_M_S01 else: this_min_wind_speed_m_s01 = MIN_ABSOLUTE_WIND_SPEED_M_S01 valid_flags = numpy.logical_and( wind_speeds_m_s01 >= this_min_wind_speed_m_s01, wind_speeds_m_s01 <= MAX_WIND_SPEED_M_S01) return numpy.where(numpy.invert(valid_flags))[0] def check_data_sources( primary_source, secondary_source=None, allow_merged=False): """Ensures that data sources are valid. :param primary_source: String ID for primary data source (must be in PRIMARY_DATA_SOURCES or PRIMARY_UNMERGED_DATA_SOURCES). :param secondary_source: String ID for secondary source. If primary_source != "madis", this should be None. If primary_source == "madis", this must be in SECONDARY_DATA_SOURCES. :param allow_merged: Boolean flag. If True, will allow "merged" as primary data source. If False, will not allow "merged". :raises: ValueError: if primary_source or secondary_source is invalid. """ if allow_merged: valid_primary_sources = copy.deepcopy(PRIMARY_DATA_SOURCES) else: valid_primary_sources = copy.deepcopy(PRIMARY_UNMERGED_DATA_SOURCES) if primary_source not in valid_primary_sources: error_string = ( '\n\n' + str(valid_primary_sources) + '\n\nValid primary sources ' + '(listed above) do not include "' + primary_source + '".') raise ValueError(error_string) if (primary_source == MADIS_DATA_SOURCE and secondary_source not in SECONDARY_DATA_SOURCES): error_string = ( '\n\n' + str(SECONDARY_DATA_SOURCES) + '\n\nValid secondary ' + 'sources (listed above) do not include "' + secondary_source + '".') raise ValueError(error_string) def append_source_to_station_id(station_id, primary_source=None, secondary_source=None): """Appends data source to station ID. :param station_id: String ID for station. :param primary_source: String ID for primary data source. :param secondary_source: String ID for secondary data source. :return: station_id: Same as input, but with data source appended. """ check_data_sources(primary_source, secondary_source, allow_merged=False) if primary_source == MADIS_DATA_SOURCE: combined_source = '{0:s}_{1:s}'.format(primary_source, secondary_source) else: combined_source = primary_source.replace('_', '-') return '{0:s}_{1:s}'.format(station_id, combined_source) def remove_invalid_rows(input_table, check_speed_flag=False, check_direction_flag=False, check_u_wind_flag=False, check_v_wind_flag=False, check_lat_flag=False, check_lng_flag=False, check_elevation_flag=False, check_time_flag=False): """Removes any row with invalid data from pandas DataFrame. However, this method does not remove rows with invalid wind direction or elevation. It simply sets the wind direction or elevation to NaN, so that it will not be mistaken for valid data. Also, this method converts longitudes to positive (180...360 deg E) in western hemisphere. :param input_table: pandas DataFrame. :param check_speed_flag: Boolean flag. If True, will check wind speed. :param check_direction_flag: Boolean flag. If True, will check wind direction. :param check_u_wind_flag: Boolean flag. If True, will check u-wind. :param check_v_wind_flag: Boolean flag. If True, will check v-wind. :param check_lat_flag: Boolean flag. If True, will check latitude. :param check_lng_flag: Boolean flag. If True, will check longitude. :param check_elevation_flag: Boolean flag. If True, will check elevation. :param check_time_flag: Boolean flag. If True, will check time. :return: output_table: Same as input_table, except that some rows may be gone. """ error_checking.assert_is_boolean(check_speed_flag) error_checking.assert_is_boolean(check_direction_flag) error_checking.assert_is_boolean(check_u_wind_flag) error_checking.assert_is_boolean(check_v_wind_flag) error_checking.assert_is_boolean(check_lat_flag) error_checking.assert_is_boolean(check_lng_flag) error_checking.assert_is_boolean(check_elevation_flag) error_checking.assert_is_boolean(check_time_flag) if check_speed_flag: invalid_sustained_indices = check_wind_speeds( input_table[WIND_SPEED_COLUMN].values, one_component=False) input_table[WIND_SPEED_COLUMN].values[ invalid_sustained_indices] = numpy.nan invalid_gust_indices = check_wind_speeds( input_table[WIND_GUST_SPEED_COLUMN].values, one_component=False) input_table[WIND_GUST_SPEED_COLUMN].values[ invalid_gust_indices] = numpy.nan invalid_indices = list( set(invalid_gust_indices).intersection(invalid_sustained_indices)) input_table.drop(input_table.index[invalid_indices], axis=0, inplace=True) if check_direction_flag: invalid_indices = _check_wind_directions( input_table[WIND_DIR_COLUMN].values) input_table[WIND_DIR_COLUMN].values[invalid_indices] = numpy.nan invalid_indices = _check_wind_directions( input_table[WIND_GUST_DIR_COLUMN].values) input_table[WIND_GUST_DIR_COLUMN].values[invalid_indices] = numpy.nan if check_u_wind_flag: invalid_indices = check_wind_speeds( input_table[U_WIND_COLUMN].values, one_component=True) input_table.drop(input_table.index[invalid_indices], axis=0, inplace=True) if check_v_wind_flag: invalid_indices = check_wind_speeds( input_table[V_WIND_COLUMN].values, one_component=True) input_table.drop(input_table.index[invalid_indices], axis=0, inplace=True) if check_lat_flag: invalid_indices = geodetic_utils.find_invalid_latitudes( input_table[LATITUDE_COLUMN].values) input_table.drop( input_table.index[invalid_indices], axis=0, inplace=True) if check_lng_flag: invalid_indices = geodetic_utils.find_invalid_longitudes( input_table[LONGITUDE_COLUMN].values, sign_in_western_hemisphere=geodetic_utils.EITHER_SIGN_LONGITUDE_ARG) input_table.drop( input_table.index[invalid_indices], axis=0, inplace=True) input_table[LONGITUDE_COLUMN] = ( lng_conversion.convert_lng_positive_in_west( input_table[LONGITUDE_COLUMN].values)) if check_elevation_flag: invalid_indices = _check_elevations( input_table[ELEVATION_COLUMN].values) input_table[ELEVATION_COLUMN].values[invalid_indices] = numpy.nan if check_time_flag: invalid_flags = numpy.invert(input_table[TIME_COLUMN].values > 0) invalid_indices = numpy.where(invalid_flags)[0] input_table.drop(input_table.index[invalid_indices], axis=0, inplace=True) return input_table def get_max_of_sustained_and_gust(wind_speeds_m_s01, wind_gust_speeds_m_s01, wind_directions_deg, wind_gust_directions_deg): """Converts wind data from 4 variables to 2. Original variables: - speed of sustained wind - direction of sustained wind - speed of wind gust - direction of wind gust New variables: - speed of max wind (whichever is higher between sustained and gust) - direction of max wind (whichever is higher between sustained and gust) "Whichever is higher between sustained and gust" sounds like a stupid phrase, because gust speed should always be >= sustained speed. However, due to quality issues, this is not always the case. N = number of wind observations. :param wind_speeds_m_s01: length-N numpy array of sustained speeds (m/s). :param wind_gust_speeds_m_s01: length-N numpy array of gust speeds (m/s). :param wind_directions_deg: length-N numpy array of sustained directions (degrees of origin). :param wind_gust_directions_deg: length-N numpy array of gust directions (degrees of origin). :return: max_wind_speeds_m_s01: length-N numpy array of max wind speeds (m/s). :return: max_wind_directions_deg: length-N numpy array with directions of max wind (degrees of origin). """ error_checking.assert_is_real_numpy_array(wind_speeds_m_s01) error_checking.assert_is_numpy_array(wind_speeds_m_s01, num_dimensions=1) num_observations = len(wind_speeds_m_s01) error_checking.assert_is_real_numpy_array(wind_gust_speeds_m_s01) error_checking.assert_is_numpy_array( wind_gust_speeds_m_s01, exact_dimensions=numpy.array([num_observations])) error_checking.assert_is_real_numpy_array(wind_directions_deg) error_checking.assert_is_numpy_array( wind_directions_deg, exact_dimensions=numpy.array([num_observations])) error_checking.assert_is_real_numpy_array(wind_gust_directions_deg) error_checking.assert_is_numpy_array( wind_gust_directions_deg, exact_dimensions=numpy.array([num_observations])) wind_speed_matrix_m_s01 = numpy.vstack( (wind_speeds_m_s01, wind_gust_speeds_m_s01)) wind_direction_matrix_deg = numpy.vstack( (wind_directions_deg, wind_gust_directions_deg)) max_wind_speeds_m_s01 = numpy.nanmax(wind_speed_matrix_m_s01, axis=0).astype(numpy.float64) row_indices = numpy.nanargmax(wind_speed_matrix_m_s01, axis=0) num_observations = len(max_wind_speeds_m_s01) column_indices = numpy.linspace(0, num_observations - 1, num=num_observations, dtype=int) linear_indices = numpy.ravel_multi_index((row_indices, column_indices), (2, num_observations)) all_wind_directions_deg = numpy.reshape(wind_direction_matrix_deg, 2 * num_observations) max_wind_directions_deg = all_wind_directions_deg[linear_indices] nan_flags = numpy.isnan(max_wind_directions_deg) nan_indices = numpy.where(nan_flags)[0] for i in nan_indices: max_wind_directions_deg[i] = numpy.nanmax( wind_direction_matrix_deg[:, i]) return max_wind_speeds_m_s01, max_wind_directions_deg def speed_and_direction_to_uv(wind_speeds_m_s01, wind_directions_deg): """Converts wind vectors from speed and direction to u- and v-components. :param wind_speeds_m_s01: numpy array of wind speeds (metres per second). :param wind_directions_deg: Equivalent-shape numpy array of wind directions (direction of origin, as per meteorological convention). :return: u_winds_m_s01: Equivalent-shape numpy array of u-components (metres per second). :return: v_winds_m_s01: Equivalent-shape numpy array of v-components. """ error_checking.assert_is_geq_numpy_array(wind_speeds_m_s01, 0.) error_checking.assert_is_numpy_array( wind_directions_deg, exact_dimensions=numpy.array(wind_speeds_m_s01.shape)) these_wind_directions_deg = copy.deepcopy(wind_directions_deg) these_wind_directions_deg[ numpy.isnan(these_wind_directions_deg)] = WIND_DIR_DEFAULT_DEG u_winds_m_s01 = -1 * wind_speeds_m_s01 * numpy.sin( these_wind_directions_deg * DEGREES_TO_RADIANS) v_winds_m_s01 = -1 * wind_speeds_m_s01 * numpy.cos( these_wind_directions_deg * DEGREES_TO_RADIANS) return u_winds_m_s01, v_winds_m_s01 def uv_to_speed_and_direction(u_winds_m_s01, v_winds_m_s01): """Converts wind vectors from u- and v-components to speed and direction. :param u_winds_m_s01: numpy array of u-components (metres per second). :param v_winds_m_s01: Equivalent-shape numpy array of v-components. :return: wind_speeds_m_s01: Equivalent-shape numpy array of wind speeds (metres per second). :return: wind_directions_deg: Equivalent-shape numpy array of wind directions (direction of origin, as per meteorological convention). """ error_checking.assert_is_numpy_array( v_winds_m_s01, exact_dimensions=numpy.array(u_winds_m_s01.shape)) wind_directions_deg = RADIANS_TO_DEGREES * numpy.arctan2( -u_winds_m_s01, -v_winds_m_s01) wind_directions_deg = numpy.mod(wind_directions_deg + 360., 360) wind_speeds_m_s01 =
numpy.sqrt(u_winds_m_s01 ** 2 + v_winds_m_s01 ** 2)
numpy.sqrt
from transformers import GPT2Tokenizer, GPT2LMHeadModel import torch import numpy as np import os from fuzzywuzzy import fuzz # from titlecase import titlecase class Generator(object): def __init__( self, model_dir="models", init_epoch=70, ): # where to get the model files? self.model_dir = model_dir self.init_epoch = init_epoch self.pretrained_path = self._construct_pretrained_path( self.model_dir, self.init_epoch ) # model's start and end tokens self.START_TKN = "<|startoftext|>" self.END_TKN = "<|endoftext|>" # load the model and tokenizer self.tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2") self.model = GPT2LMHeadModel.from_pretrained("distilgpt2") # select torch device (cpu/gpu) self.device = self._select_device() self.model = self.model.to(self.device) @staticmethod def _construct_pretrained_path(model_dir, epoch): ptp = os.path.join(model_dir, f"distilgpt2_onion_{epoch}.pt") assert os.path.exists(ptp), "file DNE" return ptp @staticmethod def _select_device(): device = "cpu" if torch.cuda.is_available(): device = "cuda" return device def _load_weights_from_file(self, path): self.model.load_state_dict(torch.load(path)) def _load_weights_from_epoch(self, epoch: int): path = self._construct_pretrained_path(self.model_dir, epoch) self.model.load_state_dict(torch.load(path)) @staticmethod def _select_a_top_token(slogits, max_candidates): index = np.argpartition(slogits, -max_candidates)[-max_candidates:] top_slogits = slogits[index] top_slogits = top_slogits /
np.sum(top_slogits)
numpy.sum
from __future__ import division, print_function, absolute_import import os import time import shutil import numpy as np import cv2 as cv import glob import scipy.io as sio import tensorflow as tf import tensorflow.contrib.slim as slim from tensorflow.contrib.layers.python.layers import initializers from Ops import Ops from DataLoaderNormal import DataLoader from CommonUtil import logger, safe_rm_mkdir, safe_mkdir from Constants import consts log = logger.write class Trainer(object): def __init__(self, sess): self.sess = sess def train(self, dataset_dir, # path to dataset dataset_training_indices, # data starting index dataset_testing_indices, # data ending index results_dir='./results/results_depth_multi_normal3', # directory to stored the results graph_dir='./results/graph_depth_multi_normal3', # directory as tensorboard working space batch_size=4, # batch size epoch_num=9, # epoch number first_channel=8, bottle_width=4, dis_reps=1, mode='retrain', # training mode: 'retrain' or 'finetune' pre_model_dir=None): # directory to pre-trained model """ Train construct the network, data loader and loss function accroding to the argument """ assert batch_size > 1 # tf.squeeze is used, so need to make sure that the batch dim won't be removed self._setup_result_folder(mode, results_dir, graph_dir) # logger.set_log_file(results_dir + '/log.txt') # setups data loader data_loader_num = 4 data_loaders, val_data_loader = self._setup_data_loader(data_loader_num, batch_size, dataset_dir, dataset_training_indices, dataset_testing_indices) batch_num = len(dataset_training_indices)//batch_size test_batch_num = 16 // batch_size log('#epoch = %d, #batch = %d' % (epoch_num, batch_num)) # loads some testing data for visualization and supervision test_conc_imgs, test_smpl_v_volumes, test_mesh_volumes = [], [], [] safe_rm_mkdir(results_dir + '/test_gt') for i in range(test_batch_num): _, conc_imgs, smpl_v_volumes, mesh_volumes = val_data_loader.queue.get() test_conc_imgs.append(conc_imgs) test_smpl_v_volumes.append(smpl_v_volumes) test_mesh_volumes.append(mesh_volumes) self._save_tuple(conc_imgs, smpl_v_volumes, mesh_volumes, results_dir+'/test_gt', i) # setups network and training loss self._build_network(batch_size, first_channel, bottle_width) loss_collection = self._build_loss(self.v_d[-1], self.Y, self.M_fv, self.M_sv, self.Ns, self.n_final, self.dis_real_out, self.dis_fake_out, lamb_sil=self.lamb_sil, lamb_nml_rf=self.lamb_nml, lamb_dis=self.lamb_dis, w=0.7) loss_keys = ['vol_loss', 'sil_loss', 'normal_loss', 'nr_loss', 'recon_loss', 'total_loss'] # setups optimizer and visualizer recon_loss = loss_collection['recon_loss'] nr_loss = loss_collection['nr_loss'] total_loss = loss_collection['total_loss'] dis_d_loss = loss_collection['dis_d_loss'] recon_opt, nr_opt, all_opt, dis_opt = self._build_optimizer(self.lr, recon_loss, nr_loss, total_loss, dis_d_loss) merged_scalar_loss, writer = self._setup_summary(self.sess, graph_dir, loss_collection) self.sess.run(tf.global_variables_initializer()) self.sess.run(tf.local_variables_initializer()) saver = self._setup_saver(pre_model_dir) for epoch_id in range(epoch_num): log('Running epoch No.%d' % epoch_id) loss_log_str = '' for batch_id in range(batch_num): iter_id = epoch_id*batch_num+batch_id lrate = 1e-4 if epoch_id <= epoch_num/3*2 else 1e-5 lrate_d = lrate * 0.1 l_sil = consts.lamb_sil l_dis = consts.lamb_dis l_nml_rf = consts.lamb_nml_rf # training ============================================================== ind, conc_imgs, smpl_v_volumes, mesh_volumes = data_loaders[iter_id % data_loader_num].queue.get() f_dict = self._construct_feed_dict(conc_imgs, smpl_v_volumes, mesh_volumes, l_sil, l_dis, l_nml_rf, lrate) f_dict_d = self._construct_feed_dict(conc_imgs, smpl_v_volumes, mesh_volumes, l_sil, l_dis, l_nml_rf, lrate_d) if epoch_id <= epoch_num / 3: out = self.sess.run([recon_opt] + [loss_collection[lk] for lk in loss_keys] + [merged_scalar_loss], feed_dict=f_dict) loss_curr_list = out[1:-1] graph_results = out[-1] elif epoch_id <= epoch_num / 3 * 2: # for _ in range(dis_reps): # self.sess.run([dis_opt], feed_dict=f_dict_d) out = self.sess.run([nr_opt] + [loss_collection[lk] for lk in loss_keys] + [merged_scalar_loss],feed_dict=f_dict) loss_curr_list = out[1:-1] graph_results = out[-1] else: # for _ in range(dis_reps): # self.sess.run([dis_opt], feed_dict=f_dict_d) out = self.sess.run([all_opt] + [loss_collection[lk] for lk in loss_keys] + [merged_scalar_loss], feed_dict=f_dict) loss_curr_list = out[2:-1] graph_results = out[-1] writer.add_summary(graph_results, epoch_id * batch_num + batch_id) scale = 1 log('Epoch %d, Batch %d: ' 'vol_loss:%.4f, sil_loss:%.4f, normal_loss:%.4f, nr_loss:%.4f, ' 'recon_loss:%.4f, total_loss:%.4f' % (epoch_id, batch_id, loss_curr_list[0] * scale, loss_curr_list[1] * scale, loss_curr_list[2] * scale, loss_curr_list[3] * scale, loss_curr_list[4] * scale, loss_curr_list[5] * scale)) # validation =========================================================== if iter_id % 5 == 0: _, conc_imgs, smpl_v_volumes, mesh_volumes = val_data_loader.queue.get() f_dict = self._construct_feed_dict(conc_imgs, smpl_v_volumes, mesh_volumes, l_sil, l_dis, l_nml_rf, lrate) loss_val_curr = self.sess.run([loss_collection[lk] for lk in loss_keys], feed_dict=f_dict) loss_log_str += ('%f %f %f %f %f %f ' % (loss_curr_list[0], loss_curr_list[1], loss_curr_list[2], loss_curr_list[3], loss_curr_list[4], loss_curr_list[5])) loss_log_str += ('%f %f %f %f %f %f \n' % (loss_val_curr[0], loss_val_curr[1], loss_val_curr[2], loss_val_curr[3], loss_val_curr[4], loss_val_curr[5])) log('End of epoch. ') with open(os.path.join(results_dir, 'loss_log.txt'), 'a') as fp: fp.write(loss_log_str) if epoch_id > 0.5 * epoch_num: test_dir = os.path.join(results_dir, '%04d' % epoch_id) safe_rm_mkdir(test_dir) saver.save(self.sess, os.path.join(results_dir, 'model.ckpt')) # test the network and save the results for tbi in range(test_batch_num): f_dict = {self.X: test_smpl_v_volumes[tbi], self.Y: test_mesh_volumes[tbi], self.R: test_conc_imgs[tbi][:, :, :, :6]} n0_p, n1_p, n2_p, n3_p = self.sess.run([self.n0_project, self.n1_project, self.n2_project, self.n3_project], feed_dict=f_dict) nps = np.concatenate((n0_p, n1_p, n2_p, n3_p), axis=-1) res = self.sess.run(self.v_out, feed_dict=f_dict) res_n = self.sess.run(self.n_final, feed_dict=f_dict) self._save_results_raw_training(res, res_n, nps, test_dir, tbi) # backup model if True: # epoch_id % 10 == 0: saver.save(self.sess, os.path.join(results_dir, 'model.ckpt')) for data in data_loaders: data.stop_queue = True val_data_loader.stop_queue = True @staticmethod def _setup_result_folder(mode, results_dir='./results/results_depth_multi_normal3', graph_dir='./results/graph_depth_multi_normal3'): # create folders if mode == 'retrain': if os.path.exists(results_dir): log('Warning: %s already exists. It will be removed. ' % results_dir) shutil.rmtree(results_dir) if os.path.exists(graph_dir): log('Warning: %s already exists. It will be removed. ' % graph_dir) shutil.rmtree(graph_dir) safe_rm_mkdir(results_dir) safe_rm_mkdir(graph_dir) safe_rm_mkdir(results_dir + '/code_bk') pylist = glob.glob(os.path.join('./', '*.py')) for pyfile in pylist: shutil.copy(pyfile, results_dir + '/code_bk') @staticmethod def _setup_data_loader(data_loader_num, batch_size, dataset_dir, dataset_training_indices, dataset_testing_indices): log('Constructing data loader...') log('#training_data =', len(dataset_training_indices)) log('#testing_data =', len(dataset_testing_indices)) data_loaders = [] for _ in range(data_loader_num): data = DataLoader(batch_size, dataset_dir, dataset_training_indices, augmentation=True) data.daemon = True data.start() data_loaders.append(data) val_data_loader = DataLoader(batch_size, dataset_dir, dataset_testing_indices, augmentation=False) val_data_loader.daemon = True val_data_loader.start() log('DataLoaders start. ') return data_loaders, val_data_loader def _construct_feed_dict(self, conc_imgs, smpl_v_volumes, mesh_volumes, l_sil, l_dis, l_nml_rf, lrate): in_imgs = conc_imgs[:, :, :, :6] # use only first 6 channels as input m0, m1 = conc_imgs[:, :, :, 6:7], conc_imgs[:, :, :, 7:8] n0, n1 = conc_imgs[:, :, :, 10:13], conc_imgs[:, :, :, 13:16] n2, n3 = conc_imgs[:, :, :, 16:19], conc_imgs[:, :, :, 19:22] f_dict = {self.X: smpl_v_volumes, self.Y: mesh_volumes, self.R: in_imgs, self.M_fv: m0, self.M_sv: m1, self.N0: n0, self.N1: n1, self.N2: n2, self.N3: n3, self.lamb_sil: l_sil, self.lamb_dis: l_dis, self.lamb_nml: l_nml_rf, self.lr: lrate} return f_dict def test(self, dataset_dir, # path to testing dataset dataset_prefix_list, # file name prefix of testing data pre_model_dir, # path to pretrained model first_channel=8, bottle_width=4): # directory to pre-trained model """ Test construct the network, data loader and loss function accroding to the argument """ log = logger.write batch_size = 1 # batch size self._build_network(batch_size, first_channel, bottle_width) self.sess.run(tf.global_variables_initializer()) self.sess.run(tf.local_variables_initializer()) log('Constructing saver...') saver = self._setup_saver(pre_model_dir) for dataset_prefix in dataset_prefix_list: prefix = dataset_dir + '/' + dataset_prefix img = cv.cvtColor(cv.imread(prefix + 'color.png'), cv.COLOR_BGR2RGB) # prefix = './TestingData/test_' # img = cv.cvtColor(cv.imread(prefix + 'input.jpg'), cv.COLOR_BGR2RGB) img = np.float32(img) / 255.0 img = DataLoader.resize_and_crop_img(img) vmap = cv.cvtColor(cv.imread(prefix + 'vmap.png'), cv.COLOR_BGR2RGB) vmap = np.float32(vmap) / 255.0 vmap = DataLoader.resize_and_crop_img(vmap) smpl_v_volume = sio.loadmat(prefix + 'volume.mat') smpl_v_volume = smpl_v_volume['smpl_v_volume'] smpl_v_volume = np.transpose(smpl_v_volume, (2, 1, 0, 3)) smpl_v_volume = np.flip(smpl_v_volume, axis=1) concat_in = np.concatenate((img, vmap), axis=-1) concat_in = np.expand_dims(concat_in, axis=0) smpl_v_volume = np.expand_dims(smpl_v_volume, axis=0) n0_p, n1_p, n2_p, n3_p = self.sess.run([self.n0_project, self.n1_project, self.n2_project, self.n3_project], feed_dict={self.X: smpl_v_volume, self.R: concat_in}) nps = np.concatenate((n0_p, n1_p, n2_p, n3_p), axis=-1) res = self.sess.run(self.v_out, feed_dict={self.X: smpl_v_volume, self.R: concat_in}) res_n = self.sess.run(self.n_final, feed_dict={self.X: smpl_v_volume, self.R: concat_in}) log('Testing results saved to', dataset_dir) self._save_results_raw_testing(res, res_n, nps, dataset_dir, dataset_prefix) def test_with_gt(self, dataset_dir, # path to dataset dataset_testing_indices, # data ending index pre_model_dir, output_dir, first_channel=8, bottle_width=4): # directory to pre-trained model safe_mkdir(output_dir) loader = DataLoader(1, dataset_dir, dataset_testing_indices, augmentation=False) self._build_network(1, first_channel, bottle_width) self.sess.run(tf.global_variables_initializer()) self.sess.run(tf.local_variables_initializer()) saver = self._setup_saver(pre_model_dir) for i in dataset_testing_indices: conc_imgs, smpl_v_volumes, mesh_volumes = loader.load_tuple_batch([i]) f_dict = self._construct_feed_dict(conc_imgs, smpl_v_volumes, mesh_volumes, 0, 0, 0, 0) n0_p, n1_p, n2_p, n3_p = self.sess.run([self.n0_project, self.n1_project, self.n2_project, self.n3_project], feed_dict=f_dict) nps = np.concatenate((n0_p, n1_p, n2_p, n3_p), axis=-1) res, res_n = self.sess.run([self.v_out, self.n_final], feed_dict=f_dict) log('Testing results saved to ', output_dir) self._save_results_raw_testing(res, res_n, nps, output_dir, '%08d_' % i) def _build_network(self, batch_size, first_channel, bottle_width): """ Builds the image-guided volume-to-volume network Warning: the network input format: BDHWC for volume, and BHWC for image """ log('Constructing network...') with tf.name_scope('params'): self.lamb_sil = tf.placeholder(dtype=tf.float32) self.lamb_dis = tf.placeholder(dtype=tf.float32) self.lamb_nml = tf.placeholder(dtype=tf.float32) self.lr = tf.placeholder(dtype=tf.float32) with tf.name_scope('input'): self.X = tf.placeholder(shape=[batch_size, consts.dim_w, consts.dim_h, consts.dim_w, 3], dtype=tf.float32) self.Y = tf.placeholder(shape=[batch_size, consts.dim_w, consts.dim_h, consts.dim_w, 1], dtype=tf.float32) self.R = tf.placeholder(shape=[batch_size, 2*consts.dim_h, 2*consts.dim_w, 6], dtype=tf.float32) self.M_fv = tf.placeholder(shape=[batch_size, 2*consts.dim_h, 2*consts.dim_w, 1], dtype=tf.float32) self.M_sv = tf.placeholder(shape=[batch_size, 2*consts.dim_h, 2*consts.dim_w, 1], dtype=tf.float32) self.N0 = tf.placeholder(shape=[batch_size, 2 * consts.dim_h, 2 * consts.dim_w, 3], dtype=tf.float32) self.N1 = tf.placeholder(shape=[batch_size, 2 * consts.dim_h, 2 * consts.dim_w, 3], dtype=tf.float32) self.N2 = tf.placeholder(shape=[batch_size, 2 * consts.dim_h, 2 * consts.dim_w, 3], dtype=tf.float32) self.N3 = tf.placeholder(shape=[batch_size, 2 * consts.dim_h, 2 * consts.dim_w, 3], dtype=tf.float32) self.Ns = tf.concat([self.N0, self.N1, self.N2, self.N3], axis=-1) with tf.name_scope('network'): self.i_e = self._build_image_encoder(self.R, first_channel, bottle_width, logger.write) self.sft_a, self.sft_b = self._build_affine_params(self.i_e, logger.write) self.v_e = self._build_volume_encoder(self.X, first_channel, bottle_width, self.sft_a, self.sft_b, logger.write) self.v_d = self._build_volume_decoder(self.v_e, 1, consts.dim_w, self.sft_a, self.sft_b, logger.write) self.v_out = self.v_d[-1] self.d0, self.d1, self.d2, self.d3 = self._build_depth_projector(self.v_out) self.n0_project = self._build_normal_calculator(self.d0) self.n1_project = self._build_normal_calculator(self.d1) self.n2_project = self._build_normal_calculator(self.d2) self.n3_project = self._build_normal_calculator(self.d3) self.nr0 = self._build_normal_refiner(self.n0_project, self.R, logger.write) self.n_final_0 = self.nr0[-1] self.nr1, self.nr2, self.nr3 = self._build_normal_refiner2(self.n1_project, self.n2_project, self.n3_project, logger.write) self.n_final_1, self.n_final_2, self.n_final_3 = self.nr1[-1], self.nr2[-1], self.nr3[-1] self.n_final = tf.concat([self.n_final_0, self.n_final_1, self.n_final_2, self.n_final_3], axis=-1) self.dis_real_out, self.dis_fake_out = self._build_normal_discriminator(self.n_final, self.Ns, self.M_fv, self.M_sv, self.R, logger.write) log('The whole graph has %d trainable parameters' % Ops.get_variable_num(logger)) @staticmethod def _build_image_encoder(R, first_channel, bottle_neck_w, print_fn=None): """ Build the volume encoder """ R_ = tf.image.resize_bilinear(R, (consts.dim_h, consts.dim_w)) r_shape = R_.get_shape().as_list() r_w = r_shape[2] if print_fn is None: print_fn = print # calculate network parameters w_e = [r_w // 2] c_e = [first_channel] while w_e[-1] > bottle_neck_w: w_e.append(w_e[-1]//2) c_e.append(c_e[-1]*2) print_fn('-- Image encoder layers\' width', w_e) print_fn('-- Image encoder layers\' channel', c_e) layers = [R_] for c in c_e: with tf.variable_scope('i_e_%d' % (len(layers))): nin_shape = layers[-1].get_shape().as_list() net = slim.conv2d(layers[-1], c, [7, 7], 2, padding='SAME', weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, rate=1, normalizer_fn=slim.batch_norm, activation_fn=tf.nn.leaky_relu, scope='conv0') print_fn('-- Image encoder layer %d:'%len(layers), nin_shape, '-->', net.get_shape().as_list()) layers.append(net) return layers @staticmethod def _build_affine_params(E_i, print_fn=None): if print_fn is None: print_fn = print sft_a, sft_b = [], [] for li in range(1, len(E_i)): with tf.variable_scope('a_p_%d' % (len(sft_a)+1)): nin_shape = E_i[li].get_shape().as_list() net_a = slim.conv2d(E_i[li], nin_shape[-1], [1, 1], 1, padding='SAME', weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, rate=1, normalizer_fn=slim.batch_norm, activation_fn=tf.nn.leaky_relu, scope='conv0_pa') sft_a.append(net_a) net_b = slim.conv2d(E_i[li], nin_shape[-1], [1, 1], 1, padding='SAME', weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, rate=1, normalizer_fn=slim.batch_norm, activation_fn=tf.nn.leaky_relu, scope='conv0_pb') sft_b.append(net_b) print_fn('-- SFT parameters layer %d:' % len(sft_a), nin_shape, '-->', net_a.get_shape().as_list()) return sft_a, sft_b @staticmethod def _build_volume_encoder(X, frist_channel, bottle_neck_w, sft_params_a, sft_params_b, print_fn=None): """ Build the volume encoder """ x_shape = X.get_shape().as_list() # (batch, x_dim, y_dim, z_dim, channel) x_w = x_shape[1] if print_fn is None: print_fn = print # calculate network parameters w_e = [x_w//2] c_e = [frist_channel] while w_e[-1] > bottle_neck_w: w_e.append(w_e[-1]//2) c_e.append(c_e[-1]*2) print_fn('-- Volume encoder layers\' width', w_e) print_fn('-- Volume encoder layers\' channel', c_e) layers = [X] for ci, c in enumerate(c_e): with tf.variable_scope('v_e_%d' % len(layers)): nin_shape = layers[-1].get_shape().as_list() net = slim.conv3d(layers[-1], c, [7, 7, 7], 2, padding='SAME', weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, rate=1, normalizer_fn=slim.batch_norm, activation_fn=tf.nn.leaky_relu, scope='conv0') net = Ops.featrue_affine(net, sft_params_a[ci], sft_params_b[ci]) print_fn('-- Volume encoder layer %d:' % len(layers), nin_shape, '-->', net.get_shape().as_list()) layers.append(net) return layers @staticmethod def _build_volume_decoder(layers_e, last_channel, out_w, sft_params_a, sft_params_b, print_fn=None): """ Build the volume decoder """ Z = layers_e[-1] z_shape = Z.get_shape().as_list() z_w = z_shape[1] z_c = z_shape[-1] if print_fn is None: print_fn = print # calculate network parameters w_d = [z_w*2] c_d = [z_c//2] while w_d[-1] < out_w: w_d.append(w_d[-1]*2) c_d.append(c_d[-1]//2) print_fn('-- Volume decoder layers\' width', w_d) print_fn('-- Volume decoder layers\' channel', c_d) layers = [Z] for ci, c in enumerate(c_d): with tf.variable_scope('v_d_%d' % len(layers)): if ci == 0: net = layers[-1] else: net = tf.concat([layers[-1], layers_e[-ci-1]], axis=-1) # U-net structure nin_shape = net.get_shape().as_list() net = slim.conv3d_transpose(net, c, [7, 7, 7], 2, padding='SAME', weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, normalizer_fn=slim.batch_norm, activation_fn=tf.nn.leaky_relu, scope='conv0') print_fn('-- Volume decoder layer %d:' % len(layers), nin_shape, '-->', net.get_shape().as_list()) layers.append(net) with tf.variable_scope('v_d_out'): nin_shape = layers[-1].get_shape().as_list() net = slim.conv3d(layers[-1], last_channel, [1, 1, 1], 1, padding='SAME', weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, rate=1, normalizer_fn=None, activation_fn=tf.nn.sigmoid, scope='conv0') # output to (0, 1) print_fn('-- Volume decoder layer %d:' % len(layers), nin_shape, '-->', net.get_shape().as_list()) layers.append(net) return layers @staticmethod def _build_sil_projector(volume): with tf.name_scope('projector'): vshape = volume.get_shape().as_list() v1 = tf.reshape(volume, (vshape[0], vshape[1], vshape[2], vshape[3])) # remove last dim fv = tf.reduce_max(v1, axis=1) # project along z-axis fv = tf.squeeze(fv) # remove z-dim fv = tf.expand_dims(fv, axis=-1) # add channel dim sv = tf.reduce_max(v1, axis=3) # project along x-axis sv = tf.squeeze(sv) # remove x-dim sv = tf.transpose(sv, (0, 2, 1)) # convert to HW format sv = tf.expand_dims(sv, axis=-1) # add channel dim return fv, sv @staticmethod def _build_depth_projector(volume): with tf.name_scope('depth_projector'): vshape = volume.get_shape().as_list() v1 = tf.reshape(volume, (vshape[0], vshape[1], vshape[2], vshape[3])) # remove last dim v1 = tf.sigmoid(9999*(v1-0.5)) d_array = np.asarray(range(consts.dim_w), dtype=np.float32) d_array = (d_array - (consts.dim_w / 2) + 0.5) * consts.voxel_size d_array = tf.constant(d_array, dtype=tf.float32) # front view (view 0) projection (along z-axis) M = -99 d_array_v0 = tf.reshape(d_array, (1, -1, 1, 1)) # BDHW depth_volume_0 = M*(1-v1) + d_array_v0 * v1 depth_project_0 = tf.reduce_max(depth_volume_0, axis=1) # max along D (Z) --> BHW depth_project_0 = tf.reshape(depth_project_0, (vshape[0], vshape[2], vshape[3], 1)) # side view (view 1) projection (along x_axis) M = 99 d_array_v1 = tf.reshape(d_array, (1, 1, 1, -1)) depth_volume_1 = M*(1-v1) + d_array_v1 * v1 depth_project_1 = tf.reduce_min(depth_volume_1, axis=3) # min along W (X) --> BDH depth_project_1 = -depth_project_1 depth_project_1 = tf.reshape(tf.transpose(depth_project_1, (0, 2, 1)), (vshape[0], vshape[2], vshape[3], 1)) # back view (view 2) projection (along z-axis) M = 99 depth_volume_2 = M*(1-v1) + d_array_v0 * v1 depth_project_2 = tf.reduce_min(depth_volume_2, axis=1) # max along D (Z) --> BHW depth_project_2 = -depth_project_2 depth_project_2 = tf.reshape(depth_project_2, (vshape[0], vshape[2], vshape[3], 1)) # size view (view 3) projection (along x-axis) M = -99 depth_volume_3 = M*(1-v1) + d_array_v1 * v1 depth_project_3 = tf.reduce_max(depth_volume_3, axis=3) # min along W (X) --> BDH depth_project_3 = tf.reshape(tf.transpose(depth_project_3, (0, 2, 1)), (vshape[0], vshape[2], vshape[3], 1)) return depth_project_0, depth_project_1, depth_project_2, depth_project_3 @staticmethod def _build_normal_calculator(depth): d_shape = depth.get_shape().as_list() batch_sz = d_shape[0] img_h = d_shape[1] img_w = d_shape[2] w_array = np.asarray(range(consts.dim_w), dtype=np.float32) w_array = (w_array - (consts.dim_w / 2) + 0.5) * consts.voxel_size w_array = np.reshape(w_array, (1, 1, -1, 1)) # BHWC w_array = np.tile(w_array, (batch_sz, img_h, 1, 1)) w_map = tf.constant(w_array, dtype=tf.float32) h_array = np.asarray(range(consts.dim_h), dtype=np.float32) h_array = (h_array - (consts.dim_h / 2) + 0.5) * consts.voxel_size h_array = np.reshape(h_array, (1, -1, 1, 1)) # BHWC h_array = np.tile(h_array, (batch_sz, 1, img_w, 1)) h_map = tf.constant(h_array, dtype=tf.float32) # vmap = tf.concat([w_map, h_map, depth], axis=-1) sobel_x = tf.constant([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], tf.float32) sobel_x_filter = tf.reshape(sobel_x, [3, 3, 1, 1]) sobel_y_filter = tf.transpose(sobel_x_filter, [1, 0, 2, 3]) w_map_dx = tf.nn.conv2d(w_map, sobel_x_filter, strides=[1, 1, 1, 1], padding='SAME') h_map_dx = tf.nn.conv2d(h_map, sobel_x_filter, strides=[1, 1, 1, 1], padding='SAME') depth_dx = tf.nn.conv2d(depth, sobel_x_filter, strides=[1, 1, 1, 1], padding='SAME') dx = tf.concat([w_map_dx, h_map_dx, depth_dx], axis=-1) w_map_dy = tf.nn.conv2d(w_map, sobel_y_filter, strides=[1, 1, 1, 1], padding='SAME') h_map_dy = tf.nn.conv2d(h_map, sobel_y_filter, strides=[1, 1, 1, 1], padding='SAME') depth_dy = tf.nn.conv2d(depth, sobel_y_filter, strides=[1, 1, 1, 1], padding='SAME') dy = tf.concat([w_map_dy, h_map_dy, depth_dy], axis=-1) normal = tf.cross(dy, dx) normal = normal / tf.norm(normal, axis=-1, keepdims=True) return normal @staticmethod def _build_normal_refiner(normal_0, rgb, print_fn=None): conc_d = tf.image.resize_bilinear(normal_0, (consts.dim_h * 2, consts.dim_w * 2)) conc = tf.concat([conc_d, rgb], axis=-1) w_e = [consts.dim_w//2] c_e = [16] bottle_neck_w = 4 while w_e[-1] > bottle_neck_w: w_e.append(w_e[-1]//2) c_e.append(c_e[-1]*2) if print_fn is None: print_fn = print print_fn('-- Normal refiner 0 encoder layers\' width', w_e) print_fn('-- Normal refiner 0 encoder layers\' channel', c_e) layers = [conc] for c in c_e: with tf.variable_scope('nml_rf_e_%d' % (len(layers))): nin_shape = layers[-1].get_shape().as_list() net = slim.conv2d(layers[-1], c, [4, 4], 2, padding='SAME', weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, rate=1, normalizer_fn=slim.batch_norm, activation_fn=tf.nn.leaky_relu, scope='conv0') print_fn('-- Normal refiner encoder 0 layer %d:'%len(layers), nin_shape, '-->', net.get_shape().as_list()) layers.append(net) w_d = [w_e[-1]*2] c_d = [c_e[-1]//2] while w_d[-1] < consts.dim_w: w_d.append(w_d[-1]*2) c_d.append(c_d[-1]//2) print_fn('-- Normal refiner 0 decoder layers\' width', w_d) print_fn('-- Normal refiner 0 decoderlayers\' channel', c_d) for ci, c in enumerate(c_d): with tf.variable_scope('nml_rf_d_%d' % (len(layers))): nin_shape = layers[-1].get_shape().as_list() net = tf.image.resize_bilinear(layers[-1], (nin_shape[1]*2, nin_shape[2]*2)) net = tf.concat([net, layers[len(w_e)-ci-1]], axis=-1) # U-net structure net = slim.conv2d(net, c, [4, 4], 1, padding='SAME', weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, rate=1, normalizer_fn=slim.batch_norm, activation_fn=tf.nn.leaky_relu, scope='conv0') print_fn('-- Normal refiner decoder layer %d:'%len(layers), nin_shape, '-->', net.get_shape().as_list()) layers.append(net) with tf.variable_scope('nml_rf_d_out'): nin_shape = layers[-1].get_shape().as_list() net = slim.conv2d(layers[-1], 3, [1, 1], 1, padding='SAME', weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, rate=1, normalizer_fn=None, activation_fn=tf.nn.tanh, scope='conv0') # output to (-1, 1) net = net + conc_d print_fn('-- Normal refiner 0 decoder layer %d:' % len(layers), nin_shape, '-->', net.get_shape().as_list()) layers.append(net) return layers @staticmethod def _build_normal_refiner2(normal_1, normal_2, normal_3, print_fn=None): def build_u_net(normal, reuse, print_fn=None): conc = tf.image.resize_bilinear(normal, (consts.dim_h * 2, consts.dim_w * 2)) w_e = [consts.dim_w // 2] c_e = [16] bottle_neck_w = 4 while w_e[-1] > bottle_neck_w: w_e.append(w_e[-1] // 2) c_e.append(c_e[-1] * 2) if print_fn is None: print_fn = print if not reuse: print_fn('-- Normal refiner 1 encoder layers\' width', w_e) print_fn('-- Normal refiner 1 encoder layers\' channel', c_e) layers = [conc] for c in c_e: with tf.variable_scope('nml_rf2_e_%d' % (len(layers)), reuse=reuse): nin_shape = layers[-1].get_shape().as_list() net = slim.conv2d(layers[-1], c, [4, 4], 2, padding='SAME', weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, rate=1, normalizer_fn=slim.batch_norm, activation_fn=tf.nn.leaky_relu, scope='conv0') if not reuse: print_fn('-- Normal refiner 1 encoder layer %d:' % len(layers), nin_shape, '-->', net.get_shape().as_list()) layers.append(net) w_d = [w_e[-1] * 2] c_d = [c_e[-1] // 2] while w_d[-1] < consts.dim_w: w_d.append(w_d[-1] * 2) c_d.append(c_d[-1] // 2) if not reuse: print_fn('-- Normal refiner 1 decoder layers\' width', w_d) print_fn('-- Normal refiner 1 decoderlayers\' channel', c_d) for ci, c in enumerate(c_d): with tf.variable_scope('nml_rf2_d_%d' % (len(layers)), reuse=reuse): nin_shape = layers[-1].get_shape().as_list() net = tf.image.resize_bilinear(layers[-1], (nin_shape[1] * 2, nin_shape[2] * 2)) net = tf.concat([net, layers[len(w_e) - ci - 1]], axis=-1) # U-net structure net = slim.conv2d(net, c, [4, 4], 1, padding='SAME', weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, rate=1, normalizer_fn=slim.batch_norm, activation_fn=tf.nn.leaky_relu, scope='conv0') if not reuse: print_fn('-- Normal refiner 1 decoder layer %d:' % len(layers), nin_shape, '-->', net.get_shape().as_list()) layers.append(net) with tf.variable_scope('nml_rf2_d_out', reuse=reuse): nin_shape = layers[-1].get_shape().as_list() net = slim.conv2d(layers[-1], 3, [1, 1], 1, padding='SAME', weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, rate=1, normalizer_fn=None, activation_fn=tf.nn.tanh, scope='conv0') # output to (-1, 1) net = net + conc if not reuse: print_fn('-- Normal refiner 1 decoder layer %d:' % len(layers), nin_shape, '-->', net.get_shape().as_list()) layers.append(net) return layers with tf.name_scope('normal_1_R'): normal_1_r = build_u_net(normal_1, reuse=False, print_fn=print_fn) with tf.name_scope('normal_2_R'): normal_2_r = build_u_net(normal_2, reuse=True, print_fn=print_fn) with tf.name_scope('normal_3_R'): normal_3_r = build_u_net(normal_3, reuse=True, print_fn=print_fn) return normal_1_r, normal_2_r, normal_3_r @staticmethod def _build_normal_discriminator(d_pred, d_gt, mask_fv_gt, mask_sv_gt, in_img, print_fn=None): if print_fn is None: print_fn = print m_conc = tf.concat([mask_fv_gt, mask_fv_gt, mask_fv_gt, mask_sv_gt, mask_sv_gt, mask_sv_gt, mask_fv_gt, mask_fv_gt, mask_fv_gt, mask_sv_gt, mask_sv_gt, mask_sv_gt], axis=-1) d_pred_m = m_conc * d_pred # mask out background d_gt_m = m_conc * d_gt # mask out background conc_pred = tf.concat([d_pred_m, in_img], axis=-1) conc_gt = tf.concat([d_gt_m, in_img], axis=-1) conc_pred = conc_pred conc_gt = conc_gt def build_D(conc, reuse=False): batch_sz = conc.get_shape().as_list()[0] layer_w = conc.get_shape().as_list()[2] w_e = [layer_w // 2] c_e = [16] while w_e[-1] > 16: w_e.append(w_e[-1] // 2) c_e.append(min(c_e[-1] * 2, 64)) if not reuse: print_fn('-- Normal discriminator encoder layers\' width', w_e) print_fn('-- Normal discriminator encoder layers\' channel', c_e) layers = [conc] for c in c_e: with tf.variable_scope('nml_dis_e_%d' % (len(layers)), reuse=reuse): nin_shape = layers[-1].get_shape().as_list() net = slim.conv2d(layers[-1], c, [3, 3], 1, padding='SAME', weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, rate=1, normalizer_fn=slim.batch_norm, activation_fn=tf.nn.leaky_relu, scope='conv0') net = slim.max_pool2d(net, [2, 2], [2, 2], padding='SAME', scope='maxp0') if not reuse: print_fn('-- Normal discriminator encoder layer %d:'%len(layers), nin_shape, '-->', net.get_shape().as_list()) layers.append(net) with tf.variable_scope('nml_dis_out', reuse=reuse): nin_shape = layers[-1].get_shape().as_list() net = slim.conv2d(layers[-1], 1, [1, 1], 1, padding='SAME', weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, rate=1, normalizer_fn=None, activation_fn=tf.nn.sigmoid, scope='conv0') if not reuse: print_fn('-- Normal discriminator encoder layer %d:' % len(layers), nin_shape, '-->', net.get_shape().as_list()) layers.append(net) return layers with tf.name_scope('Dis_real'): d_out_gt = build_D(tf.concat([conc_gt[:, :, :, 0:3], conc_gt[:, :, :, 12:15]], axis=-1), reuse=False) with tf.name_scope('Dis_fake'): d_out_pred = build_D(tf.concat([conc_pred[:, :, :, 0:3], conc_pred[:, :, :, 12:15]], axis=-1), reuse=True) # with tf.name_scope('Dis_real_0'): # d_out_gt0 = build_D(conc_gt[:, :, :, 0:3], reuse=False) # with tf.name_scope('Dis_real_1'): # d_out_gt1 = build_D(conc_gt[:, :, :, 3:6], reuse=True) # with tf.name_scope('Dis_real_2'): # d_out_gt2 = build_D(conc_gt[:, :, :, 6:9], reuse=True) # with tf.name_scope('Dis_real_3'): # d_out_gt3 = build_D(conc_gt[:, :, :, 9:12], reuse=True) # with tf.name_scope('Dis_fake_0'): # d_out_pred0 = build_D(conc_pred[:, :, :, 0:3], reuse=True) # with tf.name_scope('Dis_fake_1'): # d_out_pred1 = build_D(conc_pred[:, :, :, 3:6], reuse=True) # with tf.name_scope('Dis_fake_2'): # d_out_pred2 = build_D(conc_pred[:, :, :, 6:9], reuse=True) # with tf.name_scope('Dis_fake_3'): # d_out_pred3 = build_D(conc_pred[:, :, :, 9:12], reuse=True) # d_out_gt = tf.concat([d_out_gt0[-1], d_out_gt1[-1], d_out_gt2[-1], d_out_gt3[-1]], axis=-1) # d_out_pred = tf.concat([d_out_pred0[-1], d_out_pred1[-1], d_out_pred2[-1], d_out_pred3[-1]], axis=-1) return d_out_gt[-1], d_out_pred[-1] @staticmethod def _build_loss(vol_pred, vol_gt, mask_fv_gt, mask_sv_gt, normal_hd_gt, normal_hd_pred, dis_real, dis_fake, lamb_sil=0.1, lamb_nml_rf=0.01, lamb_dis=0.001, w=0.7): log('Constructing loss function...') s = 1000 # to scale the loss shp = mask_fv_gt.get_shape().as_list() with tf.name_scope('loss'): # volume loss vol_loss = s * tf.reduce_mean(-w * tf.reduce_mean(vol_gt * tf.log(vol_pred + 1e-8)) - (1 - w) * tf.reduce_mean((1 - vol_gt) * tf.log(1 - vol_pred + 1e-8))) # silhouette loss mask_fv_pred, mask_sv_pred = Trainer._build_sil_projector(vol_pred) #mask_fv_gt_p, mask_sv_gt_p = Trainer._build_sil_projector(vol_gt) mask_fv_gt_rs = tf.image.resize_bilinear(mask_fv_gt, (shp[1]//2, shp[2]//2)) mask_sv_gt_rs = tf.image.resize_bilinear(mask_sv_gt, (shp[1]//2, shp[2]//2)) sil_loss_fv = s * tf.reduce_mean(-tf.reduce_mean(mask_fv_gt_rs * tf.log(mask_fv_pred + 1e-8)) -tf.reduce_mean((1-mask_fv_gt_rs) * tf.log(1 - mask_fv_pred + 1e-8))) sil_loss_sv = s * tf.reduce_mean(-tf.reduce_mean(mask_sv_gt_rs * tf.log(mask_sv_pred + 1e-8)) -tf.reduce_mean((1-mask_sv_gt_rs) * tf.log(1 - mask_sv_pred + 1e-8))) sil_loss = sil_loss_fv + sil_loss_sv # normal refinement loss normal_loss = 0 for i in range(4): normal_hd_gt_ = normal_hd_gt[:, :, :, (i*3):(i*3+3)] normal_hd_pred_ = normal_hd_pred[:, :, :, (i*3):(i*3+3)] normal_cos = 1 - tf.reduce_sum(normal_hd_gt_*normal_hd_pred_, axis=-1, keepdims=True) \ / (tf.norm(normal_hd_gt_, axis=-1, keepdims=True)*tf.norm(normal_hd_pred_, axis=-1, keepdims=True)) # mask out invalid areas if i % 2 == 0: normal_loss += s * tf.reduce_mean(mask_fv_gt*normal_cos) normal_loss += s * 0.001 * tf.reduce_mean(mask_fv_gt*tf.square(normal_hd_pred_-normal_hd_gt_)) else: normal_loss += s * tf.reduce_mean(mask_sv_gt*normal_cos) normal_loss += s * 0.001 * tf.reduce_mean(mask_sv_gt*tf.square(normal_hd_pred_-normal_hd_gt_)) # normal discriminator loss dis_d_real_loss = s * tf.reduce_mean(tf.square(dis_fake)) dis_d_fake_loss = s * tf.reduce_mean(tf.square(1-dis_real)) dis_d_loss = dis_d_real_loss + dis_d_fake_loss dis_g_loss = s * tf.reduce_mean(tf.square(1-dis_fake)) # total loss recon_loss = vol_loss + lamb_sil * sil_loss # reconstruction loss nr_loss = lamb_nml_rf * normal_loss + lamb_dis * dis_g_loss # normal refinement loss total_loss = recon_loss + nr_loss # total loss loss_collection = {} loss_collection['vol_loss'] = vol_loss loss_collection['sil_loss'] = sil_loss loss_collection['normal_loss'] = normal_loss loss_collection['dis_d_real_loss'] = dis_d_real_loss loss_collection['dis_d_fake_loss'] = dis_d_fake_loss loss_collection['dis_d_loss'] = dis_d_loss loss_collection['dis_g_loss'] = dis_g_loss loss_collection['recon_loss'] = recon_loss loss_collection['nr_loss'] = nr_loss loss_collection['total_loss'] = total_loss return loss_collection @staticmethod def _build_optimizer(lr, recon_loss, nr_loss, total_loss, dis_loss): log('Constructing optimizer...') recon_var_list = [var for var in tf.trainable_variables() if not var.name.startswith('nml_rf') and not var.name.startswith('nml_dis')] nr_var_list = [var for var in tf.trainable_variables() if var.name.startswith('nml_rf') and not var.name.startswith('nml_dis')] all_var_list = [var for var in tf.trainable_variables() if not var.name.startswith('nml_dis')] dis_var_list = [var for var in tf.trainable_variables() if var.name.startswith('nml_dis')] with tf.name_scope('recon_optimizer'): update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): recon_opt = tf.train.AdamOptimizer(learning_rate=lr).minimize(recon_loss, var_list=recon_var_list) with tf.name_scope('nml_rf_optimizer'): update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): dr_opt = tf.train.AdamOptimizer(learning_rate=lr).minimize(nr_loss, var_list=nr_var_list) with tf.name_scope('all_optimizer'): update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): all_opt = tf.train.AdamOptimizer(learning_rate=lr).minimize(total_loss, var_list=all_var_list) with tf.name_scope('dis_optimizer'): update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): dis_opt = tf.train.AdamOptimizer(learning_rate=lr).minimize(dis_loss, var_list=dis_var_list) return recon_opt, dr_opt, all_opt, dis_opt @staticmethod def _setup_summary(sess, graph_dir, loss_collection): loss_scalar_s = [] for lk in loss_collection: loss_s = tf.summary.scalar('loss/%s' % (lk), loss_collection[lk]) loss_scalar_s.append(loss_s) merged_scalar_loss = tf.summary.merge([loss_s for loss_s in loss_scalar_s]) writer = tf.summary.FileWriter(graph_dir, sess.graph) return merged_scalar_loss, writer def _setup_saver(self, pre_model_dir): # load pre-trained model to fine-tune or resume training log('Constructing saver...') if pre_model_dir is not None: ckpt_prev = tf.train.get_checkpoint_state(pre_model_dir) if ckpt_prev: saver = tf.train.Saver(var_list=[var for var in tf.trainable_variables()]) saver.restore(self.sess, ckpt_prev.model_checkpoint_path) logger.write('Loaded model %s' % pre_model_dir) else: logger.write('Unable to load the pretrained model. ') saver = tf.train.Saver(max_to_keep=1000) return saver @staticmethod def _save_tuple(conc_imgs, smpl_v_volumes, mesh_volumes, dir, idx): batch_sz = conc_imgs.shape[0] for bi in range(batch_sz): cv.imwrite('%s/color_%d.png' % (dir, batch_sz * idx + bi), cv.cvtColor(np.uint8(conc_imgs[bi, :, :, 0:3] * 255), cv.COLOR_BGRA2RGB)) cv.imwrite('%s/vmap_%d.png' % (dir, batch_sz * idx + bi), np.uint8(conc_imgs[bi, :, :, 3:6] * 255)) cv.imwrite('%s/mask_%d.png' % (dir, batch_sz * idx + bi), np.uint8(conc_imgs[bi, :, :, 6] * 255)) cv.imwrite('%s/normal_%d.png' % (dir, batch_sz * idx + bi), np.uint16(conc_imgs[bi, :, :, 10:13] * 32767.5 + 32767.5)) @staticmethod def _save_results_raw_training(mesh_volume, refined_normal, orig_normal, test_dir, idx): batch_sz = mesh_volume.shape[0] for bi in range(batch_sz): sio.savemat('%s/mesh_volume_%d.obj' % (test_dir, batch_sz*idx+bi), {'mesh_volume': mesh_volume[bi, :, :, :, 0]}, do_compression=False) for bi in range(batch_sz): for vi in range(4): refined_normal_ = refined_normal[bi, :, :, (3*vi):(3*vi+3)] refined_normal_l = np.sqrt(refined_normal_[:, :, 0] * refined_normal_[:, :, 0]+ refined_normal_[:, :, 1] * refined_normal_[:, :, 1] + refined_normal_[:, :, 2] * refined_normal_[:, :, 2]) refined_normal_ /= np.expand_dims(refined_normal_l, axis=-1) refined_normal[bi, :, :, (3 * vi):(3 * vi + 3)] = refined_normal_ original_normal_ = orig_normal[bi, :, :, (3*vi):(3*vi+3)] original_normal_l = np.sqrt(original_normal_[:, :, 0] * original_normal_[:, :, 0] + original_normal_[:, :, 1] * original_normal_[:, :, 1] + original_normal_[:, :, 2] * original_normal_[:, :, 2]) original_normal_ /= np.expand_dims(original_normal_l, axis=-1) orig_normal[bi, :, :, (3 * vi):(3 * vi + 3)] = original_normal_ cv.imwrite('%s/normal_0_%d.png' % (test_dir, batch_sz * idx + bi), np.uint16(refined_normal[bi, :, :, 0:3] * 32767.5 + 32767.5)) cv.imwrite('%s/normal_1_%d.png' % (test_dir, batch_sz * idx + bi), np.uint16(refined_normal[bi, :, :, 3:6] * 32767.5 + 32767.5)) cv.imwrite('%s/normal_2_%d.png' % (test_dir, batch_sz * idx + bi), np.uint16(refined_normal[bi, :, :, 6:9] * 32767.5 + 32767.5)) cv.imwrite('%s/normal_3_%d.png' % (test_dir, batch_sz * idx + bi), np.uint16(refined_normal[bi, :, :, 9:12] * 32767.5 + 32767.5)) cv.imwrite('%s/normal_0_%d_.png' % (test_dir, batch_sz * idx + bi), np.uint16(orig_normal[bi, :, :, 0:3] * 32767.5 + 32767.5)) cv.imwrite('%s/normal_1_%d_.png' % (test_dir, batch_sz * idx + bi), np.uint16(orig_normal[bi, :, :, 3:6] * 32767.5 + 32767.5)) cv.imwrite('%s/normal_2_%d_.png' % (test_dir, batch_sz * idx + bi), np.uint16(orig_normal[bi, :, :, 6:9] * 32767.5 + 32767.5)) cv.imwrite('%s/normal_3_%d_.png' % (test_dir, batch_sz * idx + bi), np.uint16(orig_normal[bi, :, :, 9:12] * 32767.5 + 32767.5)) @staticmethod def _save_results_raw_testing(mesh_volume, refined_normal, orig_normal, test_dir, prefix): batch_sz = mesh_volume.shape[0] assert batch_sz == 1 # only use for testing # mesh_volume = np.squeeze(mesh_volume) for bi in range(batch_sz): sio.savemat('%s/%s_volume_out.mat' % (test_dir, prefix), {'mesh_volume': mesh_volume[bi, :, :, :, 0]}, do_compression=False) for bi in range(batch_sz): for vi in range(4): refined_normal_ = refined_normal[bi, :, :, (3*vi):(3*vi+3)] refined_normal_l = np.sqrt(refined_normal_[:, :, 0] * refined_normal_[:, :, 0]+ refined_normal_[:, :, 1] * refined_normal_[:, :, 1] + refined_normal_[:, :, 2] * refined_normal_[:, :, 2]) refined_normal_ /= np.expand_dims(refined_normal_l, axis=-1) original_normal_ = orig_normal[bi, :, :, (3*vi):(3*vi+3)] original_normal_l = np.sqrt(original_normal_[:, :, 0] * original_normal_[:, :, 0] + original_normal_[:, :, 1] * original_normal_[:, :, 1] + original_normal_[:, :, 2] * original_normal_[:, :, 2]) original_normal_ /= np.expand_dims(original_normal_l, axis=-1) cv.imwrite('%s/%s_normal_%d.png' % (test_dir, prefix, vi),
np.uint16(refined_normal_ * 32767.5 + 32767.5)
numpy.uint16
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jul 4 12:32:53 2017 @author: wroscoe """ import os import sys import time import json import datetime import random import glob import numpy as np import pandas as pd from PIL import Image class Tub(object): """ A datastore to store sensor data in a key, value format. Accepts str, int, float, image_array, image, and array data types. For example: #Create a tub to store speed values. >>> path = '~/mydonkey/test_tub' >>> inputs = ['user/speed', 'cam/image'] >>> types = ['float', 'image'] >>> t=Tub(path=path, inputs=inputs, types=types) """ def __init__(self, path, inputs=None, types=None, user_meta=[]): self.path = os.path.expanduser(path) #print('path_in_tub:', self.path) self.meta_path = os.path.join(self.path, 'meta.json') self.exclude_path = os.path.join(self.path, "exclude.json") self.df = None exists = os.path.exists(self.path) if exists: #load log and meta #print("Tub exists: {}".format(self.path)) try: with open(self.meta_path, 'r') as f: self.meta = json.load(f) except FileNotFoundError: self.meta = {'inputs': [], 'types': []} try: with open(self.exclude_path,'r') as f: excl = json.load(f) # stored as a list self.exclude = set(excl) except FileNotFoundError: self.exclude = set() try: self.current_ix = self.get_last_ix() + 1 except ValueError: self.current_ix = 0 if 'start' in self.meta: self.start_time = self.meta['start'] else: self.start_time = time.time() self.meta['start'] = self.start_time elif not exists and inputs: print('Tub does NOT exist. Creating new tub...') self.start_time = time.time() #create log and save meta os.makedirs(self.path) self.meta = {'inputs': inputs, 'types': types, 'start': self.start_time} for kv in user_meta: kvs = kv.split(":") if len(kvs) == 2: self.meta[kvs[0]] = kvs[1] # else exception? print message? with open(self.meta_path, 'w') as f: json.dump(self.meta, f) self.current_ix = 0 self.exclude = set() print('New tub created at: {}'.format(self.path)) else: msg = "The tub path you provided doesn't exist and you didnt pass any meta info (inputs & types)" + \ "to create a new tub. Please check your tub path or provide meta info to create a new tub." raise AttributeError(msg) def get_last_ix(self): index = self.get_index() return max(index) def update_df(self): df = pd.DataFrame([self.get_json_record(i) for i in self.get_index(shuffled=False)]) self.df = df def get_df(self): if self.df is None: self.update_df() return self.df def get_index(self, shuffled=True): files = next(os.walk(self.path))[2] record_files = [f for f in files if f[:6]=='record'] def get_file_ix(file_name): try: name = file_name.split('.')[0] num = int(name.split('_')[1]) except: num = 0 return num nums = [get_file_ix(f) for f in record_files] if shuffled: random.shuffle(nums) else: nums = sorted(nums) return nums @property def inputs(self): return list(self.meta['inputs']) @property def types(self): return list(self.meta['types']) def get_input_type(self, key): input_types = dict(zip(self.inputs, self.types)) return input_types.get(key) def write_json_record(self, json_data): path = self.get_json_record_path(self.current_ix) try: with open(path, 'w') as fp: json.dump(json_data, fp) #print('wrote record:', json_data) except TypeError: print('troubles with record:', json_data) except FileNotFoundError: raise except: print("Unexpected error:", sys.exc_info()[0]) raise def get_num_records(self): import glob files = glob.glob(os.path.join(self.path, 'record_*.json')) return len(files) def make_record_paths_absolute(self, record_dict): #make paths absolute d = {} for k, v in record_dict.items(): if type(v) == str: #filename if '.' in v: v = os.path.join(self.path, v) d[k] = v return d def check(self, fix=False): ''' Iterate over all records and make sure we can load them. Optionally remove records that cause a problem. ''' print('Checking tub:%s.' % self.path) print('Found: %d records.' % self.get_num_records()) problems = False for ix in self.get_index(shuffled=False): try: self.get_record(ix) except: problems = True if fix == False: print('problems with record:', self.path, ix) else: print('problems with record, removing:', self.path, ix) self.remove_record(ix) if not problems: print("No problems found.") def remove_record(self, ix): ''' remove data associate with a record ''' record = self.get_json_record_path(ix) os.unlink(record) def put_record(self, data): """ Save values like images that can't be saved in the csv log and return a record with references to the saved values that can be saved in a csv. """ json_data = {} self.current_ix += 1 for key, val in data.items(): typ = self.get_input_type(key) if (val is not None) and (typ == 'float'): # in case val is a numpy.float32, which json doesn't like json_data[key] = float(val) elif typ in ['str', 'float', 'int', 'boolean', 'vector']: json_data[key] = val elif typ is 'image': path = self.make_file_path(key) val.save(path) json_data[key]=path elif typ == 'image_array': img = Image.fromarray(np.uint8(val)) name = self.make_file_name(key, ext='.jpg') img.save(os.path.join(self.path, name)) json_data[key]=name else: msg = 'Tub does not know what to do with this type {}'.format(typ) raise TypeError(msg) json_data['milliseconds'] = int((time.time() - self.start_time) * 1000) self.write_json_record(json_data) return self.current_ix def erase_last_n_records(self, num_erase): ''' erase N records from the disc and move current back accordingly ''' last_erase = self.current_ix first_erase = last_erase - num_erase self.current_ix = first_erase - 1 if self.current_ix < 0: self.current_ix = 0 for i in range(first_erase, last_erase): if i < 0: continue self.erase_record(i) def erase_record(self, i): json_path = self.get_json_record_path(i) if os.path.exists(json_path): os.unlink(json_path) img_filename = '%d_cam-image_array_.jpg' % (i) img_path = os.path.join(self.path, img_filename) if os.path.exists(img_path): os.unlink(img_path) def get_json_record_path(self, ix): return os.path.join(self.path, 'record_'+str(ix)+'.json') def get_json_record(self, ix): path = self.get_json_record_path(ix) try: with open(path, 'r') as fp: json_data = json.load(fp) except UnicodeDecodeError: raise Exception('bad record: %d. You may want to run `python manage.py check --fix`' % ix) except FileNotFoundError: raise except: print("Unexpected error:", sys.exc_info()[0]) raise record_dict = self.make_record_paths_absolute(json_data) return record_dict def get_record(self, ix): json_data = self.get_json_record(ix) data = self.read_record(json_data) return data def read_record(self, record_dict): data={} for key, val in record_dict.items(): typ = self.get_input_type(key) #load objects that were saved as separate files if typ == 'image_array': img = Image.open((val)) val =
np.array(img)
numpy.array
""" Python API for CSR matrices. """ import warnings import logging import numpy as np import scipy.sparse as sps from numba import config from numba.experimental import structref from csr.kernels import get_kernel, releasing from . import _struct, _rows INTC = np.iinfo(np.intc) _log = logging.getLogger(__name__) # ugly hack for a bug on Numba < 0.53 if config.DISABLE_JIT: class _csr_base: def __init__(self, nrows, ncols, nnz, ptrs, inds, vals, _cast=True): self.nrows = nrows self.ncols = ncols self.nnz = nnz if _cast and np.max(ptrs, initial=0) <= INTC.max: self.rowptrs = np.require(ptrs, np.intc, 'C') else: self.rowptrs = np.require(ptrs, requirements='C') self.colinds = np.require(inds, np.intc, 'C') if vals is not None: self._values = np.require(vals, requirements='C') else: self._values = None def _numba_box_(self, *args): raise NotImplementedError() NUMBA_ENABLED = False else: _csr_base = structref.StructRefProxy NUMBA_ENABLED = True class CSR(_csr_base): """ Simple compressed sparse row matrix. This is like :py:class:`scipy.sparse.csr_matrix`, with a few useful differences: * The value array is optional, for cases in which only the matrix structure is required. * The value array, if present, is always double-precision. * It is usable from code compiled in Numba's nopython mode. You generally don't want to create this class yourself with the constructor. Instead, use one of its class or static methods. If you do use the constructor, be advised that the class may reuse the arrays that you pass, but does not guarantee that they will be used. Not all methods are available from Numba, and a few have restricted signatures. The documentation for each method notes deviations when in Numba-compiled code. At the Numba level, matrices with and without value arrays have different types. For the most part, this is transparent, but if you want to write a Numba function that works on the values array but only if it is present, it requires writing two versions of the function and using :py:func:`numba.extending.overload` to dispatch to the correct one. There are several examples of doing this in the CSR source code. The method :py:meth:`CSRType.has_values` lets you quickly see if a CSR type instance has values or not. Attributes: nrows(int): the number of rows. ncols(int): the number of columns. nnz(int): the number of entries. rowptrs(numpy.ndarray): the row pointers. colinds(numpy.ndarray): the column indices. values(numpy.ndarray or None): the values. """ def __new__(cls, nrows, ncols, nnz, rps, cis, vs, _cast=True): assert nrows >= 0 assert nrows <= INTC.max assert ncols >= 0 assert ncols <= INTC.max assert nnz >= 0 nrows = np.intc(nrows) ncols = np.intc(ncols) if _cast: cis = np.require(cis, np.intc, 'C') if nnz <= INTC.max: rps = np.require(rps, np.intc, 'C') else: rps = np.require(rps, np.int64, 'C') if vs is not None: vs = np.require(vs, requirements='C') if NUMBA_ENABLED: return _csr_base.__new__(cls, nrows, ncols, nnz, rps, cis, vs) else: return _csr_base.__new__(cls) @classmethod def empty(cls, nrows, ncols, row_nnzs=None, values=True): """ Create an uninitialized CSR matrix. Args: nrows(int): the number of rows. ncols(int): the number of columns. row_nnzs(array-like): the number of nonzero entries for each row, or None for an empty matrix. values(bool, str, or numpy.dtype): whether it has values or only structure; can be a NumPy data type to specify a type other than `f8`. """ from .constructors import create_empty assert nrows >= 0 assert ncols >= 0 if row_nnzs is not None: assert len(row_nnzs) == nrows nnz = np.sum(row_nnzs, dtype=np.int64) assert nnz >= 0 rp_dtype = np.intc if nnz <= INTC.max else np.int64 rps = np.zeros(nrows + 1, dtype=rp_dtype) np.cumsum(row_nnzs, dtype=rp_dtype, out=rps[1:]) cis = np.zeros(nnz, dtype=np.int32) if values is True: vs = np.zeros(nnz) elif values: vs = np.zeros(nnz, dtype=values) else: vs = None return cls(nrows, ncols, nnz, rps, cis, vs) else: return create_empty(nrows, ncols) @classmethod def from_coo(cls, rows, cols, vals, shape=None, *, rpdtype=np.intc): """ Create a CSR matrix from data in COO format. Args: rows(array-like): the row indices. cols(array-like): the column indices. vals(array-like): the data values; can be ``None``. shape(tuple): the array shape, or ``None`` to infer from row & column indices. """ from .structure import from_coo if shape is not None: nrows, ncols = shape assert np.max(rows, initial=0) < nrows assert np.max(cols, initial=0) < ncols else: nrows = np.max(rows) + 1 ncols = np.max(cols) + 1 nnz = len(rows) assert len(cols) == nnz assert vals is None or len(vals) == nnz rowptrs, cols, vals = from_coo(nrows, rows, cols, vals) return cls(nrows, ncols, nnz, rowptrs, cols, vals) @classmethod def from_scipy(cls, mat, copy=True): """ Convert a scipy sparse matrix to a CSR. Args: mat(scipy.sparse.spmatrix): a SciPy sparse matrix. copy(bool): if ``False``, reuse the SciPy storage if possible. Returns: CSR: a CSR matrix. """ if not sps.isspmatrix_csr(mat): mat = mat.tocsr(copy=copy) rp = np.require(mat.indptr, np.intc, 'C') if copy and rp is mat.indptr: rp = rp.copy() cs =
np.require(mat.indices, np.intc, 'C')
numpy.require
# AUTOGENERATED! DO NOT EDIT! File to edit: dev/01_dataset_ucf101.ipynb (unless otherwise specified). __all__ = ['UCF101', 'SingleFrameDataset', 'BatchShower', 'SequenceDataset', 'SequenceBatchShower'] # Cell import numpy as np import pathlib import matplotlib.pyplot as plt from torch.utils.data import Dataset, DataLoader from torchvision import utils import torchvision.transforms as transforms import torch from .avi import AVI # Cell class UCF101: def __init__(self, base_directory=''): """ Args: base_directory: main data folder (e.g. ../data/UCF101) """ self.base_directory = pathlib.Path(base_directory) def getFileList(self, data_type='train', remove_classname = False): """ This function uses a text file provided with the dataset which lists all of the relative paths for the videos for the train/test split. Args: data_type: 'train' | 'test' remove_classname: if True does not include the class name in the filenames. Returns: X is a tuple. The first element is a numpy array with the absolute filepaths for the videos for training. The second element is a numpy array of class indices (0-100). class_names is a list of the action categories. """ base_directory = self.base_directory #print(f'[getFileList] Reading data from: {base_directory}') # action class labels class_file = open(base_directory/'annotations/ucfTrainTestlist/classInd.txt','r') lines = class_file.readlines() lines = [line.split(' ')[1].strip() for line in lines] class_file.close() class_names = np.asarray(lines) if data_type == 'train': # training data train_file = open(base_directory/'annotations/ucfTrainTestlist/trainlist01.txt','r') lines = train_file.readlines() if remove_classname: filenames = ['/UCF-101/' + line.split(' ')[0].split('/')[1] for line in lines] else: filenames = ['/UCF-101/' + line.split(' ')[0] for line in lines] y_train = [int(line.split(' ')[1].strip())-1 for line in lines] y_train = np.asarray(y_train) filenames = [base_directory.as_posix() + filename for filename in filenames] train_file.close() train = (np.asarray(filenames),y_train) X = train print('Number of training files:', len(X[0])) else: # testing data test_file = open(base_directory/'annotations/ucfTrainTestlist/testlist01.txt','r') lines = test_file.readlines() filenames = ['/UCF-101/' + line.split(' ')[0].strip() for line in lines] classnames = [filename.split('/')[2] for filename in filenames] if remove_classname: # remove the class name from the filename if needed. filenames = ['/UCF-101/' + line.split(' ')[0].split('/')[1].strip() for line in lines] y_test = [np.where(classname == class_names)[0][0] for classname in classnames] y_test = np.asarray(y_test) filenames = [base_directory.as_posix() + filename for filename in filenames] test_file.close() test = (np.asarray(filenames),y_test) X = test print('Number of validation files:', len(X[0])) #print('[getFileList] Done.') return X, class_names def downloadData(self): """ Downloads all zip files of the UCF101 dataset. """ target_dir = self.base_directory print(f'[downloadData] 1/2 Beginning file download to {target_dir}') compressed_dir = pathlib.Path(target_dir + '/compressed') compressed_dir.mkdir(parents=True, exist_ok=True) annotations_dir = pathlib.Path(target_dir + '/annotations') annotations_dir.mkdir(parents=True, exist_ok=True) destination_dir = pathlib.Path(target_dir + '/UCF-101') destination_dir.mkdir(parents=True, exist_ok=True) # download annotations for action recognition if pathlib.Path(compressed_dir/'UCF101TrainTestSplits-RecognitionTask.zip').exists(): print ("[downloadData]File UCF101TrainTestSplits-RecognitionTask.zip exists.") else: annotation_url = 'https://www.crcv.ucf.edu/data/UCF101/UCF101TrainTestSplits-RecognitionTask.zip' filename = wget.download(annotation_url, out=compressed_dir.as_posix(), bar=wget.bar_adaptive) print(f'[downloadData]File downloaded to {filename}') if pathlib.Path(compressed_dir/'UCF101TrainTestSplits-DetectionTask.zip').exists(): print ("[downloadData]File UCF101TrainTestSplits-DetectionTask.zip exists.") else: # download annotations for action detection annotation_url = 'https://www.crcv.ucf.edu/data/UCF101/UCF101TrainTestSplits-DetectionTask.zip' filename =wget.download(annotation_url, out=compressed_dir.as_posix(), bar=wget.bar_adaptive) print(f'[downloadData]File downloaded to {filename}') # download videos if pathlib.Path(compressed_dir/'UCF101.rar').exists(): print ("[downloadData]File UCF101.rar exists.") else: video_url = 'https://www.crcv.ucf.edu/data/UCF101/UCF101.rar' filename =wget.download(video_url, out=compressed_dir.as_posix(), bar=wget.bar_adaptive) print(f'[downloadData]File downloaded to {filename}') print('[downloadData] Done.\n') def extractData(self): """ Extracts all zip files of the UCF101 dataset. It does system calls and it needs unrar (apt-get install unrar-free) """ target_dir = self.base_directory print('[extractData] Extracting data...') target_dir = pathlib.Path(target_dir) compressed_dir = pathlib.Path(target_dir/'compressed') compressed_dir.mkdir(parents=True, exist_ok=True) annotations_dir = pathlib.Path(target_dir/'annotations') annotations_dir.mkdir(parents=True, exist_ok=True) destination_dir = pathlib.Path(target_dir/'UCF-101') destination_dir.mkdir(parents=True, exist_ok=True) try: bash_cmd = 'unrar ' + target_dir.as_posix() + '/UCF101.rar' + ' ' + target_dir.as_posix() + '/UCF-101' print(bash_cmd) process = subprocess.Popen(bash_cmd.split(), stdout=subprocess.PIPE) output, error = process.communicate() print(output) except Exception as e: print(e) print() bash_cmd = 'cp ' + target_dir.as_posix() + '/compressed/UCF101TrainTestSplits-RecognitionTask.zip ' + annotations_dir.as_posix() + '/UCF101TrainTestSplits-RecognitionTask.zip' print(bash_cmd) process = subprocess.Popen(bash_cmd.split(), stdout=subprocess.PIPE) output, error = process.communicate() if len(output) > 0: print(output) if len(error) > 0: print(error) print() bash_cmd = 'unzip ' + annotations_dir .as_posix() + '/UCF101TrainTestSplits-RecognitionTask.zip -d ' + annotations_dir.as_posix() print(bash_cmd) process = subprocess.Popen(bash_cmd.split(), stdout=subprocess.PIPE) output, error = process.communicate() if len(output) > 0: print(output) if len(error) > 0: print(error) print() bash_cmd = 'cp ' + target_dir.as_posix() + '/compressed/UCF101TrainTestSplits-DetectionTask.zip ' + annotations_dir.as_posix() + '/UCF101TrainTestSplits-DetectionTask.zip' print(bash_cmd) process = subprocess.Popen(bash_cmd.split(), stdout=subprocess.PIPE) output, error = process.communicate() if len(output) > 0: print(output) if len(error) > 0: print(error) print() bash_cmd = 'unzip ' + annotations_dir.as_posix() + '/UCF101TrainTestSplits-DetectionTask.zip -d ' + annotations_dir.as_posix() print(bash_cmd) process = subprocess.Popen(bash_cmd.split(), stdout=subprocess.PIPE) output, error = process.communicate() if len(output) > 0: print(output) if len(error) > 0: print(error) print() bash_cmd = 'rm ' + target_dir.as_posix() + '/annotations/*.zip' print(bash_cmd) process = subprocess.Popen(bash_cmd.split(), stdout=subprocess.PIPE) output, error = process.communicate() if len(output) > 0: print(output) if len(error) > 0: print(error) print() print('[extractData] Done.') # Cell class SingleFrameDataset(Dataset): """Single frame dataset for the UCF101.""" def __init__(self, dataset_path, training=True, transform=None): """ Args: file_list: list of files as a numpy array. labels: one entry per filename in the list of files as a numpy array. train: flag to say whether train or test dataset is used. transform (callable, optional): Optional transform to be applied on a sample. """ self.training = True ucf = UCF101(dataset_path) X, class_names = ucf.getFileList(data_type='train' if training else 'test') self.file_list, self.labels = X[0], X[1] self.class_names = class_names self.num_classes = len(self.class_names) self.transform = transform def getClassName(self, idx): return self.class_names[idx] def __len__(self): return len(self.file_list) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() video_list = self.file_list[idx] #video_list = self.file_list[idx % len(self)] # wraps up if an out of index idx is used. avi = AVI(video_list) frame = avi.getRandomFrame() label = self.labels[idx] label = np.array([label]) if self.transform: # frame = frame.transpose(2,0,1) frame = self.transform(frame) return frame, label # Cell class BatchShower: def __init__(self, dl): self.dl = dl def showBatch(self, idx, scale=1): """Loops through the dataloader and shows only one batch (idx)""" assert idx >= 0 and idx <= np.floor(len(self.dl.dataset)/self.dl.batch_size), "selected batch index out of batch size range: [0, %d]" % np.floor(len(self.dl.dataset)/self.dl.batch_size) for i_batch, sample_batched in enumerate(self.dl): # print(i_batch, sample_batched[0].size()) # observe the idx-th batch and stop if i_batch == idx: plt.figure(figsize=(10,10)) image, label = sample_batched[0], sample_batched[1] class_name = self.dl.dataset.getClassName(sample_batched[1]) self.showThisBatch(image, label, scale) print(class_name.tolist()) plt.axis('off') plt.ioff() plt.show() break def showThisBatch(self, images_batch, labels_batch, scale=1): """Show image for a batch of samples. Must be tensors of size (bs x w x h x channels). """ batch_size = len(images_batch) im_size = images_batch.size() ncols = int(np.ceil(np.sqrt(batch_size))) for i in range(batch_size): ax = plt.subplot(ncols, ncols, i+1) if type(images_batch[i]) == torch.Tensor: frame = images_batch[i].data.numpy() frame = frame/255. if frame.shape[0] <= 3: frame = frame.transpose(1, 2, 0) frame_v_mean = np.mean(frame) frame = scale*frame frame[frame<0] = 0 if np.mean(frame) < 2: frame[frame>1] = 1 else: frame[frame>255] = 255 plt.imshow(frame) # plt.tight_layout() ax.axis('off') # Cell class SequenceDataset(Dataset): """Sequence based dataset for the UCF101. Output is of shape: seq_len, H, W, C Note that when this is passed onto a DataLoader with toTensor() transform, it changes its shape to: batch_size, seq_length, C, H, W """ def __init__(self, dataset_path, sequence_length, sample_interval=1, training=True, transform=None): """ Args: file_list: list of files as a numpy array. labels: one entry per filename in the list of files as a numpy array. train: flag to say whether train or test dataset is used. transform (callable, optional): Optional transform to be applied on a sample. """ self.training = True self.sequence_length = sequence_length self.sample_interval = sample_interval ucf = UCF101(dataset_path) X, class_names = ucf.getFileList(data_type='train' if training else 'test') self.file_list, self.labels = X[0], X[1] self.class_names = class_names self.num_classes = len(self.class_names) self.transform = transform def getClassName(self, idx): return self.class_names[idx] def __len__(self): return len(self.file_list) def __getitem__(self, idx): """ returns: - sequence: list of frames of length self.sequence_length """ if torch.is_tensor(idx): idx = idx.tolist() #video_list = self.file_list[idx] video_list = self.file_list[idx % len(self)] # wraps up if an out of index idx is used. avi = AVI(video_list, verbose=False) # set verbose to True might help debugging. frames = avi.getRandomSequence(self.sequence_length, self.sample_interval) # frames is a numpy matrix of shape seq_len, H, W, C label = self.labels[idx] label = np.array([label]) # Extract frames as tensors image_sequence = [] #image_sequence = torch.stack(image_sequence) # frame = frame.transpose(2,0,1) if self.transform: sequence = None for i, frame in enumerate(frames): frame = self.transform(frame) # here frame might be a tensor if sequence is None: # we still need to allocate it. sequence = np.zeros(np.array(np.append(
np.array([self.sequence_length])
numpy.array
