prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
''' 25 2D-Gaussian Simulation Compare different Sampling methods and DRE methods 1. DRE method 1.1. By NN DR models: MLP Loss functions: uLISF, DSKL, BARR, SP (ours) lambda for SP is selected by maximizing average denstity ratio on validation set 1.2. GAN property 2. Data Generation: (1). Target Distribution p_r: A mixture of 25 2-D Gaussian 25 means which are combinations of any two points in [-2, -1, 0, 1, 2] Each Gaussian has a covariance matrix sigma*diag(2), sigma=0.05 (2). Proposal Distribution p_g: GAN NTRAIN = 50000, NVALID=50000, NTEST=10000 3. Sampling from GAN by None/RS/MH/SIR 4. Evaluation on a held-out test set Prop. of good samples (within 4 sd) and Prop. of recovered modes ''' wd = './Simulation' import os os.chdir(wd) import timeit import torch import torchvision import torchvision.transforms as transforms import numpy as np import torch.nn as nn import torch.backends.cudnn as cudnn from torch.nn import functional as F import random import matplotlib.pyplot as plt import matplotlib as mpl from torch import autograd from torchvision.utils import save_image from tqdm import tqdm import gc from itertools import groupby import argparse from sklearn.linear_model import LogisticRegression import multiprocessing from scipy.stats import multivariate_normal from scipy.stats import ks_2samp import pickle import csv from sklearn.model_selection import GridSearchCV from sklearn import mixture from utils import * from models import * from Train_DRE import train_DRE_GAN from Train_GAN import * ####################################################################################### ''' Settings ''' ####################################################################################### parser = argparse.ArgumentParser(description='Simulation') '''Overall Settings''' parser.add_argument('--NSIM', type=int, default=1, help = "How many times does this experiment need to be repeated?") parser.add_argument('--DIM', type=int, default=2, help = "Dimension of the Euclidean space of our interest") parser.add_argument('--n_comp_tar', type=int, default=25, help = "Number of mixture components in the target distribution") parser.add_argument('--DRE', type=str, default='DRE_SP', choices=['None', 'GT', 'DRE_uLSIF', 'DRE_DSKL', 'DRE_BARR', 'DRE_SP', 'disc', 'disc_MHcal', 'disc_KeepTrain'], #GT is ground truth help='Density ratio estimation method; None means randomly sample from the proposal distribution or the trained GAN') parser.add_argument('--Sampling', type=str, default='RS', help='Sampling method; Candidiate: None, RS, MH, SIR') #RS: rejection sampling, MH: Metropolis-Hastings; SIR: Sampling-Importance Resampling parser.add_argument('--seed', type=int, default=2019, metavar='S', help='random seed (default: 2019)') parser.add_argument('--show_reference', action='store_true', default=False, help='Assign 1 as density ratios to all samples and compute errors') parser.add_argument('--show_visualization', action='store_true', default=False, help='Plot fake samples in 2D coordinate') ''' Data Generation ''' parser.add_argument('--NTRAIN', type=int, default=50000) parser.add_argument('--NTEST', type=int, default=10000) ''' GAN settings ''' parser.add_argument('--epoch_gan', type=int, default=50) #default 50 parser.add_argument('--lr_gan', type=float, default=1e-3, help='learning rate') parser.add_argument('--dim_gan', type=int, default=2, help='Latent dimension of GAN') parser.add_argument('--batch_size_gan', type=int, default=512, metavar='N', help='input batch size for training GAN') parser.add_argument('--resumeTrain_gan', type=int, default=0) parser.add_argument('--compute_disc_err', action='store_true', default=False, help='Compute the distance between the discriminator and its optimality') '''DRE Settings''' parser.add_argument('--DR_Net', type=str, default='MLP5', choices=['MLP3', 'MLP5', 'MLP7', 'MLP9', 'CNN5'], help='DR Model') # DR models parser.add_argument('--epoch_DRE', type=int, default=200) parser.add_argument('--base_lr_DRE', type=float, default=1e-5, help='learning rate') parser.add_argument('--decay_lr_DRE', action='store_true', default=False, help='decay learning rate') parser.add_argument('--lr_decay_epochs_DRE', type=int, default=400) parser.add_argument('--batch_size_DRE', type=int, default=512, metavar='N', help='input batch size for training DRE') parser.add_argument('--lambda_DRE', type=float, default=0.0, #BARR: lambda=10 help='penalty in DRE') parser.add_argument('--weightdecay_DRE', type=float, default=0.0, help='weight decay in DRE') parser.add_argument('--resumeTrain_DRE', type=int, default=0) parser.add_argument('--DR_final_ActFn', type=str, default='ReLU', help='Final layer of the Density-ratio model; Candidiate: Softplus or ReLU') parser.add_argument('--TrainPreNetDRE', action='store_true', default=False, help='Pre-trained MLP for DRE in Feature Space') parser.add_argument('--DRE_save_at_epoch', nargs='+', type=int) parser.add_argument('--epoch_KeepTrain', type=int, default=20) parser.add_argument('--compute_dre_err', action='store_true', default=False, help='Compare the DRE method with the ground truth') ''' Mixture Gaussian (for density estimation) Settings ''' parser.add_argument('--gmm_nfake', type=int, default=100000) # parser.add_argument('--gmm_ncomp', type=int, default=0) #gmm_ncomp is non-positive, then we do ncomp selection parser.add_argument('--gmm_ncomp_nsim', nargs='+', type=int) #A list of ncomp for NSIM rounds. If gmm_ncomp is None, then we do ncomp selection parser.add_argument('--gmm_ncomp_grid', nargs='+', type=int) parser.add_argument('--gmm_ncomp_grid_lb', type=int, default=1) parser.add_argument('--gmm_ncomp_grid_ub', type=int, default=100) parser.add_argument('--gmm_ncomp_grid_step', type=int, default=1) args = parser.parse_args() #-------------------------------- # system assert torch.cuda.is_available() NGPU = torch.cuda.device_count() device = torch.device("cuda" if NGPU>0 else "cpu") cores= multiprocessing.cpu_count() #-------------------------------- # Extra Data Generation Settings n_comp_tar = args.n_comp_tar n_features = args.DIM mean_grid_tar = [-2, -1, 0, 1, 2] sigma_tar = 0.05 n_classes = n_comp_tar quality_threshold = sigma_tar*4 #good samples are within 4 standard deviation #-------------------------------- # GAN Settings epoch_GAN = args.epoch_gan lr_GAN = args.lr_gan batch_size_GAN = args.batch_size_gan dim_GAN = args.dim_gan plot_in_train = True gan_Adam_beta1 = 0.5 gan_Adam_beta2 = 0.999 #-------------------------------- # Extra DRE Settings DRE_Adam_beta1 = 0.5 DRE_Adam_beta2 = 0.999 comp_ratio_bs = 1000 #batch size for computing density ratios base_lr_PreNetDRE = 1e-1 epoch_PreNetDRE = 100 DRE_save_at_epoch = args.DRE_save_at_epoch # save checkpoints at these epochs # DRE_save_at_epoch = [20, 50, 100, 150, 200, 300, 400, 500, 800] epoch_KeepTrain = args.epoch_KeepTrain #keep training for DRS ckp_epoch_KeepTrain = [i for i in range(100) if i%5==0] #-------------------------------- # Mixture Gaussian Setting gmm_nfake = args.gmm_nfake # gmm_ncomp = args.gmm_ncomp gmm_ncomp_nsim = args.gmm_ncomp_nsim # if gmm_ncomp_nsim is not None: # assert len(gmm_ncomp_nsim) == args.NSIM if args.gmm_ncomp_grid is not None: gmm_ncomp_grid = args.gmm_ncomp_grid else: gmm_ncomp_grid = np.arange(args.gmm_ncomp_grid_lb, args.gmm_ncomp_grid_ub+args.gmm_ncomp_grid_step, args.gmm_ncomp_grid_step) #-------------------------------- # Extra Sampling Settings NFAKE = args.NTEST samp_batch_size = 10000 MH_K = 100 MH_mute = True #do not print sampling progress #------------------------------- # seeds random.seed(args.seed) torch.manual_seed(args.seed) torch.backends.cudnn.deterministic = True np.random.seed(args.seed) #------------------------------- # output folders save_models_folder = wd + '/Output/saved_models/' os.makedirs(save_models_folder,exist_ok=True) save_images_folder = wd + '/Output/saved_images/' os.makedirs(save_images_folder,exist_ok=True) save_traincurves_folder = wd + '/Output/Training_loss_fig/' os.makedirs(save_traincurves_folder,exist_ok=True) save_GANimages_InTrain_folder = wd + '/Output/saved_images/GAN_InTrain' os.makedirs(save_GANimages_InTrain_folder,exist_ok=True) save_objects_folder = wd + '/Output/saved_objects' os.makedirs(save_objects_folder,exist_ok=True) ####################################################################################### ''' Start Experiment ''' ####################################################################################### #--------------------------------- # sampler for reference distribution means_tar = np.zeros((1,n_features)) for i in mean_grid_tar: for j in mean_grid_tar: means_tar = np.concatenate((means_tar, np.array([i,j]).reshape(-1,n_features)), axis=0) means_tar = means_tar[1:] assert means_tar.shape[0] == n_comp_tar assert means_tar.shape[1] == n_features def generate_data_tar(nsamp): return sampler_MixGaussian(nsamp, means_tar, sigma = sigma_tar, dim = n_features) def p_r(samples): #pdf of the underlying distribution; samples is a n by n_features sample matrix return pdf_MixGaussian(samples, means_tar, sigma_tar) prop_recovered_modes = np.zeros(args.NSIM) # num of removed modes diveded by num of modes prop_good_samples = np.zeros(args.NSIM) # num of good fake samples diveded by num of all fake samples valid_densityratios_all = [] #store denstiy ratios for validation samples train_densityratios_all = [] ks_test_results = np.zeros((args.NSIM,2)) dre_errors_all = np.zeros(args.NSIM) #compute density ratios on the test set (hold-out set) with each DRE method and the ground truth dre_errors_hq = np.zeros(args.NSIM) dre_errors_lq = np.zeros(args.NSIM) esti_avg_densityratio = np.zeros((args.NSIM, 4)) #estimated density ratios of testing samples, NFAKE fake samples, HQ fake samples, LQ fake samples true_avg_densityratio = np.zeros((args.NSIM, 4)) #true density ratios of testing samples, NFAKE fake samples, HQ fake samples, LQ fake samples disc_errors_all = np.zeros(args.NSIM) #compute the distance between the discriminator and its optimality nfake_in_train = np.zeros(args.NSIM) print("\n Begin The Experiment. Sample from a GAN! >>>") start = timeit.default_timer() for nSim in range(args.NSIM): print("Round %s" % (nSim)) np.random.seed(nSim) #set seed for current simulation ############################################################################### # Data generation and dataloaders ############################################################################### train_samples_tar, train_labels_tar = generate_data_tar(args.NTRAIN) valid_samples_tar, valid_labels_tar = generate_data_tar(args.NTRAIN) test_samples_tar, test_labels_tar = generate_data_tar(args.NTEST) train_dataset_tar = custom_dataset(train_samples_tar, train_labels_tar) test_dataset_tar = custom_dataset(test_samples_tar, test_labels_tar) train_dataloader_tar = torch.utils.data.DataLoader(train_dataset_tar, batch_size=args.batch_size_DRE, shuffle=True, num_workers=0) test_dataloader_tar = torch.utils.data.DataLoader(test_dataset_tar, batch_size=100, shuffle=False, num_workers=0) # #compute the criterion for determing good smaples through train_samples_tar # # for each mixture component, compute the average distance of real samples from this component to the mean # l2_dis_train_samples = np.zeros(args.NTRAIN) #l2 distance between a fake sample and a mode # for i in range(args.NTRAIN): # indx_mean = int(train_labels_tar[i]) # l2_dis_train_samples[i] = np.sqrt(np.sum((train_samples_tar[i]-means_tar[indx_mean])**2)) # print(l2_dis_train_samples.max()) ############################################################################### # Train a GAN model ############################################################################### Filename_GAN = save_models_folder + '/ckpt_GAN_epoch_' + str(args.epoch_gan) + '_SEED_' + str(args.seed) + '_nSim_' + str(nSim) print("\n Begin Training GAN:") #model initialization netG = generator(ngpu=NGPU, nz=dim_GAN, out_dim=n_features) netD = discriminator(ngpu=NGPU, input_dim = n_features) if not os.path.isfile(Filename_GAN): criterion = nn.BCELoss() optimizerG = torch.optim.Adam(netG.parameters(), lr=lr_GAN, betas=(gan_Adam_beta1, gan_Adam_beta2)) optimizerD = torch.optim.Adam(netD.parameters(), lr=lr_GAN, betas=(gan_Adam_beta1, gan_Adam_beta2)) # Start training netG, netD, optimizerG, optimizerD = train_GAN(epoch_GAN, dim_GAN, train_dataloader_tar, netG, netD, optimizerG, optimizerD, criterion, save_models_folder = save_models_folder, ResumeEpoch = args.resumeTrain_gan, device=device, plot_in_train=plot_in_train, save_images_folder = save_GANimages_InTrain_folder, samples_tar = test_samples_tar) # store model torch.save({ 'netG_state_dict': netG.state_dict(), 'netD_state_dict': netD.state_dict(), }, Filename_GAN) torch.cuda.empty_cache() else: #load pre-trained GAN print("\n GAN exists! Loading Pretrained Model>>>") checkpoint = torch.load(Filename_GAN) netG.load_state_dict(checkpoint['netG_state_dict']) netD.load_state_dict(checkpoint['netD_state_dict']) netG = netG.to(device) netD = netD.to(device) def fn_sampleGAN(nfake, batch_size=1000): return SampGAN(netG, GAN_Latent_Length = args.dim_gan, NFAKE = nfake, batch_size = batch_size, device=device) ############################################################################### # Construct a function to compute density-ratio ############################################################################### # Approximate DR by NN if args.DRE in ['DRE_uLSIF', 'DRE_DSKL', 'DRE_BARR', 'DRE_SP']: # TRAIN DRE DRE_loss_type = args.DRE[4:] #loss type if args.DR_Net in ['MLP3', 'MLP5', 'MLP7', 'MLP9']: netDR = DR_MLP(args.DR_Net, init_in_dim = n_features, ngpu=NGPU, final_ActFn=args.DR_final_ActFn) elif args.DR_Net in ['CNN5']: netDR = DR_CNN(args.DR_Net, init_in_dim = n_features, ngpu=NGPU, final_ActFn=args.DR_final_ActFn) optimizer = torch.optim.Adam(netDR.parameters(), lr = args.base_lr_DRE, betas=(DRE_Adam_beta1, DRE_Adam_beta2), weight_decay=args.weightdecay_DRE) #optimizer = torch.optim.RMSprop(netDR.parameters(), lr= args.base_lr_DRE, alpha=0.99, eps=1e-08, weight_decay=args.weightdecay_DRE, momentum=0.9, centered=False) Filename_DRE = save_models_folder + '/ckpt_' + args.DRE +'_LAMBDA_' + str(args.lambda_DRE) + '_FinalActFn_' + args.DR_final_ActFn + '_epoch_' + str(args.epoch_DRE) \ + "_PreNetDRE_" + str(args.TrainPreNetDRE) + '_SEED_' + str(args.seed) + '_nSim_' + str(nSim) + '_epochGAN_' + str(epoch_GAN) filename0 = save_traincurves_folder + '/TrainCurve_' + args.DRE +'_LAMBDA_' + str(args.lambda_DRE) + '_FinalActFn_' + args.DR_final_ActFn + '_epoch_' \ + str(args.epoch_DRE) + "_PreNetDRE_" + str(args.TrainPreNetDRE) + '_SEED_' + str(args.seed) + "_nSim_" + str(nSim) + '_epochGAN_' + str(epoch_GAN) + "_TrainLoss" plot_filename = filename0 + '.pdf' npy_filename = filename0 + '.npy' # Train a net to extract features for DR net if args.TrainPreNetDRE: print("\n Begin Training PreNetDRE Net:") Filename_PreNetDRE = save_models_folder + '/ckpt_PreNetDRE_epochPreNetDRE_' + str(epoch_PreNetDRE) + '_SEED_' + str(args.seed) + '_nSim_' + str(nSim) + '_epochGAN_' + str(epoch_GAN) PreNetDRE_MLP = PreNetDRE_MLP(init_in_dim = n_features, ngpu=NGPU) if not os.path.isfile(Filename_PreNetDRE): criterion_PreNetDRE = nn.CrossEntropyLoss() optimizer_PreNetDRE = torch.optim.SGD(PreNetDRE_MLP.parameters(), lr = base_lr_PreNetDRE, momentum= 0.9, weight_decay=1e-4) PreNetDRE_MLP, _ = train_PreNetDRE(epoch_PreNetDRE, train_dataloader_tar, test_dataloader_tar, PreNetDRE_MLP, base_lr_PreNetDRE, optimizer_PreNetDRE, criterion_PreNetDRE, device=device) # save model torch.save({ 'net_state_dict': PreNetDRE_MLP.state_dict(), }, Filename_PreNetDRE) else: print("\n PreNetDRE Net exits and start loading:") checkpoint_PreNetDRE_MLP = torch.load(Filename_PreNetDRE) PreNetDRE_MLP.load_state_dict(checkpoint_PreNetDRE_MLP['net_state_dict']) PreNetDRE_MLP = PreNetDRE_MLP.to(device) def extract_features(samples): #samples: an numpy array n_samples = samples.shape[0] batch_size_tmp = 1000 dataset_tmp = custom_dataset(samples) dataloader_tmp = torch.utils.data.DataLoader(dataset_tmp, batch_size=batch_size_tmp, shuffle=False, num_workers=0) data_iter = iter(dataloader_tmp) extracted_features = np.zeros((n_samples+batch_size_tmp, n_features)) PreNetDRE_MLP.eval() with torch.no_grad(): tmp = 0 while tmp < n_samples: batch_samples,_ = data_iter.next() batch_samples = batch_samples.type(torch.float).to(device) _, batch_features = PreNetDRE_MLP(batch_samples) extracted_features[tmp:(tmp+batch_size_tmp)] = batch_features.cpu().detach().numpy() tmp += batch_size_tmp #end while return extracted_features[0:n_samples] test_features_tar = extract_features(test_samples_tar) plt.switch_backend('agg') mpl.style.use('seaborn') plt.figure() plt.grid(b=True) flag0 = 0; flag1=0 colors = ['b','g','r','c','m','y','k'] marker_styles = ['.', 'o', 'v', 's'] for nc in range(n_classes): indx = np.where(test_labels_tar == nc)[0] plt.scatter(test_features_tar[indx, 0], test_features_tar[indx, 1], c=colors[flag0], marker=marker_styles[flag1], s=8) flag0 += 1 if flag0 % 7 ==0 : flag0 = 0; flag1+=1 filename0 = save_images_folder + '/test.pdf' plt.savefig(filename0) plt.close() if not