""" pgeometry --------- A collection of usefull functions. For additional options also see `numpy <http://numpy.scipy.org/>`_ and `matplotlib <http://matplotlib.sourceforge.net/>`_. :platform: Unix, Windows Additions: Copyright 2012-2016 TNO Original code: Copyright 2011 <NAME> <<EMAIL>> @author: eendebakpt """ # %% Load necessary packages import copy import logging import math import os import pickle import pkgutil import re import subprocess import sys import tempfile import time import warnings from functools import wraps from typing import List, Optional, Union import numpy import numpy as np import scipy.io import scipy.ndimage.filters as filters import scipy.ndimage.morphology as morphology import shapely.geometry __version__ = '0.7.0' # %% Load qt functionality def qtModules(verbose=0): """ Return list of Qt modules loaded """ _ll = sys.modules.keys() qq = [x for x in _ll if x.startswith('Py')] if verbose: print('qt modules: %s' % str(qq)) return qq try: _applocalqt = None try: # by default use qtpy to import Qt import qtpy _haveqtpy = True import qtpy.QtCore as QtCore import qtpy.QtGui as QtGui import qtpy.QtWidgets as QtWidgets from qtpy.QtCore import QObject, Signal, Slot except ImportError: _haveqtpy = False warnings.warn('could not import qtpy, not all functionality available') pass _ll = sys.modules.keys() _pyside = len([_x for _x in _ll if _x.startswith('PySide.QtGui')]) > 0 _pyqt4 = len([_x for _x in _ll if _x.startswith('PyQt4.QtGui')]) > 0 _pyqt5 = len([_x for _x in _ll if _x.startswith('PyQt5.QtGui')]) > 0 def slotTest(txt): """ Helper function for Qt slots """ class slotObject(QtCore.QObject): def __init__(self, txt): QObject.__init__(self) self.txt = txt @Slot() def slot(self, v=None): if v is None: print('slotTest: %s' % self.txt) else: print('slotTest: %s: %s' % (self.txt, str(v))) s = slotObject(txt) return s.slot class signalTest(QObject): """ Helper function for Qt signals """ s = Signal() def __init__(self): QObject.__init__(self) def go(self): self.s.emit() except Exception as ex: logging.info('pgeometry: load qt: %s' % ex) print(ex) print('pgeometry: no Qt found') # %% Load other modules try: import pylab import pylab as p except Exception as inst: print(inst) print('could not import pylab, not all functionality available...') pass try: import matplotlib import matplotlib.pyplot as plt # needed for 3d plot points, do not remove! try: from mpl_toolkits.mplot3d import Axes3D except BaseException: pass except ModuleNotFoundError as ex: warnings.warn( 'could not find matplotlib, not all functionality available...') plt = None pass try: import skimage.filters except ModuleNotFoundError as ex: warnings.warn( 'could not find skimage.filters, not all functionality is available') pass try: import cv2 _haveOpenCV = True except (ModuleNotFoundError, ImportError): _haveOpenCV = False warnings.warn('could not find or load OpenCV, not all functionality is available') pass # %% Utils try: import resource def memUsage(): """ Prints the memory usage in MB Uses the resource module """ # http://chase-seibert.github.io/blog/2013/08/03/diagnosing-memory-leaks-python.html print('Memory usage: %s (mb)' % ((resource.getrusage(resource.RUSAGE_SELF).ru_maxrss) / 1024., )) except BaseException: def memUsage(): print('Memory usage: ? (mb)') def memory(): """ Return the memory usage in MB Returns: float: memory usage in mb """ import os import psutil process = psutil.Process(os.getpid()) mem = process.memory_info().rss / (1024. * 1024.) return mem def list_objects(objectype=None, objectclassname='__123', verbose=1): """ List all objects in memory of a specific type or with a specific class name Args: objectype (None or class) objectclassname (str) Returns: ll (list): list of objects found """ import gc ll = [] for ii, obj in enumerate(gc.get_objects()): if ii > 1000000: break valid = False if hasattr(obj, '__class__'): valid = getattr(obj.__class__, '__name__', 'none').startswith(objectclassname) if objectype is not None and not valid: if isinstance(obj, objectype): valid = True if valid: if verbose: print('list_objects: object %s' % (obj, )) ll.append(obj) return ll def package_versions(verbose=1): """ Report package versions installed """ print('numpy.__version__ %s' % numpy.__version__) print('scipy.__version__ %s' % scipy.__version__) print('matplotlib.__version__ %s' % matplotlib.__version__) try: import cv2 print('cv2.__version__ %s' % cv2.__version__) except BaseException: pass try: import qtpy import qtpy.QtCore print('qtpy.API_NAME %s' % (qtpy.API_NAME)) print('qtpy.QtCore %s' % (qtpy.QtCore)) print('qtpy.QtCore.__version__ %s' % (qtpy.QtCore.__version__)) except BaseException: pass try: import sip print('sip %s' % sip.SIP_VERSION_STR) except BaseException: pass def freezeclass(cls): """ Decorator to freeze a class This means that no attributes can be added to the class after instantiation. """ cls.__frozen = False def frozensetattr(self, key, value): if self.__frozen and not hasattr(self, key): print("Class {} is frozen. Cannot set {} = {}" .format(cls.__name__, key, value)) else: object.__setattr__(self, key, value) def init_decorator(func): @wraps(func) def wrapper(self, *args, **kwargs): func(self, *args, **kwargs) self.__frozen = True return wrapper cls.__setattr__ = frozensetattr cls.__init__ = init_decorator(cls.__init__) return cls def static_var(varname, value): """ Helper function to create a static variable Args: varname (str) value (anything) """ def decorate(func): setattr(func, varname, value) return func return decorate @static_var("time", {'default': 0}) def tprint(string, dt=1, output=False, tag='default'): """ Print progress of a loop every dt seconds Args: string (str): text to print dt (float): delta time in seconds output (bool): if True return whether output was printed or not tag (str): optional tag for time Returns: output (bool) """ if (time.time() - tprint.time.get(tag, 0)) > dt: print(string) tprint.time[tag] = time.time() if output: return True else: return else: if output: return False else: return def partiala(method, **kwargs): """ Function to perform functools.partial on named arguments """ raise Exception('Use functools.partial instead') def t(x): return method(x, **kwargs) return t def setFontSizes(labelsize=20, fsize=17, titlesize=None, ax=None,): """ Update font sizes for a matplotlib plot """ if ax is None: ax = plt.gca() for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(fsize) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(fsize) for x in [ax.xaxis.label, ax.yaxis.label]: # ax.title, x.set_fontsize(labelsize) plt.tick_params(axis='both', which='major', labelsize=fsize) if titlesize is not None: ax.title.set_fontsize(titlesize) plt.draw() def plotCostFunction(fun, x0, fig=None, marker='.', scale=1, c=None): """ Plot a cost function on specified data points Example with variation of Booth's function: >>> fun = lambda x: 2*(x[0]+2*x[1]-7)**2 + (2*x[0]+x[1]-5)**2 >>> plotCostFunction(fun, np.array([1,3]), fig=100, marker='-') """ x0 = np.array(x0).astype(float) nn = x0.size if fig is not None: plt.figure(fig) scale = np.array(scale) if scale.size == 1: scale = scale * np.ones(x0.size) tt = np.arange(-1, 1, 5e-2) for ii in range(nn): val = np.zeros(tt.size) for jj in range(tt.size): x = x0.copy() x[ii] += scale[ii] * tt[jj] val[jj] = fun(x) if c is None: plt.plot(tt, val, marker) else: plt.plot(tt, val, marker, color=c[ii]) plt.xlabel('Scaled variables') plt.ylabel('Value of cost function') class fps_t: def __init__(self, nn: int = 40): """ Class for framerate measurements Args: nn: number of time measurements to store Example usage: >>> fps = fps_t(nn=8) >>> for kk in range(12): ... fps.addtime(.2*kk) >>> fps.show() framerate: 5.000 """ self.n = nn self.tt = np.zeros(self.n) self.x = np.zeros(self.n) self.ii = 0 def __repr__(self): ss = 'fps_t: buffer size %d, framerate %.3f [fps]' % ( self.n, self.framerate()) return ss def addtime(self, t: Optional[float] = None, x: float = 0): """ Add a timestamp to the object Args: t: Timestamp. If None, use `time.perf_counter` x: Optional value to store with the timestamp """ if t is None: t = time.perf_counter() self.ii = self.ii + 1 iim = self.ii % self.n self.tt[iim] = t self.x[iim] = x def value(self) -> float: """ Return mean of current values """ return self.x.mean() def iim(self) -> float: """ Return index modulo number of elements """ return self.ii % self.n def framerate(self) -> float: """ Return the current framerate """ iim = self.ii % self.n iimn = (self.ii + 1) % self.n dt = self.tt[iim] - self.tt[iimn] if dt == 0: return np.NaN fps = float(self.n - 1) / dt return fps def loop(self, s: str = ''): """ Helper function """ self.addtime(time.time()) self.showloop(s='') def showloop(self, dt: float = 2, s: str = ''): """ Print current framerate in a loop The print statement is only executed once every `dt` seconds """ fps = self.framerate() if len(s) == 0: tprint('loop %d: framerate: %.1f [fps]' % (self.ii, fps), dt=dt) else: tprint( '%s: loop %d: framerate: %.1f [fps]' % (s, self.ii, fps), dt=dt) def show(self): """ Print the current framerate """ fps = self.framerate() print('framerate: %.3f' % fps) def mkdirc(d): """ Similar to mkdir, but no warnings if the directory already exists """ try: os.mkdir(d) except BaseException: pass return d def projectiveTransformation(H, x): """ Apply a projective transformation to a kxN array >>> y = projectiveTransformation( np.eye(3), np.random.rand( 2, 10 )) """ k = x.shape[0] kout = H.shape[0] - 1 xx = x.transpose().reshape((-1, 1, k)) if (xx.dtype is np.integer or xx.dtype == 'int64'): xx = xx.astype(np.float32) if xx.size > 0: ww = cv2.perspectiveTransform(xx, H) ww = ww.reshape((-1, kout)).transpose() return ww else: return copy.copy(x) def rottra2mat(rot, tra): """ create 4x4 matrix from 3x3 rot and 1x3 tra """ out = np.eye(4) out[0:3, 0:3] = rot out[0:3, 3] = tra.transpose() return out def breakLoop(wk=None, dt=0.001, verbose=0): """ Break a loop using OpenCV image feedback """ if wk is None: wk = cv2.waitKey(1) time.sleep(dt) wkm = wk % 256 if wkm == 27 or wkm == ord('q') or wk == 1048689: if verbose: print('breakLoop: key q pressed, quitting loop') return True return False def hom(x): """ Create affine to homogeneous coordinates Args: x (kxN array): affine coordinates Returns: h ( (k+1xN) array): homogeneous coordinates """ nx = x.shape[1] return np.vstack((x, np.ones(nx))) def dehom(x): """ Convert homogeneous points to affine coordinates """ return x[0:-1, :] / x[-1, :] def null(a, rtol=1e-5): """ Calculate null space of a matrix """ u, s, v = np.linalg.svd(a) rank = (s > rtol * s[0]).sum() return rank, v[rank:].T.copy() def intersect2lines(l1, l2): """ Calculate intersection between 2 lines Args: l1 (array): first line in homogeneous format l2 (array): first line in homogeneous format Returns: array: intersection in homogeneous format. To convert to affine coordinates use `dehom` """ r = null(np.vstack((l1, l2))) return r[1] def runcmd(cmd, verbose=0): """ Run command and return output """ output = subprocess.check_output(cmd, shell=True) return output # %% Geometry functions def angleDiff(x, y): """ Return difference between two angles in radians modulo 2* pi >>> d=angleDiff( 0.01, np.pi+0.02) >>> d=angleDiff( 0.01, 2*np.pi+0.02) """ return np.abs(((x - y + np.pi) % (2 * np.pi)) - np.pi) def angleDiffOri(x, y): """ Return difference between two angles in radians modulo pi >>> d=angleDiff( 0.01, np.pi+0.02) >>> d=angleDiff( 0.01, 2*np.pi+0.02) """ return np.abs(((x - y + np.pi / 2) % (np.pi)) - np.pi / 2) def opencvpose2attpos(rvecs, tvecs): tvec = np.array(tvecs).flatten() rvec = np.array(rvecs).flatten() R, tmp = cv2.Rodrigues(rvec) att = RBE2euler(R) pos = -R.transpose().dot(np.array(tvec.reshape((3, 1)))) return att, pos def opencv2TX(rvecs, tvecs): """ Convert OpenCV pose to homogenous transform """ T = np.array(np.eye(4)) R = cv2.Rodrigues(rvecs)[0] T[0:3, 0:3] = R T[0:3, 3:4] = tvecs return T def opencv2T(rvec, tvec): """ Convert OpenCV pose to homogenous transform """ T = np.array(np.eye(4)) T[0:3, 0:3] = cv2.Rodrigues(rvec)[0] T[0:3, 3] = tvec return T def T2opencv(T): """ Convert transformation to OpenCV rvec, tvec pair Example ------- >>> rvec, tvec = T2opencv(np.eye(4)) """ rvec = cv2.Rodrigues(T[0:3, 0:3])[0] tvec = T[0:3, 3] return rvec, tvec def euler2RBE(theta): """ Convert Euler angles to rotation matrix Example ------- >>> np.set_printoptions(precision=4, suppress=True) >>> euler2RBE( [0,0,np.pi/2] ) array([[ 0., -1., 0.], [ 1., 0., 0.], [-0., 0., 1.]]) """ cr = math.cos(theta[0]) sr = math.sin(theta[0]) cp = math.cos(theta[1]) sp = math.sin(theta[1]) cy = math.cos(theta[2]) sy = math.sin(theta[2]) out = np.array([cp * cy, sr * sp * cy - cr * sy, cr * sp * cy + sr * sy, cp * sy, sr * sp * sy + cr * cy, cr * sp * sy - sr * cy, -sp, sr * cp, cr * cp]) return out.reshape((3, 3)) def RBE2euler(Rbe): """ Convert rotation matrix to Euler angles """ out = np.zeros([3, 1]) out[0, 0] = math.atan2(Rbe[2, 1], Rbe[2, 2]) out[1, 0] = -math.asin(Rbe[2, 0]) out[2, 0] = math.atan2(Rbe[1, 0], Rbe[0, 0]) return out # %% Helper functions def pg_rotation2H(R): """ Convert rotation matrix to homogenous transform matrix """ X = np.array(np.eye(R.shape[0] + 1)) X[0:-1, 0:-1] = R return X def directionMean(vec): """ Calculate the mean of a set of directions The initial direction is determined using the oriented direction. Then a non-linear optimization is done. Args: vec: List of directions Returns Angle of mean of directions >>> vv=np.array( [[1,0],[1,0.1], [-1,.1]]) >>> a=directionMean(vv) """ vec = np.array(vec) def dist(a, vec): phi = np.arctan2(vec[:, 0], vec[:, 1]) x = a - phi x = np.mod(x + np.pi / 2, np.pi) - np.pi / 2 cost = np.linalg.norm(x) return cost Nfeval = 1 def callbackF(Xi): global Nfeval print(Xi) print(f'{Nfeval:4d} {Xi[0]: 3.6f}: distance {dist(Xi[0], vec)}') Nfeval += 1 m = vec.mean(axis=0) a0 = np.arctan2(m[0], m[1]) def cost_function(a): return dist(a, vec) r = scipy.optimize.minimize(cost_function, a0, callback=None, options=dict({'disp': False})) angle = r.x[0] return angle def circular_mean(weights, angles): """ Calculate circular mean of a set of 2D vectors """ x = y = 0. for angle, weight in zip(angles, weights): x += math.cos(math.radians(angle)) * weight y += math.sin(math.radians(angle)) * weight mean = math.degrees(math.atan2(y, x)) return mean def dir2R(d, a=None): """ Convert direction to rotation matrix Note: numerically not stable near singular points! Arguments: d (numpy array of size 3): direction to rotation to a a (numpy array of size 3): target direction Returns: R (3x3 numpy array): matrix R such that R*a = d Example: >>> d = np.array([0, 1, 0]); a = np.array([0, -1, 0]) >>> R = dir2R(d, a) <NAME> <<EMAIL>> """ # set target vector if a is None: a = np.array([0, 0, 1]) # normalize b = d.reshape((3, 1)) / np.linalg.norm(d) a = a.reshape((3, 1)) c = np.cross(a.flat, b.flat) if np.linalg.norm(c) < 1e-12 and a.T.dot(b) < .01: # deal with singular case if(np.linalg.norm(a[1:]) < 1e-4): R0 = np.array([[0, 1, 0], [-1, 0, 0], [0, 0, 1]]) else: R0 = np.array([[1, 0, 0], [0, 0, 1], [0, -1, 0]]) a = R0.dot(a) bt = (a + b) / np.linalg.norm(a + b) R = np.eye(3) - 2 * a.dot(a.T) - 2 * \ (bt.dot(bt.T)).dot(np.eye(3) - 2 * a.dot(a.T)) R = R.dot(R0) else: bt = (a + b) / np.linalg.norm(a + b) R = np.eye(3) - 2 * a.dot(a.T) - 2 * \ (bt.dot(bt.T)).dot(np.eye(3) - 2 * a.dot(a.T)) return R def frame2T(f): """ Convert frame into 4x4 transformation matrix """ T = np.array(np.eye(4)) T[0:3, 0:3] = euler2RBE(f[3:7]) T[0:3, 3] = f[0:3].reshape(3, 1) return T @static_var("b", np.array(np.zeros((2, 2)))) def rot2D(phi): """ Return 2x2 rotation matrix from angle Arguments --------- phi : float Angle in radians Returns ------- R : array The 2x2 rotation matrix Examples -------- >>> R = rot2D(np.pi) """ r = rot2D.b.copy() c = math.cos(phi) s = math.sin(phi) r.itemset(0, c) r.itemset(1, -s) r.itemset(2, s) r.itemset(3, c) return r def pg_rotx(phi): """ Rotate around the x-axis with angle """ c = math.cos(phi) s = math.sin(phi) R = np.zeros((3, 3)) R.flat = [1, 0, 0, 0, c, -s, 0, s, c] return R def pcolormesh_centre(x, y, im, *args, **kwargs): """ Wrapper for pcolormesh to plot pixel centres at data points """ dx = np.diff(x) dy = np.diff(y) dx = np.hstack((dx[0], dx, dx[-1])) dy = np.hstack((dy[0], dy, dy[-1])) xx = np.hstack((x, x[-1] + dx[-1])) - dx / 2 yy = np.hstack((y, y[-1] + dy[-1])) - dy / 2 plt.pcolormesh(xx, yy, im, *args, **kwargs) def imshowz(im, *args, **kwargs): """ Show image with interactive z-values """ plt.imshow(im, *args, **kwargs) sz = im.shape numrows, numcols = sz[0], sz[1] def format_coord(x, y): col = int(x + 0.5) row = int(y + 0.5) if col >= 0 and col < numcols and row >= 0 and row < numrows: z = im[row, col] try: if len(z) == 1: return 'x=%1.4f, y=%1.4f, z=%1.4f' % (x, y, z) else: return 'x=%1.4f, y=%1.4f, z=%s' % (x, y, str(z)) except BaseException: return 'x=%1.4f, y=%1.4f, z=%s' % (x, y, str(z)) else: return 'x=%1.4f, y=%1.4f' % (x, y) ax = plt.gca() ax.format_coord = format_coord def pg_scaling(scale, cc=None): """ Create scaling with specified centre Example ------- >>> pg_scaling( [1.,2]) array([[ 1., 0., 0.], [ 0., 2., 0.], [ 0., 0., 1.]]) """ scale = np.array(scale) scale = np.hstack((scale, 1)) H = np.diag(scale) if cc is not None: cc = np.array(cc).flatten() H = pg_transl2H(cc).dot(H).dot(pg_transl2H(-cc)) return H def pg_transl2H(tr): """ Convert translation to homogeneous transform matrix >>> pg_transl2H( [1,2]) array([[ 1., 0., 1.], [ 0., 1., 2.], [ 0., 0., 1.]]) """ sh = np.array(tr) H = np.eye(sh.size + 1) H[0:-1, -1] = sh.flatten() H = np.array(H) return H def setregion(im, subim, pos, mask=None, clip=False): """ Set region in Numpy image Arguments --------- im : Numpy array image to fill region in subim : Numpy array subimage pos: array position to place image mask (None or array): mask to use for the subimage clip (bool): if True clip the subimage where necessary to fit """ h = subim.shape[0] w = subim.shape[1] x1 = int(pos[0]) y1 = int(pos[1]) x2 = int(pos[0]) + w y2 = int(pos[1]) + h if clip: x1 = max(x1, 0) y1 = max(y1, 0) x2 = min(x2, im.shape[1]) y2 = min(y2, im.shape[0]) w = max(0, x2 - x1) h = max(0, y2 - y1) if mask is None: if len(im.shape) == len(subim.shape): im[y1:y2, x1:x2, ...] = subim[0:h, 0:w] else: im[y1:y2, x1:x2, ...] = subim[0:h, 0:w, np.newaxis] else: if len(im.shape) > len(mask.shape): im[y1:y2, x1:x2] = im[y1:y2, x1:x2] * \ (1 - mask[:, :, np.newaxis]) + (subim * mask[:, :, np.newaxis]) else: if len(im.shape) == len(subim.shape): im[y1:y2, x1:x2, ...] = im[y1:y2, x1:x2, ...] * \ (1 - mask[:, :]) + (subim * mask[:, :]) else: im[y1:y2, x1:x2, ...] = im[y1:y2, x1:x2, ...] * \ (1 - mask[:, :]) + (subim[:, :, np.newaxis] * mask[:, :]) return im def region2poly(rr): """ Convert a region (bounding box xxyy) to polygon """ if isinstance(rr, tuple) or isinstance(rr, list): # x,y,x2,y2 format rr = np.array(rr).reshape((2, 2)).transpose() poly = np.array([rr[:, 0:1], np.array([[rr[0, 1]], [rr[1, 0]]]), rr[ :, 1:2], np.array([[rr[0, 0]], [rr[1, 1]]]), rr[:, 0:1]]).reshape((5, 2)).T return poly poly = rr.flat[[0, 1, 1, 0, 0, 2, 2, 3, 3, 2]].reshape((2, 5)) return poly def plotLabels(xx, *args, **kwargs): """ Plot labels next to points Args: xx (2xN array): points to plot *kwargs: arguments past to plotting function Example: >>> xx=np.random.rand(2, 10) >>> fig=plt.figure(10); plt.clf() >>> _ = plotPoints(xx, '.b'); _ = plotLabels(xx) """ if len(np.array(xx).shape) == 1 and xx.shape[0] == 2: xx = xx.reshape((2, 1)) if xx.shape[0] > 2 and xx.shape[1] == 2: xx = xx.T if len(args) == 0: v = range(0, xx.shape[1]) lbl = ['%d' % i for i in v] else: lbl = args[0] if isinstance(lbl, int): lbl = [str(lbl)] elif isinstance(lbl, str): lbl = [str(lbl)] nn = xx.shape[1] ax = plt.gca() th = [None] * nn for ii in range(nn): lbltxt = str(lbl[ii]) th[ii] = ax.annotate(lbltxt, xx[:, ii], **kwargs) return th def plotPoints(xx, *args, **kwargs): """ Plot 2D or 3D points Args: xx (array): array of points to plot *args: arguments passed to the plot function of matplotlib **kwargs: arguments passed to the plot function of matplotlib Example: >>> plotPoints(np.random.rand(2,10), '.-b') """ if xx.shape[0] == 2: h = plt.plot(xx[0, :], xx[1, :], *args, **kwargs) elif xx.shape[0] == 3: h = plt.plot(xx[0, :], xx[1, :], xx[2, :], *args, **kwargs) if xx.shape[0] == 1: h = plt.plot(xx[0, :], *args, **kwargs) else: h = None return h def plot2Dline(line, *args, **kwargs): """ Plot a 2D line in a matplotlib figure Args: line (3x1 array): line to plot >>> plot2Dline([-1,1,0], 'b') """ if np.abs(line[1]) > .001: xx = plt.xlim() xx = np.array(xx) yy = (-line[2] - line[0] * xx) / line[1] plt.plot(xx, yy, *args, **kwargs) else: yy = np.array(plt.ylim()) xx = (-line[2] - line[1] * yy) / line[0] plt.plot(xx, yy, *args, **kwargs) # %% def scaleImage(image, display_min=None, display_max=None): """ Scale any image into uint8 range Args: image (numpy array): input image display_min (float): value to map to min output range display_max (float): value to map to max output range Returns: image (numpy array): the scaled image Example: >>> im=scaleImage(255*np.random.rand( 30,40), 40, 100) Code modified from: https://stackoverflow.com/questions/14464449/using-numpy-to-efficiently-convert-16-bit-image-data-to-8-bit-for-display-with?noredirect=1&lq=1 """ image = np.array(image, copy=True) if display_min is None: display_min =
np.percentile(image, .15)
numpy.percentile
# Copyright 2020 Q-CTRL Pty Ltd & Q-CTRL Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Driven control module. """ import csv import json from typing import ( Dict, Optional, ) import numpy as np from ..utils import ( Coordinate, FileFormat, FileType, check_arguments, create_repr_from_attributes, ) class DrivenControl: r""" A piecewise-constant driven control for a single qubit. Parameters ---------- durations : np.ndarray The durations :math:`\{\delta t_n\}` for each segment, in units of seconds. Every element must be positive. Represented as a 1D array of length :math:`N`, where :math:`N` is number of segments. rabi_rates : np.ndarray, optional The Rabi rates :math:`\{\Omega_n\}` for each segment, in units of radians per second. Every element must be non-negative. Represented as a 1D array of length :math:`N`, where :math:`N` is number of segments. You can omit this field if the Rabi rate is zero on all segments. azimuthal_angles : np.ndarray, optional The azimuthal angles :math:`\{\phi_n\}` for each segment. Represented as a 1D array of length :math:`N`, where :math:`N` is number of segments. You can omit this field if the azimuthal angle is zero on all segments. detunings : np.ndarray, optional The detunings :math:`\{\Delta_n\}` for each segment, in units of radians per second. Represented as a 1D array of length :math:`N`, where :math:`N` is number of segments. You can omit this field if the detuning is zero on all segments. name : string, optional An optional string to name the control. Defaults to ``None``. Notes ----- This class represents a control for a single driven qubit with Hamiltonian: .. math:: H(t) = \frac{1}{2}\left(\Omega(t) e^{i\phi(t)} \sigma_- + \Omega(t) e^{-i\phi(t)}\sigma_+\right) + \frac{1}{2}\Delta(t)\sigma_z, where :math:`\Omega(t)` is the Rabi rate, :math:`\phi(t)` is the azimuthal angle (or drive phase), :math:`\Delta(t)` is the detuning, :math:`\sigma_\pm = (\sigma_x \mp \sigma_y)/2`, and :math:`\sigma_k` are the Pauli matrices. The controls are piecewise-constant, meaning :math:`\Omega(t)=\Omega_n` for :math:`t_{n-1}\leq t<t_n`, where :math:`t_0=0` and :math:`t_n=t_{n-1}+\delta t_n` (and similarly for :math:`\phi(t)` and :math:`\Delta(t)`). For each segment of the control, the constant Hamiltonian effects unitary time evolution of the form: .. math:: U_n = \exp\left[-i\frac{\theta_n}{2} (\mathbf u_n\cdot\boldsymbol \sigma)\right], where :math:`\theta_n = \sqrt{\Omega_n^2+\Delta_n^2}\delta t_n`, :math:`\mathbf u_n` is the unit vector in the direction :math:`(\Omega_n\cos\phi_n, \Omega_n\sin\phi_n, \Delta_n)`, and :math:`\boldsymbol\sigma=(\sigma_x, \sigma_y, \sigma_z)`. This unitary time evolution corresponds to a rotation of the Bloch sphere of an angle :math:`\theta_n` about the axis :math:`\mathbf u_n`. """ def __init__( self, durations: np.ndarray, rabi_rates: Optional[np.ndarray] = None, azimuthal_angles: Optional[np.ndarray] = None, detunings: Optional[np.ndarray] = None, name: Optional[str] = None, ): self.name = name durations = np.asarray(durations, dtype=np.float) # check if all the durations are greater than zero check_arguments( all(durations > 0), "Duration of driven control segments must all be greater than zero.", {"durations": durations}, ) # check if all non-None inputs have the same length input_lengths = { np.array(v).size for v in [rabi_rates, azimuthal_angles, detunings, durations] if v is not None } check_arguments( len(input_lengths) == 1, "If set, rabi rates, azimuthal angles, detunings and durations " "must be of same length", { "rabi_rates": rabi_rates, "azimuthal_angles": azimuthal_angles, "detunings": detunings, "durations": durations, }, ) duration_count = len(durations) if rabi_rates is None: rabi_rates =
np.zeros(duration_count)
numpy.zeros
""" Interval unit commitment @author:<NAME> @e-mail:<EMAIL> """ from pypower import loadcase, ext2int, makeBdc from scipy.sparse import csr_matrix as sparse from numpy import zeros, c_, shape, ix_, ones, r_, arange, sum, concatenate, array, diag, eye from solvers.mixed_integer_solvers_cplex import mixed_integer_linear_programming as lp import pandas as pd def problem_formulation(case, BETA=0.15, BETA_HYDRO=0.05, BETA_LOAD=0.03): """ :param case: The test case for unit commitment problem :return: """ CAP_WIND = 1 # The capacity of wind farm # The disturbance range of wind farm # The disturbance range of wind farm CAPVALUE = 10 # The capacity value Price_energy = r_[ones(8), 3 * ones(8), ones(8)] from pypower.idx_brch import F_BUS, T_BUS, BR_X, TAP, SHIFT, BR_STATUS, RATE_A from pypower.idx_cost import MODEL, NCOST, PW_LINEAR, COST, POLYNOMIAL from pypower.idx_bus import BUS_TYPE, REF, VA, VM, PD, GS, VMAX, VMIN, BUS_I from pypower.idx_gen import GEN_BUS, VG, PG, QG, PMAX, PMIN, QMAX, QMIN mpc = ext2int.ext2int(case) baseMVA, bus, gen, branch, gencost = mpc["baseMVA"], mpc["bus"], mpc["gen"], mpc["branch"], mpc["gencost"] nb = shape(mpc['bus'])[0] ## number of buses nl = shape(mpc['branch'])[0] ## number of branches ng = shape(mpc['gen'])[0] ## number of dispatchable injections # Bbus = makeBdc.makeBdc(baseMVA, bus, branch) # Distribution_factor = Bbus[1] * inv(Bbus[0]) Distribution_factor = array([ [0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [-0.005, -0.005, -0.005, -1.005, -0.005, -0.005, -0.005, -0.005, -0.005, -0.005, -0.005, -0.005, -0.005, -0.005, ], [0.47, 0.47, 0.47, 0.47, -0.03, -0.03, -0.03, -0.03, -0.03, -0.03, -0.03, -0.03, -0.03, -0.03], [0.47, 0.47, 0.47, 0.47, -0.03, - 0.03, -0.03, -0.03, -0.03, -0.03, -0.03, -0.03, -0.03, -0.03], [0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0.32, 0.32, 0.32, 0.32, 0.32, 0.32, -0.68, -0.68, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32], [0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, -0.68, -0.68, 0.32, 0.32, 0.32, 0.32], [0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, -0.84, 0.16, 0.16, 0.16, 0.16], [-0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -1.16, -0.16, -1.16, -0.16], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0], [-0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -1.16, -0.16, -0.16], [-0.08, -0.08, -0.08, -0.08, -0.08, -0.08, -0.08, -0.08, -0.08, -0.08, -0.08, -0.08, -0.08, -1.08], ]) Distribution_factor = sparse(Distribution_factor) # Formulate connection matrix for wind farms i = [] PWMAX = [] PWMIN = [] for index in range(ng): if gen[index, PMIN] == 0: i.append(index) PWMAX.append(gen[index, PMAX]) PWMIN.append(gen[index, PMIN]) i = array(i) nw = i.shape[0] Cw = sparse((ones(nw), (gen[i, GEN_BUS], arange(nw))), shape=(nb, nw)) PWMAX = array(PWMAX).reshape((len(PWMAX), 1)) PWMIN = array(PWMIN).reshape((len(PWMIN), 1)) # Formulate the connection matrix for hydro power plants i = [] PHMAX = [] PHMIN = [] for index in range(ng): if gen[index, PMIN] > 0: i.append(index) PHMAX.append(gen[index, PMAX]) PHMIN.append(gen[index, PMIN]) i = array(i) nh = i.shape[0] Ch = sparse((ones(nh), (gen[i, GEN_BUS], arange(nh))), shape=(nb, nh)) PHMAX = array(PHMAX).reshape((len(PHMAX), 1)) PHMIN = array(PHMIN).reshape((len(PHMIN), 1)) # Formulate the external power systems i = [] PEXMAX = [] PEXMIN = [] for index in range(ng): if gen[index, PMIN] < 0: i.append(index) PEXMAX.append(gen[index, PMAX]) PEXMIN.append(gen[index, PMIN]) i = array(i) nex = i.shape[0] Cex = sparse((ones(nex), (gen[i, GEN_BUS], arange(nex))), shape=(nb, nex)) PEXMAX = array(PEXMAX).reshape((len(PEXMAX), 1)) PEXMIN = array(PEXMIN).reshape((len(PEXMIN), 1)) PLMAX = branch[:, RATE_A].reshape((nl, 1)) # The power flow limitation T = 24 ## Profiles # Wind profile WIND_PROFILE = array( [591.35, 714.50, 1074.49, 505.06, 692.78, 881.88, 858.48, 609.11, 559.95, 426.86, 394.54, 164.47, 27.15, 4.47, 54.08, 109.90, 111.50, 130.44, 111.59, 162.38, 188.16, 216.98, 102.94, 229.53]).reshape((T, 1)) WIND_PROFILE = WIND_PROFILE / WIND_PROFILE.max() WIND_PROFILE_FORECAST = zeros((T * nw, 1)) Delta_wind = zeros((T * nw, 1)) for i in range(T): WIND_PROFILE_FORECAST[i * nw:(i + 1) * nw, :] = WIND_PROFILE[i] * PWMAX Delta_wind[i * nw:(i + 1) * nw, :] = WIND_PROFILE[i] * PWMAX * BETA # Load profile LOAD_PROFILE = array([0.632596195634005, 0.598783973523217, 0.580981513054525, 0.574328051348912, 0.584214221241601, 0.631074282084712, 0.708620833751212, 0.797665730618795, 0.877125330124026, 0.926981579915087, 0.947428654208872, 0.921588439808779, 0.884707317888543, 0.877717046100358, 0.880387289807107, 0.892056129442049, 0.909233443653261, 0.926748403704075, 0.968646575067696, 0.999358974358974, 0.979169591816267, 0.913517534182463, 0.806453715775750, 0.699930632166617]).reshape((T, 1)) LOAD_FORECAST = zeros((T * nb, 1)) Delta_load = zeros((T * nb, 1)) load_base = bus[:, PD].reshape(nb, 1) for i in range(T): LOAD_FORECAST[i * nb:(i + 1) * nb, :] = load_base * LOAD_PROFILE[i] Delta_load[i * nb:(i + 1) * nb, :] = load_base * BETA_LOAD # Hydro information HYDRO_INJECT = array([6, 2, 4, 3]).reshape((nh, 1)) HYDRO_INJECT_FORECAST = zeros((T * nh, 1)) Delta_hydro = zeros((T * nh, 1)) for i in range(T): HYDRO_INJECT_FORECAST[i * nh:(i + 1) * nh, :] = HYDRO_INJECT Delta_hydro[i * nh:(i + 1) * nh, :] = HYDRO_INJECT * BETA_HYDRO MIN_DOWN = ones((nh, 1)) MIN_UP = ones((nh, 1)) QMIN = array([1.5, 1, 1, 1]).reshape((nh, 1)) QMAX = array([20, 10, 10, 10]).reshape((nh, 1)) VMIN = array([70, 50, 70, 40]).reshape((nh, 1)) VMAX = array([160, 140, 150, 130]).reshape((nh, 1)) V0 = array([110, 90, 100, 80]).reshape((nh, 1)) M_transfer = diag(array([8.8649, 6.4444, 6.778, 7.3333])) C_TEMP = array([30, 2, 9, 4]).reshape((4, 1)) Q_TEMP = array([1.5, 1, 1, 1]).reshape((4, 1)) # Define the first stage decision variables ON = 0 OFF = 1 IHG = 2 PHG = 3 RUHG = 4 RDHG = 5 QHG = 6 QUHG = 7 QDHG = 8 V = 9 S = 10 PWC = 11 PLC = 12 PEX = 13 CEX = 14 NX = PWC * nh * T + nw * T + nb * T + nex * T + 1 lb = zeros((NX, 1)) ub = zeros((NX, 1)) c = zeros((NX, 1)) vtypes = ["c"] * NX for i in range(T): for j in range(nh): # lower boundary information lb[ON * nh * T + i * nh + j] = 0 lb[OFF * nh * T + i * nh + j] = 0 lb[IHG * nh * T + i * nh + j] = 0 lb[PHG * nh * T + i * nh + j] = 0 lb[RUHG * nh * T + i * nh + j] = 0 lb[RDHG * nh * T + i * nh + j] = 0 lb[QHG * nh * T + i * nh + j] = 0 lb[QUHG * nh * T + i * nh + j] = 0 lb[QDHG * nh * T + i * nh + j] = 0 lb[V * nh * T + i * nh + j] = VMIN[j] lb[S * nh * T + i * nh + j] = 0 # upper boundary information ub[ON * nh * T + i * nh + j] = 1 ub[OFF * nh * T + i * nh + j] = 1 ub[IHG * nh * T + i * nh + j] = 1 ub[PHG * nh * T + i * nh + j] = PHMAX[j] ub[RUHG * nh * T + i * nh + j] = PHMAX[j] ub[RDHG * nh * T + i * nh + j] = PHMAX[j] ub[QHG * nh * T + i * nh + j] = QMAX[j] ub[QUHG * nh * T + i * nh + j] = QMAX[j] ub[QDHG * nh * T + i * nh + j] = QMAX[j] ub[V * nh * T + i * nh + j] = VMAX[j] ub[S * nh * T + i * nh + j] = 10 ** 8 # objective value c[S * nh * T + i * nh + j] = 1 c[RUHG * nh * T + i * nh + j] = -Price_energy[j] c[RDHG * nh * T + i * nh + j] = Price_energy[j] # variables types vtypes[ON * nh * T + i * nh + j] = "D" vtypes[OFF * nh * T + i * nh + j] = "D" vtypes[IHG * nh * T + i * nh + j] = "D" if i == T - 1: lb[V * nh * T + i * nh + j] = V0[j] ub[V * nh * T + i * nh + j] = V0[j] for j in range(nw): # lower boundary information lb[PWC * nh * T + i * nw + j] = 0 # upper boundary information ub[PWC * nh * T + i * nw + j] = WIND_PROFILE_FORECAST[i * nw + j] # objective value c[PWC * nh * T + i * nw + j] = 1 for j in range(nb): # lower boundary information lb[PWC * nh * T + nw * T + i * nb + j] = 0 # upper boundary information ub[PWC * nh * T + nw * T + i * nb + j] = bus[j, PD] * LOAD_PROFILE[i] # objective value c[PWC * nh * T + nw * T + i * nb + j] = 10 ** 8 for j in range(nex): # lower boundary information lb[PWC * nh * T + nw * T + nb * T + i * nex + j] = PEXMIN[j] # upper boundary information ub[PWC * nh * T + nw * T + nb * T + i * nex + j] = PEXMAX[j] # objective value c[PWC * nh * T + nw * T + nb * T + i * nex + j] = -Price_energy[i] # lower boundary information lb[PWC * nh * T + nw * T + nb * T + nex * T] = PEXMIN[0] # upper boundary information ub[PWC * nh * T + nw * T + nb * T + nex * T] = PEXMAX[0] # objective value # c[PWC * nh * T + nw * T + nb * T + nex * T] = -CAPVALUE # 2) Constraint set # 2.1) Power balance equation Aeq = zeros((T, NX)) beq = zeros((T, 1)) for i in range(T): # For the hydro units for j in range(nh): Aeq[i, PHG * nh * T + i * nh + j] = 1 # For the wind farms for j in range(nw): Aeq[i, PWC * nh * T + i * nw + j] = -1 # For the loads for j in range(nb): Aeq[i, PWC * nh * T + nw * T + i * nb + j] = 1 # For the power exchange for j in range(nex): Aeq[i, PWC * nh * T + nw * T + nb * T + i * nex + j] = -1 beq[i] = sum(load_base) * LOAD_PROFILE[i] - sum(WIND_PROFILE_FORECAST[i * nw:(i + 1) * nw]) # 2.2) Status transformation of each unit Aeq_temp = zeros((T * nh, NX)) beq_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): Aeq_temp[i * nh + j, ON * nh * T + i * nh + j] = -1 Aeq_temp[i * nh + j, OFF * nh * T + i * nh + j] = 1 Aeq_temp[i * nh + j, IHG * nh * T + i * nh + j] = 1 if i != 0: Aeq_temp[i * nh + j, IHG * nh * T + (i - 1) * nh + j] = -1 else: beq_temp[i * T + j] = 0 Aeq = concatenate((Aeq, Aeq_temp), axis=0) beq = concatenate((beq, beq_temp), axis=0) # 2.3) water status change Aeq_temp = zeros((T * nh, NX)) beq_temp = HYDRO_INJECT_FORECAST for i in range(T): for j in range(nh): Aeq_temp[i * nh + j, V * nh * T + i * nh + j] = 1 Aeq_temp[i * nh + j, S * nh * T + i * nh + j] = 1 Aeq_temp[i * nh + j, QHG * nh * T + i * nh + j] = 1 if i != 0: Aeq_temp[i * nh + j, V * nh * T + (i - 1) * nh + j] = -1 else: beq_temp[i * T + j] += V0[j] Aeq = concatenate((Aeq, Aeq_temp), axis=0) beq = concatenate((beq, beq_temp), axis=0) # 2.4) Power water transfering Aeq_temp = zeros((T * nh, NX)) beq_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): Aeq_temp[i * nh + j, PHG * nh * T + i * nh + j] = 1 Aeq_temp[i * nh + j, QHG * nh * T + i * nh + j] = -M_transfer[j, j] Aeq_temp[i * nh + j, IHG * nh * T + i * nh + j] = -C_TEMP[j] + M_transfer[j, j] * Q_TEMP[j] Aeq = concatenate((Aeq, Aeq_temp), axis=0) beq = concatenate((beq, beq_temp), axis=0) # 2.5) Power range limitation Aineq = zeros((T * nh, NX)) bineq = zeros((T * nh, 1)) for i in range(T): for j in range(nh): Aineq[i * nh + j, ON * nh * T + i * nh + j] = 1 Aineq[i * nh + j, OFF * nh * T + i * nh + j] = 1 bineq[i * nh + j] = 1 Aineq_temp = zeros((T * nh, NX)) bineq_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): Aineq_temp[i * nh + j, IHG * nh * T + i * nh + j] = PHMIN[j] Aineq_temp[i * nh + j, PHG * nh * T + i * nh + j] = -1 Aineq_temp[i * nh + j, RDHG * nh * T + i * nh + j] = 1 Aineq = concatenate((Aineq, Aineq_temp), axis=0) bineq = concatenate((bineq, bineq_temp), axis=0) Aineq_temp = zeros((T * nh, NX)) bineq_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): Aineq_temp[i * nh + j, IHG * nh * T + i * nh + j] = -PHMAX[j] Aineq_temp[i * nh + j, PHG * nh * T + i * nh + j] = 1 Aineq_temp[i * nh + j, RUHG * nh * T + i * nh + j] = 1 Aineq = concatenate((Aineq, Aineq_temp), axis=0) bineq = concatenate((bineq, bineq_temp), axis=0) # 2.6) Water reserve constraints Aineq_temp = zeros((T * nh, NX)) bineq_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): Aineq_temp[i * nh + j, PHG * nh * T + i * nh + j] = 1 Aineq_temp[i * nh + j, RUHG * nh * T + i * nh + j] = 1 Aineq_temp[i * nh + j, IHG * nh * T + i * nh + j] = -C_TEMP[j] + M_transfer[j, j] * Q_TEMP[j] Aineq_temp[i * nh + j, QHG * nh * T + i * nh + j] = -M_transfer[j, j] Aineq_temp[i * nh + j, QUHG * nh * T + i * nh + j] = -M_transfer[j, j] Aineq = concatenate((Aineq, Aineq_temp), axis=0) bineq = concatenate((bineq, bineq_temp), axis=0) Aineq_temp = zeros((T * nh, NX)) bineq_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): Aineq_temp[i * nh + j, PHG * nh * T + i * nh + j] = -1 Aineq_temp[i * nh + j, RDHG * nh * T + i * nh + j] = 1 Aineq_temp[i * nh + j, IHG * nh * T + i * nh + j] = C_TEMP[j] - M_transfer[j, j] * Q_TEMP[j] Aineq_temp[i * nh + j, QHG * nh * T + i * nh + j] = M_transfer[j, j] Aineq_temp[i * nh + j, QDHG * nh * T + i * nh + j] = -M_transfer[j, j] Aineq = concatenate((Aineq, Aineq_temp), axis=0) bineq = concatenate((bineq, bineq_temp), axis=0) # 2.7) water flow constraints Aineq_temp = zeros((T * nh, NX)) bineq_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): Aineq_temp[i * nh + j, IHG * nh * T + i * nh + j] = QMIN[j] Aineq_temp[i * nh + j, QHG * nh * T + i * nh + j] = -1 Aineq_temp[i * nh + j, QDHG * nh * T + i * nh + j] = 1 Aineq = concatenate((Aineq, Aineq_temp), axis=0) bineq = concatenate((bineq, bineq_temp), axis=0) Aineq_temp = zeros((T * nh, NX)) bineq_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): Aineq_temp[i * nh + j, IHG * nh * T + i * nh + j] = -QMAX[j] Aineq_temp[i * nh + j, QHG * nh * T + i * nh + j] = 1 Aineq_temp[i * nh + j, QUHG * nh * T + i * nh + j] = 1 Aineq = concatenate((Aineq, Aineq_temp), axis=0) bineq = concatenate((bineq, bineq_temp), axis=0) # 2.8) Water reserve limitation Aineq_temp = zeros((T * nh, NX)) bineq_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): Aineq_temp[i * nh + j, V * nh * T + i * nh + j] = 1 Aineq_temp[i * nh + j, QHG * nh * T + i * nh + j] = -1 Aineq_temp[i * nh + j, QDHG * nh * T + i * nh + j] = 1 Aineq_temp[i * nh + j, S * nh * T + i * nh + j] = -1 bineq_temp[i * nh + j] = VMAX[j] - HYDRO_INJECT_FORECAST[i * nh + j] Aineq = concatenate((Aineq, Aineq_temp), axis=0) bineq = concatenate((bineq, bineq_temp), axis=0) Aineq_temp = zeros((T * nh, NX)) bineq_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): Aineq_temp[i * nh + j, V * nh * T + i * nh + j] = -1 Aineq_temp[i * nh + j, QHG * nh * T + i * nh + j] = 1 Aineq_temp[i * nh + j, QUHG * nh * T + i * nh + j] = 1 Aineq_temp[i * nh + j, S * nh * T + i * nh + j] = 1 bineq_temp[i * nh + j] = -VMIN[j] + HYDRO_INJECT_FORECAST[i * nh + j] Aineq = concatenate((Aineq, Aineq_temp), axis=0) bineq = concatenate((bineq, bineq_temp), axis=0) # 2.9) Line flow limitation Aineq_temp = zeros((T * nl, NX)) bineq_temp = zeros((T * nl, 1)) for i in range(T): Aineq_temp[i * nl:(i + 1) * nl, PHG * nh * T + i * nh:PHG * nh * T + (i + 1) * nh] = -( Distribution_factor * Ch).todense() Aineq_temp[i * nl:(i + 1) * nl, PWC * nh * T + i * nw:PWC * nh * T + (i + 1) * nw] = ( Distribution_factor * Cw).todense() Aineq_temp[i * nl:(i + 1) * nl, PWC * nh * T + nw * T + i * nb:PWC * nh * T + nw * T + (i + 1) * nb] = -Distribution_factor.todense() Aineq_temp[i * nl:(i + 1) * nl, PWC * nh * T + nw * T + nb * T + i * nex:PWC * nh * T + nw * T + nb * T + (i + 1) * nex] = ( Distribution_factor * Cex).todense() bineq_temp[i * nl:(i + 1) * nl, :] = PLMAX - Distribution_factor * ( (bus[:, PD] * LOAD_PROFILE[i]).reshape(nb, 1) - Cw * WIND_PROFILE_FORECAST[i * nw:(i + 1) * nw]) Aineq = concatenate((Aineq, Aineq_temp), axis=0) bineq = concatenate((bineq, bineq_temp), axis=0) Aineq_temp = zeros((T * nl, NX)) bineq_temp = zeros((T * nl, 1)) for i in range(T): Aineq_temp[i * nl:(i + 1) * nl, PHG * nh * T + i * nh:PHG * nh * T + (i + 1) * nh] = ( Distribution_factor * Ch).todense() Aineq_temp[i * nl:(i + 1) * nl, PWC * nh * T + i * nw:PWC * nh * T + (i + 1) * nw] = -( Distribution_factor * Cw).todense() Aineq_temp[i * nl:(i + 1) * nl, PWC * nh * T + nw * T + i * nb:PWC * nh * T + nw * T + (i + 1) * nb] = Distribution_factor.todense() Aineq_temp[i * nl:(i + 1) * nl, PWC * nh * T + nw * T + nb * T + i * nex:PWC * nh * T + nw * T + nb * T + (i + 1) * nex] = -( Distribution_factor * Cex).todense() bineq_temp[i * nl:(i + 1) * nl, :] = PLMAX + Distribution_factor * ( (bus[:, PD] * LOAD_PROFILE[i]).reshape(nb, 1) - Cw * WIND_PROFILE_FORECAST[i * nw:(i + 1) * nw]) Aineq = concatenate((Aineq, Aineq_temp), axis=0) bineq = concatenate((bineq, bineq_temp), axis=0) # 2.10) Capacity limitation Aineq_temp = zeros((T, NX)) bineq_temp = zeros((T, 1)) for i in range(T): Aineq_temp[i, PWC * nh * T + nw * T + nb * T + nex * T] = 1 Aineq_temp[i, PWC * nh * T + nw * T + nb * T + i * nex] = -1 Aineq = concatenate((Aineq, Aineq_temp), axis=0) bineq = concatenate((bineq, bineq_temp), axis=0) # 2.11) Up and down reserve for the forecasting errors # Up reserve limitation Aineq_temp = zeros((T, NX)) bineq_temp = zeros((T, 1)) for i in range(T): for j in range(nh): Aineq_temp[i, RUHG * nh * T + i * nh + j] = -1 for j in range(nw): bineq_temp[i] -= Delta_wind[i * nw + j] for j in range(nb): bineq_temp[i] -= Delta_load[i * nb + j] Aineq = concatenate((Aineq, Aineq_temp), axis=0) bineq = concatenate((bineq, bineq_temp), axis=0) # Down reserve limitation Aineq_temp = zeros((T, NX)) bineq_temp = zeros((T, 1)) for i in range(T): for j in range(nh): Aineq_temp[i, RDHG * nh * T + i * nh + j] = -1 for j in range(nw): bineq_temp[i] -= Delta_wind[i * nw + j] for j in range(nb): bineq_temp[i] -= Delta_load[i * nb + j] Aineq = concatenate((Aineq, Aineq_temp), axis=0) bineq = concatenate((bineq, bineq_temp), axis=0) model_first_stage = {"c": c, "lb": lb, "ub": ub, "A": Aineq, "b": bineq, "Aeq": Aeq, "beq": beq, "vtypes": vtypes} ## Formualte the second stage decision making problem phg = 0 qhg = 1 v = 2 s = 3 pwc = 4 plc = 5 pex = 6 cex = 7 nx = pwc * nh * T + nw * T + nb * T + nex * T + 1 # Generate the lower and boundary for the first stage decision variables lb = zeros((nx, 1)) ub = zeros((nx, 1)) c = zeros((nx, 1)) vtypes = ["c"] * nx nu = nh * T + nw * T + nb * T u_mean = concatenate([HYDRO_INJECT_FORECAST, WIND_PROFILE_FORECAST, LOAD_FORECAST]) u_delta = concatenate([Delta_hydro, Delta_wind, Delta_load]) for i in range(T): for j in range(nh): # lower boundary information lb[phg * nh * T + i * nh + j] = 0 lb[qhg * nh * T + i * nh + j] = 0 lb[v * nh * T + i * nh + j] = VMIN[j] lb[s * nh * T + i * nh + j] = 0 # upper boundary information ub[phg * nh * T + i * nh + j] = PHMAX[j] ub[qhg * nh * T + i * nh + j] = QMAX[j] ub[v * nh * T + i * nh + j] = VMAX[j] ub[s * nh * T + i * nh + j] = 10 ** 8 # objective value c[s * nh * T + i * nh + j] = 1 if i == T - 1: lb[v * nh * T + i * nh + j] = V0[j] ub[v * nh * T + i * nh + j] = V0[j] for j in range(nw): # lower boundary information lb[pwc * nh * T + i * nw + j] = 0 # upper boundary information ub[pwc * nh * T + i * nw + j] = 10 ** 4 # objective value c[pwc * nh * T + i * nw + j] = 1 for j in range(nb): # lower boundary information lb[pwc * nh * T + nw * T + i * nb + j] = 0 # upper boundary information ub[pwc * nh * T + nw * T + i * nb + j] = 10 ** 4 # objective value c[pwc * nh * T + nw * T + i * nb + j] = 10 ** 6 for j in range(nex): # lower boundary information lb[pwc * nh * T + nw * T + nb * T + i * nex + j] = PEXMIN[j] # upper boundary information ub[pwc * nh * T + nw * T + nb * T + i * nex + j] = PEXMAX[j] # objective value # c[pwc * nh * T + nw * T + nb * T + i * nex + j] = -Price_energy[i] # lower boundary information lb[pwc * nh * T + nw * T + nb * T + nex * T] = PEXMIN[0] # upper boundary information ub[pwc * nh * T + nw * T + nb * T + nex * T] = PEXMAX[0] # objective value c[pwc * nh * T + nw * T + nb * T + nex * T] = -CAPVALUE # Generate correlate constraints # 3.1) Power balance constraints E = zeros((T, NX)) M = zeros((T, nu)) G = zeros((T, nx)) h = beq[0:T] for i in range(T): # For the hydro units for j in range(nh): G[i, phg * nh * T + i * nh + j] = 1 # For the wind farms for j in range(nw): G[i, pwc * nh * T + i * nw + j] = -1 # For the loads for j in range(nb): G[i, pwc * nh * T + nw * T + i * nb + j] = 1 # For the power exchange for j in range(nex): G[i, pwc * nh * T + nw * T + nb * T + i * nex + j] = -1 # Update G,M,E,h G = concatenate([G, -G]) M = concatenate([M, -M]) E = concatenate([E, -E]) h = concatenate([h, -h]) # 3.2) water status change E_temp = zeros((T * nh, NX)) M_temp = zeros((T * nh, nu)) G_temp = zeros((T * nh, nx)) h_temp = HYDRO_INJECT_FORECAST for i in range(T): for j in range(nh): G_temp[i * nh + j, v * nh * T + i * nh + j] = 1 G_temp[i * nh + j, s * nh * T + i * nh + j] = 1 G_temp[i * nh + j, qhg * nh * T + i * nh + j] = 1 if i != 0: G_temp[i * nh + j, v * nh * T + (i - 1) * nh + j] = -1 else: h_temp[i * T + j] = V0[j] # M_temp[i * nh + j, i * nh + j] = -1 G = concatenate([G, G_temp, -G_temp]) M = concatenate([M, M_temp, -M_temp]) E = concatenate([E, E_temp, -E_temp]) h = concatenate([h, h_temp, -h_temp]) # 3.3) Power water transfering E_temp = zeros((T * nh, NX)) M_temp = zeros((T * nh, nu)) G_temp = zeros((T * nh, nx)) h_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): G_temp[i * nh + j, phg * nh * T + i * nh + j] = 1 G_temp[i * nh + j, qhg * nh * T + i * nh + j] = -M_transfer[j, j] E_temp[i * nh + j, IHG * nh * T + i * nh + j] = -C_TEMP[j] + M_transfer[j, j] * Q_TEMP[j] G = concatenate([G, G_temp, -G_temp]) M = concatenate([M, M_temp, -M_temp]) E = concatenate([E, E_temp, -E_temp]) h = concatenate([h, h_temp, -h_temp]) # 3.4) Power range limitation # Some problem found E_temp = zeros((T * nh, NX)) M_temp = zeros((T * nh, nu)) G_temp = zeros((T * nh, nx)) h_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): G_temp[i * nh + j, phg * nh * T + i * nh + j] = 1 E_temp[i * nh + j, PHG * nh * T + i * nh + j] = -1 E_temp[i * nh + j, RDHG * nh * T + i * nh + j] = 1 G = concatenate([G, G_temp]) M = concatenate([M, M_temp]) E = concatenate([E, E_temp]) h = concatenate([h, h_temp]) E_temp = zeros((T * nh, NX)) M_temp = zeros((T * nh, nu)) G_temp = zeros((T * nh, nx)) h_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): G_temp[i * nh + j, phg * nh * T + i * nh + j] = -1 E_temp[i * nh + j, PHG * nh * T + i * nh + j] = 1 E_temp[i * nh + j, RUHG * nh * T + i * nh + j] = 1 G = concatenate([G, G_temp]) M = concatenate([M, M_temp]) E = concatenate([E, E_temp]) h = concatenate([h, h_temp]) # 3.5) Water flow constraints E_temp = zeros((T * nh, NX)) M_temp =
zeros((T * nh, nu))
numpy.zeros
#!/usr/bin/env python # coding: utf-8 # # <center>Lab 1</center> # ## <center> Optical Digit Recognition </center> # ![title](./digits-classification.jpg) # ### Description: # The scope of this exercise is the implementation of __an optical digit recognition system__. Our dataset comes from __US Postal Service__, written by hand (scanned from postal envelopes), and contains digits from 0 to 9 separated in train and test set. # ### Data: # We are given two text files (train.txt and text.txt). Each line corresponds to a sample-digit and each collumn corresponds to a features of the digit. For example, the value (i, j) is the j-th feature of the i-th digit. Every digit is described from 257 values. The first value is the class (if it is 0, 1 etc) and the rest 256 values are the pixels that describe it in grayscale. # ### Implementation: # First, we import all the necessary libraries and suppress some unnecessary warnings. # In[1]: # various import numpy as np from matplotlib import pyplot as plt import random import scipy.stats # sklearn from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.model_selection import KFold, learning_curve, ShuffleSplit, cross_val_score, train_test_split from sklearn.svm import SVC from sklearn.metrics.pairwise import euclidean_distances from sklearn.decomposition import PCA from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier, VotingClassifier, BaggingClassifier # pytorch from torch.utils.data import Dataset, DataLoader import torch from torch import nn from torch import optim # In[2]: import warnings warnings.simplefilter(action='ignore', category=FutureWarning) # #### The first 13 steps were implemented as a part of the PrepareLab located in prepare_lab folder. # __Step 1:__ Read input data from given text files. # In[3]: # Define useful variables data_path = "./pr_lab1_2016-17_data_0/pr_lab1_2016-17_data" train_size = 7291 test_size = 2007 n_features = 256 # Initialize X_train, X_test, y_train, y_test X_train = np.zeros((train_size, n_features), dtype=np.float64) X_test = np.zeros((test_size, n_features), dtype=np.float64) y_train = np.zeros(train_size, dtype='int64') y_test = np.zeros(test_size, dtype='int64') # Read train data with open(data_path + "/train.txt") as f: for i, line in enumerate(f): # Split i-th line line = line.split() # Keep the first collumn as the class of the i-th digit y_train[i] = int(float(line[0])) # Keep the rest 256 values as the pixels of the i-th digit. for j, pixel in enumerate(line[1:]): X_train[i][j] = pixel print("Finished reading training data.") # Read test data with open(data_path + "/test.txt") as f: for i, line in enumerate(f): # Split i-th line line = line.split() # Keep the first collumn as the class of the i-th digit y_test[i] = int(float(line[0])) # Keep the rest 256 values as the pixels of the i-th digit. for j, pixel in enumerate(line[1:]): X_test[i][j] = pixel print("Finished reading test data.") # __Step 2:__ Display a certain sample (index 131) as an 16x16 image. # In[4]: # Reshape the 256 vector in a 16x16 matrix. img_131 = np.reshape(X_train[131], (16, 16)) # Turn the axis off and display the image. plt.axis('off') plt.imshow(img_131) # __Step 3:__ Display one random image from each digit. # In[5]: # Define a figure with 10 plots. fig = plt.figure(figsize=(15,6)) columns = 5 rows = 2 for digit in range(10): # Pick all images of current digit curr_data = [] for j, y in enumerate(y_train): if y == digit: curr_data.append(X_train[j]) # Select randomly an image sample = random.choice(curr_data) # Display the randomly selected image in a subplot fig.add_subplot(rows, columns, digit+1) plt.axis('off') plt.imshow(np.reshape(sample, (16, 16))) plt.show() # __Step 4:__ Compute the mean value of pixel (10,10) of all 0's in the train set. # In[6]: # Get indexes of 0's in the train set idx_0 = [i for i in range(train_size) if y_train[i] == 0] # Get pixel (10,10) of all 0's X_train_0_10 = np.take(X_train[:, 10*16+10], idx_0) # Compute mean mean_0_10 = np.mean(X_train_0_10) print("Mean value of pixel (10, 10) of all 0's in the train set is: " + str(mean_0_10)) # __Step 5:__ Compute variance of (10,10) pixel of all 0's in the train set # In[7]: var_0_10 = np.var(X_train_0_10) print("Variance of pixel (10, 10) of all 0's in the train set is: " + str(var_0_10)) # __Step 6:__ Compute mean value and variance of every pixel of 0's in the train set # In[8]: # Get pixels of all 0's X_train_0 = np.take(X_train, idx_0, axis=0) # Compute mean value along each pixel mean_0 = np.mean(X_train_0, axis=0, keepdims=True) # Compute variance along each pixel var_0 = np.var(X_train_0, axis=0, keepdims=True) # Verify their shape print("Shape of mean values: " + str(mean_0.shape)) print("Shape of variances: " + str(var_0.shape)) # __Step 7:__ Display digit '0' using the mean value of each pixel. # In[9]: plt.axis("off") plt.imshow(np.reshape(mean_0, (16, 16))) # __Step 8:__ Display '0' using the variance of each pixel. # In[10]: plt.axis("off") plt.imshow(np.reshape(var_0, (16, 16))) # We observe that the digit in the mean-image contains less noise than in the variance-image. However, in both images the digit can be distinguished. # __Step 9:__ # # __(a)__ Compute the mean value and the variance for all digits (0-9). # In[11]: mean = np.zeros((10, 256)) var = np.zeros((10, 256)) for digit in range(10): idx_i = [i for i in range(train_size) if y_train[i] == digit] X_train_i = np.take(X_train, idx_i, axis=0) mean[digit, :] = np.mean(X_train_i, axis=0, keepdims=True) var[digit, :] = np.var(X_train_i, axis=0, keepdims=True) # __(b)__ Display all digits using their computed mean value. # In[12]: fig = plt.figure(figsize=(15,6)) columns = 5 rows = 2 for digit in range(10): fig.add_subplot(rows, columns, digit+1) plt.axis('off') plt.imshow(np.reshape(mean[digit, :], (16, 16))) plt.show() # __Step 10:__ Classify X_test[101], using Euclidean distance. # In[13]: # Define a function that classifies a sample based on the # euclidean distance. def predict_eucl(x): pred = 0 dist = np.linalg.norm(x - mean[0, :]) for i in range(1, 10): if np.linalg.norm(x - mean[i, :]) < dist: dist = np.linalg.norm(x - mean[i, :]) pred = i return pred print("Prediction: " + str(predict_eucl(X_test[101]))) print("Ground truth: " + str(y_test[101])) # In[14]: plt.axis('off') plt.imshow(np.reshape(X_test[101], (16, 16))) # We observe that the classification is wrong, since X_test[101] is the digit 6. # __Step 11:__ # # __(a)__ Classify test set using Euclidean distance # In[15]: # Compute predictions for each test sample y_pred = np.zeros(test_size) for i, x in enumerate(X_test): y_pred[i] = predict_eucl(x) # __(b)__ Compute accuracy # In[16]: # Count number of correct predictions and output the total accuracy. corr = 0 for i in range(len(y_test)): if y_test[i] == y_pred[i]: corr += 1 acc = corr / len(y_test) * 100 print("Accuracy of Euclidean classifier in test set: " + str(acc)) # __Step 12:__ Create a scikit-learn euclidean estimator # In[17]: class EuclideanClassifier(BaseEstimator, ClassifierMixin): """Classify samples based on the distance from the mean feature value""" def __init__(self): self.X_mean_ = None self.classes_ = None def fit(self, X, y): """ This should fit classifier. All the "work" should be done here. Calculates self.X_mean_ based on the mean feature values in X for each class. self.X_mean_ becomes a numpy.ndarray of shape (n_classes, n_features) fit always returns self. """ # Compute classes self.classes_ = np.unique(y) train_size, n_features = X.shape n_classes = len(self.classes_) self.X_mean_ = np.zeros((n_classes, n_features)) for k in range(n_classes): idx_i = [i for i in range(train_size) if y[i] == k] X_k = np.take(X, idx_i, axis=0) self.X_mean_[k, :] = np.mean(X_k, axis=0, keepdims=True) return self def predict(self, X): """ Make predictions for X based on the euclidean distance from self.X_mean_ """ closest = np.argmin(euclidean_distances(X, self.X_mean_), axis=1) return closest def score(self, X, y): """ Return accuracy score on the predictions for X based on ground truth y """ corr = 0 y_pred = self.predict(X) corr = sum(int(y[i] == y_pred[i]) for i in range(len(y))) acc = corr / len(y) return acc # __Step 13:__ # # __(a)__ Score above euclidean classifier using 5-fold cross-validation # In[18]: # Define a custom scorer def my_scorer(clf, X, y_true): return clf.score(X, y_true) # Create the classifier clf = EuclideanClassifier() scores = cross_val_score(clf, X_train, y_train, cv=KFold(n_splits=5, random_state=42), scoring=my_scorer) print("Euclidean Classifier score from 5-fold cross-validation = %f +-%f" % (np.mean(scores), np.std(scores))) # __(b)__ Plot the decision surface of the euclidean classifier # In[19]: # Define a function that plots the decision surface of 2-dimensional data def plot_clf(clf, X, y, labels): fig, ax = plt.subplots() # title for the plots title = ('Decision surface of Classifier') # Set-up grid for plotting. X0, X1 = X[:, 0], X[:, 1] x_min, x_max = X0.min() - 1, X0.max() + 1 y_min, y_max = X1.min() - 1, X1.max() + 1 xx, yy = np.meshgrid(
np.arange(x_min, x_max, .05)
numpy.arange
import numpy as np from baselines.deepq.experiments.atari.knn_cuda_fixmem import knn as knn_cuda_fixmem import copy import logging # each action -> a lru_knn buffer # alpha is for updating the internal reward i.e. count based reward class LRU_KNN_GPU_PS(object): def __init__(self, capacity, z_dim, env_name, action, num_actions=6, knn=4, debug=True, gamma=0.99, alpha=0.1, beta=0.01): self.action = action self.alpha = alpha self.beta = beta self.env_name = env_name self.capacity = capacity self.num_actions = num_actions self.rmax = 100000 self.states = np.empty((capacity, z_dim), dtype=np.float32) # self.hash_table = np.empty((capacity, z_dim), dtype=np.float32) # self.hashes = {} self.knn_mean_dist = np.full((capacity,), 0) self.external_value =
np.full((capacity, num_actions), np.nan)
numpy.full
import pandas as pd import time import random import numpy as np from datetime import timedelta from datetime import datetime import MAUC import argparse parser = argparse.ArgumentParser(usage='python3 evalOneSubmission.py', description=r''' TADPOLE Evaluation Script: The program computes the following matrics: Clinical diagnosis prediction: 1. Multiclass area under the receiver operating curve (mAUC) 2. Balanced classification accuracy (BCA) Continuous feature predictions: 3. Mean Absolute Error (MAE) 4. Coverage Probability Accuracy (CPA) 5. Weighted Error Score (WES) Author: <NAME>, <EMAIL> ''') def calcBCA(estimLabels, trueLabels, nrClasses): # Balanced Classification Accuracy bcaAll = [] for c0 in range(nrClasses): for c1 in range(c0+1,nrClasses): # c0 = positive class & c1 = negative class TP = np.sum((estimLabels == c0) & (trueLabels == c0)) TN = np.sum((estimLabels == c1) & (trueLabels == c1)) FP = np.sum((estimLabels == c1) & (trueLabels == c0)) FN = np.sum((estimLabels == c0) & (trueLabels == c1)) # sometimes the sensitivity of specificity can be NaN, if the user doesn't forecast one of the classes. # In this case we assume a default value for sensitivity/specificity if (TP+FN) == 0: sensitivity = 0.5 else: sensitivity = TP/(TP+FN) if (TN+FP) == 0: specificity = 0.5 else: specificity = TN/(TN+FP) bcaCurr = 0.5*(sensitivity+specificity) bcaAll += [bcaCurr] # print('bcaCurr %f TP %f TN %f FP %f FN %f' % (bcaCurr, TP, TN, FP, FN)) return np.mean(bcaAll) def parseData(d4Df, forecastDf, diagLabels): trueDiag = d4Df['Diagnosis'] trueADAS = d4Df['ADAS13'] trueVents = d4Df['Ventricles'] nrSubj = d4Df.shape[0] zipTrueLabelAndProbs = [] hardEstimClass = -1 * np.ones(nrSubj, int) adasEstim = -1 * np.ones(nrSubj, float) adasEstimLo = -1 * np.ones(nrSubj, float) # lower margin adasEstimUp = -1 * np.ones(nrSubj, float) # upper margin ventriclesEstim = -1 * np.ones(nrSubj, float) ventriclesEstimLo = -1 * np.ones(nrSubj, float) # lower margin ventriclesEstimUp = -1 * np.ones(nrSubj, float) # upper margin # print('subDf.keys()', forecastDf['Forecast Date']) invalidResultReturn = (None,None,None,None,None,None,None,None,None,None,None) invalidFlag = False # for each subject in D4 match the closest user forecasts for s in range(nrSubj): currSubjMask = d4Df['RID'].iloc[s] == forecastDf['RID'] currSubjData = forecastDf[currSubjMask] # if subject is missing if currSubjData.shape[0] == 0: print('WARNING: Subject RID %s missing from user forecasts' % d4Df['RID'].iloc[s]) invalidFlag = True continue # if not all forecast months are present if currSubjData.shape[0] < 5*12: # check if at least 5 years worth of forecasts exist print('WARNING: Missing forecast months for subject with RID %s' % d4Df['RID'].iloc[s]) invalidFlag = True continue currSubjData = currSubjData.reset_index(drop=True) timeDiffsScanCog = [d4Df['CognitiveAssessmentDate'].iloc[s] - d for d in currSubjData['Forecast Date']] # print('Forecast Date 2',currSubjData['Forecast Date']) indexMin = np.argsort(np.abs(timeDiffsScanCog))[0] # print('timeDiffsScanMri', indexMin, timeDiffsScanMri) pCN = currSubjData['CN relative probability'].iloc[indexMin] pMCI = currSubjData['MCI relative probability'].iloc[indexMin] pAD = currSubjData['AD relative probability'].iloc[indexMin] # normalise the relative probabilities by their sum pSum = (pCN + pMCI + pAD)/3 pCN /= pSum pMCI /= pSum pAD /= pSum hardEstimClass[s] = np.argmax([pCN, pMCI, pAD]) adasEstim[s] = currSubjData['ADAS13'].iloc[indexMin] adasEstimLo[s] = currSubjData['ADAS13 50% CI lower'].iloc[indexMin] adasEstimUp[s] = currSubjData['ADAS13 50% CI upper'].iloc[indexMin] # for the mri scan find the forecast closest to the scan date, # which might be different from the cognitive assessment date timeDiffsScanMri = [d4Df['ScanDate'].iloc[s] - d for d in currSubjData['Forecast Date']] indexMinMri = np.argsort(np.abs(timeDiffsScanMri))[0] ventriclesEstim[s] = currSubjData['Ventricles_ICV'].iloc[indexMinMri] ventriclesEstimLo[s] = currSubjData['Ventricles_ICV 50% CI lower'].iloc[indexMinMri] ventriclesEstimUp[s] = currSubjData['Ventricles_ICV 50% CI upper'].iloc[indexMinMri] # print('%d probs' % d4Df['RID'].iloc[s], pCN, pMCI, pAD) if not np.isnan(trueDiag.iloc[s]): zipTrueLabelAndProbs += [(trueDiag.iloc[s], [pCN, pMCI, pAD])] if invalidFlag: # if at least one subject was missing or if raise ValueError('Submission was incomplete. Please resubmit') # If there are NaNs in D4, filter out them along with the corresponding user forecasts # This can happen if rollover subjects don't come for visit in ADNI3. notNanMaskDiag = np.logical_not(np.isnan(trueDiag)) trueDiagFilt = trueDiag[notNanMaskDiag] hardEstimClassFilt = hardEstimClass[notNanMaskDiag] notNanMaskADAS = np.logical_not(np.isnan(trueADAS)) trueADASFilt = trueADAS[notNanMaskADAS] adasEstim = adasEstim[notNanMaskADAS] adasEstimLo = adasEstimLo[notNanMaskADAS] adasEstimUp = adasEstimUp[notNanMaskADAS] notNanMaskVents = np.logical_not(np.isnan(trueVents)) trueVentsFilt = trueVents[notNanMaskVents] ventriclesEstim = ventriclesEstim[notNanMaskVents] ventriclesEstimLo = ventriclesEstimLo[notNanMaskVents] ventriclesEstimUp = ventriclesEstimUp[notNanMaskVents] assert trueDiagFilt.shape[0] == hardEstimClassFilt.shape[0] assert trueADASFilt.shape[0] == adasEstim.shape[0] == adasEstimLo.shape[0] == adasEstimUp.shape[0] assert trueVentsFilt.shape[0] == ventriclesEstim.shape[0] == \ ventriclesEstimLo.shape[0] == ventriclesEstimUp.shape[0] return zipTrueLabelAndProbs, hardEstimClassFilt, adasEstim, adasEstimLo, adasEstimUp, \ ventriclesEstim, ventriclesEstimLo, ventriclesEstimUp, trueDiagFilt, trueADASFilt, trueVentsFilt def evalOneSub(d4Df, forecastDf): """ Evaluates one submission. Parameters ---------- d4Df - Pandas data frame containing the D4 dataset subDf - Pandas data frame containing user forecasts for D2 subjects. Returns ------- mAUC - multiclass Area Under Curve bca - balanced classification accuracy adasMAE - ADAS13 Mean Aboslute Error ventsMAE - Ventricles Mean Aboslute Error adasCovProb - ADAS13 Coverage Probability for 50% confidence interval ventsCovProb - Ventricles Coverage Probability for 50% confidence interval """ forecastDf['Forecast Date'] = [datetime.strptime(x, '%Y-%m') for x in forecastDf['Forecast Date']] # considers every month estimate to be the actual first day 2017-01 if isinstance(d4Df['Diagnosis'].iloc[0], str): d4Df['CognitiveAssessmentDate'] = [datetime.strptime(x, '%Y-%m-%d') for x in d4Df['CognitiveAssessmentDate']] d4Df['ScanDate'] = [datetime.strptime(x, '%Y-%m-%d') for x in d4Df['ScanDate']] mapping = {'CN' : 0, 'MCI' : 1, 'AD' : 2} d4Df.replace({'Diagnosis':mapping}, inplace=True) diagLabels = ['CN', 'MCI', 'AD'] zipTrueLabelAndProbs, hardEstimClass, adasEstim, adasEstimLo, adasEstimUp, \ ventriclesEstim, ventriclesEstimLo, ventriclesEstimUp, trueDiagFilt, trueADASFilt, trueVentsFilt = \ parseData(d4Df, forecastDf, diagLabels) zipTrueLabelAndProbs = list(zipTrueLabelAndProbs) ########## compute metrics for the clinical status ############# ##### Multiclass AUC (mAUC) ##### nrClasses = len(diagLabels) mAUC = MAUC.MAUC(zipTrueLabelAndProbs, num_classes=nrClasses) ### Balanced Classification Accuracy (BCA) ### # print('hardEstimClass', np.unique(hardEstimClass), hardEstimClass) trueDiagFilt = trueDiagFilt.astype(int) # print('trueDiagFilt', np.unique(trueDiagFilt), trueDiagFilt) bca = calcBCA(hardEstimClass, trueDiagFilt, nrClasses=nrClasses) ####### compute metrics for Ventricles and ADAS13 ########## #### Mean Absolute Error (MAE) ##### adasMAE = np.mean(np.abs(adasEstim - trueADASFilt)) ventsMAE = np.mean(np.abs(ventriclesEstim - trueVentsFilt)) ##### Weighted Error Score (WES) #### adasCoeffs = 1/(adasEstimUp - adasEstimLo) adasWES = np.sum(adasCoeffs * np.abs(adasEstim - trueADASFilt))/np.sum(adasCoeffs) ventsCoeffs = 1/(ventriclesEstimUp - ventriclesEstimLo) ventsWES = np.sum(ventsCoeffs * np.abs(ventriclesEstim - trueVentsFilt))/
np.sum(ventsCoeffs)
numpy.sum
import numpy as np from keras.models import Model from keras.models import load_model, model_from_json from os.path import join import config.settings as cnst import plots.plots as plots from predict.predict import predict_byte, predict_byte_by_section from predict.predict_args import DefaultPredictArguments, Predict as pObj from .ati_args import SectionActivationDistribution import pandas as pd from analyzers.collect_exe_files import get_partition_data, store_partition_data import gc import logging import pefile def find_qualified_sections(sd, trend, common_trend, support, fold_index): """ Function for training Tier-1 model with whole byte sequence data Args: sd: object to hold activation distribution of PE sections trend: plain activation trend found by core ATI process common_trend: not used here support: not used here fold_index: current fold index of cross validation Returns: q_sections_by_q_criteria: a dict with q_criterion found for each percentile supplied and their respective list of sections qualified. """ btrend = trend.loc["BENIGN_ACTIVATION_MAGNITUDE"] mtrend = trend.loc["MALWARE_ACTIVATION_MAGNITUDE"] # Averaging based on respective benign and malware population btrend = btrend / sd.b1_b_truth_count mtrend = mtrend / sd.b1_m_truth_count btrend[btrend == 0] = 1 mtrend[mtrend == 0] = 1 malfluence = mtrend / btrend benfluence = btrend / mtrend mal_q_criteria_by_percentiles =
np.percentile(malfluence, q=cnst.PERCENTILES)
numpy.percentile
""" Copyright 2020 Johns Hopkins University (Author: <NAME>) Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """ import logging import math import multiprocessing import yaml from copy import deepcopy import numpy as np from ..hyp_defs import float_cpu from ..io import RandomAccessAudioReader as AR class SingleNoiseAugment(object): """Class to augment speech with additive noise of a single type, e.g., music, babble, ... Attributes: noise_type: string label indicating the noise type. noise_path: path to Kaldi style wav.scp file indicating the path to the noise wav files. min_snr: mininimum SNR(dB) to sample from. max_snr: maximum SNR(dB) to sample from. rng: Random number generator returned by np.random.RandomState (optional). """ def __init__( self, noise_type, noise_path, min_snr, max_snr, random_seed=112358, rng=None ): logging.info( "init noise_augment with noise={} noise_path={} snr={}-{}".format( noise_type, noise_path, min_snr, max_snr ) ) self.noise_type = noise_type self.r = AR(noise_path) self.noise_keys = self.r.keys self.min_snr = min_snr self.max_snr = max_snr self.cache = None self.lock = multiprocessing.Lock() if rng is None: self.rng = np.random.RandomState(seed=random_seed) else: self.rng = deepcopy(rng) logging.info("init noise_augment with noise={} done".format(noise_type)) @staticmethod def _power(x): """Computes power of x in dB.""" return 10 * np.log10((x ** 2).sum()) @staticmethod def snr(x, n): """Computes SNR in dB. Args: x: clean speech signal. n: noise signal. """ return SingleNoiseAugment._power(x) - SingleNoiseAugment._power(n) @staticmethod def _compute_noise_scale(x, n, target_snr): snr = SingleNoiseAugment.snr(x, n) return 10 ** ((snr - target_snr) / 20) def forward(self, x): """Adds noise to signal, SNR is chosen randomly. Args: x: clean speech signal. Returns: Noisy signal. Dictionary containing information of noise type and SNR(dB). """ num_samples = x.shape[0] with self.lock: if self.cache is not None: if self.cache.shape[0] > num_samples: noise = self.cache[:num_samples] self.cache = self.cache[num_samples:] else: noise = self.cache self.cache = None else: noise = None while noise is None or noise.shape[0] < num_samples: with self.lock: noise_idx = self.rng.randint(len(self.noise_keys)) key = self.noise_keys[noise_idx] noise_k, fs_k = self.r.read([key]) noise_k = noise_k[0] if noise is None: need_samples = min(x.shape[0], noise_k.shape[0]) noise = noise_k[:need_samples] else: need_samples = min(x.shape[0] - noise.shape[0], noise_k.shape[0]) noise = np.concatenate((noise, noise_k[:need_samples])) if need_samples < noise_k.shape[0]: with self.lock: self.cache = noise_k[need_samples:] with self.lock: target_snr = self.rng.uniform(self.min_snr, self.max_snr) scale = self._compute_noise_scale(x, noise, target_snr) info = {"noise_type": self.noise_type, "snr": target_snr} return x + scale * noise, info def __call__(self, x): return self.forward(x) class NoiseAugment(object): """Class to augment speech with additive noise from multiple types, e.g., music, babble, ... It will randomly choose which noise type to add. Attributes: noise_prob: probability of adding noise. noise_types: dictionary of options with one entry per noise-type, Each entry is also a dictiory with the following entries: weight, max_snr, min_snr, noise_path. The weight parameter is proportional to how often we want to sample a given noise type. rng: Random number generator returned by np.random.RandomState (optional). """ def __init__(self, noise_prob, noise_types, random_seed=112358, rng=None): logging.info("init noise augment") self.noise_prob = noise_prob assert isinstance(noise_types, dict) # num_noise_types = len(noise_types) augmenters = [] self.weights = np.zeros((len(noise_types),)) count = 0 for key, opts in noise_types.items(): self.weights[count] = opts["weight"] aug = SingleNoiseAugment( key, opts["noise_path"], opts["min_snr"], opts["max_snr"], random_seed=random_seed, rng=rng, ) augmenters.append(aug) count += 1 self.weights /=
np.sum(self.weights)
numpy.sum
import contextlib import os import time from collections import defaultdict from shapely.geometry import Polygon from shapely.strtree import STRtree import lovely_logger as logging import numpy as np import pandas as pd import requests import streamlit as st from pandas import read_csv from scipy import stats from shapely.geometry import LineString, Point # name # trajectory # geometry examples = { # , free choice of destination "Bidirectional corridor (exp)": [ "Multi-Rooms", "https://fz-juelich.sciebo.de/s/o4D8Va2MtbSeG2v/download", "https://fz-juelich.sciebo.de/s/FNuSYwOre85km3U/download", ], "Bottleneck BUW (exp)": [ "030_c_56_h0", "https://fz-juelich.sciebo.de/s/AsrA465S3wNDNlo/download", "https://fz-juelich.sciebo.de/s/rVdksQ7yUngiUmw/download", ], "Bottleneck WDG (exp)": [ "WDG_09", "https://fz-juelich.sciebo.de/s/oTG7vRCcQyYJ08q/download", "https://fz-juelich.sciebo.de/s/lDuCQlJkwh9Of1C/download", ], "Corner (exp)": [ "jps_eo-300-300-300_combined_MB", "https://fz-juelich.sciebo.de/s/BfNxMk1qM64QqYj/download", "https://fz-juelich.sciebo.de/s/qNVoD8RZ8UentBB/download", ], "Crossing 90 (exp)": [ "CROSSING_90_a_10", "https://fz-juelich.sciebo.de/s/gLfaofmZCNtf5Vx/download", "https://fz-juelich.sciebo.de/s/f960CoXb26FKpkw/download", ], "Crossing 120 (exp)": [ "CROSSING_120_A_1", "https://fz-juelich.sciebo.de/s/X3WTuExdj2HXRVx/download", "https://fz-juelich.sciebo.de/s/11Cz0bQWZCv23eI/download", ], "Crossing 120 (exp)": [ "CROSSING_120_C_1", "https://fz-juelich.sciebo.de/s/vrkGlCDKVTIz8Ch/download", "https://fz-juelich.sciebo.de/s/11Cz0bQWZCv23eI/download", ], "Stadium Entrance (exp)": [ "mo11_combine_MB", "https://fz-juelich.sciebo.de/s/ckzZLnRJCKKgAnZ/download", "https://fz-juelich.sciebo.de/s/kgXUEyu95FTQlFC/download", ], "Multi-Rooms (sim)": [ "Multi-Rooms", "https://fz-juelich.sciebo.de/s/7kwrnAzcv5m7ii2/download", "https://fz-juelich.sciebo.de/s/VSPgE6Kcfp8qDIa/download", ], "Bottleneck (sim)": [ "bottleneck", "https://fz-juelich.sciebo.de/s/HldXLySEfEDMdZo/download", "https://fz-juelich.sciebo.de/s/FqiSFGr6FajfYLD/download", ], "HC-BUW (sim)": [ "HC_BUW", "https://fz-juelich.sciebo.de/s/GgvVjc81lzmhTgv/download", "https://fz-juelich.sciebo.de/s/NikHJ6TIHCwSoUM/download", ] } def get_time(t): """Time in min sec :param t: Run time :type t: float :returns: str """ minutes = t // 60 seconds = t % 60 return f"""{minutes:.0f} min:{seconds:.0f} sec""" def selected_traj_geo(text): """Returns a list of trajectory and geometry files""" if text in examples.keys(): return examples[text] else: logging.warning(f"Could not find {text}") logging.info(f"Available examples are {examples}") return [] def download(url: str, filename: str): try: r = requests.get(url, stream=True) logging.info(f"saving to {filename}") with open(filename, "wb") as f: for chunk in r.iter_content(chunk_size=1024 * 8): if chunk: f.write(chunk) f.flush() os.fsync(f.fileno()) except Exception as e: st.error( f"""Download of file {filename} failed.\n Error: {e}""" ) @contextlib.contextmanager def profile(name): start_time = time.time() yield # <-- your code will execute here total_time = time.time() - start_time logging.info(f"{name}: {total_time * 1000.0:.4f} ms") def weidmann(rho, v0=1.34, rho_max=5.4, gamma=1.913): inv_rho = np.empty_like(rho) mask = rho <= 0.01 inv_rho[mask] = 1 / rho_max inv_rho[~mask] = 1 / rho[~mask] return v0 * (1 - np.exp(-gamma * (inv_rho - 1 / rho_max))) # Eq. 6 def inv_weidmann(v, v0=1.34, rho_max=5.4, gamma=1.913): v0 = np.max(v) v[v > v0] = v0 s = 1 - v / v0 # np.log(s, where=np.logical_not(zero_mask)) x = -1 / gamma * np.log(s, out=np.zeros_like(s), where=(s != 0)) + 1 / rho_max return 1 / x def get_speed_index(traj_file): lines = traj_file[:500].split("\n") for line in lines: if line.startswith("#ID"): if "V" in line: return int(line.split().index("V")) return -1 def get_header(traj_file): lines = traj_file[:500].split("\n") for line in lines: if line.startswith("#ID"): if "FR" in line: return line return "Not extracted" # todo: update with more rules for more files def get_fps(traj_file): fps = traj_file.split("framerate:")[-1].split("\n")[0] try: fps = int(float(fps)) except ValueError: st.error(f"{fps} in header can not be converted to int") logging.error(f"{fps} in header can not be converted to int") st.stop() return fps def detect_jpscore(traj_file): return "#description: jpscore" in traj_file def get_unit(traj_file): unit = "NOTHING" if "#description: jpscore" in traj_file: unit = "m" else: # petrack unit_list = traj_file.split("unit:") if len(unit_list) > 1: unit = unit_list[-1].split("\n")[0] if "x/" in traj_file: unit = traj_file.split("x/")[-1].split()[0] if "<x>" in traj_file: # <number> <frame> <x> [in m] <y> [in m] <z> [in m] unit = traj_file.split("<x>")[-1].split()[1].strip("]") unit = unit.strip() logging.info(f"Unit detected: <{unit}>") return unit def get_transitions(xml_doc, unit): if unit == "cm": cm2m = 100 else: cm2m = 1 transitions = {} for _, t_elem in enumerate(xml_doc.getElementsByTagName("transition")): Id = t_elem.getAttribute("id") n_vertex = len(t_elem.getElementsByTagName("vertex")) vertex_array = np.zeros((n_vertex, 2)) for v_num, _ in enumerate(t_elem.getElementsByTagName("vertex")): vertex_array[v_num, 0] = ( t_elem.getElementsByTagName("vertex")[v_num].attributes["px"].value ) vertex_array[v_num, 1] = ( t_elem.getElementsByTagName("vertex")[v_num].attributes["py"].value ) transitions[Id] = vertex_array / cm2m return transitions def get_measurement_lines(xml_doc, unit): """add area_L https://www.jupedsim.org/jpsreport_inifile#measurement-area """ if unit == "cm": cm2m = 100 else: cm2m = 1 fake_id = 1000 measurement_lines = {} for _, t_elem in enumerate(xml_doc.getElementsByTagName("area_L")): Id = t_elem.getAttribute("id") logging.info(f"Measurement id = <{Id}>") if Id == "": st.warning(f"Got Measurement line with no Id. Setting id = {fake_id}") logging.info(f"Got Measurement line with no Id. Setting id = {fake_id}") Id = fake_id fake_id += 1 n_vertex = 2 vertex_array = np.zeros((n_vertex, 2)) vertex_array[0, 0] = ( t_elem.getElementsByTagName("start")[0].attributes["px"].value ) vertex_array[0, 1] = ( t_elem.getElementsByTagName("start")[0].attributes["py"].value ) vertex_array[1, 0] = ( t_elem.getElementsByTagName("end")[0].attributes["px"].value ) vertex_array[1, 1] = ( t_elem.getElementsByTagName("end")[0].attributes["py"].value ) measurement_lines[Id] = vertex_array / cm2m logging.info(f"vertex: {vertex_array}") return measurement_lines # def passing_frame( # ped_data: np.array, line: LineString, fps: int, max_distance: float # ) -> int: # """Return frame of first time ped enters the line buffer # Enlarge the line by eps, a constant that is dependent on fps # eps = 1/fps * v0, v0 = 1.3 m/s # :param ped_data: trajectories of ped # :param line: transition # :param fps: fps # : param max_distance: an arbitrary distance to the line # :returns: frame of entrance. Return negative number if ped did not pass trans # """ # eps = 1 / fps * 1.3 # line_buffer = line.buffer(eps, cap_style=3) # p = ped_data[np.abs(ped_data[:, 2] - line.centroid.x) < max_distance] # for (frame, x, y) in p[:, 1:4]: # if Point(x, y).within(line_buffer): # return frame # return -1 # def passing_frame2(ped_data, line: LineString, fps: int, max_distance: float) -> int: # s = STRtree([Point(ped_data[i, 2:4]) for i in range(ped_data.shape[0])]) # index = s.nearest_item(line) # # nearest_point = ped_data[index, 2:4] # nearest_frame = ped_data[index, 1] # # print("nearest: ", nearest_point, "at", nearest_frame) # L1 = line.coords[0] # L2 = line.coords[1] # P1 = ped_data[0, 2:4] # P2 = ped_data[-1, 2:4] # # print("Ped", P1, P2) # # print("Line", L1, L2) # sign1 = np.cross([L1, L2], [L1, P1])[1] # sign2 = np.cross([L1, L2], [L1, P2])[1] # if np.sign(sign1) != np.sign(sign2): # # crossed_line = True # return nearest_frame # # crossed_line = False # return -1 # # print("nearest_frame", nearest_frame) # # print("Crossed?", crossed_line) def on_different_sides(L1, L2, P1, P2) -> bool: """True is P1 and P2 are on different sides from [L1, L2] L1 x | | P1 x | x P2 x L2 --> True """ sign1 = np.cross(L1 - L2, L1 - P1) sign2 = np.cross(L1 - L2, L1 - P2) return np.sign(sign1) != np.sign(sign2) def passing_frame(ped_data: np.array, line: LineString, fps: float) -> int: """First frame at which the pedestrian is within a buffer around line fps is used to determin the width of the buffer and is not needed in the calculations. Assume a desired speed of 1.3 m/s :param ped_data: trajectories :type ped_data: np.array :param line: measurement line :type line: LineString :param fps: frames per second. :type fps: float :returns: """ XY = ped_data[:, 2:4] L1 = np.array(line.coords[0]) L2 = np.array(line.coords[1]) P1 = XY[0] P2 = XY[-1] i1 = 0 # index of first element i2 = len(XY) - 1 # index of last element im = int(len(XY) / 2) # index of the element in the middle M = XY[im] i = 0 passed_line_at_frame = -1 sign = -1 if not on_different_sides(L1, L2, P1, P2): return passed_line_at_frame, sign while i1 + 1 < i2 and i < 20: i += 1 # to avoid endless loops! Should be removed! if on_different_sides(L1, L2, M, P2): P1 = M i1 = im else: P2 = M i2 = im im = int((i1 + i2) / 2) M = XY[im] # this is to ensure, that the pedestrian really passed *through* the line line_buffer = line.buffer(1.3/fps, cap_style=2) if Point(XY[i1]).within(line_buffer): passed_line_at_frame = ped_data[i1, 1] sign = np.sign(np.cross(L1 - L2, XY[i1] - XY[i2])) elif Point(XY[i2]).within(line_buffer): passed_line_at_frame = ped_data[i2, 1] sign = np.sign(np.cross(L1 - L2, XY[i1] - XY[i2])) return passed_line_at_frame, sign def read_trajectory(input_file): data = read_csv(input_file, sep=r"\s+", dtype=np.float64, comment="#").values return data def read_obstacle(xml_doc, unit): if unit == "cm": cm2m = 100 else: cm2m = 1 # Initialization of a dictionary with obstacles return_dict = {} # read in obstacles and combine # them into an array for polygon representation for o_num, o_elem in enumerate(xml_doc.getElementsByTagName("obstacle")): N_polygon = len(o_elem.getElementsByTagName("polygon")) if N_polygon == 1: pass else: points = np.zeros((0, 2)) for p_num, p_elem in enumerate(o_elem.getElementsByTagName("polygon")): for v_num, v_elem in enumerate(p_elem.getElementsByTagName("vertex")): vertex_x = float( # p_elem.getElementsByTagName("vertex")[v_num].attributes["px"].value v_elem.attributes["px"].value ) vertex_y = float( # p_elem.getElementsByTagName("vertex")[v_num].attributes["py"].value v_elem.attributes["py"].value ) points = np.vstack([points, [vertex_x / cm2m, vertex_y / cm2m]]) points = np.unique(points, axis=0) x = points[:, 0] y = points[:, 1] n = len(points) center_point = [np.sum(x) / n, np.sum(y) / n] angles = np.arctan2(x - center_point[0], y - center_point[1]) # sorting the points: sort_tups = sorted( [(i, j, k) for i, j, k in zip(x, y, angles)], key=lambda t: t[2] ) return_dict[o_num] = np.array(sort_tups)[:, 0:2] return return_dict def read_subroom_walls(xml_doc, unit): dict_polynom_wall = {} n_wall = 0 if unit == "cm": cm2m = 100 else: cm2m = 1 for _, s_elem in enumerate(xml_doc.getElementsByTagName("subroom")): for _, p_elem in enumerate(s_elem.getElementsByTagName("polygon")): if True or p_elem.getAttribute("caption") == "wall": n_wall = n_wall + 1 n_vertex = len(p_elem.getElementsByTagName("vertex")) vertex_array = np.zeros((n_vertex, 2)) for v_num, _ in enumerate(p_elem.getElementsByTagName("vertex")): vertex_array[v_num, 0] = ( p_elem.getElementsByTagName("vertex")[v_num] .attributes["px"] .value ) vertex_array[v_num, 1] = ( p_elem.getElementsByTagName("vertex")[v_num] .attributes["py"] .value ) dict_polynom_wall[n_wall] = vertex_array / cm2m return dict_polynom_wall def geo_limits(geo_xml, unit): geometry_wall = read_subroom_walls(geo_xml, unit) geominX = 1000 geomaxX = -1000 geominY = 1000 geomaxY = -1000 Xmin = [] Ymin = [] Xmax = [] Ymax = [] for _, wall in geometry_wall.items(): Xmin.append(np.min(wall[:, 0])) Ymin.append(np.min(wall[:, 1])) Xmax.append(np.max(wall[:, 0])) Ymax.append(np.max(wall[:, 1])) geominX = np.min(Xmin) geomaxX = np.max(Xmax) geominY = np.min(Ymin) geomaxY = np.max(Ymax) return geominX, geomaxX, geominY, geomaxY def get_geometry_file(traj_file): return traj_file.split("geometry:")[-1].split("\n")[0].strip() def compute_speed(data, fps, df=10): """Calculates the speed and the angle from the trajectory points. Using the forward formula speed(f) = (X(f+df) - X(f))/df [1] note: The last df frames are not calculated using [1]. It is assumes that the speed in the last frames does not change :param traj: trajectory of ped (x, y). 2D array :param df: number of frames forwards :param fps: frames per seconds :returns: speed, angle example: df=4, S=10 0 1 2 3 4 5 6 7 8 9 X * * * * * * * * * * V + + + + + + * * * * X[df:] X[:S-df] * * │ │ * * ◄─┘ └────────► * * * * """ agents = np.unique(data[:, 0]).astype(int) once = 1 speeds = np.array([]) for agent in agents: ped = data[data[:, 0] == agent] traj = ped[:, 2:4] size = traj.shape[0] speed = np.ones(size) if size < df: logging.warning( f"""Compute_speed: The number of frames used to calculate the speed {df} exceeds the total amount of frames ({size}) in this trajectory.""" ) st.error( f"""Compute_speed: The number of frames used to calculate the speed {df} exceeds the total amount of frames ({size}) in this trajectory.""" ) st.stop() delta = traj[df:, :] - traj[: size - df, :] delta_square = np.square(delta) delta_x_square = delta_square[:, 0] delta_y_square = delta_square[:, 1] s = np.sqrt(delta_x_square + delta_y_square) speed[: size - df] = s / df * fps speed[size - df :] = speed[size - df - 1] if once: speeds = speed once = 0 else: speeds = np.hstack((speeds, speed)) return speeds def compute_speed_and_angle(data, fps, df=10): """Calculates the speed and the angle from the trajectory points. Using the forward formula speed(f) = (X(f+df) - X(f))/df [1] note: The last df frames are not calculated using [1]. It is assumes that the speed in the last frames does not change :param traj: trajectory of ped (x, y). 2D array :param df: number of frames forwards :param fps: frames per seconds :returns: speed, angle example: df=4, S=10 0 1 2 3 4 5 6 7 8 9 X * * * * * * * * * * V + + + + + + * * * * X[df:] X[:S-df] * * │ │ * * ◄─┘ └────────► * * * * """ agents = np.unique(data[:, 0]).astype(int) once = 1 speeds = np.array([]) for agent in agents: ped = data[data[:, 0] == agent] traj = ped[:, 2:4] size = traj.shape[0] speed = np.ones(size) angle = np.zeros(size) if size < df: logging.warning( f"""Compute_speed_and_angle() The number of frames used to calculate the speed {df} exceeds the total amount of frames ({size}) for pedestrian {agent}""" ) st.error( f"""Compute_speed_and_angle() The number of frames used to calculate the speed {df} exceeds the total amount of frames ({size}) for pedestrian {agent}""" ) else: delta = traj[df:, :] - traj[: size - df, :] delta_x = delta[:, 0] delta_y = delta[:, 1] delta_square = np.square(delta) delta_x_square = delta_square[:, 0] delta_y_square = delta_square[:, 1] angle[: size - df] = np.arctan2(delta_y, delta_x) * 180 / np.pi s = np.sqrt(delta_x_square + delta_y_square) speed[: size - df] = s / df * fps speed[size - df :] = speed[size - df - 1] angle[size - df :] = angle[size - df - 1] ped = np.hstack((ped, angle.reshape(size, 1))) ped = np.hstack((ped, speed.reshape(size, 1))) if once: data2 = ped once = 0 else: data2 = np.vstack((data2, ped)) return data2 def calculate_speed_average( geominX, geomaxX, geominY, geomaxY, dx, dy, nframes, X, Y, speed ): """Calculate speed average over time""" xbins = np.arange(geominX, geomaxX + dx, dx) ybins = np.arange(geominY, geomaxY + dy, dy) ret = stats.binned_statistic_2d( X, Y, speed, "mean", bins=[xbins, ybins], ) return np.nan_to_num(ret.statistic.T) def calculate_density_average_weidmann( geominX, geomaxX, geominY, geomaxY, dx, dy, nframes, X, Y, speed ): """Calculate density using Weidmann(speed)""" density = inv_weidmann(speed) xbins = np.arange(geominX, geomaxX + dx, dx) ybins = np.arange(geominY, geomaxY + dy, dy) ret = stats.binned_statistic_2d( X, Y, density, "mean", bins=[xbins, ybins], ) return np.nan_to_num(ret.statistic.T) # / nframes def calculate_density_average_classic( geominX, geomaxX, geominY, geomaxY, dx, dy, nframes, X, Y ): """Calculate classical method Density = mean_time(N/A_i) """ xbins = np.arange(geominX, geomaxX + dx, dx) ybins = np.arange(geominY, geomaxY + dy, dy) area = dx * dy ret = stats.binned_statistic_2d( X, Y, None, "count", bins=[xbins, ybins], ) return np.nan_to_num(ret.statistic.T) / nframes / area def calculate_density_frame_classic(geominX, geomaxX, geominY, geomaxY, dx, dy, X, Y): """Calculate classical method Density = mean_time(N/A_i) """ xbins = np.arange(geominX, geomaxX + dx, dx) ybins = np.arange(geominY, geomaxY + dy, dy) area = dx * dy ret = stats.binned_statistic_2d( X, Y, None, "count", bins=[xbins, ybins], ) return
np.nan_to_num(ret.statistic.T)
numpy.nan_to_num
#!/usr/bin/python # -*- coding: utf-8 -*- """ The polarization.core test suite. """ from __future__ import (absolute_import, division, print_function, unicode_literals) from future.builtins import * # NOQA import unittest from os.path import dirname, join import numpy as np from scipy import signal import obspy from obspy.signal import polarization, util def _create_test_data(): """ Test data used for some polarization tests. :return: """ x = np.arange(0, 2048 / 20.0, 1.0 / 20.0) x *= 2. * np.pi y = np.cos(x) tr_z = obspy.Trace(data=y) tr_z.stats.sampling_rate = 20. tr_z.stats.starttime = obspy.UTCDateTime('2014-03-01T00:00') tr_z.stats.station = 'POLT' tr_z.stats.channel = 'HHZ' tr_z.stats.network = 'XX' tr_n = tr_z.copy() tr_n.data *= 2. tr_n.stats.channel = 'HHN' tr_e = tr_z.copy() tr_e.stats.channel = 'HHE' sz = obspy.Stream() sz.append(tr_z) sz.append(tr_n) sz.append(tr_e) sz.sort(reverse=True) return sz class PolarizationTestCase(unittest.TestCase): """ Test cases for polarization analysis """ def setUp(self): path = join(dirname(__file__), 'data') # setting up sliding window data data_z = np.loadtxt(join(path, 'MBGA_Z.ASC')) data_e = np.loadtxt(join(path, 'MBGA_E.ASC')) data_n = np.loadtxt(join(path, 'MBGA_N.ASC')) n = 256 fs = 75 inc = int(0.05 * fs) self.data_win_z, self.nwin, self.no_win = \ util.enframe(data_z, signal.hamming(n), inc) self.data_win_e, self.nwin, self.no_win = \ util.enframe(data_e, signal.hamming(n), inc) self.data_win_n, self.nwin, self.no_win = \ util.enframe(data_n, signal.hamming(n), inc) # global test input self.fk = [2, 1, 0, -1, -2] self.norm = pow(np.max(data_z), 2) self.res = np.loadtxt(join(path, '3cssan.hy.1.MBGA_Z')) def tearDown(self): pass def test_polarization(self): """ windowed data """ pol = polarization.eigval(self.data_win_e, self.data_win_n, self.data_win_z, self.fk, self.norm) rms = np.sqrt(np.sum((pol[0] - self.res[:, 34]) ** 2) / np.sum(self.res[:, 34] ** 2)) self.assertEqual(rms < 1.0e-5, True) rms = np.sqrt(np.sum((pol[1] - self.res[:, 35]) ** 2) / np.sum(self.res[:, 35] ** 2)) self.assertEqual(rms < 1.0e-5, True) rms = np.sqrt(np.sum((pol[2] - self.res[:, 36]) ** 2) / np.sum(self.res[:, 36] ** 2)) self.assertEqual(rms < 1.0e-5, True) rms = np.sqrt(np.sum((pol[3] - self.res[:, 40]) ** 2) / np.sum(self.res[:, 40] ** 2)) self.assertEqual(rms < 1.0e-5, True) rms = np.sqrt(np.sum((pol[4] - self.res[:, 42]) ** 2) / np.sum(self.res[:, 42] ** 2)) self.assertEqual(rms < 1.0e-5, True) rms = np.sqrt(np.sum((pol[5][:, 0] - self.res[:, 37]) ** 2) / np.sum(self.res[:, 37] ** 2)) self.assertEqual(rms < 1.0e-5, True) rms = np.sqrt(np.sum((pol[5][:, 1] - self.res[:, 38]) ** 2) /
np.sum(self.res[:, 38] ** 2)
numpy.sum
import numpy as np import matplotlib.pyplot as plt import sympy from sympy import * import sys sys.path.append(r'C:\Users\elira\Google Drive\butools2\Python') sys.path.append('/home/d/dkrass/eliransc/Python') from tqdm import tqdm from butools.ph import * from butools.map import * from butools.queues import * from butools.mam import * from butools.dph import * from scipy.linalg import expm, sinm, cosm from sympy import * from sympy import Symbol from sympy.physics.quantum import TensorProduct import pickle as pkl import pandas as pd from sympy import diff, sin, exp from numpy.linalg import matrix_power def busy(s, lam2, mu2): return ((lam2 + mu2 + s) - ((lam2 + mu2 + s) ** 2 - 4 * lam2 * mu2) ** 0.5) / (2 * lam2) def ser_lap(s, mu): return mu / (s + mu) def hyper(s, lam1, lam2, mu1, mu2): return ser_lap(s, mu1) * lam1 / (lam1 + lam2) + ser_lap(s, mu2) * lam2 / (lam1 + lam2) def rho(lam1, lam2, mu1, mu2): return (lam1 + lam2) * ((lam1 / ((lam1 + lam2) * mu1)) + (lam2 / ((lam1 + lam2) * mu2))) def w_lap(s, lam1, lam2, mu1, mu2): return ((1 - rho(lam1, lam2, mu1, mu2)) * s) / (s - (lam1 + lam2) * (1 - hyper(s, lam1, lam2, mu1, mu2))) def F(s, lam1, lam2, mu1, mu2): return w_lap(s, lam1, lam2, mu1, mu2) * ser_lap(s, mu1) def A(s, lam1, lam2, mu2): return (lam1 / (lam1 + lam2 - lam2 * (ser_lap(s, mu2)))) def beta(s, lam1, lam2, mu1, mu2): return (lam1 / (lam1 + lam2 + s) + ((A(s, lam1, lam2, mu2) * lam2) / (lam1 + lam2 + s)) * ( ser_lap(s, mu2) - busy(s + lam1, lam2, mu2))) / ( 1 - ((lam2 * busy(s + lam1, lam2, mu2)) / (lam1 + lam2 + s))) def tau(s, lam1, lam2, mu1, mu2): return ser_lap(s, mu1) * (A(s, lam1, lam2, mu2) * ( 1 - F(lam1 + lam2 - lam2 * busy(s + lam1, lam2, mu2), lam1, lam2, mu1, mu2)) + F( lam1 + lam2 - lam2 * busy(s + lam1, lam2, mu2), lam1, lam2, mu1, mu2) * beta(s, lam1, lam2, mu1, mu2)) def get_var(lam1, lam2, mu1, mu2): s = Symbol('s') y = tau(s, lam1, lam2, mu1, mu2) dx = diff(y, s) dxdx = diff(dx, s) return dxdx.subs(s, 0) - (dx.subs(s, 0)) ** 2 def get_nth_moment(lam1, lam2, mu1, mu2, n): s = Symbol('s') y = tau(s, lam1, lam2, mu1, mu2) for i in range(n): if i == 0: dx = diff(y, s) else: dx = diff(dx, s) return dx.subs(s, 0) def get_first_n_moments(parameters, n=5): lam1, lam2, mu1, mu2 = parameters moments = [] for n in range(1, n + 1): moments.append(get_nth_moment(lam1, lam2, mu1, mu2, n) * (-1) ** n) moments = np.array([moments], dtype='float') return moments def kroneker_sum(G, H): size_g = G.shape[0] size_h = H.shape[0] return np.kron(G, np.identity(size_h)) + np.kron(np.identity(size_g), H) def give_boundry_probs(R, A0, A1, A, B, C0, ro): p00, p01, p02, p100, p110, p120, p101, p111, p121 = symbols('p00 p01 p02 p100 p110 p120 p101 p111 p121') eqns = [np.dot(np.array([p00, p01, p02]), np.ones((A0.shape[0]))) - (1 - ro)] eq3 = np.dot(np.array([p00, p01, p02]), A0) + np.dot(np.array([p100, p110, p120, p101, p111, p121]), A1) eq1 = np.dot(np.array([p00, p01, p02]), C0) eq2 = np.dot(np.array([p100, p110, p120, p101, p111, p121]), B + np.dot(R, A)) for eq_ind in range(B.shape[0]): eqns.append(eq1[0, eq_ind] + eq2[0, eq_ind]) for eq_ind in range(A0.shape[0]): eqns.append(eq3[0, eq_ind]) A_mat, b = linear_eq_to_matrix(eqns[:-1], [p00, p01, p02, p100, p110, p120, p101, p111, p121]) return A_mat, b def get_expect_gph_system(R, p1_arr, xm_max=5000): expected = 0 for pi_val in range(1, xm_max): ui = p1_arr.reshape((1, R.shape[0])) Ri = np.linalg.matrix_power(R, pi_val - 1) expected += np.dot(np.dot(ui, Ri), np.ones((R.shape[0], 1))) * pi_val return expected[0, 0] def get_expect_gph_system(R, p1_arr, xm_max=5000): expected = 0 for pi_val in range(1, xm_max): ui = p1_arr.reshape((1, R.shape[0])) Ri = np.linalg.matrix_power(R, pi_val - 1) expected += np.dot(np.dot(ui, Ri), np.ones((R.shape[0], 1))) * pi_val return expected[0, 0] def get_A0(Ts): krom_sum = kroneker_sum(Ts[0], Ts[1]) if len(Ts) > 2: for T_ind in range(2, len(Ts)): krom_sum = kroneker_sum(krom_sum, Ts[T_ind]) return krom_sum def get_C_first(T0s, Ts, s): krom_sum = kroneker_sum(T0s[0], T0s[1]) if len(Ts) > 2: for T_ind in range(2, len(Ts)): krom_sum = kroneker_sum(krom_sum, T0s[T_ind]) return krom_sum def get_B(Ts, s): krom_sum = kroneker_sum(Ts[0], Ts[1]) if len(Ts) > 2: for T_ind in range(2, len(Ts)): krom_sum = kroneker_sum(krom_sum, Ts[T_ind]) return kroneker_sum(krom_sum, s) def get_A(Ts, new_beta, s0): kron_sum = kroneker_sum(np.zeros(Ts[0].shape[0]), np.zeros(Ts[1].shape[0])) if len(Ts) > 2: for T_ind in range(2, len(Ts)): kron_sum = kroneker_sum(kron_sum, np.zeros(Ts[T_ind].shape[0])) kron_sum = kroneker_sum(kron_sum, np.dot(s0, new_beta)) return kron_sum def compute_s_beta(r, mu, num_stations=2): s_ = np.array([]) total_arrivals_to_station = np.sum(r[:, station_ind]) + np.sum(r[station_ind, :]) - np.sum( r[station_ind, station_ind]) beta = np.array([]) for stream_ind in range(r.shape[0]): if r[station_ind, stream_ind] > 0: beta = np.append(beta, r[station_ind, stream_ind] / total_arrivals_to_station) s_ = np.append(s_, -mu[station_ind, stream_ind]) for out_station in range(num_stations): if out_station != station_ind: if r[out_station, station_ind] > 0: beta = np.append(beta, r[out_station, station_ind] / total_arrivals_to_station) s_ = np.append(s_, -mu[station_ind, station_ind]) new_beta = np.array([]) new_s_ = np.unique(s_) for val in new_s_: new_beta = np.append(new_beta, np.sum(beta[np.argwhere(s_ == val)])) new_beta = new_beta.reshape((1, new_beta.shape[0])) s = np.identity(new_s_.shape[0]) * new_s_ return s, new_beta, new_s_ def compute_curr_t(curr_ind, r, mu): r_mismatched = np.sum(r[curr_ind, :]) - r[curr_ind, curr_ind] r_matched = r[curr_ind, curr_ind] mu_mismatched = np.mean(np.delete(mu[curr_ind, :], curr_ind, 0)) mu_matched = mu[curr_ind, curr_ind] parameters = (r_mismatched, r_matched, mu_mismatched, mu_matched) moments = get_first_n_moments(parameters) return moments def get_Ts_alphas(r, mu, station_ind): alphas = [] Ts = [] T0s = [] for curr_ind in range(r.shape[0]): if curr_ind != station_ind: mome = compute_curr_t(curr_ind, r, mu) curr_alpha, curr_T = PH3From5Moments(mome[0]) alphas.append(curr_alpha) Ts.append(curr_T) T0s.append(-np.dot(np.dot(curr_T, np.ones((curr_T.shape[0], 1))), curr_alpha)) for stream_ind in range(r[station_ind, :].shape[0]): Ts.append(np.array(-r[station_ind, stream_ind]).reshape((1, 1))) alphas.append(1.) T0s.append(-np.dot(np.dot(Ts[-1], np.ones(1)), alphas[-1])) return Ts, T0s, alphas def total_arrivals_to_station(r): return np.sum(r[:, station_ind]) + np.sum(r[station_ind, :]) - np.sum(r[station_ind, station_ind]) def get_ro(r, mu, new_beta, new_s_): return np.sum(new_beta * total_arrivals_to_station(r) * (-1 / new_s_)) def get_ro_2(lam_0, lam_1, new_beta, s0): return (lam_0 + lam_1) * np.dot(new_beta, 1 / s0) from numpy.linalg import matrix_power def get_bound_steady_state(R, A0, A1, AA, B, C0, ro): u0, u10, u11 = symbols('u0 u10 u11') eqns = [u0 - (1 - ro[0][0])] for ind in range(2): eqns.append(np.dot(u0, C0)[0][ind] + np.dot(np.array([u10, u11]), B)[ind] + np.dot(np.dot(np.array([u10, u11]), R), AA)[0][0, ind]) A_mat, b = linear_eq_to_matrix(eqns, [u0, u10, u11]) u0, u10, u11 = np.linalg.solve(np.array(A_mat, dtype=np.float), np.array(b, dtype=np.float)) return u0[0], u10[0], u11[0] def get_Avg_system(R, u10, u11): p1 = np.array([u10, u11]) total_avg = 0 for ind in range(1, 500): total_avg += ind * np.sum(np.dot(p1, matrix_power(R, ind - 1))) return total_avg def get_steady(lam_0, lam_1, mu_0, mu_1): T0 = np.array([-lam_0]) T1 = np.array([-lam_1]) Ts = [T0, T1] T00 = np.array([-np.dot(T0, np.ones(1))]) T10 = np.array([-np.dot(T1,
np.ones(1)
numpy.ones
import sys from io import StringIO from typing import Tuple import numpy as np from scipy.ndimage import label def load_map(path: str) -> np.ndarray: with open(path, 'r') as f: text = '\n'.join([' '.join(list(s)) for s in f.readlines()]) heightmap = np.loadtxt(StringIO(text), dtype=int) return heightmap def find_local_minima(map: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: pm = np.pad(map, pad_width=[(0, 0), (0, 1)], constant_values=10) minima = np.sign(pm[:, :-1] - pm[:, 1:]) pm = np.pad(map, pad_width=[(0, 0), (1, 0)], constant_values=10) minima += np.sign(pm[:, 1:] - pm[:, :-1]) pm = np.pad(map, pad_width=[(0, 1), (0, 0)], constant_values=10) minima += np.sign(pm[:-1] - pm[1:]) pm =
np.pad(map, pad_width=[(1, 0), (0, 0)], constant_values=10)
numpy.pad
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Proof of concept of a minimalist, 3 layers (1 hidden) Neural Network. Code based on the lectures from the Machine Learning coursework (Stanford - Coursera) by Prof. Dr. <NAME> and the code implementation of andr0idsensei (https://gist.github.com/andr0idsensei/92dd7e54a029242690555e84dca93efd). @author: Dr. <NAME> """ from scipy.io import loadmat import numpy as np if __name__ == "__main__": # Setting up parameters. hidden_size = 30 num_labels = 10 learning_rate = 0.2 J_threshold = 0.0001 regularize = True n_iter = 8000 # Loading training data. data = loadmat('data/mnist_sample.mat') X = np.matrix(data['X']) y = np.matrix(data['y']) m = X.shape[0] # Initializing random parameters (weights) for the activation of # layers 1 and 2. e_init = np.sqrt(6) /
np.sqrt(X.shape[1] + hidden_size)
numpy.sqrt
"""Definition of Maxwell spaces.""" import numpy as _np import numba as _numba def _is_screen(grid): """Check if there is an edge only adjacent to one triangle.""" for e in range(grid.edges.shape[1]): if len([j for i in grid.element_edges for j in i if j == e]) < 2: return True return False def rwg0_function_space( grid, support_elements=None, segments=None, swapped_normals=None, include_boundary_dofs=False, truncate_at_segment_edge=True, ): """Define a space of RWG functions of order 0.""" from .space import SpaceBuilder, _process_segments from bempp.api.utils.helpers import serialise_list_of_lists support, normal_multipliers = _process_segments( grid, support_elements, segments, swapped_normals ) edge_neighbors, edge_neighbors_ptr = serialise_list_of_lists(grid.edge_neighbors) ( global_dof_count, support, local2global, local_multipliers, ) = _compute_rwg0_space_data( support, edge_neighbors, edge_neighbors_ptr, grid.element_edges, grid.number_of_elements, grid.number_of_edges, include_boundary_dofs, truncate_at_segment_edge, ) return ( SpaceBuilder(grid) .set_codomain_dimension(3) .set_support(support) .set_normal_multipliers(normal_multipliers) .set_order(0) .set_is_localised(False) .set_shapeset("rwg0") .set_identifier("rwg0") .set_local2global(local2global) .set_local_multipliers(local_multipliers) .set_barycentric_representation(rwg0_barycentric_function_space) .set_numba_evaluator(_numba_rwg0_evaluate) .build() ) def rwg0_barycentric_function_space(coarse_space): """Define a space of RWG functions of order 0 over a barycentric grid.""" from .space import SpaceBuilder from scipy.sparse import coo_matrix number_of_support_elements = coarse_space.number_of_support_elements bary_grid_number_of_elements = 6 * coarse_space.grid.number_of_elements bary_support_elements = 6 * _np.repeat(coarse_space.support_elements, 6) + _np.tile( _np.arange(6), number_of_support_elements ) bary_support_size = len(bary_support_elements) support = _np.zeros(6 * coarse_space.grid.number_of_elements, dtype=_np.bool) support[bary_support_elements] = True normal_multipliers = _np.repeat(coarse_space.normal_multipliers, 6) local_coords = _np.array( [[0, 0], [0.5, 0], [1, 0], [0.5, 0.5], [0, 1], [0, 0.5], [1.0 / 3, 1.0 / 3]] ).T coeffs = ( _np.array( [ [1, -1.0 / 3, 0], [-1.0 / 3, 1, 0], [0, 1.0 / 3, -1.0 / 6], [0, 0, 1.0 / 6], [0, 0, 1.0 / 6], [1.0 / 3, 0, -1.0 / 6], ] ), _np.array( [ [0, 1.0 / 3, -1.0 / 6], [0, 0, 1.0 / 6], [0, 0, 1.0 / 6], [1.0 / 3, 0, -1.0 / 6], [1, -1.0 / 3, 0], [-1.0 / 3, 1, 0], ] ), _np.array( [ [0, 0, 1.0 / 6], [1.0 / 3, 0, -1.0 / 6], [1, -1.0 / 3, 0], [-1.0 / 3, 1, 0], [0, 1.0 / 3, -1.0 / 6], [0, 0, 1.0 / 6], ] ), ) coarse_dofs, bary_dofs, values = generate_rwg0_map( coarse_space.grid.data(), coarse_space.support_elements, local_coords, coeffs ) local2global = _np.zeros((bary_grid_number_of_elements, 3), dtype="uint32") local_multipliers = _np.zeros((bary_grid_number_of_elements, 3), dtype="uint32") local2global[support] = _np.arange(3 * bary_support_size).reshape( bary_support_size, 3 ) local_multipliers[support] = 1 transform = coo_matrix( (values, (bary_dofs, coarse_dofs)), shape=(3 * bary_support_size, 3 * number_of_support_elements), dtype=_np.float64, ).tocsr() dof_transformation = transform @ coarse_space.map_to_localised_space return ( SpaceBuilder(coarse_space.grid.barycentric_refinement) .set_codomain_dimension(3) .set_support(support) .set_normal_multipliers(normal_multipliers) .set_order(0) .set_is_localised(True) .set_is_barycentric(True) .set_shapeset("rwg0") .set_identifier("rwg0") .set_local2global(local2global) .set_local_multipliers(local_multipliers) .set_dof_transformation(dof_transformation) .set_numba_evaluator(_numba_rwg0_evaluate) .build() ) def snc0_function_space( grid, support_elements=None, segments=None, swapped_normals=None, include_boundary_dofs=False, truncate_at_segment_edge=True, ): """Define a space of SNC functions of order 0.""" from .space import SpaceBuilder, _process_segments from bempp.api.utils.helpers import serialise_list_of_lists support, normal_multipliers = _process_segments( grid, support_elements, segments, swapped_normals ) edge_neighbors, edge_neighbors_ptr = serialise_list_of_lists(grid.edge_neighbors) ( global_dof_count, support, local2global, local_multipliers, ) = _compute_rwg0_space_data( support, edge_neighbors, edge_neighbors_ptr, grid.element_edges, grid.number_of_elements, grid.number_of_edges, include_boundary_dofs, truncate_at_segment_edge, ) return ( SpaceBuilder(grid) .set_codomain_dimension(3) .set_support(support) .set_normal_multipliers(normal_multipliers) .set_order(0) .set_is_localised(False) .set_shapeset("snc0") .set_identifier("snc0") .set_local2global(local2global) .set_local_multipliers(local_multipliers) .set_barycentric_representation(snc0_barycentric_function_space) .set_numba_evaluator(_numba_snc0_evaluate) .set_numba_surface_curl(_numba_snc0_surface_curl) .build() ) def snc0_barycentric_function_space(coarse_space): """Define a space of SNC functions of order 0 over a barycentric grid.""" from .space import SpaceBuilder from scipy.sparse import coo_matrix number_of_support_elements = coarse_space.number_of_support_elements bary_grid_number_of_elements = 6 * coarse_space.grid.number_of_elements bary_support_elements = 6 * _np.repeat(coarse_space.support_elements, 6) + _np.tile( _np.arange(6), number_of_support_elements ) bary_support_size = len(bary_support_elements) support = _np.zeros(6 * coarse_space.grid.number_of_elements, dtype=_np.bool) support[bary_support_elements] = True normal_multipliers = _np.repeat(coarse_space.normal_multipliers, 6) local_coords = _np.array( [[0, 0], [0.5, 0], [1, 0], [0.5, 0.5], [0, 1], [0, 0.5], [1.0 / 3, 1.0 / 3]] ).T coeffs = ( _np.array( [ [1, -1.0 / 3, 0], [-1.0 / 3, 1, 0], [0, 1.0 / 3, -1.0 / 6], [0, 0, 1.0 / 6], [0, 0, 1.0 / 6], [1.0 / 3, 0, -1.0 / 6], ] ), _np.array( [ [0, 1.0 / 3, -1.0 / 6], [0, 0, 1.0 / 6], [0, 0, 1.0 / 6], [1.0 / 3, 0, -1.0 / 6], [1, -1.0 / 3, 0], [-1.0 / 3, 1, 0], ] ), _np.array( [ [0, 0, 1.0 / 6], [1.0 / 3, 0, -1.0 / 6], [1, -1.0 / 3, 0], [-1.0 / 3, 1, 0], [0, 1.0 / 3, -1.0 / 6], [0, 0, 1.0 / 6], ] ), ) coarse_dofs, bary_dofs, values = generate_rwg0_map( coarse_space.grid.data(), coarse_space.support_elements, local_coords, coeffs ) local2global = _np.zeros((bary_grid_number_of_elements, 3), dtype="uint32") local_multipliers = _np.zeros((bary_grid_number_of_elements, 3), dtype="uint32") local2global[support] = _np.arange(3 * bary_support_size).reshape( bary_support_size, 3 ) local_multipliers[support] = 1 transform = coo_matrix( (values, (bary_dofs, coarse_dofs)), shape=(3 * bary_support_size, 3 * number_of_support_elements), dtype=_np.float64, ).tocsr() dof_transformation = transform @ coarse_space.map_to_localised_space return ( SpaceBuilder(coarse_space.grid.barycentric_refinement) .set_codomain_dimension(3) .set_support(support) .set_normal_multipliers(normal_multipliers) .set_order(0) .set_is_localised(True) .set_is_barycentric(True) .set_shapeset("rwg0") .set_identifier("snc0") .set_local2global(local2global) .set_local_multipliers(local_multipliers) .set_dof_transformation(dof_transformation) .set_numba_evaluator(_numba_snc0_evaluate) .build() ) def bc_function_space( grid, support_elements=None, segments=None, swapped_normals=None, include_boundary_dofs=False, truncate_at_segment_edge=True, ): """Define a space of BC functions.""" from .space import SpaceBuilder if _is_screen(grid): # Grid is a screen, not a polyhedron raise ValueError("BC spaces not yet supported on screens") bary_grid = grid.barycentric_refinement coarse_space = rwg0_function_space( grid, support_elements, segments, swapped_normals, include_boundary_dofs=include_boundary_dofs, truncate_at_segment_edge=truncate_at_segment_edge, ) ( dof_transformation, support, normal_multipliers, local2global, local_multipliers, ) = _compute_bc_space_data( grid, bary_grid, coarse_space, truncate_at_segment_edge, swapped_normals ) return ( SpaceBuilder(bary_grid) .set_codomain_dimension(3) .set_support(support) .set_normal_multipliers(normal_multipliers) .set_order(0) .set_is_localised(True) .set_is_barycentric(True) .set_shapeset("rwg0") .set_identifier("rwg0") .set_local2global(local2global) .set_local_multipliers(local_multipliers) .set_dof_transformation(dof_transformation) .set_numba_evaluator(_numba_rwg0_evaluate) .build() ) def rbc_function_space( grid, support_elements=None, segments=None, swapped_normals=None, include_boundary_dofs=False, truncate_at_segment_edge=True, ): """Define a space of RBC functions.""" from .space import SpaceBuilder if _is_screen(grid): # Grid is a screen, not a polyhedron raise ValueError("BC spaces not yet supported on screens") bary_grid = grid.barycentric_refinement coarse_space = rwg0_function_space( grid, support_elements, segments, swapped_normals, include_boundary_dofs=include_boundary_dofs, truncate_at_segment_edge=truncate_at_segment_edge, ) ( dof_transformation, support, normal_multipliers, local2global, local_multipliers, ) = _compute_bc_space_data( grid, bary_grid, coarse_space, truncate_at_segment_edge, swapped_normals ) return ( SpaceBuilder(bary_grid) .set_codomain_dimension(3) .set_support(support) .set_normal_multipliers(normal_multipliers) .set_order(0) .set_is_localised(True) .set_is_barycentric(True) .set_shapeset("rwg0") .set_identifier("snc0") .set_local2global(local2global) .set_local_multipliers(local_multipliers) .set_dof_transformation(dof_transformation) .set_numba_evaluator(_numba_snc0_evaluate) .build() ) def _compute_bc_space_data( grid, bary_grid, coarse_space, truncate_at_segment_edge, swapped_normals ): """Generate the BC map.""" from bempp.api.grid.grid import enumerate_vertex_adjacent_elements from scipy.sparse import coo_matrix coarse_support = _np.zeros(grid.entity_count(0), dtype=_np.bool) coarse_support[coarse_space.support_elements] = True if not truncate_at_segment_edge: for global_dof_index in range(coarse_space.global_dof_count): local_dofs = coarse_space.global2local[global_dof_index] edge_index = grid.data().element_edges[local_dofs[0][1], local_dofs[0][0]] for v in range(2): vertex = grid.data().edges[v, edge_index] start = grid.vertex_neighbors.indexptr[vertex] end = grid.vertex_neighbors.indexptr[vertex + 1] for cell in grid.vertex_neighbors.indices[start:end]: coarse_support[cell] = True coarse_support_elements = _np.array([i for i, j in enumerate(coarse_support) if j]) number_of_support_elements = len(coarse_support_elements) bary_support_elements = 6 * _np.repeat(coarse_support_elements, 6) + _np.tile( _np.arange(6), number_of_support_elements ) support = _np.zeros(bary_grid.number_of_elements, dtype=_np.bool) support[bary_support_elements] = True bary_support_size = len(bary_support_elements) bary_vertex_to_edge = enumerate_vertex_adjacent_elements( bary_grid, bary_support_elements, swapped_normals ) edge_vectors = ( bary_grid.vertices[:, bary_grid.edges[0, :]] - bary_grid.vertices[:, bary_grid.edges[1, :]] ) edge_lengths = _np.linalg.norm(edge_vectors, axis=0) normal_multipliers = _np.repeat(coarse_space.normal_multipliers, 6) local2global = _np.zeros((bary_grid.number_of_elements, 3), dtype="uint32") local_multipliers =
_np.zeros((bary_grid.number_of_elements, 3), dtype="uint32")
numpy.zeros
# source ~/tensorflow/bin/activate from __future__ import print_function from tensorflow.examples.tutorials.mnist import input_data data_flag = 1 # 1 for fmnist, 2 for mnist if data_flag == 1: mnist = input_data.read_data_sets('fMNIST_data', one_hot=True) elif data_flag == 2: mnist = input_data.read_data_sets('MNIST_data', one_hot=True) import tensorflow as tf import numpy as np import scipy from scipy.ndimage.interpolation import zoom from random import shuffle def batch_mod(x,y): # adds balanced dimming random images with None label x_1 = np.int(np.round((
np.shape(x)
numpy.shape
import cv2 import sys import os import numpy as np import math import random import json import matplotlib.pyplot as plt #%matplotlib inline plt.rcParams['figure.figsize'] = (10, 10) def get_affine_matrix(center, angle, translate, scale, shear): # Helper method to compute affine transformation # As it is explained in PIL.Image.rotate # We need compute affine transformation matrix: M = T * C * RSS * C^-1 # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1] # C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1] # RSS is rotation with scale and shear matrix # RSS(a, scale, shear) = [ cos(a)*sx -sin(a + shear)*sy 0] # [ sin(a)*sx cos(a + shear)*sy 0] # [ 0 0 1] angle = math.radians(angle) shear = math.radians(shear) T = np.array([[1, 0, translate[0]], [0, 1, translate[1]], [0, 0, 1]]).astype(np.float32) C = np.array([[1, 0, center[0]], [0, 1, center[1]], [0, 0, 1]]).astype(np.float32) RSS = np.array([[ math.cos(angle)*scale[0], -math.sin(angle + shear)*scale[1], 0], [ math.sin(angle)*scale[0], math.cos(angle + shear)*scale[1], 0], [ 0, 0, 1]]).astype(np.float32) C_inv = np.linalg.inv(np.mat(C)) M = T.dot(C).dot(RSS).dot(C_inv) return M def get_inverse_affine_matrix(center, angle, translate, scale, shear): # Helper method to compute inverse matrix for affine transformation # As it is explained in PIL.Image.rotate # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1 # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1] # C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1] # RSS is rotation with scale and shear matrix # RSS(a, scale, shear) = [ cos(a)*sx -sin(a + shear)*sy 0] # [ sin(a)*sx cos(a + shear)*sy 0] # [ 0 0 1] # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1 angle = math.radians(angle) shear = math.radians(shear) T = np.array([[1, 0, translate[0]], [0, 1, translate[1]], [0, 0, 1]]).astype(np.float32) C = np.array([[1, 0, center[0]], [0, 1, center[1]], [0, 0, 1]]).astype(np.float32) RSS = np.array([[ math.cos(angle)*scale[0], -math.sin(angle + shear)*scale[1], 0], [ math.sin(angle)*scale[0], math.cos(angle + shear)*scale[1], 0], [ 0, 0, 1]]).astype(np.float32) T_inv = np.linalg.inv(np.mat(T)) RSS_inv = np.linalg.inv(np.mat(RSS)) C_inv = np.linalg.inv(np.mat(C)) M = C.dot(RSS_inv).dot(C_inv).dot(T_inv) return M def masks2bboxes(masks): ''' masks: (N, H, W) or [N](H, W) ''' bboxes = [] for mask in masks: if np.max(mask)<=0.5: continue idxs =
np.where(mask>0.5)
numpy.where
# Copyright (c) <NAME>, 2007 import numpy as np from . import wrapped_distances import inspect import imp import pickle from .isotropic_cov_funs import symmetrize, imul from copy import copy import sys,os from pymc import get_threadpool_size, map_noreturn import pymc from pymc import six xrange = six.moves.xrange mod_search_path = [pymc.__path__[0]+'/gp/cov_funs', os.getcwd()] + sys.path __all__ = ['covariance_wrapper', 'covariance_function_bundle'] def regularize_array(A): """ Takes an np.ndarray as an input. - If the array is one-dimensional, it's assumed to be an array of input values. - If the array is more than one-dimensional, its last index is assumed to curse over spatial dimension. Either way, the return value is at least two dimensional. A.shape[-1] gives the number of spatial dimensions. """ if not isinstance(A,np.ndarray): A =
np.array(A, dtype=float)
numpy.array
''' ,, .M"""bgd db mm ,MI "Y MM `MMb. `7MMpMMMb. ,pW"Wq. `7M' ,A `MF' .gP"Ya `7MMpMMMb. `7MMpdMAo. `7Mb,od8 ,pW"Wq. `7MM .gP"Ya ,p6"bo mmMMmm `YMMNq. MM MM 6W' `Wb VA ,VAA ,V ,M' Yb MM MM MM `Wb MM' "' 6W' `Wb MM ,M' Yb 6M' OO MM . `MM MM MM 8M M8 VA ,V VA ,V 8M"""""" MM MM MM M8 MM 8M M8 MM 8M"""""" 8M MM Mb dM MM MM YA. ,A9 VVV VVV YM. , MM MM MM ,AP MM YA. ,A9 MM YM. , YM. , MM P"Ybmmd" .JMML JMML. `Ybmd9' W W `Mbmmd' .JMML JMML. MMbmmd' .JMML. `Ybmd9' MM `Mbmmd' YMbmd' `Mbmo MM QO MP .JMML. `bmP By <NAME> ''' ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' LIBRARIES ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' import os from os.path import dirname, realpath, join import glob from osgeo import gdal, gdalconst, osr import folium from folium.raster_layers import ImageOverlay from folium.plugins import MeasureControl from folium import plugins import matplotlib.pyplot as plt import numpy as np from scipy import ndimage from skimage import measure from shapely.geometry import mapping, Polygon, Point import fiona from fiona.crs import from_epsg import geopandas as gpd import pandas as pd import ogr import subprocess from branca.element import Template, MacroElement from math import radians, sin ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' GENERALS ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ## SAY HELLO ## def bePolite(): print("HELLO") def makeFolder(path): try: os.makedirs(path, exist_ok=True) except: pass ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' STACK OPERATIONS ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' def stack(pt, tifs): return gdal.Translate(pt, gdal.BuildVRT('/vsimem/stacked.vrt', tifs, separate=True)) def stackBands(folder): tifs = glob.glob(join(folder, '*.tif')) print(tifs) #tifs.sort(key=len) print("stack", join(folder,'stack.tif')) stack(join(folder,'stack.tif'), tifs) def loadRasterStack(bandPath, bands): #bands in [2, 3, 4...] raster_ds = gdal.Open(bandPath, gdal.GA_ReadOnly) if raster_ds is None: raise Exception("can't open stack file") return raster_ds, [raster_ds.GetRasterBand(elem).ReadAsArray() for elem in bands] # raster object and images in those bands ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' SINGLE BAND OPERATION ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' # Leer una imagen individual def loadRasterImage(path): raster_ds = gdal.Open(path, gdal.GA_ReadOnly) if raster_ds is None: raise Exception("No se puede abrir el archivo tif") return raster_ds, raster_ds.GetRasterBand(1).ReadAsArray()#.astype(np.float32) def saveBandAsTiff(dst, rt, img, tt): transform = rt.GetGeoTransform() geotiff = gdal.GetDriverByName('GTiff') output = geotiff.Create(dst, rt.RasterXSize, rt.RasterYSize, 1,tt) wkt = rt.GetProjection() srs = osr.SpatialReference() srs.ImportFromWkt(wkt) output.GetRasterBand(1).WriteArray(np.array(img)) output.GetRasterBand(1).SetNoDataValue(-999) output.SetGeoTransform(transform) output.SetProjection(srs.ExportToWkt()) output = None ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' INDEX OPERATIONS ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' def calcNormIndex(imgs): np.seterr(invalid='ignore') return (imgs[1] - imgs[0]) / (imgs[1] + imgs[0]) def norm(img): return (img - np.min(img)) / (
np.max(img)
numpy.max
import numpy as np from pyDOE import lhs import dataset_creation import utils from definitions import input_upper_bound, input_lower_bound, valid_sampling_methods # %% Initialization --------------------------------------------- # These are the models used for N-1 analysis Nm1_models = dataset_creation.NSWPH_Initialize_Nm1_Models() def create_input_OPs(N_points_per_dimension: int = 5, sampling_method: str = 'Grid', seed: int = None): """ Basic sampler of input data, i.e., the operating points (OPs). At first sampling in the unscaled domain, i.e., [0;1] and then scaling using the value of the domain bounds from definitions.py. :param N_points_per_dimension: Governing the number of samples, i.e., 4**N. For non-grid sampling, simply 4**N datapoints are sampled. :param sampling_method: Defining the sampling method - valid methods in definitions.py :param seed: Controlling the random sampling of the input OPs (if set) :return: """ assert sampling_method in valid_sampling_methods, \ f'Please choose a valid sampling method.\nAvailable: {valid_sampling_methods}' num_samples = N_points_per_dimension ** 4 if seed is not None: np.random.seed(seed=seed) if sampling_method == 'Grid': base_linspace = np.linspace(0, 1, N_points_per_dimension) base_grid = np.meshgrid(base_linspace, base_linspace, base_linspace, base_linspace) unscaled_samples = np.hstack([grid_dimension.reshape((-1, 1)) for grid_dimension in base_grid]) elif sampling_method == 'LHC': unscaled_samples = lhs(n=4, samples=num_samples) elif sampling_method == 'Uniform': unscaled_samples = np.random.rand(num_samples, 4) else: raise Exception('Invalid sampling method.') input_data = input_lower_bound + unscaled_samples * (input_upper_bound - input_lower_bound) return input_data def evaluate_input_OPs(input_data): """ Evaluation of the physical model (NSWPH) for the given input operating points (OP). :param input_data: A numpy array with each row corresponding to an OP that consists of power set points and droop parameters. :return: The resulting values of the minimum damping ratio as well as the associated Jacobians and eigenvalues. """ input_data = utils.ensure_numpy_array(input_data) output = [dataset_creation.NSWPH_Minimum_Data_Point(input_OP, Nm1_models) for input_OP in input_data] output_damping_ratios =
np.vstack([output_tuple[0] for output_tuple in output])
numpy.vstack
""" Authors: <<NAME>, <NAME>> Copyright: (C) 2019-2020 <http://www.dei.unipd.it/ Department of Information Engineering> (DEI), <http://www.unipd.it/ University of Padua>, Italy License: <http://www.apache.org/licenses/LICENSE-2.0 Apache License, Version 2.0> """ import os import math import string import subprocess import itertools import pickle import numpy as np import xml.etree.ElementTree as ET from collections import Counter from functools import reduce from textwrap import wrap from whoosh.analysis import SimpleAnalyzer from sklearn.metrics.pairwise import cosine_similarity from tqdm import tqdm class Utils(object): """utils functions for neural vector space models""" def __init__(self, seed): """set random seed, initialize index variables""" np.random.seed(seed) self.term_dict = {} def build_term_dictionary(self, index, dict_size=65536, oov=False, remove_digits=True, min_doc_freq=2, max_doc_freq=0.5): """create term dictionary""" reader = index.reader() # get corpus size corpus_size = reader.doc_count() # get unique terms statistics: (term, doc_freq, term_freq) terms = self.terms_statistics(index) # initialize count list count = [] # add terms to count for term, doc_freq, term_freq in terms: # check if term does not exceed max_doc_freq (in %) if doc_freq / corpus_size <= max_doc_freq: # check if term is not inferior to min_doc_freq (not in %) if doc_freq >= min_doc_freq: # check if term does not contain digits if remove_digits: if self.has_digit(term): # skip term continue else: # keep term count.extend([(term, term_freq)]) else: # keep terms containing digits count.extend([(term, term_freq)]) else: # minimum doc freq not reached # skip term continue else: # maximum doc freq exceeded # skip term continue # convert count into Counter object and keep dict_size most frequent terms count = Counter(dict(count)).most_common(dict_size) if oov: # include out of vocabulary token count.extend([("__UNK__", 1)]) # last index: dict_size # for each term - that we want in the dictionary - add it and make it the value of the prior dictionary length for term, term_freq in count: self.term_dict[term] = len(self.term_dict) return True def has_digit(self, term): """check whether input term contains digits""" return any(char.isdigit() for char in term) def only_digits(self, term): """check whether input term contains only digits and/or punctuation""" return all(char.isdigit() or char in string.punctuation for char in term) def get_term_dictionary(self): """get term dictionary""" return self.term_dict def update_term_dictionary(self, term): """update term dictionary""" if term in self.term_dict: # term already in term_dict return True else: # update term_dict self.term_dict[term] = len(self.term_dict) return True def find_pos(self, line): """split text into terms and return dict {pos: [term, ["__NULL__"]]}""" pos_terms = {} terms = line.split() # define sentence index index = line.index running_offset = 0 # loop over terms for term in terms: # get term offset term_offset = index(term, running_offset) term_len = len(term) # update running offset running_offset = term_offset + term_len # append to term_offset each term + ["__NULL__"] for later use pos_terms[term_offset] = [term, ["__NULL__"]] return pos_terms def terms_statistics(self, index): """get unique terms statistics""" reader = index.reader() # unique terms terms = list(reader.field_terms('text')) # terms statistics terms_stats = list() # loop over unique terms for term in terms: # term info term_info = reader.term_info('text', term) # doc frequency doc_freq = term_info.doc_frequency() # term frequency term_freq = term_info.weight() # append info to terms statistics terms_stats.append((term, doc_freq, term_freq)) return terms_stats def index_statistics(self, index): """compute and print index statistics""" reader = index.reader() # doc indexes in whoosh doc_ids = list(reader.all_doc_ids()) # corpus size corpus_size = reader.doc_count() # maximum length of given field across all documents max_length = reader.max_field_length('text') # minimum length of given field across all documents min_length = reader.min_field_length('text') # total number of terms in given field corpus_length = reader.field_length('text') # total number of unique terms terms = list(reader.field_terms('text')) # number of terms in given field in given document docs_length = list() for doc_id in doc_ids: doc_length = reader.doc_field_length(doc_id, 'text') if doc_length: docs_length.append(doc_length) else: docs_length.append(0) # average length of given field across all documents in corpus avg_length = reduce((lambda x, y: x + y), docs_length) / corpus_size # print statistics print('corpus size: {}'.format(corpus_size)) print('maximum length: {}'.format(max_length)) print('minimum length: {}'.format(min_length)) print('average length: {}'.format(avg_length)) print('all terms: {}'.format(corpus_length)) print('unique terms: {}'.format(len(terms))) return True def corpus_statistics(self, corpus): """compute and print corpus statistics""" corpus_size = len(corpus) # compute documents lengths docs_length = np.array([len(doc) for doc in corpus]) # compute corpus length corpus_length = [term for doc in corpus for term in doc] # print statistics print('corpus size: {}'.format(corpus_size)) print('maximum length: {}'.format(
np.max(docs_length)
numpy.max
# Anharmonic correction to vibrational frequencies # Version 1.1 - 16/07/2020 # The file anharm_path.txt must be present in the root folder (the # one containing the program). The content of anharm_path.txt is the name # of the folder containing the data (usually, the folder relative to # the phase to be investigated). Such name is assigned to the abs_path # variable # Input file: input_anharm.txt (under the abs_path folder) # Structure of the input (input_anharm.txt): # # 1) folder name where SCAN data from CRYSTAL are stored # 2) output file name (it will be written in the folder # specified at line 1) # 3) minimim, maximum temperatures and number of points # where the anharmonic Helmholtz function will be # computed # 4) order of the polynomial used to fit the Helmholtz # free energy as a function of V and T. The unit # of the computed free energy is the hartree. # # The output file contains the power of the fitting polynomial # together with the optimized coefficents to reconstruct the # Helmholtz free energy as a function of V and T in the specified # ranges. Volume ranges are from the input files found in the # specified folder. # Files required to be found in the specified folder: # 1) volumes.dat: it contains the volumes at which the SCANMODE's # where done together with the harmonic frequencies # computed by CRYSTAL. # If not both 0., the last two columns, specifies # the minimum and maximum q to select. # Volumes of the primitive cell in cubic A; # frequencies in cm^-1. # 2) vect.dat: eigenvectors of the normal mode: une column for # each volume, n the same order as specified in # the volumes.dat file # 3) input.txt: it contains the names of the files where the Q # energies from the SCANMODE's are stored, as # they are copied and pasted from the CRYSTAL # output # 4) files whose names are stored in the input.txt file. # NOTE: in order to be used with the BM3_thermal_2 program, # fits from more than one normal modes must be of he same order # All the output files produced here must be copied in the relevant # input folder specified for the BM3_thermal_2. # The Anharmonic correction in BM3_thermal_2 program is activated # by the ANH keyword in the input file for that program. # Usage: # At the simplest level, just use the helm_fit() function to read # the all the input and to make the relevant fits. # from IPython import get_ipython # get_ipython().magic('clear') # get_ipython().magic('reset -sf') import datetime import numpy as np import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from scipy.optimize import curve_fit class anh_class(): pass class data_class(): def __init__(self,dim): self.dim=dim self.nlev=int(self.dim/2) class data_flag(): def __init__(self): self.comp=np.array([],dtype=bool) self.setup=False def load_files(): ''' Loads data files and file names of the SCAN data ''' data=np.loadtxt(path+'volumes.dat') volumes=data[:,0] h_freq=data[:,1] qmn=data[:,2] qmx=data[:,3] nvol=volumes.size scan_name=np.loadtxt(path+"input.txt", dtype=str) mode_vect=np.loadtxt(path+"vect.dat", dtype=float) glob.data=data glob.volumes=volumes glob.h_freq=h_freq glob.nvol=nvol glob.scan_name=scan_name glob.mode_vect=mode_vect glob.qmn=qmn glob.qmx=qmx prn_vol=str(volumes) print("Number of data SCAN's: %3i:" % nvol) print("Volumes: %s" % prn_vol) def set_up(): for i in np.arange(glob.nvol): qmn=glob.qmn[i] qmx=glob.qmx[i] anh[i]=anh_class() anh[i].name=glob.scan_name[i] anh[i].vol=glob.volumes[i] anh[i].h_freq=glob.h_freq[i] energy_data=np.loadtxt(path+glob.scan_name[i]) anh[i].q=energy_data[:,0].astype(float) anh[i].q_orig=np.copy(anh[i].q) energy=energy_data[:,1].astype(float) min_e=np.min(energy) anh[i].e=energy-min_e if (qmn != 0.) or (qmx != 0.): test=((anh[i].q >= qmn) & (anh[i].q <= qmx)) anh[i].q = anh[i].q[test] anh[i].e = anh[i].e[test] anh[i].vector=glob.mode_vect[:,i] fh_crys=anh[i].h_freq*csl anh[i].omega=2*np.pi*fh_crys anh[i].qmax=np.sqrt(sum(anh[i].vector**2)) anh[i].q2max=(anh[i].qmax**2)*(bohr**2) anh[i].red=ht/(anh[i].omega*anh[i].q2max); anh[i].q=anh[i].q*anh[i].qmax flag.comp=np.append(flag.comp, False) flag.setup=True def energy_func(qq, a, b, c, d): return a+b*qq**2+c*qq**3+d*qq**4 def energy_quad(qq, a, b): return a+b*qq**2 def start_fit(iv, npt=40): q=anh[iv].q e=anh[iv].e fit_par,_ =curve_fit(energy_func,q,e) fit_quad,_ =curve_fit(energy_quad,q,e) anh[iv].par=fit_par min_q=np.min(q) max_q=np.max(q) q_list=np.linspace(min_q,max_q,npt) e4_list=np.array([]) e2_list=np.array([]) for iq in q_list: ieq4=energy_func(iq,*anh[iv].par) ieq2=energy_quad(iq,*fit_quad) e4_list=np.append(e4_list,ieq4) e2_list=np.append(e2_list,ieq2) plt.figure() plt.plot(q_list,e4_list,"-",label='Quartic fit') plt.plot(q_list,e2_list,"--",label='Quadratic fit') plt.plot(anh[iv].q,anh[iv].e,"*",label='Actual values') plt.xlabel("Q") plt.ylabel("E") plt.legend(frameon=True) plt.show() anh[iv].ko=2*anh[iv].par[1]*conv/(bohr**2) lam=anh[iv].par[3] d3l=anh[iv].par[2] anh[iv].zero_l=anh[iv].par[0] anh[iv].om=np.sqrt(anh[iv].ko/anh[iv].red) anh[iv].nu=anh[iv].om/(2*np.pi*csl) anh[iv].lam=lam*conv/(bohr**4); anh[iv].d3l=d3l*conv/(bohr**3); anh[iv].fact=(ht/(2*anh[iv].red*anh[iv].om))**2; anh[iv].factd=(ht/(2*anh[iv].red*anh[iv].om))**(3/2); anh[iv].fact_1=anh[iv].lam*anh[iv].fact; anh[iv].factd_1=iun*anh[iv].factd*anh[iv].d3l; anh[iv].h_omeg=ht*anh[iv].om; def diag_n(iv, n): dn=(anh[iv].fact_1*6*(n**2+n+1/2))+(anh[iv].h_omeg*(n+1/2)); return dn def extra_1(iv, n): ext1=-3*anh[iv].factd_1*(n+1)*(np.sqrt(n+1)); return ext1 def extra_2(iv, n): ext2=-2*anh[iv].fact_1*(3+2*n)*(np.sqrt((n+2)*(n+1))); return ext2 def extra_3(iv, n): ext3=anh[iv].factd_1*np.sqrt((n+3)*(n+2)*(n+1)); return ext3 def extra_4(iv, n): ext4=anh[iv].fact_1*np.sqrt((n+4)*(n+3)*(n+2)*(n+1)); return ext4 def H_matrix(iv): ind=np.arange(glob.dim) H=np.zeros((glob.dim,glob.dim),dtype=complex) for ii in ind: for jj in ind: if ii==jj: H[jj][ii]=diag_n(iv, ii) elif jj==ii+2: H[jj][ii]=extra_2(iv, ii) elif jj==ii-2: H[jj][ii]=extra_2(iv, jj) elif jj==ii+4: H[jj][ii]=extra_4(iv, ii) elif jj==ii-4: H[jj][ii]=extra_4(iv, jj) elif jj==ii+1: H[jj][ii]=extra_1(iv, ii) elif jj==ii-1: H[jj][ii]=-1*extra_1(iv, jj) elif jj==ii+3: H[jj][ii]=extra_3(iv, ii) elif jj==ii-3: H[jj][ii]=-1*extra_3(iv, jj) return H def energy_anh(iv): H_mat=H_matrix(iv) vals=np.linalg.eigvals(H_mat) vals=np.real(vals) anh[iv].vals=np.sort(vals) anh[iv].e_zero=anh[iv].zero_l+anh[iv].vals/conv def partition(iv, temp, nl=10): """ Computes the partition function by direct summation of the exponential terms. By default, the number of the energy levels involved in the summation is in the variable glob.nlev, whose value is 1/2 of the dimension of the Hamiltonian matrix. Args: v: volume index (according to the list of volumes specified in the volumes.dat file) temp: temperature (K) nl: number of energy levels considered in the summation (default: 10) """ lev_list=np.arange(nl) z=0. for i in lev_list: z=z+np.exp(-1*anh[iv].vals[i]/(k*temp)) return z def helm(iv, temp): """ Computes the Helmholtz free energy (in hartree) Args: iv: volume index (according to the list of volumes specified in the volumes.dat file) temp: temperature (K) """ z=partition(iv, temp, nl=glob.nlev) return -1*k*temp*np.log(z)/conv def check_partition(iv, temp, from_plot=False): """ Checks convergence of the partition function at a given temperature Args: iv: volume index (according to the list of volumes specified in the volumes.dat file) temp: temperature (k) """ tol_der=0.005 min_lev=5 max_lev=glob.nlev lev_list=np.arange(min_lev,max_lev) z_list=np.array([]) for il in lev_list: iz=partition(iv,temp,il) z_list=np.append(z_list,iz) der_z=np.gradient(z_list) tlt="Partition function: convergence test for T = " + str(temp) + " K" plt.figure() plt.plot(lev_list, z_list) plt.title(tlt) plt.xlabel('Number of vibrational levels') plt.ylabel('Partition function') plt.show() test=(der_z >= tol_der) st=sum(test)+min_lev print("Threshold for convergence (on the variation of Z): %4.4f" % tol_der) if (st < glob.nlev): print("Convergence reached at the %3i level" % st) else: print("Warning: convergence never reached") eth=anh[iv].e_zero[st] test_scan=(eth-anh[iv].e) >= 0. zero_scan=True scan_sum=sum(test_scan) if scan_sum == 0: zero_scan=False if zero_scan: min_q=0. max_q=0. q_test=anh[iv].q[test_scan] min_q=np.min(q_test) max_q=np.max(q_test) else: min_q=np.min(anh[iv].q)*anh[iv].qmax max_q=np.max(anh[iv].q)*anh[iv].qmax min_sc=np.min(anh[iv].q) max_sc=np.max(anh[iv].q) mn_qmax=min_q/anh[iv].qmax mx_qmax=max_q/anh[iv].qmax if from_plot: print("Minimum and maximum q values: %4.2f, %4.2f" % (mn_qmax, mx_qmax)) else: print("Minimum and maximum q values: %4.2f, %4.2f" % (min_q, max_q)) if min_q <= min_sc or max_q >= max_sc: print("Warning: Q-SCAN out of range") def frequencies(iv, mxl=5, spect=False): delta_e=np.gradient(anh[iv].vals) freq=delta_e/(csl*h) if not spect: print("\nFrequencies (cm^-1) from the first %2i levels\n" % mxl) il=0 while il <= mxl: print(" %6.2f" % freq[il]) il=il+1 else: return freq def computation(iv): if not flag.setup: set_up() start_fit(iv) energy_anh(iv) flag.comp[iv]=True def start(temp=300): set_up() for ii in np.arange(glob.nvol): print("\n--------------\nVolume N. %3i" % ii) print("Volume %6.3f A^3, harmonic freq.: %6.2f cm^-1" %\ (anh[ii].vol, anh[ii].h_freq)) computation(ii) check_partition(ii,temp) frequencies(ii) def helm_fit(temp=300): """ Main function of the program: the produces the final result of the F(V,T) surface. Args: temp: temperature (in K) used in the test for convergence of the partition function (default: 300 K) """ start(temp) tl=np.linspace(tmin,tmax,nt) vl=glob.volumes helm_val=np.array([]) for it in tl: for iv in np.arange(glob.nvol): ih=helm(iv,it) helm_val=np.append(helm_val,ih) helm_val=helm_val.reshape(nt,glob.nvol) vl,tl=np.meshgrid(vl,tl) pl=np.arange(power_limit+1) p_list=np.array([],dtype=int) for ip1 in pl: for ip2 in pl: i1=ip2 i2=ip1-ip2 if i2 < 0: break ic=(i1, i2) p_list=np.append(p_list,ic) psize=p_list.size pterm=int(psize/2) glob.p_list=p_list.reshape(pterm,2) x0=np.ones(pterm) vl=vl.flatten() tl=tl.flatten() helm_val=helm_val.flatten() fit, pcov = curve_fit(helm_func, [vl, tl], helm_val, p0 = x0) t_plot=np.linspace(tmin,tmax,40) v_plot=np.linspace(np.min(vl),np.max(vl),40) v_plot,t_plot=np.meshgrid(v_plot,t_plot) v_plot=v_plot.flatten() t_plot=t_plot.flatten() h_plot=helm_func([v_plot, t_plot], *fit) h_plot=h_plot.reshape(40,40) v_plot=v_plot.reshape(40,40) t_plot=t_plot.reshape(40,40) fig = plt.figure(figsize=(8,8)) ax = fig.add_subplot(111,projection='3d', ) ax.scatter(vl,tl,helm_val,c='r') ax.plot_surface(v_plot, t_plot, h_plot) ax.set_xlabel("Volume", labelpad=7) ax.set_ylabel("Temperature", labelpad=7) ax.set_zlabel('F(V,T)', labelpad=8) plt.show() glob.fit=fit file=open(outfile,"w") for iw, iff in zip(glob.p_list,fit): issw0=iw[0] issw1=iw[1] siw=str(issw0)+" "+str(issw1)+" "+str(iff)+"\n" file.write(siw) file.write('END') file.close() print("\nFile %s written" % outfile) print("V, T polynomial fit of degree %3i" % power_limit) print("Temperature range: tmin=%4.1f, tmax=%4.1f" % (tmin,tmax)) vmin=np.min(glob.volumes) vmax=np.max(glob.volumes) print("Volume range: Vmin=%5.3f, Vmax=%5.3f" % (vmin, vmax)) hc=helm_func([vl, tl],*glob.fit) df2=(helm_val-hc)**2 mean_error=np.sqrt(sum(df2))/df2.size max_error=np.max(np.sqrt(df2)) print("Mean error from fit: %6.2e" % mean_error) print("Maximum error: %6.2e" % max_error) def helm_func(data,*par): vv=data[0] tt=data[1] nterm=glob.p_list.shape[0] func=0. for it in np.arange(nterm): pv=glob.p_list[it][0] pt=glob.p_list[it][1] func=func+par[it]*(vv**pv)*(tt**pt) return func def plot_levels(iv, max_lev, qmin=0., qmax=0., tmin=300, tmax=1000, nt=5, \ degree=4,chk=False, temp=300): """ Computes and plots vibrational energy levels on top of the potential curve of the mode. Args: iv: Volume index (select the volume according to the input list) max_lev: Number of levels to plot qmin, qmax: Q-range (default: qmin=qmax=0. --> full range) tmin, tmax: T-range for the computation of probability of of occupation of the vibrational levels (default: 300, 1000K) nt: number of points in the T-range degree: degree of the polynomial fitting the potential function (default: 4) chk: check on the corvengence of the partition function (default: False) temp: temperature for the check of the partition function (default: 300K) """ npoint=200 if not flag.setup: set_up() if not flag.comp[iv]: computation(iv) if chk: check_partition(iv, temp, from_plot=True) levels=anh[iv].vals/conv pot=anh[iv].e q=anh[iv].q/anh[iv].qmax t_list=np.linspace(tmin, tmax, nt) prob=np.array([]) for it in t_list: z=partition(iv,it) for idx in np.arange(max_lev): energy=levels[idx]*conv iprob=(np.exp(-1*energy/(k*it)))/z iprob=(iprob*100).round(1) prob=np.append(prob, iprob) prob=prob.reshape(nt,max_lev) df=pd.DataFrame(prob,index=t_list) df=df.T print("Energy levels occupation (probabilities) at several") print("temperatures in the %4.1f - % 4.1f interval\n" % (tmin, tmax)) print(df.to_string(index=False)) if (qmin == 0.) & (qmax == 0.): qmin=np.min(q) qmax=np.max(q) test=((q>=qmin) & (q<=qmax)) pot=pot[test] q=q[test] fit=np.polyfit(q,pot,degree) q_fit=np.linspace(qmin,qmax,npoint) e_fit=np.polyval(fit,q_fit) q_l=np.array([]) for idx in np.arange(max_lev): ie=levels[idx] test=(e_fit < ie) iqmin=np.min(q_fit[test]) iqmax=np.max(q_fit[test]) q_l=np.append(q_l,[iqmin,iqmax]) q_l=q_l.reshape(max_lev,2) plt.figure() plt.plot(q,pot) for idx in np.arange(max_lev): p1=q_l[idx][0] p2=q_l[idx][1] qp=(p1,p2) ep=(levels[idx],levels[idx]) plt.plot(qp,ep,"k--",linewidth=1) volume=anh[iv].vol.round(3) tlt="Volume: "+str(volume)+" A^3; Num. of levels: "+str(max_lev) plt.xlabel("Q (in unit of Q_max)") plt.ylabel("E (hartree)") plt.title(tlt) plt.show() def spectrum(iv,temp,nline=5,tail=8., head=8., sigma=2., fwhm=2., eta=0., npp=240): """ Computes the spectrum of the anharmonic mode by using a specified peak shape Args: iv: Volume index temp: Temperature (K) nline: Number of lines to be considered tail, head: the plotted range is [min(freq)-tail. max(freq)+head] where min(freq) and max(freq) are respectively the minum and maximum frequencis resulting from the "nline" transitions sigma: sigma associated to the Gaussian profile fwhm: full widthat half maximum associated to the Lorentzian profile eta: Gaussian/Lorentzian ratio; eta=0: full Gaussian (G) profile eta=1: full Lorentzian (L) profile in general: profile=G*(1-eta)+L*eta npp: number of points used for the plot Note: The vertical lines drawn under the spectrum mark the positions of the transition frequencies. If the number of lines is greater than 3, a color code is associated to such lines; blue - transitions involving levels associated to low quantum numbers; green -transitions at intermediate quantum numbers; red - transition at high quantum numbers """ if not flag.setup: set_up() if not flag.comp[iv]: computation(iv) freq=frequencies(iv,nline,spect=True) freq=freq[0:nline] z=partition(iv,temp) levels=anh[iv].vals/conv prob=np.array([]) for idx in
np.arange(nline)
numpy.arange
""" This module provides various methods for cleaning data that has been imported into MAST-ML, prior to model fitting. DataCleaning: Class that enables easy use of various data cleaning methods, such as removal of missing values, different modes of data imputation, or using principal componenet analysis to fill interpolate missing values. DataUtilities: Support class used to evaluate some basic statistics of imported data, such as its distribution, mean, etc. Also provides a means of flagging potential outlier datapoints based on their deviation from the overall data distribution. PPCA: Class used by the PCA data cleaning routine in the DataCleaning class to perform probabilistic PCA to fill in missing data. """ import os import numpy as np import pandas as pd from sklearn.impute import SimpleImputer from scipy.linalg import orth from collections import Counter from datetime import datetime from mastml.plots import Histogram class DataCleaning(): """ Class to perform various data cleaning operations, such as imputation or NaN removal Args: None Methods: remove: Method that removes a full column or row of data values if one column or row contains NaN or is blank Args: X: (pd.DataFrame), dataframe containing X data y: (pd.Series), series containing y data axis: (int), whether to remove rows (axis=0) or columns (axis=1) Returns: X: (pd.DataFrame): dataframe of cleaned X data y: (pd.Series): series of cleaned y data imputation: Method that imputes values to the missing places based on the median, mean, etc. of the data in the column Args: X: (pd.DataFrame), dataframe containing X data y: (pd.Series), series containing y data strategy: (str), method of imputation, e.g. median, mean, etc. Returns: X: (pd.DataFrame): dataframe of cleaned X data y: (pd.Series): series of cleaned y data ppca: Method that imputes data using principal component analysis to interpolate missing values Args: X: (pd.DataFrame), dataframe containing X data y: (pd.Series), series containing y data Returns: X: (pd.DataFrame): dataframe of cleaned X data y: (pd.Series): series of cleaned y data evaluate: Main method to evaluate initial data analysis routines (e.g. flag outliers), perform data cleaning and save output to folder Args: X: (pd.DataFrame), dataframe containing X data y: (pd.Series), series containing y data method: (str), data cleaning method name, must be one of 'remove', 'imputation' or 'ppca' savepath: (str), string containing the savepath information kwargs: additional keyword arguments needed for the remove, imputation or ppca methods Returns: X: (pd.DataFrame): dataframe of cleaned X data y: (pd.Series): series of cleaned y data _setup_savedir: method to create a savedir based on the provided model, splitter, selector names and datetime Args: savepath: (str), string designating the savepath Returns: splitdir: (str), string containing the new subdirectory to save results to """ def __init__(self): pass def remove(self, X, y, axis): df = pd.concat([X, y], axis=1) try: target = y.name except: target = y.columns.tolist()[0] df = df.dropna(axis=axis, how='any') y = df[target] X = df[[col for col in df.columns if col != target]] return X, y def imputation(self, X, y, strategy): df = pd.concat([X, y], axis=1) columns = df.columns.tolist() df = pd.DataFrame(SimpleImputer(missing_values=np.nan, strategy=strategy).fit_transform(df), columns=columns) try: target = y.name except: target = y.columns.tolist()[0] y = df[target] X = df[[col for col in df.columns if col != target]] return X, y def ppca(self, X, y): df = pd.concat([X, y], axis=1) try: target = y.name except: target = y.columns.tolist()[0] columns = df.columns.tolist() pca_magic = PPCA() pca_magic.fit(np.array(df)) # Need to un-standardize the pca-transformed data df = pd.DataFrame(pca_magic.data*pca_magic.stds+pca_magic.means, columns=columns) y = df[target] X = df[[col for col in columns if col != target]] return X, y def evaluate(self, X, y, method, savepath=None, make_new_dir=True, **kwargs): if not savepath: savepath = os.getcwd() if make_new_dir is True: splitdir = self._setup_savedir(savepath=savepath) savepath = splitdir self.splitdir = splitdir DataUtilities().flag_columns_with_strings(X=X, y=y, savepath=savepath) DataUtilities().flag_outliers(X=X, y=y, savepath=savepath, n_stdevs=3) df_orig = pd.concat([X, y], axis=1) self.cleaner = getattr(self, method) X, y = self.cleaner(X, y, **kwargs) df_cleaned = pd.concat([X, y], axis=1) df_orig.to_excel(os.path.join(savepath, 'data_original.xlsx'), index=False) df_cleaned.to_excel(os.path.join(savepath, 'data_cleaned.xlsx'), index=False) # Make histogram of the input data Histogram.plot_histogram(df=y, file_name='histogram_target_values', savepath=savepath, x_label='Target values') return X, y def _setup_savedir(self, savepath): now = datetime.now() dirname = self.__class__.__name__ dirname = f"{dirname}_{now.month:02d}_{now.day:02d}" \ f"_{now.hour:02d}_{now.minute:02d}_{now.second:02d}" if savepath == None: splitdir = os.getcwd() else: splitdir = os.path.join(savepath, dirname) if not os.path.exists(splitdir): os.mkdir(splitdir) return splitdir class DataUtilities(): """ Class that contains some basic data analysis utilities, such as flagging columns that contain problematic string entries, or flagging potential outlier values based on threshold values Args: None Methods: flag_outliers: Method that scans values in each X feature matrix column and flags values that are larger than X standard deviations from the average of that column value. The index and column values of potentially problematic points are listed and written to an output file. Args: X: (pd.DataFrame), dataframe containing X data y: (pd.Series), series containing y data savepath: (str), string containing the save path directory n_stdevs: (int), number of standard deviations to use as threshold value Returns: None flag_columns_with_strings: Method that ascertains which columns in data contain string entries Args: X: (pd.DataFrame), dataframe containing X data y: (pd.Series), series containing y data savepath: (str), string containing the save path directory Returns: None """ @classmethod def flag_outliers(cls, X, y, savepath, n_stdevs=3): df = pd.concat([X, y], axis=1) n_rows = df.shape[0] outlier_dict = dict() outlier_rows_all = list() for col in df.columns: outlier_rows = list() outlier_vals = list() avg = np.average(df[col]) stdev = np.std(df[col]) for row in range(n_rows): if df[col].iloc[row] > avg + n_stdevs*stdev: outlier_rows.append(row) outlier_vals.append(df[col].iloc[row]) elif df[col].iloc[row] < avg - n_stdevs*stdev: outlier_rows.append(row) outlier_vals.append(df[col].iloc[row]) else: pass outlier_dict[col] = (outlier_rows, outlier_vals) outlier_rows_all.append(outlier_rows) # Save data to file pd.DataFrame().from_dict(data=outlier_dict, orient='index', columns=['Indices', 'Values']).to_excel(os.path.join(savepath, 'data_outliers_all.xlsx')) # Also get values of rows that occur most often outlier_rows_all = np.concatenate(outlier_rows_all).ravel() outlier_counts = Counter(outlier_rows_all) # Save summary data of outlier counts to file pd.DataFrame().from_dict(data=outlier_counts, orient='index', columns=['Number of occurrences']).to_excel(os.path.join(savepath, 'data_outliers_summary.xlsx')) return @classmethod def flag_columns_with_strings(cls, X, y, savepath): df = pd.concat([X, y], axis=1) str_summary = pd.DataFrame(df.applymap(type).eq(str).any()) str_columns = str_summary.index[str_summary[0] == True].tolist() d = {'columns with strings': str_columns} pd.DataFrame().from_dict(data=d).to_excel(os.path.join(savepath, 'data_columns_with_strings.xlsx')) return class PPCA(): """ Class to perform probabilistic principal component analysis (PPCA) to fill in missing data. This PPCA routine was taken directly from https://github.com/allentran/pca-magic. Due to import errors, for ease of use we have elected to copy the module here. This github repo was last accessed on 8/27/18. The code comprising the PPCA class below was not developed by and is not owned by the University of Wisconsin-Madison MAST-ML development team. """ def __init__(self): self.raw = None self.data = None self.C = None self.means = None self.stds = None self.eig_vals = None def _standardize(self, X): if self.means is None or self.stds is None: raise RuntimeError("Fit model first") return (X - self.means) / self.stds def fit(self, data, d=None, tol=1e-4, min_obs=10, verbose=False): self.raw = data self.raw[np.isinf(self.raw)] = np.max(self.raw[np.isfinite(self.raw)]) valid_series = np.sum(~np.isnan(self.raw), axis=0) >= min_obs data = self.raw[:, valid_series].copy() N = data.shape[0] D = data.shape[1] self.means = np.nanmean(data, axis=0) self.stds = np.nanstd(data, axis=0) data = self._standardize(data) observed = ~np.isnan(data) missing = np.sum(~observed) data[~observed] = 0 # initial if d is None: d = data.shape[1] if self.C is None: C = np.random.randn(D, d) else: C = self.C CC = np.dot(C.T, C) X = np.dot(np.dot(data, C), np.linalg.inv(CC)) recon = np.dot(X, C.T) recon[~observed] = 0 ss = np.sum((recon - data) ** 2) / (N * D - missing) v0 = np.inf counter = 0 while True: Sx = np.linalg.inv(np.eye(d) + CC / ss) # e-step ss0 = ss if missing > 0: proj = np.dot(X, C.T) data[~observed] = proj[~observed] X = np.dot(np.dot(data, C), Sx) / ss # m-step XX = np.dot(X.T, X) C = np.dot(np.dot(data.T, X), np.linalg.pinv(XX + N * Sx)) CC = np.dot(C.T, C) recon = np.dot(X, C.T) recon[~observed] = 0 ss = (
np.sum((recon - data) ** 2)
numpy.sum
import os.path import numpy as np import math from collections import namedtuple from typing import Dict, Any, Tuple, List, Optional from models.adaptive_model import AdaptiveModel from models.standard_model import StandardModel from dataset.dataset import Dataset, DataSeries from utils.file_utils import save_by_file_suffix, read_by_file_suffix from utils.sequence_model_utils import SequenceModelType from utils.constants import OUTPUT, LOGITS, SEQ_LENGTH, SKIP_GATES, PHASE_GATES, STOP_OUTPUT_NAME LOG_FILE_FMT = 'model-{0}-{1}-{2}.jsonl.gz' ModelResults = namedtuple('ModelResults', ['predictions', 'labels', 'stop_probs', 'accuracy']) BATCH_SIZE = 64 def clip(x: int, bounds: Tuple[int, int]) -> int: if x > bounds[1]: return bounds[1] elif x < bounds[0]: return bounds[0] return x def save_test_log(accuracy: float, power: float, valid_accuracy: Optional[float], budget: float, system_name: str, key: str, output_file: str): test_log: Dict[str, Dict[str, Any]] = dict() if os.path.exists(output_file): test_log = list(read_by_file_suffix(output_file))[0] if key not in test_log: test_log[key] = dict() log_value = { 'ACCURACY': accuracy, 'AVG_POWER': power, 'VALID_ACCURACY': valid_accuracy, 'BUDGET': budget, 'SYSTEM_NAME': system_name } budget_str = '{0:.4f}'.format(budget) test_log[key][budget_str] = log_value save_by_file_suffix([test_log], output_file) def get_budget_index(budget: float, valid_accuracy: np.ndarray, max_time: int, power_estimates: np.ndarray, allow_violations: bool) -> int: """ Selects the single model level which should yield the best overall accuracy. This decision is based on the validation accuracy for each level. Args: budget: The current avg power budget valid_accuracy: A [L] array containing the validation accuracy for each model level max_time: The number of timesteps power_estimates: A [L] array of power estimates for each level allow_violations: Index selected in a manner which allows for budget violations if such violations will lead to better end-to-end accuracy. Returns: The "optimal" model level. """ best_index = 0 best_acc = 0.0 if allow_violations: num_levels = valid_accuracy.shape[0] energy_budget = budget * max_time for level_idx in range(num_levels): # Estimate the number of timesteps on which we can perform inference with this level avg_power = power_estimates[level_idx] projected_timesteps = min(energy_budget / avg_power, max_time) projected_correct = valid_accuracy[level_idx] * projected_timesteps estimated_accuracy = projected_correct / max_time if estimated_accuracy > best_acc: best_acc = estimated_accuracy best_index = level_idx else: budget_comparison = power_estimates <= budget if np.any(budget_comparison): budget_mask = budget_comparison.astype(float) masked_accuracy = valid_accuracy * budget_mask best_index = np.argmax(masked_accuracy) else: best_index = np.argmin(power_estimates) return best_index def concat_model_results(model_results: List[ModelResults]) -> ModelResults: """ Stacks each field of the given results into a single array. This is useful for Skip RNN and Phased RNN systems in which each output is a separate model. """ predictions = np.concatenate([r.predictions for r in model_results], axis=1) # [N, L] labels = model_results[0].labels # [N, 1] stop_probs = [r.stop_probs for r in model_results] accuracy = [r.accuracy for r in model_results] return ModelResults(predictions=predictions, labels=labels, stop_probs=stop_probs, accuracy=accuracy) def execute_adaptive_model(model: AdaptiveModel, dataset: Dataset, series: DataSeries) -> ModelResults: """ Executes the neural network on the given data series. We do this in a separate step to avoid recomputing for multiple budgets. Executing the neural network is relatively expensive. Args: model: The adaptive model used to perform inference dataset: The dataset to perform inference on series: The data series to extract. This is usually the TEST set. Returns: A model result tuple containing the inference results. """ level_predictions: List[np.ndarray] = [] stop_probs: List[np.ndarray] = [] labels: List[np.ndarray] = [] num_outputs = model.num_outputs # Operations to execute ops = [LOGITS, STOP_OUTPUT_NAME] # Make the batch generator. Don't shuffle so we have consistent results. data_generator = dataset.minibatch_generator(series=series, batch_size=BATCH_SIZE, metadata=model.metadata, should_shuffle=False) for batch_num, batch in enumerate(data_generator): # Compute the predicted log probabilities feed_dict = model.batch_to_feed_dict(batch, is_train=False, epoch_num=0) model_results = model.execute(feed_dict, ops=ops) # Concatenate logits into a [B, L, C] array (logit_ops is already ordered by level). # For reference, L is the number of levels and C is the number of classes logits = model_results[LOGITS] stop_output = model_results[STOP_OUTPUT_NAME] # [B, L] stop_probs.append(stop_output) # Compute the predictions for each level level_pred = np.argmax(logits, axis=-1) # [B, L] level_predictions.append(level_pred) labels.append(
np.array(batch[OUTPUT])
numpy.array
""" Last change: 12.08.2018 """ # Some imports from test_error import TestError from data_preparation_2 import Data import numpy as np from matplotlib import pyplot as plt import matplotlib import torch # Set global font for all matplotlib plots matplotlib.rcParams.update({'font.size': 15}) # Control variables estimate_errors = True estimate_acc = False step = 0.01 # Load data from data_preparation file loader = Data() cluster_size = 8 # Setting manually cluster size input_filename = "input_data2.csv" # Setting input file (for example "input_data2.csv") X_train, X_val, X_test, X_dev, X_orig, y_train, y_val, y_test, y_dev, y_orig = \ loader.set_loader(input_filename=input_filename, set='all', dev_num=1, cluster_size=cluster_size, split_arr=[0.6, 0.1, 0.3],) # X_val, y_val reducing X_val_sample_number = 512 np.random.seed(1) # every run will generate the same randomize-mask: seed(1) randomize = np.arange(X_val.shape[0]) np.random.shuffle(randomize) X_val = X_val[randomize, :, :] y_val = y_val[randomize, :] # Split X_val, y_val X_val, X_val_rest = np.split(X_val, [X_val_sample_number], axis=0) y_val, y_val_rest = np.split(y_val, [X_val_sample_number], axis=0) print('\nLoaded TRAIN-set has a shape of: ', X_train.shape) print('Loaded VAL-set has a shape of: ', X_val.shape) print('Loaded TEST-set has a shape of: ', X_test.shape) print('Loaded DEV-set has a shape of: ', X_dev.shape) print('Loaded ORIGINAL-set has a shape of: ', X_orig.shape) print() # print empty line # Transform input from numpy.ndarray to Tensor X_dev_tensor = torch.from_numpy(X_dev) y_dev_tensor = torch.from_numpy(y_dev) X_train_tensor = torch.from_numpy(X_train) y_train_tensor = torch.from_numpy(y_train) X_val_tensor = torch.from_numpy(X_val) y_val_tensor = torch.from_numpy(y_val) X_test_tensor = torch.from_numpy(X_test) y_test_tensor = torch.from_numpy(y_test) X_orig_tensor = torch.from_numpy(X_orig) y_orig_tensor = torch.from_numpy(y_orig) # Instantiate TestError TestErrorObj = TestError() # Load NN model model = torch.load('manual_500iter_leakyReLU_best_model.pt') # Estimate error if estimate_errors: print('estimate_errors') # Define threshold vector threshold_vec = np.arange(start=0.01, stop=0.99, step=step) # Iterate through threshold_vec to find the threshold value with minimal err1 err1_vec = [] err2_vec = [] acc_vec = [] current_procent = 0 for thres in threshold_vec: # Call function to estimate the accuracy acc, pred_np, y = TestErrorObj.check_accuracy(model=model, X=X_test_tensor, y=y_test_tensor, threshold_value=thres, internal_print=False) # Call function to estimate the error err1, err2 = TestErrorObj.check_error(model=model, X=X_test_tensor, y=y_test_tensor, threshold_value=thres, internal_print=False) # Print current status current_procent = current_procent + 100 / threshold_vec.shape[0] print('Done: %.2f; Threshold %.2f; Acc: %.3f; Err1: %.3f; Err2: %.3f' % (current_procent, thres, acc, err1, err2)) err1_vec.append(err1) err2_vec.append(err2) acc_vec.append(acc) fig = plt.figure() plt.plot(threshold_vec, acc_vec, linewidth=2) plt.plot(threshold_vec, err1_vec, linewidth=2) plt.plot(threshold_vec, err2_vec, linewidth=2) plt.xlabel('Threshold value') plt.autoscale(enable=True, axis='x', tight=True) plt.ylabel('Accuracy / Error [%]') plt.grid() plt.axis([None, None, 0, 100]) plt.legend(labels=['Accuracy', 'Err1: "ground instead of air"', 'Err2: "air instead of ground"'], loc='best') plt.savefig('err_plot.pdf') # Estimate the threshold with the best accuracy if estimate_acc: print('estimate_acc') # Define threshold vector threshold_vec = np.arange(start=0.01, stop=0.99, step=step) # Iterate through threshold_vec to find the threshold value with max. accuracy acc_vec = [] current_procent = 0 for thres in threshold_vec: # Call function to estimate the accuracy acc, pred_np, y = TestErrorObj.check_accuracy(model=model, X=X_test_tensor, y=y_test_tensor, threshold_value=thres, internal_print=False) # Print current status current_procent = current_procent + 100 / threshold_vec.shape[0] print('Done: %.2f percent; Threshold %.2f; Acc: %.3f' % (current_procent, thres, acc)) acc_vec.append(acc) # Convert acc_vec list to the numpy.ndarray acc_vec_np = np.asarray(acc_vec) max_acc =
np.amax(acc_vec_np)
numpy.amax
import pytest from mamosa.synthetic import SyntheticData import numpy as np from numpy.testing import assert_array_equal @pytest.fixture() def seed(): np.random.seed(123) @pytest.fixture def horizons(): horizons = np.array( [[[0, 1, 1], [0, 1, 0], [1, 1, -1]], [[1, 2, 2], [-1, -1, -1], [-1, -1, -1]]] ) return horizons @pytest.mark.filterwarnings("ignore:horizon") def test_generate_horizons(seed): shape = (16, 16, 16) synth = SyntheticData(shape) n_horizons = 3 min_dist = 3 horizons = synth.generate_horizons(n_horizons, min_dist, fault_size=2) assert_array_equal(horizons, synth.horizons) assert np.all(np.isin(horizons, np.arange(-1, shape[2]))) assert horizons.shape == (n_horizons, shape[0], shape[1]) diff = horizons[1:] - horizons[:-1] oob = horizons[1:] == -1 assert np.all(np.logical_or(diff >= min_dist, oob)) synth.facies = 1 synth.seismic = 1 synth.oob_horizons = [1] n_horizons = 1 horizons = synth.generate_horizons(n_horizons, min_dist, fault_size=0) assert horizons.shape[0] == n_horizons assert synth.facies is None assert synth.seismic is None assert synth.oob_horizons == [] # This can actually fail by randomness def test_generate_oob_horizons(seed): shape = (16, 16, 16) synth = SyntheticData(shape) # Generate out of bound horizons with pytest.warns(UserWarning, match="horizon"): synth.generate_horizons(3, shape[2]) assert synth.oob_horizons.__len__() > 0 with pytest.warns(UserWarning, match="horizon"): h_vol = synth.horizon_volume(2) assert h_vol is None def test_horizon_volume(horizons): synth = SyntheticData((3, 3, 3)) synth.horizons = horizons h_vol = synth.horizon_volume(0) h_vol_true = np.array( [ [[1, 0, 0], [0, 1, 0], [0, 1, 0]], [[1, 0, 0], [0, 1, 0], [1, 0, 0]], [[0, 1, 0], [0, 1, 0], [0, 0, 0]], ] ) assert_array_equal(h_vol, h_vol_true) def test_ixtn_horizons(horizons): synth = SyntheticData((3, 3, 3)) synth.horizons = horizons ixtn = synth.ixtn_horizons() ixtn_true = np.array( [ [0, 0, 0, 0], [0, 1, 1, 0], [0, 2, 1, 0], [1, 0, 0, 0], [1, 1, 1, 0], [1, 2, 0, 0], [2, 0, 1, 0], [2, 1, 1, 0], [0, 0, 1, 1], [0, 1, 2, 1], [0, 2, 2, 1], ] )
assert_array_equal(ixtn, ixtn_true)
numpy.testing.assert_array_equal
# Collection of small helper functions import numpy as np import pyaudio from scipy.fftpack import fft from .codec import audio_read import logging import decimal import math class _error(Exception): pass def linlin(x, smi, sma, dmi, dma): """Linear mapping Parameters ---------- x : float input value smi : float input range's minimum sma : float input range's maximum dmi : float input range's minimum dma : Returns ------- _ : float mapped output """ return (x - smi) / (sma - smi) * (dma - dmi) + dmi def midicps(m): """Convert midi number into cycle per second""" return 440.0 * 2 ** ((m - 69) / 12.0) def cpsmidi(c): """Convert cycle per second into midi number""" return 69 + 12 * np.log2(c / 440.0) def dbamp(db): """Convert db to amplitude""" return 10 ** (db / 20.0) def ampdb(amp): """Convert amplitude to db""" return 20 * np.log10(amp) def spectrum(sig, samples, channels, sr): """Return spectrum of a given signal. This method return spectrum matrix if input signal is multi-channels. Parameters ---------- sig : numpy.ndarray signal array samples : int total amount of samples channels : int signal channels sr : int sampling rate Returns --------- frq : numpy.ndarray frequencies Y : numpy.ndarray FFT of the signal. """ nrfreqs = samples // 2 + 1 frq = np.linspace(0, 0.5 * sr, nrfreqs) # one sides frequency range if channels == 1: Y = fft(sig)[:nrfreqs] # / self.samples else: Y = np.array(np.zeros((nrfreqs, channels)), dtype=complex) for i in range(channels): Y[:, i] = fft(sig[:, i])[:nrfreqs] return frq, Y def normalize(d): """Return the normalized input array""" # d is a (n x dimension) np array d -= np.min(d, axis=0) d /= np.ptp(d, axis=0) return d def audio_from_file(path, dtype=np.float32): '''Load an audio buffer using audioread. This loads one block at a time, and then concatenates the results. ''' y = [] # audio array with audio_read(path) as input_file: sr_native = input_file.samplerate n_channels = input_file.channels s_start = 0 s_end = np.inf n = 0 for frame in input_file: frame = buf_to_float(frame, dtype=dtype) n_prev = n n = n + len(frame) if n_prev <= s_start <= n: # beginning is in this frame frame = frame[(s_start - n_prev):] # tack on the current frame y.append(frame) if y: y = np.concatenate(y) if n_channels > 1: y = y.reshape((-1, n_channels)) else: y = np.empty(0, dtype=dtype) sr_native = 0 return y, sr_native def buf_to_float(x, n_bytes=2, dtype=np.float32): """Convert an integer buffer to floating point values. This is primarily useful when loading integer-valued wav data into numpy arrays. See Also -------- buf_to_float Parameters ---------- x : np.ndarray [dtype=int] The integer-valued data buffer n_bytes : int [1, 2, 4] The number of bytes per sample in `x` dtype : numeric type The target output type (default: 32-bit float) Returns ------- x_float : np.ndarray [dtype=float] The input data buffer cast to floating point """ # Invert the scale of the data scale = 1. / float(1 << ((8 * n_bytes) - 1)) # Construct the format string fmt = '<i{:d}'.format(n_bytes) # Rescale and format the data buffer return scale * np.frombuffer(x, fmt).astype(dtype) def device_info(): """Return a formatted string about available audio devices and their info""" pa = pyaudio.PyAudio() line1 = (f"idx {'Device Name':25}{'INP':4}{'OUT':4} SR INP-(Lo|Hi) OUT-(Lo/Hi) (Latency in ms)") devs = [pa.get_device_info_by_index(i) for i in range(pa.get_device_count())] lines = [line1] for i, d in enumerate(devs): p1 = f"{i:<4g}{d['name'].strip():24}{d['maxInputChannels']:4}{d['maxOutputChannels']:4}" p2 = f" {int(d['defaultSampleRate'])} " p3 = f"{d['defaultLowInputLatency']*1000:6.2g} {d['defaultHighInputLatency']*1000:6.0f}" p4 = f"{d['defaultLowOutputLatency']*1000:6.2g} {d['defaultHighOutputLatency']*1000:6.0f}" lines.append(p1 + p2 + p3 + p4) print(*lines, sep='\n') return devs def find_device(min_input=0, min_output=0): pa = pyaudio.PyAudio() res = [] for idx in range(pa.get_device_count()): dev = pa.get_device_info_by_index(idx) if dev['maxInputChannels'] >= min_input and dev['maxOutputChannels'] >= min_output: res.append(dev) return res def padding(x, width, tail=True, constant_values=0): """Pad signal with certain width, support 1-3D tensors. Use it to add silence to a signal TODO: CHECK pad array Parameters ---------- x : np.ndarray A numpy array width : int The amount of padding. tail : bool If true pad to the tail, else pad to the start. constant_values : int or float or None The value to be padded, add None will pad nan to the array Returns ------- _ : np.ndarray Padded array """ pad = (0, width) if tail else (width, 0) if x.ndim == 1: return np.pad(x, (pad), mode='constant', constant_values=constant_values) elif x.ndim == 2: return np.pad(x, (pad, (0, 0)), mode='constant', constant_values=constant_values) elif x.ndim == 3: return
np.pad(x, ((0, 0), pad, (0, 0)), mode='constant', constant_values=constant_values)