os.path.isfile(Filename_DRE): # Train print("\n Begin Training DRE NET:") if args.TrainPreNetDRE: netDR, optimizer, avg_train_loss = train_DRE_GAN(net=netDR, optimizer=optimizer, BASE_LR_DRE=args.base_lr_DRE, EPOCHS_DRE=args.epoch_DRE, LAMBDA=args.lambda_DRE, tar_dataloader=train_dataloader_tar, netG=netG, dim_gan=dim_GAN, PreNetDRE = PreNetDRE_MLP, decay_lr=args.decay_lr_DRE, decay_epochs=args.lr_decay_epochs_DRE, loss_type=DRE_loss_type, save_models_folder = save_models_folder, ResumeEpoch=args.resumeTrain_DRE, NGPU=NGPU, device=device, save_at_epoch = DRE_save_at_epoch, current_nsim=nSim) else: netDR, optimizer, avg_train_loss = train_DRE_GAN(net=netDR, optimizer=optimizer, BASE_LR_DRE=args.base_lr_DRE, EPOCHS_DRE=args.epoch_DRE, LAMBDA=args.lambda_DRE, tar_dataloader=train_dataloader_tar, netG=netG, dim_gan=dim_GAN, decay_lr=args.decay_lr_DRE, decay_epochs=args.lr_decay_epochs_DRE, loss_type=DRE_loss_type, save_models_folder = save_models_folder, ResumeEpoch=args.resumeTrain_DRE, NGPU=NGPU, device=device, save_at_epoch = DRE_save_at_epoch, current_nsim=nSim) # Plot loss PlotLoss(avg_train_loss, plot_filename) np.save(npy_filename, np.array(avg_train_loss)) # save model torch.save({ 'net_state_dict': netDR.state_dict(), }, Filename_DRE) else: #if the DR model is already trained, load the checkpoint print("\n DRE NET exists and start loading:") checkpoint_netDR = torch.load(Filename_DRE) netDR.load_state_dict(checkpoint_netDR['net_state_dict']) netDR = netDR.to(device) def comp_density_ratio(samples, verbose=False): #samples: an numpy array n_samples = samples.shape[0] batch_size_tmp = 1000 dataset_tmp = custom_dataset(samples) dataloader_tmp = torch.utils.data.DataLoader(dataset_tmp, batch_size=batch_size_tmp, shuffle=False, num_workers=0) data_iter = iter(dataloader_tmp) density_ratios = np.zeros((n_samples+batch_size_tmp, 1)) netDR.eval() if args.TrainPreNetDRE: PreNetDRE_MLP.eval() with torch.no_grad(): tmp = 0 while tmp < n_samples: batch_samples,_ = data_iter.next() batch_samples = batch_samples.type(torch.float).to(device) if args.TrainPreNetDRE: _, batch_features = PreNetDRE_MLP(batch_samples) batch_weights = netDR(batch_features) else: batch_weights = netDR(batch_samples) #density_ratios[tmp:(tmp+batch_size_tmp)] = batch_weights.cpu().detach().numpy() density_ratios[tmp:(tmp+batch_size_tmp)] = batch_weights.cpu().numpy() tmp += batch_size_tmp if verbose: print(batch_weights.cpu().numpy().mean()) #end while return density_ratios[0:n_samples]+1e-14 ################### # DRE based on GAN property elif args.DRE in ['disc', 'disc_MHcal', 'disc_KeepTrain']: if args.DRE == 'disc': #use GAN property to compute density ratio; ratio=D/(1-D); # function for computing a bunch of images # def comp_density_ratio(samples, netD): def comp_density_ratio(samples): #samples: an numpy array n_samples = samples.shape[0] batch_size_tmp = 1000 dataset_tmp = custom_dataset(samples) dataloader_tmp = torch.utils.data.DataLoader(dataset_tmp, batch_size=batch_size_tmp, shuffle=False, num_workers=0) data_iter = iter(dataloader_tmp) density_ratios = np.zeros((n_samples+batch_size_tmp, 1)) # print("\n Begin computing density ratio for images >>") netD.eval() with torch.no_grad(): tmp = 0 while tmp < n_samples: batch_samples,_ = data_iter.next() batch_samples = batch_samples.type(torch.float).to(device) disc_probs = netD(batch_samples).cpu().detach().numpy() disc_probs = np.clip(disc_probs.astype(np.float), 1e-14, 1 - 1e-14) density_ratios[tmp:(tmp+batch_size_tmp)] = np.divide(disc_probs, 1-disc_probs) tmp += batch_size_tmp #end while # print("\n End computing density ratio.") return density_ratios[0:n_samples] #----------------------------------- elif args.DRE == 'disc_MHcal': #use the calibration method in MH-GAN to calibrate disc n_test = valid_samples_tar.shape[0] batch_size_tmp = 1000 cal_labels_fake = np.zeros((n_test,1)) cal_labels_real = np.ones((n_test,1)) cal_samples_fake = fn_sampleGAN(nfake=n_test, batch_size=batch_size_tmp) dataset_fake = custom_dataset(cal_samples_fake) dataloader_fake = torch.utils.data.DataLoader(dataset_fake, batch_size=batch_size_tmp, shuffle=False, num_workers=0) dataset_real = custom_dataset(valid_samples_tar) dataloader_real = torch.utils.data.DataLoader(dataset_real, batch_size=batch_size_tmp, shuffle=False, num_workers=0) del cal_samples_fake; gc.collect() # get the output of disc before the final sigmoid layer; the \tilde{D} in Eq.(4) in "Discriminator Rejection Sampling" # def comp_disc_scores(samples_dataloader, netD): def comp_disc_scores(samples_dataloader): # samples_dataloader: the data loader for images n_samples = len(samples_dataloader.dataset) data_iter = iter(samples_dataloader) batch_size_tmp = samples_dataloader.batch_size disc_scores = np.zeros((n_samples+batch_size_tmp, 1)) netD.eval() with torch.no_grad(): tmp = 0 while tmp < n_samples: batch_samples,_ = data_iter.next() batch_samples = batch_samples.type(torch.float).to(device) disc_probs = netD(batch_samples).cpu().detach().numpy() disc_probs = np.clip(disc_probs.astype(np.float), 1e-14, 1 - 1e-14) disc_scores[tmp:(tmp+batch_size_tmp)] = np.log(np.divide(disc_probs, 1-disc_probs)) tmp += batch_size_tmp #end while return disc_scores[0:n_samples] cal_disc_scores_fake = comp_disc_scores(dataloader_fake) #discriminator scores for fake images cal_disc_scores_real = comp_disc_scores(dataloader_real) #discriminator scores for real images # Train a logistic regression model X_train = np.concatenate((cal_disc_scores_fake, cal_disc_scores_real),axis=0).reshape(-1,1) y_train = np.concatenate((cal_labels_fake, cal_labels_real), axis=0).reshape(-1) #del cal_disc_scores_fake, cal_disc_scores_real; gc.collect() cal_logReg = LogisticRegression(solver="liblinear").fit(X_train, y_train) # function for computing a bunch of images # def comp_density_ratio(samples, netD): def comp_density_ratio(samples): #samples: an numpy array dataset_tmp = custom_dataset(samples) dataloader_tmp = torch.utils.data.DataLoader(dataset_tmp, batch_size=batch_size_tmp, shuffle=False, num_workers=0) disc_scores = comp_disc_scores(dataloader_tmp) disc_probs = (cal_logReg.predict_proba(disc_scores))[:,1] #second column corresponds to the real class disc_probs = np.clip(disc_probs.astype(np.float), 1e-14, 1 - 1e-14) density_ratios = np.divide(disc_probs, 1-disc_probs) return density_ratios.reshape(-1,1) #--------------------------------------------- # disc_KeepTrain elif args.DRE == "disc_KeepTrain": batch_size_KeepTrain = 256 Filename_KeepTrain_Disc = save_models_folder + '/ckpt_KeepTrainDisc_epoch_'+str(epoch_KeepTrain)+ '_SEED_' + str(args.seed) + '_nSim_' + str(nSim) + '_epochGAN_' + str(epoch_GAN) if not os.path.isfile(Filename_KeepTrain_Disc): print("Resume training Discriminator for %d epochs" % epoch_KeepTrain) # keep train the discriminator n_heldout = valid_samples_tar.data.shape[0] batch_size_tmp = 500 cal_labels = np.concatenate((np.zeros((n_heldout,1)), np.ones((n_heldout,1))), axis=0) cal_imgs_fake = fn_sampleGAN(nfake=n_heldout, batch_size=batch_size_tmp) cal_imgs = np.concatenate((cal_imgs_fake, valid_samples_tar), axis=0) del cal_imgs_fake; gc.collect() cal_dataset = custom_dataset(cal_imgs, cal_labels) cal_dataloader = torch.utils.data.DataLoader(cal_dataset, batch_size=batch_size_KeepTrain, shuffle=True, num_workers=0) criterion_KeepTrain = nn.BCELoss() # optimizerD_KeepTrain = torch.optim.SGD(netD.parameters(), lr = 1e-3, momentum= 0.9, weight_decay=1e-4) optimizerD_KeepTrain = torch.optim.Adam(netD.parameters(), lr=lr_GAN, betas=(gan_Adam_beta1, gan_Adam_beta2)) # optimizerD_KeepTrain = torch.optim.Adam(netD.parameters(), lr=lr_GAN/2, betas=(gan_Adam_beta1, gan_Adam_beta2)) for epoch in range(epoch_KeepTrain): netD.train() train_loss = 0 for batch_idx, (batch_train_samples, batch_train_labels) in enumerate(cal_dataloader): batch_train_samples = batch_train_samples.type(torch.float).cuda() batch_train_labels = batch_train_labels.type(torch.float).cuda() #Forward pass outputs = netD(batch_train_samples) loss = criterion_KeepTrain(outputs, batch_train_labels) #backward pass optimizerD_KeepTrain.zero_grad() loss.backward() optimizerD_KeepTrain.step() train_loss += loss.cpu().item() #end for batch_idx print('KeepTrain netD: [epoch %d/%d] train_loss:%.3f' % (epoch+1, epoch_KeepTrain, train_loss/(batch_idx+1))) if epoch+1 in ckp_epoch_KeepTrain: filename_tmp = save_models_folder + '/ckpt_KeepTrainDisc_epoch_'+str(epoch+1)+ '_SEED_' + str(args.seed) + '_nSim_' + str(nSim) + '_epochGAN_' + str(epoch_GAN) torch.save({ 'net_state_dict': netD.state_dict(), }, filename_tmp) #end for epoch # save model torch.save({ 'net_state_dict': netD.state_dict(), }, Filename_KeepTrain_Disc) del batch_train_samples, batch_train_labels, cal_dataset, cal_dataloader; gc.collect() torch.cuda.empty_cache() else: checkpoint = torch.load(Filename_KeepTrain_Disc) netD.load_state_dict(checkpoint['net_state_dict']) # def comp_density_ratio(imgs, netD): def comp_density_ratio(samples): #samples: an numpy array n_samples = samples.shape[0] batch_size_tmp = 1000 dataset_tmp = custom_dataset(samples) dataloader_tmp = torch.utils.data.DataLoader(dataset_tmp, batch_size=batch_size_tmp, shuffle=False, num_workers=0) data_iter = iter(dataloader_tmp) density_ratios = np.zeros((n_samples+batch_size_tmp, 1)) # print("\n Begin computing density ratio for images >>") netD.eval() with torch.no_grad(): tmp = 0 while tmp < n_samples: batch_samples,_ = data_iter.next() batch_samples = batch_samples.type(torch.float).to(device) disc_probs = netD(batch_samples).cpu().detach().numpy().reshape((-1,1)) disc_probs = np.clip(disc_probs.astype(np.float), 1e-14, 1 - 1e-14) density_ratios[tmp:(tmp+batch_size_tmp)] = np.divide(disc_probs, 1-disc_probs) tmp += batch_size_tmp #end while # print("\n End computing density ratio.") return density_ratios[0:n_samples] ############################################################################### # Fitting Mixture Gaussians to estimate p_g ############################################################################### if args.DRE=="GT" or args.compute_dre_err or args.compute_disc_err: #--------------------------------------------------------------------------- # Select the optimal gmm_ncomp by minimizing BIC if gmm_ncomp_nsim is None: print("\n Select the optimal ncomp by minimizing BIC >>>") fake_samples = fn_sampleGAN(gmm_nfake, samp_batch_size) #draw many samples from GAN directly lowest_bic = np.infty gmm_ncomp = gmm_ncomp_grid[0] bic = [] for n_components in gmm_ncomp_grid: # Fit a Gaussian mixture with EM gmm = mixture.GaussianMixture(n_components=n_components) gmm.fit(fake_samples) bic.append(gmm.bic(fake_samples)) print("ncomp: %d; bic: %f; lowest bic: %f" % (n_components, bic[-1], lowest_bic)) if bic[-1] < lowest_bic: lowest_bic = bic[-1] gmm_ncomp = n_components print("\n The optimal gmm_ncomp is %d with BIC %f" % (gmm_ncomp, lowest_bic)) # fit gmm on all training data p_g_gmm = mixture.GaussianMixture(n_components=gmm_ncomp) p_g_gmm.fit(fake_samples) gmm_filename = save_objects_folder + "/fitted_gmm_nfake_" + str(gmm_nfake) + "_ncomp_" + str(gmm_ncomp) + "_epochGAN_" + str(epoch_GAN) + "_nSim_" + str(nSim) + ".pkl" with open(gmm_filename, 'wb') as f: pickle.dump(p_g_gmm, f) del fake_samples; gc.collect() #--------------------------------------------------------------------------- # Fit Mixture Guassians with specified gmm_ncomp else: gmm_ncomp = gmm_ncomp_nsim[nSim] gmm_filename = save_objects_folder + "/fitted_gmm_nfake_" + str(gmm_nfake) + "_ncomp_" + str(gmm_ncomp) + "_epochGAN_" + str(epoch_GAN) + "_nSim_" + str(nSim) + ".pkl" if not os.path.isfile(gmm_filename): fake_samples = fn_sampleGAN(gmm_nfake, samp_batch_size) #draw many samples from GAN directly p_g_gmm = mixture.GaussianMixture(n_components=gmm_ncomp) p_g_gmm.fit(fake_samples) with open(gmm_filename, 'wb') as f: pickle.dump(p_g_gmm, f) else: with open(gmm_filename, 'rb') as f: p_g_gmm = pickle.load(f) # generate NFAKE samples from fitted gmm filename_visual_gmm = save_images_folder + "/sample_gmm_nfake_" + str(args.NTEST) + "_ncomp_" + str(gmm_ncomp) + "_epochGAN_" + str(epoch_GAN) + "_nSim_" + str(nSim) + ".pdf" gmm_fake_samples = p_g_gmm.sample(args.NTEST)[0] ScatterPoints(test_samples_tar, gmm_fake_samples, filename_visual_gmm, plot_real_samples = False) # ## DEBUG: # fake_samples = fn_sampleGAN(10000, samp_batch_size) # out = np.exp(p_g_gmm.score_samples(fake_samples[0:10])) # print(out) # function for evalute the fitted GMM on data X def gmm_eval(X): return p_g_gmm.score_samples(X) def gmm_eval_parallel(X): pool = multiprocessing.Pool(processes=cores) nsamples_eval = len(X) batch_size = nsamples_eval//cores batch_size_left = nsamples_eval-batch_size*cores ## split data into chunks chunks = [] total_got = 0; flag=1 while total_got<nsamples_eval: if flag<cores: chunks.append(X[total_got:(total_got+batch_size)]) total_got += batch_size else: chunks.append(X[total_got:(total_got+batch_size+batch_size_left)]) total_got += batch_size+batch_size_left flag+=1 gmm_testscores = [] for result in pool.imap(gmm_eval, chunks): gmm_testscores.extend(list(result)) gmm_testscores = np.array(gmm_testscores) del chunks; gc.collect() pool.close() return gmm_testscores #--------------------------------------------------------------------------- # Compare each DRE method with the ground truth (p_r/p_g, where p_g is estimated by KDE); if args.DRE not in ["None", "GT"] and args.compute_dre_err: dre_errors_comp_truedensityratios_filename = save_objects_folder + "/dre_error_comp_truedensityratios_epochGAN_" + str(epoch_GAN) + "_nfake_" + str(NFAKE) + "_gmm_ncomp_" + str(gmm_ncomp) + "_nSim_" + str(nSim) + ".pkl" dre_errors_comp_fakesamples_filename = save_objects_folder + "/dre_error_comp_fakesamples_epochGAN_" + str(epoch_GAN) + "_nSim_" + str(nSim) + ".pkl" #evaluate the optimal discriminator on NFAKE fake images if not os.path.isfile(dre_errors_comp_fakesamples_filename): fake_samples = fn_sampleGAN(NFAKE, samp_batch_size) #draw many samples from GAN directly with open(dre_errors_comp_fakesamples_filename, "wb") as file: pickle.dump(fake_samples, file) else: with open(dre_errors_comp_fakesamples_filename, "rb") as file: fake_samples = pickle.load(file) if not os.path.isfile(dre_errors_comp_truedensityratios_filename): gmm_fakescore = gmm_eval_parallel(fake_samples) gmm_testscore = gmm_eval_parallel(test_samples_tar) fake_densityratios_true = np.divide(p_r(fake_samples), np.exp(gmm_fakescore)+1e-20) test_densityratios_true = np.divide(p_r(test_samples_tar), np.exp(gmm_testscore)+1e-20) with open(dre_errors_comp_truedensityratios_filename, "wb") as file: temp_densityratios_true = {"fake_densityratios_true":fake_densityratios_true, "test_densityratios_true":test_densityratios_true} pickle.dump(temp_densityratios_true, file) del temp_densityratios_true; gc.collect() else: with open(dre_errors_comp_truedensityratios_filename, "rb") as file: temp_densityratios_true = pickle.load(file) fake_densityratios_true = temp_densityratios_true["fake_densityratios_true"] test_densityratios_true = temp_densityratios_true["test_densityratios_true"] del temp_densityratios_true; gc.collect() fake_densityratios_esti = comp_density_ratio(fake_samples) test_densityratios_esti = comp_density_ratio(test_samples_tar) # # DEBUG # temp_filename = save_objects_folder + "/sum_dr_versus_epochs.csv" # with open(temp_filename, 'a') as f: # writer = csv.writer(f, delimiter=',') # writer.writerow([args.epoch_DRE, np.sum(fake_densityratios_true), np.sum(fake_densityratios_esti)]) # deno_true = np.sum(fake_densityratios_true) #sum # deno_esti = np.sum(fake_densityratios_esti) #sum deno_true = 1 #no standarization deno_esti = 1 dre_errors_all[nSim] = np.sqrt(np.mean((fake_densityratios_true/deno_true - fake_densityratios_esti/deno_esti)**2)) l2_dis_fake_samples = np.zeros((NFAKE, n_comp_tar)) #l2 distance between a fake sample and a mode for i in tqdm(range(NFAKE)): for j in range(n_comp_tar): l2_dis_fake_samples[i,j] = np.sqrt(np.sum((fake_samples[i]-means_tar[j])**2)) min_l2_dis_fake_samples = np.min(l2_dis_fake_samples, axis=1) index_hq = np.where(min_l2_dis_fake_samples<quality_threshold)[0] index_lq = np.where(min_l2_dis_fake_samples>=quality_threshold)[0] dre_errors_hq[nSim] = np.sqrt(np.mean((fake_densityratios_true[index_hq]/deno_true - fake_densityratios_esti[index_hq]/deno_esti)**2)) dre_errors_lq[nSim] = np.sqrt(np.mean((fake_densityratios_true[index_lq]/deno_true - fake_densityratios_esti[index_lq]/deno_esti)**2)) # print("True avg. density ratios, HQ %f, LQ %f" % (np.mean(fake_densityratios_true[index_hq]), np.mean(fake_densityratios_true[index_lq]))) # print("Esti avg. density ratios, HQ %f, LQ %f" % (np.mean(fake_densityratios_esti[index_hq]), np.mean(fake_densityratios_esti[index_lq]))) ## estimated/true density ratios of testing samples, NFAKE fake samples, HQ fake samples, LQ fake samples ''' mean of density ratios on 10K real/fake samples ''' esti_avg_densityratio[nSim] = np.array([np.mean(test_densityratios_esti), np.mean(fake_densityratios_esti), np.mean(fake_densityratios_esti[index_hq]), np.mean(fake_densityratios_esti[index_lq])]) true_avg_densityratio[nSim] = np.array([np.mean(test_densityratios_true), np.mean(fake_densityratios_true), np.mean(fake_densityratios_true[index_hq]), np.mean(fake_densityratios_true[index_lq])]) # deno_test_esti = np.sum(test_densityratios_esti); deno_test_true = np.sum(test_densityratios_true) # deno_fake_esti = np.sum(fake_densityratios_esti); deno_fake_true = np.sum(fake_densityratios_true) # esti_avg_densityratio[nSim] = np.array([np.mean(test_densityratios_esti/deno_test_esti), np.mean(fake_densityratios_esti/deno_fake_esti), np.mean(fake_densityratios_esti[index_hq]/deno_fake_esti), np.mean(fake_densityratios_esti[index_lq]/deno_fake_esti)]) # true_avg_densityratio[nSim] = np.array([np.mean(test_densityratios_true/deno_test_true), np.mean(fake_densityratios_true/deno_fake_true), np.mean(fake_densityratios_true[index_hq]/deno_fake_true), np.mean(fake_densityratios_true[index_lq]/deno_fake_true)]) #----------------------------------------------------------------------------- # compute the distance between the disc and its optimality if args.DRE not in ["None", "GT"] and args.compute_disc_err: disc_errors_comp_truediscscores_filename = save_objects_folder + "/disc_error_comp_truediscscores_epochGAN_" + str(epoch_GAN) + "_nfake_" + str(NFAKE) + "_gmm_ncomp_" + str(gmm_ncomp) + "_nSim_" + str(nSim) + ".pkl" disc_errors_comp_fakesamples_filename = save_objects_folder + "/disc_error_comp_fakesamples_epochGAN_" + str(epoch_GAN) + "_nSim_" + str(nSim) + ".pkl" #evaluate the optimal discriminator on NFAKE fake images if not os.path.isfile(disc_errors_comp_fakesamples_filename): fake_samples = fn_sampleGAN(NFAKE, samp_batch_size) #draw many samples from GAN directly with open(disc_errors_comp_fakesamples_filename, "wb") as file: pickle.dump(fake_samples, file) else: with open(disc_errors_comp_fakesamples_filename, "rb") as file: fake_samples = pickle.load(file) if not os.path.isfile(disc_errors_comp_truediscscores_filename): gmm_fakescore = gmm_eval_parallel(fake_samples) fake_disc_true = np.divide(p_r(fake_samples), p_r(fake_samples) + np.exp(gmm_fakescore)) with open(disc_errors_comp_truediscscores_filename, "wb") as file: pickle.dump(fake_disc_true, file) else: with open(disc_errors_comp_truediscscores_filename, "rb") as file: fake_disc_true = pickle.load(file) n_samples = fake_samples.shape[0] batch_size_tmp = 1000 dataset_tmp = custom_dataset(fake_samples) dataloader_tmp = torch.utils.data.DataLoader(dataset_tmp, batch_size=batch_size_tmp, shuffle=False, num_workers=0) data_iter = iter(dataloader_tmp) fake_disc_esti = np.zeros((n_samples+batch_size_tmp, 1)) # print("\n Begin computing density ratio for images >>") netD.eval() with torch.no_grad(): tmp = 0 while tmp < n_samples: batch_samples,_ = data_iter.next() batch_samples = batch_samples.type(torch.float).to(device) disc_probs = netD(batch_samples).cpu().detach().numpy() # disc_probs = np.clip(disc_probs.astype(np.float), 1e-14, 1 - 1e-14) fake_disc_esti[tmp:(tmp+batch_size_tmp)] = disc_probs tmp += batch_size_tmp #end while fake_disc_esti = (fake_disc_esti[0:n_samples]).reshape(-1) disc_errors_all[nSim] = np.sqrt(np.mean((fake_disc_true - fake_disc_esti)**2)) #----------------------------------------------------------------------------- # Ground truth DRE if args.DRE=="GT": def comp_density_ratio(samples): return np.divide(p_r(samples), np.exp(gmm_eval_parallel(samples))+1e-20) ############################################################################### # Different sampling method ############################################################################### ########################################## # Rejection Sampling: "Discriminator Rejection Sampling"; based on https://github.com/shinseung428/DRS_Tensorflow/blob/master/config.py if args.Sampling == "RS": def fn_enhanceSampler(nfake, batch_size=samp_batch_size): ## Burn-in Stage n_burnin = 50000 burnin_samples = fn_sampleGAN(n_burnin, batch_size=samp_batch_size) burnin_densityratios = comp_density_ratio(burnin_samples) print((burnin_densityratios.min(),np.median(burnin_densityratios),burnin_densityratios.max())) M_bar = np.max(burnin_densityratios) del burnin_samples, burnin_densityratios; gc.collect() torch.cuda.empty_cache() ## Burn-in with real images burnin_densityratios2 = comp_density_ratio(train_samples_tar) print((burnin_densityratios2.min(),np.median(burnin_densityratios2),burnin_densityratios2.max())) # M_bar = np.max([np.max(burnin_densityratios),M_bar]) ## Rejection sampling enhanced_samples = np.zeros((1, n_features)) #initilize pb = SimpleProgressBar() num_samples = 0 while num_samples < nfake: batch_samples = fn_sampleGAN(batch_size, batch_size) batch_ratios = comp_density_ratio(batch_samples) M_bar = np.max([M_bar, np.max(batch_ratios)]) #threshold if args.DRE in ["disc", "disc_MHcal","disc_KeepTrain"]: epsilon_tmp = 1e-8; D_tilde_M = np.log(M_bar) batch_F = np.log(batch_ratios) - D_tilde_M - np.log(1-np.exp(np.log(batch_ratios)-D_tilde_M-epsilon_tmp)) gamma_tmp = np.percentile(batch_F, 95) #80 percentile of each batch; follow DRS's setting batch_F_hat = batch_F - gamma_tmp batch_p = 1/(1+np.exp(-batch_F_hat)) else: batch_p = batch_ratios/M_bar batch_psi = np.random.uniform(size=batch_size).reshape(-1,1) indx_accept = np.where((batch_psi<=batch_p)==True)[0] if len(indx_accept)>0: enhanced_samples = np.concatenate((enhanced_samples, batch_samples[indx_accept])) num_samples=len(enhanced_samples)-1 del batch_samples, batch_ratios; gc.collect() torch.cuda.empty_cache() pb.update(np.min([float(num_samples)*100/nfake, 100])) return enhanced_samples[1:(nfake+1)] #remove the first all zero array ########################################## # MCMC, Metropolis-Hastings algorithm: MH-GAN elif args.Sampling == "MH": # trainloader_MH = torch.utils.data.DataLoader(train_samples_tar, batch_size=samp_batch_size, shuffle=True) trainloader_MH = torch.utils.data.DataLoader(test_samples_tar, batch_size=samp_batch_size, shuffle=True) def fn_enhanceSampler(nfake, batch_size=samp_batch_size): # enhanced_samples = np.zeros((1, n_features)) #initilize enhanced_samples = np.zeros((nfake, n_features)) #initilize num_samples = 0 while num_samples < nfake: data_iter = iter(trainloader_MH) batch_samples_new = data_iter.next() batch_samples_new = batch_samples_new.cpu().detach().numpy() batch_update_flags = np.zeros(batch_size) #if a sample in a batch is updated during MH, replace corresponding entry with 1 for k in tqdm(range(MH_K)): if not MH_mute: print((k, num_samples)) batch_samples_old = fn_sampleGAN(batch_size, batch_size) batch_U = np.random.uniform(size=batch_size).reshape(-1,1) batch_ratios_old = comp_density_ratio(batch_samples_old) batch_ratios_new = comp_density_ratio(batch_samples_new) # print(np.concatenate((batch_ratios_old[0:10], batch_ratios_new[0:10]), axis=1)) batch_p = batch_ratios_old/(batch_ratios_new+1e-14) batch_p[batch_p>1]=1 indx_accept = np.where((batch_U<=batch_p)==True)[0] if len(indx_accept)>0: batch_samples_new[indx_accept] = batch_samples_old[indx_accept] batch_update_flags[indx_accept] = 1 #if a sample in a batch is updated during MH, replace corresponding entry with 1 indx_updated = np.where(batch_update_flags==1)[0] # enhanced_samples = np.concatenate((enhanced_samples, batch_samples_new[indx_updated])) # num_samples=len(enhanced_samples)-1 enhanced_samples[num_samples:(num_samples+len(indx_updated))] = batch_samples_new[indx_updated] num_samples += len(indx_updated) del batch_samples_new, batch_samples_old; gc.collect() torch.cuda.empty_cache() # return enhanced_samples[1:(nfake+1)] #remove the first all zero array return enhanced_samples #remove the first all zero array ########################################## # Sampling-Importance Resampling elif args.Sampling == "SIR": def fn_enhanceSampler(nfake, batch_size=samp_batch_size): enhanced_samples = fn_sampleGAN(nfake*10, batch_size) enhanced_ratios = comp_density_ratio(enhanced_samples) weights = enhanced_ratios / np.sum(enhanced_ratios) #normlaize to [0,1] resampl_indx = np.random.choice(a = np.arange(len(weights)), size = nfake, replace = True, p = weights.reshape(weights.shape[0])) enhanced_samples = enhanced_samples[resampl_indx] return enhanced_samples ############################################################################### # Hyper-parameter selection ############################################################################### #compute average density ratio on validaiton set; for selecting lambda if (args.DRE !