numpy.pad
import numpy as np import warnings warnings.filterwarnings("ignore") def knee_pt(y, x=None): x_was_none = False use_absolute_dev_p = True res_x = np.nan idx_of_result = np.nan if type(y) is not np.ndarray: print('knee_pt: y must be a numpy 1D vector') return res_x, idx_of_result else: if y.ndim >= 2: print('knee_pt: y must be 1 dimensional') return res_x, idx_of_result if np.size(y) == 0: print('knee_pt: y can not be an empty vector') return res_x, idx_of_result else: if x is None: x_was_none = True x = np.arange(1, np.amax(y.shape) + 1, dtype=np.int) if x.shape != y.shape: print('knee_pt: y and x must have the same dimensions') return res_x, idx_of_result if y.size < 3: res_x, idx_of_result = np.min(y), np.argmin(y) return res_x, idx_of_result if np.all(np.diff(x) >= 0) and (not x_was_none): idx = np.argsort(x) y = np.sort(y) x = np.sort(x) else: idx = np.arange(0, np.amax(x.shape)) sigma_xy = np.cumsum(np.multiply(x, y), axis=0) sigma_x = np.cumsum(x, axis=0) sigma_y = np.cumsum(y, axis=0) sigma_xx = np.cumsum(np.multiply(x, x), axis=0) n = np.arange(1, np.amax(y.shape) + 1).conj().T det = np.multiply(n, sigma_xx) - np.multiply(sigma_x, sigma_x) mfwd = (np.multiply(n, sigma_xy) - np.multiply(sigma_x, sigma_y)) / det bfwd = -1 * ((np.multiply(sigma_x, sigma_xy) - np.multiply(sigma_xx, sigma_y)) / det) sigma_xy = np.cumsum(np.multiply(x[::-1], y[::-1]), axis=0) sigma_x =
np.cumsum(x[::-1], axis=0)
numpy.cumsum
import unittest import itertools import numpy import pytest import cupy from cupy import testing def perm(iterable): return list(itertools.permutations(iterable)) @testing.parameterize( *testing.product({ 'shape': [(4, 4, 4)], 'indexes': ( perm(([1, 0], slice(None))) + perm(([1, 0], Ellipsis)) + perm(([1, 2], None, slice(None))) + perm(([1, 0], 1, slice(None))) + perm(([1, 2], slice(0, 2), slice(None))) + perm((1, [1, 2], 1)) + perm(([[1, -1], [0, 3]], slice(None), slice(None))) + perm(([1, 0], [3, 2], slice(None))) + perm((slice(0, 3, 2), [1, 2], [1, 0])) + perm(([1, 0], [2, 1], [3, 1])) + perm(([1, 0], 1, [3, 1])) + perm(([1, 2], [[1, 0], [0, 1], [-1, 1]], slice(None))) + perm((None, [1, 2], [1, 0])) + perm((numpy.array(0), numpy.array(-1))) + perm((numpy.array(0), None)) + perm((1, numpy.array(2), slice(None))) ) }) ) @testing.gpu class TestArrayAdvancedIndexingGetitemPerm(unittest.TestCase): @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_adv_getitem(self, xp, dtype): a = testing.shaped_arange(self.shape, xp, dtype) return a[self.indexes] @testing.parameterize( {'shape': (2, 3, 4), 'indexes': numpy.array(-1)}, {'shape': (2, 3, 4), 'indexes': (None, [1, 0], [0, 2], slice(None))}, {'shape': (2, 3, 4), 'indexes': (None, [0, 1], None, [2, 1], slice(None))}, {'shape': (2, 3, 4), 'indexes': numpy.array([1, 0])}, {'shape': (2, 3, 4), 'indexes': [1]}, {'shape': (2, 3, 4), 'indexes': [1, 1]}, {'shape': (2, 3, 4), 'indexes': [1, -1]}, {'shape': (2, 3, 4), 'indexes': ([0, 1], slice(None), [[2, 1], [3, 1]])}, # mask {'shape': (10,), 'indexes': (numpy.random.choice([False, True], (10,)),)}, {'shape': (2, 3, 4), 'indexes': (1, numpy.array([True, False, True]))}, {'shape': (2, 3, 4), 'indexes': (numpy.array([True, False]), 1)}, {'shape': (2, 3, 4), 'indexes': (slice(None), 2, numpy.array([True, False, True, False]))}, {'shape': (2, 3, 4), 'indexes': (slice(None), 2, False)}, {'shape': (2, 3, 4), 'indexes': (numpy.random.choice([False, True], (2, 3, 4)),)}, {'shape': (2, 3, 4), 'indexes': (slice(None), numpy.array([True, False, True]))}, {'shape': (2, 3, 4), 'indexes': (slice(None), slice(None), numpy.array([True, False, False, True]))}, {'shape': (2, 3, 4), 'indexes': (1, 2, numpy.array([True, False, False, True]))}, {'shape': (2, 3, 4), 'indexes': (slice(None), numpy.random.choice([False, True], (3, 4)))}, {'shape': (2, 3, 4), 'indexes': numpy.random.choice([False, True], (2, 3))}, # TODO(okuta): pass the following commented out tests # {'shape': (2, 3, 4), # 'indexes': (1, None, numpy.array([True, False, True]))}, # empty arrays {'shape': (2, 3, 4), 'indexes': []}, {'shape': (2, 3, 4), 'indexes': numpy.array([], dtype=numpy.int32)}, {'shape': (2, 3, 4), 'indexes': numpy.array([[]], dtype=numpy.int32)}, {'shape': (2, 3, 4), 'indexes': (slice(None), [])}, {'shape': (2, 3, 4), 'indexes': ([], [])}, {'shape': (2, 3, 4), 'indexes': ([[]],)}, {'shape': (2, 3, 4), 'indexes': numpy.array([], dtype=numpy.bool_)}, {'shape': (2, 3, 4), 'indexes': (slice(None), numpy.array([], dtype=numpy.bool_))}, {'shape': (2, 3, 4), 'indexes': numpy.array([[], []], dtype=numpy.bool_)}, # TODO(okuta): pass the following commented out tests # {'shape': (2, 3, 4), 'indexes': (True, [True, False])}, # {'shape': (2, 3, 4), 'indexes': (False, [True, False])}, # {'shape': (2, 3, 4), 'indexes': (True, [[1]], slice(1, 2))}, # {'shape': (2, 3, 4), 'indexes': (False, [[1]], slice(1, 2))}, # {'shape': (2, 3, 4), 'indexes': (True, [[1]], slice(1, 2), True)}, # {'shape': (2, 3, 4), 'indexes': (True, [[1]], slice(1, 2), False)}, # zero-dim and zero-sized arrays {'shape': (), 'indexes': Ellipsis}, {'shape': (), 'indexes': ()}, {'shape': (), 'indexes': None}, {'shape': (), 'indexes': True}, {'shape': (), 'indexes': (True,)}, # TODO(niboshi): pass the following commented out tests # {'shape': (), 'indexes': (False, True, True)}, {'shape': (), 'indexes': numpy.ones((), dtype=numpy.bool_)}, {'shape': (), 'indexes': numpy.zeros((), dtype=numpy.bool_)}, {'shape': (0,), 'indexes': None}, {'shape': (0,), 'indexes': ()}, {'shape': (2, 0), 'indexes': ([1],)}, {'shape': (0, 3), 'indexes': (slice(None), [1])}, # TODO(niboshi): pass the following commented out tests # {'shape': (0,), 'indexes': (False, True, True)}, ) @testing.gpu class TestArrayAdvancedIndexingGetitemParametrized(unittest.TestCase): @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_adv_getitem(self, xp, dtype): a = testing.shaped_arange(self.shape, xp, dtype) return a[self.indexes] @testing.parameterize( # empty arrays (list indexes) {'shape': (2, 3, 4), 'indexes': [[]]}, {'shape': (2, 3, 4), 'indexes': [[[]]]}, {'shape': (2, 3, 4), 'indexes': [[[[]]]]}, {'shape': (2, 3, 4, 5), 'indexes': [[[[]]]]}, {'shape': (2, 3, 4, 5), 'indexes': [[[[[]]]]]}, # list indexes {'shape': (2, 3, 4), 'indexes': [[1]]}, {'shape': (2, 3, 4), 'indexes': [[1, 1]]}, {'shape': (2, 3, 4), 'indexes': [[1], [1]]}, {'shape': (2, 3, 4), 'indexes': [[1, 1], 1]}, {'shape': (2, 3, 4), 'indexes': [[1], slice(1, 2)]}, {'shape': (2, 3, 4), 'indexes': [[[1]], slice(1, 2)]}, ) @testing.gpu class TestArrayAdvancedIndexingGetitemDeprecated(unittest.TestCase): @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_adv_getitem(self, xp, dtype): with testing.assert_warns(FutureWarning): a = testing.shaped_arange(self.shape, xp, dtype) return a[self.indexes] @testing.parameterize( {'shape': (0,), 'indexes': True}, {'shape': (0,), 'indexes': (True,)}, {'shape': (0,), 'indexes': numpy.ones((), dtype=numpy.bool_)}, {'shape': (0,), 'indexes': numpy.zeros((), dtype=numpy.bool_)}, ) @testing.gpu class TestArrayAdvancedIndexingGetitemParametrized2(unittest.TestCase): @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_adv_getitem(self, xp, dtype): a = testing.shaped_arange(self.shape, xp, dtype) return a[self.indexes] @testing.parameterize( {'shape': (2, 3, 4), 'transpose': (1, 2, 0), 'indexes': (slice(None), [1, 0])}, {'shape': (2, 3, 4), 'transpose': (1, 0, 2), 'indexes': (None, [1, 2], [0, -1])}, ) @testing.gpu class TestArrayAdvancedIndexingGetitemParametrizedTransp(unittest.TestCase): @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_adv_getitem(self, xp, dtype): a = testing.shaped_arange(self.shape, xp, dtype) if self.transpose: a = a.transpose(self.transpose) return a[self.indexes] @testing.gpu class TestArrayAdvancedIndexingGetitemCupyIndices(unittest.TestCase): shape = (2, 3, 4) def test_adv_getitem_cupy_indices1(self): a = cupy.zeros(self.shape) index = cupy.array([1, 0]) original_index = index.copy() b = a[index] b_cpu = a.get()[index.get()] testing.assert_array_equal(b, b_cpu) testing.assert_array_equal(original_index, index) def test_adv_getitem_cupy_indices2(self): a = cupy.zeros(self.shape) index = cupy.array([1, 0]) original_index = index.copy() b = a[(slice(None), index)] b_cpu = a.get()[(slice(None), index.get())] testing.assert_array_equal(b, b_cpu) testing.assert_array_equal(original_index, index) def test_adv_getitem_cupy_indices3(self): a = cupy.zeros(self.shape) index = cupy.array([True, False]) original_index = index.copy() b = a[index] b_cpu = a.get()[index.get()] testing.assert_array_equal(b, b_cpu) testing.assert_array_equal(original_index, index) def test_adv_getitem_cupy_indices4(self): a = cupy.zeros(self.shape) index = cupy.array([4, -5]) original_index = index.copy() b = a[index] b_cpu = a.get()[index.get() % self.shape[1]] testing.assert_array_equal(b, b_cpu) testing.assert_array_equal(original_index, index) def test_adv_getitem_cupy_indices5(self): a = cupy.zeros(self.shape) index = cupy.array([4, -5]) original_index = index.copy() b = a[[1, 0], index] b_cpu = a.get()[[1, 0], index.get() % self.shape[1]] testing.assert_array_equal(b, b_cpu) testing.assert_array_equal(original_index, index) @testing.parameterize( {'shape': (2**3 + 1, 2**4), 'indexes': ( numpy.array([2**3], dtype=numpy.int8), numpy.array([1], dtype=numpy.int8))}, {'shape': (2**4 + 1, 2**4), 'indexes': ( numpy.array([2**4], dtype=numpy.uint8), numpy.array([1], dtype=numpy.uint8))}, {'shape': (2**7 + 1, 2**8), 'indexes': ( numpy.array([2**7], dtype=numpy.int16), numpy.array([1], dtype=numpy.int16))}, {'shape': (2**8 + 1, 2**8), 'indexes': ( numpy.array([2**8], dtype=numpy.uint16), numpy.array([1], dtype=numpy.uint16))}, {'shape': (2**7 + 1, 2**8), 'indexes': ( numpy.array([2**7], dtype=numpy.int16), numpy.array([1], dtype=numpy.int32))}, {'shape': (2**7 + 1, 2**8), 'indexes': ( numpy.array([2**7], dtype=numpy.int16), numpy.array([1], dtype=numpy.int8))}, # Three-dimensional case {'shape': (2**3 + 1, 3, 2**4), 'indexes': ( numpy.array([2**3], dtype=numpy.int8), slice(None), numpy.array([1], dtype=numpy.int8))}, ) @testing.gpu class TestArrayAdvancedIndexingOverflow(unittest.TestCase): def test_getitem(self): a = cupy.arange(numpy.prod(self.shape)).reshape(self.shape) indexes_gpu = [] for s in self.indexes: if isinstance(s, numpy.ndarray): s = cupy.array(s) indexes_gpu.append(s) indexes_gpu = tuple(indexes_gpu) b = a[indexes_gpu] b_cpu = a.get()[self.indexes] testing.assert_array_equal(b, b_cpu) def test_setitem(self): a_cpu = numpy.arange(numpy.prod(self.shape)).reshape(self.shape) a = cupy.array(a_cpu) indexes_gpu = [] for s in self.indexes: if isinstance(s, numpy.ndarray): s = cupy.array(s) indexes_gpu.append(s) indexes_gpu = tuple(indexes_gpu) a[indexes_gpu] = -1 a_cpu[self.indexes] = -1 testing.assert_array_equal(a, a_cpu) @testing.parameterize( {'shape': (), 'indexes': (-1,)}, {'shape': (), 'indexes': (0,)}, {'shape': (), 'indexes': (1,)}, {'shape': (), 'indexes': ([0],)}, {'shape': (), 'indexes': (numpy.array([0]),)}, {'shape': (), 'indexes': (numpy.array(0),)}, {'shape': (), 'indexes': numpy.array([True])}, {'shape': (), 'indexes': numpy.array([False, True, True])}, {'shape': (), 'indexes': ([False],)}, {'shape': (0,), 'indexes': (-1,)}, {'shape': (0,), 'indexes': (0,)}, {'shape': (0,), 'indexes': (1,)}, {'shape': (0,), 'indexes': ([0],)}, {'shape': (0,), 'indexes': (numpy.array([0]),)}, {'shape': (0,), 'indexes': (numpy.array(0),)}, {'shape': (0,), 'indexes': numpy.array([True])}, {'shape': (0,), 'indexes': numpy.array([False, True, True])}, {'shape': (0, 1), 'indexes': (0, Ellipsis)}, {'shape': (2, 3), 'indexes': (slice(None), [1, 2], slice(None))}, {'shape': (2, 3), 'indexes': numpy.array([], dtype=numpy.float64)}, ) @testing.gpu class TestArrayInvalidIndexAdvGetitem(unittest.TestCase): def test_invalid_adv_getitem(self): for xp in (numpy, cupy): a = testing.shaped_arange(self.shape, xp) with pytest.raises(IndexError): a[self.indexes] @testing.parameterize( {'shape': (0,), 'indexes': ([False],)}, {'shape': (2, 3, 4), 'indexes': (slice(None), numpy.random.choice([False, True], (3, 1)))}, {'shape': (2, 3, 4), 'indexes': numpy.random.choice([False, True], (1, 3))}, ) @testing.gpu class TestArrayInvalidIndexAdvGetitem2(unittest.TestCase): def test_invalid_adv_getitem(self): for xp in (numpy, cupy): a = testing.shaped_arange(self.shape, xp) with pytest.raises(IndexError): a[self.indexes] @testing.parameterize( {'shape': (2, 3, 4), 'indexes': [1, [1, [1]]]}, ) @testing.gpu @testing.with_requires('numpy>=1.16') class TestArrayInvalidValueAdvGetitem(unittest.TestCase): def test_invalid_adv_getitem(self): for xp in (numpy, cupy): a = testing.shaped_arange(self.shape, xp) with pytest.raises(IndexError): with testing.assert_warns(FutureWarning): a[self.indexes] @testing.parameterize( # array only {'shape': (2, 3, 4), 'indexes': numpy.array(-1), 'value': 1}, {'shape': (2, 3, 4), 'indexes': numpy.array([1, 0]), 'value': 1}, {'shape': (2, 3, 4), 'indexes': [1, 0], 'value': 1}, {'shape': (2, 3, 4), 'indexes': [1, -1], 'value': 1}, {'shape': (2, 3, 4), 'indexes': (slice(None), [1, 2]), 'value': 1}, {'shape': (2, 3, 4), 'indexes': (slice(None), [[1, 2], [0, -1]],), 'value': 1}, {'shape': (2, 3, 4), 'indexes': (slice(None), slice(None), [[1, 2], [0, -1]]), 'value': 1}, # slice and array {'shape': (2, 3, 4), 'indexes': (slice(None), slice(1, 2), [[1, 2], [0, -1]]), 'value': 1}, # None and array {'shape': (2, 3, 4), 'indexes': (None, [1, -1]), 'value': 1}, {'shape': (2, 3, 4), 'indexes': (None, [1, -1], None), 'value': 1}, {'shape': (2, 3, 4), 'indexes': (None, None, None, [1, -1]), 'value': 1}, # None, slice and array {'shape': (2, 3, 4), 'indexes': (slice(0, 1), None, [1, -1]), 'value': 1}, {'shape': (2, 3, 4), 'indexes': (slice(0, 1), slice(1, 2), [1, -1]), 'value': 1}, {'shape': (2, 3, 4), 'indexes': (slice(0, 1), None, slice(1, 2), [1, -1]), 'value': 1}, # mask {'shape': (2, 3, 4), 'indexes': numpy.array([True, False]), 'value': 1}, {'shape': (2, 3, 4), 'indexes': (1, numpy.array([True, False, True])), 'value': 1}, {'shape': (2, 3, 4), 'indexes': (numpy.array([True, False]), 1), 'value': 1}, {'shape': (2, 3, 4), 'indexes': (slice(None), numpy.array([True, False, True])), 'value': 1}, {'shape': (2, 3, 4), 'indexes': (slice(None), 2, numpy.array([True, False, True, False])), 'value': 1}, {'shape': (2, 3, 4), 'indexes': (slice(None), 2, False), 'value': 1}, {'shape': (2, 3, 4), 'indexes': (slice(None), slice(None), numpy.random.choice([False, True], (4,))), 'value': 1}, {'shape': (2, 3, 4), 'indexes': (numpy.random.choice([False, True], (2, 3)),), 'value': 1}, {'shape': (2, 3, 4), 'indexes': (slice(None), numpy.random.choice([False, True], (3, 4)),), 'value': 1}, {'shape': (2, 3, 4), 'indexes': (numpy.random.choice([False, True], (2, 3, 4)),), 'value': 1}, # multiple arrays {'shape': (2, 3, 4), 'indexes': ([0, -1], [1, -1]), 'value': 1}, {'shape': (2, 3, 4), 'indexes': ([0, -1], [1, -1], [2, 1]), 'value': 1}, {'shape': (2, 3, 4), 'indexes': ([0, -1], 1), 'value': 1}, {'shape': (2, 3, 4), 'indexes': ([0, -1], slice(None), [1, -1]), 'value': 1}, {'shape': (2, 3, 4), 'indexes': ([0, -1], 1, 2), 'value': 1}, {'shape': (2, 3, 4), 'indexes': ([1, 0], slice(None), [[2, 0], [3, 1]]), 'value': 1}, # multiple arrays and basic indexing {'shape': (2, 3, 4), 'indexes': ([0, -1], None, [1, 0]), 'value': 1}, {'shape': (2, 3, 4), 'indexes': ([0, -1], slice(0, 2), [1, 0]), 'value': 1}, {'shape': (2, 3, 4), 'indexes': ([0, -1], None, slice(0, 2), [1, 0]), 'value': 1}, {'shape': (1, 1, 2, 3, 4), 'indexes': (None, slice(None), slice(None), [1, 0], [2, -1], 1), 'value': 1}, {'shape': (1, 1, 2, 3, 4), 'indexes': (None, slice(None), 0, [1, 0], slice(0, 2, 2), [2, -1]), 'value': 1}, {'shape': (2, 3, 4), 'indexes': (slice(None), [0, -1], [[1, 0], [0, 1], [-1, 1]]), 'value': 1}, # empty arrays {'shape': (2, 3, 4), 'indexes': [], 'value': 1}, {'shape': (2, 3, 4), 'indexes': [], 'value': numpy.array([1, 1, 1, 1])}, {'shape': (2, 3, 4), 'indexes': [], 'value': numpy.random.uniform(size=(3, 4))}, {'shape': (2, 3, 4), 'indexes': numpy.array([], dtype=numpy.int32), 'value': 1}, {'shape': (2, 3, 4), 'indexes': numpy.array([[]], dtype=numpy.int32), 'value': numpy.random.uniform(size=(3, 4))}, {'shape': (2, 3, 4), 'indexes': (slice(None), []), 'value': 1}, {'shape': (2, 3, 4), 'indexes': ([], []), 'value': 1}, {'shape': (2, 3, 4), 'indexes': numpy.array([], dtype=numpy.bool_), 'value': 1}, {'shape': (2, 3, 4), 'indexes': (slice(None), numpy.array([], dtype=numpy.bool_)), 'value': 1}, {'shape': (2, 3, 4), 'indexes': numpy.array([[], []], dtype=numpy.bool_), 'value': numpy.random.uniform(size=(4,))}, # zero-dim and zero-sized arrays {'shape': (), 'indexes': Ellipsis, 'value': 1}, {'shape': (), 'indexes': (), 'value': 1}, {'shape': (), 'indexes': None, 'value': 1}, {'shape': (), 'indexes': True, 'value': 1}, {'shape': (), 'indexes': (True,), 'value': 1}, # TODO(niboshi): pass the following commented out tests # {'shape': (), 'indexes': (False, True, True), 'value': 1}, {'shape': (), 'indexes': numpy.ones((), dtype=numpy.bool_), 'value': 1}, {'shape': (), 'indexes': numpy.zeros((), dtype=numpy.bool_), 'value': 1}, {'shape': (0,), 'indexes': None, 'value': 1}, {'shape': (0,), 'indexes': (), 'value': 1}, # TODO(niboshi): pass the following commented out tests # {'shape': (0,), 'indexes': (False, True, True), 'value': 1}, ) @testing.gpu class TestArrayAdvancedIndexingSetitemScalarValue(unittest.TestCase): @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_adv_setitem(self, xp, dtype): a = xp.zeros(self.shape, dtype=dtype) a[self.indexes] = self.value return a @testing.parameterize( # empty arrays (list indexes) {'shape': (2, 3, 4), 'indexes': [[]], 'value': 1}, {'shape': (2, 3, 4), 'indexes': [[[]]], 'value': 1}, {'shape': (2, 3, 4), 'indexes': [[[[]]]], 'value': 1}, {'shape': (2, 3, 4, 5), 'indexes': [[[[]]]], 'value': 1}, {'shape': (2, 3, 4, 5), 'indexes': [[[[[]]]]], 'value': 1}, # list indexes {'shape': (2, 3, 4), 'indexes': [[1]], 'value': 1}, {'shape': (2, 3, 4), 'indexes': [[1, 0]], 'value': 1}, {'shape': (2, 3, 4), 'indexes': [[1], [0]], 'value': 1}, {'shape': (2, 3, 4), 'indexes': [[1, 0], 2], 'value': 1}, {'shape': (2, 3, 4), 'indexes': [[1], slice(1, 2)], 'value': 1}, {'shape': (2, 3, 4), 'indexes': [[[1]], slice(1, 2)], 'value': 1}, ) @testing.gpu class TestArrayAdvancedIndexingSetitemScalarValueDeprecated(unittest.TestCase): @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_adv_setitem(self, xp, dtype): a = xp.zeros(self.shape, dtype=dtype) with testing.assert_warns(FutureWarning): a[self.indexes] = self.value return a @testing.parameterize( {'shape': (0,), 'indexes': True, 'value': 1}, {'shape': (0,), 'indexes': (True,), 'value': 1}, {'shape': (0,), 'indexes': numpy.ones((), dtype=numpy.bool_), 'value': 1}, {'shape': (0,), 'indexes': numpy.zeros((), dtype=numpy.bool_), 'value': 1}, ) @testing.gpu class TestArrayAdvancedIndexingSetitemScalarValue2(unittest.TestCase): @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_adv_setitem(self, xp, dtype): a = xp.zeros(self.shape, dtype=dtype) a[self.indexes] = self.value return a @testing.parameterize( # zero-dim and zero-sized arrays {'shape': (), 'indexes': numpy.array([True]), 'value': 1}, {'shape': (), 'indexes': numpy.array([False, True, True]), 'value': 1}, {'shape': (0,), 'indexes': numpy.array([True]), 'value': 1}, {'shape': (0,), 'indexes': numpy.array([False, True, True]), 'value': 1}, ) @testing.gpu class TestArrayAdvancedIndexingSetitemScalarValueIndexError(unittest.TestCase): def test_adv_setitem(self): for xp in (numpy, cupy): a = xp.zeros(self.shape) with pytest.raises(IndexError): a[self.indexes] = self.value @testing.parameterize( {'shape': (2, 3, 4), 'indexes': numpy.array(1), 'value': numpy.array([1])}, {'shape': (2, 3, 4), 'indexes': numpy.array(1), 'value': numpy.array([1, 2, 3, 4])}, {'shape': (2, 3, 4), 'indexes': (slice(None), [0, -1]), 'value': numpy.arange(2 * 2 * 4).reshape(2, 2, 4)}, {'shape': (2, 5, 4), 'indexes': (slice(None), [[0, 2], [1, -1]]), 'value': numpy.arange(2 * 2 * 2 * 4).reshape(2, 2, 2, 4)}, # mask {'shape': (2, 3, 4), 'indexes': numpy.random.choice([False, True], (2, 3)), 'value': numpy.arange(4)}, {'shape': (2, 3, 4), 'indexes': (slice(None), numpy.array([True, False, True])), 'value': numpy.arange(2 * 2 * 4).reshape(2, 2, 4)}, {'shape': (2, 3, 4), 'indexes': (numpy.array([[True, False, False], [False, True, True]]),), 'value': numpy.arange(3 * 4).reshape(3, 4)}, {'shape': (2, 2, 2), 'indexes': (slice(None), numpy.array([[True, False], [False, True]]),), 'value': numpy.arange(2 * 2).reshape(2, 2)}, {'shape': (2, 2, 2), 'indexes': (numpy.array( [[[True, False], [True, False]], [[True, True], [False, False]]]),), 'value': numpy.arange(4)}, {'shape': (5,), 'indexes': numpy.array([True, False, False, True, True]), 'value': numpy.arange(3)}, # multiple arrays {'shape': (2, 3, 4), 'indexes': ([1, 0], [2, 1]), 'value': numpy.arange(2 * 4).reshape(2, 4)}, {'shape': (2, 3, 4), 'indexes': ([1, 0], slice(None), [2, 1]), 'value': numpy.arange(2 * 3).reshape(2, 3)}, {'shape': (2, 3, 4), 'indexes': ([1, 0], slice(None), [[2, 0], [3, 1]]), 'value': numpy.arange(2 * 2 * 3).reshape(2, 2, 3)}, {'shape': (2, 3, 4), 'indexes': ([[1, 0], [1, 0]], slice(None), [[2, 0], [3, 1]]), 'value': numpy.arange(2 * 2 * 3).reshape(2, 2, 3)}, {'shape': (2, 3, 4), 'indexes': (1, slice(None), [[2, 0], [3, 1]]), 'value': numpy.arange(2 * 2 * 3).reshape(2, 2, 3)}, # list indexes {'shape': (2, 3, 4), 'indexes': [1], 'value': numpy.arange(3 * 4).reshape(3, 4)}, ) @testing.gpu class TestArrayAdvancedIndexingVectorValue(unittest.TestCase): @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_adv_setitem(self, xp, dtype): a = xp.zeros(self.shape, dtype=dtype) a[self.indexes] = self.value.astype(a.dtype) return a @testing.gpu class TestArrayAdvancedIndexingSetitemCupyIndices(unittest.TestCase): shape = (2, 3) def test_cupy_indices_integer_array_1(self): a = cupy.zeros(self.shape) index = cupy.array([0, 1]) original_index = index.copy() a[:, index] = cupy.array(1.) testing.assert_array_equal( a, cupy.array([[1., 1., 0.], [1., 1., 0.]])) testing.assert_array_equal(index, original_index) def test_cupy_indices_integer_array_2(self): a = cupy.zeros(self.shape) index = cupy.array([3, -5]) original_index = index.copy() a[:, index] = cupy.array(1.) testing.assert_array_equal( a, cupy.array([[1., 1., 0.], [1., 1., 0.]])) testing.assert_array_equal(index, original_index) def test_cupy_indices_integer_array_3(self): a = cupy.zeros(self.shape) index = cupy.array([3, -5]) original_index = index.copy() a[[1, 1], index] = cupy.array(1.) testing.assert_array_equal( a, cupy.array([[0., 0., 0.], [1., 1., 0.]])) testing.assert_array_equal(index, original_index) def test_cupy_indices_boolean_array(self): a = cupy.zeros(self.shape) index = cupy.array([True, False]) original_index = index.copy() a[index] = cupy.array(1.) testing.assert_array_equal( a, cupy.array([[1., 1., 1.], [0., 0., 0.]])) testing.assert_array_almost_equal(original_index, index) @testing.gpu class TestArrayAdvancedIndexingSetitemDifferentDtypes(unittest.TestCase): @testing.for_all_dtypes_combination(names=['src_dtype', 'dst_dtype'], no_complex=True) @testing.numpy_cupy_array_equal() def test_differnt_dtypes(self, xp, src_dtype, dst_dtype): shape = (2, 3) a = xp.zeros(shape, dtype=src_dtype) indexes = xp.array([0, 1]) a[:, indexes] = xp.array(1, dtype=dst_dtype) return a @testing.for_all_dtypes_combination(names=['src_dtype', 'dst_dtype'], no_complex=True) @testing.numpy_cupy_array_equal() def test_differnt_dtypes_mask(self, xp, src_dtype, dst_dtype): shape = (2, 3) a = xp.zeros(shape, dtype=src_dtype) indexes = xp.array([True, False]) a[indexes] = xp.array(1, dtype=dst_dtype) return a @testing.gpu class TestArrayAdvancedIndexingSetitemTranspose(unittest.TestCase): @testing.numpy_cupy_array_equal() def test_adv_setitem_transp(self, xp): shape = (2, 3, 4) a = xp.zeros(shape).transpose(0, 2, 1) slices = (
numpy.array([1, 0])
numpy.array
""" Some codes from https://github.com/Newmu/dcgan_code """ import math import os import errno import json import random import pprint import scipy.misc import numpy as np from time import gmtime, strftime import tensorflow as tf pp = pprint.PrettyPrinter() get_stddev = lambda x, k_h, k_w: 1/math.sqrt(k_w*k_h*x.get_shape()[-1]) index = 0 def get_image(image_path, image_size, is_crop=True, resize_w=64): global index out = transform(imread(image_path), image_size, is_crop, resize_w) return out def save_images(images, size, image_path): return imsave(inverse_transform(images), size, image_path) def imread(path): img = scipy.misc.imread(path) if len(img.shape) == 0: raise ValueError(path + " got loaded as a dimensionless array!") return img.astype(np.float) def merge_images(images, size): return inverse_transform(images) def merge(images, size): h, w = images.shape[1], images.shape[2] img = np.zeros((h * size[0], w * size[1], 3)) for idx, image in enumerate(images): i = idx % size[1] j = idx / size[1] img[j*h:j*h+h, i*w:i*w+w, :] = image return img def imsave(images, size, path): return scipy.misc.imsave(path, merge(images, size)) def center_crop(x, crop_h, crop_w=None, resize_w=64): h, w = x.shape[:2] crop_h = min(h, w) # we changed this to override the original DCGAN-TensorFlow behavior # Just use as much of the image as possible while keeping it square if crop_w is None: crop_w = crop_h j = int(round((h - crop_h)/2.)) i = int(round((w - crop_w)/2.)) return scipy.misc.imresize(x[j:j+crop_h, i:i+crop_w], [resize_w, resize_w]) def transform(image, npx=64, is_crop=True, resize_w=64): # npx : # of pixels width/height of image cropped_image = center_crop(image, npx, resize_w=resize_w) return
np.array(cropped_image)
numpy.array
""" Copyright (c) 2018, <NAME>, <NAME>, <NAME> https://github.com/spagliarini Mnemosyne team, Inria, Bordeaux, France https://team.inria.fr/mnemosyne/fr/ Distributed under the BSD-2-Clause License PLOT: effect of parameter sigma on distance and convergence time (Fig. 5-6) """ import os import numpy as np import matplotlib.pyplot as plt csfont = {'fontname':'Times New Roman'} #parameters sim_number=50 sigma=[0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7] #tuning width #To have the data all together #inside directory where all the data about sigma>0.02 are stored os.chdir('C://Users//Mnemosyne//Documents//Python Scripts//InverseModelBirdsong//results//IMsimple_model//SigmaComparison//DeltaT400by400') conv=np.zeros((sim_number,np.size(sigma))) final_dist=np.zeros((sim_number,np.size(sigma))) for i in range (0, sim_number): conv[i,1:]=np.load('Convergence time'+str(i)+'simulation.npy') for j in range (1,np.size(sigma)): final_dist[i,j]=np.load('Error'+str(i)+'simulation.npy')[j-1,int(conv[i,j])-1] #add the data from 0.02 simulations os.chdir('C://Users//Mnemosyne//Documents//Python Scripts//InverseModelBirdsong//results//IMsimple_model//SigmaComparison//FixTime0.02//TwentyMillionStep50') #convergence time conv[:,0]=20000000 #if fixed conv time for i in range (0, sim_number): #over 50 simulations final_dist[i,0]=np.load('Error'+str(i)+'simulation.npy')[0,-1] #if fixed conv time #change directory back to the directory where all the data are stored os.chdir('C://Users//Mnemosyne//Documents//Python Scripts//InverseModelBirdsong//results//IMsimple_model//SigmaComparison//UnifyPlot2') np.save('FinalDistAll.npy',final_dist) np.save('ConvTimeAll.npy',conv) #When data are already all together os.chdir('C://Users//Mnemosyne//Documents//Python Scripts//InverseModelBirdsong//results//IMsimple_model//SigmaComparison//UnifyPlot2') conv=np.load('ConvTimeAll.npy') final_dist=np.load('FinalDistAll.npy') plt.figure() for j in range (0,np.size(sigma)): #Histogram of convergence times plt.hist(conv[:,j],30,label='sigma=' + str(sigma[j])) plt.legend(fontsize=8) plt.xscale('log') plt.xlabel('Convergence time (in number of time steps)',**csfont, fontsize=8) plt.savefig('Convergence time.pdf') mean_final_dist=np.mean(final_dist,axis=0) median_final_dist=np.median(final_dist,axis=0) std_final_dist=np.std(final_dist,axis=0) mean_conv=np.mean(conv,axis=0) std_conv=np.std(conv,axis=0) plt.figure(figsize=(10,8)) fig, ax1 = plt.subplots() ax2 = ax1.twinx() #twinx add the secondary axis ax1.plot(sigma[1:], mean_conv[1::], color='r', label = 'Convergence time (in number of time steps)') ax1.fill_between(sigma[1:],mean_conv[1:],mean_conv[1:]-std_conv[1:], color='r', alpha=.25) ax1.fill_between(sigma[1:],mean_conv[1:],mean_conv[1:]+std_conv[1:], color='r', alpha=.25) ax1.plot(sigma[0:2],mean_conv[0:2],'r--') ax1.fill_between(sigma[0:2],mean_conv[0:2],mean_conv[0:2]-std_conv[0:2], color='r', alpha=.25) ax1.fill_between(sigma[0:2],mean_conv[0:2],mean_conv[0:2]+std_conv[0:2], color='r', alpha=.25) ax2.plot(sigma, mean_final_dist, color='b', label = 'Final distance from the target') ax2.fill_between(sigma,mean_final_dist,mean_final_dist-std_final_dist, color='b', alpha=.25) ax2.fill_between(sigma,mean_final_dist,mean_final_dist+std_final_dist, color='b', alpha=.25) ax1.spines['top'].set_color('none') ax2.spines['top'].set_color('none') ax1.set_yscale('log') ax1.set_xlim(0,0.72) ax1.set_xticks(sigma) ax1.set_xticklabels(sigma, rotation=45) ax1.set_xlabel('Auditory selectivity $\sigma$', **csfont, fontsize=8) ax1.set_ylabel('Convergence time', **csfont, fontsize=8) ax2.set_yscale('log') ax2.set_ylabel('Distance from the target', **csfont, fontsize=8) fig.legend(bbox_to_anchor=(.1, .95, 0.85, .1), loc=3, ncol=2, mode="expand", borderaxespad=0, fontsize=8) fig.tight_layout() #to avoid the cut of xlabel and right ylabel plt.savefig('SigmaVsDistance-mean.pdf') #To compare networks of different dimension os.chdir('C://Users//Mnemosyne//Documents//Python Scripts//InverseModelBirdsong//results//IMsimple_model//mBYnNeuronModel//ComparisonFix//end1000000') neurons_num=[1, 2, 3, 4, 5, 6, 7] #variant dimension (motor or auditory) neurons_fix=3 #fix dimension (motor or auditory) conv_M=np.zeros((sim_number,np.size(neurons_num))) #fixed motor dim final_dist_M=np.zeros((sim_number,np.size(neurons_num))) conv_A=np.zeros((sim_number,np.size(neurons_num))) #fixed auditory dim final_dist_A=np.zeros((sim_number,np.size(neurons_num))) mean_conv=np.zeros((np.size(neurons_num),2)) #mean over M and A fixed mean_final_dist=np.zeros((np.size(neurons_num),2)) std_final_dist=np.zeros((np.size(neurons_num),2)) #std over M and A fixed std_conv=np.zeros((np.size(neurons_num),2)) for i in range(0,sim_number): for j in range(1,np.size(neurons_num)): conv_M[i,j]=np.load('Convergence time' + str(i) +'simulation'+str(neurons_fix)+ ' ' + str(neurons_num[j])+'.npy') conv_A[i,j]=np.load('Convergence time' + str(i) +'simulation'+str(neurons_num[j])+ ' ' + str(neurons_fix)+'.npy') final_dist_M[i,j]=np.load('Error'+str(i)+'simulation'+str(neurons_fix)+ ' ' + str(neurons_num[j])+'.npy')[0,int(conv_M[i,j])-1] final_dist_A[i,j]=np.load('Error'+str(i)+'simulation'+str(neurons_num[j])+ ' ' + str(neurons_fix)+'.npy')[0,int(conv_A[i,j])-1] mean_conv[:,0]=np.mean(conv_M,axis=0) mean_conv[:,1]=np.mean(conv_A,axis=0) std_conv[:,0]=
np.std(conv_M,axis=0)
numpy.std
#------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. #-------------------------------------------------------------------------- """ Convert a Bert large model exported by Keras2Onnx to a tiny model for test purpose. The input model is generated like the following (need install keras2onnx from source): import numpy import keras2onnx from transformers import (TFBertForQuestionAnswering, BertTokenizer) tokenizer = BertTokenizer.from_pretrained'bert-large-uncased-whole-word-masking-finetuned-squad', do_lower_case=True, cache_dir=cache_dir) model = TFBertForQuestionAnswering.from_pretrained(model_name_or_path, cache_dir=cache_dir) question, text = "What is ONNX Runtime?", "ONNX Runtime is a performance-focused inference engine for ONNX models." inputs = tokenizer.encode_plus(question, text, add_special_tokens=True, return_tensors='tf') output_model_path = os.path.join(output_dir, 'keras_{}.onnx'.format(model_name_or_path)) if not os.path.exists(output_model_path): model.predict(inputs) onnx_model = keras2onnx.convert_keras(model, model.name) keras2onnx.save_model(onnx_model, output_model_path) """ import onnx import onnx.utils import sys import argparse import numpy as np from onnx import ModelProto, TensorProto, numpy_helper from onnxruntime_tools.transformers.onnx_model import OnnxModel import os import onnxruntime import random from pathlib import Path import timeit DICT_SIZE = 20 SEQ_LEN = 7 """ This class creates a tiny bert model for test purpose. """ class TinyBertOnnxModel(OnnxModel): def __init__(self, model, verbose): super(TinyBertOnnxModel, self).__init__(model, verbose) self.resize_model() def resize_weight(self, initializer_name, target_shape): weight = self.get_initializer(initializer_name) w = numpy_helper.to_array(weight) target_w = w if len(target_shape) == 1: target_w = w[:target_shape[0]] elif len(target_shape) == 2: target_w = w[:target_shape[0], :target_shape[1]] elif len(target_shape) == 3: target_w = w[:target_shape[0], :target_shape[1], :target_shape[2]] else: print("at most 3 dimensions") tensor = onnx.helper.make_tensor(name=initializer_name + '_resize', data_type=TensorProto.FLOAT, dims=target_shape, vals=target_w.flatten().tolist()) return tensor def resize_model(self): graph = self.model.graph initializers = graph.initializer # parameters of input base model. old_parameters = { "seq_len": 26, "hidden_size": 1024, "num_heads": 16, "size_per_head": 64, "word_dict_size": [28996, 30522], # list of supported dictionary size. "max_word_position": 512 } # parameters of output tiny model. new_parameters = { "seq_len": SEQ_LEN, "hidden_size": 8, "num_heads": 2, "size_per_head": 4, "word_dict_size": DICT_SIZE, "max_word_position": 10 } for input in graph.input: if (input.type.tensor_type.shape.dim[1].dim_value == old_parameters["seq_len"]): print("input", input.name, input.type.tensor_type.shape) input.type.tensor_type.shape.dim[1].dim_value = new_parameters["seq_len"] print("=>", input.type.tensor_type.shape) reshapes = {} for initializer in initializers: tensor = numpy_helper.to_array(initializer) dtype = np.float32 if initializer.data_type == 1 else np.int32 if len(tensor.shape) == 1 and tensor.shape[0] == 1: if tensor == old_parameters["num_heads"]: print("initializer type={}".format(initializer.data_type), initializer.name, old_parameters["num_heads"], "=>[", new_parameters["num_heads"], "]") initializer.CopyFrom( numpy_helper.from_array(np.asarray([new_parameters["num_heads"]], dtype=dtype), initializer.name)) elif tensor == old_parameters["seq_len"]: print("initializer type={}".format(initializer.data_type), initializer.name, old_parameters["seq_len"], "=>[", new_parameters["seq_len"], "]") initializer.CopyFrom( numpy_helper.from_array(
np.asarray([new_parameters["seq_len"]], dtype=dtype)
numpy.asarray
"""Module for reading Sentinel-1 data into a SICD model.""" # SarPy imports from .sicd import MetaNode from .utils import chipper from . import Reader as ReaderSuper # Reader superclass from . import sicd from . import tiff from ...geometry import geocoords as gc from ...geometry import point_projection as point # Python standard library imports import copy import os import datetime import xml.etree.ElementTree as ET # External dependencies import numpy as np # We prefer numpy.polynomial.polynomial over numpy.polyval/polyfit since its coefficient # ordering is consistent with SICD, and because it supports 2D polynomials. from numpy.polynomial import polynomial as poly from scipy.interpolate import griddata # try to import comb from scipy.special. # If an old version of scipy is being used then import from scipy.misc from scipy import __version__ as scipy_version dot_locs = [] for i, version_char in enumerate(scipy_version): if version_char == '.': dot_locs.append(i) major_version = int(scipy_version[0:dot_locs[0]]) if major_version >= 1: from scipy.special import comb else: from scipy.misc import comb _classification__ = "UNCLASSIFIED" __author__ = "<NAME>" __email__ = "<EMAIL>" DATE_FMT = '%Y-%m-%dT%H:%M:%S.%f' # The datetime format Sentinel1 always uses def isa(filename): # Test to see if file is a manifest.safe file try: ns = dict([node for _, node in ET.iterparse(filename, events=['start-ns'])]) # Parse everything else root_node = ET.parse(filename).getroot() if ((root_node.find('./metadataSection/metadataObject[@ID="platform"]/' + 'metadataWrap/xmlData/safe:platform/safe:familyName', ns).text == 'SENTINEL-1') and (root_node.find('./metadataSection/metadataObject[@ID="generalProductInformation"]/' + 'metadataWrap/xmlData/s1sarl1:standAloneProductInformation/' + 's1sarl1:productType', ns).text == 'SLC')): return Reader except Exception: pass class Reader(ReaderSuper): """Creates a file reader object for an Sentinel Data.""" def __init__(self, manifest_filename): # print('Opening Sentinel reader object.') # Read Sentinel Metadata from XML file first filesets = manifest_files(manifest_filename) meta_manifest = meta2sicd_manifest(manifest_filename) self.sicdmeta = [] self.read_chip = [] for current_fs in filesets: # There will be a set of files (product, data/tiff, noise, and # calibration) for each swath and polarization. Within each of # these file set, there may be multiple bursts, and thus SICDs. basepathname = os.path.dirname(manifest_filename) tiff_filename = os.path.join(basepathname, current_fs['data']) meta_tiff = tiff.read_meta(tiff_filename) if (('product' in current_fs) and os.path.isfile(os.path.join(basepathname, current_fs['product']))): product_filename = os.path.join(basepathname, current_fs['product']) meta_product = meta2sicd_annot(product_filename) # Extra calibration files if (('calibration' in current_fs) and os.path.isfile(os.path.join(basepathname, current_fs['calibration']))): cal_filename = os.path.join(basepathname, current_fs['calibration']) meta2sicd_cal(cal_filename, meta_product, meta_manifest) # Noise metadata computation if (('noise' in current_fs) and os.path.isfile(os.path.join(basepathname, current_fs['noise']))): noise_filename = os.path.join(basepathname, current_fs['noise']) meta2sicd_noise(noise_filename, meta_product, meta_manifest) # Image data symmetry = (False, False, True) # True for all Sentinel-1 data if len(meta_product) == 1: # Stripmap, single burst, open entire file self.read_chip.append(tiff.chipper(tiff_filename, symmetry, meta_tiff)) else: # Multiple bursts within a single data file base_chipper = tiff.chipper(tiff_filename, symmetry, meta_tiff) num_lines_burst = int(ET.parse(product_filename).getroot().find( './swathTiming/linesPerBurst').text) for j in range(len(meta_product)): self.read_chip.append(chipper.subset( base_chipper, [0, meta_tiff['ImageWidth'][0]], num_lines_burst*j + np.array([0, num_lines_burst]))) for current_mp in meta_product: # Populate derived SICD fields now that all data has been read in sicd.derived_fields(current_mp) # Handle dual-polarization case. Label channel number # appropriately for ordering in manifest file. # Should be the same for all burst in a TIFF current_mp.ImageFormation.RcvChanProc.ChanIndex = 1 + \ [cp.TxRcvPolarization for cp in meta_manifest.RadarCollection.RcvChannels.ChanParameters].index( current_mp.ImageFormation.TxRcvPolarizationProc) current_mp.merge(meta_manifest) self.sicdmeta.append(current_mp) # meta should already be set to this from meta_product: # self.sicdmeta[-1].ImageData.NumRows = meta_tiff['ImageWidth'][0] self.sicdmeta[-1].native = MetaNode() self.sicdmeta[-1].native.tiff = meta_tiff else: # No annotation metadata could be found self.sicdmeta.append(meta_manifest) self.sicdmeta[-1].ImageData = MetaNode() self.sicdmeta[-1].ImageData.NumCols = meta_tiff['ImageLength'][0] self.sicdmeta[-1].ImageData.NumRows = meta_tiff['ImageWidth'][0] self.sicdmeta[-1].native = MetaNode() self.sicdmeta[-1].native.tiff = meta_tiff def manifest_files(filename): """Extract relevant filenames and relative paths for measurement and metadata files from a Sentinel manifest.safe file and group them together appropriately.""" def _get_file_location(root_node, schema_type, possible_ids): """We want the data object that matches both the desired schema type and the possible ids from the relevant measurment data unit.""" return [dataobject.find('./byteStream/fileLocation').attrib['href'] # File location for dataobject in [ root_node.find('dataObjectSection/' + 'dataObject[@repID="' + schema_type + '"]/' + '[@ID="' + ids + '"]', ns) for ids in possible_ids] # Attempt to find objects for all ids if dataobject is not None][0] # ids not found will be None and discarded # Parse namespaces ns = dict([node for _, node in ET.iterparse(filename, events=['start-ns'])]) # Parse everything else root_node = ET.parse(filename).getroot() files = [] # Iterate through all of the "Measurement Data Units". This should provide each # data object (measurements), together with its metadata and noise and # calibration files. for mdu in root_node.iterfind('./informationPackageMap/xfdu:contentUnit/' + 'xfdu:contentUnit/[@repID="s1Level1MeasurementSchema"]', ns): # The dmdID references for each measurement data unit are indirect. # They are equivalently pointers to pointers. Not clear why it was # done this way, but here we get the real IDs for all files associated # with this data unit. associated_ids = [root_node.find('./metadataSection/metadataObject[@ID="' + dmd + '"]/dataObjectPointer').attrib['dataObjectID'] for dmd in mdu.attrib['dmdID'].split()] fnames = dict() # Find data ("measurement") file itself fnames['data'] = _get_file_location( root_node, 's1Level1MeasurementSchema', [mdu.find('./dataObjectPointer').attrib['dataObjectID']]) # Find all metadata files fnames['product'] = _get_file_location( root_node, 's1Level1ProductSchema', associated_ids) fnames['noise'] = _get_file_location( root_node, 's1Level1NoiseSchema', associated_ids) fnames['calibration'] = _get_file_location( root_node, 's1Level1CalibrationSchema', associated_ids) files.append(fnames) return files def meta2sicd_manifest(filename): # Parse namespaces ns = dict([node for _, node in ET.iterparse(filename, events=['start-ns'])]) # Parse everything else root_node = ET.parse(filename).getroot() manifest = MetaNode() # CollectionInfo platform = root_node.find('./metadataSection/' + 'metadataObject[@ID="platform"]/' + 'metadataWrap/' + 'xmlData/' + 'safe:platform', ns) manifest.CollectionInfo = MetaNode() manifest.CollectionInfo.CollectorName = (platform.find('./safe:familyName', ns).text + platform.find('./safe:number', ns).text) manifest.CollectionInfo.RadarMode = MetaNode() manifest.CollectionInfo.RadarMode.ModeID = platform.find( './safe:instrument/safe:extension/s1sarl1:instrumentMode/s1sarl1:mode', ns).text if manifest.CollectionInfo.RadarMode.ModeID == 'SM': manifest.CollectionInfo.RadarMode.ModeType = 'STRIPMAP' else: # Actually TOPSAR. Not what we normally think of for DYNAMIC STRIPMAP, # but it is definitely not SPOTLIGHT, and doesn't seem to be regular # STRIPMAP either. manifest.CollectionInfo.RadarMode.ModeType = 'DYNAMIC STRIPMAP' # Image Creation processing = root_node.find('./metadataSection/' + 'metadataObject[@ID="processing"]/' + 'metadataWrap/' + 'xmlData/' + 'safe:processing', ns) facility = processing.find('safe:facility', ns) software = facility.find('./safe:software', ns) manifest.ImageCreation = MetaNode() manifest.ImageCreation.Application = software.attrib['name'] + ' ' + software.attrib['version'] manifest.ImageCreation.DateTime = datetime.datetime.strptime( processing.attrib['stop'], DATE_FMT) manifest.ImageCreation.Site = (facility.attrib['name'] + ', ' + facility.attrib['site'] + ', ' + facility.attrib['country']) manifest.ImageCreation.Profile = 'Prototype' # RadarCollection manifest.RadarCollection = MetaNode() manifest.RadarCollection.RcvChannels = MetaNode() manifest.RadarCollection.RcvChannels.ChanParameters = [] for current_pol in root_node.findall('./metadataSection/' + 'metadataObject[@ID="generalProductInformation"]/' + 'metadataWrap/' + 'xmlData/' + 's1sarl1:standAloneProductInformation/' + 's1sarl1:transmitterReceiverPolarisation', ns): manifest.RadarCollection.RcvChannels.ChanParameters.append(MetaNode()) manifest.RadarCollection.RcvChannels.ChanParameters[-1].TxRcvPolarization = \ current_pol.text[0] + ':' + current_pol.text[1] return(manifest) def meta2sicd_annot(filename): def _polyshift(a, shift): b = np.zeros(a.size) for j in range(1, len(a)+1): for k in range(j, len(a)+1): b[j-1] = b[j-1] + (a[k-1]*comb(k-1, j-1)*np.power(shift, (k-j))) return b # Setup constants C = 299792458. # Parse annotation XML (no namespace to worry about) root_node = ET.parse(filename).getroot() common_meta = MetaNode() # CollectionInfo common_meta.CollectionInfo = MetaNode() common_meta.CollectionInfo.CollectorName = root_node.find('./adsHeader/missionId').text common_meta.CollectionInfo.CollectType = 'MONOSTATIC' common_meta.CollectionInfo.RadarMode = MetaNode() common_meta.CollectionInfo.RadarMode.ModeID = root_node.find('./adsHeader/mode').text if common_meta.CollectionInfo.RadarMode.ModeID[0] == 'S': common_meta.CollectionInfo.RadarMode.ModeType = 'STRIPMAP' else: # Actually TOPSAR. Not what we normally think of for DYNAMIC STRIPMAP, # but it is definitely not SPOTLIGHT (actually counter to the spotlight # beam motion), and it isn't STRIPMAP with a constant angle between the # beam and direction of travel either, so we use DYNAMIC STRIPMAP as a # catchall. common_meta.CollectionInfo.RadarMode.ModeType = 'DYNAMIC STRIPMAP' common_meta.CollectionInfo.Classification = 'UNCLASSIFIED' # ImageData common_meta.ImageData = MetaNode() # For SLC, the following test should always hold true: if root_node.find('./imageAnnotation/imageInformation/pixelValue').text == 'Complex': common_meta.ImageData.PixelType = 'RE16I_IM16I' else: # This code only handles SLC raise(ValueError('SLC data should be 16-bit complex.')) burst_list = root_node.findall('./swathTiming/burstList/burst') if burst_list: numbursts = len(burst_list) else: numbursts = 0 # These two definitions of NumRows should always be the same for # non-STRIPMAP data (For STRIPMAP, samplesPerBurst is set to zero.) Number # of rows in burst should be the same as the full image. Both of these # numbers also should match the ImageWidth field of the measurement TIFF. # The NumCols definition will be different for TOPSAR/STRIPMAP. Since each # burst is its own coherent data period, and thus SICD, we set the SICD # metadata to describe each individual burst. if numbursts > 0: # TOPSAR common_meta.ImageData.NumRows = int(root_node.find('./swathTiming/samplesPerBurst').text) # Ths in the number of columns in a single burst. common_meta.ImageData.NumCols = int(root_node.find('./swathTiming/linesPerBurst').text) else: # STRIPMAP common_meta.ImageData.NumRows = int(root_node.find( './imageAnnotation/imageInformation/numberOfSamples').text) # This in the number of columns in the full TIFF measurement file, even # if it contains multiple bursts. common_meta.ImageData.NumCols = int(root_node.find( './imageAnnotation/imageInformation/numberOfLines').text) common_meta.ImageData.FirstRow = 0 common_meta.ImageData.FirstCol = 0 common_meta.ImageData.FullImage = MetaNode() common_meta.ImageData.FullImage.NumRows = common_meta.ImageData.NumRows common_meta.ImageData.FullImage.NumCols = common_meta.ImageData.NumCols # SCP pixel within entire TIFF # Note: numpy round behaves differently than python round and MATLAB round, # so we avoid it here. center_cols = np.ceil((0.5 + np.arange(max(numbursts, 1))) * float(common_meta.ImageData.NumCols))-1 center_rows = round(float(common_meta.ImageData.NumRows)/2.-1.) * \ np.ones_like(center_cols) # SCP pixel within single burst image is the same for all burst, since east # burst is the same size common_meta.ImageData.SCPPixel = MetaNode() common_meta.ImageData.SCPPixel.Col = int(center_cols[0]) common_meta.ImageData.SCPPixel.Row = int(center_rows[0]) # GeoData common_meta.GeoData = MetaNode() common_meta.GeoData.EarthModel = 'WGS_84' # Initially, we just seed the SCP coordinate with a rough value. Later # we will put in something more precise. geo_grid_point_list = root_node.findall( './geolocationGrid/geolocationGridPointList/geolocationGridPoint') scp_col, scp_row, x, y, z = [], [], [], [], [] for grid_point in geo_grid_point_list: scp_col.append(float(grid_point.find('./line').text)) scp_row.append(float(grid_point.find('./pixel').text)) lat = float(grid_point.find('./latitude').text) lon = float(grid_point.find('./longitude').text) hgt = float(grid_point.find('./height').text) # Can't interpolate across international date line -180/180 longitude, # so move to ECF space from griddata interpolation ecf = gc.geodetic_to_ecf((lat, lon, hgt)) x.append(ecf[0, 0]) y.append(ecf[0, 1]) z.append(ecf[0, 2]) row_col = np.vstack((scp_col, scp_row)).transpose() center_row_col = np.vstack((center_cols, center_rows)).transpose() scp_x = griddata(row_col, x, center_row_col) scp_y = griddata(row_col, y, center_row_col) scp_z = griddata(row_col, z, center_row_col) # Grid common_meta.Grid = MetaNode() if root_node.find('./generalAnnotation/productInformation/projection').text == 'Slant Range': common_meta.Grid.ImagePlane = 'SLANT' common_meta.Grid.Type = 'RGZERO' delta_tau_s = 1./float(root_node.find( './generalAnnotation/productInformation/rangeSamplingRate').text) common_meta.Grid.Row = MetaNode() common_meta.Grid.Col = MetaNode() # Range Processing range_proc = root_node.find('./imageAnnotation/processingInformation' + '/swathProcParamsList/swathProcParams/rangeProcessing') common_meta.Grid.Row.SS = (C/2.) * delta_tau_s common_meta.Grid.Row.Sgn = -1 # Justification for Sgn: # 1) "Sentinel-1 Level 1 Detailed Algorithm Definition" shows last step in # image formation as IFFT, which would mean a forward FFT (-1 Sgn) would be # required to transform back. # 2) The forward FFT of a sliding window shows the Doppler centroid # increasing as you move right in the image, which must be the case for the # TOPSAR collection mode which starts in a rear squint and transitions to a # forward squint (and are always right looking). fc = float(root_node.find('./generalAnnotation/productInformation/radarFrequency').text) common_meta.Grid.Row.KCtr = 2.*fc / C common_meta.Grid.Row.DeltaKCOAPoly = np.atleast_2d(0) common_meta.Grid.Row.ImpRespBW = 2.*float(range_proc.find('./processingBandwidth').text)/C common_meta.Grid.Row.WgtType = MetaNode() common_meta.Grid.Row.WgtType.WindowName = range_proc.find('./windowType').text.upper() if (common_meta.Grid.Row.WgtType.WindowName == 'NONE'): common_meta.Grid.Row.WgtType.WindowName = 'UNIFORM' elif (common_meta.Grid.Row.WgtType.WindowName == 'HAMMING'): # The usual Sentinel weighting common_meta.Grid.Row.WgtType.Parameter = MetaNode() # Generalized Hamming window parameter common_meta.Grid.Row.WgtType.Parameter.name = 'COEFFICIENT' common_meta.Grid.Row.WgtType.Parameter.value = range_proc.find('./windowCoefficient').text # Azimuth Processing az_proc = root_node.find('./imageAnnotation/processingInformation' + '/swathProcParamsList/swathProcParams/azimuthProcessing') common_meta.Grid.Col.SS = float(root_node.find( './imageAnnotation/imageInformation/azimuthPixelSpacing').text) common_meta.Grid.Col.Sgn = -1 # Must be the same as Row.Sgn common_meta.Grid.Col.KCtr = 0 dop_bw = float(az_proc.find('./processingBandwidth').text) # Doppler bandwidth # Image column spacing in zero doppler time (seconds) # Sentinel-1 is always right-looking, so should always be positive ss_zd_s = float(root_node.find('./imageAnnotation/imageInformation/azimuthTimeInterval').text) # Convert to azimuth spatial bandwidth (cycles per meter) common_meta.Grid.Col.ImpRespBW = dop_bw*ss_zd_s/common_meta.Grid.Col.SS common_meta.Grid.Col.WgtType = MetaNode() common_meta.Grid.Col.WgtType.WindowName = az_proc.find('./windowType').text.upper() if (common_meta.Grid.Col.WgtType.WindowName == 'NONE'): common_meta.Grid.Col.WgtType.WindowName = 'UNIFORM' elif (common_meta.Grid.Row.WgtType.WindowName == 'HAMMING'): # The usual Sentinel weighting common_meta.Grid.Col.WgtType.Parameter = MetaNode() # Generalized Hamming window parameter common_meta.Grid.Col.WgtType.Parameter.name = 'COEFFICIENT' common_meta.Grid.Col.WgtType.Parameter.value = az_proc.find('./windowCoefficient').text # We will compute Grid.Col.DeltaKCOAPoly separately per burst later. # Grid.Row/Col.DeltaK1/2, WgtFunct, ImpRespWid will be computed later in sicd.derived_fields # Timeline prf = float(root_node.find( './generalAnnotation/downlinkInformationList/downlinkInformation/prf').text) common_meta.Timeline = MetaNode() common_meta.Timeline.IPP = MetaNode() common_meta.Timeline.IPP.Set = MetaNode() # Because of calibration pulses, it is unlikely this PRF was maintained # through this entire period, but we don't currently include that detail. common_meta.Timeline.IPP.Set.IPPPoly = np.array([0, prf]) # Always the left-most SICD column (of first bursts or entire STRIPMAP dataset), # since Sentinel-1 is always right-looking. azimuth_time_first_line = datetime.datetime.strptime(root_node.find( './imageAnnotation/imageInformation/productFirstLineUtcTime').text, DATE_FMT) # Offset in zero Doppler time from first column to SCP column eta_mid = ss_zd_s * float(common_meta.ImageData.SCPPixel.Col) # Position orbit_list = root_node.findall('./generalAnnotation/orbitList/orbit') # For ARP vector calculation later on state_vector_T, state_vector_X, state_vector_Y, state_vector_Z = [], [], [], [] for orbit in orbit_list: state_vector_T.append(datetime.datetime.strptime(orbit.find('./time').text, DATE_FMT)) state_vector_X.append(float(orbit.find('./position/x').text)) state_vector_Y.append(float(orbit.find('./position/y').text)) state_vector_Z.append(float(orbit.find('./position/z').text)) # We could also have used external orbit file here, instead of orbit state fields # in SLC annotation file. # RadarCollection pol = root_node.find('./adsHeader/polarisation').text common_meta.RadarCollection = MetaNode() common_meta.RadarCollection.TxPolarization = pol[0] common_meta.RadarCollection.TxFrequency = MetaNode() common_meta.RadarCollection.Waveform = MetaNode() common_meta.RadarCollection.TxFrequency.Min = fc + float(root_node.find( './generalAnnotation/downlinkInformationList/downlinkInformation/' + 'downlinkValues/txPulseStartFrequency').text) wfp_common = MetaNode() wfp_common.TxFreqStart = common_meta.RadarCollection.TxFrequency.Min wfp_common.TxPulseLength = float(root_node.find( './generalAnnotation/downlinkInformationList/downlinkInformation/' + 'downlinkValues/txPulseLength').text) wfp_common.TxFMRate = float(root_node.find( './generalAnnotation/downlinkInformationList/downlinkInformation/' + 'downlinkValues/txPulseRampRate').text) bw = wfp_common.TxPulseLength * wfp_common.TxFMRate common_meta.RadarCollection.TxFrequency.Max = \ common_meta.RadarCollection.TxFrequency.Min + bw wfp_common.TxRFBandwidth = bw wfp_common.RcvDemodType = 'CHIRP' # RcvFMRate = 0 for RcvDemodType='CHIRP' wfp_common.RcvFMRate = 0 wfp_common.ADCSampleRate = float(root_node.find( './generalAnnotation/productInformation/rangeSamplingRate').text) # Raw not decimated # After decimation would be: # wfp_common.ADCSampleRate = \ # product/generalAnnotation/downlinkInformationList/downlinkInformation/downlinkValues/rangeDecimation/samplingFrequencyAfterDecimation # We could have multiple receive window lengths across the collect swl_list = root_node.findall('./generalAnnotation/downlinkInformationList/' + 'downlinkInformation/downlinkValues/swlList/swl') common_meta.RadarCollection.Waveform.WFParameters = [] for swl in swl_list: common_meta.RadarCollection.Waveform.WFParameters.append(copy.deepcopy(wfp_common)) common_meta.RadarCollection.Waveform.WFParameters[-1].RcvWindowLength = \ float(swl.find('./value').text) # ImageFormation common_meta.ImageFormation = MetaNode() common_meta.ImageFormation.RcvChanProc = MetaNode() common_meta.ImageFormation.RcvChanProc.NumChanProc = 1 common_meta.ImageFormation.RcvChanProc.PRFScaleFactor = 1 # RcvChanProc.ChanIndex must be populated external to this since it depends # on how the polarization were ordered in manifest file. common_meta.ImageFormation.TxRcvPolarizationProc = pol[0] + ':' + pol[1] # Assume image formation uses all data common_meta.ImageFormation.TStartProc = 0 common_meta.ImageFormation.TxFrequencyProc = MetaNode() common_meta.ImageFormation.TxFrequencyProc.MinProc = \ common_meta.RadarCollection.TxFrequency.Min common_meta.ImageFormation.TxFrequencyProc.MaxProc = \ common_meta.RadarCollection.TxFrequency.Max common_meta.ImageFormation.ImageFormAlgo = 'RMA' # From the Sentinel-1 Level 1 Detailed Algorithm Definition document if common_meta.CollectionInfo.RadarMode.ModeID[0] == 'S': # stripmap mode common_meta.ImageFormation.STBeamComp = 'NO' else: common_meta.ImageFormation.STBeamComp = 'SV' # TOPSAR Mode common_meta.ImageFormation.ImageBeamComp = 'NO' common_meta.ImageFormation.AzAutofocus = 'NO' common_meta.ImageFormation.RgAutofocus = 'NO' # RMA # "Sentinel-1 Level 1 Detailed Algorithm Definition" document seems to most # closely match the RangeDoppler algorithm (with accurate secondary range # compression or "option 2" as described in the Cumming and Wong book). common_meta.RMA = MetaNode() common_meta.RMA.RMAlgoType = 'RG_DOP' common_meta.RMA.ImageType = 'INCA' # tau_0 is notation from ESA deramping paper tau_0 = float(root_node.find('./imageAnnotation/imageInformation/slantRangeTime').text) common_meta.RMA.INCA = MetaNode() common_meta.RMA.INCA.R_CA_SCP = ((C/2.) * (tau_0 + (float(common_meta.ImageData.SCPPixel.Row) * delta_tau_s))) common_meta.RMA.INCA.FreqZero = fc # If we use the Doppler Centroid as defined directly in the manifest.safe # metadata, then the center of frequency support Col.DeltaKCOAPoly does not # correspond to RMA.INCA.DopCentroidPoly. However, we will compute # TimeCOAPoly later to match a newly computed Doppler Centroid based off of # DeltaKCOAPoly, assuming that the the COA is at the peak signal (fdop_COA # = fdop_DC). common_meta.RMA.INCA.DopCentroidCOA = True # Doppler Centroid # Get common (non-burst specific) parameters we will need for Doppler # centroid and rate computations later dc_estimate_list = root_node.findall('./dopplerCentroid/dcEstimateList/dcEstimate') dc_az_time, dc_t0, data_dc_poly = [], [], [] for dc_estimate in dc_estimate_list: dc_az_time.append(datetime.datetime.strptime( dc_estimate.find('./azimuthTime').text, DATE_FMT)) dc_t0.append(float(dc_estimate.find('./t0').text)) data_dc_poly.append(np.fromstring(dc_estimate.find('./dataDcPolynomial').text, sep=' ')) azimuth_fm_rate_list = root_node.findall( './generalAnnotation/azimuthFmRateList/azimuthFmRate') az_t, az_t0, k_a_poly = [], [], [] for az_fm_rate in azimuth_fm_rate_list: az_t.append(datetime.datetime.strptime( az_fm_rate.find('./azimuthTime').text, DATE_FMT)) az_t0.append(float(az_fm_rate.find('./t0').text)) # Two different ways we have seen in XML for storing the FM Rate polynomial try: k_a_poly.append(np.fromstring(az_fm_rate.find( './azimuthFmRatePolynomial').text, sep=' ')) except TypeError: # old annotation xml file format k_a_poly.append(np.array([float(az_fm_rate.find('./c0').text), float(az_fm_rate.find('./c1').text), float(az_fm_rate.find('./c2').text)])) # Azimuth steering rate (constant, not dependent on burst or range) k_psi = float(root_node.find( './generalAnnotation/productInformation/azimuthSteeringRate').text) k_psi = k_psi*np.pi/180. # Convert from degrees/sec into radians/sec # Compute per/burst metadata sicd_meta = [] for count in range(max(numbursts, 1)): burst_meta = copy.deepcopy(common_meta) # Collection Info # Sensor specific portions of metadata sliceNumber = root_node.find('./imageAnnotation/imageInformation/sliceNumber') if sliceNumber is not None: sliceNumber = sliceNumber.text else: sliceNumber = 0 swath = root_node.find('./adsHeader/swath').text burst_meta.CollectionInfo.Parameter = [MetaNode()] burst_meta.CollectionInfo.Parameter[0].name = 'SLICE' burst_meta.CollectionInfo.Parameter[0].value = sliceNumber burst_meta.CollectionInfo.Parameter.append(MetaNode()) burst_meta.CollectionInfo.Parameter[1].name = 'SWATH' burst_meta.CollectionInfo.Parameter[1].value = swath burst_meta.CollectionInfo.Parameter.append(MetaNode()) burst_meta.CollectionInfo.Parameter[2].name = 'BURST' burst_meta.CollectionInfo.Parameter[2].value = str(count+1) burst_meta.CollectionInfo.Parameter.append(MetaNode()) burst_meta.CollectionInfo.Parameter[3].name = 'ORBIT_SOURCE' burst_meta.CollectionInfo.Parameter[3].value = 'SLC_INTERNAL' # No external orbit file # Image Data.ValidData # Get valid bounds of burst from metadata. Assume a rectangular valid # area-- not totally true, but all that seems to be defined by the # product XML metadata. if numbursts > 0: # Valid data does not seem to be defined for STRIPMAP data burst = root_node.find('./swathTiming/burstList/burst[' + str(count+1) + ']') xml_first_cols = np.fromstring(burst.find('./firstValidSample').text, sep=' ') xml_last_cols = np.fromstring(burst.find('./lastValidSample').text, sep=' ') valid_cols = np.where((xml_first_cols >= 0) & (xml_last_cols >= 0))[0] first_row = int(min(xml_first_cols[valid_cols])) last_row = int(max(xml_last_cols[valid_cols])) # From SICD spec: Vertices ordered clockwise with vertex 1 # determined by: (1) minimum row index, (2) minimum column index if # 2 vertices exist with minimum row index. burst_meta.ImageData.ValidData = MetaNode() burst_meta.ImageData.ValidData.Vertex = [MetaNode()] burst_meta.ImageData.ValidData.Vertex[0].Row = first_row burst_meta.ImageData.ValidData.Vertex[0].Col = int(valid_cols[0]) burst_meta.ImageData.ValidData.Vertex.append(MetaNode()) burst_meta.ImageData.ValidData.Vertex[1].Row = first_row burst_meta.ImageData.ValidData.Vertex[1].Col = int(valid_cols[-1]) burst_meta.ImageData.ValidData.Vertex.append(MetaNode()) burst_meta.ImageData.ValidData.Vertex[2].Row = last_row burst_meta.ImageData.ValidData.Vertex[2].Col = int(valid_cols[-1]) burst_meta.ImageData.ValidData.Vertex.append(MetaNode()) burst_meta.ImageData.ValidData.Vertex[3].Row = last_row burst_meta.ImageData.ValidData.Vertex[3].Col = int(valid_cols[0]) else: burst_meta.ImageData.ValidData = MetaNode() burst_meta.ImageData.ValidData.Vertex = [MetaNode()] burst_meta.ImageData.ValidData.Vertex[0].Row = 0 burst_meta.ImageData.ValidData.Vertex[0].Col = 0 burst_meta.ImageData.ValidData.Vertex.append(MetaNode()) burst_meta.ImageData.ValidData.Vertex[1].Row = 0 burst_meta.ImageData.ValidData.Vertex[1].Col = int(common_meta.ImageData.NumCols) burst_meta.ImageData.ValidData.Vertex.append(MetaNode()) burst_meta.ImageData.ValidData.Vertex[2].Row = int(common_meta.ImageData.NumRows) burst_meta.ImageData.ValidData.Vertex[2].Col = int(common_meta.ImageData.NumCols) burst_meta.ImageData.ValidData.Vertex.append(MetaNode()) burst_meta.ImageData.ValidData.Vertex[3].Row = int(common_meta.ImageData.NumRows) burst_meta.ImageData.ValidData.Vertex[3].Col = 0 # Timeline if numbursts > 0: # This is the first and last zero doppler times of the columns in # the burst. This isn't really what we mean by CollectStart and # CollectDuration in SICD (really we want first and last pulse # times), but its all we have. start = datetime.datetime.strptime(burst.find('./azimuthTime').text, DATE_FMT) first_line_relative_start = 0 # CollectStart is zero Doppler time of first column else: start = datetime.datetime.strptime(root_node.find( './generalAnnotation/downlinkInformationList/downlinkInformation/' + 'firstLineSensingTime').text, DATE_FMT) stop = datetime.datetime.strptime(root_node.find( './generalAnnotation/downlinkInformationList/downlinkInformation/' + 'lastLineSensingTime').text, DATE_FMT) # Maybe CollectStart/CollectDuration should be set by # product/imageAnnotation/imageInformation/productFirstLineUtcTime # and productLastLineUtcTime. This would make it consistent with # non-stripmap which just defines first and last zero doppler # times, but is not really consistent with what SICD generally # means by CollectStart/CollectDuration. burst_meta.Timeline.CollectStart = start burst_meta.Timeline.CollectDuration = (stop-start).total_seconds() first_line_relative_start = (azimuth_time_first_line-start).total_seconds() # After we have start_s, we can generate CoreName burst_meta.CollectionInfo.CoreName = ( # Prefix with the NGA CoreName standard format start.strftime('%d%b%y') + common_meta.CollectionInfo.CollectorName + # The following core name is unique within all Sentinel-1 coherent data periods: root_node.find('./adsHeader/missionDataTakeId').text + '_' + ('%02d' % int(sliceNumber)) + '_' + swath + '_' + ('%02d' % (count+1))) # Position # Polynomial is computed with respect to time from start of burst state_vector_T_burst = np.array([(t-start).total_seconds() for t in state_vector_T]) # Some datasets don't include enough state vectors for 5th order fit # One could find the order of polynomial that most accurately describes # this position, but use velocity as cross-validation so that the data # is not being overfit. Orders over 5 often become badly conditioned polyorder = 5 burst_meta.Position = MetaNode() burst_meta.Position.ARPPoly = MetaNode() burst_meta.Position.ARPPoly.X = poly.polyfit(state_vector_T_burst, state_vector_X, polyorder) burst_meta.Position.ARPPoly.Y = poly.polyfit(state_vector_T_burst, state_vector_Y, polyorder) burst_meta.Position.ARPPoly.Z = poly.polyfit(state_vector_T_burst, state_vector_Z, polyorder) # RMA (still in for statement for each burst) # Sentinel-1 is always right-looking, so TimeCAPoly should never have # to be "flipped" for left-looking cases. burst_meta.RMA.INCA.TimeCAPoly = np.array([first_line_relative_start + eta_mid, ss_zd_s/float(common_meta.Grid.Col.SS)]) # Doppler Centroid # We choose the single Doppler centroid polynomial closest to the # center of the current burst. dc_est_times = np.array([(t - start).total_seconds() for t in dc_az_time]) dc_poly_ind = np.argmin(abs(dc_est_times - burst_meta.RMA.INCA.TimeCAPoly[0])) # Shift polynomial from origin at dc_t0 (reference time for Sentinel # polynomial) to SCP time (reference time for SICD polynomial) range_time_scp = (common_meta.RMA.INCA.R_CA_SCP * 2)/C # The Doppler centroid field in the Sentinel-1 metadata is not # complete, so we cannot use it directly. That description of Doppler # centroid by itself does not vary by azimuth although the # Col.DeltaKCOAPoly we see in the data definitely does. We will define # DopCentroidPoly differently later down in the code. # Doppler rate # Total Doppler rate is a combination of the Doppler FM rate and the # Doppler rate introduced by the scanning of the antenna. # We pick a single velocity magnitude at closest approach to represent # the entire burst. This is valid, since the magnitude of the velocity # changes very little. vm_ca = np.linalg.norm([ # Magnitude of the velocity at SCP closest approach poly.polyval(burst_meta.RMA.INCA.TimeCAPoly[0], # Velocity in X poly.polyder(burst_meta.Position.ARPPoly.X)), poly.polyval(burst_meta.RMA.INCA.TimeCAPoly[0], # Velocity in Y poly.polyder(burst_meta.Position.ARPPoly.Y)), poly.polyval(burst_meta.RMA.INCA.TimeCAPoly[0], # Velocity in Z poly.polyder(burst_meta.Position.ARPPoly.Z))]) # Compute FM Doppler Rate, k_a # We choose the single azimuth FM rate polynomial closest to the # center of the current burst. az_rate_times = np.array([(t - start).total_seconds() for t in az_t]) az_rate_poly_ind = np.argmin(abs(az_rate_times - burst_meta.RMA.INCA.TimeCAPoly[0])) # SICD's Doppler rate seems to be FM Doppler rate, not total Doppler rate # Shift polynomial from origin at az_t0 (reference time for Sentinel # polynomial) to SCP time (reference time for SICD polynomial) DR_CA = _polyshift(k_a_poly[az_rate_poly_ind], range_time_scp - az_t0[az_rate_poly_ind]) # Scale 1D polynomial to from Hz/s^n to Hz/m^n DR_CA = DR_CA * ((2./C)**np.arange(len(DR_CA))) r_ca = np.array([common_meta.RMA.INCA.R_CA_SCP, 1]) # RMA.INCA.DRateSFPoly is a function of Doppler rate. burst_meta.RMA.INCA.DRateSFPoly = (- np.convolve(DR_CA, r_ca) * # Assumes a SGN of -1 (C / (2 * fc * np.power(vm_ca, 2)))) burst_meta.RMA.INCA.DRateSFPoly = burst_meta.RMA.INCA.DRateSFPoly[:, np.newaxis] # TimeCOAPoly # TimeCOAPoly = TimeCA + (DopCentroid/dop_rate); # True if DopCentroidCOA = true # Since we don't know how to evaluate this equation analytically, we # could evaluate samples of it across our image and fit a 2D polynomial # to it later. POLY_ORDER = 2 grid_samples = POLY_ORDER + 1 cols = np.around(np.linspace(0, common_meta.ImageData.NumCols-1, num=grid_samples)).astype(int) rows = np.around(np.linspace(0, common_meta.ImageData.NumRows-1, num=grid_samples)).astype(int) coords_az_m = (cols - common_meta.ImageData.SCPPixel.Col).astype(float) *\ common_meta.Grid.Col.SS coords_rg_m = (rows - common_meta.ImageData.SCPPixel.Row).astype(float) *\ common_meta.Grid.Row.SS timeca_sampled = poly.polyval(coords_az_m, burst_meta.RMA.INCA.TimeCAPoly) doprate_sampled = poly.polyval(coords_rg_m, DR_CA) # Grid.Col.DeltaKCOAPoly # Reference: Definition of the TOPS SLC deramping function for products # generated by the S-1 IPF, COPE-GSEG-EOPG-TN-14-0025 tau = tau_0 + delta_tau_s * np.arange(0, int(common_meta.ImageData.NumRows)) # The vm_ca used here is slightly different than the ESA deramp # document, since the document interpolates the velocity values given # rather than the position values, which is what we do here. k_s = (2. * (vm_ca / C)) * fc * k_psi k_a = poly.polyval(tau - az_t0[az_rate_poly_ind], k_a_poly[az_rate_poly_ind]) k_t = (k_a * k_s)/(k_a - k_s) f_eta_c = poly.polyval(tau - dc_t0[dc_poly_ind], data_dc_poly[dc_poly_ind]) eta = ((-float(common_meta.ImageData.SCPPixel.Col) * ss_zd_s) + (np.arange(float(common_meta.ImageData.NumCols))*ss_zd_s)) eta_c = -f_eta_c/k_a # Beam center crossing time. TimeCOA in SICD terminology eta_ref = eta_c - eta_c[0] eta_grid, eta_ref_grid = np.meshgrid(eta[cols], eta_ref[rows]) eta_arg = eta_grid - eta_ref_grid deramp_phase = k_t[rows, np.newaxis] * np.power(eta_arg, 2) / 2 demod_phase = eta_arg * f_eta_c[rows, np.newaxis] # Sampled phase correction for deramping and demodding total_phase = deramp_phase + demod_phase # Least squares fit for 2D polynomial # A*x = b [coords_az_m_2d, coords_rg_m_2d] = np.meshgrid(coords_az_m, coords_rg_m) a = np.zeros(((POLY_ORDER+1)**2, (POLY_ORDER+1)**2)) for k in range(POLY_ORDER+1): for j in range(POLY_ORDER+1): a[:, k*(POLY_ORDER+1)+j] = np.multiply( np.power(coords_az_m_2d.flatten(), j), np.power(coords_rg_m_2d.flatten(), k)) A = np.zeros(((POLY_ORDER+1)**2, (POLY_ORDER+1)**2)) for k in range((POLY_ORDER+1)**2): for j in range((POLY_ORDER+1)**2): A[k, j] = np.multiply(a[:, k], a[:, j]).sum() b_phase = [np.multiply(total_phase.flatten(), a[:, k]).sum() for k in range((POLY_ORDER+1)**2)] x_phase = np.linalg.solve(A, b_phase) phase = np.reshape(x_phase, (POLY_ORDER+1, POLY_ORDER+1)) # DeltaKCOAPoly is derivative of phase in Col direction burst_meta.Grid.Col.DeltaKCOAPoly = poly.polyder(phase, axis=1) # DopCentroidPoly/TimeCOAPoly # Another way to derive the Doppler Centroid, which is back-calculated # from the ESA-documented azimuth deramp phase function. DopCentroidPoly = (burst_meta.Grid.Col.DeltaKCOAPoly * (float(common_meta.Grid.Col.SS) / ss_zd_s)) burst_meta.RMA.INCA.DopCentroidPoly = DopCentroidPoly dopcentroid2_sampled = poly.polyval2d(coords_rg_m_2d, coords_az_m_2d, DopCentroidPoly) timecoa_sampled = timeca_sampled + dopcentroid2_sampled/doprate_sampled[:, np.newaxis] # Convert sampled TimeCOA to polynomial b_coa = [np.multiply(timecoa_sampled.flatten(), a[:, k]).sum() for k in range((POLY_ORDER+1)**2)] x_coa = np.linalg.solve(A, b_coa) burst_meta.Grid.TimeCOAPoly = np.reshape(x_coa, (POLY_ORDER+1, POLY_ORDER+1)) # Timeline # We don't know the precise start and stop time of each burst (as in # the times of first and last pulses), so we use the min and max COA # time, which is a closer approximation than the min and max zero # Doppler times. At least COA times will not overlap between bursts. if numbursts > 0: # STRIPMAP case uses another time origin different from first zero Doppler time time_offset = timecoa_sampled.min() burst_meta.Timeline.CollectStart = start + datetime.timedelta(seconds=time_offset) burst_meta.Timeline.CollectDuration = (timecoa_sampled.max() - timecoa_sampled.min()) # Adjust all SICD fields that were dependent on start time # Time is output of polynomial: burst_meta.Grid.TimeCOAPoly[0, 0] = \ burst_meta.Grid.TimeCOAPoly[0, 0] - time_offset burst_meta.RMA.INCA.TimeCAPoly[0] = \ burst_meta.RMA.INCA.TimeCAPoly[0] - time_offset # Time is input of polynomial: burst_meta.Position.ARPPoly.X = \ _polyshift(burst_meta.Position.ARPPoly.X, time_offset) burst_meta.Position.ARPPoly.Y = \ _polyshift(burst_meta.Position.ARPPoly.Y, time_offset) burst_meta.Position.ARPPoly.Z = \ _polyshift(burst_meta.Position.ARPPoly.Z, time_offset) burst_meta.Timeline.IPP.Set.TStart = 0 burst_meta.Timeline.IPP.Set.TEnd = burst_meta.Timeline.CollectDuration burst_meta.Timeline.IPP.Set.IPPStart = int(0) burst_meta.Timeline.IPP.Set.IPPEnd = \ int(
np.floor(burst_meta.Timeline.CollectDuration * prf)
numpy.floor
import os import random import itertools import numpy as np import collections import matplotlib.pyplot as plt from collections import Counter from itertools import chain from bisect import bisect_right, bisect_left from reclist.current import current def statistics(x_train, y_train, x_test, y_test, y_pred): train_size = len(x_train) test_size = len(x_test) # num non-zero preds num_preds = len([p for p in y_pred if p]) return { 'training_set__size': train_size, 'test_set_size': test_size, 'num_non_null_predictions': num_preds } def sample_hits_at_k(y_preds, y_test, x_test=None, k=3, size=3): hits = [] for idx, (_p, _y) in enumerate(zip(y_preds, y_test)): if _y[0] in _p[:k]: hit_info = { 'Y_TEST': [_y[0]], 'Y_PRED': _p[:k], } if x_test: hit_info['X_TEST'] = [x_test[idx][0]] hits.append(hit_info) if len(hits) < size or size == -1: return hits return random.sample(hits, k=size) def sample_misses_at_k(y_preds, y_test, x_test=None, k=3, size=3): misses = [] for idx, (_p, _y) in enumerate(zip(y_preds, y_test)): if _y[0] not in _p[:k]: miss_info = { 'Y_TEST': [_y[0]], 'Y_PRED': _p[:k], } if x_test: miss_info['X_TEST'] = [x_test[idx][0]] misses.append(miss_info) if len(misses) < size or size == -1: return misses return random.sample(misses, k=size) def sample_all_misses_at_k(y_preds, y_test, x_test=None, k=3, size=3): misses = [] for idx, (_p, _y) in enumerate(zip(y_preds, y_test)): missing_y = [item for item in _y if item not in _p[:k]] if missing_y: miss_info = { 'Y_TEST': missing_y, 'Y_PRED': _p[:k], } if x_test: miss_info['X_TEST'] = [x_test[idx][0]] misses.append(miss_info) if len(misses) < size or size == -1: return misses return random.sample(misses, k=size) def hit_rate_at_k_nep(y_preds, y_test, k=3): y_test = [[k] for k in y_test] return hit_rate_at_k(y_preds, y_test, k=k) def hit_rate_at_k(y_preds, y_test, k=3): hits = 0 for _p, _y in zip(y_preds, y_test): if len(set(_p[:k]).intersection(set(_y))) > 0: hits += 1 return hits / len(y_test) def mrr_at_k_nep(y_preds, y_test, k=3): """ Computes MRR :param y_preds: predictions, as lists of lists :param y_test: target data, as lists of lists (eventually [[sku1], [sku2],...] :param k: top-k """ y_test = [[k] for k in y_test] return mrr_at_k(y_preds, y_test, k=k) def mrr_at_k(y_preds, y_test, k=3): """ Computes MRR :param y_preds: predictions, as lists of lists :param y_test: target data, as lists of lists (eventually [[sku1], [sku2],...] :param k: top-k """ rr = [] for _p, _y in zip(y_preds, y_test): for rank, p in enumerate(_p[:k], start=1): if p in _y: rr.append(1 / rank) break else: rr.append(0) assert len(rr) == len(y_preds) return np.mean(rr) def coverage_at_k(y_preds, product_data, k=3): pred_skus = set(itertools.chain.from_iterable(y_preds[:k])) all_skus = set(product_data.keys()) nb_overlap_skus = len(pred_skus.intersection(all_skus)) return nb_overlap_skus / len(all_skus) def popularity_bias_at_k(y_preds, x_train, k=3): # estimate popularity from training data pop_map = collections.defaultdict(lambda : 0) num_interactions = 0 for session in x_train: for event in session: pop_map[event] += 1 num_interactions += 1 # normalize popularity pop_map = {k:v/num_interactions for k,v in pop_map.items()} all_popularity = [] for p in y_preds: average_pop = sum(pop_map.get(_, 0.0) for _ in p[:k]) / len(p) if len(p) > 0 else 0 all_popularity.append(average_pop) return sum(all_popularity) / len(y_preds) def precision_at_k(y_preds, y_test, k=3): precision_ls = [len(set(_y).intersection(set(_p[:k]))) / len(_p) if _p else 1 for _p, _y in zip(y_preds, y_test)] return np.average(precision_ls) def recall_at_k(y_preds, y_test, k=3): recall_ls = [len(set(_y).intersection(set(_p[:k]))) / len(_y) if _y else 1 for _p, _y in zip(y_preds, y_test)] return np.average(recall_ls) def ndcg_at_k(y_preds, y_test, k=3): import sklearn.metrics results = list(reversed(list(range(1, k+1)))) user_ndcgs = [] for _p, _y in zip(y_preds, y_test): relevance = [] for j in _p[:k]: if j in _y: relevance.append(1) else: relevance.append(0) # 0 pad relevance to k if there are fewer than k predictions if len(relevance) < k: relevance += [0]*(k-len(relevance)) user_ndcgs.append(sklearn.metrics.ndcg_score([relevance], [results])) return np.average(np.asarray(user_ndcgs)) def ndcg_at_k_user_differential(y_preds, y_test, y_test_full, k=3, user_feature='gender'): pred_breakdown, test_breakdown = _breakdown_preds_by_user_feature(y_test_full, y_preds, y_test, user_feature=user_feature) return _apply_func_to_breakdown(ndcg_at_k, pred_breakdown, test_breakdown, k=k) def _breakdown_preds_by_user_feature(y_test, y_preds, y_test_ids, user_feature='gender'): from collections import defaultdict pred_breakdown = defaultdict(list) test_breakdown = defaultdict(list) for _t, _p, _t_ids in zip(y_test, y_preds, y_test_ids): target_user_feature = _t[0][user_feature] if not target_user_feature: target_user_feature = 'unknown' pred_breakdown[target_user_feature].append(_p) test_breakdown[target_user_feature].append(_t_ids) return pred_breakdown, test_breakdown def _apply_func_to_breakdown(func, pred_breakdown, test_breakdown, *args, **kwargs): retval = {} for key in sorted(pred_breakdown.keys()): retval[key] = func(pred_breakdown[key], test_breakdown[key], *args, **kwargs) return retval def rec_items_distribution_at_k(y_preds, k=3, bin_width=100, debug=True): def _calculate_hist(frequencies, bins): """ Works out the counts of items in each bucket """ counts_per_bin = Counter([bisect_right(bins, item) - 1 for item in frequencies]) counts_per_bin_list = list(counts_per_bin.items()) empty_bins_indices = [ele for ele in np.arange(len(bins) - 1) if ele not in [ index for index, _ in counts_per_bin_list ]] counts_per_bin_list.extend([(index, 0) for index in empty_bins_indices]) counts_per_bin_sorted = sorted(counts_per_bin_list, key=lambda x: x[0], reverse=False) return [y for _, y in counts_per_bin_sorted] def _format_results(bins, counts_per_bin): """ Formatting results """ results = {} for index, (_, count) in enumerate(zip(bins, counts_per_bin)): if bins[index] != bins[index + 1]: results[str(bins[index]) + '-' + str(bins[index + 1] - 1)] = count return results # estimate frequency of recommended items in predictions reduce_at_k_preds = [preds[:k] for preds in y_preds] counts = Counter(chain.from_iterable(reduce_at_k_preds)) frequencies = list(counts.values()) # fixed bin size bins = np.arange(np.min(frequencies), np.max(frequencies) + bin_width, bin_width) counts_per_bin_sorted = _calculate_hist(frequencies, bins) # log bin size log_bins = np.logspace(
np.log10(bins[0])
numpy.log10
import os, sys import pandas as pd import numpy as np import simpledbf from scipy.interpolate import interp1d import matplotlib.pyplot as plt from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection import arcpy from arcpy import env from arcpy.sa import * try: sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) + "\\.site_packages\\riverpy\\") import config import fGlobal as fGl except: print("ExceptionERROR: Missing RiverArchitect packages (riverpy).") # Eco series analysis - SHArea # This python script (1) # Before you run this code, please put the excel files in SHArea folder to a new folder called "case_name" ######################### # User defined variables case_name = "VanillaC4" fish_periods = ["chsp"] #fish_periods = ["chju", "raju", "raad"] timeseries_path = "../00_Flows/" + case_name + "/flow_series_" + case_name + ".xlsx" figure_path = "../SHArC/SHArea/" + case_name + "/" interptype = 'linear' scale_to_one = 0 ######################### ind = 0 colors = ["tab:blue", "tab:orange", "tab:green"] for fish_period in fish_periods: fish_name = fish_period[0:2] period = fish_period[2:4] if fish_name == 'ch': fish_full = 'Chinook Salmon' elif fish_name == 'ra': fish_full = 'Rainbow / Steelhead Trout' if period == 'sp': period_full = 'spawning' elif period == 'ju': period_full = 'juvenile' elif period == 'ad': period_full = 'adult' fish_period_full = fish_full + ' - ' + period_full sharea_path = "../SHArC/SHArea/" + case_name + "/" + case_name + "_sharea_" + fish_name + period + ".xlsx" ###################### # Reading SHARrC data f1 = pd.read_excel(sharea_path, index_col=None, header=None,usecols="B")[3:].values.tolist() f2 = pd.read_excel(sharea_path, index_col=None, header=None,usecols="F")[3:].values.tolist() Flow = np.array(f1).transpose()[0] CalArea = np.array(f2).transpose()[0] Flow = np.append(Flow, [0]) CalArea = np.append(CalArea, [0]) ###################### # Bankfull wetted area env.workspace = os.path.abspath("../SHArC/HSI/" + case_name) BfQ_hsi = "dsi_" + fish_period + fGl.write_Q_str(Flow[0]) + ".tif" # Check out the ArcGIS Spatial Analyst extension license arcpy.CheckOutExtension("Spatial") # Execute ExtractValuesToPoints rasters = arcpy.ListRasters("*", "tif") for raster in rasters: if raster == BfQ_hsi: print(raster) outRas = Raster(BfQ_hsi) > -1 outPolygons = "BfQ_polygon.shp" arcpy.RasterToPolygon_conversion(outRas, outPolygons) # Set local variables inZoneData = outPolygons zoneField = "id" inClassData = outPolygons classField = "id" outTable = "BfQ_polygon_table.dbf" processingCellSize = 0.01 # Execute TabulateArea TabulateArea(inZoneData, zoneField, inClassData, classField, outTable, processingCellSize, "CLASSES_AS_ROWS") BfQ_area_dbf = simpledbf.Dbf5(env.workspace + '\\' + outTable) BfQ_partial_area = BfQ_area_dbf.to_dataframe() BfQ_area = np.sum(
np.array(BfQ_partial_area['Area'])
numpy.array
import os import numpy as np import time import argparse import sys from math import ceil from random import Random import time import random import torch import torch.distributed as dist import torch.utils.data.distributed import torch.nn as nn import torch.nn.functional as F from torch.multiprocessing import Process import torchvision from torchvision import datasets, transforms import torch.backends.cudnn as cudnn import torchvision.models as models from torch.utils.data import DataLoader, RandomSampler, SequentialSampler from torch.utils.data.distributed import DistributedSampler import datetime import LocalSGD as optim import util_v4 as util from comm_helpers import SyncAllreduce, SyncAllreduce_1, SyncAllreduce_2 import os from scipy.io import loadmat import json from scipy import io from dataset.cifar import get_cifar10, get_emnist, get_svhn from torch.optim.lr_scheduler import LambdaLR import math parser = argparse.ArgumentParser(description='CIFAR-10 baseline') parser.add_argument('--name','-n', default="default", type=str, help='experiment name, used for saving results') parser.add_argument('--backend', default="nccl", type=str, help='experiment name, used for saving results') parser.add_argument('--GPU_list', default='0', type=str, help='gpu list') parser.add_argument('--dataset', default="cifar10", type=str, help='dataset name') parser.add_argument('--model', default="res_gn", type=str, help='neural network model') parser.add_argument('--alpha', default=0.2, type=float, help='alpha') parser.add_argument('--gmf', default=0, type=float, help='global momentum factor') parser.add_argument('--lr', default=0.1, type=float, help='learning rate') parser.add_argument('--basicLabelRatio', default=0.4, type=float, help='basicLabelRatio') parser.add_argument('--bs', default=64, type=int, help='batch size on each worker') parser.add_argument('--epoch', default=300, type=int, help='total epoch') parser.add_argument('--cp', default=8, type=int, help='communication period / work per clock') parser.add_argument('--print_freq', default=100, type=int, help='print info frequency') parser.add_argument('--rank', default=0, type=int, help='the rank of worker') parser.add_argument('--size', default=8, type=int, help='number of workers') parser.add_argument('--seed', default=1, type=int, help='random seed') parser.add_argument('--num_comm_ue', default=11, type=int, help='communication user number') parser.add_argument('--iid', default=1, type=int, help='iid') parser.add_argument('--class_per_device', default=1, type=int, help='class_per_device') parser.add_argument('--labeled', default=0, type=int, help='labeled all data') parser.add_argument('--H', default=0, type=int, help='whether use hierarchical method') parser.add_argument('--save', '-s', action='store_true', help='whether save the training results') parser.add_argument('--ip_address', default="10.129.2.142", type=str, help='ip_address') parser.add_argument('--master_port', default="29021", type=str, help='master port') parser.add_argument('--experiment_name', default="Major1_setting1", type=str, help='name of this experiment') parser.add_argument('--k-img', default=65536, type=int, ### 65536 help='number of examples') parser.add_argument('--num_data_server', default=1000, type=int, help='number of samples in server') parser.add_argument('--num-data-server', default=1000, type=int, help='number of labeled examples in server') parser.add_argument('--num-devices', default=10, type=int, help='num of devices') args = parser.parse_args() def get_cosine_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_cycles=7./16., last_epoch=-1,lr_weight=1): def _lr_lambda(current_step): if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) no_progress = float(current_step - num_warmup_steps) / \ float(max(1, num_training_steps - num_warmup_steps)) num_cycles = 7.0/16.0*(1024*1024 - num_warmup_steps)/(1024*200 - num_warmup_steps) return max(0.00000, math.cos(math.pi * num_cycles * no_progress)) return LambdaLR(optimizer, _lr_lambda, last_epoch) ######### Assign Ranks to different GPUs GRU_list = [i for i in args.GPU_list] if args.H: increase_tmp = args.size//len(GRU_list) else: increase_tmp = (args.size+1)//len(GRU_list) ranks_list = np.arange(0,args.size).tolist() rank_group = [] for rank_id in range(len(GRU_list)): if rank_id == len(GRU_list)-1: ranks = ranks_list[rank_id*increase_tmp:] else: ranks = ranks_list[rank_id*increase_tmp:(rank_id+1)*increase_tmp] rank_group.append(ranks) for group_id in range(len(GRU_list)): if args.rank in set(rank_group[group_id]): os.environ["CUDA_VISIBLE_DEVICES"] = GRU_list[group_id] break device = 'cuda' if torch.cuda.is_available() else 'cpu' DATASET_GETTERS = {'cifar10': get_cifar10, 'emnist': get_emnist, 'svhn':get_svhn} ### generate the index of the server dataset and the device dataset if args.iid: path_device_idxs = f'{args.dataset}_post_data/iid/{args.size - 1 - args.H}_{args.num_data_server}' else: path_device_idxs = f'{args.dataset}_post_data/noniid/{args.size - 1 - args.H}_{args.num_data_server}_{args.class_per_device}_{args.basicLabelRatio}' if args.dataset == 'emnist': if args.iid: path_device_idxs = f'{args.dataset}_post_data/iid/{47}_{args.num_data_server}' else: path_device_idxs = f'{args.dataset}_post_data/noniid/{47}_{args.num_data_server}_{args.class_per_device}_{args.basicLabelRatio}' device_ids = np.load(path_device_idxs + '/device_idxs' + '.npy', allow_pickle=True).item() server_idxs = np.load(path_device_idxs + '/server_idxs' + '.npy', allow_pickle=True).item() device_ids = device_ids['device_idxs'] server_idxs = server_idxs['server_idxs'] if args.num_comm_ue < args.size - 1 - args.H: ue_list_epoches =
np.load(path_device_idxs + '/ue_list_epoch' + '.npy', allow_pickle=True)
numpy.load
"""Script for sampling COV, burstiness and memory coeficient, and their uncertainties, on many faults and plotting them <NAME> University of Otago 2020 """ import os, sys import ast from glob import glob from operator import itemgetter from re import finditer import numpy as np from scipy.optimize import curve_fit from scipy.odr import Model, RealData, ODR import scipy.odr.odrpack as odrpack from scipy.stats import expon, gamma, weibull_min, ks_2samp, kstest # !!! Dangerous hack to swap Weibull for gamma #from scipy.stats import weibull_min as gamma # # !!! from matplotlib import pyplot from matplotlib.patches import PathPatch import matplotlib.gridspec as gridspec from matplotlib.ticker import FormatStrFormatter from scipy.stats import binom, kde from adjustText import adjust_text from QuakeRates.dataman.event_dates import EventSet from QuakeRates.dataman.parse_oxcal import parse_oxcal from QuakeRates.dataman.parse_age_sigma import parse_age_sigma from QuakeRates.dataman.parse_params import parse_param_file, \ get_event_sets, file_len from QuakeRates.utilities.bilinear import bilinear_reg_zero_slope, \ bilinear_reg_fix, bilinear_reg_fix_zero_slope from QuakeRates.utilities.memory_coefficient import burstiness, memory_coefficient filepath = '../params' param_file_list = glob(os.path.join(filepath, '*.txt')) param_file_list_NZ = ['Akatore_TaylorSilva_2019.txt', 'AlpineHokuriCk_Berryman_2012_simple.txt', 'AlpineSouthWestland_Cochran_2017_simple.txt', 'AwatereEast_Nicol_2016_simple.txt', 'ClarenceEast_Nicol_2016_simple.txt', 'CloudyFault_Nicol_2016_simple.txt', 'Dunstan_GNS_unpub_simple.txt', 'HopeConway_Hatem_2019_simple.txt', 'Hope_Khajavi_2016_simple.txt', 'Ihaia_Nicol_2016_simple.txt', 'Oaonui_Nicol_2016_simple.txt', 'Ohariu_Nicol_2016_simple.txt', 'Paeroa_Nicol_2016_simple.txt', 'Pihama_Nicol_2016_simple.txt', 'PortersPassEast_Nicol_2016_simple.txt', 'Ngakuru_Nicol_2016_simple.txt', 'Mangatete_Nicol_2016_simple.txt', 'Rangipo_Nicol_2016_simple.txt', 'Rotoitipakau_Nicol_2016_simple.txt', 'Rotohauhau_Nicol_2016_simple.txt', 'Snowden_Nicol_2016_simple.txt', 'Vernon_Nicol_2016_simple.txt', 'WairarapaSouth_Nicol_2016_simple.txt', 'Wairau_Nicol_2018_simple.txt', 'Waimana_Nicol_2016_simple.txt', 'Wellington_Langridge_2011_simple.txt', 'Waitangi_GNS_unpub_simple.txt', 'Whakatane_Nicol_2016_simple.txt', 'Whirinaki_Nicol_2016_simple.txt'] # List of faults in study by Williams et al 2019 # Note this is not entirely the same, as there are some records from # that study that are not included in ours. param_file_list_W = ['AlpineHokuriCk_Berryman_2012_simple.txt', 'HaywardTysons_Lienkaemper_2007_simple.txt', 'SanJacintoMysticLake_Onderdonk_2018_simple.txt', 'NorthAnatolianElmacik_Fraser_2010_simple.txt', 'SanAndreasWrightwood_Weldon_2004_simple.txt', 'SanAndreasCarizzo_Akciz_2010_simple.txt', 'SanJacintoHogLake_Rockwell_2015_simple.txt', 'SanAndreasMissionCk_Fumal_2002_simple.txt', 'SanAndreasPalletCk_Scharer_2011_simple.txt', 'Xorkoli_Altyn_Tagh_Yuan_2018.txt', 'NorthAnatolianYaylabeli_Kozaci_2011_simple.txt', 'ElsinoreTemecula_Vaughan_1999_simple.txt', 'DeadSeaJordan_Ferry_2011_simple.txt', 'SanAndreasBigBend_Scharer_2017_simple.txt', 'WasatchBrigham_McCalpin_1996_simple.txt', 'Irpinia_Pantosti_1993_simple.txt', 'WasatchWeber_Duross_2011_simple.txt', 'WasatchNilphi_Duross_2017_simple.txt', 'LomaBlanca_Williams_2017_simple.txt', 'AlaskaPWSCopper_Plafker_1994_simple.txt', 'NankaiTrough_Hori_2004_simple.txt', 'CascadiaNth_Adams_1994_simple.txt', 'CascadiaSth_Goldfinger_2003_simple.txt', 'JavonCanyon_SarnaWojicki_1987_simple.txt', 'NewGuinea_Ota_1996_simple.txt', 'ChileMargin_Moernaut_2018_simple.txt'] #param_file_list = [] #for f in param_file_list_NZ: #for f in param_file_list_W: # param_file_list.append(os.path.join(filepath, f)) n_samples = 10000 # Number of Monte Carlo samples of the eq chronologies half_n = int(n_samples/2) print(half_n) annotate_plots = False # If True, lable each fault on the plot plot_folder = './plots' if not os.path.exists(plot_folder): os.makedirs(plot_folder) # Define subset to take #faulting_styles = ['Reverse'] #faulting_styles = ['Normal'] #faulting_styles = ['Strike_slip'] faulting_styles = ['all'] tectonic_regions = ['all'] #tectonic_regions = ['Intraplate_noncratonic', 'Intraplate_cratonic', 'Near_plate_boundary'] #tectonic_regions = ['Plate_boundary_master', 'Plate_boundary_network'] #tectonic_regions = ['Plate_boundary_network', 'Near_plate_boundary'] #tectonic_regions = ['Plate_boundary_master'] #tectonic_regions = ['Subduction'] #tectonic_regions = ['Near_plate_boundary'] min_number_events = 5 # Use for all other calculations. min_num_events_mem = 6 # Use for memory coefficient #Summarise for comment to add to figure filename fig_comment = '' #fig_comment = 'NZ_examples_' #fig_comment = 'Williams2019_' for f in faulting_styles: fig_comment += f fig_comment += '_' for t in tectonic_regions: fig_comment += t fig_comment += '_' fig_comment += str(min_number_events) #fig_comment += 'test_add_event_data' def piecewise_linear(x, x0, y0, k1, k2): return np.piecewise(x, [x < x0], [lambda x:k1*x + y0-k1*x0, lambda x:k2*x + y0-k2*x0]) def camel_case_split(identifier): matches = finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)', identifier) return [m.group(0) for m in matches] plot_colours = [] all_ie_times = [] added_events = [] # Store names of records where we've added an event due to # exceptionally long current open interval covs = [] cov_bounds = [] burstinesses = [] burstiness_bounds = [] burstiness_stds = [] burstinesses_expon = [] burstinesses_gamma = [] ie_gamma_alpha = [] memory_coefficients = [] memory_bounds = [] memory_stds = [] memory_spearman_coefficients = [] memory_spearman_bounds = [] memory_spearman_lag2_coef = [] memory_spearman_lag2_bounds = [] long_term_rates = [] long_term_rate_stds = [] slip_rates = [] slip_rate_stds = [] slip_rate_bounds = [] max_interevent_times = [] min_interevent_times = [] min_paired_interevent_times = [] std_min_paired_interevent_times = [] std_min_interevent_times = [] std_max_interevent_times = [] max_interevent_times_bounds = [] min_interevent_times_bounds = [] min_paired_interevent_times_bounds = [] ratio_min_pair_max = [] ratio_min_max = [] std_ratio_min_pair_max = [] std_ratio_min_max = [] ratio_min_pair_max_bounds =[] ratio_min_max_bounds = [] names, event_sets, event_certainties, num_events, tect_regions, fault_styles = \ get_event_sets(param_file_list, tectonic_regions, faulting_styles, min_number_events) references = [] # Get citations for each dataset from filename for s in param_file_list: sp = s.split('_') if sp[0].split('/')[2] in names: references.append(sp[1] + ' ' + sp[2]) n_faults = len(names) print('Number of faults', n_faults) for i, event_set in enumerate(event_sets): # Handle cases with uncertain number of events. Where events identification is # unsure, event_certainty is given a value of 0, compared with 1 for certain # events # First generate chronologies assuming all events are certain # event_set.name = names[i] event_set.gen_chronologies(n_samples, observation_end=2020, min_separation=1) event_set.calculate_cov() event_set.cov_density() event_set.memory_coefficient() event_set.memory_spearman_rank_correlation() # Store all inter-event times for global statistics all_ie_times.append(event_set.interevent_times) # Now calculate some statistics on the sampled chronologies event_set.basic_chronology_stats() # Plot histogram of interevent times figfile = os.path.join(plot_folder, ('interevent_times_%s.png' % names[i])) event_set.plot_interevent_time_hist(fig_filename=figfile) # Fit gamma distirbution to event set data event_set.fit_gamma() ie_gamma_alpha.append(event_set.mean_gamma_alpha_all) # Get mean estimate of alpha min_paired_interevent_times.append(event_set.mean_minimum_pair_interevent_time) max_interevent_times.append(event_set.mean_maximum_interevent_time) min_interevent_times.append(event_set.mean_minimum_interevent_time) std_min_paired_interevent_times.append(event_set.std_minimum_pair_interevent_time) std_min_interevent_times.append(event_set.std_minimum_interevent_time) std_max_interevent_times.append(event_set.std_maximum_interevent_time) if event_set.std_maximum_interevent_time == 0: print('Zero std_maximum_interevent_time for ', names[i]) slip_rates.append(event_set.slip_rates[0]) slip_rate_bounds.append([event_set.slip_rates[1], event_set.slip_rates[2]]) slip_rate_stds.append(abs(np.log10(event_set.slip_rates[2]) - \ np.log10(event_set.slip_rates[1]))/4) # Approx from 95% intervals max_interevent_times_bounds.append([abs(event_set.mean_maximum_interevent_time - event_set.maximum_interevent_time_lb), abs(event_set.mean_maximum_interevent_time - event_set.maximum_interevent_time_ub)]) min_interevent_times_bounds.append([abs(event_set.mean_minimum_interevent_time - event_set.minimum_interevent_time_lb), abs(event_set.mean_minimum_interevent_time - event_set.minimum_interevent_time_ub)]) min_paired_interevent_times_bounds.append([abs(event_set.mean_minimum_pair_interevent_time - event_set.minimum_pair_interevent_time_lb), abs(event_set.mean_minimum_pair_interevent_time - event_set.minimum_pair_interevent_time_ub)]) ratio_min_pair_max.append(event_set.mean_ratio_min_pair_max) ratio_min_max.append(event_set.mean_ratio_min_max) std_ratio_min_pair_max.append(event_set.std_ratio_min_pair_max) std_ratio_min_max.append(event_set.std_ratio_min_max) ratio_min_pair_max_bounds.append([abs(event_set.mean_ratio_min_pair_max - event_set.ratio_min_pair_max_lb), abs(event_set.mean_ratio_min_pair_max - event_set.ratio_min_pair_max_ub)]) ratio_min_max_bounds.append([abs(event_set.mean_ratio_min_max - event_set.ratio_min_max_lb), abs(event_set.mean_ratio_min_max - event_set.ratio_min_max_ub)]) # Generate random exponentially and gamma distributed samples of length num_events - 1 # i.e. the number of inter-event times in the chronology. These will be used # later for testing scale = 100 # Fix scale, as burstiness is independent of scale for exponentiall distribution ie_times_expon = expon(scale=scale).rvs(size=(n_samples*(event_set.num_events-1))) ie_times_expon = np.reshape(np.array(ie_times_expon), (n_samples, (event_set.num_events-1))) ie_times_expon_T = ie_times_expon.T burst_expon = burstiness(ie_times_expon_T) # Gamma alpha_g = 2.3 #2.2 #1.6 ##2.35 #2.4 #2.0 ie_times_g = gamma(alpha_g, scale=scale).rvs(size=(n_samples*(event_set.num_events-1))) ie_times_g = np.reshape(np.array(ie_times_g), (n_samples, (event_set.num_events-1))) ie_times_g_T = ie_times_g.T burst_g = burstiness(ie_times_g_T) # Now generate chronologies assuming uncertain events did not occur if sum(event_certainties[i]) < event_set.num_events: indices = np.where(event_certainties[i] == 1) indices = list(indices[0]) # print(indices[0], type(indices)) events_subset = list(itemgetter(*indices)(event_set.event_list)) event_set_certain = EventSet(events_subset) event_set_certain.name = names[i] event_set_certain.gen_chronologies(n_samples, observation_end=2019, min_separation=1) event_set_certain.calculate_cov() event_set_certain.cov_density() event_set_certain.basic_chronology_stats() event_set_certain.memory_coefficient() event_set_certain.memory_spearman_rank_correlation() # Generate random exponentially distributed samples of length num_events - 1 # i.e. the number of inter-event times in the chronology. These will be used # later for testing ie_times_expon_certain = expon(scale=scale).rvs(size=(n_samples*(len(indices)-1))) ie_times_expon_certain = np.reshape(np.array(ie_times_expon_certain), (n_samples, (len(indices)-1))) ie_times_expon_certain_T = ie_times_expon_certain.T burst_expon_certain = burstiness(ie_times_expon_certain_T) ie_times_g_certain = gamma(alpha_g, scale=scale).rvs(size=(n_samples*(event_set.num_events-1))) ie_times_g_certain = np.reshape(np.array(ie_times_g_certain), (n_samples, (event_set.num_events-1))) ie_times_g_certain_T = ie_times_g_certain.T burst_g_certain = burstiness(ie_times_g_T) # Now combine results from certain chronolgies with uncertain ones combined_covs = np.concatenate([event_set.covs[:half_n], event_set_certain.covs[:half_n]]) combined_burstiness = np.concatenate([event_set.burstiness[:half_n], event_set_certain.burstiness[:half_n]]) combined_memory = np.concatenate([event_set.mem_coef[:half_n], event_set_certain.mem_coef[:half_n]]) combined_memory_spearman = np.concatenate([event_set.rhos[:half_n], event_set_certain.rhos[:half_n]]) combined_memory_spearman_lag2 = np.concatenate([event_set.rhos2[:half_n], event_set_certain.rhos2[:half_n]]) combined_burst_expon = np.concatenate([burst_expon[:half_n], burst_expon_certain[:half_n]]) combined_burst_g = np.concatenate([burst_g[:half_n], burst_g_certain[:half_n]]) covs.append(combined_covs) burstinesses.append(combined_burstiness) memory_coefficients.append(combined_memory) memory_stds.append(np.std(np.array(combined_memory))) memory_spearman_coefficients.append(combined_memory_spearman) memory_spearman_lag2_coef.append(combined_memory_spearman_lag2) burstinesses_expon.append(combined_burst_expon) burstinesses_gamma.append(combined_burst_g) cov_bounds.append([abs(np.mean(combined_covs) - \ min(event_set.cov_lb, event_set_certain.cov_lb)), abs(np.mean(combined_covs) - \ max(event_set.cov_ub, event_set_certain.cov_ub))]) burstiness_bounds.append([abs(np.mean(combined_burstiness) - \ min(event_set.burstiness_lb, event_set_certain.burstiness_lb)), abs(np.mean(combined_burstiness) - \ max(event_set.burstiness_ub, event_set_certain.burstiness_ub))]) memory_bounds.append([abs(np.mean(combined_memory) - \ min(event_set.memory_lb, event_set_certain.memory_lb)), abs(np.mean(combined_memory) - \ max(event_set.memory_ub, event_set_certain.memory_ub))]) memory_spearman_bounds.append([abs(np.mean(combined_memory_spearman) - \ min(event_set.rho_lb, event_set_certain.rho_lb)), abs(np.mean(combined_memory_spearman) - \ max(event_set.rho_ub, event_set_certain.rho_ub))]) memory_spearman_lag2_bounds.append([abs(np.mean(combined_memory_spearman_lag2) - \ min(event_set.rho2_lb, event_set_certain.rho2_lb)), abs(np.mean(combined_memory_spearman_lag2) - \ max(event_set.rho2_ub, event_set_certain.rho2_ub))]) # Combine, taking n/2 samples from each set combined_ltrs = np.concatenate([event_set.long_term_rates[:half_n], event_set_certain.long_term_rates[:half_n]]) burstiness_stds.append(np.std(combined_burstiness)) print(len(combined_ltrs)) long_term_rates.append(combined_ltrs) long_term_rate_stds.append(np.std(combined_ltrs)) else: covs.append(event_set.covs) burstinesses.append(event_set.burstiness) memory_coefficients.append(event_set.mem_coef) memory_stds.append(np.std(np.array(event_set.mem_coef))) memory_spearman_coefficients.append(event_set.rhos) memory_spearman_lag2_coef.append(event_set.rhos2) long_term_rates.append(event_set.long_term_rates) burstinesses_expon.append(burst_expon) burstinesses_gamma.append(burst_g) cov_bounds.append([abs(event_set.mean_cov - event_set.cov_lb), abs(event_set.mean_cov - event_set.cov_ub)]) burstiness_bounds.append([abs(event_set.mean_burstiness - event_set.burstiness_lb), abs(event_set.mean_burstiness - event_set.burstiness_ub)]) memory_bounds.append([abs(event_set.mean_mem_coef - event_set.memory_lb), abs(event_set.mean_mem_coef - event_set.memory_ub)]) memory_spearman_bounds.append([abs(event_set.mean_rho - event_set.rho_lb), abs(event_set.mean_rho - event_set.rho_ub)]) memory_spearman_lag2_bounds.append([abs(event_set.mean_rho2 - event_set.rho2_lb), abs(event_set.mean_rho2 - event_set.rho2_ub)]) burstiness_stds.append(event_set.std_burstiness) long_term_rate_stds.append(np.mean(long_term_rates)) # Get colours for plotting later if event_set.faulting_style == 'Normal': plot_colours.append('r') elif event_set.faulting_style == 'Reverse': plot_colours.append('b') elif event_set.faulting_style == 'Strike_slip': plot_colours.append('g') else: plot_colours.append('k') if event_set.add_events: # List of records where we model long open interval added_events.append(event_set.name) # Convert to numpy arrays and transpose where necessary num_events = np.array(num_events) all_ie_times = np.array(all_ie_times) max_interevent_times = np.array(max_interevent_times) min_interevent_times = np.array(min_interevent_times) min_paired_interevent_times = np.array(min_paired_interevent_times) std_max_interevent_times = np.array(std_max_interevent_times) std_min_interevent_times = np.array(std_min_interevent_times) std_min_paired_interevent_times = np.array(std_min_paired_interevent_times) max_interevent_times_bounds = np.array(max_interevent_times_bounds).T min_interevent_times_bounds = np.array(min_interevent_times_bounds).T min_paired_interevent_times_bounds = np.array(min_paired_interevent_times_bounds).T long_term_rates_T = np.array(long_term_rates).T mean_ltr = np.mean(long_term_rates_T, axis = 0) long_term_rate_stds = np.array(long_term_rate_stds) slip_rates = np.array(slip_rates).T slip_rate_bounds = np.array(slip_rate_bounds).T slip_rate_stds = np.array(slip_rate_stds).T print('Mean_ltr', mean_ltr) std_ltr = np.std(long_term_rates_T, axis = 0) ltr_bounds = np.array([abs(mean_ltr - (np.percentile(long_term_rates_T, 2.5, axis=0))), abs(mean_ltr - (np.percentile(long_term_rates_T, 97.5, axis=0)))]) ratio_min_pair_max = np.array(ratio_min_pair_max) ratio_min_max = np.array(ratio_min_max) std_ratio_min_pair_max = np.array(std_ratio_min_pair_max) std_ratio_min_max = np.array(std_ratio_min_max) ratio_min_pair_max_bounds = np.array(ratio_min_pair_max_bounds).T ratio_min_max_bounds = np.array(ratio_min_max_bounds).T cov_bounds = np.array(cov_bounds).T burstiness_bounds = np.array(burstiness_bounds).T burstiness_stds = np.array(burstiness_stds) burstiness_expon = np.array(burstinesses_expon) burstiness_gamma = np.array(burstinesses_gamma) inds = np.where(num_events >= min_num_events_mem) # Get memory coefficients for more than 6 events memory_coefficients = np.array(memory_coefficients) memory_coefficients_min = memory_coefficients[inds] memory_stds = np.array(memory_stds) memory_stds_min = memory_stds[inds] memory_bounds_min = np.array(memory_bounds)[inds].T memory_bounds = np.array(memory_bounds).T memory_spearman_bounds = np.array(memory_spearman_bounds).T memory_spearman_lag2_bounds = np.array(memory_spearman_lag2_bounds).T ie_gamma_alpha = np.array(ie_gamma_alpha) # Now plot the means and 95% error bars of COV pyplot.clf() ax = pyplot.subplot(111) mean_covs = [] for i, cov_set in enumerate(covs): mean_cov = np.mean(cov_set) mean_covs.append(mean_cov) colours = [] for mean_cov in mean_covs: if mean_cov <= 0.9: colours.append('b') elif mean_cov > 0.9 and mean_cov <= 1.1: colours.append('g') else: colours.append('r') pyplot.errorbar(mean_ltr, mean_covs, xerr = ltr_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(mean_ltr, mean_covs, yerr = cov_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(mean_ltr, mean_covs, marker = 's', c=plot_colours, s=25, zorder=2) for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (mean_ltr[i], mean_covs[i]), fontsize=8) ax.set_ylim([0, 2.5]) ax.set_xlim([1./1000000, 1./40]) ax.set_xscale('log') ax.set_xlabel('Long-term rate (events per year)') ax.set_ylabel('COV') figname = 'mean_cov_vs_lt_rate_%s.png' % fig_comment pyplot.savefig(figname) ################################ # Plot burstiness against mean ltr pyplot.clf() ax = pyplot.subplot(111) mean_bs = [] for i, b_set in enumerate(burstinesses): mean_b = np.mean(b_set) mean_bs.append(mean_b) colours = [] for mean_b in mean_bs: if mean_b <= -0.05: colours.append('b') elif mean_b > -0.05 and mean_b <= 0.05: colours.append('g') else: colours.append('r') pyplot.errorbar(mean_ltr, mean_bs, xerr = ltr_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(mean_ltr, mean_bs, yerr = burstiness_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(mean_ltr, mean_bs, marker = 's', c=plot_colours, s=25, zorder=2) for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (mean_ltr[i], mean_bs[i]), fontsize=8) # Add B=0 linear pyplot.plot([1./1000000, 1./40], [0, 0], linestyle='dashed', linewidth=1, c='0.5') ax.set_xscale('log') ax.set_xlabel('Long-term rate (events per year)') ax.set_ylabel('B') # Now do a bi-linear fit to the data mean_bs = np.array(mean_bs) indices = np.flatnonzero(mean_ltr > 3e-4) indices = indices.flatten() indices_slow_faults = np.flatnonzero(mean_ltr <= 3e-4) indices_slow_faults = indices_slow_faults.flatten() # Fit fast rate faults lf = np.polyfit(np.log10(mean_ltr[indices]), mean_bs[indices], 1) # Now force to be a flat line1 lf[0] = 0. lf[1] = np.mean(mean_bs[indices]) std_lf = np.std(mean_bs[indices]) xvals_short = np.arange(1.5e-4, 2e-2, 1e-4) yvals = lf[0]*np.log10(xvals_short) + lf[1] pyplot.plot(xvals_short, yvals, c='0.2') # Fit slow faults if len(indices_slow_faults > 1): lf_slow = np.polyfit(np.log10(mean_ltr[indices_slow_faults]), mean_bs[indices_slow_faults], 1) xvals_short = np.arange(1e-6, 1.5e-4, 1e-6) yvals = lf_slow[0]*np.log10(xvals_short) + lf_slow[1] pyplot.plot(xvals_short, yvals, c='0.2') # Add formula for linear fits of data print('Fits for B vs LTR') txt = 'Y = {:=+6.2f} +/- {:4.2f}'.format(lf[1], std_lf) print(txt) ax.annotate(txt, (2e-4, 0.2), fontsize=8) try: txt = 'Y = {:4.2f}Log(x) {:=+6.2f}'.format(lf_slow[0], lf_slow[1]) print(txt) ax.annotate(txt, (1.5e-6, 0.75), fontsize=8) except: pass # Now try bilinear ODR linear fit data = odrpack.RealData(np.log10(mean_ltr), mean_bs, sx=np.log10(long_term_rate_stds), sy=burstiness_stds) bilin = odrpack.Model(bilinear_reg_zero_slope) odr = odrpack.ODR(data, bilin, beta0=[-3, -1.0, -4]) # array are starting values odr.set_job(fit_type=0) out = odr.run() print(out.sum_square) out.pprint() a = out.beta[0] b = out.beta[1] hx = out.beta[2] xvals = np.arange(1.e-6, 2e-2, 1e-6) yrng = a*np.log10(xvals) + b #10**(b + a * xvals) ylevel = a*hx + b #10**(b + a * hx) print('ylevel', ylevel) print(10**ylevel) idx = xvals > 10**hx yrng[idx] = (ylevel) print('yrng', yrng) print('hx', hx) pyplot.plot(xvals, yrng, c='g') # Bilinear fixed hinge hxfix = np.log10(2e-4) bilin_hxfix_cons_slope = odrpack.Model(bilinear_reg_fix_zero_slope) odr = odrpack.ODR(data, bilin_hxfix_cons_slope, beta0=[-3, -1.0]) odr.set_job(fit_type=0) out = odr.run() print('bilinear hxfix_cons_slope') print(out.sum_square) out.pprint() a = out.beta[0] b = out.beta[1] yrng = a*np.log10(xvals) + b ylevel = a*hxfix + b print('ylevel hxfix zero slope', ylevel) print(10**ylevel) idx = xvals > 10**hxfix yrng[idx] = (ylevel) print('yrng', yrng) print('hx', hxfix) pyplot.plot(xvals, yrng, c='r') figname = 'burstiness_vs_lt_rate_%s.png' % fig_comment pyplot.savefig(figname) ######################### # Plot burstiness against slip rate pyplot.clf() ax = pyplot.subplot(111) pyplot.errorbar(slip_rates, mean_bs, xerr = slip_rate_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(slip_rates, mean_bs, yerr = burstiness_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(slip_rates, mean_bs, marker = 's', c=plot_colours, s=25, zorder=2) ax.set_ylim([-1, 1]) ax.set_xlim([1./1000, 100]) # Add B=0 linear pyplot.plot([1./1000, 100], [0, 0], linestyle='dashed', linewidth=1, c='0.5') ax.set_xscale('log') ax.set_xlabel('Slip rate (mm/yr)') ax.set_ylabel('B') # Now try linear ODR linear fit def f(B, x): return B[0]*x + B[1] print(slip_rates) print(np.log10(slip_rates)) print(slip_rate_stds) print(np.log10(slip_rate_stds)) print(burstiness_stds) wd = 1./np.power(burstiness_stds, 2) print(wd) we = 1./np.power(slip_rate_stds, 2) print(we) # Std dev already in log-space data = odrpack.RealData(np.log10(slip_rates), mean_bs, sx=np.sqrt(slip_rate_stds), sy=np.sqrt(burstiness_stds)) linear = odrpack.Model(f) odr = odrpack.ODR(data, linear, beta0=[-1, -1.0,]) odr.set_job(fit_type=0) out = odr.run() out.pprint() a = out.beta[0] b = out.beta[1] xvals = np.arange(1.e-4, 1e2, 1e-2) yrng = a*np.log10(xvals) + b #10**(b + a * xvals) pyplot.plot(xvals, yrng, c='0.6') txt = 'Y = {:4.2f}Log(x) {:=+6.2f}'.format(a, b) print(txt) ax.annotate(txt, (1e0, 0.9), color='0.6') # Now try bilinear fixed hinge bilin = odrpack.Model(bilinear_reg_fix_zero_slope) odr = odrpack.ODR(data, bilin, beta0=[-1, -1.0, -1]) odr.set_job(fit_type=0) out = odr.run() out.pprint() a = out.beta[0] b = out.beta[1] yrng = a*np.log10(xvals) + b ylevel = a*hxfix + b print('ylevel hxfix zero slope', ylevel) print(10**ylevel) idx = xvals > 10**hxfix yrng[idx] = (ylevel) print('yrng', yrng) print('hx', hxfix) pyplot.plot(xvals, yrng, c='0.2') txt = 'Y = {:4.2f}Log(x) {:=+6.2f}, x < {:4.2f}'.format(a, b, np.power(10,hxfix)) print(txt) ax.annotate(txt, (2e-3, 0.9), color='0.2') txt = 'Y = {:4.2f}, x >= {:4.2f}'.format(ylevel, np.power(10,hxfix)) print(txt) ax.annotate(txt, (1.2e-2, 0.8), color='0.2') figname = 'burstiness_vs_slip_rate_%s.png' % fig_comment pyplot.savefig(figname) figname = 'burstiness_vs_slip_rate_%s.pdf' % fig_comment pyplot.savefig(figname) # Plot memory coefficients against long term rates pyplot.clf() ax = pyplot.subplot(111) mean_mems = [] mean_ltr_mem = mean_ltr[inds] ltr_bounds_mem = ltr_bounds.T[inds].T for i, mem_set in enumerate(memory_coefficients): mean_mem = np.mean(mem_set) # print('Mean memory coefficient combined', mean_mem) mean_mems.append(mean_mem) mean_mems = np.array(mean_mems) colours = [] plot_colours_mem = list(np.array(plot_colours)[inds]) for mean_mem in mean_mems: if mean_mem <= -0.05: colours.append('b') elif mean_mem > -0.05 and mean_mem <= 0.05: colours.append('g') else: colours.append('r') pyplot.errorbar(mean_ltr_mem, mean_mems[inds], xerr = ltr_bounds_mem, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(mean_ltr_mem, mean_mems[inds], yerr = memory_bounds_min, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(mean_ltr_mem, mean_mems[inds], marker = 's', c=plot_colours_mem, s=25, zorder=2) for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (mean_ltr[i], mean_mems[i]), fontsize=8) ax.set_xlim([1./1000000, 1./40]) ax.set_xscale('log') ax.set_xlabel('Long-term rate (events per year)') ax.set_ylabel('M') figname = 'memory_coefficient_vs_lt_rate_%s.png' % fig_comment pyplot.savefig(figname) # Plot Spearman Rank coefficients against long term rates pyplot.clf() ax = pyplot.subplot(111) mean_mems_L1 = [] for i, mem_set in enumerate(memory_spearman_coefficients): mean_mem = np.mean(mem_set) mean_mems_L1.append(mean_mem) colours = [] for mean_mem in mean_mems_L1: if mean_mem <= -0.05: colours.append('b') elif mean_mem > -0.05 and mean_mem <= 0.05: colours.append('g') else: colours.append('r') pyplot.errorbar(mean_ltr, mean_mems_L1, xerr = ltr_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(mean_ltr, mean_mems_L1, yerr = memory_spearman_bounds, elinewidth=0.7, ecolor = '0.3', linestyle="None", zorder=1) pyplot.scatter(mean_ltr, mean_mems_L1, marker = 's', c=plot_colours, s=25, zorder=2) for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (mean_ltr[i], mean_mems_L1[i]), fontsize=8) ax.set_xlim([1./1000000, 1./40]) ax.set_xscale('log') ax.set_xlabel('Long-term rate (events per year)') ax.set_ylabel('M (Spearman Rank)') figname = 'memory_coefficient_Spearman_vs_lt_rate_%s.png' % fig_comment pyplot.savefig(figname) # Plot Spearman Rank (Lag-2) coefficients against long term rates pyplot.clf() ax = pyplot.subplot(111) mean_mems_L2 = [] for i, mem_set in enumerate(memory_spearman_lag2_coef): mean_mem = np.mean(mem_set) mean_mems_L2.append(mean_mem) colours = [] for mean_mem in mean_mems_L2: if mean_mem <= -0.05: colours.append('b') elif mean_mem > -0.05 and mean_mem <= 0.05: colours.append('g') else: colours.append('r') pyplot.errorbar(mean_ltr, mean_mems_L2, xerr = ltr_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(mean_ltr, mean_mems_L2, yerr = memory_spearman_lag2_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(mean_ltr, mean_mems_L2, marker = 's', c=plot_colours, s=25, zorder=2) for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (mean_ltr[i], mean_mems_L2[i]), fontsize=8) ax.set_xlim([1./1000000, 1./40]) ax.set_xscale('log') ax.set_xlabel('Long-term rate (events per year)') ax.set_ylabel('M (Spearman Rank Lag-2)') figname = 'memory_coefficient_Spearman_Lag2_vs_lt_rate_%s.png' % fig_comment pyplot.savefig(figname) # Plot Spearman rank Lag-1 against Lag-2 # Plot Spearman Rank coefficients against long term rates pyplot.clf() ax = pyplot.subplot(111) colours = [] for mean_mem in mean_mems_L1: if mean_mem <= -0.05: colours.append('b') elif mean_mem > -0.05 and mean_mem <= 0.05: colours.append('g') else: colours.append('r') pyplot.errorbar(mean_mems_L1, mean_mems_L2, xerr = memory_spearman_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(mean_mems_L1, mean_mems_L2, yerr = memory_spearman_lag2_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(mean_mems_L1, mean_mems_L2, marker = 's', c=plot_colours, s=25, zorder=2) for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (mean_mems_L1[i], mean_mems_L2[i]), fontsize=8) ax.set_xlabel('M (Spearman Rank Lag-1)') ax.set_ylabel('M (Spearman Rank Lag-2)') figname = 'memory_coefficient_Spearman_L1_vs_L2_%s.png' % fig_comment pyplot.savefig(figname) # Plot COV against number of events to look at sampling biases pyplot.clf() ax = pyplot.subplot(111) mean_covs = [] for i, cov_set in enumerate(covs): mean_cov = np.mean(cov_set) mean_covs.append(mean_cov) colours = [] for mean_cov in mean_covs: if mean_cov <= 0.9: colours.append('b') elif mean_cov > 0.9 and mean_cov <= 1.1: colours.append('g') else: colours.append('r') pyplot.errorbar(mean_covs, num_events, xerr = cov_bounds, ecolor = '0.6', linestyle="None") pyplot.scatter(mean_covs, num_events, marker = 's', c=plot_colours, s=25) for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (mean_covs[i], num_events[i]), fontsize=8) ax.set_xlabel('COV') ax.set_ylabel('Number of events in earthquake record') figname = 'mean_cov_vs_number_events_%s.png' % fig_comment pyplot.savefig(figname) # Now plot basic statistics pyplot.clf() ax = pyplot.subplot(111) pyplot.errorbar(max_interevent_times, min_interevent_times, yerr = min_interevent_times_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(max_interevent_times, min_interevent_times, xerr = max_interevent_times_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(max_interevent_times, min_interevent_times, marker = 's', c=colours, s=25, zorder=2) ax.set_xlabel('Maximum interevent time') ax.set_ylabel('Minimum interevent time') ax.set_xscale('log') ax.set_yscale('log') # Label low-slip rate faults for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (max_interevent_times[i], min_interevent_times[i]), fontsize=8) # Linear fit only bottom end of data indices = np.argwhere(max_interevent_times < 10000).flatten() indices_slow_faults = np.argwhere(max_interevent_times >= 10000).flatten() lf = np.polyfit(np.log10(max_interevent_times[indices]), np.log10(min_interevent_times[indices]), 1) xvals_short = np.arange(100, 1e4, 100) log_yvals = lf[0]*np.log10(xvals_short) + lf[1] yvals = np.power(10, log_yvals) pyplot.plot(xvals_short, yvals) # Add formula for linear fit to low-end of data txt = 'Log(Y) = %.2fLog(x) + %.2f' % (lf[0], lf[1]) print(txt) ax.annotate(txt, (800, 10000)) figname = 'min_vs_max_interevent_time_%s.png' % fig_comment pyplot.savefig(figname) # Plot minimum pairs pyplot.clf() ax = pyplot.subplot(111) pyplot.errorbar(max_interevent_times, min_paired_interevent_times, yerr = min_paired_interevent_times_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(max_interevent_times, min_paired_interevent_times, xerr = max_interevent_times_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(max_interevent_times, min_paired_interevent_times, marker = 's', c=colours, s=25, zorder=2) ax.set_xlabel('Maximum interevent time') ax.set_ylabel('Minimum interevent time \n(mean of two shortest consecutive interevent times)') ax.set_xscale('log') ax.set_yscale('log') # Label low-slip rate faults for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (max_interevent_times[i], min_paired_interevent_times[i]), fontsize=8) # Now fit with a regression in log-log space xvals = np.arange(100, 2e6, 100) # For plotting # Linear fit lf = np.polyfit(np.log10(max_interevent_times), np.log10(min_paired_interevent_times), 1) log_yvals = lf[0]*np.log10(xvals) + lf[1] yvals = np.power(10, log_yvals) pyplot.plot(xvals, yvals) # Linear fit only bottom end of data indices = np.argwhere(max_interevent_times < 10000).flatten() lf = np.polyfit(np.log10(max_interevent_times[indices]), np.log10(min_paired_interevent_times[indices]), 1) xvals_short = np.arange(100, 1e4, 100) log_yvals = lf[0]*np.log10(xvals_short) + lf[1] yvals = np.power(10, log_yvals) pyplot.plot(xvals_short, yvals) # Add formula for linear fit to low-end of data txt = 'Log(Y) = %.2fLog(x) + %.2f' % (lf[0], lf[1]) print(txt) ax.annotate(txt, (100, 10000)) # Quadratic fit qf = np.polyfit(np.log10(max_interevent_times), np.log10(min_paired_interevent_times), 2) print(qf) log_yvals = qf[0]*np.log10(xvals)**2 + qf[1]*np.log10(xvals) + qf[2] yvals = np.power(10, log_yvals) pyplot.plot(xvals, yvals) figname = 'min_pair_vs_max_interevent_time_%s.png' % fig_comment pyplot.savefig(figname) # Similar plots, against long term rates pyplot.clf() ax = pyplot.subplot(111) pyplot.errorbar(mean_ltr, min_interevent_times, yerr = min_interevent_times_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(mean_ltr, min_interevent_times, xerr = ltr_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(mean_ltr, min_interevent_times, marker='s', c=colours, s=25, zorder=2) ax.set_xlabel('Long-term rate') ax.set_ylabel('Minimum interevent time') ax.set_xscale('log') ax.set_yscale('log') # Label low-slip rate faults for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (mean_ltr[i], min_interevent_times[i]), fontsize=8) # Linear fit only bottom end of data indices = np.argwhere(mean_ltr > 2e-4).flatten() lf = np.polyfit(np.log10(mean_ltr[indices]), np.log10(min_interevent_times[indices]), 1) xvals_short = np.arange(5e-4, 1e-2, 1e-4) log_yvals = lf[0]*np.log10(xvals_short) + lf[1] yvals = np.power(10, log_yvals) pyplot.plot(xvals_short, yvals) # Add formula for linear fit to low-end of data txt = 'Log(Y) = %.2fLog(x) + %.2f' % (lf[0], lf[1]) ax.annotate(txt, (1e-4, 10000)) figname = 'min_interevent_time_vs_ltr_%s.png' % fig_comment pyplot.savefig(figname) # Plot long term rate against minimum pair pyplot.clf() ax = pyplot.subplot(111) pyplot.errorbar(mean_ltr, min_paired_interevent_times, yerr = min_paired_interevent_times_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(mean_ltr, min_paired_interevent_times, xerr = ltr_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(mean_ltr, min_paired_interevent_times, marker='s', c=colours, s=25, zorder=2) ax.set_xlabel('Long-term rate') ax.set_ylabel('Minimum interevent time \n(mean of two shortest consecutive interevent times)') ax.set_xscale('log') ax.set_yscale('log') # Label low-slip rate faults for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (mean_ltr[i], min_paired_interevent_times[i]), fontsize=8) # Linear fit only bottom end of data indices = np.argwhere(mean_ltr > 2e-4).flatten() lf = np.polyfit(np.log10(mean_ltr[indices]), np.log10(min_paired_interevent_times[indices]), 1) xvals_short = np.arange(5e-4, 1e-2, 1e-4) log_yvals = lf[0]*np.log10(xvals_short) + lf[1] yvals = np.power(10, log_yvals) pyplot.plot(xvals_short, yvals) # Add formula for linear fit to low-end of data txt = 'Log(Y) = %.2fLog(x) + %.2f' % (lf[0], lf[1]) print(txt) ax.annotate(txt, (1e-4, 10000)) figname = 'min_pair_vs_ltr_%s.png' % fig_comment pyplot.savefig(figname) # Plot long term rate against maximum interevent time pyplot.clf() ax = pyplot.subplot(111) pyplot.errorbar(mean_ltr, max_interevent_times, yerr = max_interevent_times_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(mean_ltr, max_interevent_times, xerr = ltr_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(mean_ltr, max_interevent_times, marker='s', c=plot_colours, s=25, zorder=2) ax.set_xlabel('Long-term rate') ax.set_ylabel('Maximum interevent time') ax.set_xscale('log') ax.set_yscale('log') # Label low-slip rate faults for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (mean_ltr[i], max_interevent_times[i]), fontsize=8) # Linear fit only bottom end of data indices = np.argwhere(mean_ltr > 2e-10).flatten() # All data for now lf = np.polyfit(np.log10(mean_ltr[indices]),
np.log10(max_interevent_times[indices])
numpy.log10
import numpy as np import scipy.stats def normalize(measure: np.ndarray, data: np.ndarray) -> np.ndarray: r""" Normalize measure (e.g. :math:`RMSD` or :math:`MAE`) with the range of :math:`data` :param measure: the measure which should be normalized :param data: Tensor representing the data by which the measure should be normalized :return: :math:`\frac{RMSD}{\text{max}(\text{data}) - \text{min}(\text{data})}` r""" return measure / (np.max(data) - np.min(data)) def rmsd(estim: np.ndarray, obs: np.ndarray, axis=None) -> np.ndarray: r""" Calculate the root of the mean squared deviation between the estimated and the observed data :param estim: Tensor representing the estimated data :param obs: Tensor representing the observed data :param axis: axis to reduce :return: :math:`\sqrt{\text{mean}{(\text{estim} - \text{obs})^2}}` r""" return np.sqrt(np.mean(np.square(estim - obs), axis=axis)) def mae(estim: np.ndarray, obs: np.ndarray, axis=None) -> np.ndarray: r""" Calculate the mean absolute error between the estimated weights :math:`b` and the true :math:`b` :param estim: Tensor representing the estimated data :param obs: Tensor representing the observed data :param axis: axis to reduce :return: :math:`\text{mean}{|\text{estim} - \text{obs}|}` r""" return np.mean(np.abs(estim - obs), axis=axis) def normalized_rmsd(estim: np.ndarray, obs: np.ndarray, axis=None) -> np.ndarray: r""" Calculate the normalized RMSD between estimated and observed data :param estim: Tensor representing the estimated data :param obs: Tensor representing the observed data :param axis: axis to reduce :return: :math:`\frac{RMSD}{\text{max}(\text{obs}) - \text{min}(\text{obs})}` r""" return normalize(rmsd(estim, obs, axis=axis), obs) def normalized_mae(estim: np.ndarray, obs: np.ndarray, axis=None) -> np.ndarray: r""" Calculate the normalized MAE between estimated and observed data :param estim: Tensor representing the estimated data :param obs: Tensor representing the observed data :param axis: axis to reduce :return: :math:`\frac{MAE}{\text{max}(\text{obs}) - \text{min}(\text{obs})}` r""" return normalize(mae(estim, obs, axis=axis), obs) def mapd(estim: np.ndarray, obs: np.ndarray, axis=None) -> np.ndarray: r""" Calculate the mean absolute percentage deviation between the estimated and the observed data :param estim: ndarray representing the estimated data :param obs: ndarray representing the observed data :param axis: axis to reduce :return: :math:`\text{mean}(|\text{estim} - \text{obs}| / |\text{obs}|)` r""" return np.mean(abs_percentage_deviation(estim, obs), axis=axis) * 100 def abs_percentage_deviation(estim: np.ndarray, obs: np.ndarray) -> np.ndarray: r""" Calculate the absolute percentage deviation between the estimated and the observed data :param estim: ndarray representing the estimated data :param obs: ndarray representing the observed data :return: :math:`\text{mean}(|\text{estim} - \text{obs}| / | \text{obs}|) * 100` r""" return abs_proportional_deviation(estim, obs) def abs_proportional_deviation(estim: np.ndarray, obs: np.ndarray) -> np.ndarray: r""" Calculate the absolute proportional deviation between the estimated and the observed data :param estim: ndarray representing the estimated data :param obs: ndarray representing the observed data :return: :math:`\text{mean}{|\text{estim} - \text{obs}| / |\text{obs}|}` r""" return np.abs(estim - obs) / np.abs(obs) def welch(mu1, mu2, var1, var2, n1, n2): s_delta = np.sqrt((var1 / n1) + (var2 / n2)) s_delta = np.asarray(s_delta) s_delta = np.nextafter(0, 1, out=s_delta, where=s_delta == 0, dtype=s_delta.dtype) t = (mu1 - mu2) / s_delta # t = np.asarray(t) # t = np.nextafter(0, 1, out=t, where=t == 0, dtype=t.dtype) denom = (np.square(var1 / n1) / (n1 - 1)) + (np.square(var2 / n2) / (n2 - 1)) denom = np.asarray(denom) denom = np.nextafter(0, 1, out=denom, where=denom == 0, dtype=denom.dtype) df = np.square((var1 / n1) + (var2 / n2)) / denom return t, df def welch_t_test(x1, x2): r""" Calculates a Welch-Test with independent mean and variance for two samples. Tests the null hypothesis (H0) that the two population means are equal. :param x1: first sample :param x2: second sample :return: p-value r""" mu1 = np.mean(x1) var1 = np.var(x1) mu2 = np.mean(x2) var2 = np.var(x2) n1 =
np.size(x1)
numpy.size
import os import sys import re import gzip import tarfile import io import scipy import collections import argparse import pandas as pd import numpy as np from scipy.stats import binom from pandas.api.types import is_string_dtype from pathlib import Path import numbers import warnings class FormatError(Exception): pass xls = re.compile("xls") drop = "series_matrix\.txt\.gz$|filelist\.txt$|readme|\.bam(\.tdf|$)|\.bai(\.gz|$)|\.sam(\.gz|$)|\.csfasta|\.fa(sta)?(\.gz|\.bz2|\.txt\.gz|$)|\.f(a|n)a(\.gz|$)|\.wig|\.big[Ww]ig$|\.bw(\.|$)|\.bed([Gg]raph)?(\.tdf|\.gz|\.bz2|\.txt\.gz|$)|(broad_)?lincs|\.tdf$|\.hic$|\.rds(\.gz|$)|\.tar\.gz$|\.mtx(\.gz$|$)|dge\.txt\.gz$|umis?\.txt\.gz$" drop = re.compile(drop) pv_str = "p[^a-zA-Z]{0,4}val" pv = re.compile(pv_str) adj = re.compile("adj|fdr|corr|thresh") ws = re.compile(" ") mtabs = re.compile("\w+\t{2,}\w+") tab = re.compile("\t") fields = ["Type", "Class", "Conversion", "pi0", "FDR_pval", "hist", "note"] PValSum = collections.namedtuple("PValSum", fields, defaults=[np.nan] * len(fields)) narrowpeak = [ "chrom", "chromStart", "chromEnd", "name", "score", "strand", "signalValue", "pValue", "qValue", "peak", ] # BED6+4 broadpeak = [ "chrom", "chromStart", "chromEnd", "name", "score", "strand", "signalValue", "pValue", "qValue", ] # BED6+3 gappedpeak = [ "chrom", "chromStart", "chromEnd", "name", "score", "strand", "thickStart", "thickEnd", "itemRgb", "blockCount", "blockSizes", "blockStarts", "signalValue", "pValue", "qValue", ] # BED12+3 peak = re.compile("(narrow|broad|gapped)peak") class ImportSuppfiles(object): def __init__(self): self.out = {} def from_flat(self, input, tar=None): if drop.search(input.name.lower() if tar else input.lower()): key = os.path.basename(input.name if tar else input) return self.out.update(note(key, "not imported")) else: out = {} try: if xls.search(input.name if tar else input): try: out.update(self.read_excel(input, tar=tar)) except ValueError as e: out.update(self.read_csv(input, tar=tar)) else: d = self.read_csv(input, tar=tar) is_empty = [v.empty for v in d.values()][0] if is_empty: raise Exception("empty table") else: peakfile = peak.search( input.name.lower() if tar else input.lower() ) if peakfile: key = os.path.basename(input.name if tar else input) d[key].loc[-1] = d[key].columns d[key] = d[key].sort_index().reset_index(drop=True) d[key].columns = eval(peakfile.group(0)) out.update(d) except Exception as e: key = os.path.basename(input.name if tar else input) peakfile = peak.search(input.name.lower() if tar else input.lower()) if peakfile: e = f"Misspecified '{peakfile.group(0)}' file; {e}" out.update(note(key, e)) return self.out.update(out) def from_tar(self, input): with tarfile.open(input, "r:*") as tar: for member in tar: if member.isfile(): self.from_flat(member, tar) def find_header(self, df, n=20): head = df.head(n) matches = [ i[0] for i in [ [i for i, x in enumerate(head[col].str.contains(pv_str, na=False)) if x] for col in head ] if i ] idx = min(matches) + 1 if matches else 0 if idx == 0: for index, row in head.iterrows(): if all([isinstance(i, str) for i in row if i is not np.nan]): idx = index + 1 break return idx def csv_helper(self, input, input_name, csv, verbose=0): # Get comments and set rows to skip r = pd.read_csv(csv, sep=None, engine="python", iterator=True, nrows=1000) comment = None sep = r._engine.data.dialect.delimiter columns = r._engine.columns if isinstance(input, (tarfile.ExFileObject)): with csv as h: first_line = h.readline() elif input_name.endswith("gz") or isinstance(input, (gzip.GzipFile)): with gzip.open(input) as h: first_line = h.readline().decode("utf-8").rstrip() else: with open(input, "r") as h: first_line = h.readline().rstrip() more_tabs_than_sep = len(tab.findall(first_line)) > len( re.findall(sep, first_line) ) if re.search("^#", first_line) or more_tabs_than_sep: comment = "#" # Get delimiter r = pd.read_csv( csv, sep=None, engine="python", iterator=True, skiprows=20, nrows=1000 ) sep = r._engine.data.dialect.delimiter columns = r._engine.columns if ws.search(sep): sep = "\s+" if mtabs.search(first_line): sep = "\t+" # Import file if isinstance(input, (tarfile.ExFileObject)) and input_name.endswith("gz"): with gzip.open(input) as h: df = pd.read_csv(h, sep=sep, comment=comment, encoding="unicode_escape") else: df = pd.read_csv(input, sep=sep, comment=comment, encoding="unicode_escape") # Check and fix column names # Case of extra level of delimiters in column names if len(df.columns) > len(columns): df = pd.read_csv( input, header=None, skiprows=[0], sep=sep, comment=comment, encoding="unicode_escape", ).drop([0]) df.columns = columns unnamed = ["Unnamed" in i for i in df.columns] # Case of empty rows before header if all(unnamed): idx = self.find_header(df) if idx > 0: df = pd.read_csv( input, sep=sep, comment=comment, skiprows=idx, encoding="unicode_escape", ) # Case of anonymous row names if unnamed[-1] & sum(unnamed) == 1: if any([pv.search(i) for i in df.columns]): df.columns = [df.columns[-1]] + list(df.columns[:-1]) if verbose > 1: print("df after import:\n", df) return {os.path.basename(input_name): df} def excel_helper(self, input, input_name, verbose=0): tabs = {} if input_name.endswith("gz") or isinstance(input, (gzip.GzipFile)): excel_file = gzip.open(input) else: excel_file = input with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") wb = pd.ExcelFile(excel_file) if len(wb.sheet_names) == 0: (m,) = [i.message for i in w][0].args raise FormatError( f"The data source could not be successfully parsed with warning: '{m}'", ) sheets = wb.sheet_names sheets = [i for i in sheets if "README" not in i] for sheet in sheets: df = wb.parse(sheet, comment="#") if df.empty: df = wb.parse(sheet) if verbose > 1: print("df after import:\n", df) if not df.empty: pu = sum(["Unnamed" in i for i in list(df.columns)]) / len(df.columns) if pu >= 2 / 3: idx = self.find_header(df) if idx > 0: df = wb.parse(sheet, skiprows=idx) tabs.update({os.path.basename(input_name) + "-sheet-" + sheet: df}) return tabs def read_csv(self, input, tar=None): if isinstance(input, (tarfile.TarInfo)): input_name = os.path.basename(input.name) with tar.extractfile(input) as h: if input_name.endswith("gz"): with gzip.open(h) as gz: csv = io.StringIO(gz.read().decode("unicode_escape")) else: csv = io.StringIO(h.read().decode("unicode_escape")) with tar.extractfile(input) as h: out = self.csv_helper(h, input_name, csv) else: input_name = input csv = input out = self.csv_helper(input, input_name, csv) return out def read_excel(self, input, tar=None): if isinstance(input, (tarfile.TarInfo)): input_name = os.path.basename(input.name) with tar.extractfile(input) as h: out = self.excel_helper(h, input_name) else: input_name = input out = self.excel_helper(input, input_name) return out def raw_pvalues(i): return bool(pv.search(i.lower()) and not adj.search(i.lower())) def filter_pvalue_tables(input, pv=None, adj=None): return { k: v for k, v in input.items() if any([raw_pvalues(i) for i in v.columns if not isinstance(i, numbers.Number)]) } def fix_column_dtype(df): for col in df.columns: s = df[col] if is_string_dtype(s): if "," in s[:5].astype(str).str.cat(sep=" "): df[col] = s.apply(lambda x: str(x).replace(",", ".")) df[col] = pd.to_numeric(s, errors="coerce") return df def summarise_pvalue_tables( df, var=["basemean", "value", "fpkm", "logcpm", "rpkm", "aveexpr"] ): # Drop columns with numeric column names df = df.filter(regex="^\D") # Drop columns with NaN column names df = df.loc[:, df.columns.notnull()] df.columns = map(str.lower, df.columns) pval_cols = [i for i in df.columns if raw_pvalues(i)] pvalues = df[pval_cols].copy() # Check if there is ANOTHER(!!#?) level of ":" delimiters in p value column(s) extra_delim = ":" split_col = [i for i in pvalues.columns if extra_delim in i] if split_col: for index, col in enumerate(split_col): col_count = len(re.findall(extra_delim, col)) obs_count = len(re.findall(extra_delim, str(pvalues.iloc[0, index]))) if obs_count == 0: pass elif col_count == obs_count: new_cols = col.split(extra_delim) split_pval_col = [i for i in new_cols if raw_pvalues(i)] cols_split = pvalues.iloc[:, index].str.split(extra_delim, expand=True) try: cols_split.columns = new_cols pvalues[split_pval_col] = cols_split[split_pval_col] pvalues.drop(col, axis=1, inplace=True) except ValueError: pass pval_cols = [i for i in pvalues.columns if raw_pvalues(i)] pvalues_check = fix_column_dtype(pvalues) for v in var: label = v if v == "value": v = "^value_\d" label = "fpkm" exprs = df.filter(regex=v, axis=1) if not exprs.empty: exprs_check = fix_column_dtype(exprs) exprs_sum = exprs_check.mean(axis=1, skipna=True) pvalues_check.loc[:, label] = exprs_sum break pv_stacked = ( pvalues_check.melt(id_vars=list(set(pvalues_check.columns) - set(pval_cols))) .set_index("variable") .rename(columns={"value": "pvalue"}) ) return pv_stacked.dropna() # https://stackoverflow.com/a/32681075/1657871 def rle(inarray): """run length encoding. Partial credit to R rle function. Multi datatype arrays catered for including non Numpy returns: tuple (runlengths, startpositions, values)""" ia = np.asarray(inarray) # force numpy n = len(ia) if n == 0: return (None, None, None) else: y = np.array(ia[1:] != ia[:-1]) # pairwise unequal (string safe) i = np.append(np.where(y), n - 1) # must include last element posi z = np.diff(np.append(-1, i)) # run lengths p = np.cumsum(np.append(0, z))[:-1] # positions return (z, p, ia[i]) def get_hist_class(counts, fdr): bins = len(counts) qc = binom.ppf(1 - 1 / bins * fdr, sum(counts), 1 / bins) counts_over_qc = counts > qc ru = rle(counts_over_qc) over_qc = ru[1][ru[2]] rufl = rle(np.flip(counts_over_qc)) over_qc_fl = rufl[1][rufl[2]] if all(~counts_over_qc): Class = "uniform" elif len(over_qc) == 1: over_qc_prop = ru[0][ru[2]] / bins if over_qc == 0 and over_qc_prop < 1 / 3: Class = "anti-conservative" elif over_qc_fl == 0: Class = "conservative" else: Class = "other" elif len(over_qc) == 2: if over_qc[0] == 0 and over_qc_fl[0] == 0: Class = "bimodal" else: Class = "other" else: Class = "other" return Class # https://gdsctools.readthedocs.io/en/master/_modules/gdsctools/qvalue.html#QValue def estimate_pi0( pv, lambdas=None, pi0=None, df=3, method="smoother", smooth_log_pi0=False, verbose=True, ): """Estimate pi0 based on the pvalues""" try: pv = np.array(pv) except: pv = pv.copy() assert pv.min() >= 0 and pv.max() <= 1, "p-values should be between 0 and 1" if lambdas is None: epsilon = 1e-8 lambdas = np.arange(0, 0.9 + 1e-8, 0.05) if len(lambdas) > 1 and len(lambdas) < 4: raise ValueError( """if length of lambda greater than 1, you need at least 4 values""" ) if len(lambdas) >= 1 and (min(lambdas) < 0 or max(lambdas) >= 1): raise ValueError("lambdas must be in the range[0, 1[") m = float(len(pv)) pv = pv.ravel() # flatten array if pi0 is not None: pass elif len(lambdas) == 1: pi0 = np.mean(pv >= lambdas[0]) / (1 - lambdas[0]) pi0 = min(pi0, 1) else: # evaluate pi0 for different lambdas pi0 = [np.mean(pv >= this) / (1 - this) for this in lambdas] # in R # lambda = seq(0,0.09, 0.1) # pi0 = c(1.0000000, 0.9759067, 0.9674164, 0.9622673, 0.9573241, # 0.9573241 0.9558824, 0.9573241, 0.9544406, 0.9457901) # spi0 = smooth.spline(lambda, pi0, df=3, all.knots=F, spar=0) # predict(spi0, x=max(lambda))$y --> 0.9457946 # spi0 = smooth.spline(lambda, pi0, df=3, all.knots=F) # predict(spi0, x=max(lambda))$y --> 0.9485383 # In this function, using pi0 and lambdas, we get 0.9457946 # this is not too bad, the difference on the v17 data set # is about 0.3 % if method == "smoother": if smooth_log_pi0: pi0 = np.log(pi0) # In R, the interpolation is done with smooth.spline # within qvalue. However this is done with default # parameters, and this is different from the Python # code. Note, however, that smooth.spline has a parameter # called spar. If set to 0, then we would get the same # as in scipy. It looks like scipy has no equivalent of # the smooth.spline function in R if spar is not 0 tck = scipy.interpolate.splrep(lambdas, pi0, k=df) pi0 = scipy.interpolate.splev(lambdas[-1], tck) if smooth_log_pi0: pi0 = np.exp(pi0) pi0 = min(pi0, 1.0) elif method == "lfdr": """Estimate proportion of null p-values by average local FDR <NAME> and <NAME> 23 May 2012. Last revised 30 July 2012.""" n = len(pv) i = np.array(list(range(1, n + 1))) i.sort() i = i[::-1] pv.sort() pv = pv[::-1] q = [min(i, 1) for i in n / np.array(i) * np.array(pv)] n1 = n + 1 pi0 = sum(np.array(i) * q) / n / n1 * 2 elif method == "bootstrap": raise NotImplementedError """minpi0 = min(pi0) mse = rep(0, len(lambdas)) pi0.boot = rep(0, len(lambdas)) for i in range(1,100): p.boot = sample(p, size = m, replace = TRUE) for i in range(0,len(lambdas)): pi0.boot[i] <- mean(p.boot > lambdas[i])/(1 - lambdas[i]) mse = mse + (pi0.boot - minpi0)^2 pi0 = min(pi0[mse == min(mse)]) pi0 = min(pi0, 1)""" if pi0 > 1: if verbose: print("got pi0 > 1 (%.3f), setting it to 1" % pi0) pi0 = 1.0 assert pi0 >= 0 and pi0 <= 1, "pi0 is not between 0 and 1: %f" % pi0 return pi0 def conversion(x, y): classes = pd.DataFrame.from_dict( { "uniform": ["same good", "improve, effects", "worsen", "worsen", "worsen"], "anti-conservative": [ "effects lost", "same good", "worsen", "worsen", "worsen", ], "conservative": [ "improvement; no effects", "improvement; effects", "same bad", "no improvement", "no improvement", ], "other": [ "improvement; no effects", "improvement; effects", "no improvement", "same bad", "no improvement", ], "bimodal": [ "improvement; no effects", "improvement; effects", "no improvement", "no improvement", "same bad", ], }, orient="index", columns=["uniform", "anti-conservative", "conservative", "other", "bimodal"], ) return classes.loc[x, y] def summarise_pvalues( df, bins=30, fdr=0.05, var={ "basemean": 10, "fpkm": 0.5, "logcpm": np.log2(0.5), "rpkm": 0.5, "aveexpr":
np.log2(10)
numpy.log2
""" *************** INTRINSIC SAMPLING METHOD MODULE ******************* Performs intrinsic sampling analysis on a set of interfacial simulation configurations ******************************************************************** Created 24/11/2016 by <NAME> Contributors: <NAME> Last modified 27/2/2018 by <NAME> """ import os import sys import time import tables import numpy as np from alias.io.hdf5_io import ( make_hdf5, load_hdf5, save_hdf5, shape_check_hdf5, frame_check_hdf5, mode_check_hdf5 ) from alias.io.numpy_io import load_npy from alias.io.command_line_output import StdOutTable from alias.src.linear_algebra import update_A_b, lu_decomposition from alias.src.self_consistent_cycle import ( self_consistent_cycle, initialise_surface, initialise_recon ) from alias.src.spectra import intrinsic_area from alias.src.utilities import create_surface_file_path from .positions import check_pbc from .surface_reconstruction import surface_reconstruction from .utilities import numpy_remove def build_surface(xmol, ymol, zmol, dim, qm, n0, phi, tau, max_r, ncube=3, vlim=3, recon=0, surf_0=[0, 0], zvec=None): """ Create coefficients for Fourier sum representing intrinsic surface. Parameters ---------- xmol: float, array_like; shape=(nmol) Molecular coordinates in x dimension ymol: float, array_like; shape=(nmol) Molecular coordinates in y dimension zmol: float, array_like; shape=(nmol) Molecular coordinates in z dimension dim: float, array_like; shape=(3) XYZ dimensions of simulation cell mol_sigma: float Radius of spherical molecular interaction sphere qm: int Maximum number of wave frequencies in Fourier Sum representing intrinsic surface n0: int Maximum number of molecular pivot in intrinsic surface phi: float Weighting factor of minimum surface area term in surface optimisation function tau: float Tolerance along z axis either side of existing intrinsic surface for selection of new pivot points max_r: float Maximum radius for selection of vapour phase molecules ncube: int (optional) Grid size for initial pivot molecule selection vlim: int (optional) Minimum number of molecular meighbours within radius max_r required for molecular NOT to be considered in vapour region recon: bool (optional) Whether to peform surface reconstruction routine surf_0: float, array-like; shape=(2) (optional) Initial guesses for surface plane positions Returns ------- coeff: array_like (float); shape=(2, n_waves**2) Optimised surface coefficients pivot: array_like (int); shape=(2, n0) Indicies of pivot molecules in molecular position arrays """ nmol = len(xmol) mol_list = np.arange(nmol) start = time.time() coeff, A, b, area_diag = initialise_surface(qm, phi, dim) if recon: psi, curve_matrix, H_var = initialise_recon(qm, phi, dim) # Remove molecules from vapour phase and assign an initial # grid of pivots furthest away from centre of mass print('Lx = {:5.3f} Ly = {:5.3f} qm = {:5d}\n' 'phi = {} n_piv = {:5d} vlim = {:5d} max_r = {:5.3f}'.format( dim[0], dim[1], qm, phi, n0, vlim, max_r)) print('Surface plane initial guess = {} {}'.format(surf_0[0], surf_0[1])) pivot_search = (ncube > 0) stdout_table = StdOutTable() stdout_table.add_section( 'TIMINGS (s)', ['Pivot selection', 'Matrix Formation', 'LU Decomposition', 'TOTAL']) stdout_table.add_section('PIVOTS', ['n_piv1', 'n_piv2']) stdout_table.add_section('INT AREA', ['surf1', 'surf2']) if not pivot_search: print(stdout_table.table_header()) start1 = time.time() if zvec is not None: "Separate pivots based on orientational vector" piv_n1 = np.argwhere(zvec < 0).flatten() piv_n2 = np.argwhere(zvec >= 0).flatten() else: "Separate pivots based on position" piv_n1 = np.argwhere(zmol < 0).flatten() piv_n2 = np.argwhere(zmol >= 0).flatten() pivot = [piv_n1, piv_n2] if not (len(pivot[0]) == n0) * (len(pivot[1]) == n0): # ut.view_surface( # coeff, pivot, qm, qm, xmol, ymol, zmol, 2, dim) zmol, pivot = pivot_swap( xmol, ymol, zmol, pivot, dim, max_r, n0) zmol = check_pbc(xmol, ymol, zmol, pivot, dim) pivot = np.array(pivot, dtype=int) end1 = time.time() "Update A matrix and b vector" temp_A, temp_b, fuv = update_A_b(xmol, ymol, zmol, dim, qm, pivot) A += temp_A b += temp_b end2 = time.time() "Perform LU decomosition to solve Ax = b" coeff[0] = lu_decomposition(A[0] + area_diag, b[0]) coeff[1] = lu_decomposition(A[1] + area_diag, b[1]) if recon: coeff[0], _ = surface_reconstruction( coeff[0], A[0], b[0], area_diag, curve_matrix, H_var, qm, pivot[0].size, psi) coeff[1], _ = surface_reconstruction( coeff[1], A[1], b[1], area_diag, curve_matrix, H_var, qm, pivot[1].size, psi) end3 = time.time() "Calculate surface areas excess" area1 = intrinsic_area(coeff[0], qm, qm, dim) area2 = intrinsic_area(coeff[1], qm, qm, dim) end = time.time() output = [ end1 - start1, end2 - end1, end3 - end2, end - start1, len(pivot[0]), len(pivot[1]), area1, area2 ] print(stdout_table.row(output)) # ut.view_surface(coeff, pivot, qm, qm, xmol, ymol, zmol, 50, dim) else: piv_n1 = np.arange(ncube**2) piv_n2 = np.arange(ncube**2) piv_z1 = np.zeros(ncube**2) piv_z2 = np.zeros(ncube**2) dxyz = np.reshape( np.tile( np.stack((xmol, ymol, zmol)), (1, nmol)), (3, nmol, nmol) ) dxyz = np.transpose(dxyz, axes=(0, 2, 1)) - dxyz for i, l in enumerate(dim[:2]): dxyz[i] -= l * np.array(2 * dxyz[i] / l, dtype=int) dr2 = np.sum(dxyz**2, axis=0) vapour_list = np.where(np.count_nonzero(dr2 < max_r**2, axis=1) < vlim) print('Removing {} vapour molecules'.format(vapour_list[0].size)) mol_list = numpy_remove(mol_list, vapour_list) del dxyz, dr2 print('Selecting initial {} pivots'.format(ncube**2)) index_x = np.array(xmol * ncube / dim[0], dtype=int) % ncube index_y =
np.array(ymol * ncube / dim[1], dtype=int)
numpy.array
import torch import numpy as np from collections import defaultdict from ..bbox.geometry import bbox_overlaps def iou_score(v1, v2, binary=False): score = bbox_overlaps(torch.Tensor(v1[:, :4]), torch.Tensor(v2[:, :4])).numpy() signal = (score > 0.5).astype(np.float32) if binary: return signal else: return score * signal def scatter_by_classes(inputs, num_classes): outputs = defaultdict(list) for x in inputs: if x is None: for i in range(num_classes): outputs[i].append(None) else: for i, y in enumerate(x): outputs[i].append(y) return outputs def gather_by_classes(inputs): outputs = [] num_classes = len(inputs) num_frames = len(inputs[0]) for i in range(num_frames): per_frame = [] for j in range(num_classes): per_frame.append(inputs[j][i]) outputs.append(per_frame) return outputs def det_to_track(det_results): num_classes = len(det_results[0]) outputs = [] for i, bboxes in enumerate(det_results): output = {} for j in range(num_classes): results = bboxes[j] num_bboxes = results.shape[0] for k in range(num_bboxes): _box = results[k, :] instance_id = _box[-1] if instance_id >= 0: output[int(instance_id)] = {'bbox': _box[:-1], 'label': j} outputs.append(output) return outputs def check_diff(input1, input2): for x, y in zip(input1, input2): for _x, _y in zip(x, y): score_diff = _x[:, 4] - _y[:, 4] for score in score_diff: if score > 0.1: print(score) def finding_video_tubes(outputs, dataset): """Implementation of `Linking tracklets to object tubes` in the Paper "Detect to Track and Track to Detect." Inputs: track_results (list): -> dict() -> keys: ['bbox_results', 'track_results'] dataset: CLASS DATASET """ num_classes = len(dataset.CLASSES) all_bbox_results = outputs['bbox_results'] all_track_results = outputs['track_results'] all_outputs = defaultdict(list) count = 0 instance_id = 0 vid_ids = dataset.vid_ids for vid_id in vid_ids: vid_name = dataset.bdd.loadVideos(vid_id) print(vid_name) img_ids = dataset.bdd.getImgIdsFromVideoId(vid_id) num_frames = len(img_ids) vid_bbox_results = all_bbox_results[count:count + num_frames] vid_track_results = all_track_results[count:count + num_frames] count += num_frames assert vid_track_results[0] is None, 'Maybe split videos incorrectly.' class_bbox_results = scatter_by_classes(vid_bbox_results, num_classes) class_track_results = scatter_by_classes(vid_track_results, num_classes) outputs = [] for cls_index in range(num_classes): det, instance_id = finding_video_tubes_greedy_per_class( class_bbox_results[cls_index], class_track_results[cls_index], instance_id, cls_index) outputs.append(det) track_results = track_gather(outputs, img_ids) # bbox_results = gather_by_classes(outputs) # check_diff(bbox_results, vid_bbox_results) # track_results = det_to_track(bbox_results) # all_outputs['bbox_results'].extend(bbox_results) all_outputs['track_results'].extend(track_results) return all_outputs def track_gather(outputs, img_ids): num_frames = len(img_ids) output_list = [] for k in range(num_frames): out = defaultdict(list) for res in outputs: if k in res.keys(): out.update(res[k]) output_list.append(out) return output_list def finding_video_tubes_viterbi_per_class(bbox_results, track_results, path_id, cls_index): ori_bboxes = bbox_results.copy() empty_set = False for i, _ori_bboxes in enumerate(ori_bboxes): num_bboxes = _ori_bboxes.shape[0] if num_bboxes == 0: empty_set = True ids = np.zeros((num_bboxes, 1)) - 1 ori_bboxes[i] = np.concatenate((ori_bboxes[i], ids), axis=1) if empty_set: return ori_bboxes, path_id num_frames = len(bbox_results) vertices_isempty = np.zeros(num_frames, dtype=np.bool) paths = [] while not np.any(vertices_isempty): data_score = [] data_idx = [] for i in range(num_frames): num_bboxes = bbox_results[i].shape[0] data_score.append(np.zeros((num_bboxes, 1))) data_idx.append(np.zeros((num_bboxes, 1))) data_idx[i][:] = np.nan # for i in range(1, num_frames): # track_results[i] = np.concatenate( # (track_results[i], bbox_results[i - 1][:, -1][:, None]), # axis=1) # edge_score = iou_score(track_results[i], # bbox_results[i]) #[N_t-1, N_t] # # TODO: why this # # edge_score += np.transpose(data_score[i]) # edge_score += bbox_results[i][:, 4][None, :] # edge_score += track_results[i][:, 4][:, None] # data_score[i] = np.max(edge_score, axis=1) # data_idx[i] = np.argmax(edge_score, axis=1) for i in range(num_frames - 1, 0, -1): track_results[i] = np.concatenate( (track_results[i], bbox_results[i - 1][:, -1][:, None]), axis=1) edge_score = iou_score(track_results[i], bbox_results[i]) # [N_t-1, N_t] if i < num_frames - 2: edge_score += np.transpose(data_score[i + 1]) edge_score += bbox_results[i][:, 4][None, :] edge_score += track_results[i][:, 4][:, None] data_score[i] = np.max(edge_score, axis=1) data_idx[i] = np.argmax(edge_score, axis=1) box_index = np.argmax(data_score[1]) boxes = bbox_results[0][box_index, :4] index = np.array(box_index) scores = np.array(bbox_results[0][box_index, 4]) for i in range(1, num_frames): box_index = data_idx[i][box_index] index = np.hstack((index, np.array(box_index))) boxes = np.vstack((boxes, bbox_results[i][box_index, :4])) scores = np.hstack( (scores, np.array(bbox_results[i][box_index, 4]))) cur_list = [index, boxes, scores] paths.append(cur_list) for i in range(num_frames): mask = np.ones(bbox_results[i].shape[0], dtype=np.bool) mask[index[i]] = False bbox_results[i] = bbox_results[i][mask, :] if not i == num_frames - 1: track_results[i + 1] = track_results[i + 1][mask, :] vertices_isempty[i] = (bbox_results[i].shape[0] == 0) unmap_idx_list = [] for i in range(num_frames): trimmed_idx = [path[0][i] for path in paths] flag = np.zeros(ori_bboxes[i].shape[0]) ori_idx = [] for j in trimmed_idx: count = -1 for k in range(ori_bboxes[i].shape[0]): if not flag[k]: count += 1 if count == j: ori_idx.append(k) flag[k] = True unmap_idx_list.append(ori_idx) for cur_path_id, path in enumerate(paths): path_score = path[2] path_score_t = sorted(path_score)[len(path_score) // 2:] ave_score = sum(path_score_t) / len(path_score_t) for i in range(num_frames): unmap_idx = unmap_idx_list[i][cur_path_id] ori_bboxes[i][unmap_idx, 5] = path_id # score = ori_bboxes[i][unmap_idx, 4] # if score < ave_score: ori_bboxes[i][unmap_idx, 4] += ave_score ori_bboxes[i][unmap_idx, 4] /= 2 path_id += 1 return ori_bboxes, path_id def finding_video_tubes_greedy_per_class(bbox_results, track_results, path_id, cls_index): # ori_bboxes = bbox_results.copy() # # empty_set = False # for i, _ori_bboxes in enumerate(ori_bboxes): # num_bboxes = _ori_bboxes.shape[0] # if num_bboxes == 0: # empty_set = True # ids = np.zeros((num_bboxes, 1)) - 1 # ori_bboxes[i] = np.concatenate((ori_bboxes[i], ids), axis=1) # if empty_set: # return None, path_id num_frames = len(bbox_results) paths = [] for i in range(1, num_frames): track_results[i] = np.concatenate( (track_results[i], bbox_results[i - 1][:, -1][:, None]), axis=1) # per frame calculation for start_t in range(num_frames - 1): num_iters = bbox_results[start_t].shape[0] _iter = 0 while _iter < num_iters: data_score = [] data_idx = [] for i in range(start_t, num_frames): num_bboxes = bbox_results[i].shape[0] data_score.append(np.zeros((num_bboxes, 1))) data_idx.append(np.zeros((num_bboxes, 1))) data_idx[i - start_t][:] = np.nan for i in range(start_t + 1, num_frames): edge_score = iou_score(track_results[i], bbox_results[i]) # [N_t-1, N_t] # TODO: why this # edge_score += np.transpose(data_score[i]) # edge_score += bbox_results[i][:, 4][None, :] # edge_score += track_results[i][:, 4][:, None] if (edge_score.shape[0]) > 0 and (edge_score.shape[1] > 0): data_score[i - start_t] = np.max(edge_score, axis=1) data_idx[i - start_t] = np.argmax(edge_score, axis=1) if len(data_score[1]) == 0: _iter += 1 continue box_index = np.argmax(data_score[1]) boxes = bbox_results[start_t][box_index, :4] index = np.array(box_index) scores = np.array(bbox_results[start_t][box_index, 4]) for i in range(1, num_frames - start_t): if len(data_score[i]) == 0: break iou = data_score[i][box_index] if iou > 0.75: box_index = data_idx[i][box_index] index = np.hstack((index, np.array(box_index))) boxes = np.vstack( (boxes, bbox_results[start_t + i][box_index, :4])) scores = np.hstack( (scores, np.array(bbox_results[start_t + i][box_index, 4]))) else: break cur_list = [index, boxes, scores, start_t] end_i = i if cur_list[0].size > 1 and len(cur_list[0]) > 1: paths.append(cur_list) for i in range(start_t, start_t + end_i): mask = np.ones(bbox_results[i].shape[0], dtype=np.bool) mask[index[i - start_t]] = False bbox_results[i] = bbox_results[i][mask, :] if not i == num_frames - 1: track_results[i + 1] = track_results[i + 1][mask, :] _iter += 1 tracklets = defaultdict(list) for path in paths: start_t = path[-1] max_score = path[2].max() if max_score < 0.8: continue for k in range(path[1].shape[0]): _bbox =
np.append(path[1][k, :], max_score)
numpy.append
#! /usr/bin/env python import numpy as np # test passed def generate_path_with_time(path=None, traj_constant=None, T_seg=None, t_start=None): if (np.any(path!= None) ) and (np.any(traj_constant != None)) and (np.any(T_seg != None)) and (np.any(t_start != None)): time = t_start time_list = np.array([[time]]) traj_num = T_seg.shape[0] # may be shape[1] for j in range(1, traj_num+1): time = time + T_seg[j-1] time_array = np.array([[time]]) time_list = np.append(time_list, time_array, axis=0) path_with_time = np.append(path, time_list, axis=1) timelist = path_with_time[:, 3] elif (np.any(path!= None) ) and (np.any(traj_constant != None)) and (np.any(T_seg != None)): time = 0.0 time_list = np.array([[time]]) for j in range(1, traj_constant.total_traj_num+1): time = time + T_seg[j-1] time_array = np.array([[time]]) time_list =
np.append(time_list, time_array, axis=0)
numpy.append