="None" or args.Sampling != "None") and args.DRE != "GT": valid_densityratios = comp_density_ratio(valid_samples_tar) valid_densityratios_all.extend(list(valid_densityratios)) train_densityratios = comp_density_ratio(train_samples_tar) train_densityratios_all.extend(list(train_densityratios)) ks_test = ks_2samp(train_densityratios.reshape(-1), valid_densityratios.reshape(-1)) ks_test_results[nSim,0] = ks_test.statistic ks_test_results[nSim,1] = ks_test.pvalue ############################################################################### # Evaluation each subsampling method ############################################################################### if args.DRE == "None" or args.Sampling == "None": print("Directly sampling from GAN >>>") fake_samples = fn_sampleGAN(NFAKE, samp_batch_size) #fake images before re-selecting else: print("Start enhanced sampling >>>") fake_samples = fn_enhanceSampler(NFAKE, batch_size=samp_batch_size) #------------------------------------------- # Visualization if args.show_visualization: if args.DRE in ['DRE_BARR', 'DRE_SP']: filename = save_images_folder + '/'+ args.DRE + "+" + args.Sampling + "_epochGAN_" + str(args.epoch_gan) + "_epochDRE_" + str(args.epoch_DRE) + "_lambda_" + str(args.lambda_DRE)+ "_PreNetDRE_" + str(args.TrainPreNetDRE) + "_" + args.DR_final_ActFn + '_nSim_' + str(nSim) +'.pdf' elif args.DRE in ['DRE_uLSIF', 'DRE_DSKL']: filename = save_images_folder + '/' + args.DRE + "+" + args.Sampling + "_epochGAN_" + str(args.epoch_gan) + "_epochDRE_" + str(args.epoch_DRE) + "_PreNetDRE_" + str(args.TrainPreNetDRE) + "_" + args.DR_final_ActFn + '_nSim_' + str(nSim) + '.pdf' elif args.DRE == "GT": filename = save_images_folder + '/' + args.DRE + "+" + args.Sampling + "_gmm_ncomp_" + str(gmm_ncomp) + "_epochGAN_" + str(args.epoch_gan) + '_nSim_' + str(nSim) + '.pdf' else: filename = save_images_folder + '/' + args.DRE + "+" + args.Sampling + "_epochGAN_" + str(args.epoch_gan) + '_nSim_' + str(nSim) + '.pdf' ScatterPoints(test_samples_tar, fake_samples, filename, plot_real_samples = False) #------------------------------------------- # Compute number of recovered modes and number of good fake samples l2_dis_fake_samples = np.zeros((NFAKE, n_comp_tar)) #l2 distance between a fake sample and a mode for i in tqdm(range(NFAKE)): for j in range(n_comp_tar): l2_dis_fake_samples[i,j] = np.sqrt(np.sum((fake_samples[i]-means_tar[j])**2)) min_l2_dis_fake_samples = np.min(l2_dis_fake_samples, axis=1) indx_cloeset_modes = np.argmin(l2_dis_fake_samples, axis=1) #indx of the closet mode in 25 modes for each sample prop_good_samples[nSim] = sum(min_l2_dis_fake_samples<quality_threshold)/NFAKE*100 #proportion of good fake samples prop_recovered_modes[nSim] = len(list(set(indx_cloeset_modes)))/n_comp_tar*100 #------------------------------------------- # Check how many fake samples actually appear in the training set train_samples_tar = np.round(train_samples_tar,decimals=6) fake_samples = np.round(fake_samples,decimals=6) for i in fake_samples: if i in train_samples_tar: nfake_in_train[nSim]+=1 # end for nSim stop = timeit.default_timer() print("\n Time elapses: {}s".format(stop - start)) if args.DRE != "None" or args.Sampling != "None": train_densityratios_all = np.array(train_densityratios_all) #print("Avg/Med/STD of density ratio on training set over %d Sims: %.3f, %.3f, %.3f" % (args.NSIM, np.median(train_densityratios_all), np.mean(train_densityratios_all), np.std(train_densityratios_all))) valid_densityratios_all = np.array(valid_densityratios_all) #print("Avg/Med/STD of density ratio on validation set over %d Sims: %.3f, %.3f, %.3f" % (args.NSIM, np.median(valid_densityratios_all), np.mean(valid_densityratios_all), np.std(valid_densityratios_all))) #print("Kolmogorov-Smirnov test in %d Sims: avg. stat. %.3E, avg. pval %.3E" % (args.NSIM, np.mean(ks_test_results[:,0]), np.mean(ks_test_results[:,1]))) print("\n KS test resutls (test_stat, p_value) >>>\n") print(ks_test_results) if args.DRE not in ["None", "GT"] and args.compute_dre_err: #print("\n DRE errors on the test set in %d rounds >>>" % args.NSIM) #print(dre_errors_all) print("\n Avg. DRE erros: %e" % np.mean(dre_errors_all)) print("\n Avg. HQ DRE erros: %e" % np.mean(dre_errors_hq)) print("\n Avg. LQ DRE erros: %e" % np.mean(dre_errors_lq)) temp_filename = save_objects_folder + "/dre_errors_comp_" + args.DRE + ".csv" with open(temp_filename, 'a') as f: writer = csv.writer(f, delimiter=',') writer.writerow([args.epoch_DRE,
np.mean(dre_errors_all)
numpy.mean
import os import scipy.io import scipy.ndimage import numpy as np from PIL import Image def label2d_array_nn_scaling(label2d, new_h, new_w): """ implement nearest neighbor scaling for 2d array :param label2d: [H, W] :return: label_new: [new_h, new_w] """ scale_h = new_h / label2d.shape[0] scale_w = new_w / label2d.shape[1] label_new = scipy.ndimage.zoom(label2d, zoom=[scale_h, scale_w], order=0) return label_new def generate_edgelist(image_id, data_type, sketchyscene_base_dir, edgelist_base_dir): assert data_type in ['test', 'val'] drawing_base_path = os.path.join(sketchyscene_base_dir, data_type, 'DRAWING_GT') edgelist_mat_path = os.path.join(edgelist_base_dir, data_type, 'edgelist_' + str(image_id) + '.mat') edge_lists = scipy.io.loadmat(edgelist_mat_path)['labelededgeim'] edge_lists = np.array(edge_lists, dtype=np.float32) # (750, 750), [0, nEdges] image_path = os.path.join(drawing_base_path, 'L0_sample' + str(image_id) + '.png') sketch = Image.open(image_path).convert('RGB') sketch_mask = np.array(sketch, dtype=np.uint8)[:, :, 0] sketch_edge_list = np.zeros(sketch_mask.shape, dtype=np.float32) for i in range(sketch_mask.shape[0]): for j in range(sketch_mask.shape[1]): if sketch_mask[i][j] != 0: continue # foreach black pixel, find the nearest edgelist label pixel_edge_label = [] neighbor = 0 while True: neighbor += 1 for m in range(-neighbor, neighbor + 1): for n in range(-neighbor, neighbor + 1): pos_y = min(max(i + m, 0), sketch_mask.shape[0] - 1) pos_x = min(max(j + n, 0), sketch_mask.shape[1] - 1) if abs(pos_y - i) == neighbor or abs(pos_x - j) == neighbor: if edge_lists[pos_y][pos_x] != 0: pixel_edge_label.append(edge_lists[pos_y][pos_x]) if len(pixel_edge_label) != 0: break assert len(pixel_edge_label) != 0 if len(pixel_edge_label) > 0: if j - 1 >= 0 and sketch_edge_list[i][j - 1] in pixel_edge_label: sketch_edge_list[i][j] = sketch_edge_list[i][j - 1] elif i - 1 >= 0 and sketch_edge_list[i - 1][j] in pixel_edge_label: sketch_edge_list[i][j] = sketch_edge_list[i - 1][j] else: sketch_edge_list[i][j] = pixel_edge_label[0] else: sketch_edge_list[i][j] = pixel_edge_label[0] return sketch_edge_list def refine_mask_with_edgelist(image_id, dataset_type, data_base_dir, edgelist_result_dir, origin_mask, ori_boxes, pixels_percent_threshold=0.5): """ very slow!! :param origin_mask: (768, 768, nRoIs) :param ori_boxes: (nRoIs, (y1, x1, y2, x2)) :param pixels_percent_threshold: only with pixels_percent more than this threshold can be regarded as the same segment :return: """ ## first generate edgelist edgelist_label = generate_edgelist(image_id, dataset_type, data_base_dir, edgelist_result_dir) # (750, 750) edgelist_label = label2d_array_nn_scaling(edgelist_label, origin_mask.shape[0], origin_mask.shape[1]) # (768, 768) nEdgeList = int(np.max(edgelist_label)) print('nEdgeList', nEdgeList) ori_mask = np.transpose(origin_mask, [2, 0, 1]) # (nRoIs, 768, 768) refined_mask = [] for i in range(ori_mask.shape[0]): ## foreach ROI single_mask = ori_mask[i] single_mask_new = single_mask.copy() y1, x1, y2, x2 = ori_boxes[i] single_edgelist = edgelist_label.copy() box_bin_mask =
np.zeros(single_edgelist.shape, dtype=np.uint8)
numpy.zeros