# MyTT 麦语言-通达信-同花顺指标实现 https://github.com/mpquant/MyTT # MyTT高级函数验证版本: https://github.com/mpquant/MyTT/blob/main/MyTT_plus.py # Python2老版本pandas特别的MyTT: https://github.com/mpquant/MyTT/blob/main/MyTT_python2.py # V2.1 2021-6-6 新增 BARSLAST函数 SLOPE,FORCAST线性回归预测函数 # V2.3 2021-6-13 新增 TRIX,DPO,BRAR,DMA,MTM,MASS,ROC,VR,ASI等指标 # V2.4 2021-6-27 新增 EXPMA,OBV,MFI指标, 改进SMA核心函数(核心函数彻底无循环) # V2.7 2021-11-21 修正 SLOPE,BARSLAST,函数,新加FILTER,LONGCROSS, 感谢qzhjiang对SLOPE,SMA等函数的指正 # V2.8 2021-11-23 修正 FORCAST,WMA函数,欢迎qzhjiang,stanene,bcq加入社群,一起来完善myTT库 # V2.9 2021-11-29 新增 HHVBARS,LLVBARS,CONST, VALUEWHEN功能函数 # V2.92 2021-11-30 新增 BARSSINCEN函数,现在可以 pip install MyTT 完成安装 # V3.0 2021-12-04 改进 DMA函数支持序列,新增XS2 薛斯通道II指标 # V3.1 2021-12-19 新增 TOPRANGE,LOWRANGE一级函数 #以下所有函数如无特别说明,输入参数S均为numpy序列或者列表list,N为整型int #应用层1级函数完美兼容通达信或同花顺,具体使用方法请参考通达信 import numpy as np; import pandas as pd #------------------ 0级:核心工具函数 -------------------------------------------- def RD(N,D=3): return np.round(N,D) #四舍五入取3位小数 def RET(S,N=1): return np.array(S)[-N] #返回序列倒数第N个值,默认返回最后一个 def ABS(S): return np.abs(S) #返回N的绝对值 def LN(S): return np.log(S) #求底是e的自然对数, def POW(S,N): return np.power(S,N) #求S的N次方 def SQRT(S): return np.sqrt(S) #求S的平方根 def MAX(S1,S2): return np.maximum(S1,S2) #序列max def MIN(S1,S2): return np.minimum(S1,S2) #序列min def IF(S,A,B): return np.where(S,A,B) #序列布尔判断 return=A if S==True else B def REF(S, N=1): #对序列整体下移动N,返回序列(shift后会产生NAN) return pd.Series(S).shift(N).values def DIFF(S, N=1): #前一个值减后一个值,前面会产生nan return pd.Series(S).diff(N).values #np.diff(S)直接删除nan,会少一行 def STD(S,N): #求序列的N日标准差,返回序列 return pd.Series(S).rolling(N).std(ddof=0).values def SUM(S, N): #对序列求N天累计和,返回序列 N=0对序列所有依次求和 return pd.Series(S).rolling(N).sum().values if N>0 else pd.Series(S).cumsum().values def CONST(S): #返回序列S最后的值组成常量序列 return np.full(len(S),S[-1]) def HHV(S,N): #HHV(C, 5) 最近5天收盘最高价 return pd.Series(S).rolling(N).max().values def LLV(S,N): #LLV(C, 5) 最近5天收盘最低价 return pd.Series(S).rolling(N).min().values def HHVBARS(S,N): #求N周期内S最高值到当前周期数, 返回序列 return pd.Series(S).rolling(N).apply(lambda x: np.argmax(x[::-1]),raw=True).values def LLVBARS(S,N): #求N周期内S最低值到当前周期数, 返回序列 return pd.Series(S).rolling(N).apply(lambda x: np.argmin(x[::-1]),raw=True).values def MA(S,N): #求序列的N日简单移动平均值,返回序列 return pd.Series(S).rolling(N).mean().values def EMA(S,N): #指数移动平均,为了精度 S>4*N EMA至少需要120周期 alpha=2/(span+1) return pd.Series(S).ewm(span=N, adjust=False).mean().values def SMA(S, N, M=1): #中国式的SMA,至少需要120周期才精确 (雪球180周期) alpha=1/(1+com) return pd.Series(S).ewm(alpha=M/N,adjust=False).mean().values #com=N-M/M def WMA(S, N): #通达信S序列的N日加权移动平均 Yn = (1*X1+2*X2+3*X3+...+n*Xn)/(1+2+3+...+Xn) return pd.Series(S).rolling(N).apply(lambda x:x[::-1].cumsum().sum()*2/N/(N+1),raw=True).values def DMA(S, A): #求S的动态移动平均,A作平滑因子,必须 0<A<1 (此为核心函数,非指标) if isinstance(A,(int,float)): return pd.Series(S).ewm(alpha=A,adjust=False).mean().values A=np.array(A); A[np.isnan(A)]=1.0; Y= np.zeros(len(S)); Y[0]=S[0] for i in range(1,len(S)): Y[i]=A[i]*S[i]+(1-A[i])*Y[i-1] #A支持序列 by jqz1226 return Y def AVEDEV(S, N): #平均绝对偏差 (序列与其平均值的绝对差的平均值) return pd.Series(S).rolling(N).apply(lambda x: (np.abs(x - x.mean())).mean()).values def SLOPE(S, N): #返S序列N周期回线性回归斜率 return pd.Series(S).rolling(N).apply(lambda x: np.polyfit(range(N),x,deg=1)[0],raw=True).values def FORCAST(S, N): #返回S序列N周期回线性回归后的预测值, jqz1226改进成序列出 return pd.Series(S).rolling(N).apply(lambda x:np.polyval(np.polyfit(range(N),x,deg=1),N-1),raw=True).values def LAST(S, A, B): #从前A日到前B日一直满足S_BOOL条件, 要求A>B & A>0 & B>=0 return np.array(pd.Series(S).rolling(A+1).apply(lambda x:np.all(x[::-1][B:]),raw=True),dtype=bool) #------------------ 1级:应用层函数(通过0级核心函数实现)使用方法请参考通达信-------------------------------- def COUNT(S, N): # COUNT(CLOSE>O, N): 最近N天满足S_BOO的天数 True的天数 return SUM(S,N) def EVERY(S, N): # EVERY(CLOSE>O, 5) 最近N天是否都是True return IF(SUM(S,N)==N,True,False) def EXIST(S, N): # EXIST(CLOSE>3010, N=5) n日内是否存在一天大于3000点 return IF(SUM(S,N)>0,True,False) def FILTER(S, N): # FILTER函数,S满足条件后,将其后N周期内的数据置为0, FILTER(C==H,5) for i in range(len(S)): S[i+1:i+1+N]=0 if S[i] else S[i+1:i+1+N] return S # 例:FILTER(C==H,5) 涨停后,后5天不再发出信号 def BARSLAST(S): #上一次条件成立到当前的周期, BARSLAST(C/REF(C,1)>=1.1) 上一次涨停到今天的天数 M=np.concatenate(([0],np.where(S,1,0))) for i in range(1, len(M)): M[i]=0 if M[i] else M[i-1]+1 return M[1:] def BARSLASTCOUNT(S): # 统计连续满足S条件的周期数 by jqz1226 rt = np.zeros(len(S)+1) # BARSLASTCOUNT(CLOSE>OPEN)表示统计连续收阳的周期数 for i in range(len(S)): rt[i+1]=rt[i]+1 if S[i] else rt[i+1] return rt[1:] def BARSSINCEN(S, N): # N周期内第一次S条件成立到现在的周期数,N为常量 by jqz1226 return pd.Series(S).rolling(N).apply(lambda x:N-1-np.argmax(x) if np.argmax(x) or x[0] else 0,raw=True).fillna(0).values.astype(int) def CROSS(S1, S2): # 判断向上金叉穿越 CROSS(MA(C,5),MA(C,10)) 判断向下死叉穿越 CROSS(MA(C,10),MA(C,5)) return np.concatenate(([False], np.logical_not((S1>S2)[:-1]) & (S1>S2)[1:])) # 不使用0级函数,移植方便 by jqz1226 def LONGCROSS(S1,S2,N): # 两条线维持一定周期后交叉,S1在N周期内都小于S2,本周期从S1下方向上穿过S2时返回1,否则返回0 return np.array(np.logical_and(LAST(S1<S2,N,1),(S1>S2)),dtype=bool) # N=1时等同于CROSS(S1, S2) def VALUEWHEN(S, X): # 当S条件成立时,取X的当前值,否则取VALUEWHEN的上个成立时的X值 by jqz1226 return pd.Series(np.where(S,X,np.nan)).ffill().values def BETWEEN(S, A, B): # S处于A和B之间时为真。 包括 A<S<B 或 A>S>B return ((A<S) & (S<B)) | ((A>S) & (S>B)) def TOPRANGE(S): # TOPRANGE(HIGH)表示当前最高价是近多少周期内最高价的最大值 by jqz1226 rt = np.zeros(len(S)) for i in range(1,len(S)): rt[i] = np.argmin(np.flipud(S[:i]<S[i])) return rt.astype('int') def LOWRANGE(S): # LOWRANGE(LOW)表示当前最低价是近多少周期内最低价的最小值 by jqz1226 rt = np.zeros(len(S)) for i in range(1,len(S)): rt[i] = np.argmin(np.flipud(S[:i]>S[i])) return rt.astype('int') #------------------ 2级:技术指标函数(全部通过0级,1级函数实现) ------------------------------ def MACD(CLOSE,SHORT=12,LONG=26,M=9): # EMA的关系,S取120日,和雪球小数点2位相同 DIF = EMA(CLOSE,SHORT)-EMA(CLOSE,LONG); DEA = EMA(DIF,M); MACD=(DIF-DEA)*2 return RD(DIF),RD(DEA),RD(MACD) def KDJ(CLOSE,HIGH,LOW, N=9,M1=3,M2=3): # KDJ指标 RSV = (CLOSE - LLV(LOW, N)) / (HHV(HIGH, N) - LLV(LOW, N)) * 100 K = EMA(RSV, (M1*2-1)); D = EMA(K,(M2*2-1)); J=K*3-D*2 return K, D, J def RSI(CLOSE, N=24): # RSI指标,和通达信小数点2位相同 DIF = CLOSE-REF(CLOSE,1) return RD(SMA(MAX(DIF,0), N) / SMA(ABS(DIF), N) * 100) def WR(CLOSE, HIGH, LOW, N=10, N1=6): #W&R 威廉指标 WR = (HHV(HIGH, N) - CLOSE) / (HHV(HIGH, N) - LLV(LOW, N)) * 100 WR1 = (HHV(HIGH, N1) - CLOSE) / (HHV(HIGH, N1) - LLV(LOW, N1)) * 100 return RD(WR), RD(WR1) def BIAS(CLOSE,L1=6, L2=12, L3=24): # BIAS乖离率 BIAS1 = (CLOSE - MA(CLOSE, L1)) / MA(CLOSE, L1) * 100 BIAS2 = (CLOSE - MA(CLOSE, L2)) / MA(CLOSE, L2) * 100 BIAS3 = (CLOSE - MA(CLOSE, L3)) / MA(CLOSE, L3) * 100 return RD(BIAS1), RD(BIAS2), RD(BIAS3) def BOLL(CLOSE,N=20, P=2): #BOLL指标,布林带 MID = MA(CLOSE, N); UPPER = MID + STD(CLOSE, N) * P LOWER = MID - STD(CLOSE, N) * P return RD(UPPER), RD(MID), RD(LOWER) def PSY(CLOSE,N=12, M=6): PSY=COUNT(CLOSE>REF(CLOSE,1),N)/N*100 PSYMA=MA(PSY,M) return RD(PSY),RD(PSYMA) def CCI(CLOSE,HIGH,LOW,N=14): TP=(HIGH+LOW+CLOSE)/3 return (TP-MA(TP,N))/(0.015*AVEDEV(TP,N)) def ATR(CLOSE,HIGH,LOW, N=20): #真实波动N日平均值 TR = MAX(MAX((HIGH - LOW), ABS(REF(CLOSE, 1) - HIGH)), ABS(REF(CLOSE, 1) - LOW)) return MA(TR, N) def BBI(CLOSE,M1=3,M2=6,M3=12,M4=20): #BBI多空指标 return (MA(CLOSE,M1)+MA(CLOSE,M2)+MA(CLOSE,M3)+MA(CLOSE,M4))/4 def DMI(CLOSE,HIGH,LOW,M1=14,M2=6): #动向指标:结果和同花顺,通达信完全一致 TR = SUM(MAX(MAX(HIGH - LOW, ABS(HIGH - REF(CLOSE, 1))), ABS(LOW - REF(CLOSE, 1))), M1) HD = HIGH - REF(HIGH, 1); LD = REF(LOW, 1) - LOW DMP = SUM(IF((HD > 0) & (HD > LD), HD, 0), M1) DMM = SUM(IF((LD > 0) & (LD > HD), LD, 0), M1) PDI = DMP * 100 / TR; MDI = DMM * 100 / TR ADX = MA(ABS(MDI - PDI) / (PDI + MDI) * 100, M2) ADXR = (ADX + REF(ADX, M2)) / 2 return PDI, MDI, ADX, ADXR def TAQ(HIGH,LOW,N): #唐安奇通道(海龟)交易指标,大道至简,能穿越牛熊 UP=HHV(HIGH,N); DOWN=LLV(LOW,N); MID=(UP+DOWN)/2 return UP,MID,DOWN def KTN(CLOSE,HIGH,LOW,N=20,M=10): #肯特纳交易通道, N选20日,ATR选10日 MID=EMA((HIGH+LOW+CLOSE)/3,N) ATRN=ATR(CLOSE,HIGH,LOW,M) UPPER=MID+2*ATRN; LOWER=MID-2*ATRN return UPPER,MID,LOWER def TRIX(CLOSE,M1=12, M2=20): #三重指数平滑平均线 TR = EMA(EMA(EMA(CLOSE, M1), M1), M1) TRIX = (TR - REF(TR, 1)) / REF(TR, 1) * 100 TRMA = MA(TRIX, M2) return TRIX, TRMA def VR(CLOSE,VOL,M1=26): #VR容量比率 LC = REF(CLOSE, 1) return SUM(IF(CLOSE > LC, VOL, 0), M1) / SUM(IF(CLOSE <= LC, VOL, 0), M1) * 100 def EMV(HIGH,LOW,VOL,N=14,M=9): #简易波动指标 VOLUME=MA(VOL,N)/VOL; MID=100*(HIGH+LOW-REF(HIGH+LOW,1))/(HIGH+LOW) EMV=MA(MID*VOLUME*(HIGH-LOW)/MA(HIGH-LOW,N),N); MAEMV=MA(EMV,M) return EMV,MAEMV def DPO(CLOSE,M1=20, M2=10, M3=6): #区间震荡线 DPO = CLOSE - REF(MA(CLOSE, M1), M2); MADPO = MA(DPO, M3) return DPO, MADPO def BRAR(OPEN,CLOSE,HIGH,LOW,M1=26): #BRAR-ARBR 情绪指标 AR = SUM(HIGH - OPEN, M1) / SUM(OPEN - LOW, M1) * 100 BR = SUM(MAX(0, HIGH - REF(CLOSE, 1)), M1) / SUM(MAX(0, REF(CLOSE, 1) - LOW), M1) * 100 return AR, BR def DFMA(CLOSE,N1=10,N2=50,M=10): #平行线差指标 DIF=MA(CLOSE,N1)-MA(CLOSE,N2); DIFMA=MA(DIF,M) #通达信指标叫DMA 同花顺叫新DMA return DIF,DIFMA def MTM(CLOSE,N=12,M=6): #动量指标 MTM=CLOSE-REF(CLOSE,N); MTMMA=MA(MTM,M) return MTM,MTMMA def MASS(HIGH,LOW,N1=9,N2=25,M=6): #梅斯线 MASS=SUM(MA(HIGH-LOW,N1)/MA(MA(HIGH-LOW,N1),N1),N2) MA_MASS=MA(MASS,M) return MASS,MA_MASS def ROC(CLOSE,N=12,M=6): #变动率指标 ROC=100*(CLOSE-REF(CLOSE,N))/REF(CLOSE,N); MAROC=MA(ROC,M) return ROC,MAROC def EXPMA(CLOSE,N1=12,N2=50): #EMA指数平均数指标 return EMA(CLOSE,N1),EMA(CLOSE,N2); def OBV(CLOSE,VOL): #能量潮指标 return SUM(IF(CLOSE>REF(CLOSE,1),VOL,IF(CLOSE<REF(CLOSE,1),-VOL,0)),0)/10000 def MFI(CLOSE,HIGH,LOW,VOL,N=14): #MFI指标是成交量的RSI指标 TYP = (HIGH + LOW + CLOSE)/3 V1=SUM(IF(TYP>REF(TYP,1),TYP*VOL,0),N)/SUM(IF(TYP<REF(TYP,1),TYP*VOL,0),N) return 100-(100/(1+V1)) def ASI(OPEN,CLOSE,HIGH,LOW,M1=26,M2=10): #振动升降指标 LC=REF(CLOSE,1); AA=ABS(HIGH-LC); BB=ABS(LOW-LC); CC=ABS(HIGH-REF(LOW,1)); DD=ABS(LC-REF(OPEN,1)); R=IF( (AA>BB) & (AA>CC),AA+BB/2+DD/4,IF( (BB>CC) & (BB>AA),BB+AA/2+DD/4,CC+DD/4)); X=(CLOSE-LC+(CLOSE-OPEN)/2+LC-REF(OPEN,1)); SI=16*X/R*MAX(AA,BB); ASI=SUM(SI,M1); ASIT=MA(ASI,M2); return ASI,ASIT def XSII(CLOSE, HIGH, LOW, N=102, M=7): #薛斯通道II AA = MA((2*CLOSE + HIGH + LOW)/4, 5) #最新版DMA才支持 2021-12-4 TD1 = AA*N/100; TD2 = AA*(200-N) / 100 CC = ABS((2*CLOSE + HIGH + LOW)/4 - MA(CLOSE,20))/MA(CLOSE,20) DD = DMA(CLOSE,CC); TD3=(1+M/100)*DD; TD4=(1-M/100)*DD return TD1, TD2, TD3, TD4 #望大家能提交更多指标和函数 https://github.com/mpquant/MyTT # MyTT 麦语言-通达信-同花顺指标实现 https://github.com/mpquant/MyTT # 高级函数版本,本文件函数计算结果经过验证完全正确,可以正常使用,但代码比较复杂,做为进阶使用。 # MyTT团队对每个函数精益求精,力争效率速度,代码优雅的完美统一,如果您有更好的实现方案,请不吝赐教! # 感谢以下团队成员的努力和贡献: 火焰,jqz1226, stanene, bcq #------------------------工具函数--------------------------------------------- def HHV(S, N): #HHV,支持N为序列版本 # type: (np.ndarray, Optional[int,float, np.ndarray]) -> np.ndarray """ HHV(C, 5) # 最近5天收盘最高价 """ if isinstance(N, (int, float)): return pd.Series(S).rolling(N).max().values else: res = np.repeat(np.nan, len(S)) for i in range(len(S)): if (not np.isnan(N[i])) and N[i] <= i + 1: res[i] = S[i + 1 - N[i]:i + 1].max() return res def LLV(S, N): #LLV,支持N为序列版本 # type: (np.ndarray, Optional[int,float, np.ndarray]) -> np.ndarray """ LLV(C, 5) # 最近5天收盘最低价 """ if isinstance(N, (int, float)): return pd.Series(S).rolling(N).min().values else: res = np.repeat(np.nan, len(S)) for i in range(len(S)): if (not np.isnan(N[i])) and N[i] <= i + 1: res[i] = S[i + 1 - N[i]:i + 1].min() return res def DSMA(X, N): # 偏差自适应移动平均线 type: (np.ndarray, int) -> np.ndarray """ Deviation Scaled Moving Average (DSMA) Python by: jqz1226, 2021-12-27 Referred function from myTT: SUM, DMA """ a1 = math.exp(- 1.414 * math.pi * 2 / N) b1 = 2 * a1 * math.cos(1.414 * math.pi * 2 / N) c2 = b1 c3 = -a1 * a1 c1 = 1 - c2 - c3 Zeros =
np.pad(X[2:] - X[:-2],(2,0),'constant')
numpy.pad
import logging import numpy as np import time import warnings from qcodes.instrument.base import Instrument from qcodes.utils import validators as vals from qcodes.instrument.parameter import ManualParameter from pycqed.utilities.general import gen_sweep_pts from pycqed.analysis import measurement_analysis as ma from pycqed.analysis import fitting_models as fit_mods class Qubit(Instrument): ''' Abstract base class for the qubit object. Contains a template for all methods a qubit (should) has. N.B. This is not intended to be initialized. Specific types of qubits should inherit from this class, different hardware configurations can inherit from those to further specify the functionality. Possible inheritance tree - Qubit (general template class) - GateMon - Transmon (contains qubit specific methods) - transmon in setup a (contains setup specific methods) Naming conventions for methods The qubit object is a combination of a parameter holder and a convenient way of performing measurements. As a convention the qubit object contains the following types of methods designated by a prefix - measure_xx() -> bool A measure_xx method performs a specific experiment such as a "spectroscopy" or "ramsey". A measure_xx method typically has a hardware dependent implementation - calibrate_xx() -> bool A calibrate_xx method defines a standard protocol to perform a specific calibration. A calibrate_xx method should be blind callable (callable without specifying any arguments). A calibrate_xx method should return a boolean indicating the success of the calibration. A calibrate_xx method should update the internal parameter it is related to. A calibrate_xx method should be defined in the abstract base class whenever possible and rely on implementations of corresponding measure_xx methods in the hardware dependent child classes. - find_xx similar to calibrate_xx() naming difference is historical - calculate_ calculates a quantity based on parameters specified in the qubit object e.g. calculate_frequency Naming conventions for parameters: (only for qubit objects after Sept 2017) Parameters are grouped based on their functionality. This grouping is achieved through the parameter name. Prefixes are listed here: instr_ : references to other instruments ro_ : parameters relating to RO both CW and TD readout. mw_ : parameters of single qubit MW control spec_ : parameters relating to spectroscopy (single qubit CW) fl_ : parameters relating to flux control, this includes both flux pulsing as well as flux offset (DC). tim_ : parameters related to timing, used to set latencies, these are generally part of a device object (rather than the qubit objects) but are listed here for completeness. cfg_ : configuration, this can be info relevant for compilers or configurations that determine how the qubit operates. examples are cfg_qasm and cfg_f_qubit_calc_method. "" : properties of the qubit do not have a prefix, examples are T1, T2, etc., F_ssro, F_RB, etc., f_qubit, E_C, etc. Open for discussion: - is a split at the level below qubit really required? - is the name "find_" a good name or should it be merged with measure or calibrate? - Should the pulse-parameters be grouped here in some convenient way? (e.g. parameter prefixes) ''' def __init__(self, name, **kw): super().__init__(name, **kw) self.msmt_suffix = '_' + name # used to append to measurement labels self._operations = {} self.add_parameter('operations', docstring='a list of all operations available on the qubit', get_cmd=self._get_operations) def connect_message(self, begin_time=None): t = time.time() - (begin_time or self._t0) con_msg = ('Connected to: {repr} ' 'in {t:.2f} s'.format(repr=self.__repr__(), t=t)) print(con_msg) def add_parameters(self): """ Add parameters to the qubit object grouped according to the naming conventions described above Prefixes are listed here: instr_ : references to other instruments ro_ : parameters relating to RO both CW and TD readout. mw_ : parameters of single qubit MW control spec_ : parameters relating to spectroscopy (single qubit CW) fl_ : parameters relating to flux control, this includes both flux pulsing as well as flux offset (DC). cfg_ : configuration, this can be info relevant for compilers or configurations that determine how the qubit operates. examples are cfg_qasm and cfg_f_qubit_calc_method. "" : properties of the qubit do not have a prefix, examples are T1, T2, etc., F_ssro, F_RB, etc., f_qubit, E_C, etc. """ self.add_instrument_ref_parameters() self.add_ro_parameters() self.add_mw_parameters() self.add_spec_parameters() self.add_flux_parameters() self.add_config_parameters() self.add_generic_qubit_parameters() def add_instrument_ref_parameters(self): pass def add_ro_parameters(self): pass def add_mw_parameters(self): pass def add_spec_parameters(self): pass def add_flux_parameters(self): pass def add_config_parameters(self): pass def add_generic_qubit_parameters(self): pass def get_idn(self): return {'driver': str(self.__class__), 'name': self.name} def _get_operations(self): return self._operations def measure_T1(self, times=None, MC=None, close_fig: bool=True, update: bool=True, prepare_for_timedomain: bool=True)->float: """ Performs a T1 experiment. Args: times: array of times to measure at, if None will define a suitable range based on the last known T1 MC: instance of the MeasurementControl close_fig: close the figure in plotting update : update self.T1 with the measured value returns: T1 (float) the measured value """ # Note: I made all functions lowercase but for T1 it just looks too # ridiculous raise NotImplementedError() def measure_rabi(self): raise NotImplementedError() def measure_flipping(self, number_of_flips=2*np.arange(60), MC=None, label='', equator=True, analyze=True, close_fig=True, verbose=True): raise NotImplementedError def measure_ramsey(self): raise NotImplementedError() def measure_echo(self, times=None, MC=None, analyze=True, close_fig=True, update=True): raise NotImplementedError() def measure_allxy(self, MC=None, analyze: bool=True, close_fig: bool=True, prepare_for_timedomain: bool=True): """ Performs an AllXY experiment. Args: MC : instance of the MeasurementControl analyze : perform analysis close_fig : close the figure in plotting returns: T1 (float) the measured value """ raise NotImplementedError() def measure_ssro(self, MC=None, analyze: bool=True, nr_shots: int=1024*8, cases=('off', 'on'), update_threshold: bool=True, prepare: bool=True, no_figs: bool=False, update: bool=True, verbose: bool=True): raise NotImplementedError() def measure_spectroscopy(self, freqs, pulsed=True, MC=None, analyze=True, close_fig=True): raise NotImplementedError() def measure_resonator_power(self, freqs, powers, MC=None, analyze: bool=True, close_fig: bool=True): raise NotImplementedError() def measure_transients(self, MC=None, analyze: bool=True, cases=('off', 'on'), prepare: bool=True, depletion_analysis: bool=True, depletion_analysis_plot: bool=True, depletion_optimization_window=None): ''' Measure transients for the cases specified. Args: MC (instr): measurement control analyze (bool) : run analysis and create figure cases (list) : list of strings specifying cases to perform transients for, valid cases are "off" and "on" corresponding to preparing the qubit in the 0 or 1 state respectively. prepare (bool) : if True runs prepare for timedomain before measuring the transients Returns: list of numpy arrays containing the transients for the cases specified. ''' if prepare: self.prepare_for_timedomain() raise NotImplementedError() def measure_motzoi(self, motzois=np.linspace(-.3, .3, 31), MC=None, analyze=True, close_fig=True): raise NotImplementedError() def find_resonator_frequency(self, use_min=False, update=True, freqs=None, MC=None, close_fig=True): ''' Finds the resonator frequency by performing a heterodyne experiment if freqs == None it will determine a default range dependent on the last known frequency of the resonator. ''' # This snippet exists to be backwards compatible 9/2017. try: freq_res_par = self.freq_res freq_RO_par = self.ro_freq except: warnings.warn("Deprecation warning: rename f_res to freq_res") freq_res_par = self.f_res freq_RO_par = self.f_RO if freqs is None: f_center = freq_res_par() if f_center is None: raise ValueError('Specify "freq_res" to generate a freq span') f_span = 10e6 f_step = 100e3 freqs = np.arange(f_center-f_span/2, f_center+f_span/2, f_step) self.measure_heterodyne_spectroscopy(freqs, MC, analyze=False) a = ma.Homodyne_Analysis(label=self.msmt_suffix, close_fig=close_fig) if use_min: f_res = a.min_frequency else: f_res = a.fit_results.params['f0'].value*1e9 # fit converts to Hz if f_res > max(freqs) or f_res < min(freqs): logging.warning('exracted frequency outside of range of scan') elif update: # don't update if the value is out of the scan range freq_res_par(f_res) freq_RO_par(f_res) return f_res def find_frequency(self, method='spectroscopy', pulsed=False, steps=[1, 3, 10, 30, 100, 300, 1000], freqs=None, f_span=100e6, use_max=False, f_step=1e6, verbose=True, update=True, close_fig=True): """ Finds the qubit frequency using either the spectroscopy or the Ramsey method. Frequency prediction is done using """ if method.lower() == 'spectroscopy': if freqs is None: f_qubit_estimate = self.calculate_frequency() freqs = np.arange(f_qubit_estimate - f_span/2, f_qubit_estimate + f_span/2, f_step) # args here should be handed down from the top. self.measure_spectroscopy(freqs, pulsed=pulsed, MC=None, analyze=True, close_fig=close_fig) label = 'spec' analysis_spec = ma.Qubit_Spectroscopy_Analysis( label=label, close_fig=True) if update: if use_max: self.freq_qubit(analysis_spec.peaks['peak']) else: self.freq_qubit(analysis_spec.fitted_freq) # TODO: add updating and fitting elif method.lower() == 'ramsey': return self.calibrate_frequency_ramsey( steps=steps, verbose=verbose, update=update, close_fig=close_fig) return self.freq_qubit() def calibrate_motzoi(self, MC=None, verbose=True, update=True): motzois = gen_sweep_pts(center=0, span=1, num=31) # large range a = self.measure_motzoi(MC=MC, motzois=motzois, analyze=True) opt_motzoi = a.optimal_motzoi if opt_motzoi > max(motzois) or opt_motzoi < min(motzois): if verbose: print('optimal motzoi {:.3f} '.format(opt_motzoi) + 'outside of measured span, aborting') return False # fine range around optimum motzois = gen_sweep_pts(center=a.optimal_motzoi, span=.4, num=31) a = self.measure_motzoi(motzois) opt_motzoi = a.optimal_motzoi if opt_motzoi > max(motzois) or opt_motzoi < min(motzois): if verbose: print('optimal motzoi {:.3f} '.format(opt_motzoi) + 'outside of measured span, aborting') if update: if verbose: print('Setting motzoi to {:.3f}'.format(opt_motzoi)) self.motzoi(opt_motzoi) return opt_motzoi def calibrate_optimal_weights(self, MC=None, verify: bool=True, analyze: bool=True, update: bool=True, no_figs: bool=False)->bool: raise NotImplementedError() def calibrate_MW_RO_latency(self, MC=None, update: bool=True)-> bool: """ Calibrates parameters: "latency_MW" "RO_acq_delay" Used to calibrate the delay of the MW pulse with respect to the RO pulse and the RO acquisition delay. The MW_pulse_latency is calibrated by setting the frequency of the LO to the qubit frequency such that both the MW and the RO pulse will show up in the RO. Measuring the transients will show what the optimal latency is. Note that a lot of averages may be required when using dedicated drive lines. This function does NOT overwrite the values that were set in the qubit object and as such can be used to verify the succes of the calibration. Currently (28/6/2017) the experiment has to be analysed by hand. """ raise NotImplementedError() return True def calibrate_Flux_pulse_latency(self, MC=None, update=True)-> bool: """ Calibrates parameter: "latency_Flux" Used to calibrate the timing between the MW and Flux pulses. Flux pulse latency is calibrated using a Ram-Z experiment. The experiment works as follows: - x90 | square_flux # defines t = 0 - wait (should be slightly longer than the pulse duration) - x90 - wait - RO The position of the square flux pulse is varied to find the optimal latency. """ raise NotImplementedError return True def calibrate_frequency_ramsey(self, steps=[1, 1, 3, 10, 30, 100, 300, 1000], stepsize:float =20e-9, verbose: bool=True, update: bool=True, close_fig: bool=True): """ Runs an iterative procudere of ramsey experiments to estimate frequency detuning to converge to the qubit frequency up to the limit set by T2*. steps: multiples of the initial stepsize on which to run the stepsize: smalles stepsize in ns for which to run ramsey experiments. """ cur_freq = self.freq_qubit() # Steps don't double to be more robust against aliasing for n in steps: times = np.arange(self.mw_gauss_width()*4, 50*n*stepsize, n*stepsize) artificial_detuning = 2.5/times[-1] self.measure_ramsey(times, artificial_detuning=artificial_detuning, freq_qubit=cur_freq, label='_{}pulse_sep'.format(n), analyze=False) a = ma.Ramsey_Analysis(auto=True, close_fig=close_fig, freq_qubit=cur_freq, artificial_detuning=artificial_detuning, close_file=False) fitted_freq = a.fit_res.params['frequency'].value measured_detuning = fitted_freq-artificial_detuning cur_freq = a.qubit_frequency qubit_ana_grp = a.analysis_group.create_group(self.msmt_suffix) qubit_ana_grp.attrs['artificial_detuning'] = \ str(artificial_detuning) qubit_ana_grp.attrs['measured_detuning'] = \ str(measured_detuning) qubit_ana_grp.attrs['estimated_qubit_freq'] = str(cur_freq) a.finish() # make sure I close the file if verbose: print('Measured detuning:{:.2e}'.format(measured_detuning)) print('Setting freq to: {:.9e}, \n'.format(cur_freq)) if times[-1] > 2.*a.T2_star['T2_star']: # If the last step is > T2* then the next will be for sure if verbose: print('Breaking of measurement because of T2*') break if verbose: print('Converged to: {:.9e}'.format(cur_freq)) if update: self.freq_qubit(cur_freq) return cur_freq def calculate_frequency(self, calc_method=None, V_per_phi0=None, V=None): ''' Calculates an estimate for the qubit frequency. Arguments are optional and parameters of the object are used if not specified. Args: calc_method : can be "latest" or "flux" uses last known frequency or calculates using the cosine arc model as specified in fit_mods.Qubit_dac_to_freq corresponding par. : cfg_qubit_freq_calc_method V_per_phi0 : dac flux coefficient, converts volts to Flux. Set to 1 to reduce the model to pure flux. corresponding par. : fl_dc_V_per_phi V : dac value used when calculating frequency corresponding par. : fl_dc_V Calculates the f01 transition frequency using the cosine arc model. (function available in fit_mods. Qubit_dac_to_freq) The parameter cfg_qubit_freq_calc_method determines how it is calculated. Parameters of the qubit object are used unless specified. Flux can be specified both in terms of dac voltage or flux but not both. ''' if self.cfg_qubit_freq_calc_method() == 'latest': qubit_freq_est = self.freq_qubit() elif self.cfg_qubit_freq_calc_method() == 'flux': if V is None: V = self.fl_dc_V() if V_per_phi0 is None: V_per_phi0 = self.fl_dc_V_per_phi0() qubit_freq_est = fit_mods.Qubit_dac_to_freq( dac_voltage=V, f_max=self.freq_max(), E_c=self.E_c(), dac_sweet_spot=self.fl_dc_V0(), V_per_phi0=V_per_phi0, asymmetry=self.asymmetry()) return qubit_freq_est def calibrate_mixer_offsets_drive(self, update: bool=True)-> bool: ''' Calibrates the mixer skewness and updates the I and Q offsets in the qubit object. ''' raise NotImplementedError() return True def measure_heterodyne_spectroscopy(self, freqs, MC=None, analyze=True, close_fig=True): raise NotImplementedError() def add_operation(self, operation_name): self._operations[operation_name] = {} def link_param_to_operation(self, operation_name, parameter_name, argument_name): """ Links an existing param to an operation for use in the operation dict. An example of where to use this would be the flux_channel. Only one parameter is specified but it is relevant for multiple flux pulses. You don't want a different parameter that specifies the channel for the iSWAP and the CZ gate. This can be solved by linking them to your operation. Args: operation_name (str): The operation of which this parameter is an argument. e.g. mw_control or CZ parameter_name (str): Name of the parameter argument_name (str): Name of the arugment as used in the sequencer **kwargs get passed to the add_parameter function """ if parameter_name not in self.parameters: raise KeyError('Parameter {} needs to be added first'.format( parameter_name)) if operation_name in self.operations().keys(): self._operations[operation_name][argument_name] = parameter_name else: raise KeyError('Unknown operation {}, add '.format(operation_name) + 'first using add operation') def add_pulse_parameter(self, operation_name, parameter_name, argument_name, initial_value=None, vals=vals.Numbers(), **kwargs): """ Add a pulse parameter to the qubit. Args: operation_name (str): The operation of which this parameter is an argument. e.g. mw_control or CZ parameter_name (str): Name of the parameter argument_name (str): Name of the arugment as used in the sequencer **kwargs get passed to the add_parameter function Raises: KeyError: if this instrument already has a parameter with this name. """ if parameter_name in self.parameters: raise KeyError( 'Duplicate parameter name {}'.format(parameter_name)) if operation_name in self.operations().keys(): self._operations[operation_name][argument_name] = parameter_name else: raise KeyError('Unknown operation {}, add '.format(operation_name) + 'first using add operation') self.add_parameter(parameter_name, initial_value=initial_value, vals=vals, parameter_class=ManualParameter, **kwargs) # for use in RemoteInstruments to add parameters to the server # we return the info they need to construct their proxy return def get_operation_dict(self, operation_dict={}): for op_name, op in self.operations().items(): operation_dict[op_name + ' ' + self.name] = {'target_qubit': self.name} for argument_name, parameter_name in op.items(): operation_dict[op_name + ' ' + self.name][argument_name] = \ self.get(parameter_name) return operation_dict class Transmon(Qubit): ''' circuit-QED Transmon as used in DiCarlo Lab. Adds transmon specific parameters as well ''' def __init__(self, name, **kw): super().__init__(name, **kw) self.add_parameter('E_c', unit='Hz', parameter_class=ManualParameter, vals=vals.Numbers()) self.add_parameter('E_j', unit='Hz', parameter_class=ManualParameter, vals=vals.Numbers()) self.add_parameter('anharmonicity', unit='Hz', label='Anharmonicity', docstring='Anharmonicity, negative by convention', parameter_class=ManualParameter, # typical target value initial_value=-300e6, vals=vals.Numbers()) self.add_parameter('T1', unit='s', parameter_class=ManualParameter, vals=vals.Numbers(0, 200e-6)) self.add_parameter('T2_echo', unit='s', parameter_class=ManualParameter, vals=vals.Numbers()) self.add_parameter('T2_star', unit='s', parameter_class=ManualParameter, vals=vals.Numbers()) self.add_parameter('dac_voltage', unit='mV', parameter_class=ManualParameter) self.add_parameter('dac_sweet_spot', unit='mV', parameter_class=ManualParameter) self.add_parameter('dac_flux_coefficient', unit='', parameter_class=ManualParameter) self.add_parameter('asymmetry', unit='', initial_value=0, parameter_class=ManualParameter) self.add_parameter('dac_channel', vals=vals.Ints(), parameter_class=ManualParameter) self.add_parameter('f_qubit', label='qubit frequency', unit='Hz', parameter_class=ManualParameter) self.add_parameter('f_max', label='qubit frequency', unit='Hz', parameter_class=ManualParameter) self.add_parameter('f_res', label='resonator frequency', unit='Hz', parameter_class=ManualParameter) self.add_parameter('f_RO', label='readout frequency', unit='Hz', parameter_class=ManualParameter) # Sequence/pulse parameters self.add_parameter('RO_pulse_delay', unit='s', parameter_class=ManualParameter) self.add_parameter('RO_pulse_length', unit='s', parameter_class=ManualParameter) self.add_parameter('RO_acq_marker_delay', unit='s', parameter_class=ManualParameter) self.add_parameter('RO_acq_marker_channel', parameter_class=ManualParameter, vals=vals.Strings()) self.add_parameter('RO_amp', unit='V', parameter_class=ManualParameter) # Time between start of pulses self.add_parameter('pulse_delay', unit='s', initial_value=0, vals=vals.Numbers(0, 1e-6), parameter_class=ManualParameter) self.add_parameter('f_qubit_calc_method', vals=vals.Enum('latest', 'dac', 'flux'), # in the future add 'tracked_dac', 'tracked_flux', initial_value='latest', parameter_class=ManualParameter) self.add_parameter('F_ssro', initial_value=0, label='RO assignment fidelity', vals=vals.Numbers(0.0, 1.0), parameter_class=ManualParameter) self.add_parameter('F_discr', initial_value=0, label='RO discrimination fidelity', vals=vals.Numbers(0.0, 1.0), parameter_class=ManualParameter) self.add_parameter('F_RB', initial_value=0, label='RB single qubit Clifford fidelity', vals=vals.Numbers(0, 1.0), parameter_class=ManualParameter) self.add_parameter('V_per_phi0', initial_value=1, label='V per phi0', vals=vals.Numbers(), docstring='Conversion between flux and voltage. ' 'How many volts need to be applied to ' 'have a flux of 1 phi0 (pulsed).', parameter_class=ManualParameter) self.add_parameter('V_offset', initial_value=0, label='V offset', vals=vals.Numbers(), docstring='AWG voltage at which the sweet spot is ' 'found (pulsed).', parameter_class=ManualParameter) def calculate_frequency(self, dac_voltage=None, flux=None): ''' Calculates the f01 transition frequency from the cosine arc model. (function available in fit_mods. Qubit_dac_to_freq) Parameters of the qubit object are used unless specified. Flux can be specified both in terms of dac voltage or flux but not both. ''' if dac_voltage is not None and flux is not None: raise ValueError('Specify either dac voltage or flux but not both') if self.f_qubit_calc_method() == 'latest': f_qubit_estimate = self.f_qubit() elif self.f_qubit_calc_method() == 'dac': if dac_voltage is None: dac_voltage = self.IVVI.get_instr().get( 'dac{}'.format(self.dac_channel())) f_qubit_estimate = fit_mods.Qubit_dac_to_freq( dac_voltage=dac_voltage, f_max=self.f_max(), E_c=self.E_c(), dac_sweet_spot=self.dac_sweet_spot(), dac_flux_coefficient=self.dac_flux_coefficient(), asymmetry=self.asymmetry()) elif self.f_qubit_calc_method() == 'flux': if flux is None: flux = self.FluxCtrl.get_instr().get( 'flux{}'.format(self.dac_channel())) f_qubit_estimate = fit_mods.Qubit_dac_to_freq( dac_voltage=flux, f_max=self.f_max(), E_c=self.E_c(), dac_sweet_spot=0, dac_flux_coefficient=1, asymmetry=self.asymmetry()) return f_qubit_estimate def calculate_flux(self, frequency): raise NotImplementedError() def prepare_for_timedomain(self): raise NotImplementedError() def prepare_for_continuous_wave(self): raise NotImplementedError() def prepare_readout(self): """ Configures the readout. Consists of the following steps - instantiate the relevant detector functions - set the microwave frequencies and sources - generate the RO pulse - set the integration weights """ raise NotImplementedError() def calibrate_frequency_ramsey(self, steps=[1, 1, 3, 10, 30, 100, 300, 1000], stepsize=None, verbose=True, update=True, close_fig=True): if stepsize is None: stepsize = abs(1/self.f_pulse_mod.get()) cur_freq = self.f_qubit.get() # Steps don't double to be more robust against aliasing for n in steps: times = np.arange(self.pulse_delay.get(), 50*n*stepsize, n*stepsize) artificial_detuning = 2.5/times[-1] self.measure_ramsey(times, artificial_detuning=artificial_detuning, f_qubit=cur_freq, label='_{}pulse_sep'.format(n), analyze=False) a = ma.Ramsey_Analysis(auto=True, close_fig=close_fig, qb_name=self.name, artificial_detuning=artificial_detuning, close_file=False) fitted_freq = a.fit_res.params['frequency'].value measured_detuning = fitted_freq-artificial_detuning cur_freq -= measured_detuning qubit_ana_grp = a.analysis_group.create_group(self.msmt_suffix) qubit_ana_grp.attrs['artificial_detuning'] = \ str(artificial_detuning) qubit_ana_grp.attrs['measured_detuning'] = \ str(measured_detuning) qubit_ana_grp.attrs['estimated_qubit_freq'] = str(cur_freq) a.finish() # make sure I close the file if verbose: print('Measured detuning:{:.2e}'.format(measured_detuning)) print('Setting freq to: {:.9e}, \n'.format(cur_freq)) if times[-1] > 2.*a.T2_star['T2_star']: # If the last step is > T2* then the next will be for sure if verbose: print('Breaking of measurement because of T2*') break if verbose: print('Converged to: {:.9e}'.format(cur_freq)) if update: self.f_qubit.set(cur_freq) return cur_freq def find_frequency(self, method='spectroscopy', pulsed=False, steps=[1, 3, 10, 30, 100, 300, 1000], freqs=None, f_span=100e6, use_max=False, f_step=1e6, verbose=True, update=True, close_fig=True): """ Finds the qubit frequency using either the spectroscopy or the Ramsey method. Frequency prediction is done using """ if method.lower() == 'spectroscopy': if freqs is None: f_qubit_estimate = self.calculate_frequency() freqs = np.arange(f_qubit_estimate - f_span/2, f_qubit_estimate + f_span/2, f_step) # args here should be handed down from the top. self.measure_spectroscopy(freqs, pulsed=pulsed, MC=None, analyze=True, close_fig=close_fig) if pulsed: label = 'pulsed-spec' else: label = 'spectroscopy' analysis_spec = ma.Qubit_Spectroscopy_Analysis( label=label, close_fig=True) if update: if use_max: self.f_qubit(analysis_spec.peaks['peak']) else: self.f_qubit(analysis_spec.fitted_freq) # TODO: add updating and fitting elif method.lower() == 'ramsey': return self.calibrate_frequency_ramsey( steps=steps, verbose=verbose, update=update, close_fig=close_fig) return self.f_qubit() def find_frequency_pulsed(self): raise NotImplementedError() def find_frequency_cw_spec(self): raise NotImplementedError() def calibrate_pulse_amplitude_coarse(self, amps=np.linspace(-.5, .5, 31), close_fig=True, verbose=False, MC=None, update=True, take_fit_I=False): """ Calibrates the pulse amplitude using a single rabi oscillation """ self.measure_rabi(amps, n=1, MC=MC, analyze=False) a = ma.Rabi_Analysis(close_fig=close_fig) # Decide which quadrature to take by comparing the contrast if take_fit_I or len(a.measured_values) == 1: ampl = abs(a.fit_res[0].params['period'].value)/2. elif (np.abs(max(a.measured_values[0]) - min(a.measured_values[0]))) > ( np.abs(max(a.measured_values[1]) - min(a.measured_values[1]))): ampl = a.fit_res[0].params['period'].value/2. else: ampl = a.fit_res[1].params['period'].value/2. if update: self.Q_amp180.set(ampl) return ampl def calibrate_pulse_amplitude_flipping(self, MC=None, update: bool=True, fine_accuracy: float=0.005, desired_accuracy: float=0.00005, max_iterations: int=10, verbose: bool=True): """ Calibrates the pulse amplitude using a flipping sequence. The flipping sequence itself should be implemented using the "measure_flipping" method. It converges to the optimal amplitude using first a coarse and then a finer scan with more pulses. Args: MC : The measurement control used, if None uses the one specified in the qubit object. updates (bool) : if True updates the Q_amp180 parameter fine_accuracy (float) : the accuracy to switch to the fine scan desired_accuracy (float): the accuracy after which to terminate the optimization max_iterations (int) : always terminate after this number of optimizations. verbose (bool): if true adds additional print statements. returns: success (bool): True if optimization converged. """ success = False fine = False for k in range(max_iterations): old_Q_amp180 = self.Q_amp180() if not fine: number_of_flips = 2*np.arange(60) if fine: number_of_flips = 8*np.arange(60) a = self.measure_flipping(MC=MC, number_of_flips=number_of_flips) Q_amp180_scale_factor = a.get_scale_factor() # Check if Q_amp180_scale_factor is within boundaries if Q_amp180_scale_factor > 1.1: Q_amp180_scale_factor = 1.1 if verbose: print('Qubit drive scaling %.3f ' % Q_amp180_scale_factor + 'is too high, capping at 1.1') elif Q_amp180_scale_factor < 0.9: Q_amp180_scale_factor = 0.9 if verbose: print('Qubit drive scaling %.3f ' % Q_amp180_scale_factor + 'is too low, capping at 0.9') self.Q_amp180(np.round(Q_amp180_scale_factor * self.Q_amp180(), 7)) if verbose: print('Q_amp180_scale_factor: {:.4f}, new Q_amp180: {}'.format( Q_amp180_scale_factor, self.Q_amp180())) if (abs(Q_amp180_scale_factor-1) < fine_accuracy) and (not fine): if verbose: print('Getting close to optimum, increasing sensitivity') fine = True if abs(Q_amp180_scale_factor-1) < desired_accuracy: if verbose: print('within threshold') success = True break # If converged? if success and verbose: print('Drive calibration set to {}'.format(self.Q_amp180())) if not update or not success: self.Q_amp180(old_Q_amp180) return success def find_pulse_amplitude(self, amps=np.linspace(-.5, .5, 31), N_steps=[3, 7, 13, 17], max_n=18, close_fig=True, verbose=False, MC=None, update=True, take_fit_I=False): ''' Finds the pulse-amplitude using a Rabi experiment. Fine tunes by doing a Rabi around the optimum with an odd multiple of pulses. Args: amps: (array or float) amplitudes of the first Rabi if an array, if a float is specified it will be treated as an estimate for the amplitude to be found. N_steps: (list of int) number of pulses used in the fine tuning max_n: (int) break of if N> max_n ''' if MC is None: MC = self.MC.get_instr() if np.size(amps) != 1: ampl = self.calibrate_pulse_amplitude_coarse( amps=amps, close_fig=close_fig, verbose=verbose, MC=MC, update=update, take_fit_I=take_fit_I) else: ampl = amps if verbose: print('Initial Amplitude:', ampl, '\n') for n in N_steps: if n > max_n: break else: old_amp = ampl ampl_span = 0.5*ampl/n amps =
np.linspace(ampl-ampl_span, ampl+ampl_span, 15)
numpy.linspace
from utils import softmax_loss,softmax from plot_utils import * import numpy as np import gzip, pickle from sklearn.datasets import fetch_mldata import collections from sklearn.model_selection import train_test_split import sys class TwoLayerNeuralNetwork: def __init__(self, num_features=784, num_hiddens=1000, num_classes=10): self.num_hiddens = num_hiddens self.num_classes = num_classes # random initialization: create random weights, set all biases to zero self.params = {} self.params['W1'] = np.random.randn(num_features, num_hiddens) * 0.001 self.params['W2'] = np.random.randn(num_hiddens, num_classes) * 0.001 self.params['b1'] = np.zeros((num_hiddens,)) self.params['b2'] = np.zeros((num_classes,)) def forward(self, X): # forward step W1, b1 = self.params['W1'], self.params['b1'] W2, b2 = self.params['W2'], self.params['b2'] # forward step h_in = X @ W1 + b1 # hidden layer input h = np.maximum(0, h_in) # hidden layer output (using ReLU) scores = h @ W2 + b2 # neural net output return scores def train_step(self, X, y): W1, b1 = self.params['W1'], self.params['b1'] W2, b2 = self.params['W2'], self.params['b2'] # forward step h_in = X @ W1 + b1 # hidden layer input h = np.maximum(0, h_in) # hidden layer output (using ReLU) scores = h @ W2 + b2 # neural net output #print("scores values is {} ".format(scores)) # compute loss loss, dscores = softmax_loss(scores, y) # backward step db2 = dscores.sum(axis=0) dW2 = h.T @ dscores dh = dscores @ W2.T dh[h_in < 0] = 0.0 db1 = dh.sum(axis=0) dW1 = X.T @ dh gradient = {'W1': dW1, 'b1': db1, 'W2': dW2, 'b2': db2} return loss, gradient def train(self, X_train, y_train, X_valid, y_valid, batch_size=50, alpha=0.001, lmbda=0.0001, num_epochs=10): m, n = X_train.shape num_batches = m // batch_size report = "{:3d}: training loss = {:.2f} | validation loss = {:.2f}" losses = [] for epoch in range(num_epochs): train_loss = 0.0 for _ in range(num_batches): W1, b1 = self.params['W1'], self.params['b1'] W2, b2 = self.params['W2'], self.params['b2'] # select a random mini-batch batch_idx = np.random.choice(m, batch_size, replace=False) X_batch, y_batch = X_train[batch_idx], y_train[batch_idx] # train on mini-batch data_loss, gradient = self.train_step(X_batch, y_batch) reg_loss = 0.5 * (
np.sum(W1 ** 2)
numpy.sum
from __future__ import division from __future__ import print_function from builtins import str from builtins import range from past.utils import old_div import numpy as np import matplotlib.pyplot as plt import os from scipy.interpolate import RegularGridInterpolator from scipy.interpolate import LinearNDInterpolator from scipy.interpolate import NearestNDInterpolator import math from tqdm import trange import tqdm import time import matplotlib from matplotlib import ticker from matplotlib.widgets import Slider, Button, RadioButtons from scipy.optimize import curve_fit import datetime colorbar = True #matplotlib.rc('axes', color_cycle=['r', 'g', 'b', '#004060']) mainlabel = "" units = "$\AA^{-1}$" xunits = units yunits = units zunits = units contours = 200 DPI = 300 format = ".png" text = "Structure Factor" PLOT_EWALDS = True # enable ewald-corrected SF plots savelog = True savelin = True NBINSRAD = 0 normplot = 1 FP_THRESHOLD = 1.0E-12 theta = np.pi / 2 title_fontsize = 9 path = "" def make_flat_plot(D, xr, yr, zr): if len(xr) != 1 and len(yr) != 1 and len(zr) != 1: print("error in make_flat_plot! one of these lengths must be 1") exit() for ix in xr: for iy in yr: for iz in zr: r = D[ix, iy, iz, :4] pts.append((r)) def pl(title, obj): delim = "="*20 print(delim, title, delim) print(obj) def pli(obj, title=""): pl(title, obj) buf = input("enter q to quit, anything else to continue") # raw_input renamed to input() in python3 if buf == 'q': exit() def ple(title, obj): pl(title, obj) exit() def csplot_wlog(X, Y, Z, contours, lab, xlab, ylab, **kwargs): csplot(X, Y, Z, contours, lab, xlab, ylab, **kwargs) csplot(X, Y, np.log(Z), contours, "log_"+lab, xlab, ylab, **kwargs) def csplot(X, Y, Z, contours, lab, xlab, ylab,**kwargs): title = lab+" S("+xlab+","+ylab+")" fname = lab+"_"+xlab+"_"+ylab fig, ax = plt.subplots() plt.suptitle(title) plt.xlabel(xlab) plt.ylabel(ylab) if normplot == 1: cax = plt.contourf(X, Y, Z / np.amax(Z), contours, vmin=0.0, vmax=0.05, **kwargs) else: cax = plt.contourf(X, Y, Z, contours, vmax=0.01*np.amax(Z), **kwargs) # ax.set_aspect((np.amax(Y)-np.amin(Y))/(np.amax(X)-np.amin(X))) # ax.set_aspect('auto') cbar = fig.colorbar(cax) plt.savefig(path+fname+format, dpi=DPI) plt.clf() def sfplot(data, lcscale, **kwargs): """ data: plot slice through structure factor""" if not os.path.exists(path): os.makedirs(path) cspos = 0.0 la = [] lb = 0 an = ['x', 'y', 'z'] # axes names for i in range(data.shape[2] - 1): if np.unique(data[..., i]).size > 1: la.append(i) else: lb = i cspos = data[0, 0, i] title = mainlabel + "\n" + text + "\n" + an[lb] + "=" + str(round(cspos, 2)) + zunits ltitle = mainlabel + "\n" + "log " + text + "\n" + an[lb] + "=" + str(round(cspos, 2)) + zunits xlab = an[la[0]] ylab = an[la[1]] filename = path + an[lb] + "=" + str(round(cspos, 2)) xlab += "(" + xunits + ")" ylab += "(" + yunits + ")" if savelog: plt.suptitle(ltitle, fontsize=title_fontsize) plt.xlabel(xlab) plt.ylabel(ylab) max_log = np.amax(np.log(data[..., 3])) plt.contourf(data[..., la[0]], data[..., la[1]], np.log(data[..., 3]), contours, vmax=lcscale*max_log, **kwargs) plt.savefig(filename+"_log"+format, dpi=DPI) plt.clf() if savelin: plt.suptitle(title, fontsize=title_fontsize) plt.xlabel(xlab) plt.ylabel(ylab) plt.contourf(data[..., la[0]], data[..., la[1]], data[..., 3], contours, **kwargs) plt.savefig(filename+format, dpi=DPI) plt.clf() def radial_integrate(D, Nbins, outputname): SF = D[:, :, :, 3] R = (D[:, :, :, 0]**2).astype(np.float16) + (D[:, :, :, 1]**2).astype(np.float16) + (D[:, :, :, 2]**2).astype(np.float16) H, E = np.histogram(R, bins=Nbins, weights=SF) Hc, E = np.histogram(R, bins=Nbins) Hc = np.where(Hc != 0, Hc, 1.0) H /= Hc H[:1] = 0.0 H /= np.amax(H) plt.plot(E[:-1], H) plt.xlim(0, 5) plt.savefig(outputname, dpi=DPI) def spherical_integrate(D): exit() def Plot_Ewald_Sphere_Correction_old(D, wavelength_angstroms): """ pass full 3d data,SF,wavelength in angstroms """ X = D[:, 0, 0, 0] Y = D[0, :, 0, 1] Z = D[0, 0, :, 2] SF = D[:, :, :, 3] K_ES = 2.0*math.pi/wavelength_angstroms # calculate k for incident xrays in inverse angstroms ES = RegularGridInterpolator((X, Y, Z), SF) pts = [] for ix in range(D.shape[0]): xsq = X[ix]**2.0 for iy in range(D.shape[1]): R = np.sqrt(xsq+Y[iy]**2.0) theta = np.arctan(old_div(R,K_ES)) xnew = X[ix]*np.cos(theta) ynew = Y[iy]*np.cos(theta) znew = K_ES*(1.0-np.cos(theta)) pts.append((X[ix], Y[iy], xnew, ynew, znew)) pts = np.asarray(pts) EWD = ES(pts[:, 2:]) EWD = EWD.reshape(D.shape[0], D.shape[1]) plt.contourf(D[:, :, 0, 0], D[:, :, 0, 1], EWD, 200, interpolation=interp) plt.savefig("EWxy.png",dpi=300) plt.clf() plt.contourf(D[:, :, 0, 0], D[:, :, 0, 1], np.log(EWD), 200, interpolation=interp) plt.savefig("EWxylog.png", dpi=300) plt.clf() def Plot_Ewald_Sphere_Correction(D, wavelength_angstroms, ucell=[], cscale=1, lcscale=1, **kwargs): """ pass full 3d data,SF,wavelength in angstroms """ # cscale : factor by which to scale the maximum value of the colorbar # lcscale : factor by which to scale the maximum value of the colorbar if not os.path.exists(path): os.makedirs(path) X = D[:, 0, 0, 0] Y = D[0, :, 0, 1] Z = D[0, 0, :, 2] SF = D[:, :, :, 3] K_ES = 2.0*math.pi/wavelength_angstroms # calculate k for incident xrays in inverse angstroms ES = RegularGridInterpolator((X, Y, Z), SF, bounds_error=False) xypts = [] for ix in range(D.shape[0]): xsq = X[ix]**2.0 for iy in range(D.shape[1]): theta = np.arctan(old_div(np.sqrt(xsq + Y[iy]**2.0),K_ES)) xypts.append((X[ix]*np.cos(theta), Y[iy]*np.cos(theta), K_ES*(1.0 - np.cos(theta)))) xzpts = [] for ix in range(D.shape[0]): xsq = X[ix]**2.0 for iz in range(D.shape[2]): theta = np.arctan(old_div(np.sqrt(xsq + Z[iz]**2.0),K_ES)) xzpts.append((X[ix]*np.cos(theta), K_ES*(1.0-np.cos(theta)), Z[iz]*np.cos(theta))) yzpts = [] for iy in range(D.shape[1]): ysq = Y[iy]**2.0 for iz in range(D.shape[2]): theta = np.arctan(old_div(np.sqrt(ysq+Z[iz]**2.0),K_ES)) yzpts.append((K_ES*(1.0-np.cos(theta)), Y[iy]*np.cos(theta), Z[iz]*np.cos(theta))) xypts = np.asarray(xypts) xzpts = np.asarray(xzpts) yzpts = np.asarray(yzpts) EWDxy = ES(xypts) EWDxz = ES(xzpts) EWDyz = ES(yzpts) EWDxy = EWDxy.reshape(D.shape[0], D.shape[1]) EWDxz = EWDxz.reshape(D.shape[0], D.shape[2]) EWDyz = EWDyz.reshape(D.shape[1], D.shape[2]) title = "Ewald Corrected Structure Factor \n $\lambda=$"+str(wavelength_angstroms)+" $\AA$ $k_{ew}=$"+str(round(K_ES,2))+" $\AA^{-1}$" ltitle = 'log ' + title xlab = 'x (' + units + ")" ylab = 'y (' + units + ")" zlab = 'z (' + units + ")" fname = "Ewald_" plt.figure(1) plt.suptitle(title) plt.xlabel(xlab) plt.ylabel(ylab) EWDmax_xy = np.amax(EWDxy) plt.contourf(D[:, :, 0, 0], D[:, :, 0, 1], EWDxy, contours, vmax=cscale*EWDmax_xy, **kwargs) plt.savefig(path + fname + "xy" + format, dpi=DPI) plt.clf() plt.figure(2) plt.suptitle(ltitle) plt.xlabel(xlab) plt.ylabel(ylab) EWDmax_xylog = np.amax(np.log(EWDxy)) plt.contourf(D[:, :, 0, 0], D[:, :, 0, 1], np.log(EWDxy), contours, vmax=lcscale*EWDmax_xylog, **kwargs) plt.savefig(path + fname + "xylog" + format, dpi=DPI) plt.clf() plt.figure(3) plt.suptitle(title) plt.xlabel(xlab) plt.ylabel(zlab) EWDmax_xz = np.amax(EWDxz) plt.contourf(D[:, 0, :, 0], D[:, 0, :, 2], EWDxz, contours, vmax=cscale*EWDmax_xz, **kwargs) plt.savefig(path + fname + "xz" + format, dpi=DPI) plt.clf() plt.figure(4) plt.suptitle(ltitle) plt.xlabel(xlab) plt.ylabel(zlab) EWDmax_xzlog = np.amax(np.log(EWDxz)) plt.contourf(D[:, 0, :, 0], D[:, 0, :, 2], np.log(EWDxz), contours, vmax=lcscale*EWDmax_xzlog, **kwargs) lims = [np.amax(D[:, 0, :, 0]), np.amax(D[:, 0, :, 2])] qmax = min(lims) plt.xlim([-qmax, qmax]) plt.ylim([-qmax, qmax]) plt.savefig(path + fname + "xzlog" + format, dpi=DPI) plt.clf() plt.figure(5) plt.suptitle(title) plt.xlabel(ylab) plt.ylabel(zlab) EWDmax_yz = np.amax(EWDyz) plt.contourf(D[0, :, :, 1], D[0, :, :, 2], EWDyz, contours, vmax=cscale*EWDmax_yz, **kwargs) plt.savefig(path + fname + "yz" + format, dpi=DPI) plt.clf() plt.figure(6) plt.suptitle(ltitle) plt.xlabel(ylab) plt.ylabel(zlab) EWDmax_yzlog = np.amax(np.log(EWDyz)) plt.contourf(D[0, :, :, 1], D[0, :, :, 2], np.log(EWDyz), contours, vmax=lcscale*EWDmax_yzlog, **kwargs) plt.savefig(path + fname + "yzlog" + format, dpi=DPI) plt.clf() def lorentz(points, a, b): """ :param p: lorentzian parameters : [full width half max (FWHM), position of maximum] :param p: position :return: """ w = np.pi / a x = (b - points) / (w/2) return 1 / (1 + x**2) def inverse_ft(D, ucell): X = D[:, 0, 0, 0] Y = D[0, :, 0, 1] Z = D[0, 0, :, 2] Z += Z[np.argmin(abs(Z))] SF = D[..., 3] fbin_x = X[1] - X[0] # size of x bins in fourier space fbin_y = Y[1] - Y[0] # size of y bins in fourier space fbin_z = Z[1] - Z[0] # size of z bins in fourier space real_x = 2 * np.pi / fbin_x # largest x dimension in real space real_y = 2 * np.pi / fbin_y # largest y dimension in real space real_z = 2 * np.pi / fbin_z # largest z dimension in real space rbin_x = real_x / X.shape[0] rbin_y = real_y / Y.shape[0] rbin_z = real_z / Z.shape[0] X_real = np.linspace(-real_x / 2, real_x / 2, X.shape[0]) Y_real = np.linspace(-real_y / 2, real_y / 2, Y.shape[0]) Z_real = np.linspace(-real_z / 2, real_z / 2, Z.shape[0]) # reorder lists so they conform to numpy (https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.fft.ifftn.html) start = list(X).index(0) X_reordered = np.concatenate((X[start:], X[:start])) ndx_x = [list(X).index(i) for i in X_reordered] start = list(Y).index(0) Y_reordered = np.concatenate((Y[start:], Y[:start])) ndx_y = [list(Y).index(i) for i in Y_reordered] start = list(Z).index(0) Z_reordered = np.concatenate((Z[start:], Z[:start])) ndx_z = [list(Z).index(i) for i in Z_reordered] SF_reordered = SF[ndx_x, :, :] SF_reordered = SF_reordered[:, ndx_y, :] SF_reordered = SF_reordered[:, :, ndx_z] # inverse fourier transform inverse_fft = np.fft.ifftn(SF_reordered) # reorder again inverse_fft = inverse_fft[ndx_x, :, :] inverse_fft = inverse_fft[:, ndx_y, :] inverse_fft = inverse_fft[:, :, ndx_z] # fourier transform of inversion as a test # ft = np.abs(np.fft.fftn(inverse_fft))**2 # ft = ft[ndx_x, :] # ft = ft[:, ndx_y] # plt.imshow(ft) # plt.show() inverse_fft = inverse_fft.real / np.amax(inverse_fft.real) final, rfin, zfin = angle_average(X_real, Y_real, Z_real, inverse_fft, ucell=ucell) rbound1 = 0 rbound2 = 0 while rfin[rbound1] < -15: rbound1 += 1 while rfin[rbound2] < 15: rbound2 += 1 zbound1 = 0 zbound2 = 0 while zfin[0][zbound1] < -15: zbound1 += 1 while zfin[0][zbound2] < 15: zbound2 += 1 levels = np.linspace(np.amin(final), 0.001 * np.amax(final), 200) plt.contourf(rfin[rbound1:rbound2], zfin[0][zbound1:zbound2], final[rbound1:rbound2, zbound1:zbound2].T, levels=levels, cmap='seismic', extend='max') plt.colorbar() plt.xlabel('r ($\AA$)') plt.ylabel('z ($\AA$)') plt.show() exit() def angle_average(X, Y, Z, SF, ucell=None): ES = RegularGridInterpolator((X, Y, Z), SF, bounds_error=False) THETA_BINS_PER_INV_ANG = 20. MIN_THETA_BINS = 10 # minimum allowed bins RBINS = 100 if ucell is not None: a1 = ucell[0] a2 = ucell[1] a3 = ucell[2] b1 = (np.cross(a2, a3)) / (np.dot(a1, np.cross(a2, a3))) b2 = (np.cross(a3, a1)) / (np.dot(a2, np.cross(a3, a1))) b3 = (np.cross(a1, a2)) / (np.dot(a3, np.cross(a1, a2))) b_inv = np.linalg.inv(np.vstack((b1, b2, b3))) ZBINS = Z.shape[0] # 400 XR = (X[-1] - X[0]) YR = (Y[-1] - Y[0]) Rmax = min(XR, YR) / 2.0 Rmax *= 0.95 rarr, rspace = np.linspace(0.0, Rmax, RBINS, retstep=True) zar = np.linspace(Z[0], Z[-1], ZBINS) oa = np.zeros((rarr.shape[0], zar.shape[0])) circ = 2.*np.pi*rarr # circumference for ir in range(rarr.shape[0]): NTHETABINS = max(int(THETA_BINS_PER_INV_ANG*circ[ir]), MIN_THETA_BINS) #calculate number of bins at this r thetas = np.linspace(0.0, np.pi*2.0, NTHETABINS, endpoint=False) # generate theta array t, r, z = np.meshgrid(thetas, rarr[ir], zar) # generate grid of cylindrical points xar = r*np.cos(t) # set up x,y coords yar = r*np.sin(t) pts = np.vstack((xar.ravel(), yar.ravel(), z.ravel())).T # reshape for interpolation if ucell is not None: # pts = mc_inv(pts, ucell) pts = np.matmul(pts, b_inv) oa[ir, :] = np.average(ES(pts).reshape(r.shape), axis=1) # store average values in final array mn = np.nanmin(oa) oa = np.where(np.isnan(oa), mn, oa) rad_avg = np.average(oa) # ??? oa /= rad_avg # normalize # set up data for contourf plot by making it symmetrical final = np.append(oa[::-1, :], oa[1:], axis=0) # SF rfin = np.append(-rarr[::-1], rarr[1:]) # R zfin = np.append(z[:, 0, :], z[1:, 0, :], axis=0) # Z return final, rfin, zfin def Rspots(R, Z, waxs, theta=37, theta_sigma=(7, 5), bounds=(1.256, 1.57), cmap='jet'): """ Measure intensity of R-spots in specified region """ spots = np.copy(waxs.T) inner = bounds[0] outer = bounds[1] I = [] for i in range(R.shape[0]): for j in range(Z.shape[0]): if inner < np.linalg.norm([R[i], Z[j]]) < outer: angle = (180 / np.pi) * np.arctan(Z[j] / R[i]) if (theta - theta_sigma[0]) < angle < (theta + theta_sigma[1]) or \ (theta - theta_sigma[0]) < (angle - 2*angle) < (theta + theta_sigma[1]): spots[i, j] = 100 I.append(waxs[j, i]) average_intensity = np.mean(I) plt.figure() levels = np.linspace(0, 3.1, 200) plt.contourf(R, Z, spots.T, cmap=cmap, levels=levels, extend='max') plt.xlim(-2.5, 2.5) plt.ylim(-2.5, 2.5) plt.figure() plt.hist(I, bins=25) plt.title('Average intensity of R-spots: %.2f' % average_intensity) # plt.show() return average_intensity def gaussian(points, mean, sigma, amplitude, yshift): return yshift + (amplitude / np.sqrt(2 * np.pi * sigma ** 2)) * np.exp( -(points - mean) ** 2 / (2 * sigma ** 2)) def lorentz(points, a, b, c): """ :param p: lorentzian parameters : [full width half max (FWHM), position of maximum, maximum heigth] :param p: position :return: """ w = a / 2 x = (b - points) / w return (c / (np.pi * w)) / (1 + x ** 2) def triple_lorentz(x, a0, a1, a2, b0, b1, b2, c0, c1, c2): return lorentz(x, a0, b0, c0) + lorentz(x, a1, b1, c1) + lorentz(x, a2, b2, c2) def PLOT_RAD_NEW(D, wavelength_angstroms, ucell, format=False, factor=3.1, **kwargs): """ :param D: raw structure factor :param wavelength_angstroms: wavelength of X-ray (angstroms) :param ucell: 3 x 3 unitcell vectors :param factor: maximum colorbar value if using formatting from Coscia et al. manuscript :param format: plot simulated XRD patterns as they appear in Coscai et al. manuscript :return: """ if not os.path.exists(path): os.makedirs(path) # inverse_ft(D, ucell) X = D[:, 0, 0, 0] Y = D[0, :, 0, 1] Z = D[0, 0, :, 2] SF = D[..., 3] ############## Plot z-slice down the middle of the raw structure factor ################### # plt.plot(Z, SF[len(X)//2, len(Y)//2, :]) # plt.xlabel('q$_z$ ($\AA^{-1}$)') # plt.ylabel('Intensity') # plt.savefig('z_section.png') # plt.show() # exit() ES = RegularGridInterpolator((X, Y, Z), SF, bounds_error=False) THETA_BINS_PER_INV_ANG = 20. MIN_THETA_BINS = 1 # minimum allowed bins RBINS = 400 NLEVELS = 200 # number of levels for contour plots a1 = ucell[0] a2 = ucell[1] a3 = ucell[2] b1 = (np.cross(a2, a3)) / (np.dot(a1, np.cross(a2, a3))) b2 = (np.cross(a3, a1)) / (np.dot(a2, np.cross(a3, a1))) b3 = (np.cross(a1, a2)) / (np.dot(a3, np.cross(a1, a2))) b_inv = np.linalg.inv(np.vstack((b1, b2, b3))) ZBINS = Z.shape[0] # 400 XR = (X[-1] - X[0])*ucell[0][0] YR = (Y[-1] - Y[0])*ucell[1][1] Rmax = min(XR, YR) / 2.0 Rmax *= 0.95 rarr, rspace = np.linspace(0.0, Rmax, RBINS, retstep=True) zar = np.linspace(Z[0], Z[-1], ZBINS) oa = np.zeros((rarr.shape[0], zar.shape[0])) circ = 2.*np.pi*rarr # circumference for ir in trange(rarr.shape[0]): NTHETABINS = max(int(THETA_BINS_PER_INV_ANG*circ[ir]), MIN_THETA_BINS) #calculate number of bins at this r thetas = np.linspace(0.0, np.pi*2.0, NTHETABINS, endpoint=False) # generate theta array t, r, z = np.meshgrid(thetas, rarr[ir], zar) # generate grid of cylindrical points xar = r*
np.cos(t)
numpy.cos
import os import copy from tqdm import tqdm import numpy as np import pandas as pd import plotly.graph_objects as go from stl import mesh from typing import Dict, List, Optional from .settings_pyskindose import PhantomDimensions from pyskindose.plotting.create_ploty_ijk_indices import \ _create_plotly_ijk_indices_for_cuboid_objects # valid phantom types VALID_PHANTOM_MODELS = ["plane", "cylinder", "human", "table", "pad"] class Phantom: """Create and handle phantoms for patient, support table and pad. This class creates a phatom of any of the types specified in VALID_PHANTOM_MODELS (plane, cylinder or human to represent the patient, as well as patient support table and pad). The patient phantoms consists of a number of skin cells where the skin dose can be calculated. Attributes ---------- phantom_model : str Type of phantom, i.e. "plane", "cylinder", "human", "table" or "pad" r : np.array n*3 array where n are the number of phantom skin cells. Each row contains the xyz coordinate of one of the phantom skin cells ijk : np.array A matrix containing vertex indices. This is required in order to plot the phantom using plotly Mesh3D. For more info, see "i", "j", and "k" at https://plot.ly/python/reference/#mesh3d dose : np.array An empty 1d array to store skin dose calculation for each of the n phantom cells. Only for patient phantom types (plane, cylinder, human) n : np.array normal vectors to each of the n phantom skin cells. (only for 3D patient phantoms, i.e. "cylinder" and "human") r_ref : np.array Empty array to store of reference position of the phantom cells after the phantom has been aligned in the geometry with the position_patient_phantom_on_table function in geom_calc.py table_length : float length of patient support table. The is needed for all phantom object to select correct rotation origin for At1, At2, and At3. Methods ------- rotate(rotation) Rotating the phantom about any of the x, y, or z axis translate(dr) Translates the phantom along the x, y or z direction save_position Saves the reference position after the phantom has been properly positioned in the irradiation geometry. This method is called in the position_patient_phantom_on_table function position(data_norm) Positions the phantom from reference position to actual position according to the table displacement info in data_norm """ def __init__(self, phantom_model: str, phantom_dim: PhantomDimensions, human_mesh: Optional[str] = None): """Create the phantom of choice. Parameters ---------- phantom_model : str Type of phantom to create. Valid selections are 'plane', 'cylinder', 'human', "table" an "pad". phantom_dim : PhantomDimensions instance of class PhantomDimensions containing dimensions for all phantoms models except human phantoms: Length, width, radius, thickness etc. human_mesh : str, optional Choose which human mesh phantom to use. Valid selection are names of the *.stl-files in the phantom_data folder (The default is none. Raises ------ ValueError Raises value error if unsupported phantom type are selected, or if phantom_model='human' selected, without specifying human_mesh """ self.phantom_model = phantom_model.lower() # Raise error if invalid phantom model selected if self.phantom_model not in VALID_PHANTOM_MODELS: raise ValueError(f"Unknown phantom model selected. Valid type:" f"{'.'.join(VALID_PHANTOM_MODELS)}") self.r_ref: np.array # Save table length for all phantom in order to choose correct rotation # origin when applying At1, At2, and At3 self.table_length = phantom_dim.table_length # creates a plane phantom (2D grid) if phantom_model == "plane": # Use a dense grid if specified by user if phantom_dim.plane_resolution.lower() == 'dense': res_length = res_width = 2.0 elif phantom_dim.plane_resolution.lower() == 'sparse': res_length = res_width = 1.0 # Linearly spaced points along the longitudinal direction x = np.linspace(-phantom_dim.plane_width / 2, +phantom_dim.plane_width / 2, int(res_width * phantom_dim.plane_width + 1)) # Linearly spaced points along the lateral direction z = np.linspace(0, -phantom_dim.plane_length, int(res_length * phantom_dim.plane_length)) # Create phantom in form of rectangular grid x_plane, z_plane = np.meshgrid(x, z) t = phantom_dim.plane_width # Create index vectors for plotly mesh3d plotting i2: List[int] = [] i1 = j1 = k1 = i2 for i in range(len(x) - 1): for j in range(len(z) - 1): i1 = i1 + [j * len(x) + i] j1 = j1 + [j * len(x) + i + 1] k1 = k1 + [j * len(x) + i + len(x)] i2 = i2 + [j * len(x) + i + len(x) + 1] self.r = np.column_stack((x_plane.ravel(), np.zeros(len(x_plane.ravel())), z_plane.ravel())) self.ijk = np.column_stack((i1 + i2, j1 + k1, k1 + j1)) self.dose = np.zeros(len(self.r)) # creates a cylinder phantom (elliptic) elif phantom_model == "cylinder": # Use a dense grid if specified by user if phantom_dim.cylinder_resolution.lower() == 'dense': res_length = 4 res_width = 0.05 elif phantom_dim.cylinder_resolution.lower() == 'sparse': res_length = 1.0 res_width = 0.1 # Creates linearly spaced points along an ellipse # in the lateral direction t = np.arange(0 * np.pi, 2 * np.pi, res_width) x = (phantom_dim.cylinder_radii_a * np.cos(t)).tolist() y = (phantom_dim.cylinder_radii_b * np.sin(t)).tolist() # calculate normal vectors of a cylinder (pointing outwards) nx = np.cos(t) / ( np.sqrt(np.square(np.cos(t) + 4 * np.square(np.sin(t))))) nz = np.zeros(len(t)) ny = 2 * np.sin(t) / ( np.sqrt(np.square(np.cos(t) + 4 * np.square(np.sin(t))))) nx = nx.tolist() ny = ny.tolist() nz = nz.tolist() n = [[nx[ind], ny[ind], nz[ind]] for ind in range(len(t))] # Store the coordinates of the cylinder phantom output: Dict = dict(n=[], x=[], y=[], z=[]) # Extend the ellipse to span the entire length of the phantom, # thus creating an elliptic cylinder for index in range( 0, int(res_length) * (phantom_dim.cylinder_length + 2), 1): output["x"] = output["x"] + x output["z"] = output["z"] + [-1 / res_length * index] * len(x) output["y"] = output["y"] + y output["n"] = output["n"] + n # Create index vectors for plotly mesh3d plotting i1 = list(range(0, len(output["x"]) - len(t))) j1 = list(range(1, len(output["x"]) - len(t) + 1)) k1 = list(range(len(t), len(output["x"]))) i2 = list(range(0, len(output["x"]) - len(t))) k2 = list(range(len(t) - 1, len(output["x"]) - 1)) j2 = list(range(len(t), len(output["x"]))) for i in range(len(output['y'])): output['y'][i] -= phantom_dim.cylinder_radii_b self.r = np.column_stack((output["x"], output["y"], output["z"])) self.ijk = np.column_stack((i1 + i2, j1 + j2, k1 + k2)) self.dose = np.zeros(len(self.r)) self.n = np.asarray(output["n"]) # creates a human phantom elif phantom_model == "human": if human_mesh is None: raise ValueError('Human model needs to be specified for' 'phantom_model = "human"') # load selected phantom model from binary .stl file phantom_path = os.path.join(os.path.dirname(__file__), 'phantom_data', f"{human_mesh}.stl") phantom_mesh = mesh.Mesh.from_file(phantom_path) r = phantom_mesh.vectors n = phantom_mesh.normals self.r = np.asarray([el for el_list in r for el in el_list]) self.n = np.asarray([x for pair in zip(n, n, n) for x in pair]) # Create index vectors for plotly mesh3d plotting self.ijk = np.column_stack(( np.arange(0, len(self.r) - 3, 3), np.arange(1, len(self.r) - 2, 3), np.arange(2, len(self.r) - 1, 3))) self.dose = np.zeros(len(self.r)) # Creates the vertices of the patient support table elif phantom_model == "table": # Longitudinal position of the the vertices x_tab = [index * phantom_dim.table_width for index in [+0.5, +0.5, -0.5, -0.5, +0.5, +0.5, -0.5, -0.5]] # Vertical position of the vertices y_tab = [index * phantom_dim.table_thickness for index in [0, 0, 0, 0, +1, +1, +1, +1]] # Lateral position of the vertices z_tab = [index * phantom_dim.table_length for index in [0, -1, -1, 0, 0, -1, -1, 0]] # Create index vectors for plotly mesh3d plotting i_tab, j_tab, k_tab = \ _create_plotly_ijk_indices_for_cuboid_objects() self.r = np.column_stack((x_tab, y_tab, z_tab)) self.ijk = np.column_stack((i_tab, j_tab, k_tab)) # Creates the vertices of the patient support table elif phantom_model == "pad": # Longitudinal position of the the vertices x_pad = [index * phantom_dim.pad_width for index in [+0.5, +0.5, -0.5, -0.5, +0.5, +0.5, -0.5, -0.5]] # Vertical position of the vertices y_pad = [index * phantom_dim.pad_thickness for index in [0, 0, 0, 0, -1, -1, -1, -1]] # Lateral position of the the vertices z_pad = [index * phantom_dim.pad_length for index in [0, -1, -1, 0, 0, -1, -1, 0]] # Create index vectors for plotly mesh3d plotting i_pad, j_pad, k_pad = \ _create_plotly_ijk_indices_for_cuboid_objects() self.r = np.column_stack((x_pad, y_pad, z_pad)) self.ijk = np.column_stack((i_pad, j_pad, k_pad)) def rotate(self, angles: List[int]) -> None: """Rotate the phantom about the angles specified in rotation. Parameters ---------- angles: List[int] list of angles in degrees the phantom should be rotated about, given as [x_rot: <int>, y_rot: <int>, z_rot: <int>]. E.g. rotation = [0, 90, 0] will rotate the phantom 90 degrees about the y-axis. """ # convert degrees to radians angles = np.deg2rad(angles) x_rot = angles[0] y_rot = angles[1] z_rot = angles[2] # Define rotation matricies about the x, y and z axis Rx = np.array([[+1, +0, +0], [+0, +np.cos(x_rot), -
np.sin(x_rot)
numpy.sin
import glob import os import json import numpy as np import trimesh import imageio import openmesh import cv2 from tqdm import tqdm import pickle import time, threading import scipy.spatial.transform image_data_root = "/raid/celong/FaceScape/fsmview_images" landmark_root = "/raid/celong/FaceScape/fsmview_landmarks" mesh_root = "/raid/celong/FaceScape/textured_meshes" expressions = { 1: "1_neutral", 2: "2_smile", 3: "3_mouth_stretch", 4: "4_anger", 5: "5_jaw_left", 6: "6_jaw_right", 7: "7_jaw_forward", 8: "8_mouth_left", 9: "9_mouth_right", 10: "10_dimpler", 11: "11_chin_raiser", 12: "12_lip_puckerer", 13: "13_lip_funneler", 14: "14_sadness", 15: "15_lip_roll", 16: "16_grin", 17: "17_cheek_blowing", 18: "18_eye_closed", 19: "19_brow_raiser", 20: "20_brow_lower" } lm_list_v10 = np.load("./predef/landmark_indices.npz")['v10'] def get_face_orientation(id_idx, exp_idx, cam_idx, Rt_scale_dict): x_dir = np.array([1,0,0]).reshape(3,1) y_dir = np.array([0,1,0]).reshape(3,1) z_dir = np.array([0,0,1]).reshape(3,1) Rt_TU = np.array(Rt_scale_dict['%d'%id_idx]['%d'%exp_idx][1]) x_dir = Rt_TU[:3,:3].T @ x_dir y_dir = Rt_TU[:3,:3].T @ y_dir z_dir = Rt_TU[:3,:3].T @ z_dir img_dir = f"{image_data_root}/{id_idx}/{expressions[exp_idx]}" with open(f"{img_dir}/params.json", 'r') as f: params = json.load(f) Rt = np.array(params['%d_Rt' % cam_idx]) R = Rt[:3,:3] x_dir = R @ x_dir y_dir = R @ y_dir z_dir = R @ z_dir x_dir = x_dir /
np.linalg.norm(x_dir)
numpy.linalg.norm
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid.core as core from op_test import OpTest, skip_check_grad_ci import paddle.fluid as fluid from paddle.fluid import compiler, Program, program_guard class TestElementwiseAddOp(OpTest): def init_kernel_type(self): self.use_mkldnn = False def setUp(self): self.op_type = "elementwise_add" self.init_dtype() self.init_input_output() self.init_kernel_type() self.init_axis() self.inputs = { 'X': OpTest.np_dtype_to_fluid_dtype(self.x), 'Y': OpTest.np_dtype_to_fluid_dtype(self.y) } self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn} self.outputs = {'Out': self.out} def test_check_output(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode self.check_output(check_dygraph=(self.use_mkldnn == False)) def test_check_grad_normal(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode if self.dtype == np.float16: return self.check_grad( ['X', 'Y'], 'Out', check_dygraph=(self.use_mkldnn == False)) def test_check_grad_ingore_x(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode if self.dtype == np.float16: return self.check_grad( ['Y'], 'Out', no_grad_set=set("X"), check_dygraph=(self.use_mkldnn == False)) def test_check_grad_ingore_y(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode if self.dtype == np.float16: return self.check_grad( ['X'], 'Out', no_grad_set=set('Y'), check_dygraph=(self.use_mkldnn == False)) def init_input_output(self): self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) self.out = np.add(self.x, self.y) def init_dtype(self): self.dtype = np.float64 def init_axis(self): self.axis = -1 @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestFP16ElementwiseAddOp(TestElementwiseAddOp): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place( place, atol=1e-3, check_dygraph=(self.use_mkldnn == False)) @skip_check_grad_ci( reason="[skip shape check] Use y_shape(1) to test broadcast.") class TestElementwiseAddOp_scalar(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(1).astype(self.dtype) self.out = self.x + self.y @skip_check_grad_ci( reason="[skip shape check] Use y_shape(1) to test broadcast.") class TestFP16ElementwiseAddOp_scalar(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(1).astype(self.dtype) self.out = self.x + self.y @skip_check_grad_ci( reason="[skip shape check] Use y_shape(1,1) to test broadcast.") class TestElementwiseAddOp_scalar2(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(1, 1).astype(self.dtype) self.out = self.x + self.y @skip_check_grad_ci( reason="[skip shape check] Use y_shape(1,1) to test broadcast.") class TestFP16ElementwiseAddOp_scalar2(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(1, 1).astype(self.dtype) self.out = self.x + self.y class TestElementwiseAddOp_Vector(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.random((100, )).astype(self.dtype) self.y = np.random.random((100, )).astype(self.dtype) self.out = np.add(self.x, self.y) class TestFP16ElementwiseAddOp_Vector(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.random((100, )).astype(self.dtype) self.y = np.random.random((100, )).astype(self.dtype) self.out = np.add(self.x, self.y) class TestElementwiseAddOp_broadcast_0(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(100, 2, 3).astype(self.dtype) self.y = np.random.rand(100).astype(self.dtype) self.out = self.x + self.y.reshape(100, 1, 1) def init_axis(self): self.axis = 0 class TestFP16ElementwiseAddOp_broadcast_0(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(100, 2, 3).astype(self.dtype) self.y = np.random.rand(100).astype(self.dtype) self.out = self.x + self.y.reshape(100, 1, 1) def init_axis(self): self.axis = 0 class TestElementwiseAddOp_broadcast_1(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 100, 3).astype(self.dtype) self.y = np.random.rand(100).astype(self.dtype) self.out = self.x + self.y.reshape(1, 100, 1) def init_axis(self): self.axis = 1 class TestFP16ElementwiseAddOp_broadcast_1(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 100, 3).astype(self.dtype) self.y = np.random.rand(100).astype(self.dtype) self.out = self.x + self.y.reshape(1, 100, 1) def init_axis(self): self.axis = 1 class TestElementwiseAddOp_broadcast_2(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 100).astype(self.dtype) self.y = np.random.rand(100).astype(self.dtype) self.out = self.x + self.y.reshape(1, 1, 100) class TestFP16ElementwiseAddOp_broadcast_2(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 100).astype(self.dtype) self.y = np.random.rand(100).astype(self.dtype) self.out = self.x + self.y.reshape(1, 1, 100) class TestElementwiseAddOp_broadcast_3(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 10, 12, 3).astype(self.dtype) self.y = np.random.rand(10, 12).astype(self.dtype) self.out = self.x + self.y.reshape(1, 10, 12, 1) def init_axis(self): self.axis = 1 class TestFP16ElementwiseAddOp_broadcast_3(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 10, 12, 3).astype(self.dtype) self.y = np.random.rand(10, 12).astype(self.dtype) self.out = self.x + self.y.reshape(1, 10, 12, 1) def init_axis(self): self.axis = 1 class TestElementwiseAddOp_broadcast_4(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(100, 2, 3, 4).astype(self.dtype) self.y = np.random.rand(100, 1).astype(self.dtype) self.out = self.x + self.y.reshape(100, 1, 1, 1) def init_axis(self): self.axis = 0 class TestFP16ElementwiseAddOp_broadcast_4(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(100, 2, 3, 4).astype(self.dtype) self.y = np.random.rand(100, 1).astype(self.dtype) self.out = self.x + self.y.reshape(100, 1, 1, 1) def init_axis(self): self.axis = 0 class TestElementwiseAddOp_broadcast_5(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(10, 3, 12).astype(self.dtype) self.y = np.random.rand(10, 1, 12).astype(self.dtype) self.out = self.x + self.y class TestFP16ElementwiseAddOp_broadcast_5(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(10, 3, 12).astype(self.dtype) self.y = np.random.rand(10, 1, 12).astype(self.dtype) self.out = self.x + self.y class TestElementwiseAddOp_broadcast_6(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 12, 3, 5).astype(self.dtype) self.y = np.random.rand(2, 12, 1, 5).astype(self.dtype) self.out = self.x + self.y class TestElementwiseAddOp_broadcast_7(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(1, 1, 20, 5).astype(self.dtype) self.y = np.random.rand(20, 5, 1, 1).astype(self.dtype) self.out = self.x + self.y class TestFP16ElementwiseAddOp_broadcast_6(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 12, 3, 5).astype(self.dtype) self.y = np.random.rand(2, 12, 1, 5).astype(self.dtype) self.out = self.x + self.y class TestElementwiseAddOp_rowwise_add_0(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 10, 12).astype(self.dtype) self.y = np.random.rand(10, 12).astype(self.dtype) self.out = self.x + self.y.reshape(1, 10, 12) def init_axis(self): self.axis = 1 class TestFP16ElementwiseAddOp_rowwise_add_0(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 10, 12).astype(self.dtype) self.y = np.random.rand(10, 12).astype(self.dtype) self.out = self.x + self.y.reshape(1, 10, 12) def init_axis(self): self.axis = 1 @skip_check_grad_ci( reason="[skip shape check] Use y_shape(1) to test broadcast.") class TestElementwiseAddOp_rowwise_add_1(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(100, 1).astype(self.dtype) self.y = np.random.rand(1).astype(self.dtype) self.out = self.x + self.y.reshape(1, 1) def init_axis(self): self.axis = 1 @skip_check_grad_ci( reason="[skip shape check] Use y_shape(1) to test broadcast.") class TestFP16ElementwiseAddOp_rowwise_add_1(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(100, 1).astype(self.dtype) self.y = np.random.rand(1).astype(self.dtype) self.out = self.x + self.y.reshape(1, 1) def init_axis(self): self.axis = 1 class TestElementwiseAddOp_channelwise_add(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(100, 2, 3).astype(self.dtype) self.y = np.random.rand(100, 1, 1).astype(self.dtype) self.out = self.x + self.y def init_axis(self): self.axis = -1 class TestFP16ElementwiseAddOp_channelwise_add(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(100, 2, 3).astype(self.dtype) self.y = np.random.rand(100, 1, 1).astype(self.dtype) self.out = self.x + self.y def init_axis(self): self.axis = -1 class TestElementwiseAddOp_commonuse_add1(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 100).astype(self.dtype) self.y = np.random.rand(1, 1, 100).astype(self.dtype) self.out = self.x + self.y def init_axis(self): self.axis = -1 class TestElementwiseFP16AddOp_commonuse_add1(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(20, 30, 100).astype(self.dtype) self.y = np.random.rand(1, 1, 100).astype(self.dtype) self.out = self.x + self.y def init_axis(self): self.axis = -1 class TestElementwiseAddOp_commonuse_add2(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(10, 3, 1, 4).astype(self.dtype) self.y = np.random.rand(10, 1, 12, 1).astype(self.dtype) self.out = self.x + self.y def init_axis(self): self.axis = -1 class TestElementwiseAddOp_xsize_lessthan_ysize_add(TestElementwiseAddOp): def init_input_output(self): self.x =
np.random.rand(10, 12)
numpy.random.rand
# Food Bank Problem import sys import importlib import numpy as np from scipy.optimize import minimize import scipy # ## OPT - via Convex Programming # Calculates the optimal solution for the offline problem with convex programming def solve(W, n, k, budget, size): # Objective function in the nash social welfare # Note we take the negative one to turn it into a minimization problem def objective(x, w, n, k, size): X =
np.reshape(x, (n,k))
numpy.reshape
"""Handling of transducer arrays, grouping multiple transducer elements. The main class is the `TransducerArray` class, but other classes exist to simplify the creation of the transducer positions for common array geometries. .. autosummary:: :nosignatures: TransducerArray NormalTransducerArray RectangularArray DoublesidedArray DragonflyArray """ import numpy as np from . import utils class TransducerArray: """Base class to handle transducer arrays. This class has no notion of the layout. If possible, try to use a more specific implementation instead. Parameters ---------- positions : numpy.ndarray The positions of the transducer elements in the array, shape 3xN. normals : numpy.ndarray The normals of the transducer elements in the array, shape 3xN. transducer An object of `levitate.transducers.TransducerModel` or a subclass. If passed a class it will create a new instance. **kwargs : All additional keyword arguments will be passed to the a transducer class used when instantiating a new transducer model. Note that this will have no effect on already instantiated transducer models. Attributes ---------- num_transducers : int The number of transducers used. positions : numpy.ndarray As above. normals : numpy.ndarray As above. transducer : TransducerModel An instance of a specific transducer model implementation. freq : float Frequency of the transducer model. omega : float Angular frequency of the transducer model. k : float Wavenumber in air, corresponding to `freq`. wavelength : float Wavelength in air, corresponding to `freq`. """ _repr_fmt_spec = '{:%cls(transducer=%transducer_full,\n\tpositions=%positions,\n\tnormals=%normals)}' _str_fmt_spec = '{:%cls(transducer=%transducer): %num_transducers transducers}' from .visualizers import ArrayVisualizer, ForceDiagram def __init__(self, positions, normals, transducer=None, medium=None, **kwargs ): if 'transducer_size' in kwargs: kwargs.setdefault('physical_size', kwargs.pop('transducer_size')) self._extra_print_args = {} if transducer is None: from .transducers import PointSource as transducer if type(transducer) is type: self.transducer = transducer(**kwargs) else: self.transducer = transducer if medium is not None: self.medium = medium self.positions = positions self.normals = normals self.visualize = type(self).ArrayVisualizer(self, 'Transducers') self.force_diagram = type(self).ForceDiagram(self) def __format__(self, fmt_spec): s_out = fmt_spec s_out = s_out.replace('%cls', self.__class__.__name__).replace('%num_transducers', str(self.num_transducers)) s_out = s_out.replace('%transducer_size', str(self.transducer_size)) s_out = s_out.replace('%medium_full', repr(self.medium)).replace('%medium', str(self.medium)) s_out = s_out.replace('%transducer_full', repr(self.transducer)).replace('%transducer', str(self.transducer)) s_out = s_out.replace('%positions', repr(self.positions)).replace('%normals', repr(self.normals)) for key, value in self._extra_print_args.items(): s_out = s_out.replace('%' + key, str(value)) return s_out def __eq__(self, other): return ( isinstance(other, TransducerArray) and self.num_transducers == other.num_transducers and np.allclose(self.positions, other.positions) and np.allclose(self.normals, other.normals) and self.transducer == other.transducer ) def __add__(self, other): if isinstance(other, TransducerArray) and self.transducer == other.transducer: positions = np.concatenate([self.positions, other.positions], axis=1) normals = np.concatenate([self.normals, other.normals], axis=1) return TransducerArray(positions=positions, normals=normals, transducer=self.transducer) else: return NotImplemented def __iadd__(self, other): if isinstance(other, TransducerArray) and self.transducer == other.transducer: self.positions = np.concatenate([self.positions, other.positions], axis=1) self.normals = np.concatenate([self.normals, other.normals], axis=1) return self else: return NotImplemented def __repr__(self): return self._repr_fmt_spec.format(self) def _repr_pretty_(self, p, cycle): p.text(str(self)) def __str__(self): return self._str_fmt_spec.format(self) @property def k(self): return self.transducer.k @k.setter def k(self, value): self.transducer.k = value @property def omega(self): return self.transducer.omega @omega.setter def omega(self, value): self.transducer.omega = value @property def freq(self): return self.transducer.freq @freq.setter def freq(self, value): self.transducer.freq = value @property def wavelength(self): return self.transducer.wavelength @wavelength.setter def wavelength(self, value): self.transducer.wavelength = value @property def medium(self): return self.transducer.medium @medium.setter def medium(self, val): self.transducer.medium = val @property def transducer_size(self): return self.transducer.physical_size @transducer_size.setter def transducer_size(self, value): self.transducer.physical_size = value @property def positions(self): return self._positions @positions.setter def positions(self, val): val = np.asarray(val) if not val.shape[0] == 3: raise ValueError('Cannot set position to these values, the first axis must have length 3 and represent the [x,y,z] coordinates!') self._positions = val self._num_transducers = val.shape[1] @property def normals(self): return self._normals @normals.setter def normals(self, val): val = np.asarray(val) if not val.shape[0] == 3: raise ValueError('Cannot set normals to these values, the first axis must have length 3 and represent the [x,y,z] components!') if self.num_transducers == 0: raise ValueError('Set the array positions before setting the normals!') if val.ndim == 1: val = np.tile(val.reshape(3, 1), (1, self.num_transducers)) elif val.shape[1] != self.num_transducers: raise ValueError('The array needs to have the same number of normals as transducers!') self._normals = val / np.sum(val**2, axis=0)**0.5 @property def num_transducers(self): try: return self._num_transducers except AttributeError: return 0 def focus_phases(self, focus): """Focuses the phases to create a focus point. Parameters ---------- focus : array_like Three element array with a location where to focus. Returns ------- phases : numpy.ndarray Array with the phases for the transducer elements. """ focus = np.asarray(focus) phase = -np.sum((self.positions - focus.reshape([3, 1]))**2, axis=0)**0.5 * self.k phase = np.mod(phase + np.pi, 2 * np.pi) - np.pi # Wrap phase to [-pi, pi] return phase def signature(self, position, phases, stype=None): """Calculate the phase signature of the array. The signature of an array if the phase of the transducer elements when the phase required to focus all elements to a specific point has been removed. Parameters ---------- position : array_like Three element array with a position for where the signature is relative to. phases : numpy.ndarray The phases of which to calculate the signature. Returns ------- signature : numpy.ndarray The signature wrapped to the interval [-pi, pi]. """ if stype is not None: raise NotImplementedError("Unknown phase signature '{}' for array of type `{}`".format(stype, self.__class__.__name__)) focus_phases = self.focus_phases(position) return np.mod(phases - focus_phases + np.pi, 2 * np.pi) - np.pi def pressure_derivs(self, positions, orders=3): """Calculate derivatives of the pressure. Calculates the spatial derivatives of the pressure from all individual transducers in a Cartesian coordinate system. Parameters ---------- positions : numpy.ndarray The location(s) at which to evaluate the derivatives, shape (3, ...). The first dimension must have length 3 and represent the coordinates of the points. orders : int How many orders of derivatives to calculate. Currently three orders are supported. Returns ------- derivatives : ndarray Array with the calculated derivatives. Has the shape (M, N, ...) where M is the number of spatial derivatives, and N is the number of transducers, see `num_spatial_derivatives` and `spatial_derivative_order`, and the remaining dimensions are the same as the `positions` input with the first dimension removed. """ return self.transducer.pressure_derivs(self.positions, self.normals, positions, orders) def spherical_harmonics(self, positions, orders=0): """Spherical harmonics expansion of transducer sound fields. The sound fields generated by the individual transducers in the array are expanded in spherical harmonics around the positions specified. The coefficients are calculated using analytical translation of the transducer radiation patterns. This is a simplified calculation which will not account for the local directivity curve, only an overall scaling for each transducer-position combination. Parameters ---------- positions : numpy.ndarray The location(s) at which to evaluate the derivatives, shape (3, ...). The first dimension must have length 3 and represent the coordinates of the points. orders : int, default 0 The maximum order to expand to. Return ------ spherical_harmonics_coefficients : numpy.ndarray Array with the calculated expansion coefficients. The order of the coefficients are described in `~levitate.utils.SphericalHarmonicsIndexer`. Has shape (M, N, ...) where `M=len(SphericalHarmonicsIndexer(orders))`, `N` is the number of transducers in the array, and the remaining dimensions are the same as the `positions` input with the first dimension removed. """ return self.transducer.spherical_harmonics(self.positions, self.normals, positions, orders) def request(self, requests, position): """Evaluate a set of requests. This takes a mapping (e.g. dict) of requests, and evaluates them at a given position. This is independent of the current transducer state. If a certain quantity should be calculated with regards to the current transducer state, use a `FieldImplementation` from the `fields` module. Parameters ---------- position: ndarray The position where to calculate the requirements needed, shape (3,...). requests : mapping, e.g. dict A mapping of the desired requests. The keys in the mapping should start with the desired output, and the value indicates some kind of parameter set. Possible requests listed below: pressure_derivs A number of spatial derivatives of the pressure. Should contain the maximum order of differentiation, see `pressure_derivs`. spherical_harmonics Spherical harmonics coefficients for an expansion of the pressure. Should contain the maximum order of expansion, see `spherical_harmonics`. Returns ------- evaluated_requests : dict A dictionary of the set of calculated data, according to the requests. """ position = np.asarray(position) parsed_requests = {} for key, value in requests.items(): if key.find('pressure_derivs') > -1: parsed_requests['pressure_derivs'] = max(value, parsed_requests.get('pressure_derivs', -1)) elif key.find('spherical_harmonics_gradient') > -1: parsed_requests['spherical_harmonics'] = max(value + 1, parsed_requests.get('spherical_harmonics', -1)) parsed_requests['spherical_harmonics_gradient'] = max(value, parsed_requests.get('spherical_harmonics_gradient', -1)) elif key.find('spherical_harmonics') > -1: parsed_requests['spherical_harmonics'] = max(value, parsed_requests.get('spherical_harmonics', -1)) elif key != 'complex_transducer_amplitudes': raise ValueError("Unknown request from `TransducerArray`: '{}'".format(key)) evaluated_requests = {} if 'pressure_derivs' in parsed_requests: evaluated_requests['pressure_derivs'] = self.pressure_derivs(position, orders=parsed_requests.pop('pressure_derivs')) if 'spherical_harmonics' in parsed_requests: evaluated_requests['spherical_harmonics'] = self.spherical_harmonics(position, orders=parsed_requests.pop('spherical_harmonics')) if 'spherical_harmonics_gradient' in parsed_requests: gradient_order = parsed_requests.pop('spherical_harmonics_gradient') sph_idx = utils.SphericalHarmonicsIndexer(gradient_order) def A(n, m): return ((n + m + 1) * (n + m + 2) / (2 * n + 1) / (2 * n + 3)) ** 0.5 def B(n, m): return -((n + m + 1) * (n - m + 1) / (2 * n + 1) / (2 * n + 3)) ** 0.5 S = evaluated_requests['spherical_harmonics'] dS_dxpiy = np.zeros((len(sph_idx), self.num_transducers) + position.shape[1:], dtype=complex) dS_dxmiy = np.zeros((len(sph_idx), self.num_transducers) + position.shape[1:], dtype=complex) dS_dz = np.zeros((len(sph_idx), self.num_transducers) + position.shape[1:], dtype=complex) for idx, (n, m) in enumerate(sph_idx): dS_dxpiy[idx] = A(n, -m) * S[sph_idx(n + 1, m - 1)] dS_dxmiy[idx] = -A(n, m) * S[sph_idx(n + 1, m + 1)] dS_dz[idx] = -B(n, m) * S[sph_idx(n + 1, m)] try: dS_dxpiy[idx] += A(n - 1, m - 1) * S[sph_idx(n - 1, m - 1)] except ValueError: pass try: dS_dxmiy[idx] -= A(n - 1, - m - 1) * S[sph_idx(n - 1, m + 1)] except ValueError: pass try: dS_dz[idx] += B(n - 1, m) * S[sph_idx(n - 1, m)] except ValueError: pass dS_dx = 0.5 * (dS_dxpiy + dS_dxmiy) dS_dy = -0.5j * (dS_dxpiy - dS_dxmiy) dS = np.stack([dS_dx, dS_dy, dS_dz], axis=0) * self.k evaluated_requests['spherical_harmonics_gradient'] = dS if len(parsed_requests) > 0: raise ValueError('Unevaluated requests: {}'.format(parsed_requests)) return evaluated_requests class NormalTransducerArray(TransducerArray): """Transducer array with a clearly defined normal. This is mostly intended as a base class for other implementations. The advantage is that a simple arrangement can be created assuming a normal along the z-axis, which is then rotated and moved to the desired orientation. The positions and normals of the transducers should be input assuming that the overall normal for the array is along the z-axis. The positions and normals will be rotated around the origin to give the desired overall normal. This rotation will take place along the intersection line of the plane specificed by the desired normal, and the xy-plane. If rotation is desired, the positions are further rotated using the normal as the rotation axis. Finally an offset is applied to the entire array. Parameters ---------- positions : numpy.ndarray The positions of the transducer elements in the array, shape 3xN. normals : numpy.ndarray The normals of the transducer elements in the array, shape 3xN (or 3 elements which will broadcast). offset : 3 element array_like, default (0, 0, 0) The location of the center of the array. normal : 3 element array_like, default (0, 0, 1) The normal of the overall array. rotation : float, default 0 The in-plane rotation of the array around the normal. """ _str_fmt_spec = '{:%cls(transducer=%transducer, offset=%offset, normal=%normal, rotation=%rotation)}' def __init__(self, positions, normals, offset=(0, 0, 0), normal=(0, 0, 1), rotation=0, **kwargs): normal = np.asarray(normal, dtype=float) normal /= (normal**2).sum()**0.5 self._overall_normal = normal self._overall_offset = offset self._overall_rotation = rotation if normal[0] != 0 or normal[1] != 0: # We need to rotate the grid to get the correct normal rotation_vector = np.cross(normal, (0, 0, 1)) rotation_vector /= (rotation_vector**2).sum()**0.5 cross_product_matrix = np.array([[0, rotation_vector[2], -rotation_vector[1]], [-rotation_vector[2], 0, rotation_vector[0]], [rotation_vector[1], -rotation_vector[0], 0]]) cos = normal[2] sin = (1 - cos**2)**0.5 rotation_matrix = (cos * np.eye(3) + sin * cross_product_matrix + (1 - cos) * np.outer(rotation_vector, rotation_vector)) elif normal[2] == -1: rotation_matrix =
np.zeros((3, 3))
numpy.zeros
# -*- coding: utf-8 -*- """Routines for multiple scattering. The first half of the module contains functions to explicitly compute the coupling matrix entries. The second half of the module contains functions for the preparation of lookup tables that are used to approximate the coupling matrices by interoplation.""" from numba import complex128,int64,jit from scipy.signal.filter_design import bessel from tqdm import tqdm import matplotlib.pyplot as plt import numpy as np import scipy.interpolate import scipy.special import smuthi.coordinates as coord import smuthi.cuda_sources as cu import smuthi.field_expansion as fldex import smuthi.layers as lay import smuthi.spherical_functions as sf import smuthi.vector_wave_functions as vwf import sys try: import pycuda.autoinit import pycuda.driver as drv from pycuda import gpuarray from pycuda.compiler import SourceModule import pycuda.cumath except: pass @jit(complex128(complex128[:], complex128[:]), nopython=True, cache=True, nogil=True) def numba_trapz(y, x): out = 0.0 + 0.0j #TODO implement some (optional) advanced summation? #e.g. https://github.com/nschloe/accupy/blob/master/accupy/sums.py #or better Sum2 from https://doi.org/10.1137/030601818 (Algorithm 4.4) #Note, that this may need to have exact summation for x and y, and exact product. for i in range( len(y) - 2 ): out += (x[i+1]-x[i]) * (y[i+1] + y[i])/2.0 return out @jit((complex128[:], complex128[:,:,:], complex128[:,:,:,:],complex128[:,:,:], int64), nopython=True,cache=True ,nogil=True # , parallel=True ) def eval_BeLBe(BeLBe, BeL, B1, ejkz, n2): for k in range(len(BeLBe)): for iplmn2 in range(2): for pol in range(2): BeLBe[k] += BeL[pol, iplmn2, k] * B1[pol, iplmn2, n2, k ] * ejkz[1, 1 - iplmn2, k] def layer_mediated_coupling_block(vacuum_wavelength, receiving_particle, emitting_particle, layer_system, k_parallel='default', show_integrand=False): """Layer-system mediated particle coupling matrix :math:`W^R` for two particles. This routine is explicit, but slow. Args: vacuum_wavelength (float): Vacuum wavelength :math:`\lambda` (length unit) receiving_particle (smuthi.particles.Particle): Particle that receives the scattered field emitting_particle (smuthi.particles.Particle): Particle that emits the scattered field layer_system (smuthi.layers.LayerSystem): Stratified medium in which the coupling takes place k_parallel (numpy ndarray): In-plane wavenumbers for Sommerfeld integral If 'default', use smuthi.coordinates.default_k_parallel show_integrand (bool): If True, the norm of the integrand is plotted. Returns: Layer mediated coupling matrix block as numpy array. """ if type(k_parallel) == str and k_parallel == 'default': k_parallel = coord.default_k_parallel omega = coord.angular_frequency(vacuum_wavelength) # index specs lmax1 = receiving_particle.l_max mmax1 = receiving_particle.m_max lmax2 = emitting_particle.l_max mmax2 = emitting_particle.m_max blocksize1 = fldex.blocksize(lmax1, mmax1) blocksize2 = fldex.blocksize(lmax2, mmax2) # cylindrical coordinates of relative position vectors rs1 = np.array(receiving_particle.position) rs2 = np.array(emitting_particle.position) rs2s1 = rs1 - rs2 rhos2s1 = np.linalg.norm(rs2s1[0:2]) phis2s1 = np.arctan2(rs2s1[1], rs2s1[0]) is1 = layer_system.layer_number(rs1[2]) ziss1 = rs1[2] - layer_system.reference_z(is1) is2 = layer_system.layer_number(rs2[2]) ziss2 = rs2[2] - layer_system.reference_z(is2) # wave numbers kis1 = omega * layer_system.refractive_indices[is1] kis2 = omega * layer_system.refractive_indices[is2] kzis1 = coord.k_z(k_parallel=k_parallel, k=kis1) kzis2 = coord.k_z(k_parallel=k_parallel, k=kis2) # phase factors ejkz = np.zeros((2, 2, len(k_parallel)), dtype=complex) # indices are: particle, plus/minus, kpar_idx ejkz[0, 0, :] = np.exp(1j * kzis1 * ziss1) ejkz[0, 1, :] = np.exp(- 1j * kzis1 * ziss1) ejkz[1, 0, :] = np.exp(1j * kzis2 * ziss2) ejkz[1, 1, :] = np.exp(- 1j * kzis2 * ziss2) # layer response L = np.zeros((2, 2, 2, len(k_parallel)), dtype=complex) # polarization, pl/mn1, pl/mn2, kpar_idx for pol in range(2): L[pol, :, :, :] = lay.layersystem_response_matrix(pol, layer_system.thicknesses, layer_system.refractive_indices, k_parallel, omega, is2, is1) # transformation coefficients B = [np.zeros((2, 2, blocksize1, len(k_parallel)), dtype=complex), np.zeros((2, 2, blocksize2, len(k_parallel)), dtype=complex)] # list index: particle, np indices: pol, plus/minus, n, kpar_idx m_vec = [np.zeros(blocksize1, dtype=int), np.zeros(blocksize2, dtype=int)] # precompute spherical functions ct = kzis1 / kis1 st = k_parallel / kis1 _, pilm_list_pl, taulm_list_pl = sf.legendre_normalized(ct, st, lmax1) _, pilm_list_mn, taulm_list_mn = sf.legendre_normalized(-ct, st, lmax1) pilm = (pilm_list_pl, pilm_list_mn) taulm = (taulm_list_pl, taulm_list_mn) for tau in range(2): for m in range(-mmax1, mmax1 + 1): for l in range(max(1, abs(m)), lmax1 + 1): n = fldex.multi_to_single_index(tau, l, m, lmax1, mmax1) m_vec[0][n] = m for iplmn in range(2): for pol in range(2): B[0][pol, iplmn, n, :] = vwf.transformation_coefficients_vwf(tau, l, m, pol, pilm_list=pilm[iplmn], taulm_list=taulm[iplmn], dagger=True) ct = kzis2 / kis2 st = k_parallel / kis2 _, pilm_list_pl, taulm_list_pl = sf.legendre_normalized(ct, st, lmax2) _, pilm_list_mn, taulm_list_mn = sf.legendre_normalized(-ct, st, lmax2) pilm = (pilm_list_pl, pilm_list_mn) taulm = (taulm_list_pl, taulm_list_mn) for tau in range(2): for m in range(-mmax2, mmax2 + 1): for l in range(max(1, abs(m)), lmax2 + 1): n = fldex.multi_to_single_index(tau, l, m, lmax2, mmax2) m_vec[1][n] = m for iplmn in range(2): for pol in range(2): B[1][pol, iplmn, n, :] = vwf.transformation_coefficients_vwf(tau, l, m, pol, pilm_list=pilm[iplmn], taulm_list=taulm[iplmn], dagger=False) # bessel function and jacobi factor bessel_list = [] for dm in range(lmax1 + lmax2 + 1): bessel_list.append(scipy.special.jv(dm, k_parallel * rhos2s1)) jacobi_vector = k_parallel / (kzis2 * kis2) m2_minus_m1 = m_vec[1] - m_vec[0][np.newaxis].T wr_const = 4 * (1j) ** abs(m2_minus_m1) * np.exp(1j * m2_minus_m1 * phis2s1) integral = np.zeros((blocksize1, blocksize2), dtype=complex) for n1 in range(blocksize1): BeL = np.zeros((2, 2, len(k_parallel)), dtype=complex) # indices are: pol, plmn2, n1, kpar_idx for iplmn1 in range(2): for pol in range(2): BeL[pol, :, :] += (L[pol, iplmn1, :, :] * B[0][pol, iplmn1, n1, :] * ejkz[0, iplmn1, :]) for n2 in range(blocksize2): bessel_full = bessel_list[abs(m_vec[0][n1] - m_vec[1][n2])] BeLBe = np.zeros((len(k_parallel)), dtype=complex) eval_BeLBe(BeLBe, BeL, B[1], ejkz, n2) integrand = bessel_full * jacobi_vector * BeLBe integral[n1,n2] = numba_trapz(integrand, k_parallel) wr = wr_const * integral return wr def layer_mediated_coupling_matrix(vacuum_wavelength, particle_list, layer_system, k_parallel='default'): """Layer system mediated particle coupling matrix W^R for a particle collection in a layered medium. Args: vacuum_wavelength (float): Wavelength in length unit particle_list (list of smuthi.particles.Particle obejcts: Scattering particles layer_system (smuthi.layers.LayerSystem): The stratified medium k_parallel (numpy.ndarray or str): In-plane wavenumber for Sommerfeld integrals. If 'default', smuthi.coordinates.default_k_parallel Returns: Ensemble coupling matrix as numpy array. """ # indices blocksizes = [fldex.blocksize(particle.l_max, particle.m_max) for particle in particle_list] # initialize result wr = np.zeros((sum(blocksizes), sum(blocksizes)), dtype=complex) for s1, particle1 in enumerate(particle_list): idx1 = np.array(range(sum(blocksizes[:s1]), sum(blocksizes[:s1]) + blocksizes[s1])) for s2, particle2 in enumerate(particle_list): idx2 = range(sum(blocksizes[:s2]), sum(blocksizes[:s2]) + blocksizes[s2]) wr[idx1[:, None], idx2] = layer_mediated_coupling_block(vacuum_wavelength, particle1, particle2, layer_system, k_parallel) return wr def direct_coupling_block(vacuum_wavelength, receiving_particle, emitting_particle, layer_system): """Direct particle coupling matrix :math:`W` for two particles. This routine is explicit, but slow. Args: vacuum_wavelength (float): Vacuum wavelength :math:`\lambda` (length unit) receiving_particle (smuthi.particles.Particle): Particle that receives the scattered field emitting_particle (smuthi.particles.Particle): Particle that emits the scattered field layer_system (smuthi.layers.LayerSystem): Stratified medium in which the coupling takes place Returns: Direct coupling matrix block as numpy array. """ omega = coord.angular_frequency(vacuum_wavelength) # index specs lmax1 = receiving_particle.l_max mmax1 = receiving_particle.m_max lmax2 = emitting_particle.l_max mmax2 = emitting_particle.m_max blocksize1 = fldex.blocksize(lmax1, mmax1) blocksize2 = fldex.blocksize(lmax2, mmax2) # initialize result w = np.zeros((blocksize1, blocksize2), dtype=complex) # check if particles are in same layer rS1 = receiving_particle.position rS2 = emitting_particle.position iS1 = layer_system.layer_number(rS1[2]) iS2 = layer_system.layer_number(rS2[2]) if iS1 == iS2 and not emitting_particle == receiving_particle: k = omega * layer_system.refractive_indices[iS1] dx = rS1[0] - rS2[0] dy = rS1[1] - rS2[1] dz = rS1[2] - rS2[2] d = np.sqrt(dx**2 + dy**2 + dz**2) cos_theta = dz / d sin_theta = np.sqrt(dx**2 + dy**2) / d phi = np.arctan2(dy, dx) # spherical functions bessel_h = [sf.spherical_hankel(n, k * d) for n in range(lmax1 + lmax2 + 1)] legendre, _, _ = sf.legendre_normalized(cos_theta, sin_theta, lmax1 + lmax2) # the particle coupling operator is the transpose of the SVWF translation operator # therefore, (l1,m1) and (l2,m2) are interchanged: for m1 in range(-mmax1, mmax1 + 1): for m2 in range(-mmax2, mmax2 + 1): eimph = np.exp(1j * (m2 - m1) * phi) for l1 in range(max(1, abs(m1)), lmax1 + 1): for l2 in range(max(1, abs(m2)), lmax2 + 1): A, B = complex(0), complex(0) for ld in range(max(abs(l1 - l2), abs(m1 - m2)), l1 + l2 + 1): # if ld<abs(m1-m2) then P=0 a5, b5 = vwf.ab5_coefficients(l2, m2, l1, m1, ld) A += a5 * bessel_h[ld] * legendre[ld][abs(m1 - m2)] B += b5 * bessel_h[ld] * legendre[ld][abs(m1 - m2)] A, B = eimph * A, eimph * B for tau1 in range(2): n1 = fldex.multi_to_single_index(tau1, l1, m1, lmax1, mmax1) for tau2 in range(2): n2 = fldex.multi_to_single_index(tau2, l2, m2, lmax2, mmax2) if tau1 == tau2: w[n1, n2] = A else: w[n1, n2] = B return w def direct_coupling_matrix(vacuum_wavelength, particle_list, layer_system): """Return the direct particle coupling matrix W for a particle collection in a layered medium. Args: vacuum_wavelength (float): Wavelength in length unit particle_list (list of smuthi.particles.Particle obejcts: Scattering particles layer_system (smuthi.layers.LayerSystem): The stratified medium Returns: Ensemble coupling matrix as numpy array. """ # indices blocksizes = [fldex.blocksize(particle.l_max, particle.m_max) for particle in particle_list] # initialize result w = np.zeros((sum(blocksizes), sum(blocksizes)), dtype=complex) for s1, particle1 in enumerate(particle_list): idx1 = np.array(range(sum(blocksizes[:s1]), sum(blocksizes[:s1+1]))) for s2, particle2 in enumerate(particle_list): idx2 = range(sum(blocksizes[:s2]), sum(blocksizes[:s2+1])) w[idx1[:, None], idx2] = direct_coupling_block(vacuum_wavelength, particle1, particle2, layer_system) return w def volumetric_coupling_lookup_table(vacuum_wavelength, particle_list, layer_system, k_parallel='default', resolution=None): """Prepare Sommerfeld integral lookup table to allow for a fast calculation of the coupling matrix by interpolation. This function is called when not all particles are on the same z-position. Args: vacuum_wavelength (float): Vacuum wavelength in length units particle_list (list): List of particle objects layer_system (smuthi.layers.LayerSystem): Stratified medium k_parallel (numpy.ndarray or str): In-plane wavenumber for Sommerfeld integrals. If 'default', smuthi.coordinates.default_k_parallel resolution (float): Spatial resolution of lookup table in length units. (default: vacuum_wavelength / 100) Smaller means more accurate but higher memory footprint Returns: (tuple): tuple containing: w_pl (ndarray): Coupling lookup for z1 + z2, indices are [rho, z, n1, n2]. Includes layer mediated coupling. w_mn (ndarray): Coupling lookup for z1 + z2, indices are [rho, z, n1, n2]. Includes layer mediated and direct coupling. rho_array (ndarray): Values for the radial distance considered for the lookup (starting from negative numbers to allow for simpler cubic interpolation without distinction of cases for lookup edges sz_array (ndarray): Values for the sum of z-coordinates (z1 + z2) considered for the lookup dz_array (ndarray): Values for the difference of z-coordinates (z1 - z2) considered for the lookup """ sys.stdout.write('Prepare 3D particle coupling lookup:\n') sys.stdout.flush() if resolution is None: resolution = vacuum_wavelength / 100 sys.stdout.write('Setting lookup resolution to %f\n'%resolution) sys.stdout.flush() l_max = max([particle.l_max for particle in particle_list]) m_max = max([particle.m_max for particle in particle_list]) blocksize = fldex.blocksize(l_max, m_max) particle_x_array = np.array([particle.position[0] for particle in particle_list]) particle_y_array = np.array([particle.position[1] for particle in particle_list]) particle_z_array = np.array([particle.position[2] for particle in particle_list]) particle_rho_array = np.sqrt((particle_x_array[:, None] - particle_x_array[None, :]) ** 2 + (particle_y_array[:, None] - particle_y_array[None, :]) ** 2) dz_min = particle_z_array.min() - particle_z_array.max() dz_max = particle_z_array.max() - particle_z_array.min() sz_min = 2 * particle_z_array.min() sz_max = 2 * particle_z_array.max() rho_array = np.arange(- 3 * resolution, particle_rho_array.max() + 3 * resolution, resolution) sz_array = np.arange(sz_min - 3 * resolution, sz_max + 3 * resolution, resolution) dz_array = np.arange(dz_min - 3 * resolution, dz_max + 3 * resolution, resolution) len_rho = len(rho_array) len_sz = len(sz_array) len_dz = len(dz_array) assert len_sz == len_dz i_s = layer_system.layer_number(particle_list[0].position[2]) k_is = layer_system.wavenumber(i_s, vacuum_wavelength) z_is = layer_system.reference_z(i_s) # direct ----------------------------------------------------------------------------------------------------------- w = np.zeros((len_rho, len_dz, blocksize, blocksize), dtype=np.complex64) sys.stdout.write('Lookup table memory footprint: ' + size_format(2 * w.nbytes) + '\n') sys.stdout.flush() r_array = np.sqrt(dz_array[None, :]**2 + rho_array[:, None]**2) r_array[r_array==0] = 1e-20 ct = dz_array[None, :] / r_array st = rho_array[:, None] / r_array legendre, _, _ = sf.legendre_normalized(ct, st, 2 * l_max) bessel_h = [] for dm in tqdm(range(2 * l_max + 1), desc='Spherical Hankel lookup ', file=sys.stdout, bar_format='{l_bar}{bar}| elapsed: {elapsed} remaining: {remaining}'): bessel_h.append(sf.spherical_hankel(dm, k_is * r_array)) pbar = tqdm(total=blocksize**2, desc='Direct coupling ', file=sys.stdout, bar_format='{l_bar}{bar}| elapsed: {elapsed} remaining: {remaining}') for m1 in range(-m_max, m_max+1): for m2 in range(-m_max, m_max+1): for l1 in range(max(1, abs(m1)), l_max + 1): for l2 in range(max(1, abs(m2)), l_max + 1): A = np.zeros((len_rho, len_dz), dtype=complex) B = np.zeros((len_rho, len_dz), dtype=complex) for ld in range(max(abs(l1 - l2), abs(m1 - m2)), l1 + l2 + 1): # if ld<abs(m1-m2) then P=0 a5, b5 = vwf.ab5_coefficients(l2, m2, l1, m1, ld) # remember that w = A.T A += a5 * bessel_h[ld] * legendre[ld][abs(m1 - m2)] # remember that w = A.T B += b5 * bessel_h[ld] * legendre[ld][abs(m1 - m2)] # remember that w = A.T for tau1 in range(2): n1 = fldex.multi_to_single_index(tau1, l1, m1, l_max, m_max) for tau2 in range(2): n2 = fldex.multi_to_single_index(tau2, l2, m2, l_max, m_max) if tau1 == tau2: w[:, :, n1, n2] = A else: w[:, :, n1, n2] = B pbar.update() pbar.close() # switch off direct coupling contribution near rho=0: w[rho_array < particle_rho_array[~np.eye(particle_rho_array.shape[0],dtype=bool)].min() / 2, :, :, :] = 0 # layer mediated --------------------------------------------------------------------------------------------------- sys.stdout.write('Layer mediated coupling : ...') sys.stdout.flush() if type(k_parallel) == str and k_parallel == 'default': k_parallel = coord.default_k_parallel kz_is = coord.k_z(k_parallel=k_parallel, k=k_is) len_kp = len(k_parallel) # phase factors epljksz = np.exp(1j * kz_is[None, :] * (sz_array[:, None] - 2 * z_is)) # z, k emnjksz = np.exp(- 1j * kz_is[None, :] * (sz_array[:, None] - 2 * z_is)) epljkdz = np.exp(1j * kz_is[None, :] * dz_array[:, None]) emnjkdz = np.exp(- 1j * kz_is[None, :] * dz_array[:, None]) # layer response L = np.zeros((2, 2, 2, len_kp), dtype=complex) # pol, pl/mn1, pl/mn2, kp for pol in range(2): L[pol, :, :, :] = lay.layersystem_response_matrix(pol, layer_system.thicknesses, layer_system.refractive_indices, k_parallel, coord.angular_frequency(vacuum_wavelength), i_s, i_s) # transformation coefficients B_dag = np.zeros((2, 2, blocksize, len_kp), dtype=complex) # pol, pl/mn, n, kp B = np.zeros((2, 2, blocksize, len_kp), dtype=complex) # pol, pl/mn, n, kp ct_k = kz_is / k_is st_k = k_parallel / k_is _, pilm_pl, taulm_pl = sf.legendre_normalized(ct_k, st_k, l_max) _, pilm_mn, taulm_mn = sf.legendre_normalized(-ct_k, st_k, l_max) m_list = [None for i in range(blocksize)] for tau in range(2): for m in range(-m_max, m_max + 1): for l in range(max(1, abs(m)), l_max + 1): n = fldex.multi_to_single_index(tau, l, m, l_max, m_max) m_list[n] = m for pol in range(2): B_dag[pol, 0, n, :] = vwf.transformation_coefficients_vwf(tau, l, m, pol, pilm_list=pilm_pl, taulm_list=taulm_pl, dagger=True) B_dag[pol, 1, n, :] = vwf.transformation_coefficients_vwf(tau, l, m, pol, pilm_list=pilm_mn, taulm_list=taulm_mn, dagger=True) B[pol, 0, n, :] = vwf.transformation_coefficients_vwf(tau, l, m, pol, pilm_list=pilm_pl, taulm_list=taulm_pl, dagger=False) B[pol, 1, n, :] = vwf.transformation_coefficients_vwf(tau, l, m, pol, pilm_list=pilm_mn, taulm_list=taulm_mn, dagger=False) # pairs of (n1, n2), listed by abs(m1-m2) n1n2_combinations = [[] for dm in range(2*m_max+1)] for n1 in range(blocksize): m1 = m_list[n1] for n2 in range(blocksize): m2 = m_list[n2] n1n2_combinations[abs(m1-m2)].append((n1,n2)) wr_pl = np.zeros((len_rho, len_dz, blocksize, blocksize), dtype=np.complex64) wr_mn = np.zeros((len_rho, len_dz, blocksize, blocksize), dtype=np.complex64) dkp = np.diff(k_parallel) if cu.use_gpu: re_dkp_d = gpuarray.to_gpu(np.float32(dkp.real)) im_dkp_d = gpuarray.to_gpu(np.float32(dkp.imag)) kernel_source_code = cu.volume_lookup_assembly_code %(blocksize, len_rho, len_sz, len_kp) helper_function = SourceModule(kernel_source_code).get_function("helper") cuda_blocksize = 128 cuda_gridsize = (len_rho * len_sz + cuda_blocksize - 1) // cuda_blocksize re_dwr_d = gpuarray.to_gpu(np.zeros((len_rho, len_sz), dtype=np.float32)) im_dwr_d = gpuarray.to_gpu(np.zeros((len_rho, len_sz), dtype=np.float32)) pbar = tqdm(total=blocksize**2, desc='Layer mediated coupling ', file=sys.stdout, bar_format='{l_bar}{bar}| elapsed: {elapsed} remaining: {remaining}') for dm in range(2*m_max+1): bessel = scipy.special.jv(dm, (k_parallel[None,:]*rho_array[:,None])) besjac = bessel * (k_parallel / (kz_is * k_is))[None,:] for n1n2 in n1n2_combinations[dm]: n1 = n1n2[0] m1 = m_list[n1] n2 = n1n2[1] m2 = m_list[n2] belbee_pl = np.zeros((len_dz, len_kp), dtype=complex) belbee_mn = np.zeros((len_dz, len_kp), dtype=complex) for pol in range(2): belbee_pl += ((L[pol, 0, 1, :] * B_dag[pol, 0, n1, :] * B[pol, 1, n2, :])[None, :] * epljksz + (L[pol, 1, 0, :] * B_dag[pol, 1, n1, :] * B[pol, 0, n2, :])[None, :] * emnjksz) belbee_mn += ((L[pol, 0, 0, :] * B_dag[pol, 0, n1, :] * B[pol, 0, n2, :])[None, :] * epljkdz + (L[pol, 1, 1, :] * B_dag[pol, 1, n1, :] * B[pol, 1, n2, :])[None, :] * emnjkdz) if cu.use_gpu: re_belbee_pl_d = gpuarray.to_gpu(np.float32(belbee_pl[None, :, :].real)) im_belbee_pl_d = gpuarray.to_gpu(np.float32(belbee_pl[None, :, :].imag)) re_belbee_mn_d = gpuarray.to_gpu(np.float32(belbee_mn[None, :, :].real)) im_belbee_mn_d = gpuarray.to_gpu(np.float32(belbee_mn[None, :, :].imag)) re_besjac_d = gpuarray.to_gpu(np.float32(besjac[:, None, :].real)) im_besjac_d = gpuarray.to_gpu(np.float32(besjac[:, None, :].imag)) helper_function(re_besjac_d.gpudata, im_besjac_d.gpudata, re_belbee_pl_d.gpudata, im_belbee_pl_d.gpudata, re_dkp_d.gpudata, im_dkp_d.gpudata, re_dwr_d.gpudata, im_dwr_d.gpudata, block=(cuda_blocksize, 1, 1), grid=(cuda_gridsize, 1)) wr_pl[:, :, n1, n2] = 4 * (1j)**abs(m2 - m1) * (re_dwr_d.get() + 1j * im_dwr_d.get()) helper_function(re_besjac_d.gpudata, im_besjac_d.gpudata, re_belbee_mn_d.gpudata, im_belbee_mn_d.gpudata, re_dkp_d.gpudata, im_dkp_d.gpudata, re_dwr_d.gpudata, im_dwr_d.gpudata, block=(cuda_blocksize, 1, 1), grid=(cuda_gridsize, 1)) wr_mn[:, :, n1, n2] = 4 * (1j)**abs(m2 - m1) * (re_dwr_d.get() + 1j * im_dwr_d.get()) else: integrand = besjac[:, None, :] * belbee_pl[None, :, :] wr_pl[:, :, n1, n2] = 2 * (1j)**abs(m2 - m1) * ((integrand[:, :, :-1] + integrand[:, :, 1:]) * dkp[None, None, :]).sum(axis=-1) # trapezoidal rule integrand = besjac[:, None, :] * belbee_mn[None, :, :] wr_mn[:, :, n1, n2] = 2 * (1j)**abs(m2 - m1) * ((integrand[:, :, :-1] + integrand[:, :, 1:]) * dkp[None, None, :]).sum(axis=-1) pbar.update() pbar.close() return wr_pl, w + wr_mn, rho_array, sz_array, dz_array def radial_coupling_lookup_table(vacuum_wavelength, particle_list, layer_system, k_parallel='default', resolution=None): """Prepare Sommerfeld integral lookup table to allow for a fast calculation of the coupling matrix by interpolation. This function is called when all particles are on the same z-position. Args: vacuum_wavelength (float): Vacuum wavelength in length units particle_list (list): List of particle objects layer_system (smuthi.layers.LayerSystem): Stratified medium k_parallel (numpy.ndarray or str): In-plane wavenumber for Sommerfeld integrals. If 'default', smuthi.coordinates.default_k_parallel resolution (float): Spatial resolution of lookup table in length units. (default: vacuum_wavelength / 100) Smaller means more accurate but higher memory footprint Returns: (tuple) tuple containing: lookup_table (ndarray): Coupling lookup, indices are [rho, n1, n2]. rho_array (ndarray): Values for the radial distance considered for the lookup (starting from negative numbers to allow for simpler cubic interpolation without distinction of cases at rho=0) """ sys.stdout.write('Prepare radial particle coupling lookup:\n') sys.stdout.flush() if resolution is None: resolution = vacuum_wavelength / 100 sys.stdout.write('Setting lookup resolution to %f\n'%resolution) sys.stdout.flush() l_max = max([particle.l_max for particle in particle_list]) m_max = max([particle.m_max for particle in particle_list]) blocksize = fldex.blocksize(l_max, m_max) x_array = np.array([particle.position[0] for particle in particle_list]) y_array = np.array([particle.position[1] for particle in particle_list]) rho_array = np.sqrt((x_array[:, None] - x_array[None, :]) ** 2 + (y_array[:, None] - y_array[None, :]) ** 2) radial_distance_array = np.arange(- 3 * resolution, rho_array.max() + 3 * resolution, resolution) z = particle_list[0].position[2] i_s = layer_system.layer_number(z) k_is = layer_system.wavenumber(i_s, vacuum_wavelength) dz = z - layer_system.reference_z(i_s) len_rho = len(radial_distance_array) # direct ----------------------------------------------------------------------------------------------------------- w = np.zeros((len_rho, blocksize, blocksize), dtype=np.complex64) sys.stdout.write('Memory footprint: ' + size_format(w.nbytes) + '\n') sys.stdout.flush() ct = np.array([0.0]) st = np.array([1.0]) bessel_h = [] for n in range(2* l_max + 1): bessel_h.append(sf.spherical_hankel(n, k_is * radial_distance_array)) bessel_h[-1][radial_distance_array <= 0] = np.nan legendre, _, _ = sf.legendre_normalized(ct, st, 2 * l_max) pbar = tqdm(total=blocksize**2, desc='Direct coupling ', file=sys.stdout, bar_format='{l_bar}{bar}| elapsed: {elapsed} remaining: {remaining}') for m1 in range(-m_max, m_max+1): for m2 in range(-m_max, m_max+1): for l1 in range(max(1, abs(m1)), l_max + 1): for l2 in range(max(1, abs(m2)), l_max + 1): A = np.zeros(len_rho, dtype=complex) B = np.zeros(len_rho, dtype=complex) for ld in range(max(abs(l1 - l2), abs(m1 - m2)), l1 + l2 + 1): # if ld<abs(m1-m2) then P=0 a5, b5 = vwf.ab5_coefficients(l2, m2, l1, m1, ld) A += a5 * bessel_h[ld] * legendre[ld][abs(m1 - m2)] B += b5 * bessel_h[ld] * legendre[ld][abs(m1 - m2)] for tau1 in range(2): n1 = fldex.multi_to_single_index(tau1, l1, m1, l_max, m_max) for tau2 in range(2): n2 = fldex.multi_to_single_index(tau2, l2, m2, l_max, m_max) if tau1 == tau2: w[:, n1, n2] = A # remember that w = A.T else: w[:, n1, n2] = B pbar.update() pbar.close() close_to_zero = radial_distance_array < rho_array[~np.eye(rho_array.shape[0],dtype=bool)].min() / 2 w[close_to_zero, :, :] = 0 # switch off direct coupling contribution near rho=0 # layer mediated --------------------------------------------------------------------------------------------------- sys.stdout.write('Layer mediated coupling : ...') sys.stdout.flush() if type(k_parallel) == str and k_parallel == 'default': k_parallel = coord.default_k_parallel kz_is = coord.k_z(k_parallel=k_parallel, k=k_is) len_kp = len(k_parallel) # phase factors epl2jkz = np.exp(2j * kz_is * dz) emn2jkz = np.exp(-2j * kz_is * dz) # layer response L = np.zeros((2,2,2,len_kp), dtype=complex) # pol, pl/mn1, pl/mn2, kp for pol in range(2): L[pol,:,:,:] = lay.layersystem_response_matrix(pol, layer_system.thicknesses, layer_system.refractive_indices, k_parallel, coord.angular_frequency(vacuum_wavelength), i_s, i_s) # transformation coefficients B_dag = np.zeros((2, 2, blocksize, len_kp), dtype=complex) # pol, pl/mn, n, kp B = np.zeros((2, 2, blocksize, len_kp), dtype=complex) # pol, pl/mn, n, kp ct = kz_is / k_is st = k_parallel / k_is _, pilm_pl, taulm_pl = sf.legendre_normalized(ct, st, l_max) _, pilm_mn, taulm_mn = sf.legendre_normalized(-ct, st, l_max) m_list = [None for n in range(blocksize)] for tau in range(2): for m in range(-m_max, m_max + 1): for l in range(max(1, abs(m)), l_max + 1): n = fldex.multi_to_single_index(tau, l, m, l_max, m_max) m_list[n] = m for pol in range(2): B_dag[pol,0,n,:] = vwf.transformation_coefficients_vwf(tau, l, m, pol, pilm_list=pilm_pl, taulm_list=taulm_pl, dagger=True) B_dag[pol,1,n,:] = vwf.transformation_coefficients_vwf(tau, l, m, pol, pilm_list=pilm_mn, taulm_list=taulm_mn, dagger=True) B[pol,0,n,:] = vwf.transformation_coefficients_vwf(tau, l, m, pol, pilm_list=pilm_pl, taulm_list=taulm_pl, dagger=False) B[pol,1,n,:] = vwf.transformation_coefficients_vwf(tau, l, m, pol, pilm_list=pilm_mn, taulm_list=taulm_mn, dagger=False) # pairs of (n1, n2), listed by abs(m1-m2) n1n2_combinations = [[] for dm in range(2*m_max+1)] for n1 in range(blocksize): m1 = m_list[n1] for n2 in range(blocksize): m2 = m_list[n2] n1n2_combinations[abs(m1-m2)].append((n1,n2)) wr = np.zeros((len_rho, blocksize, blocksize), dtype=complex) dkp = np.diff(k_parallel) if cu.use_gpu: re_dkp_d = gpuarray.to_gpu(np.float32(dkp.real)) im_dkp_d = gpuarray.to_gpu(np.float32(dkp.imag)) kernel_source_code = cu.radial_lookup_assembly_code %(blocksize, len_rho, len_kp) helper_function = SourceModule(kernel_source_code).get_function("helper") cuda_blocksize = 128 cuda_gridsize = (len_rho + cuda_blocksize - 1) // cuda_blocksize re_dwr_d = gpuarray.to_gpu(np.zeros(len_rho, dtype=np.float32)) im_dwr_d = gpuarray.to_gpu(np.zeros(len_rho, dtype=np.float32)) n1n2_combinations = [[] for dm in range(2*m_max+1)] for n1 in range(blocksize): m1 = m_list[n1] for n2 in range(blocksize): m2 = m_list[n2] n1n2_combinations[abs(m1-m2)].append((n1,n2)) pbar = tqdm(total=blocksize**2, desc='Layer mediated coupling ', file=sys.stdout, bar_format='{l_bar}{bar}| elapsed: {elapsed} remaining: {remaining}') for dm in range(2*m_max+1): bessel = scipy.special.jv(dm, (k_parallel[None,:]*radial_distance_array[:,None])) besjac = bessel * (k_parallel / (kz_is * k_is))[None,:] for n1n2 in n1n2_combinations[dm]: n1 = n1n2[0] m1 = m_list[n1] n2 = n1n2[1] m2 = m_list[n2] belbe = np.zeros(len_kp, dtype=complex) # n1, n2, kp for pol in range(2): belbe += L[pol,0,0,:] * B_dag[pol,0,n1,:] * B[pol,0,n2,:] belbe += L[pol,1,0,:] * B_dag[pol,1,n1,:] * B[pol,0,n2,:] * emn2jkz belbe += L[pol,0,1,:] * B_dag[pol,0,n1,:] * B[pol,1,n2,:] * epl2jkz belbe += L[pol,1,1,:] * B_dag[pol,1,n1,:] * B[pol,1,n2,:] if cu.use_gpu: re_belbe_d = gpuarray.to_gpu(np.float32(belbe[None, :].real)) im_belbe_d = gpuarray.to_gpu(np.float32(belbe[None, :].imag)) re_besjac_d = gpuarray.to_gpu(np.float32(besjac.real)) im_besjac_d = gpuarray.to_gpu(np.float32(besjac.imag)) helper_function(re_besjac_d.gpudata, im_besjac_d.gpudata, re_belbe_d.gpudata, im_belbe_d.gpudata, re_dkp_d.gpudata, im_dkp_d.gpudata, re_dwr_d.gpudata, im_dwr_d.gpudata, block=(cuda_blocksize, 1, 1), grid=(cuda_gridsize, 1)) wr[:,n1,n2] = 4 * (1j)**abs(m2-m1) * (re_dwr_d.get() + 1j*im_dwr_d.get()) else: integrand = besjac * belbe[None, :] # rho, kp wr[:,n1,n2] = 2 * (1j)**abs(m2-m1) * ((integrand[:,:-1] + integrand[:,1:]) * dkp[None,:]).sum(axis=-1) # trapezoidal rule pbar.update() pbar.close() return w + wr, radial_distance_array def size_format(b): if b < 1000: return '%i' % b + 'B' elif 1000 <= b < 1000000: return '%.1f' % float(b/1000) + 'KB' elif 1000000 <= b < 1000000000: return '%.1f' % float(b/1000000) + 'MB' elif 1000000000 <= b < 1000000000000: return '%.1f' % float(b/1000000000) + 'GB' elif 1000000000000 <= b: return '%.1f' % float(b/1000000000000) + 'TB' def spheroids_closest_points(ab_halfaxis1, c_halfaxis1, center1, orientation1, ab_halfaxis2, c_halfaxis2, center2, orientation2): """ Computation of the two closest points of two adjacent spheroids. For details, see: <NAME>, Algorithms for Ellipsoids, Sibley School of Mechanical & Aerospace Engineering, Cornell University, Ithaca, New York, February 2008 Args: ab_halfaxis1 (float): Half axis orthogonal to symmetry axis of spheroid 1 c_halfaxis1 (float): Half axis parallel to symmetry axis of spheroid 1 center1 (numpy.array): Center coordinates of spheroid 1 orientation1 (numpy.array): Orientation angles of spheroid 1 ab_halfaxis2 (float): Half axis orthogonal to symmetry axis of spheroid 2 c_halfaxis2 (float): Half axis parallel to symmetry axis of spheroid 2 center2 (numpy.array): Center coordinates of spheroid 2 orientation2 (numpy.array): Orientation angles of spheroid 2 Retruns: Tuple containing: - closest point on first particle (numpy.array) - closest point on second particle (numpy.array) - first rotation Euler angle alpha (float) - second rotation Euler angle beta (float) """ def rotation_matrix(ang): rot_mat = (np.array([[np.cos(ang[0]) * np.cos(ang[1]), -np.sin(ang[0]), np.cos(ang[0]) * np.sin(ang[1])], [np.sin(ang[0]) * np.cos(ang[1]), np.cos(ang[0]), np.sin(ang[0]) * np.sin(ang[1])], [-np.sin(ang[1]), 0, np.cos(ang[1])]])) return rot_mat rot_matrix_1 = rotation_matrix(orientation1) rot_matrix_2 = rotation_matrix(orientation2) a1, a2 = ab_halfaxis1, ab_halfaxis2 c1, c2 = c_halfaxis1, c_halfaxis2 ctr1, ctr2 = np.array(center1), np.array(center2) eigenvalue_matrix_1 = np.array([[1 / a1 ** 2, 0, 0], [0, 1 / a1 ** 2, 0], [0, 0, 1 / c1 ** 2]]) eigenvalue_matrix_2 = np.array([[1 / a2 ** 2, 0, 0], [0, 1 / a2 ** 2, 0], [0, 0, 1 / c2 ** 2]]) E1 = np.dot(rot_matrix_1, np.dot(eigenvalue_matrix_1, np.transpose(rot_matrix_1))) E2 = np.dot(rot_matrix_2, np.dot(eigenvalue_matrix_2, np.transpose(rot_matrix_2))) S = np.matrix.getH(np.linalg.cholesky(E1)) # transformation of spheroid E1 into the unit-sphere with its center at origin / same transformation on E2 # E1_prime = np.dot(np.transpose(np.linalg.inv(S)), np.dot(E1, np.linalg.inv(S))) # ctr1_prime = ctr1 - ctr1 E2_prime = np.dot(np.transpose(np.linalg.inv(S)), np.dot(E2, np.linalg.inv(S))) ctr2_prime = -(np.dot(S, (ctr1 - ctr2))) E2_prime_L = np.linalg.cholesky(E2_prime) H = np.dot(np.linalg.inv(E2_prime_L), np.transpose(np.linalg.inv(E2_prime_L))) p = np.array([0, 0, 0]) f = np.dot(np.transpose(ctr2_prime - p), np.transpose(np.linalg.inv(E2_prime_L))) def minimization_fun(y_vec): fun = 0.5 * np.dot(np.dot(np.transpose(y_vec), H), y_vec) + np.dot(f, y_vec) return fun def constraint_fun(x): eq_constraint = (x[0] ** 2 + x[1] ** 2 + x[2] ** 2) ** 0.5 - 1 return eq_constraint bnds = ((-1, 1), (-1, 1), (-1, 1)) length_constraints = {'type' : 'eq', 'fun' : constraint_fun} flag = False while flag == False: x0 = -1 + np.dot((1 + 1), np.random.rand(3)) optimization_result = scipy.optimize.minimize(minimization_fun, x0, method='SLSQP', bounds=bnds, constraints=length_constraints, tol=None, callback=None, options=None) x_vec = np.transpose(np.dot(np.transpose(np.linalg.inv(E2_prime_L)), optimization_result['x']) + np.transpose(ctr2_prime)) if optimization_result['success'] == True: if np.linalg.norm(x_vec) <= 1: raise ValueError("particle error: particles intersect") elif np.linalg.norm(x_vec) < np.linalg.norm(ctr2_prime): flag = True else: print('wrong minimum ...') else: print('No minimum found ...') p2_prime = x_vec p2 = np.dot(np.linalg.inv(S), p2_prime) + ctr1 E1_L = np.linalg.cholesky(E1) H = np.dot(np.linalg.inv(E1_L), np.transpose(np.linalg.inv(E1_L))) p = p2 f = np.dot(np.transpose(ctr1 - p), np.transpose(np.linalg.inv(E1_L))) flag = False while flag == False: x0 = -1 + np.dot((1 + 1), np.random.rand(3)) optimization_result2 = scipy.optimize.minimize(minimization_fun, x0, method='SLSQP', bounds=bnds, constraints=length_constraints, tol=None, callback=None, options=None) p1 = np.transpose(np.dot(np.transpose(np.linalg.inv(E1_L)), optimization_result2['x']) + np.transpose(ctr1)) if optimization_result2['success'] == True: if np.linalg.norm(p1 - p) < np.linalg.norm(ctr1 - p): flag = True else: print('wrong minimum ...') else: print('No minimum found ...') p1p2 = p2 - p1 azimuth = np.arctan2(p1p2[1], p1p2[0]) elevation = np.arctan2(p1p2[2], (p1p2[0] ** 2 + p1p2[1] ** 2) ** 0.5) if p1p2[2] < 0: beta = (np.pi / 2) + elevation else: beta = (-np.pi / 2) + elevation alpha = -azimuth return p1, p2, alpha, beta def direct_coupling_block_pvwf_mediated(vacuum_wavelength, receiving_particle, emitting_particle, layer_system, k_parallel): """Direct particle coupling matrix :math:`W` for two particles (via plane vector wave functions). For details, see: <NAME> al., Phys. Rev. A 96, 033822, DOI: 10.1103/PhysRevA.96.033822 or arXiv:1708.04808 Args: vacuum_wavelength (float): Vacuum wavelength :math:`\lambda` (length unit) receiving_particle (smuthi.particles.Particle): Particle that receives the scattered field emitting_particle (smuthi.particles.Particle): Particle that emits the scattered field layer_system (smuthi.layers.LayerSystem): Stratified medium in which the coupling takes place k_parallel (numpy.array): In-plane wavenumber for plane wave expansion Returns: Direct coupling matrix block (numpy array). """ if type(receiving_particle).__name__ != 'Spheroid' or type(emitting_particle).__name__ != 'Spheroid': raise NotImplementedError('plane wave coupling currently implemented only for spheroids') lmax1 = receiving_particle.l_max mmax1 = receiving_particle.m_max assert lmax1 == mmax1, 'PVWF coupling requires lmax == mmax for each particle.' lmax2 = emitting_particle.l_max mmax2 = emitting_particle.m_max assert lmax2 == mmax2, 'PVWF coupling requires lmax == mmax for each particle.' lmax = max([lmax1, lmax2]) m_max = max([mmax1, mmax2]) blocksize1 = fldex.blocksize(lmax1, mmax1) blocksize2 = fldex.blocksize(lmax2, mmax2) n_medium = layer_system.refractive_indices[layer_system.layer_number(receiving_particle.position[2])] # finding the orientation of a plane separating the spheroids _, _, alpha, beta = spheroids_closest_points( emitting_particle.semi_axis_a, emitting_particle.semi_axis_c, emitting_particle.position, emitting_particle.euler_angles, receiving_particle.semi_axis_a, receiving_particle.semi_axis_c, receiving_particle.position, receiving_particle.euler_angles) # positions r1 = np.array(receiving_particle.position) r2 =
np.array(emitting_particle.position)
numpy.array
# -*- coding: utf-8 -*- """ @author: <NAME> This is a unit test. If you would like to further develop pahmc_ode_cpu, you should visit here frequently. You should also be familiar with the Python (3.7) built-in module 'unittest'. To run this unit test, copy this file into its parent directory and run it. """ import time import matplotlib.pyplot as plt import numpy as np from pathlib import Path from pahmc_ode_cpu.data_preparation import Data # import module to be tested from pahmc_ode_cpu import lib_dynamics name = 'lorenz96' # specify the data below D = 20 length = 1000 dt = 0.025 noise = 0.4 * np.ones(D) par_true = 8.17 # stimuli = np.ones((D,2*length)) * np.arange(2*length) * 1e-9 stimuli = np.zeros((D,2*length)) x0 = np.ones(D) x0[0] = 0.01 # instantiate dyn = getattr(lib_dynamics, f'Builtin_{name}')(name, stimuli) # get (noisy) data from the module being tested t0 = time.perf_counter() data_noisy, stimuli \ = Data().generate(dyn, D, length, dt, noise, par_true, x0, True) print(f'Time elapsed = {time.perf_counter()-t0:.2f} seconds.') noiselessfile = np.load(Path.cwd()/'user_data'/f'{dyn.name}_noiseless.npz') data_noiseless = noiselessfile['data'] noiselessfile.close() print(f'\nChi-squared = {
np.sum((data_noisy-data_noiseless)**2)
numpy.sum
""" GAIL file """ import numpy as np import torch from torch import nn # from torch.nn import utils import torch.nn.functional as f import random from policy import MlpNetwork, SoftQLearning from grid_mdp import GridMDP, MazeWorld, WindyMazeWorld, ToroidWorld from rnd import RND import matplotlib.pyplot as plt from buffers import ReplayBuffer import argparse import os from os import path parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--seed', help='random seed', type=int, default=1123) parser.add_argument('--rnd', help='random network distillation', type=bool, default=False) parser.add_argument('--reward', help="reward function to use ['gail', 'airl', 'fairl', 'aim', 'none']", type=str, default='aim') parser.add_argument('--dir', help="directory to save results in", type=str, default='aim_results') args = parser.parse_args() torch.set_default_dtype(torch.float32) # Set random seeds seed = 42 * args.seed print(args.seed) torch.manual_seed(seed) random.seed = seed np.random.seed = seed reward_to_use = args.reward # use one of ['gail', 'airl', 'fairl', 'none'] print(reward_to_use) def wasserstein_reward(d): """ return the wasserstein reward """ return d def gail_reward(d): """ Take discriminaotr output and return the gail reward :param d: :return: """ d = torch.sigmoid(d) return d.log() # - (1 - d).log() def airl_reward(d): """ Take discriminaotr output and return AIRL reward :param d: :return: """ s = torch.sigmoid(d) reward = s.log() - (1 - s).log() return reward def fairl_reward(d): """ Take discriminator output and return FAIRL reward :param d: :return: """ d = torch.sigmoid(d) h = d.log() - (1 - d).log() return h.exp() * (-h) reward_dict = {'gail': gail_reward, 'airl': airl_reward, 'fairl': fairl_reward, 'aim': wasserstein_reward, 'none': None} class Discriminator(nn.Module): """ The discriminator used to learn the potentials or the reward functions """ def __init__(self, x_dim=1, max_state=10., min_state=0): super(Discriminator, self).__init__() self.mean_state = torch.tensor((max_state - min_state) / 2 + min_state, dtype=torch.float32) self.diff_state = torch.tensor(max_state - min_state, dtype=torch.float32) self.input_dim = x_dim self.d = MlpNetwork(self.input_dim, n_units=64) # , activ=f.tanh) def normalize(self, x: torch.Tensor) -> torch.Tensor: """ normalize input :param x: :return: """ x = x.type(torch.float32) x = (x - self.mean_state) / self.diff_state return x def forward(self, x: torch.Tensor) -> (torch.Tensor, torch.Tensor): """ return discriminator output :param x: :return: """ x = self.normalize(x) output = self.d(x) return output def to_one_hot(x: torch.Tensor, num_vals) -> torch.Tensor: """ Convert tensor to one-hot encoding """ if type(x) is not torch.Tensor: x = torch.tensor(x) x = x.type(torch.long) x_one_hot = torch.zeros((x.shape[0], num_vals), dtype=torch.float32) x_one_hot = x_one_hot.scatter(1, x, 1.) return x_one_hot class GAIL: """ Class to take the continuous MDP and use gail to match given target distribution """ def __init__(self): self.env = MazeWorld() # self.env = ToroidWorld() self.policy = SoftQLearning(x_dim=self.env.dims, out_dim=len(self.env.action_space), max_state=self.env.max_state, min_state=self.env.min_state, ent_coef=.3, target_update=3e-2) self.discriminator = Discriminator(x_dim=self.env.dims, max_state=self.env.max_state, min_state=self.env.min_state) self.discount = 0.99 self.check_state = set() self.agent_buffer = ReplayBuffer(size=5000) self.policy_optimizer = torch.optim.Adam(self.policy.parameters()) # , lr=3e-4) self.discriminator_optimizer = torch.optim.Adam(self.discriminator.parameters()) # , lr=1e-4) if args.rnd: self.rnd = RND(x_dim=self.env.dims) else: self.rnd = None self.max_r = 0. self.min_r = -1. def gather_data(self, num_trans=100) -> None: """ Gather data from current policy used to: * fit value function * update policy * plot histograms :param num_trans: :return: """ t = 0 while t < num_trans: s = self.env.reset() s = torch.tensor(s).type(torch.float32).reshape([-1, self.env.dims]) done = False while not done: # self.states.append(deepcopy(s)) action = self.policy.sample_action(s) # self.actions.append(a) a = np.squeeze(action.data.detach().numpy()) s_p, r, done, _ = self.env.step(a) s_p = torch.tensor(s_p).type(torch.float32).reshape([-1, self.env.dims]) # d = self.discriminator(sp) # i_r = gail_reward(d) # self.next_states.append(deepcopy(s)) # self.rewards.append(i_r) # deepcopy(r)) # self.dones.append(deepcopy(done)) self.agent_buffer.add(s.squeeze(), action.reshape([-1]).detach(), r, s_p.squeeze(), done) # if s_p not in self.check_state: # self.check_state.add(s_p) # self.target_buffer.add(s, a, r, s_p, done) s = s_p t += 1 # self.states.append(s) def compute_td_targets(self, states, next_states, dones, rewards=None): """ Compute the value of the current states and the TD target based on one step reward and value of next states :return: value of current states v, TD target targets """ states = states.reshape([-1, self.env.dims]) next_states = next_states.reshape([-1, self.env.dims]) v = self.policy(states)[0] v_prime = self.policy(next_states)[-1] if rewards is not None: dones = rewards.type(torch.float32).reshape([-1, 1]) else: dones = dones.type(torch.float32).reshape([-1, 1]) reward_func = reward_dict[reward_to_use] if reward_func is not None: # d0 = self.discriminator(states) d1 = self.discriminator(next_states) # Compute rewards # r0 = reward_func(d0) r1 = reward_func(d1) rewards = rewards.type(torch.float32).reshape([-1, 1]) + ((r1 - self.max_r) / (self.max_r - self.min_r)) targets = rewards.type(torch.float32).reshape([-1, 1]) targets += (1. - dones) * self.discount * v_prime.reshape([-1, 1]) return v, targets.detach() def fit_v_func(self): """ This function will train the value function using the collected data :return: """ self.policy_optimizer.zero_grad() s, a, r, s_p, dones = self.agent_buffer.sample(100) if args.rnd: spn = s_p.detach().numpy() self.rnd.update(spn) r += 0.3 * self.rnd.reward(spn) q, targets = self.compute_td_targets(s, s_p, dones, rewards=r) actions = torch.tensor(a, dtype=torch.long) v = q.gather(dim=-1, index=actions) loss = torch.mean(0.5 * (targets - v) ** 2) loss.backward() self.policy_optimizer.step() self.policy.update_target() return # def optimize_policy(self): # """ # This function will optimize the policy to maximize returns # Based on collected data # :return: # """ # self.policy_optimizer.zero_grad() # s, a, r, s_p, dones = self.agent_buffer.sample(100) # v, targets = self.compute_td_targets(s, s_p, dones, rewards=r) # advantages = (targets - v).detach() # a = a.reshape([-1, 1]).detach() # neg_log_pi = -1. * self.policy.pi_loss(s.reshape([-1, self.env.dims]), a) # entropy_kl = self.policy.entropy(s.reshape([-1, self.env.dims])) # loss = torch.mean(advantages * neg_log_pi) + 1e-1 * torch.mean(entropy_kl) # loss.backward() # self.policy_optimizer.step() # return def compute_aim_pen(self, target_state: torch.Tensor, prev_state: torch.Tensor, next_state_state: torch.Tensor, lambda_=10.): """ Computes values of the discriminator at different points and constraints the difference to be 0.1 """ prev_out = self.discriminator(prev_state) next_out = self.discriminator(next_state_state) penalty = lambda_ * torch.max(torch.abs(next_out - prev_out) - 0.1, torch.tensor(0.)).pow(2).mean() return penalty def compute_grad_pen(self, target_state: torch.Tensor, policy_state: torch.Tensor, lambda_=10.): """ Computes the gradients by mixing the data randomly and creates a loss for the magnitude of the gradients. """ alpha = torch.rand(target_state.size(0), 1) # expert_data = torch.cat([expert_state, expert_action], dim=1) # policy_data = torch.cat([policy_state, policy_action], dim=1) alpha = alpha.expand_as(target_state).to(target_state.device) mixup_data = alpha * target_state + (1 - alpha) * policy_state mixup_data.requires_grad = True disc = self.discriminator(mixup_data) ones = torch.ones(disc.size()).to(disc.device) grad = torch.autograd.grad( outputs=disc, inputs=mixup_data, grad_outputs=ones, create_graph=True, retain_graph=True, only_inputs=True)[0] grad_pen = lambda_ * (torch.max(grad.norm(2, dim=1) - 0.01, torch.tensor(0.))).pow(2).mean() return grad_pen def optimize_discriminator(self): """ Optimize the discriminator based on the memory and target_distribution :return: """ num_samples = 100 self.discriminator_optimizer.zero_grad() # _, _, _, target_distribution, _ = self.target_buffer.sample(100) target_dist = np.reshape(self.env.target_distribution(), (-1,)) target_distribution = np.random.choice(target_dist.shape[0], num_samples, p=target_dist) states, _, _, next_states, _ = self.agent_buffer.sample(num_samples) # target_distribution = sample_target_distribution(mean=self.env.target_mean, std=self.env.target_std, # num=100) target_distribution = target_distribution.reshape([-1, 1]) if self.env.dims > 1: target_distribution = np.concatenate([target_distribution, target_distribution], axis=-1) target_distribution[:, 0] = target_distribution[:, 0] // self.env.y_dim target_distribution[:, 1] = target_distribution[:, 1] % self.env.y_dim next_states = next_states.reshape([-1, self.env.dims]) ones = torch.tensor(target_distribution).type(torch.float32).reshape([-1, self.env.dims]) zeros = torch.tensor(next_states).type(torch.float32).reshape([-1, self.env.dims]) zeros_prev = torch.tensor(states).type(torch.float32).reshape([-1, self.env.dims]) # ########## GAIL loss if reward_to_use != 'aim': labels_ones = torch.ones((num_samples, 1)) * 0.9 labels_zeros = torch.ones((num_samples, 1)) * 0.1 data = torch.cat([ones, zeros]) pred = self.discriminator(data) labels = torch.cat([labels_ones, labels_zeros]) gail_loss = f.binary_cross_entropy_with_logits(pred, labels) grad_penalty = self.compute_grad_pen(ones, zeros) loss = gail_loss + grad_penalty else: # ####### WGAN loss pred_ones = self.discriminator(ones) pred_zeros = self.discriminator(zeros) preds = torch.cat([pred_zeros, pred_ones], dim=0) self.max_r = torch.max(preds).detach().cpu().numpy() + 0.1 self.min_r = torch.min(preds).detach().cpu().numpy() - 0.1 wgan_loss = torch.mean(pred_zeros) + torch.mean(pred_ones * (-1.)) aim_penalty = self.compute_aim_pen(ones, zeros_prev, zeros) # grad_penalty = self.compute_grad_pen(ones, zeros) loss = wgan_loss + aim_penalty # + grad_penalty # loss = torch.mean(- labels * pred.log() - (1 - labels) * (1. - pred).log()) loss.backward() # utils.clip_grad_norm_(self.discriminator.parameters(), max_norm=0.5) self.discriminator_optimizer.step() def plot_dist(self, num_samples=100, it=0, dname='aim'): """ plot the two distributions as histograms :return: """ # dname = 'r_neg' if not path.exists(dname): os.mkdir(dname) # _, _, _, target_distribution, _ = self.target_buffer.sample(num_samples) states, _, _, next_states, _ = self.agent_buffer.sample(num_samples) target_dist = np.reshape(self.env.target_distribution(), (-1,)) target_distribution = np.random.choice(target_dist.shape[0], num_samples, p=target_dist) target_distribution = target_distribution.reshape([-1, 1]).astype(np.float32) if self.env.dims > 1: target_distribution = np.concatenate([target_distribution, target_distribution], axis=-1) target_distribution[:, 0] = target_distribution[:, 0] // self.env.y_dim target_distribution[:, 1] = target_distribution[:, 1] % self.env.y_dim # target_distribution += np.random.normal(loc=0, scale=0.5, size=target_distribution.shape) next_states = next_states.numpy().reshape([-1, self.env.dims]).astype(np.float32) # next_states += np.random.normal(loc=0., scale=0.01, size=next_states.shape) q, v, qt, vt = self.policy(states) print(f"q: {np.mean(q.detach().numpy())}, v: {np.mean(v.detach().numpy())}," f" qt: {np.mean(qt.detach().numpy())}, vt: {np.mean(vt.detach().numpy())}") if self.env.dims == 1: xloc =
np.arange(0, self.env.num_states)
numpy.arange
""" Adapated from Vertex frequency codebase. Credit to <NAME>. Algorithms based on https://arxiv.org/pdf/1905.09758.pdf Goal is to estimate the density of eigenvalues over a known range. """ import numpy as np import scipy.sparse as ss import scipy.io as sio import numpy.random as nr import matplotlib.pyplot as plt import graphtools import sklearn.datasets import pygsp import sklearn import ot def moments_cheb_dos(A, n, nZ=100, N=10, kind=1): """ Compute a column vector of Chebyshev moments of the form c(k) = tr(T_k(A)) for k = 0 to N-1. This routine does no scaling; the spectrum of A should already lie in [-1,1]. The traces are computed via a stochastic estimator with nZ probe Args: A: Matrix or function apply matrix (to multiple RHS) n: Dimension of the space nZ: Number of probe vectors with which we compute moments N: Number of moments to compute kind: 1 or 2 for first or second kind Chebyshev functions (default = 1) Output: c: a column vector of N moment estimates cs: standard deviation of the moment estimator (std/sqrt(nZ)) """ # Create a function handle if given a matrix if callable(A): Afun = A else: if isinstance(A, np.ndarray): A = ss.csr_matrix(A) Afun = lambda x: A * x if N < 2: N = 2 # Set up random probe vectors (allowed to be passed in) if not isinstance(nZ, int): Z = nZ nZ = Z.shape[1] else: Z = np.sign(nr.randn(n, nZ)) # Estimate moments for each probe vector cZ = moments_cheb(Afun, Z, N, kind) c = np.mean(cZ, 1) cs = np.std(cZ, 1, ddof=1) / np.sqrt(nZ) c = c.reshape([N, -1]) cs = cs.reshape([N, -1]) return c, cs def moments_cheb(A, V, N=10, kind=1): """ Compute a column vector of Chebyshev moments of the form c(k) = v'*T_k(A)*v for k = 0 to N-1. This routine does no scaling; the spectrum of A should already lie in [-1,1] Args: A: Matrix or function apply matrix (to multiple RHS) V: Starting vectors N: Number of moments to compute kind: 1 or 2 for first or second kind Chebyshev functions (default = 1) Output: c: a length N vector of moments """ if N < 2: N = 2 if not isinstance(V, np.ndarray): V = V.toarray() # Create a function handle if given a matrix if callable(A): Afun = A else: if isinstance(A, np.ndarray): A = ss.csr_matrix(A) Afun = lambda x: A * x n, p = V.shape c = np.zeros((N, p)) # Run three-term recurrence to compute moments TVp = V # x TVk = kind * Afun(V) # Ax c[0] = np.sum(V * TVp, 0) # xx c[1] = np.sum(V * TVk, 0) # xAx for i in range(2, N): TV = 2 * Afun(TVk) - TVp # A*2T_1 - T_o TVp = TVk TVk = TV c[i] = sum(V * TVk, 0) return c def plot_cheb_argparse(npts, c, xx0=-1, ab=np.array([1, 0])): """ Handle argument parsing for plotting routines. Should not be called directly by users. Args: npts: Number of points in a default mesh c: Vector of moments xx0: Input sampling mesh (original coordinates) ab: Scaling map parameters Output: c: Vector of moments xx: Input sampling mesh ([-1,1] coordinates) xx0: Input sampling mesh (original coordinates) ab: Scaling map parameters """ if isinstance(xx0, int): # only c is given xx0 = np.linspace(-1 + 1e-8, 1 - 1e-8, npts) xx = xx0 else: if len(xx0) == 2: # parameters are c, ab ab = xx0 xx = np.linspace(-1 + 1e-8, 1 - 1e-8, npts) xx0 = ab[0] * xx + ab[1] else: # parameteres are c, xx0 xx = xx0 # All parameters specified if not (ab == [1, 0]).all(): xx = (xx0 - ab[1]) / ab[0] return c, xx, xx0, ab def plot_chebint(varargin, npts=1001, pflag=True): """ Given a (filtered) set of first-kind Chebyshev moments, compute the integral of the density: int_0^s (2/pi)*sqrt(1-x^2)*( c(0)/2+sum_{n=1}^{N-1}c_nT_n(x) ) Output a plot of cumulative density function by default. Args: c: Array of Chebyshev moments (on [-1,1]) xx: Evaluation points (defaults to mesh of 1001 pts) ab: Mapping parameters (default to identity) pflag: Option to output the plot Output: yy: Estimated cumulative density up to each xx point """ # Parse arguments c, xx, xx0, ab = plot_cheb_argparse(npts, *varargin) N = len(c) txx = np.arccos(xx) yy = c[0] * (txx - np.pi) / 2 for idx in np.arange(1, N): yy += c[idx] * np.sin(idx * txx) / idx yy *= -2 / np.pi # Plot by default if pflag: plt.plot(xx0, yy) # plt.ion() plt.show() # plt.pause(1) # plt.clf() return [xx0, yy] def plot_chebhist(varargin, pflag=True, npts=21): """ Given a (filtered) set of first-kind Chebyshev moments, compute the integral of the density: int_0^s (2/pi)*sqrt(1-x^2)*( c(0)/2+sum_{n=1}^{N-1}c_nT_n(x) ) Output a histogram of cumulative density function by default. Args: c: Vector of Chebyshev moments (on [-1,1]) xx: Evaluation points (defaults to mesh of 21 pts) ab: Mapping parameters (default to identity) pflag: Option to output the plot Output: yy: Estimated counts on buckets between xx points """ # Parse arguments c, xx, xx0, ab = plot_cheb_argparse(npts, *varargin) # Compute CDF and bin the difference yy = plot_chebint((c, xx0, ab), pflag=False) yy = yy[1:] - yy[:-1] xm = (xx0[1:] + xx0[:-1]) / 2 # Plot by default if pflag: plt.bar(xm + 1, yy, align="center", width=0.1) # plt.ion() plt.show() # plt.pause(1) # plt.clf() return [xm + 1, yy] def matrix_normalize(W, mode="s"): """ Normalize an adjacency matrix. Args: W: weighted adjacency matrix mode: string indicating the style of normalization; 's': Symmetric scaling by the degree (default) 'r': Normalize to row-stochastic 'c': Normalize to col-stochastic Output: N: a normalized adjacency matrix or stochastic matrix (in sparse form) """ dc = np.asarray(W.sum(0)).squeeze() dr = np.asarray(W.sum(1)).squeeze() [i, j, wij] = ss.find(W) # Normalize in desired style if mode in "sl": wij = wij / np.sqrt(dr[i] * dc[j]) elif mode == "r": wij = wij / dr[i] elif mode == "c": wij = wij / dc[j] else: raise ValueError("Unknown mode!") N = ss.csr_matrix((wij, (i, j)), shape=W.shape) return N def simple_diffusion_embeddings(graph, distribution_labels, subsample=False, scales=7): """ The plain version, without any frills. Return the vectors whose L1 distances are the EMD between the given distributions. The graph supplied (a PyGSP graph) should encompass both distributions. The distributions themselves should be one-hot encoded with the distribution_labels parameter. """ heat_filter = pygsp.filters.Heat( graph, tau=[2 ** i for i in range(1, scales + 1)], normalize=False ) diffusions = heat_filter.filter(distribution_labels, method="chebyshev", order=32) print(diffusions.shape) if subsample: rng = np.random.default_rng(42) if len(diffusions.shape) == 2: n_samples = 1 n, n_scales = diffusions.shape else: n, n_samples, n_scales = diffusions.shape embeddings = [] for i in range(n_scales): d = diffusions[..., i] weight = 0.5 ** (n_scales - i) if subsample: subsample_idx = rng.integers(n, size=n // 10) lvl_embed = weight * d[subsample_idx].T else: lvl_embed = weight * d.T embeddings.append(lvl_embed) if len(diffusions.shape) == 2: embeddings = np.concatenate(embeddings) else: embeddings = np.concatenate(embeddings, axis=1) return embeddings def l1_distance_matrix(embeddings): """ Gives a square distance matrix with the L1 distances between the provided embeddings """ D = np.zeros((len(embeddings), len(embeddings))) for i, embed1 in enumerate(embeddings): for j, embed2 in enumerate(embeddings): D[i][j] = np.sum(
np.abs(embed1 - embed2)
numpy.abs
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue May 26 11:00:07 2020 @author: <NAME> """ import matplotlib.pyplot as plt from scipy.spatial import distance from scipy import signal import numpy as np # Constants DEFAULT_NEURONUM = 500 DEFAULT_TEND = 7000 DEFAULT_IDRIVE = 3 DEFAULT_XNUME = 20 DEFAULT_YNUME = 20 DEFAULT_XNUMI = 10 DEFAULT_YNUMI = 10 DEFAULT_DEGREE_EE = 40 DEFAULT_DEGREE_EI = 10 DEFAULT_DEGREE_IE = 400 DEFAULT_DEGREE_II = 100 DEFAULT_WEIGHT_EE = 0.01 DEFAULT_WEIGHT_EI = 0.05 DEFAULT_WEIGHT_IE = 0.04 DEFAULT_WEIGHT_II = 0.04 DEFAULT_TAU_SYN = 3 DEFAULT_GKS_MIN = 0.2 DEFAULT_GKS_MAX = 1.5 # Class class NeuroNet(): def __init__(self, neuroNum = DEFAULT_NEURONUM, tEnd = DEFAULT_TEND, Idrive = DEFAULT_IDRIVE, tauSyn = DEFAULT_TAU_SYN, gKsMin = DEFAULT_GKS_MIN, gKsMax = DEFAULT_GKS_MAX): ''' Parameters ---------- neuroNum : TYPE, optional DESCRIPTION. The default is DEFAULT_NEURONUM. tEnd : TYPE, optional DESCRIPTION. The default is DEFAULT_TEND. Idrive : TYPE, optional DESCRIPTION. The default is DEFAULT_IDRIVE. tauSyn : TYPE, optional DESCRIPTION. The default is DEFAULT_TAU_SYN. Returns ------- None. ''' # simulation properties self.tEnd = tEnd # ms self.tStep = 0.05 # ms self.tPoints = np.arange(0,self.tEnd,self.tStep) # ensemble properties self.neuroNum = neuroNum self.Idrive = Idrive*np.ones(shape=(self.neuroNum,1)) # neuronal properties self.gKsMin = gKsMin self.gKsMax = gKsMax self.randomInitialStates() self.gKs = self.gKsMax # initial adjMat self.adjMat =
np.zeros(shape=(self.neuroNum,self.neuroNum))
numpy.zeros
#---------------------------------------------------------------------------------------------------- # This essentially generated context [left_ctx, right_ctx] for each # mention of entity in each sentence of the validation and test set and then converts that context into # a glove context vector. #---------------------------------------------------------------------------------------------------- from generate_feature_vectors_and_class_labels.options import Options import json import os from gensim.parsing.preprocessing import strip_punctuation from gensim.parsing.preprocessing import preprocess_string import numpy as np import scipy as sp CUSTOM_FILTERS = [lambda x: x.lower(), strip_punctuation] my_options = Options() dataset='val' #------------------------------------------------------- # Supporting Functions #------------------------------------------------------- def clean_type_hierarchy(complete_type): complete_type.discard('/religion/religion') complete_type.discard('/computer') complete_type.add('/computer_science') complete_type.discard('/computer/algorithm') complete_type.add('/computer_science/algorithm') complete_type.discard('/computer/programming_language') complete_type.add('/computer_science/programming_language') complete_type.discard('/government/government') complete_type.add('/government/administration') return complete_type #------------------------------------------------------- def generate_conflicting_labels_dict(): conflicting_labels_dict = {} conflicting_labels_dict['/computer'] = '/computer_science' conflicting_labels_dict['/computer/algorithm'] = '/computer_science/algorithm' conflicting_labels_dict['/computer/programming_language'] = '/computer_science/programming_language' conflicting_labels_dict['/government/government'] = '/government/administration' return conflicting_labels_dict #------------------------------------------------------- def extract_leaf_and_internal_nodes(complete_type): for type in complete_type: type_path = type.split('/')[1:] leaf_nodes.add(type_path[-1]) for i in range(len(type_path) - 1): internal_nodes.add(type_path[i]) leaf_nodes_list = list(leaf_nodes) for node in leaf_nodes_list: if node in internal_nodes: leaf_nodes.remove(node) print(leaf_nodes) print(len(leaf_nodes)) leaf_nodes_list = list(leaf_nodes) leaf_nodes_list.sort() internal_nodes_list = list(internal_nodes) internal_nodes_list.sort() total_nodes_list = leaf_nodes_list + internal_nodes_list parent_of = [0] * (len(leaf_nodes_list) + len(internal_nodes_list)) is_leaf_node_list = [1] * len(leaf_nodes_list) + [0] * len(internal_nodes_list) for type in complete_type: type_path = type.split('/')[1:] if len(type_path) == 1: index = total_nodes_list.index(type_path[0]) parent_of[index] = -1 else: for i in range(1, len(type_path)): if type_path[i] in leaf_nodes_list: index = total_nodes_list.index(type_path[i]) parent_of[index] = total_nodes_list.index(type_path[i - 1]) return leaf_nodes_list, internal_nodes_list, total_nodes_list, parent_of, is_leaf_node_list #------------------------------------------------------- def generate_context_embedding(context_words_list, token_feature_vectors, token_list, method="average"): if context_words_list == []: return token_feature_vectors[-2] else: context_embd_list = [] no_context_words = 0 for word in context_words_list: no_context_words += 1 if word in token_list: index = token_list.index(word) context_embd_list.append(token_feature_vectors[index]) else: context_embd_list.append(token_feature_vectors[-1]) if method == 'average': context_embd = sum(context_embd_list) / no_context_words return context_embd #-------------------------------------------------------- # Generating Type Labels Lists #-------------------------------------------------------- if dataset=='val': with open(os.path.join(my_options.raw_input_dir,my_options.val_data_file)) as json_file: sentences_val = json.load(json_file) else: with open(os.path.join(my_options.raw_input_dir,my_options.test_data_file)) as json_file: sentences_val = json_file.readlines() complete_type=set() conflicting_labels_dict={} internal_nodes=set() leaf_nodes=set() #----------------------------------------------------------------- # ----collecting all type paths across all mentions of entities #----------------------------------------------------------------- if my_options.with_non_leaf: with open(os.path.join(my_options.feature_output_dir, 'with_non_leaf_type_name_train_split.json'), 'r') as filehandle: total_nodes_list = json.load(filehandle) else: with open(os.path.join(my_options.feature_output_dir, 'without_non_leaf_type_name_train_split.json'), 'r') as filehandle: total_nodes_list = json.load(filehandle) ''' for sentence in sentences_val: for mentions in json.loads(sentence)['mentions']: for label in mentions['labels']: complete_type.add(label) complete_type = clean_type_hierarchy(complete_type) conflicting_labels_dict = generate_conflicting_labels_dict() leaf_nodes_list, internal_nodes_list, total_nodes_list, parent_of, is_leaf_node_list = extract_leaf_and_internal_nodes(complete_type) ''' #-------------------------------------------------------- # Generating Type Labels and Context Feature Vectors for Entities #-------------------------------------------------------- entities=[] #entity_type_matrix = [] entities_labels=[] entities_total_context_feature_vectors = [] entities_left_context_feature_vectors = [] entities_right_context_feature_vectors = [] entities_left_right_context_feature_vectors = [] val_data=[] #count_only_non_leaf = 0 #count_both_leaf_and_non_leaf = 0 token_feature_vectors=np.load(os.path.join(my_options.feature_output_dir,'token_embedding_300d.npy')) with open(os.path.join(my_options.feature_output_dir,'token_list.json'), 'r') as filehandle: token_list = json.load(filehandle) token_dict={} for idx, token in enumerate(token_list): token_dict[token] = idx for index, sentence in enumerate(sentences_val): sentence=json.loads(sentence) if index%100000==0: print("#sentences processed so far ", index) # if index != 50607: # continue for mention in sentence['mentions']: example_dict={} # -------------------------------------------------------------- # -----Generating context vectors for entities mentions ------------ # -------------------------------------------------------------- start_index=mention['start'] end_index = mention['end'] if start_index==end_index: continue entity='_'.join(sentence['tokens'][start_index:end_index]) total_context_words_no_punctuations = [] left_context_words_no_punctuations = [] right_context_words_no_punctuations = [] #--------------------------------------------------------------------------- # If we have to include entity also in the left and right context then uncomment # following two lines and comment above two lines # --------------------------------------------------------------------------- #left_context_words.extend(sentence['tokens'][:start_index]) #right_context_words.extend(sentence['tokens'][end_index:]) # left_context_words.extend(sentence['tokens'][:end_index]) # right_context_words.extend(sentence['tokens'][start_index:]) # total_context_words.extend(sentence['tokens'][:start_index]) # total_context_words.extend(sentence['tokens'][end_index:]) total_ctx_embed = np.zeros((my_options.feature_dim)) left_ctx_embed = np.zeros((my_options.feature_dim)) right_ctx_embed = np.zeros((my_options.feature_dim)) for idx, word in enumerate(sentence['tokens']): new_word = preprocess_string(word, CUSTOM_FILTERS) if new_word == []: continue else: for temp_word in new_word: # if temp_word in token_list: # index = token_list.index(temp_word) # temp_word_embed = token_feature_vectors[index] # else: # temp_word_embed = token_feature_vectors[-1] temp_word_embed = token_feature_vectors[token_dict.get(temp_word, -1)] if idx < start_index: left_context_words_no_punctuations.append(temp_word) total_context_words_no_punctuations.append(temp_word) left_ctx_embed = left_ctx_embed + temp_word_embed total_ctx_embed = total_ctx_embed + temp_word_embed elif idx >= start_index and idx < end_index: left_context_words_no_punctuations.append(temp_word) right_context_words_no_punctuations.append(temp_word) left_ctx_embed = left_ctx_embed + temp_word_embed right_ctx_embed = right_ctx_embed + temp_word_embed else: right_context_words_no_punctuations.append(temp_word) total_context_words_no_punctuations.append(temp_word) right_ctx_embed = right_ctx_embed + temp_word_embed total_ctx_embed = total_ctx_embed + temp_word_embed if len(left_context_words_no_punctuations) > 0: left_ctx_embed = left_ctx_embed/ len(left_context_words_no_punctuations) if len(right_context_words_no_punctuations)>0: right_ctx_embed = left_ctx_embed / len(right_context_words_no_punctuations) if len(total_context_words_no_punctuations) >0: total_ctx_embed = left_ctx_embed / len(total_context_words_no_punctuations) # total_ctx_embed = generate_context_embedding(total_context_words_no_punctuations, token_feature_vectors, token_list, method="average") # left_ctx_embed = generate_context_embedding(left_context_words_no_punctuations, token_feature_vectors, token_list, method="average") # right_ctx_embed = generate_context_embedding(right_context_words_no_punctuations, token_feature_vectors, token_list, method="average") left_right_ctx_embed =