import pytest import numpy as np from jellium.energy import energy from numpy.testing import assert_array_less from jellium.mcmc import mcmc from jellium.bridge import bridge from jellium.utils import d_tor, torify def test_mcmc(): seed = 42 np.random.seed(seed) EPS = 1e-2 size = int(2e1) beta = 2 pair_pot = lambda x: - beta * d_tor(x, size=size) n_iter = int(1e3) init_val = np.random.rand(size) * size - size/2 torify = lambda x: x - size * np.floor( (x/size+.5)) propose = lambda x: torify(x + np.random.randn(size)) #energy decrease factor decrease_factor = 2 #size of rolling window for moving averages window = 50 trace = mcmc(pair_pot, n_iter, init_val, propose, np.random.get_state()) #correct shape assert trace.shape == (n_iter,) + init_val.shape #values should change assert_array_less(EPS, trace.var(axis = 0)) #energy must decrease energy_trace = [energy(conf, pair_pot) for conf in trace] assert np.mean(energy_trace[:window]) - np.mean(energy_trace[-window:]) > np.std(energy_trace[-window:]) * decrease_factor def test_mcmc_dyn(): seed = 42 np.random.seed(seed) state = np.random.get_state() EPS = 1e-2 size = int(2e1) beta = 2 steps = 20 pair_pot = lambda x: - beta/(steps + 1) * d_tor(x, size=size) n_iter = int(3e3) var = 1 states = [state for state,_ in [[np.random.get_state(), np.random.rand()] for _ in range(int(size/2))]] init_start_pts = np.repeat((np.random.rand(int(size/2))-.5)[np.newaxis] * size, steps + 1, 0).transpose() init_bridges = np.array([bridge(var, steps, state) for state in states]) init_val = init_start_pts + init_bridges torify = lambda x: x - size * np.floor( (x/size+.5)) propose = lambda x: torify(np.repeat((x[:,0]+np.random.randn(x.shape[0]))[np.newaxis], steps + 1, 0).transpose() +np.array([bridge(var, steps) for _ in range(x.shape[0])])) #energy decrease factor decrease_factor = 2 #size of rolling window for moving averages window = 50 trace = mcmc(pair_pot, n_iter, init_val, propose, state) #correct shape assert trace.shape == (n_iter,) + init_val.shape #values should change assert_array_less(EPS, trace.var(axis = 0)) #energy must decrease energy_trace = [energy(conf, pair_pot) for conf in trace] assert np.mean(energy_trace[:window]) - np.mean(energy_trace[-window:]) > np.std(energy_trace[-window:]) * decrease_factor def test_mcmc_dyn_dim2(): seed = 42 np.random.seed(seed) state = np.random.get_state() EPS = 1e-2 size = np.array([int(2e1), 2]) n_part = int(size[0]/2) beta = 2 steps = 20 pair_pot = lambda x: - beta/(steps + 1) * d_tor(x, size=size) n_iter = int(2e3) var = 1 states = [state for state,_ in [[np.random.get_state(), np.random.rand()] for _ in range(n_part)]] init_start_pts = np.expand_dims(((np.random.rand(n_part, 2) - .5) * size), -1) init_start_pts = np.repeat(init_start_pts, steps + 1, -1) init_bridges = np.array([[bridge(var, steps) for _ in range(2)] for _ in range(n_part)]) init_val = init_start_pts + init_bridges propose = lambda x: torify(np.repeat(np.expand_dims(x[:,:,0] + np.random.randn(*(x[:,:,0].shape)), -1), steps + 1, -1) + np.array([[bridge(var, steps) for _ in range(2)] for _ in range(x.shape[0])]), size) #energy decrease factor decrease_factor = 2 #size of rolling window for moving averages window = 50 trace = mcmc(pair_pot, n_iter, init_val, propose, state) #correct shape assert trace.shape == (n_iter,) + init_val.shape #values should change assert_array_less(EPS, trace.var(axis = 0)) #energy must decrease energy_trace = [energy(conf, pair_pot) for conf in trace] assert
np.mean(energy_trace[:window])
numpy.mean
""" Sampling history for MCMC. MCMC keeps track of a number of things during sampling. The results may be queried as follows:: draws, generation, thinning sample(condition) returns draws, points, logp logp() returns draws, logp acceptance_rate() returns draws, AR chains() returns draws, chains, logp R_stat() returns draws, R CR_weight() returns draws, CR_weight best() returns best_x, best_logp outliers() returns outliers show()/save(file)/load(file) Data is stored in circular arrays, which keeps the last N generations and throws the rest away. draws is the total number of draws from the sampler. generation is the total number of generations. thinning is the number of generations per stored sample. draws[i] is the number of draws including those required to produce the information in the corresponding return vector. Note that draw numbers need not be linearly spaced, since techniques like delayed rejection will result in a varying number of samples per generation. logp[i] is the set of log likelihoods, one for each member of the population. The logp() method returns the complete set, and the sample() method returns a thinned set, with on element of logp[i] for each vector point[i, :]. AR[i] is the acceptance rate at generation i, showing the proportion of proposed points which are accepted into the population. chains[i, :, :] is the set of points in the differential evolution population at thinned generation i. Ideally, the thinning rate of the MCMC process is chosen so that thinned generations i and i+1 are independent samples from the posterior distribution, though there is a chance that this may not be the case, and indeed, some points in generation i+1 may be identical to those in generation i. Actual generation number is i*thinning. points[i, :] is the ith point in a returned sample. The i is just a place holder; there is no inherent ordering to the sample once they have been extracted from the chains. Note that the sample may be from a marginal distribution. R[i] is the Gelman R statistic measuring convergence of the Markov chain. CR_weight[i] is the set of weights used for selecting between the crossover ratios available to the candidate generation process of differential evolution. These will be fixed early in the sampling, even when adaptive differential evolution is selected. outliers[i] is a vector containing the thinned generation number at which an outlier chain was removed, the id of the chain that was removed and the id of the chain that replaced it. We leave it to the reader to decide if the cloned samples, point[:generation, :, removed_id], should be included in further analysis. best_logp is the highest log likelihood observed during the analysis and best_x is the corresponding point at which it was observed. generation is the last generation number """ #TODO: state should be collected in files as we go from __future__ import division, print_function __all__ = ['MCMCDraw', 'load_state', 'save_state'] import os.path import re import gzip import numpy as np from numpy import empty, sum, asarray, inf, argmax, hstack, dstack from numpy import savetxt, reshape from .outliers import identify_outliers from .util import draw, rng #EXT = ".mc.gz" #CREATE = gzip.open EXT = ".mc" CREATE = open # CRUFT: python 2.x needs to convert unicode to bytes when writing to file try: # python 2.x unicode def write(fid, s): fid.write(s) except NameError: # python 3.x def write(fid, s): fid.write(s.encode('utf-8') if isinstance(s, str) else s) class NoTrace: def write(self, data): pass def flush(self): pass def close(self): pass def save_state(state, filename): trace = NoTrace() #trace = open(filename+"-trace.mc", "w") write(trace, "starting trace\n") # Build 2-D data structures write(trace, "extracting draws, logp\n") draws, logp = state.logp(full=True) write(trace, "extracting acceptance rate\n") _, AR = state.acceptance_rate() write(trace, "building chain from draws, AR and logp\n") chain = hstack((draws[:, None], AR[:, None], logp)) write(trace, "extracting point, logp\n") _, point, logp = state.chains() Nthin, Npop, Nvar = point.shape write(trace, "shape is %d,%d,%d\n" % (Nthin, Npop, Nvar)) write(trace, "adding logp to point\n") point = dstack((logp[:, :, None], point)) write(trace, "collapsing to draws x point\n") point = reshape(point, (point.shape[0]*point.shape[1], point.shape[2])) write(trace, "extracting R_stat\n") draws, R_stat = state.R_stat() write(trace, "extracting CR_weight\n") _, CR_weight = state.CR_weight() _, Ncr = CR_weight.shape write(trace, "building stats\n") stats = hstack((draws[:, None], R_stat, CR_weight)) #TODO: missing _outliers from save_state # Write convergence info write(trace, "writing chain\n") fid = CREATE(filename+'-chain'+EXT, 'wb') write(fid, '# draws acceptance_rate %d*logp\n' % Npop) savetxt(fid, chain) fid.close() # Write point info write(trace, "writing point\n") fid = CREATE(filename+'-point'+EXT, 'wb') write(fid, '# logp point (Nthin x Npop x Nvar = [%d,%d,%d])\n' % (Nthin, Npop, Nvar)) savetxt(fid, point) fid.close() # Write stats write(trace, "writing stats\n") fid = CREATE(filename+'-stats'+EXT, 'wb') write(fid, '# draws %d*R-stat %d*CR_weight\n' % (Nvar, Ncr)) savetxt(fid, stats) fid.close() write(trace, "done state save\n") trace.close() IND_PAT = re.compile('-1#IND') INF_PAT = re.compile('1#INF') def loadtxt(file, report=0): """ Like numpy loadtxt, but adapted for windows non-finite numbers. """ if not hasattr(file, 'readline'): if file.endswith('.gz'): #print("opening with gzip") fh = gzip.open(file, 'r') else: fh = open(file, 'r') else: fh = file res = [] section = 0 lineno = 0 for line in fh: lineno += 1 if report and lineno%report == 0: print("read", section*report) section += 1 IND_PAT.sub('nan', line) INF_PAT.sub('inf', line) line = line.split('#')[0].strip() values = line.split() if len(values) > 0: try: res.append([float(v) for v in values]) except ValueError: print("Parse error:", values) if fh != file: fh.close() return asarray(res) def path_contains_saved_state(filename): chain_file = filename + '-chain' + EXT return os.path.exists(chain_file) def load_state(filename, skip=0, report=0, derived_vars=0): # Read chain file chain = loadtxt(filename+'-chain'+EXT) # Read point