np.concatenate((left_ctx_embed, right_ctx_embed))
numpy.concatenate
# Released under The MIT License (MIT) # http://opensource.org/licenses/MIT # Copyright (c) 2013-2015 SCoT Development Team import unittest import numpy as np from numpy.testing.utils import assert_allclose from scot.datatools import dot_special from scot.csp import csp try: from generate_testdata import generate_covsig except ImportError: from .generate_testdata import generate_covsig epsilon = 1e-10 class TestFunctionality(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def testComponentSeparation(self): A = generate_covsig([[10,5,2],[5,10,2],[2,2,10]], 500) B = generate_covsig([[10,2,2],[2,10,5],[2,5,10]], 500) X = np.concatenate([A[np.newaxis], B[np.newaxis]], axis=0) W, V = csp(X, [1, 2]) C1a = np.cov(np.dot(W.T, X[0, :, :])) C2a = np.cov(np.dot(W.T, X[1, :, :])) Y = np.concatenate([B[np.newaxis], A[np.newaxis]], axis=0) W, V = csp(Y, [1, 2]) C1b = np.cov(np.dot(W.T, Y[0, :, :])) C2b = np.cov(np.dot(W.T, Y[1, :, :])) # check symmetric case assert_allclose(C1a.diagonal(), C2a.diagonal()[::-1]) assert_allclose(C1b.diagonal(), C2b.diagonal()[::-1]) # swapping class labels (or in this case, trials) should not change the result assert_allclose(C1a, C1b, rtol=1e-9, atol=1e-9) assert_allclose(C2a, C2b, rtol=1e-9, atol=1e-9) # variance of first component should be greatest for class 1 self.assertGreater(C1a[0, 0], C2a[0, 0]) # variance of last component should be greatest for class 1 self.assertLess(C1a[2, 2], C2a[2, 2]) # variance of central component should be equal for both classes assert_allclose(C1a[1, 1], C2a[1, 1]) class TestDefaults(unittest.TestCase): def setUp(self): self.X = np.random.randn(10,5,100) self.C = [0,0,0,0,0,1,1,1,1,1] self.Y = self.X.copy() self.D = list(self.C) self.T, self.M, self.N = self.X.shape self.W, self.V = csp(self.X, self.C) def tearDown(self): pass def testInvalidInput(self): # pass only 2d data self.assertRaises(AttributeError, csp, np.random.randn(3,10), [1,1,0,0] ) # number of class labels does not match number of trials self.assertRaises(AttributeError, csp, np.random.randn(5,3,10), [1,1,0,0] ) def testInputSafety(self): # function must not change input variables self.assertTrue((self.X == self.Y).all()) self.assertEqual(self.C, self.D) def testOutputSizes(self): # output matrices must have the correct size self.assertTrue(self.W.shape == (self.M, self.M)) self.assertTrue(self.V.shape == (self.M, self.M)) def testInverse(self): # V should be the inverse of W I = np.abs(self.V.dot(self.W)) self.assertTrue(np.abs(np.mean(I.diagonal())) - 1 < epsilon) self.assertTrue(np.abs(np.sum(I) - I.trace()) < epsilon) class TestDimensionalityReduction(unittest.TestCase): def setUp(self): self.n_comps = 5 self.X = np.random.rand(10,6,100) self.C = np.asarray([0,0,0,0,0,1,1,1,1,1]) self.X[self.C == 0, 0, :] *= 10 self.X[self.C == 0, 2, :] *= 5 self.X[self.C == 1, 1, :] *= 10 self.X[self.C == 1, 3, :] *= 2 self.Y = self.X.copy() self.D = list(self.C) self.T, self.M, self.N = self.X.shape self.W, self.V = csp(self.X, self.C, numcomp=self.n_comps) def tearDown(self): pass def testOutputSizes(self): # output matrices must have the correct size self.assertTrue(self.W.shape == (self.M, 5)) self.assertTrue(self.V.shape == (5, self.M)) def testPseudoInverse(self): # V should be the pseudo inverse of W I = self.V.dot(self.W) assert_allclose(I, np.eye(self.n_comps), rtol=1e-9, atol=1e-9) def testOutput(self): x = dot_special(self.W.T, self.X) v1 = sum(np.var(x[np.array(self.C)==0], axis=2)) v2 = sum(np.var(x[
np.array(self.C)
numpy.array
import h5py import numpy as np from scipy.io import loadmat from operator import itemgetter import math import scipy as sp import cv2 import matplotlib.pyplot as plt import os, sys import time import multiprocessing import random # Generate Observation Map def func(theta, m, I, imax, L, w, N, anglemask): print('*',end='') rotmat = np.array([[np.cos(theta), -np.sin(theta)],[np.sin(theta), np.cos(theta)]]) p = 0.5*(L[:,0]+1)*(w-1) #x 0:w-1 q = 0.5*(L[:,1]+1)*(w-1) #y 0:w-1 x = [p-0.5*(w-1), q-0.5*(w-1)] x_ = np.dot(rotmat, x) p = x_[0,:]+0.5*(w-1); q = x_[1,:]+0.5*(w-1); p = np.int32(p) q = np.int32(q) light_idx = q*w + p # 0:w*w-1 x = [N[:,0], N[:,1]] x_ = np.dot(rotmat, x) pn = x_[0,:]; qn = x_[1,:]; normal = [np.transpose(pn), np.transpose(qn), N[:,2]] normal = np.transpose(normal) temp = I*anglemask/np.transpose(imax) embed = np.zeros((m, w*w), np.float32) embed[:, light_idx] = temp embed = np.reshape(embed, (m, w, w)) mask = np.zeros((m, w*w), np.bool_) mask[:, light_idx] = anglemask mask = np.reshape(mask, (m, w, w)) return embed, mask, normal, rotmat def wrapper(args): return func(*args) # for multi core cpu def light_embedding_2d_rot_invariant_multi(I, imax, L, w, N, div, isRandomThresh): m = I.shape[0] rows = w cols = w embed_rot = [] normal_rot = [] mask_rot = [] rot = [] anglemask = np.zeros((I.shape[0],I.shape[1]),np.float32) for k in range(I.shape[0]): # numpixel angle1 = 180*np.arccos(L[:,2])/np.pi if isRandomThresh == True: tgt = np.where(angle1<random.randint(20,90)) tgtrandom = np.random.permutation(tgt[0]) tgt = tgtrandom[:random.randint(50,np.min([1000,L.shape[0]]))] else: tgt = np.where(angle1<90) anglemask[k,tgt] = 1 n = multiprocessing.cpu_count() p = multiprocessing.Pool(n) params = [(np.pi*(i*360.0/div)/180, m, I, imax, L, w, N, anglemask) for i in range(np.int32(div))] result = p.map(wrapper, params) p.close() embed_list = [] mask_list = [] nml_list = [] rot_list = [] for i in range(div): embed_list.append(result[i][0].copy()) mask_list.append(result[i][1].copy()) nml_list.append(result[i][2].copy()) rot_list.append(result[i][3].copy()) embed_list = np.array(embed_list) embed_list =
np.transpose(embed_list, (1,0,2,3))
numpy.transpose
from src.modelling.LoNGAE.train_lp_with_feats import run from .KCG import get_documents_kcg import paths import numpy as np from src.utils.datasets import name_of_dataset from tensorflow import keras from src.modelling.LoNGAE.models.ae import autoencoder_with_node_features class GAE: def __init__(self, dataset_path, big_graph): self.dataset_path = dataset_path self.big_graph = big_graph self.nodes, self._adjacency, self.doc_to_node_mapping, self.documents_labels = \ get_documents_kcg(self.dataset_path, big_graph) self._nodes_features =
np.array([node['feature'] for node in self.nodes])
numpy.array
# Common libs import numpy as np import matplotlib.pyplot as plt from os.path import isfile, join, exists from os import listdir, remove, getcwd from sklearn.metrics import confusion_matrix # My libs from utils.config import Config from utils.metrics import IoU_from_confusions, smooth_metrics from utils.ply import read_ply # Datasets from datasets.Scannet import ScannetDataset # ---------------------------------------------------------------------------------------------------------------------- # # Utility functions # \***********************/ # def running_mean(signal, n, axis=0): signal = np.array(signal) if signal.ndim == 1: signal_sum = np.convolve(signal, np.ones((2*n+1,)), mode='same') signal_num = np.convolve(signal*0+1, np.ones((2*n+1,)), mode='same') return signal_sum/signal_num elif signal.ndim == 2: smoothed = np.empty(signal.shape) if axis == 0: for i, sig in enumerate(signal): sig_sum = np.convolve(sig, np.ones((2*n+1,)), mode='same') sig_num = np.convolve(sig*0+1, np.ones((2*n+1,)), mode='same') smoothed[i, :] = sig_sum / sig_num elif axis == 1: for i, sig in enumerate(signal.T): sig_sum = np.convolve(sig, np.ones((2*n+1,)), mode='same') sig_num = np.convolve(sig*0+1, np.ones((2*n+1,)), mode='same') smoothed[:, i] = sig_sum / sig_num else: print('wrong axis') return smoothed else: print('wrong dimensions') return None def IoU_multi_metrics(all_IoUs, smooth_n): # Get mean IoU for consecutive epochs to directly get a mean all_mIoUs = [np.hstack([np.mean(obj_IoUs, axis=1) for obj_IoUs in epoch_IoUs]) for epoch_IoUs in all_IoUs] smoothed_mIoUs = [] for epoch in range(len(all_mIoUs)): i0 = max(epoch - smooth_n, 0) i1 = min(epoch + smooth_n + 1, len(all_mIoUs)) smoothed_mIoUs += [np.mean(np.hstack(all_mIoUs[i0:i1]))] # Get mean for each class all_objs_mIoUs = [[np.mean(obj_IoUs, axis=1) for obj_IoUs in epoch_IoUs] for epoch_IoUs in all_IoUs] smoothed_obj_mIoUs = [] for epoch in range(len(all_objs_mIoUs)): i0 = max(epoch - smooth_n, 0) i1 = min(epoch + smooth_n + 1, len(all_objs_mIoUs)) epoch_obj_mIoUs = [] for obj in range(len(all_objs_mIoUs[0])): epoch_obj_mIoUs += [np.mean(np.hstack([objs_mIoUs[obj] for objs_mIoUs in all_objs_mIoUs[i0:i1]]))] smoothed_obj_mIoUs += [epoch_obj_mIoUs] return np.array(smoothed_mIoUs), np.array(smoothed_obj_mIoUs) def IoU_class_metrics(all_IoUs, smooth_n): # Get mean IoU per class for consecutive epochs to directly get a mean without further smoothing smoothed_IoUs = [] for epoch in range(len(all_IoUs)): i0 = max(epoch - smooth_n, 0) i1 = min(epoch + smooth_n + 1, len(all_IoUs)) smoothed_IoUs += [np.mean(np.vstack(all_IoUs[i0:i1]), axis=0)] smoothed_IoUs = np.vstack(smoothed_IoUs) smoothed_mIoUs = np.mean(smoothed_IoUs, axis=1) return smoothed_IoUs, smoothed_mIoUs def load_confusions(filename, n_class): with open(filename, 'r') as f: lines = f.readlines() confs = np.zeros((len(lines), n_class, n_class)) for i, line in enumerate(lines): C = np.array([int(value) for value in line.split()]) confs[i, :, :] = C.reshape((n_class, n_class)) return confs def load_training_results(path): filename = join(path, 'training.txt') with open(filename, 'r') as f: lines = f.readlines() steps = [] #L_out = [] L_reg = [] L_p = [] #acc = [] t = [] memory = [] L_out0=[] L_out1=[] L_out2=[] L_out3=[] acc0=[] acc1=[] acc2=[] acc3=[] for line in lines[1:]: line_info = line.split() if (len(line) > 0): steps += [int(line_info[0])] L_out0 += [float(line_info[1])] L_out1 += [float(line_info[2])] L_out2 += [float(line_info[3])] L_out3 += [float(line_info[4])] L_reg += [float(line_info[5])] L_p += [float(line_info[6])] acc0 += [float(line_info[7])] acc1 += [float(line_info[8])] acc2 += [float(line_info[9])] acc3 += [float(line_info[10])] t += [float(line_info[11])] memory += [float(line_info[12])] else: break return steps, L_out0, L_out1, L_out2, L_out3, L_reg, L_p, acc0, acc1, acc2, acc3, t, memory def load_single_IoU(filename, n_parts): with open(filename, 'r') as f: lines = f.readlines() # Load all IoUs all_IoUs = [] for i, line in enumerate(lines): all_IoUs += [np.reshape([float(IoU) for IoU in line.split()], [-1, n_parts])] return all_IoUs def load_snap_clouds(path, dataset, only_last=False): cloud_folders = np.array([join(path, f) for f in listdir(path) if f.startswith('val_preds')]) cloud_epochs = np.array([int(f.split('_')[-1]) for f in cloud_folders]) epoch_order = np.argsort(cloud_epochs) cloud_epochs = cloud_epochs[epoch_order] cloud_folders = cloud_folders[epoch_order] Confs = np.zeros((len(cloud_epochs), dataset.num_classes, dataset.num_classes), dtype=np.int32) for c_i, cloud_folder in enumerate(cloud_folders): if only_last and c_i < len(cloud_epochs) - 1: continue # Load confusion if previously saved conf_file = join(cloud_folder, 'conf.txt') if isfile(conf_file): Confs[c_i] += np.loadtxt(conf_file, dtype=np.int32) else: for f in listdir(cloud_folder): if f.endswith('.ply') and not f.endswith('sub.ply'): data = read_ply(join(cloud_folder, f)) labels = data['class'] preds = data['preds'] Confs[c_i] += confusion_matrix(labels, preds, dataset.label_values).astype(np.int32) np.savetxt(conf_file, Confs[c_i], '%12d') # Erase ply to save disk memory if c_i < len(cloud_folders) - 1: for f in listdir(cloud_folder): if f.endswith('.ply'): remove(join(cloud_folder, f)) # Remove ignored labels from confusions for l_ind, label_value in reversed(list(enumerate(dataset.label_values))): if label_value in dataset.ignored_labels: Confs = np.delete(Confs, l_ind, axis=1) Confs = np.delete(Confs, l_ind, axis=2) return cloud_epochs, IoU_from_confusions(Confs) def load_multi_IoU(filename, n_parts): with open(filename, 'r') as f: lines = f.readlines() # Load all IoUs all_IoUs = [] for i, line in enumerate(lines): obj_IoUs = [[float(IoU) for IoU in s.split()] for s in line.split('/')] obj_IoUs = [np.reshape(IoUs, [-1, n_parts[obj]]) for obj, IoUs in enumerate(obj_IoUs)] all_IoUs += [obj_IoUs] return all_IoUs def compare_trainings(list_of_paths, list_of_labels=None): # Parameters # ********** steps_per_epoch = 0 smooth_epochs = 1 if list_of_labels is None: list_of_labels = [str(i) for i in range(len(list_of_paths))] # Read Training Logs # ****************** all_epochs = [] all_loss0 = [] all_loss1 = [] all_loss2 = [] all_loss3 = [] all_lr = [] all_times = [] all_acc0 = [] all_acc1 = [] all_acc2 = [] all_acc3 = [] for path in list_of_paths: # Load parameters config = Config() config.load(path) # Compute number of steps per epoch if config.epoch_steps is None: if config.dataset == 'ModelNet40': steps_per_epoch = np.ceil(9843 / int(config.batch_num)) else: raise ValueError('Unsupported dataset') else: steps_per_epoch = config.epoch_steps smooth_n = int(steps_per_epoch * smooth_epochs) # Load results steps, L_out0,L_out1,L_out2,L_out3,L_reg,L_p,acc0,acc1,acc2,acc3,t, memory = load_training_results(path) all_epochs += [np.array(steps) / steps_per_epoch] all_loss0 += [running_mean(L_out0, smooth_n)] all_loss1 += [running_mean(L_out1, smooth_n)] all_loss2 += [running_mean(L_out2, smooth_n)] all_loss3 += [running_mean(L_out3, smooth_n)] all_acc0 += [running_mean(acc0, smooth_n)] all_acc1 += [running_mean(acc1, smooth_n)] all_acc2 += [running_mean(acc2, smooth_n)] all_acc3 += [running_mean(acc3, smooth_n)] all_times += [t] # Learning rate lr_decay_v = np.array([lr_d for ep, lr_d in config.lr_decays.items()]) lr_decay_e = np.array([ep for ep, lr_d in config.lr_decays.items()]) max_e = max(np.max(all_epochs[-1]) + 1, np.max(lr_decay_e) + 1) lr_decays = np.ones(int(np.ceil(max_e)), dtype=np.float32) lr_decays[0] = float(config.learning_rate) lr_decays[lr_decay_e] = lr_decay_v lr = np.cumprod(lr_decays) all_lr += [lr[np.floor(all_epochs[-1]).astype(np.int32)]] # Plots learning rate # ******************* if False: # Figure fig = plt.figure('lr') for i, label in enumerate(list_of_labels): plt.plot(all_epochs[i], all_lr[i], linewidth=1, label=label) # Set names for axes plt.xlabel('epochs') plt.ylabel('lr') plt.yscale('log') # Display legends and title plt.legend(loc=1) # Customize the graph ax = fig.gca() ax.grid(linestyle='-.', which='both') # ax.set_yticks(np.arange(0.8, 1.02, 0.02)) # Plots loss # ********** ''' # Figure fig = plt.figure('loss') for i, label in enumerate(list_of_labels): plt.plot(all_epochs[i], all_loss[i], linewidth=1, label=label) # Set names for axes plt.xlabel('epochs') plt.ylabel('loss') plt.yscale('log') # Display legends and title plt.legend(loc=1) plt.title('Losses compare') # Customize the graph ax = fig.gca() ax.grid(linestyle='-.', which='both') # ax.set_yticks(np.arange(0.8, 1.02, 0.02)) ''' # Plots acc # ********** # Figure fig = plt.figure('acc') for i, label in enumerate(list_of_labels): plt.plot(all_epochs[i], all_acc0[i], linewidth=1, label=label) for i, label in enumerate(list_of_labels): plt.plot(all_epochs[i], all_acc1[i], linewidth=1, label=label) for i, label in enumerate(list_of_labels): plt.plot(all_epochs[i], all_acc2[i], linewidth=1, label=label) for i, label in enumerate(list_of_labels): plt.plot(all_epochs[i], all_acc3[i], linewidth=1, label=label) # Set names for axes plt.xlabel('epochs') plt.ylabel('acc') plt.yscale('log') # Display legends and title plt.legend(loc=0) plt.title('Acc compare') # Customize the graph ax = fig.gca() ax.grid(linestyle='-.', which='both') # ax.set_yticks(np.arange(0.8, 1.02, 0.02)) # Plot Times # ********** # Figure fig = plt.figure('time') for i, label in enumerate(list_of_labels): plt.plot(all_epochs[i], np.array(all_times[i]) / 3600, linewidth=1, label=label) # Set names for axes plt.xlabel('epochs') plt.ylabel('time') # plt.yscale('log') # Display legends and title plt.legend(loc=0) # Customize the graph ax = fig.gca() ax.grid(linestyle='-.', which='both') # ax.set_yticks(np.arange(0.8, 1.02, 0.02)) # Show all plt.show() def compare_convergences_multisegment(list_of_paths, list_of_labels=None): # Parameters # ********** steps_per_epoch = 0 smooth_n = 10 if list_of_labels is None: list_of_labels = [str(i) for i in range(len(list_of_paths))] # Read Logs # ********* all_pred_epochs = [] all_instances_mIoUs = [] all_objs_mIoUs = [] all_objs_IoUs = [] all_parts = [] obj_list = ['Air', 'Bag', 'Cap', 'Car', 'Cha', 'Ear', 'Gui', 'Kni', 'Lam', 'Lap', 'Mot', 'Mug', 'Pis', 'Roc', 'Ska', 'Tab'] print('Objs | Inst | Air Bag Cap Car Cha Ear Gui Kni Lam Lap Mot Mug Pis Roc Ska Tab') print('-----|------|--------------------------------------------------------------------------------') for path in list_of_paths: # Load parameters config = Config() config.load(path) # Get the number of classes n_parts = [4, 2, 2, 4, 4, 3, 3, 2, 4, 2, 6, 2, 3, 3, 3, 3] part = config.dataset.split('_')[-1] # Get validation confusions file = join(path, 'val_IoUs.txt') val_IoUs = load_multi_IoU(file, n_parts) file = join(path, 'vote_IoUs.txt') vote_IoUs = load_multi_IoU(file, n_parts) #print(len(val_IoUs[0])) #print(val_IoUs[0][0].shape) # Get mean IoU #instances_mIoUs, objs_mIoUs = IoU_multi_metrics(val_IoUs, smooth_n) # Get mean IoU instances_mIoUs, objs_mIoUs = IoU_multi_metrics(vote_IoUs, smooth_n) # Aggregate results all_pred_epochs += [np.array([i for i in range(len(val_IoUs))])] all_instances_mIoUs += [instances_mIoUs] all_objs_IoUs += [objs_mIoUs] all_objs_mIoUs += [np.mean(objs_mIoUs, axis=1)] if part == 'multi': s = '{:4.1f} | {:4.1f} | '.format(100 * np.mean(objs_mIoUs[-1]), 100 * instances_mIoUs[-1]) for obj_mIoU in objs_mIoUs[-1]: s += '{:4.1f} '.format(100 * obj_mIoU) print(s) else: s = ' -- | -- | ' for obj_name in obj_list: if part.startswith(obj_name): s += '{:4.1f} '.format(100 * instances_mIoUs[-1]) else: s += ' -- '.format(100 * instances_mIoUs[-1]) print(s) all_parts += [part] # Plots # ***** if 'multi' in all_parts: # Figure fig = plt.figure('Instances mIoU') for i, label in enumerate(list_of_labels): if all_parts[i] == 'multi': plt.plot(all_pred_epochs[i], all_instances_mIoUs[i], linewidth=1, label=label) plt.xlabel('epochs') plt.ylabel('IoU') # Set limits for y axis #plt.ylim(0.55, 0.95) # Display legends and title plt.legend(loc=4) # Customize the graph ax = fig.gca() ax.grid(linestyle='-.', which='both') #ax.set_yticks(np.arange(0.8, 1.02, 0.02)) # Figure fig = plt.figure('mean of categories mIoU') for i, label in enumerate(list_of_labels): if all_parts[i] == 'multi': plt.plot(all_pred_epochs[i], all_objs_mIoUs[i], linewidth=1, label=label) plt.xlabel('epochs') plt.ylabel('IoU') # Set limits for y axis #plt.ylim(0.8, 1) # Display legends and title plt.legend(loc=4) # Customize the graph ax = fig.gca() ax.grid(linestyle='-.', which='both') #ax.set_yticks(np.arange(0.8, 1.02, 0.02)) for obj_i, obj_name in enumerate(obj_list): if np.any([part.startswith(obj_name) for part in all_parts]): # Figure fig = plt.figure(obj_name + ' mIoU') for i, label in enumerate(list_of_labels): if all_parts[i] == 'multi': plt.plot(all_pred_epochs[i], all_objs_IoUs[i][:, obj_i], linewidth=1, label=label) elif all_parts[i].startswith(obj_name): plt.plot(all_pred_epochs[i], all_objs_mIoUs[i], linewidth=1, label=label) plt.xlabel('epochs') plt.ylabel('IoU') # Set limits for y axis #plt.ylim(0.8, 1) # Display legends and title plt.legend(loc=4) # Customize the graph ax = fig.gca() ax.grid(linestyle='-.', which='both') #ax.set_yticks(np.arange(0.8, 1.02, 0.02)) # Show all plt.show() def compare_convergences_segment(dataset, list_of_paths, list_of_names=None): # Parameters # ********** smooth_n = 10 if list_of_names is None: list_of_names = [str(i) for i in range(len(list_of_paths))] # Read Logs # ********* all_pred_epochs = [] all_mIoUs = [] all_class_IoUs = [] all_snap_epochs = [] all_snap_IoUs = [] # Load parameters config = Config() config.load(list_of_paths[0]) class_list = [dataset.label_to_names[label] for label in dataset.label_values if label not in dataset.ignored_labels] s = '{:^10}|'.format('mean') for c in class_list: s += '{:^10}'.format(c) print(s) print(10*'-' + '|' + 10*config.num_classes*'-') for path in list_of_paths: # Get validation IoUs file = join(path, 'val_IoUs.txt') val_IoUs = load_single_IoU(file, config.num_classes) # Get mean IoU class_IoUs, mIoUs = IoU_class_metrics(val_IoUs, smooth_n) # Aggregate results all_pred_epochs += [np.array([i for i in range(len(val_IoUs))])] all_mIoUs += [mIoUs] all_class_IoUs += [class_IoUs] s = '{:^10.1f}|'.format(100*mIoUs[-1]) for IoU in class_IoUs[-1]: s += '{:^10.1f}'.format(100*IoU) print(s) # Get optional full validation on clouds snap_epochs, snap_IoUs = load_snap_clouds(path, dataset) all_snap_epochs += [snap_epochs] all_snap_IoUs += [snap_IoUs] print(10*'-' + '|' + 10*config.num_classes*'-') for snap_IoUs in all_snap_IoUs: if len(snap_IoUs) > 0: s = '{:^10.1f}|'.format(100*
np.mean(snap_IoUs[-1])
numpy.mean
import numpy as np import matplotlib.pylab as plt import sys def run(): visualizeTarget = sys.argv[1] print(visualizeTarget) if(visualizeTarget=='step'): x=np.arange(-5.0,5.0,0.1) y=step(x) plt.plot(x,y) plt.ylim(-0.1,1.1) plt.show() elif(visualizeTarget=='sigmoid'): x=np.arange(-5.0,5.0,0.1) y=sigmoid(x) plt.plot(x,y) plt.ylim(-0.1,1.1) plt.show() elif(visualizeTarget=='relu'): x=np.arange(-5.0,5.0,0.1) y=relu(x) plt.plot(x,y) # plt.ylim(-0.1,1.1) plt.show() elif(visualizeTarget=='all'): x=np.arange(-5.0,5.0,0.1) y=step(x) plt.plot(x,y) # plt.ylim(-0.1,1.1) x=np.arange(-5.0,5.0,0.1) y=sigmoid(x) plt.plot(x,y) x=np.arange(-5.0,5.0,0.1) y=relu(x) plt.plot(x,y) # plt.ylim(-0.1,3.0) plt.show() # for x in sys.argv: # print(x) class variable(): def __init__(self, value): self.data = value pass def read(self): return self.data def test(): v = variable(424) print(v.read() == 424) a = np.array([2,3,1,4,2]) print(a) print(sigmoid(a)) def TestSimpleANDGate(): print('simple AND gate test') print(SimpleANDGate(0,0)) print(SimpleANDGate(0,1)) print(SimpleANDGate(1,0)) print(SimpleANDGate(1,1)) def SimpleANDGate(x1,x2): w1,w2,theta = 0.5,0.5,0.7 tmp = x1*w1+x2*w2 if(tmp<=theta): return 0 elif(tmp>theta): return 1 def TestANDGate(): print('and gate test') print(ANDGate(0,0)) print(ANDGate(0,1)) print(ANDGate(1,0)) print(ANDGate(1,1)) def ANDGate(x1,x2): x = np.array([x1,x2]) w=np.array([0.5,0.5]) b=-0.7 tmp=np.sum(w*x)+b if(tmp<=0): return 0 else: return 1 def TestNANDGate(): print('nand gate test') print(NANDGate(0,0)) print(NANDGate(0,1)) print(NANDGate(1,0)) print(NANDGate(1,1)) def NANDGate(x1,x2): x = np.array([x1,x2]) w=np.array([-0.5,-0.5]) b=0.7 tmp=np.sum(w*x)+b if(tmp<=0): return 0 else: return 1 def TestORGate(): print('OR gate test') print(ORGate(0,0)) print(ORGate(0,1)) print(ORGate(1,0)) print(ORGate(1,1)) def ORGate(x1,x2): x = np.array([x1,x2]) w=np.array([0.5,0.5]) b=-0.2 tmp=np.sum(w*x)+b if(tmp<=0): return 0 else: return 1 def XORGate(x1,x2): a = ORGate(x1,x2) b = NANDGate(x1,x2) return ANDGate(a,b) def step(x): y=x>0 return y.astype(np.int) def simple_step(value): if(value <= 0): return 0 else: return 1 def sigmoid(value): return 1/(1+np.exp(-value)) def relu(x): return np.maximum(0,x) class MultiplyLayer: def __init__(self): self.x = None self.y = None def forward(self, x, y): self.x=x self.y=y out=x*y return out def backward(self, dout): dx=dout*self.y dy=dout*self.x return dx,dy def matrixTest1(): print('mat') b = np.array([[1,2],[3,4],[5,6]]) print(b) print(np.ndim(b)) # 배열의 차원 수 print(b.shape) # 배열의 형상 (모든 차원의 각 길이) def matrixMultiplyTest(): print('multiply') a =
np.array([[1,2],[3,4]])
numpy.array
import ops.utils import networkx as nx import pandas as pd import numpy as np import scipy.spatial.kdtree from collections import Counter from scipy.spatial.distance import cdist from scipy.interpolate import UnivariateSpline from statsmodels.stats.multitest import multipletests def format_stats_wide(df_stats): index = ['gene_symbol'] columns = ['stat_name', 'stimulant'] values = ['statistic', 'pval', 'pval_FDR_10'] stats = (df_stats .pivot_table(index=index, columns=columns, values=values) .pipe(ops.utils.flatten_cols)) counts = (df_stats .pivot_table(index=index, columns='stimulant', values='count') .rename(columns=lambda x: 'cells_' + x)) return pd.concat([stats, counts], axis=1) def distribution_difference(df): col = 'dapi_gfp_corr_early' y_neg = (df .query('gene_symbol == "non-targeting"') [col] ) return df.groupby('gene_symbol').apply(lambda x: scipy.stats.wasserstein_distance(x[col], y_neg)) def add_est_timestamps(df_all): s_per_frame = 24 * 60 sites_per_frame = 2 * 364 s_per_site = s_per_frame / sites_per_frame starting_time = 3 * 60 cols = ['frame', 'well', 'site'] df_ws = df_all[cols].drop_duplicates().sort_values(cols) est_timestamps = [(starting_time + i*s_per_site) / 3600 for i in range(len(df_ws))] df_ws['timestamp'] = est_timestamps return df_all.join(df_ws.set_index(cols), on=cols) def add_dapi_diff(df_all): index = ['well', 'site', 'cell_ph'] dapi_diff = (df_all .pivot_table(index=index, columns='frame', values='dapi_max') .pipe(lambda x: x/x.mean()) .pipe(lambda x: x.max(axis=1) - x.min(axis=1)) .rename('dapi_diff') ) return df_all.join(dapi_diff, on=index) def add_spline_diff(df, s=25): T_neg, Y_neg = (df .query('gene_symbol == "non-targeting"') .groupby('timestamp') ['dapi_gfp_corr'].mean() .reset_index().values.T ) ix = np.argsort(T_neg) spl = UnivariateSpline(T_neg[ix], Y_neg[ix], s=s) return (df .assign(splined=lambda x: spl(df['timestamp'])) .assign(spline_diff=lambda x: x.eval('dapi_gfp_corr - splined')) ) def get_stats(df, col='spline_diff'): df_diff = (df .groupby(['gene_symbol', 'cell']) [col].mean() .sort_values(ascending=False) .reset_index()) negative_vals = (df_diff .query('gene_symbol == "non-targeting"') [col] ) test = lambda x: scipy.stats.ttest_ind(x, negative_vals).pvalue stats = (df_diff.groupby('gene_symbol') [col] .pipe(ops.utils.groupby_reduce_concat, 'mean', 'count', pval=lambda x: x.apply(test)) .assign(pval_FDR_10=lambda x: multipletests(x['pval'], 0.1)[1])) return stats # track nuclei nearest neighbor def initialize_graph(df): arr_df = [x for _, x in df.groupby('frame')] nodes = df[['frame', 'label']].values nodes = [tuple(x) for x in nodes] G = nx.DiGraph() G.add_nodes_from(nodes) edges = [] for df1, df2 in zip(arr_df, arr_df[1:]): edges = get_edges(df1, df2) G.add_weighted_edges_from(edges) return G def get_edges(df1, df2): neighboring_points = 3 get_label = lambda x: tuple(int(y) for y in x[[2, 3]]) x1 = df1[['i', 'j', 'frame', 'label']].values x2 = df2[['i', 'j', 'frame', 'label']].values kdt = scipy.spatial.kdtree.KDTree(df1[['i', 'j']]) points = df2[['i', 'j']] result = kdt.query(points, neighboring_points) edges = [] for i2, (ds, ns) in enumerate(zip(*result)): end_node = get_label(x2[i2]) for d, i1 in zip(ds, ns): start_node = get_label(x1[i1]) w = d edges.append((start_node, end_node, w)) return edges def displacement(x): d = np.sqrt(np.diff(x['x'])**2 + np.diff(x['y'])**2) return d def analyze_graph(G, cutoff=100): """Trace a path forward from each nucleus in the starting frame. Only keep the paths that reach the final frame. """ start_nodes = [n for n in G.nodes if n[0] == 0] max_frame = max([frame for frame, _ in G.nodes]) cost, path = nx.multi_source_dijkstra(G, start_nodes, cutoff=cutoff) cost = {k:v for k,v in cost.items() if k[0] == max_frame} path = {k:v for k,v in path.items() if k[0] == max_frame} return cost, path def filter_paths(cost, path, threshold=35): """Remove intersecting paths. returns list of one [(frame, label)] per trajectory """ # remove intersecting paths (node in more than one path) node_count = Counter(sum(path.values(), [])) bad = set(k for k,v in node_count.items() if v > 1) print('bad', len(bad), len(node_count)) # remove paths with cost over threshold too_costly = [k for k,v in cost.items() if v > threshold] bad = bad | set(too_costly) relabel = [v for v in path.values() if not (set(v) & bad)] assert(len(relabel) > 0) return relabel def relabel_nuclei(nuclei, relabel): nuclei_ = nuclei.copy() max_label = nuclei.max() + 1 for i, nodes in enumerate(zip(*relabel)): labels = [n[1] for n in nodes] table = np.zeros(max_label).astype(int) table[labels] = range(len(labels)) nuclei_[i] = table[nuclei_[i]] return nuclei_ # track nuclei trackmate def call_TrackMate_centroids(input_path, output_path='trackmate_output.csv', fiji_path=None, threads=1, tracker_settings=dict()): '''warnings: - `threads` is probably not actually setting the max threads for fiji. - to allow multiple instances of fiji to run concurrently (e.g., launched from snakemake pipeline), likely have to set `allowMultiple` parameter in Fiji.app/Contents/Info.plist to true. `CUTOFF_PERCENTILE` parameter in tracker_settings changes the alternative cost to gap closing/merging/splitting. Higher values -> more gap closures/merges/splits. ''' import subprocess, json if fiji_path is None: import sys if sys.platform == "darwin": fiji_path = '/Applications/Fiji.app/Contents/MacOS/ImageJ-macosx' elif sys.platform == "linux": fiji_path = '~/Fiji.app/ImageJ-linux64' else: raise ValueError("Currently only OS X and linux systems can infer Fiji install location.") tracker_defaults = {"LINKING_MAX_DISTANCE":60.,"GAP_CLOSING_MAX_DISTANCE":60., "ALLOW_TRACK_SPLITTING":True,"SPLITTING_MAX_DISTANCE":60., "ALLOW_TRACK_MERGING":True,"MERGING_MAX_DISTANCE":60., "MAX_FRAME_GAP":2,"CUTOFF_PERCENTILE":0.90} for key, val in tracker_defaults.items(): _ = tracker_settings.setdefault(key,val) trackmate_call = ('''{fiji_path} --ij2 --headless --console --run {ops_path}/external/TrackMate/track_centroids.py''' .format(fiji_path=fiji_path,ops_path=ops.__path__[0])) variables = ('''"input_path='{input_path}',output_path='{output_path}',threads={threads},tracker_settings='{tracker_settings}'"''' .format(input_path=input_path,output_path=output_path, threads=int(threads),tracker_settings=json.dumps(tracker_settings))) output = subprocess.check_output(' '.join([trackmate_call,variables]), shell=True) print(output.decode("utf-8")) def format_trackmate(df): import ast df = (pd.concat([df, pd.DataFrame(df['parent_ids'].apply(lambda x: ast.literal_eval(x)).tolist(), index = df.index,columns=['parent_id_0','parent_id_1']) ],axis=1) .fillna(value=-1) .drop(columns=['parent_ids']) .assign(relabel=-1,parent_cell_0=-1,parent_cell_1=-1) .astype(int) .set_index('id') ) lookup = np.zeros((df.index.max()+2,3),dtype=int) lookup[df.index] = (df [['cell','parent_id_0','parent_id_1']] .values ) lookup[-1] = np.array([-1,-1,-1]) set_cols = ['relabel','parent_cell_0','parent_cell_1'] current = 1 arr_frames = [] for frame,df_frame in df.groupby('frame'): df_frame = df_frame.copy() if frame==0: arr_frames.append(df_frame.assign(relabel = list(range(current,current+df_frame.pipe(len))), parent_cell_0 = -1, parent_cell_1 = -1)) current += df_frame.pipe(len) continue # unique child from single parent idx_propagate = ((df_frame.duplicated(['parent_id_0','parent_id_1'],keep=False)==False) & ((df_frame[['parent_id_0','parent_id_1']]==-1).sum(axis=1)==1) ).values lookup[df_frame[idx_propagate].index.values] = df_frame.loc[idx_propagate,set_cols] = lookup[df_frame.loc[idx_propagate,'parent_id_0'].values] # split, merge, or new idx_new = ((df_frame.duplicated(['parent_id_0','parent_id_1'],keep=False)) | ((df_frame[['parent_id_0','parent_id_1']]==-1).sum(axis=1)!=1) ).values lookup[df_frame[idx_new].index.values] = df_frame.loc[idx_new,set_cols] = np.array([list(range(current,current+idx_new.sum())), lookup[df_frame.loc[idx_new,'parent_id_0'].values,0], lookup[df_frame.loc[idx_new,'parent_id_1'].values,0] ]).T current += idx_new.sum() arr_frames.append(df_frame) return pd.concat(arr_frames).reset_index() # recover parent relationships ## during some iterations of trackmate, saving of parent cell identities was unintentionally ## commented out. these functions infer these relationships. For a single tile, correctly assigned ## same parent-child relationships as trackmate for >99.8% of cells. Well-constrained problem. def recover_parents(df_tracked,threshold=60, cell='cell', ij=('i','j'), keep_cols=['well','tile','track_id','cell']): # to be run on a table from a single tile # get junction cells df_pre_junction = (df_tracked .groupby(['track_id',cell],group_keys=False) .apply(lambda x: x.nlargest(1,'frame')) ) df_post_junction = (df_tracked .groupby(['track_id',cell],group_keys=False) .apply(lambda x: x.nsmallest(1,'frame')) ) arr = [] # assign frame 0 cells or un-tracked cells with no parents arr.append(df_post_junction .query('frame==0 | track_id==-1') [keep_cols] .assign(parent_cell_0=-1,parent_cell_1=-1) ) # clean up tables last_frame = int(df_tracked['frame'].nlargest(1)) df_pre_junction = df_pre_junction.query('frame!=@last_frame & track_id!=-1') df_post_junction = df_post_junction.query('frame!=0 & track_id!=-1') # categorize frames to avoid issues with no-cell junction frames df_pre_junction.loc[:,'frame'] = pd.Categorical(df_pre_junction['frame'], categories=np.arange(0,last_frame), ordered=True) df_post_junction.loc[:,'frame'] = pd.Categorical(df_post_junction['frame'], categories=np.arange(1,last_frame+1), ordered=True) for (frame_pre,df_pre),(frame_post,df_post) in zip(df_pre_junction.groupby('frame'), df_post_junction.groupby('frame')): if df_post.pipe(len)==0: continue elif df_pre.pipe(len)==0: arr.append(df_post[keep_cols].assign(parent_cell_0=-1,parent_cell_1=-1)) else: arr.extend(junction_parent_assignment(pd.concat([df_pre,df_post]), frame_0=frame_pre, threshold=threshold, ij=ij, cell=cell, keep_cols=keep_cols ) ) return pd.concat(arr,ignore_index=True) def junction_parent_assignment(df_junction, frame_0, threshold, ij, cell, keep_cols): arr = [] i,j = ij for track,df_track_junction in df_junction.groupby('track_id'): if (df_track_junction['frame'].nunique()==1): if df_track_junction.iloc[0]['frame']==(frame_0+1): # only post-junction cells -> parents = -1 arr.append(df_track_junction[keep_cols].assign(parent_cell_0=-1,parent_cell_1=-1)) elif df_track_junction.iloc[0]['frame']==frame_0: # only pre-junction cells -> ends of tracks, don't have to assign continue else: before,after = (g[[cell,i,j]].values for _,g in df_track_junction.groupby('frame') ) distances = cdist(after[:,1:],before[:,1:]) edges = distances<threshold edges = resolve_conflicts(edges,distances, conflict_type='extra') edges = resolve_conflicts(edges,distances,conflict_type='tangle') parents = tuple(before[edge,0] if edge.sum()>0 else np.array([-1,-1]) for edge in edges) if len(parents) != edges.shape[0]: raise ValueError('Length of parents tuple does not match number of post-junction cells') if max([len(p) for p in parents])>2: raise ValueError(f'''Conflict resolution error; too many parents selected for at least one cell for track {track} in frame {frame_0} ''') parents = np.array([np.concatenate([p,
np.array([-1])
numpy.array
import numpy as np import matplotlib as mpl mpl.use("agg", warn=False) # noqa import matplotlib.pyplot as plt import seaborn as sns import sklearn.metrics.pairwise import scipy.cluster.hierarchy as sch import scipy.sparse as spsp import scedar.eda as eda import pytest class TestSampleDistanceMatrix(object): """docstring for TestSampleDistanceMatrix""" x_3x2 = [[0, 0], [1, 1], [2, 2]] x_2x4_arr = np.array([[0, 1, 2, 3], [1, 2, 0, 6]]) def test_valid_init(self): sdm = eda.SampleDistanceMatrix(self.x_3x2, metric='euclidean') dist_mat = np.array([[0, np.sqrt(2), np.sqrt(8)], [np.sqrt(2), 0, np.sqrt(2)], [np.sqrt(8), np.sqrt(2), 0]]) np.testing.assert_allclose(sdm.d, dist_mat) sdm2 = eda.SampleDistanceMatrix( self.x_2x4_arr, metric='euclidean', nprocs=5) sdm2_d1 = np.sqrt( np.power(self.x_2x4_arr[0] - self.x_2x4_arr[1], 2).sum()) np.testing.assert_allclose(sdm2.d, np.array([[0, sdm2_d1], [sdm2_d1, 0]])) sdm3 = eda.SampleDistanceMatrix( self.x_2x4_arr, metric='correlation', nprocs=5) sdm3_corr_d = (1 - np.dot( self.x_2x4_arr[0] - self.x_2x4_arr[0].mean(), self.x_2x4_arr[1] - self.x_2x4_arr[1].mean()) / (np.linalg.norm(self.x_2x4_arr[0] - self.x_2x4_arr[0].mean(), 2) * np.linalg.norm(self.x_2x4_arr[1] - self.x_2x4_arr[1].mean(), 2))) np.testing.assert_allclose(sdm3.d, np.array([[0, 0.3618551], [0.3618551, 0]])) np.testing.assert_allclose(sdm3.d, np.array([[0, sdm3_corr_d], [sdm3_corr_d, 0]])) sdm4 = eda.SampleDistanceMatrix(self.x_3x2, dist_mat) sdm5 = eda.SampleDistanceMatrix( self.x_3x2, dist_mat, metric='euclidean') sdm5 = eda.SampleDistanceMatrix([[1, 2]], metric='euclidean') assert sdm5.tsne(n_iter=250).shape == (1, 2) def test_empty_init(self): with pytest.raises(ValueError) as excinfo: eda.SampleDistanceMatrix(np.empty(0), metric='euclidean') sdm = eda.SampleDistanceMatrix(np.empty((0, 0)), metric='euclidean') assert len(sdm.sids) == 0 assert len(sdm.fids) == 0 assert sdm._x.shape == (0, 0) assert sdm._d.shape == (0, 0) assert sdm._col_sorted_d.shape == (0, 0) assert sdm._col_argsorted_d.shape == (0, 0) assert sdm.tsne(n_iter=250).shape == (0, 0) def test_init_wrong_metric(self): # when d is None, metric cannot be precomputed with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix(self.x_3x2, metric='precomputed') # lazy load d eda.SampleDistanceMatrix(self.x_3x2, metric='unknown') with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix(self.x_3x2, metric='unknown').d eda.SampleDistanceMatrix(self.x_3x2, metric=1) with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix(self.x_3x2, metric=1).d eda.SampleDistanceMatrix(self.x_3x2, metric=1.) with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix(self.x_3x2, metric=1.).d eda.SampleDistanceMatrix(self.x_3x2, metric=('euclidean', )) with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix(self.x_3x2, metric=('euclidean', )).d eda.SampleDistanceMatrix(self.x_3x2, metric=['euclidean']) with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix(self.x_3x2, metric=['euclidean']).d def test_init_wrong_d_type(self): d_3x3 = np.array([[0, np.sqrt(2), np.sqrt(8)], ['1a1', 0, np.sqrt(2)], [np.sqrt(8), np.sqrt(2), 0]]) with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix(self.x_3x2, d_3x3) def test_init_wrong_d_size(self): d_2x2 = np.array([[0, np.sqrt(2)], [np.sqrt(2), 0]]) d_2x2 = np.array([[0, np.sqrt(2)], [np.sqrt(2), 0]]) d_1x6 = np.arange(6) d_3x2 = np.array([[0, np.sqrt(2)], [np.sqrt(2), 0], [1, 2]]) with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix(self.x_3x2, d_2x2) with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix(self.x_3x2, d_3x2) with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix(self.x_3x2, d_3x2) with pytest.raises(Exception) as excinfo: eda.SampleDistanceMatrix(self.x_3x2, d_1x6) def test_to_classified(self): sdm = eda.SampleDistanceMatrix(np.arange(100).reshape(50, -1), metric='euclidean') # initialize cached results sdm.tsne_plot() sdm.pca_plot() sdm.s_knn_graph(2) sdm.s_ith_nn_d(1) sdm.s_ith_nn_ind(1) labs = [0]*10 + [1]*20 + [0]*10 + [2]*10 slcs = sdm.to_classified(labs) assert slcs.labs == labs assert slcs._lazy_load_d is sdm._lazy_load_d assert slcs._lazy_load_d is not None assert slcs._metric == sdm._metric assert slcs._nprocs == sdm._nprocs assert slcs.sids == sdm.sids assert slcs.fids == sdm.fids # tsne assert slcs._tsne_lut is not None assert slcs._tsne_lut == sdm._tsne_lut assert slcs._lazy_load_last_tsne is not None assert slcs._lazy_load_last_tsne is sdm._lazy_load_last_tsne # knn assert slcs._lazy_load_col_sorted_d is not None assert slcs._lazy_load_col_sorted_d is sdm._lazy_load_col_sorted_d assert slcs._lazy_load_col_argsorted_d is not None assert (slcs._lazy_load_col_argsorted_d is sdm._lazy_load_col_argsorted_d) assert slcs._knn_ng_lut is not None assert slcs._knn_ng_lut == sdm._knn_ng_lut # pca assert slcs._pca_n_components is not None assert slcs._lazy_load_skd_pca is not None assert slcs._lazy_load_pca_x is not None assert slcs._pca_n_components == sdm._pca_n_components assert slcs._lazy_load_skd_pca is sdm._lazy_load_skd_pca assert slcs._lazy_load_pca_x is sdm._lazy_load_pca_x def test_sort_x_by_d(self): x1 = np.array([[0, 5, 30, 10], [1, 5, 30, 10], [0, 5, 33, 10], [2, 5, 30, 7], [2, 5, 30, 9]]) x2 = x1.copy() opt_inds = eda.HClustTree.sort_x_by_d( x=x2.T, metric='euclidean', optimal_ordering=True) assert opt_inds == [2, 3, 1, 0] np.testing.assert_equal(x1, x2) x3 = np.array([[0, 0, 30, 10], [1, 2, 30, 10], [0, 3, 33, 10], [2, 4, 30, 7], [2, 5, 30, 9]]) x4 = x3.copy() opt_inds = eda.HClustTree.sort_x_by_d( x=x4.T, metric='euclidean', optimal_ordering=True) assert opt_inds == [2, 3, 1, 0] np.testing.assert_equal(x3, x4) def test_sort_features(self): x = np.array([[0, 2, 30, 10], [1, 2, 30, 10], [0, 3, 33, 10], [2, 5, 30, 7], [2, 5, 30, 9]]) sdm = eda.SampleDistanceMatrix( x, metric='euclidean') sdm2 = eda.SampleDistanceMatrix( x, metric='euclidean') sdm2.sort_features(fdist_metric='euclidean', optimal_ordering=True) assert sdm2.fids == [2, 3, 1, 0] def test_get_tsne_kv(self): tmet = 'euclidean' sdm = eda.SampleDistanceMatrix(self.x_3x2, metric=tmet) assert sdm.get_tsne_kv(1) is None assert sdm.get_tsne_kv(1) is None assert sdm.get_tsne_kv(0) is None assert sdm.get_tsne_kv(2) is None def test_get_tsne_kv_wrong_args(self): tmet = 'euclidean' sdm = eda.SampleDistanceMatrix(self.x_3x2, metric=tmet) with pytest.raises(ValueError) as excinfo: sdm.get_tsne_kv([1, 2, 3]) with pytest.raises(ValueError) as excinfo: sdm.get_tsne_kv({1: 2}) def test_put_tsne_wrong_args(self): tmet = 'euclidean' sdm = eda.SampleDistanceMatrix(self.x_3x2, metric=tmet) with pytest.raises(ValueError) as excinfo: sdm.put_tsne(1, [1, 2, 3]) with pytest.raises(ValueError) as excinfo: sdm.put_tsne({1: 2}, [1, 2, 3]) def test_tsne(self): tmet = 'euclidean' tsne_kwargs = {'metric': tmet, 'n_iter': 250, 'random_state': 123} ref_tsne = eda.tsne(self.x_3x2, **tsne_kwargs) sdm = eda.SampleDistanceMatrix(self.x_3x2, metric=tmet) assert sdm.tsne_lut == {} tsne1 = sdm.tsne(n_iter=250, random_state=123) np.testing.assert_allclose(ref_tsne, tsne1) np.testing.assert_allclose(ref_tsne, sdm._last_tsne) assert tsne1.shape == (3, 2) assert len(sdm.tsne_lut) == 1 tsne2 = sdm.tsne(store_res=False, **tsne_kwargs) np.testing.assert_allclose(ref_tsne, tsne2) assert len(sdm.tsne_lut) == 1 with pytest.raises(Exception) as excinfo: wrong_metric_kwargs = tsne_kwargs.copy() wrong_metric_kwargs['metric'] = 'correlation' sdm.tsne(**wrong_metric_kwargs) assert len(sdm.tsne_lut) == 1 tsne3 = sdm.tsne(store_res=True, **tsne_kwargs) np.testing.assert_allclose(ref_tsne, tsne3) # (param, ind) as key, so same params get an extra entry. assert len(sdm.tsne_lut) == 2 np.testing.assert_allclose(tsne1, sdm.get_tsne_kv(1)[1]) np.testing.assert_allclose(tsne3, sdm.get_tsne_kv(2)[1]) assert tsne1 is not sdm.get_tsne_kv(1)[1] assert tsne3 is not sdm.get_tsne_kv(2)[1] tsne4 = sdm.tsne(store_res=True, n_iter=250, random_state=123) np.testing.assert_allclose(ref_tsne, tsne4) np.testing.assert_allclose(sdm.get_tsne_kv(3)[1], tsne4) assert len(sdm.tsne_lut) == 3 tsne5 = sdm.tsne(store_res=True, n_iter=251, random_state=123) tsne6 = sdm.tsne(store_res=True, n_iter=251, random_state=123) np.testing.assert_allclose(tsne6, tsne5) np.testing.assert_allclose(tsne5, sdm.get_tsne_kv(4)[1]) np.testing.assert_allclose(tsne6, sdm.get_tsne_kv(5)[1]) assert len(sdm.tsne_lut) == 5 def test_par_tsne(self): tmet = 'euclidean' param_list = [{'metric': tmet, 'n_iter': 250, 'random_state': 123}, {'metric': tmet, 'n_iter': 250, 'random_state': 125}, {'metric': tmet, 'n_iter': 250, 'random_state': 123}] ref_tsne = eda.tsne(self.x_3x2, **param_list[0]) sdm = eda.SampleDistanceMatrix(self.x_3x2, metric=tmet) # If not store, should not update lut sdm.par_tsne(param_list, store_res=False) assert sdm._lazy_load_last_tsne is None assert sdm.tsne_lut == {} # store results tsne1, tsne2, tsne3 = sdm.par_tsne(param_list) np.testing.assert_allclose(ref_tsne, tsne1) np.testing.assert_allclose(ref_tsne, tsne3) np.testing.assert_allclose(ref_tsne, sdm._last_tsne) assert tsne1.shape == (3, 2) assert len(sdm.tsne_lut) == 3 np.testing.assert_allclose(tsne1, sdm.get_tsne_kv(1)[1]) np.testing.assert_allclose(tsne2, sdm.get_tsne_kv(2)[1]) np.testing.assert_allclose(tsne3, sdm.get_tsne_kv(3)[1]) np.testing.assert_allclose(tsne3, sdm.get_tsne_kv(1)[1]) def test_par_tsne_mp(self): tmet = 'euclidean' param_list = [{'metric': tmet, 'n_iter': 250, 'random_state': 123}, {'metric': tmet, 'n_iter': 250, 'random_state': 125}, {'metric': tmet, 'n_iter': 250, 'random_state': 123}] ref_tsne = eda.tsne(self.x_3x2, **param_list[0]) sdm = eda.SampleDistanceMatrix(self.x_3x2, metric=tmet) # If not store, should not update lut sdm.par_tsne(param_list, store_res=False, nprocs=3) assert sdm._lazy_load_last_tsne is None assert sdm.tsne_lut == {} # store results tsne1, tsne2, tsne3 = sdm.par_tsne(param_list, nprocs=3) np.testing.assert_allclose(ref_tsne, tsne1) np.testing.assert_allclose(ref_tsne, tsne3) np.testing.assert_allclose(ref_tsne, sdm._last_tsne) assert tsne1.shape == (3, 2) assert len(sdm.tsne_lut) == 3 np.testing.assert_allclose(tsne1, sdm.get_tsne_kv(1)[1]) np.testing.assert_allclose(tsne2, sdm.get_tsne_kv(2)[1]) np.testing.assert_allclose(tsne3, sdm.get_tsne_kv(3)[1]) np.testing.assert_allclose(tsne3, sdm.get_tsne_kv(1)[1]) def test_tsne_default_init(self): tmet = 'euclidean' tsne_kwargs = {'metric': tmet, 'n_iter': 250, 'random_state': 123} ref_tsne = eda.tsne(self.x_3x2, **tsne_kwargs) sdm = eda.SampleDistanceMatrix(self.x_3x2, metric=tmet) init_tsne = sdm._last_tsne assert init_tsne.shape == (3, 2) assert len(sdm.tsne_lut) == 1 tsne2 = sdm.tsne(store_res=True, **tsne_kwargs) np.testing.assert_allclose(ref_tsne, tsne2) assert len(sdm.tsne_lut) == 2 def test_ind_x(self): sids = list("abcdef") fids = list(range(10, 20)) sdm = eda.SampleDistanceMatrix( np.random.ranf(60).reshape(6, -1), sids=sids, fids=fids) # select sf ss_sdm = sdm.ind_x([0, 5], list(range(9))) assert ss_sdm._x.shape == (2, 9) assert ss_sdm.sids == ['a', 'f'] assert ss_sdm.fids == list(range(10, 19)) np.testing.assert_equal( ss_sdm.d, sdm._d[np.ix_((0, 5), (0, 5))]) # select with Default ss_sdm = sdm.ind_x() assert ss_sdm._x.shape == (6, 10) assert ss_sdm.sids == list("abcdef") assert ss_sdm.fids == list(range(10, 20)) np.testing.assert_equal(ss_sdm.d, sdm._d) # select with None ss_sdm = sdm.ind_x(None, None) assert ss_sdm._x.shape == (6, 10) assert ss_sdm.sids == list("abcdef") assert ss_sdm.fids == list(range(10, 20)) np.testing.assert_equal(ss_sdm.d, sdm._d) # select non-existent inds with pytest.raises(IndexError) as excinfo: sdm.ind_x([6]) with pytest.raises(IndexError) as excinfo: sdm.ind_x(None, ['a']) def test_ind_x_empty(self): sids = list("abcdef") fids = list(range(10, 20)) sdm = eda.SampleDistanceMatrix(
np.random.ranf(60)
numpy.random.ranf
from collections import OrderedDict import sklearn import sklearn.metrics import numpy as np import torch import torch.nn.functional as F from . mol2graph import mol2torchdata from torch_geometric.data import DataLoader def clear_model(model): del model torch.cuda.empty_cache() def get_dataloader(df, index, target, mol_column, batch_size, y_scaler): y_values = df.loc[index, target].values.reshape(-1, 1) y = y_scaler.transform(y_values).ravel().astype(np.float32) x = df.loc[index, mol_column].progress_apply(mol2torchdata).tolist() for data, y_i in zip(x, y): data.y = torch.tensor([y_i], dtype=torch.float) data_loader = DataLoader(x, batch_size=batch_size, shuffle=True, drop_last=True) return data_loader def train_step(model, data_loader, optimizer, scheduler, device): model.train() loss_sum = 0 for data in data_loader: data = data.to(device) optimizer.zero_grad() output = model(data) loss = F.mse_loss(output, data.y) loss.backward() loss_sum += loss.item() * data.num_graphs optimizer.step() n = float(sum([data.num_graphs for data in data_loader])) stats = {'train_loss': loss_sum / n} if scheduler: scheduler.step(loss_sum) return stats def reg_stats(y_true, y_pred): r2 = sklearn.metrics.r2_score(y_true, y_pred) mae = sklearn.metrics.mean_absolute_error(y_true, y_pred) return r2, mae def eval_step(model, data_loader, y_scaler, device, cv_result, best_value): with torch.no_grad(): model.eval() loss_sum = 0 y_pred = [] y_true = [] for data in data_loader: data = data.to(device) output = model(data) y_pred.extend(output.cpu().numpy()) y_true.extend(data.y.cpu().numpy()) loss = F.mse_loss(output, data.y) loss_sum += loss.item() * data.num_graphs y_pred = y_scaler.inverse_transform( np.array(y_pred).reshape(-1, 1)).ravel() y_true = y_scaler.inverse_transform( np.array(y_true).reshape(-1, 1)).ravel() n = float(sum([data.num_graphs for data in data_loader])) stats = OrderedDict({'test_loss': loss_sum / n}) stats['test_r2'], stats['test_mae'] = reg_stats(y_true, y_pred) if stats['test_r2'] >= best_value: best_value = stats['test_r2'] cv_result['target'] = y_true cv_result['pred'] = y_pred return stats def get_embeddings(model, data_loader, y_scaler, device): with torch.no_grad(): model.eval() z = [] y = [] for data in data_loader: data = data.to(device) z_data = model.forward_gnn(data) y_data = model.pred(z_data) y.append(y_data.cpu().numpy()) z.append(z_data.cpu().numpy()) y = y_scaler.inverse_transform(np.vstack(y).reshape(-1, 1)).ravel() z =
np.vstack(z)
numpy.vstack
""" ## Script for evaluating the ICSG3D reconstructions ## Example: ## >> python3 eval.py --name heusler --samples 5000 ## Plots the reconstructed lattice params and EMD of atomic sites -------------------------------------------------- ## Author: <NAME>. ## Email: <EMAIL> ## Version: 1.0.0 -------------------------------------------------- ## License: MIT ## Copyright: Copyright <NAME> & <NAME>rim 2020, ICSG3D ------------------------------------------------- """ import argparse import os import re import matplotlib.pyplot as plt import numpy as np from matplotlib import rc from scipy.optimize import linear_sum_assignment from scipy.spatial.distance import cdist from unet.unet import AtomUnet from utils import ( create_crystal, data_split, get_sites, to_lattice_params, to_voxel_params, ) from vae.data import VAEDataGenerator from vae.lattice_vae import LatticeDFCVAE from watershed import watershed_clustering font = {"family": "serif"} rc("font", **font) rc("text", usetex=True) rc("text.latex", preamble=r"\usepackage{cmbright}") def emd(x, y): """ Computes the Earth Mover Distance between two point sets -------------------------------------------------------- params: point sets x and y (N x M) """ dist = cdist(x, y) assign = linear_sum_assignment(dist) return dist[assign].sum() / min(len(x), len(y)) if __name__ == "__main__": # Arguments parser = argparse.ArgumentParser() parser.add_argument("--name", metavar="name", type=str, help="Name of data folder") parser.add_argument( "--batch_size", metavar="batch_size", type=int, help="Batch size", default=10 ) parser.add_argument( "--samples", metavar="samples", type=int, help="Number of samples", default=78750, ) parser.add_argument( "--eps_frac", metavar="eps_frac", type=float, help="Eps of lattice vector", default=0.25, ) parser.add_argument( "--ncond", metavar="ncond", type=int, help="Number of condition bins", default=10, ) parser.add_argument( "--clus_iters", metavar="clus_iters", type=int, help="Number of iterations for watershed clustering", default=5, ) parser.add_argument( "--split", metavar="split", type=float, help="Train-test split fraction", default=0.8, ) parser.add_argument( "--d", metavar="d", type=int, help="Dimension of density matrices (number of voxels)", default=32, ) namespace = parser.parse_args() mode = namespace.name ncond = namespace.ncond data_path = os.path.join("data", mode, "matrices") cif_path = os.path.join("data", mode, "cifs") csv_path = os.path.join("data", mode, mode + ".csv") d = namespace.d input_shape = (d, d, d, 4) n = namespace.samples batch_size = namespace.batch_size eps = namespace.eps_frac vae_weights = os.path.join( "saved_models", "vae", mode, "vae_weights_" + mode + ".best.hdf5" ) unet_weights = os.path.join( "saved_models", "unet", mode, "unet_weights_" + mode + ".best.hdf5" ) perceptual_model = os.path.join( "saved_models", "unet", mode, "unet_weights_" + mode + ".best.h5" ) clustering_max_iters = namespace.clus_iters os.makedirs(os.path.join("output", "eval", mode), exist_ok=True) # Split the data training_ids, validation_ids = data_split( data_path, n, frac=namespace.split, n_rot=0 ) validation_generator = VAEDataGenerator( validation_ids, data_path=data_path, property_csv=csv_path, batch_size=batch_size, n_channels=input_shape[-1], shuffle=False, n_bins=ncond, ) # Create the VAE vae = LatticeDFCVAE(perceptual_model=perceptual_model, cond_shape=ncond) vae._set_model(weights=vae_weights, batch_size=batch_size) # Create the Unet unet = AtomUnet(weights=unet_weights) true_num_atoms = [] pred_num_atoms = [] true_species = [] pred_species = [] true_lc = [] pred_lc = [] true_coords = [] pred_coords = [] emds = [] c = 0 for M, cond in validation_generator: # Density matrix, condition # Get the reconstruction M_prime = vae.model.predict([M, cond]) coords_prime = M_prime[:, :, :, :, 1:] # Compute the reconstructed species matrix S_prime, S_b_prime = unet.model.predict(M_prime) S_prime = np.argmax(S_prime, axis=-1).reshape(batch_size, 32, 32, 32, 1) S_b_prime[S_b_prime >= 0.8] = 1.0 S_b_prime[S_b_prime < 0.8] = 0.0 S_prime_coords = np.concatenate([S_prime, coords_prime], axis=-1) # Calculate reconstructed lattice params l_pred = to_lattice_params(coords_prime) # Reconstructed voxel params dv_pred = to_voxel_params(l_pred) ids = validation_generator.list_IDs_temp for i, S_prime_i in enumerate(S_prime_coords): print(ids[i]) # True data true_id = ids[i] crystal = create_crystal( os.path.join(cif_path, re.split("_|\.", true_id)[0] + ".cif"), primitive=False, ) N, z, r = get_sites(crystal) lpt = [crystal.lattice.a, crystal.lattice.b, crystal.lattice.c] N = np.multiply(N, lpt[:3]) dist = np.linalg.norm(N, ord=2, axis=1) N = N[np.argsort(dist)] # Predicted try: species, mu = watershed_clustering( M_prime[i, :, :, :, 0], S_prime[i], S_b_prime[i] ) except Exception: print(ids[i], "failed") continue for s in N: true_coords.append(s) true_lc.append(lpt) true_num_atoms.append(len(N)) true_species.append(np.unique(z)) pred_lc.append(l_pred[i]) lpp = eps * l_pred[i, :3].reshape(1, 3) mu = mu * dv_pred[i] - (lpp) + (dv_pred[i] / 2.0) dist = np.linalg.norm(mu, ord=2, axis=1) mu = mu[np.argsort(dist)] dist = emd(mu, N) emds.append(dist) # sort pred coords by dist from 0 pred_num_atoms.append(len(species)) pred_species.append(np.unique(species)) c += 1 true_num_atoms = np.array(true_num_atoms) pred_num_atoms = np.array(pred_num_atoms) true_lc = np.array(true_lc) pred_lc = np.array(pred_lc) print("\nMEAN EMD: ", np.mean(emds)) print("\nMEAN DAtoms: ", np.mean(np.abs(true_num_atoms - pred_num_atoms))) # Plots plt.figure() plt.hist(emds, bins=50, color="tab:cyan") plt.axvline( x=np.mean(emds), linestyle="--", color="r", label="Mean = %.3f" % np.mean(emds) ) plt.xlabel("EMD (Angstrom)") plt.ylabel("Count") plt.legend(loc="best") plt.savefig(os.path.join("output", "eval" + mode + "emd.svg"), format="svg") plt.close() plt.figure() plt.hist(np.abs(true_lc - pred_lc)[:, 0], bins=50, color="tab:cyan") plt.axvline( x=np.mean(np.abs(true_lc - pred_lc)[:, 0]), linestyle="--", color="tab:red", label="Mean = %.3f" % np.mean(np.abs(true_lc - pred_lc)[:, 0]), ) plt.xlabel("$|a_{true}$ - $a_{pred}|$ (Angstrom)") plt.ylabel("Count") plt.legend(loc="best") plt.savefig(os.path.join("output", "eval" + mode + "lattice_a.svg"), format="svg") plt.close() plt.figure() plt.hist(np.abs(true_lc - pred_lc)[:, 1], bins=50, color="tab:cyan") plt.axvline( x=np.mean(np.abs(true_lc - pred_lc)[:, 1]), linestyle="--", color="tab:red", label="Mean = %.3f" % np.mean(np.abs(true_lc - pred_lc)[:, 1]), ) plt.xlabel("$|b_{true}$ - $b_{pred}|$ (Angstrom)") plt.ylabel("Count") plt.legend(loc="best") plt.savefig(os.path.join("output", "eval" + mode + "lattice_b.svg"), format="svg") plt.close() plt.figure() plt.hist(np.abs(true_lc - pred_lc)[:, 2], bins=50, color="tab:cyan") plt.axvline( x=np.mean(np.abs(true_lc - pred_lc)[:, 2]), linestyle="--", color="tab:red", label="Mean = %.3f" % np.mean(np.abs(true_lc - pred_lc)[:, 2]), ) plt.xlabel("$|c_{true}$ - $c_{pred}|$ (Angstrom)") plt.ylabel("Count") plt.legend(loc="best") plt.savefig(os.path.join("output", "eval" + mode + "lattice_c.svg"), format="svg") plt.close() plt.figure() plt.hist(np.abs(true_num_atoms - pred_num_atoms), bins=50, color="tab:cyan") plt.axvline( x=np.mean(np.abs(true_num_atoms - pred_num_atoms)), linestyle="--", color="tab:red", label="Mean = %.3f" % np.mean(
np.abs(true_num_atoms - pred_num_atoms)
numpy.abs
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2018 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import scipy.sparse as sps from mars.tensor.execution.core import Executor from mars import tensor as mt from mars.tensor.expressions.datasource import tensor, ones, zeros, arange from mars.tensor.expressions.base import copyto, transpose, moveaxis, broadcast_to, broadcast_arrays, where, \ expand_dims, rollaxis, atleast_1d, atleast_2d, atleast_3d, argwhere, array_split, split, \ hsplit, vsplit, dsplit, roll, squeeze, ptp, diff, ediff1d, digitize, average, cov, corrcoef, \ flip, flipud, fliplr, repeat, tile, isin from mars.tensor.expressions.merge import stack from mars.tensor.expressions.reduction import all as tall class Test(unittest.TestCase): def setUp(self): self.executor = Executor('numpy') def testRechunkExecution(self): raw = np.random.random((11, 8)) arr = tensor(raw, chunks=3) arr2 = arr.rechunk(4) res = self.executor.execute_tensor(arr2) self.assertTrue(np.array_equal(res[0], raw[:4, :4])) self.assertTrue(np.array_equal(res[1], raw[:4, 4:])) self.assertTrue(np.array_equal(res[2], raw[4:8, :4])) self.assertTrue(np.array_equal(res[3], raw[4:8, 4:])) self.assertTrue(np.array_equal(res[4], raw[8:, :4])) self.assertTrue(np.array_equal(res[5], raw[8:, 4:])) def testCopytoExecution(self): a = ones((2, 3), chunks=1) b = tensor([3, -1, 3], chunks=2) copyto(a, b, where=b > 1) res = self.executor.execute_tensor(a, concat=True)[0] expected = np.array([[3, 1, 3], [3, 1, 3]]) np.testing.assert_equal(res, expected) def testAstypeExecution(self): raw = np.random.random((10, 5)) arr = tensor(raw, chunks=3) arr2 = arr.astype('i8') res = self.executor.execute_tensor(arr2, concat=True) self.assertTrue(np.array_equal(res[0], raw.astype('i8'))) raw = sps.random(10, 5, density=.2) arr = tensor(raw, chunks=3) arr2 = arr.astype('i8') res = self.executor.execute_tensor(arr2, concat=True) self.assertTrue(np.array_equal(res[0].toarray(), raw.astype('i8').toarray())) def testTransposeExecution(self): raw = np.random.random((11, 8, 5)) arr = tensor(raw, chunks=3) arr2 = transpose(arr) res = self.executor.execute_tensor(arr2, concat=True) self.assertTrue(np.array_equal(res[0], raw.T)) arr3 = transpose(arr, axes=(-2, -1, -3)) res = self.executor.execute_tensor(arr3, concat=True) self.assertTrue(np.array_equal(res[0], raw.transpose(1, 2, 0))) raw = sps.random(11, 8) arr = tensor(raw, chunks=3) arr2 = transpose(arr) self.assertTrue(arr2.issparse()) res = self.executor.execute_tensor(arr2, concat=True) self.assertTrue(np.array_equal(res[0].toarray(), raw.T.toarray())) def testSwapaxesExecution(self): raw = np.random.random((11, 8, 5)) arr = tensor(raw, chunks=3) arr2 = arr.swapaxes(2, 0) res = self.executor.execute_tensor(arr2, concat=True) self.assertTrue(np.array_equal(res[0], raw.swapaxes(2, 0))) raw = sps.random(11, 8, density=.2) arr = tensor(raw, chunks=3) arr2 = arr.swapaxes(1, 0) res = self.executor.execute_tensor(arr2, concat=True) self.assertTrue(np.array_equal(res[0].toarray(), raw.toarray().swapaxes(1, 0))) def testMoveaxisExecution(self): x = zeros((3, 4, 5), chunks=2) t = moveaxis(x, 0, -1) res = self.executor.execute_tensor(t, concat=True)[0] self.assertEqual(res.shape, (4, 5, 3)) t = moveaxis(x, -1, 0) res = self.executor.execute_tensor(t, concat=True)[0] self.assertEqual(res.shape, (5, 3, 4)) t = moveaxis(x, [0, 1], [-1, -2]) res = self.executor.execute_tensor(t, concat=True)[0] self.assertEqual(res.shape, (5, 4, 3)) t = moveaxis(x, [0, 1, 2], [-1, -2, -3]) res = self.executor.execute_tensor(t, concat=True)[0] self.assertEqual(res.shape, (5, 4, 3)) def testBroadcastToExecution(self): raw = np.random.random((10, 5, 1)) arr = tensor(raw, chunks=2) arr2 = broadcast_to(arr, (5, 10, 5, 6)) res = self.executor.execute_tensor(arr2, concat=True) self.assertTrue(np.array_equal(res[0], np.broadcast_to(raw, (5, 10, 5, 6)))) def testBroadcastArraysExecutions(self): x_data = [[1, 2, 3]] x = tensor(x_data, chunks=1) y_data = [[1], [2], [3]] y = tensor(y_data, chunks=2) a = broadcast_arrays(x, y) res = [self.executor.execute_tensor(arr, concat=True)[0] for arr in a] expected = np.broadcast_arrays(x_data, y_data) for r, e in zip(res, expected):
np.testing.assert_equal(r, e)
numpy.testing.assert_equal
import argparse, cv2, imutils, numpy as np, os, time from datetime import datetime, timedelta from tabulate import tabulate np.random.seed(42) ap = argparse.ArgumentParser() ap.add_argument("-i", "--input", required=True) ap.add_argument("-o", "--output", required=True) args = vars(ap.parse_args()) LABELS = open("model/coco.names").read().strip().split("\n") COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype="uint8") net = cv2.dnn.readNetFromDarknet("model/yolov3.cfg", "model/yolov3.weights") ln = net.getLayerNames() ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()] vs = cv2.VideoCapture(args["input"]) writer = None (W, H) = (None, None) prop = cv2.cv.CV_CAP_PROP_FRAME_COUNT if imutils.is_cv2() else cv2.CAP_PROP_FRAME_COUNT total = int(vs.get(prop)) while True: (grabbed, frame) = vs.read() if not grabbed: break if W is None or H is None: (H, W) = frame.shape[:2] blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False) net.setInput(blob) start = time.time() layerOutputs = net.forward(ln) end = time.time() boxes, confidences, classIDs = [], [], [] for output in layerOutputs: for detection in output: scores = detection[5:] confidence = scores[classID] if np.argmax(scores) == 2 and confidence > 0.5: box = detection[0:4] *
np.array([W, H, W, H])
numpy.array
""" kkpy.io ======================== Functions to read and write files .. currentmodule:: io .. autosummary:: kkpy.io.get_fname kkpy.io.read_aws kkpy.io.read_2dvd_rho kkpy.io.read_mxpol_rhi_with_hc kkpy.io.read_dem kkpy.io.read_wissdom """ import numpy as np import pandas as pd import datetime import glob import os import sys def read_aws(time, date_range=True, datadir='/disk/STORAGE/OBS/AWS/', stnid=None, dask=True): """ Read AWS_MIN files into dataframe. Examples --------- >>> import datetime >>> df_aws = kkpy.io.read_aws(time=datetime.datetime(2018,2,28,6,0)) >>> df_aws = kkpy.io.read_aws(time=[datetime.datetime(2018,2,28,6,0),datetime.datetime(2018,3,1,12,0)], datadir='/path/to/aws/files/') Parameters ---------- time : datetime or array_like of datetime Datetime of the data you want to read. If this is array of two elements, it will read all data within two datetimes by default. If this is array of elements and keyword *date_range* is False, it will read the data of specific time of each element. date_range : bool, optional False if argument *time* contains element of specific time you want to read. datadir : str, optional Directory of data. stnid : list, optional List of station id you want to read. Read all site if None. dask : boolean, optional Return a dask dataframe if True, otherwise return a pandas dataframe. Returns --------- df_aws : dataframe Return dataframe of aws data. """ import dask.dataframe as dd if time is None: sys.exit(f'{__name__}: Check time argument') if len(time) == 1: date_range = False if date_range: if len(time) != 2: sys.exit(f'{__name__}: Check time and date_range arguments') if time[0] >= time[1]: sys.exit(f'{__name__}: time[1] must be greater than time[0]') dt_start = datetime.datetime(time[0].year, time[0].month, time[0].day, time[0].hour, time[0].minute) dt_finis = datetime.datetime(time[1].year, time[1].month, time[1].day, time[1].hour, time[1].minute) # Get file list filearr = np.array([]) _dt = dt_start while _dt <= dt_finis: _filearr = np.sort(glob.glob(f'{datadir}/{_dt:%Y%m}/{_dt:%d}/AWS_MIN_{_dt:%Y%m%d%H%M}')) filearr = np.append(filearr, _filearr) _dt = _dt + datetime.timedelta(minutes=1) yyyy_filearr = [int(os.path.basename(x)[-12:-8]) for x in filearr] mm_filearr = [int(os.path.basename(x)[-8:-6]) for x in filearr] dd_filearr = [int(os.path.basename(x)[-6:-4]) for x in filearr] hh_filearr = [int(os.path.basename(x)[-4:-2]) for x in filearr] ii_filearr = [int(os.path.basename(x)[-2:]) for x in filearr] dt_filearr = np.array([datetime.datetime(yyyy,mm,dd,hh,ii) for (yyyy,mm,dd,hh,ii) in zip(yyyy_filearr, mm_filearr, dd_filearr, hh_filearr, ii_filearr)]) filearr = filearr[(dt_filearr >= dt_start) & (dt_filearr <= dt_finis)] dt_filearr = dt_filearr[(dt_filearr >= dt_start) & (dt_filearr <= dt_finis)] else: list_dt_yyyymmddhhii = np.unique(np.array([datetime.datetime(_time.year, _time.month, _time.day, _time.hour, _time.minute) for _time in time])) filearr = np.array([f'{datadir}/{_dt:%Y%m}/{_dt:%d}/AWS_MIN_{_dt:%Y%m%d%H%M}' for _dt in list_dt_yyyymmddhhii]) dt_filearr = list_dt_yyyymmddhhii if len(filearr) == 0: sys.exit(f'{__name__}: No matched data for the given time period') df_list = [] names = ['ID', 'YMDHI', 'LON', 'LAT', 'HGT', 'WD', 'WS', 'T', 'RH', 'PA', 'PS', 'RE', 'R60mAcc', 'R1d', 'R15m', 'R60m', 'WDS', 'WSS', 'dummy'] df_aws = dd.read_csv(filearr.tolist(), delimiter='#', names=names, header=None, na_values=[-999,-997]) df_aws = df_aws.drop('dummy', axis=1) df_aws.WD = df_aws.WD/10. df_aws.WS = df_aws.WS/10. df_aws.T = df_aws['T']/10. df_aws.RH = df_aws.RH/10. df_aws.PA = df_aws.PA/10. df_aws.PS = df_aws.PS/10. df_aws.RE = df_aws.RE/10. df_aws.R60mAcc = df_aws.R60mAcc/10. df_aws.R1d = df_aws.R1d/10. df_aws.R15m = df_aws.R15m/10. df_aws.R60m = df_aws.R60m/10. df_aws.WDS = df_aws.WDS/10. df_aws.WSS = df_aws.WSS/10. if stnid: df_aws = df_aws[df_aws['ID'].isin(stnid)] df_aws = df_aws.set_index(dd.to_datetime(df_aws['YMDHI'], format='%Y%m%d%H%M')) df_aws = df_aws.drop('YMDHI', axis=1) if dask: return df_aws else: return df_aws.compute() def read_2dvd_rho(time, date_range=True, datadir='/disk/common/kwonil_rainy/RHO_2DVD/', filename='2DVD_Dapp_v_rho_201*Deq.txt'): """ Read 2DVD density files into dataframe. Examples --------- >>> import datetime >>> df_2dvd_drop = kkpy.io.read_2dvd_rho(time=datetime.datetime(2018,2,28)) # automatically date_range=False >>> df_2dvd_drop = kkpy.io.read_2dvd_rho(time=[datetime.datetime(2018,2,28,6),datetime.datetime(2018,3,1,12)], datadir='/path/to/2dvd/files/') >>> df_2dvd_drop = kkpy.io.read_2dvd_rho(time=list_of_many_datetimes, date_range=False) >>> df_2dvd_drop = kkpy.io.read_2dvd_rho(time=datetime.datetime(2018,2,28), filename='2DVD_rho_test_*.txt') Parameters ---------- time : datetime or array_like of datetime Datetime of the data you want to read. If this is array of two elements, it will read all data within two datetimes by default. If this is array of elements and keyword *date_range* is False, it will read the data of specific time of each element. date_range : bool, optional False if argument *time* contains element of specific time you want to read. datadir : str, optional Directory of data. filename : str, optional File naming of data. Returns --------- df_2dvd_drop : dataframe Return dataframe of 2dvd data. """ # Get file list filearr = np.array(np.sort(glob.glob(f'{datadir}/**/{filename}', recursive=True))) yyyy_filearr = [int(os.path.basename(x)[-27:-23]) for x in filearr] mm_filearr = [int(os.path.basename(x)[-23:-21]) for x in filearr] dd_filearr = [int(os.path.basename(x)[-21:-19]) for x in filearr] dt_filearr = np.array([datetime.datetime(yyyy,mm,dd) for (yyyy, mm, dd) in zip(yyyy_filearr, mm_filearr, dd_filearr)]) if time is None: sys.exit(f'{__name__}: Check time argument') if len(time) == 1: date_range = False if date_range: if len(time) != 2: sys.exit(f'{__name__}: Check time and date_range arguments') if time[0] >= time[1]: sys.exit(f'{__name__}: time[1] must be greater than time[0]') dt_start = datetime.datetime(time[0].year, time[0].month, time[0].day) dt_finis = datetime.datetime(time[1].year, time[1].month, time[1].day) filearr = filearr[(dt_filearr >= dt_start) & (dt_filearr <= dt_finis)] dt_filearr = dt_filearr[(dt_filearr >= dt_start) & (dt_filearr <= dt_finis)] else: list_dt_yyyymmdd = np.unique(np.array([datetime.datetime(_time.year, _time.month, _time.day) for _time in time])) filearr = filearr[np.isin(dt_filearr, list_dt_yyyymmdd)] dt_filearr = dt_filearr[np.isin(dt_filearr, list_dt_yyyymmdd)] if len(filearr) == 0: sys.exit(f'{__name__}: No matched data for the given time period') # # READ DATA columns = ['hhmm', 'Dapp', 'VEL', 'RHO', 'AREA', 'WA', 'HA', 'WB', 'HB', 'Deq'] dflist = [] for i_file, (file, dt) in enumerate(zip(filearr, dt_filearr)): _df = pd.read_csv(file, skiprows=1, names=columns, header=None, delim_whitespace=True) _df['year'] = dt.year _df['month'] = dt.month _df['day'] = dt.day _df['hour'] = np.int_(_df['hhmm'] / 100) _df['minute'] = _df['hhmm'] % 100 _df['jultime'] = pd.to_datetime(_df[['year','month','day','hour','minute']]) _df = _df.drop(['hhmm','year','month','day','hour','minute'], axis=1) dflist.append(_df) print(i_file+1, filearr.size, file) df_2dvd_drop = pd.concat(dflist, sort=False, ignore_index=True) df_2dvd_drop.set_index('jultime', inplace=True) if date_range: if np.sum([np.sum([_time.hour, _time.minute, _time.second]) for _time in time]) != 0: df_2dvd_drop = df_2dvd_drop.loc[time[0]:time[1]] return df_2dvd_drop def read_mxpol_rhi_with_hc(rhifile_nc, hcfile_mat): """ Read MXPOL RHI with hydrometeor classification into py-ART radar object. Examples --------- >>> rhifile = '/disk/WORKSPACE/kwonil/MXPOL/RAW/2018/02/28/MXPol-polar-20180228-065130-RHI-225_8.nc' >>> hidfile = '/disk/WORKSPACE/kwonil/MXPOL/HID/2018/02/28/MXPol-polar-20180228-065130-RHI-225_8_zdrcorr_demix.mat' >>> radar_mxp = kkpy.io.read_mxpol_rhi_with_hc(rhifile, hcfile) Parameters ---------- rhifile_nc : str or array_like of str Filepath of RHI data to read. The number and the order of elements should match with `hcfile_mat`. hcfile_mat : str or array_like of str Filepath of hydrometeor classification file to read. The number and the order of elements should match with `rhifile_nc`. Returns --------- radar : py-ART radar object Return py-ART radar object. """ os.environ['PYART_QUIET'] = "True" import pyart import scipy.io from netCDF4 import Dataset # HC file HC_proportion = scipy.io.loadmat(hcfile_mat) # RHI file mxpol = Dataset(rhifile_nc,'r') El = mxpol.variables['Elevation'][:] wh_hc = np.logical_and(El>5,El<175) El = El[wh_hc] R = mxpol.variables['Range'][:] radar = pyart.testing.make_empty_rhi_radar(HC_proportion['AG'].shape[1], HC_proportion['AG'].shape[0], 1) ######## HIDs ######## # find most probable habit for i, _HC in HC_proportion.items(): if '_' in i: continue if i in 'AG': HC3d_proportion =
np.array(HC_proportion[i])
numpy.array
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ResNet Train/Eval module. """ import os import six import subprocess import sys import time import cifar_input import numpy as np import resnet_model import tensorflow as tf FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('dataset', 'cifar10', 'cifar10 or cifar100.') tf.app.flags.DEFINE_string('mode', 'train', 'train or eval.') tf.app.flags.DEFINE_string('model', '', 'model to train.') tf.app.flags.DEFINE_string('data_format', 'NHWC', """Data layout to use: NHWC (TF native) or NCHW (cuDNN native).""") tf.app.flags.DEFINE_string('train_data_path', '', 'Filepattern for training data.') tf.app.flags.DEFINE_string('eval_data_path', '', 'Filepattern for eval data') tf.app.flags.DEFINE_integer('image_size', 32, 'Image side length.') tf.app.flags.DEFINE_string('train_dir', '', 'Directory to keep training outputs.') tf.app.flags.DEFINE_string('eval_dir', '', 'Directory to keep eval outputs.') tf.app.flags.DEFINE_integer('eval_batch_count', 50, 'Number of batches to eval.') tf.app.flags.DEFINE_bool('eval_once', False, 'Whether evaluate the model only once.') tf.app.flags.DEFINE_string('log_root', '', 'Should be a parent directory of FLAGS.train_dir/eval_dir.') tf.app.flags.DEFINE_string('checkpoint_dir', '', 'Directory to store the checkpoints') tf.app.flags.DEFINE_integer('num_gpus', 0, 'Number of gpus used for training. (0 or 1)') tf.app.flags.DEFINE_bool('use_bottleneck', False, 'Use bottleneck module or not.') def train(hps): """Training loop.""" images, labels = cifar_input.build_input( FLAGS.dataset, FLAGS.train_data_path, hps.batch_size, FLAGS.mode, hps.data_format) model = resnet_model.ResNet(hps, images, labels, FLAGS.mode) model.build_graph() param_stats = tf.contrib.tfprof.model_analyzer.print_model_analysis( tf.get_default_graph(), tfprof_options=tf.contrib.tfprof.model_analyzer. TRAINABLE_VARS_PARAMS_STAT_OPTIONS) sys.stdout.write('total_params: %d\n' % param_stats.total_parameters) tf.contrib.tfprof.model_analyzer.print_model_analysis( tf.get_default_graph(), tfprof_options=tf.contrib.tfprof.model_analyzer.FLOAT_OPS_OPTIONS) truth = tf.argmax(model.labels, axis=1) predictions = tf.argmax(model.predictions, axis=1) precision = tf.reduce_mean(tf.to_float(tf.equal(predictions, truth))) summary_hook = tf.train.SummarySaverHook( save_steps=100, output_dir=FLAGS.train_dir, summary_op=tf.summary.merge([model.summaries, tf.summary.scalar('Precision', precision)])) num_steps_per_epoch = 391 # TODO: Don't hardcode this. logging_hook = tf.train.LoggingTensorHook( tensors={'step': model.global_step, 'loss': model.cost, 'precision': precision}, every_n_iter=100) class _LearningRateSetterHook(tf.train.SessionRunHook): """Sets learning_rate based on global step.""" def begin(self): self._lrn_rate = 0.01 def before_run(self, run_context): return tf.train.SessionRunArgs( model.global_step, # Asks for global step value. feed_dict={model.lrn_rate: self._lrn_rate}) # Sets learning rate def after_run(self, run_context, run_values): train_step = run_values.results if train_step < num_steps_per_epoch: self._lrn_rate = 0.01 elif train_step < (91 * num_steps_per_epoch): self._lrn_rate = 0.1 elif train_step < (136 * num_steps_per_epoch): self._lrn_rate = 0.01 elif train_step < (181 * num_steps_per_epoch): self._lrn_rate = 0.001 else: self._lrn_rate = 0.0001 class _SaverHook(tf.train.SessionRunHook): """Sets learning_rate based on global step.""" def begin(self): self.saver = tf.train.Saver(max_to_keep=10000) subprocess.call("rm -rf %s; mkdir -p %s" % (FLAGS.checkpoint_dir, FLAGS.checkpoint_dir), shell=True) self.f = open(os.path.join(FLAGS.checkpoint_dir, "times.log"), 'w') def after_create_session(self, sess, coord): self.sess = sess self.start_time = time.time() def before_run(self, run_context): return tf.train.SessionRunArgs( model.global_step # Asks for global step value. ) def after_run(self, run_context, run_values): train_step = run_values.results epoch = train_step / num_steps_per_epoch if train_step % num_steps_per_epoch == 0: end_time = time.time() directory = os.path.join(FLAGS.checkpoint_dir, ("%5d" % epoch).replace(' ', '0')) subprocess.call("mkdir -p %s" % directory, shell=True) ckpt_name = 'model.ckpt' self.saver.save(self.sess, os.path.join(directory, ckpt_name), global_step=train_step) self.f.write("Step: %d\tTime: %s\n" % (train_step, end_time - self.start_time)) print("Saved checkpoint after %d epoch(s) to %s..." % (epoch, directory)) sys.stdout.flush() self.start_time = time.time() def end(self, sess): self.f.close() with tf.train.MonitoredTrainingSession( checkpoint_dir=FLAGS.log_root, hooks=[logging_hook, _LearningRateSetterHook()], chief_only_hooks=[summary_hook, _SaverHook()], save_checkpoint_secs=None, # Since we provide a SummarySaverHook, we need to disable default # SummarySaverHook. To do that we set save_summaries_steps to 0. save_summaries_steps=None, save_summaries_secs=None, config=tf.ConfigProto(allow_soft_placement=True)) as mon_sess: for i in range(num_steps_per_epoch * 181): mon_sess.run(model.train_op) def evaluate(hps): """Eval loop.""" images, labels = cifar_input.build_input( FLAGS.dataset, FLAGS.eval_data_path, hps.batch_size, FLAGS.mode, hps.data_format) model = resnet_model.ResNet(hps, images, labels, FLAGS.mode) model.build_graph() saver = tf.train.Saver() summary_writer = tf.summary.FileWriter(FLAGS.eval_dir) sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) tf.train.start_queue_runners(sess) best_precision = 0.0 while True: try: ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) except tf.errors.OutOfRangeError as e: tf.logging.error('Cannot restore checkpoint: %s', e) continue if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to eval yet at %s', FLAGS.log_root) break tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path) saver.restore(sess, ckpt_state.model_checkpoint_path) global_step = ckpt_state.model_checkpoint_path.split('/')[-1].split('-')[-1] if not global_step.isdigit(): global_step = 0 else: global_step = int(global_step) total_prediction, correct_prediction, correct_prediction_top5 = 0, 0, 0 for _ in six.moves.range(FLAGS.eval_batch_count): (summaries, loss, predictions, truth, train_step) = sess.run( [model.summaries, model.cost, model.predictions, model.labels, model.global_step]) for (indiv_truth, indiv_prediction) in zip(truth, predictions): indiv_truth = np.argmax(indiv_truth) top5_prediction = np.argsort(indiv_prediction)[-5:] top1_prediction =
np.argsort(indiv_prediction)
numpy.argsort
from flask import Flask,render_template,request,send_file,send_from_directory import numpy as np import pandas as pd import sklearn.metrics as m from keras.utils.np_utils import to_categorical import os import cv2 from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense,Conv2D,Flatten,Activation,MaxPooling2D from keras.preprocessing import image from keras.models import load_model import keras.backend.tensorflow_backend as tb from skimage import transform import argparse from keras.applications.vgg16 import VGG16 from keras.models import Model import tensorflow as tf tb._SYMBOLIC_SCOPE.value = True model = load_model('model-facemask.h5') def processesing(arr): for i in arr: if(i[0]>i[1]): return 0 else: return 1 def images(img): image_read=[] image1=image.load_img(img) image2=image.img_to_array(image1) image3=cv2.resize(image2,(224,224)) image_read.append(image3) img_array=np.asarray(image_read) return img_array app = Flask(__name__,static_folder='static',template_folder='templates') @app.route('/') def home(): return render_template("index.html") def percentage(u,pre): sum=u[0][0]+u[0][1] return 100*u[0][pre]/sum @app.route('/predict',methods=['POST','GET']) def predict(): if request.method=='POST': img=request.files['ima'].read() print(img) npimg = np.fromstring(img, np.uint8) # convert numpy array to image img = cv2.imdecode(npimg,cv2.IMREAD_COLOR) cv2.imwrite("images/output.png",img) image3=cv2.resize(img,(224,224)) image =
np.expand_dims(image3, axis=0)
numpy.expand_dims