file fid = open(filename+'-point'+EXT, 'r') line = fid.readline() point_dims = line[line.find('[')+1:line.find(']')] Nthin, Npop, Nvar = eval(point_dims) for _ in range(skip*Npop): fid.readline() point = loadtxt(fid, report=report*Npop) fid.close() # Read stats file stats = loadtxt(filename+'-stats'+EXT) # Guess dimensions Ngen = chain.shape[0] thinning = 1 Nthin -= skip Nupdate = stats.shape[0] #Ncr = stats.shape[1] - Nvar - 1 # Create empty draw and fill it with loaded data state = MCMCDraw(0, 0, 0, 0, 0, 0, thinning) #print("gen, var, pop", Ngen, Nvar, Npop) state.draws = Ngen * Npop state.generation = Ngen state._gen_index = 0 state._gen_draws = chain[:, 0] state._gen_acceptance_rate = chain[:, 1] state._gen_logp = chain[:, 2:] state.thinning = thinning state._thin_count = Ngen//thinning state._thin_index = 0 state._thin_draws = state._gen_draws[(skip+1)*thinning-1::thinning] state._thin_logp = point[:, 0].reshape((Nthin, Npop)) state._thin_point = reshape(point[:, 1:Nvar+1-derived_vars], (Nthin, Npop, -1)) state._gen_current = state._thin_point[-1].copy() state._update_count = Nupdate state._update_index = 0 state._update_draws = stats[:, 0] state._update_R_stat = stats[:, 1:Nvar+1-derived_vars] state._update_CR_weight = stats[:, Nvar+1-derived_vars:] state._outliers = [] bestidx = np.argmax(point[:, 0]) state._best_logp = point[bestidx, 0] state._best_x = point[bestidx, 1:Nvar+1-derived_vars] return state class MCMCDraw(object): """ """ _labels = None _integer_vars = None # boolean array of integer variables, or None title = None def __init__(self, Ngen, Nthin, Nupdate, Nvar, Npop, Ncr, thinning): # Total number of draws so far self.draws = 0 # Maximum observed likelihood self._best_x = None self._best_logp = -inf # Per generation iteration self.generation = 0 self._gen_index = 0 self._gen_draws = empty(Ngen, 'i') self._gen_logp = empty((Ngen, Npop)) self._gen_acceptance_rate = empty(Ngen) # If we are thinning, we need to keep the current generation # separately. [Note: don't remember why we need both the _gen_* # and _thin_*] [Note: the caller x vector is assigned to # _gen_current; this may lead to unexpected behaviour if x is # changed by the caller. self._gen_current = None # Per thinned generation iteration self.thinning = thinning self._thin_index = 0 self._thin_count = 0 self._thin_timer = 0 self._thin_draws = empty(Nthin, 'i') self._thin_point = empty((Nthin, Npop, Nvar)) self._thin_logp = empty((Nthin, Npop)) # Per update iteration self._update_index = 0 self._update_count = 0 self._update_draws =
empty(Nupdate, 'i')
numpy.empty
# -*- coding: utf-8 -*- """ This is the element routine file wherein Jacobian, strain disp. mat, elemental stiffness, elemental F_int are computed. The material routine is called in F_e_int() function, which returns the stress, overstress and material tangent stiffness . @author: Danush """ import numpy as np from material_routine import * ############################################################################## # N- shape functions for the given problem si = 0 N = np.array([(1/2)*(1-si),(1/2)*(1+si)]).reshape(2,1) #computation of jacobian def jacobian_of_elements(r_elements): """This function returns the Jacobian for the problem. Input---> r_elements, depending on the meshgenerator Output--> Jacobian""" J = (r_elements[0,1] - r_elements[0,0])/2 return J # B strain displacement matrix def strain_disp_mat(r_elements): """This function returns the strain displacement matrix. Input----> r_elements,N-shape functions Output---> B-strain displacement matrix(2x2)""" jacobian = jacobian_of_elements(r_elements) B = np.array([-1/(2*jacobian),1/(2*jacobian), N[0]/(N[0]*r_elements[0,0] + N[1]*r_elements[0,1]), N[1]/(N[0]*r_elements[0,0] + N[1]*r_elements[0,1])]).reshape(2,2) return B # The no. of Gauss points for the problem is 1 , so w is assigned the value 2 # gauss points = 1 w = 2 # Elemental stiffness matrix def k_e_mat(B,r,C_t,jacobian,w): """This function returns the elemental stiffness matrix which is called inside F_e_int function. Input----> B-strain disp.Mat,r-radius from mesh generator, C_t-Tangent stiffness Mat.,jacobian,w Output---> K_elemental""" k = np.array([w *(B.transpose().dot(C_t.dot(B)))*(N.transpose().dot(r.transpose())) * jacobian]).reshape(2,2) return k #Elemental Assignment matrix def a_e_mat(n_e): """This function returns the elemental assignment matrix for the required no. of elements. Input-----> n_e no. of elements Output----> Elemental Assignment matrix""" B =
np.zeros((2,n_e+1))
numpy.zeros
#!/usr/bin/env python # -*- coding: utf-8 -*- ############## # GPathFinder: Identification of ligand pathways by a multi-objective # genetic algorithm # # https://github.com/insilichem/gpathfinder # # Copyright 2019 <NAME>, <NAME>, # <NAME>, <NAME>, # <NAME> and <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############## """ Coherent Point Drift (affine and rigid) Python2/3 implementation, adapted from `kwohlfahrt's <https://github.com/kwohlfahrt/coherent-point-drift>`_. Only 3D points are supported in this version. Depends on: - Python 2.7, 3.4+ - Numpy - Matplotlib (plotting only) """ from __future__ import division import numpy as np import math from itertools import product, repeat, islice from functools import reduce def coherent_point_drift(X, Y, w=0.0, B=None, guess_steps=5, max_iterations=20, method='affine'): register, transform = {'affine': (affine_cpd, affine_xform), 'rigid': (rigid_cpd, rigid_xform)}[method] best_xforms, best_transformed_Y, best_rmsd = None, None, 1000 for rotation in spaced_rotations(guess_steps): RB = rotation_matrix(*rotation) xforms = last(islice(register(X, Y, w, RB), max_iterations)) transformed_Y = transform(Y, *xforms) rmsd = RMSD(X, transformed_Y) if rmsd < best_rmsd: best_rmsd = rmsd best_xforms = xforms best_transformed_Y = transformed_Y return best_transformed_Y, best_xforms, best_rmsd def rigid_cpd(X, Y, w=0.0, R=None): D = X.shape[1] N, M = len(X), len(Y) R = np.eye(D) if R is None else R s = std(X) / std(rigid_xform(Y, R=R)) t = X.mean(axis=0) - rigid_xform(Y, R=R, s=s).mean(axis=0) sigma_sq = pairwise_sqdist(rigid_xform(Y, R, t, s), X).sum() / (D * M * N) old_exceptions = np.seterr(divide='ignore', over='ignore', under='ignore', invalid='raise') while True: try: transformed_Y = rigid_xform(Y, R, t, s) P, N_p, mu_x, mu_y, X_hat, Y_hat = common_steps(X, Y, transformed_Y, w, sigma_sq) except FloatingPointError: np.seterr(**old_exceptions) break A = X_hat.T.dot(P.T).dot(Y_hat) U, _, VT = np.linalg.svd(A) C = np.eye(D) C[-1, -1] = np.linalg.det(U.dot(VT)) R = U.dot(C).dot(VT) s = np.trace(A.T.dot(R)) / np.trace(Y_hat.T.dot(np.diag(P.sum(axis=1))).dot(Y_hat)) t = mu_x - s * R.dot(mu_y) sigma_sq = (np.trace(X_hat.T.dot(np.diag(P.T.sum(axis=1))).dot(X_hat)) - s * np.trace(A.T.dot(R))) / (N_p * D) yield R, t, s def affine_cpd(X, Y, w=0.0, B=None): D = X.shape[1] N = len(X) M = len(Y) B = np.eye(D) if B is None else B s = (std(X) / std(affine_xform(Y, B=B))) # scale B = s * B t = X.mean(axis=0) - affine_xform(Y, B=B).mean(axis=0) sigma_sq = pairwise_sqdist(affine_xform(Y, B, t), X).sum() / (D * M * N) old_exceptions = np.seterr(divide='ignore', over='ignore', under='ignore', invalid='raise') while True: try: transformed_Y = affine_xform(Y, B, t) P, N_p, mu_x, mu_y, X_hat, Y_hat = common_steps(X, Y, transformed_Y, w, sigma_sq) except FloatingPointError: np.seterr(**old_exceptions) break B = (X_hat.T.dot(P.T).dot(Y_hat) .dot(np.linalg.inv(Y_hat.T.dot(np.diag(P.sum(axis=1))).dot(Y_hat)))) t = mu_x - B.dot(mu_y) sigma_sq = (np.trace(X_hat.T.dot(np.diag(P.T.sum(axis=1))).dot(X_hat)) - np.trace(X_hat.T.dot(P.T).dot(Y_hat).dot(B.T))) / (N_p * D) yield B, t def common_steps(X, Y, Y_, w, sigma_sq): # E step D = X.shape[1] N = len(X) M = len(Y_) dist = pairwise_sqdist(Y_, X) overlap = np.exp(-dist / (2 * sigma_sq)) # The original algorithm expects unit variance, # so normalize (2πς**2)**D/2 to compensate P = overlap / (overlap.sum(axis=0) + (2 * math.pi * sigma_sq) ** (D / 2) * w / (1-w) * M / N / std(X) ** D) # M-step N_p = P.sum() mu_x = 1 / N_p * X.T.dot(P.T.sum(axis=1)) mu_y = 1 / N_p * Y.T.dot(P.sum(axis=1)) X_hat = X - mu_x.T Y_hat = Y - mu_y.T return P, N_p, mu_x, mu_y, X_hat, Y_hat def last(sequence): return reduce(lambda acc, x: x, sequence) def std(x): return np.sqrt(np.var(x, axis=0).mean()) def rigid_xform(X, R=np.array(1), t=0.0, s=1.0): return s * R.dot(X.T).T + t def affine_xform(X, B=np.array(1), t=0): return B.dot(X.T).T + t def spaced_rotations(N): # <NAME> # Graphics Gems III, pp 124-132 for x_theta in product(frange(0, 1, 1/N), *repeat(frange(0, 2*math.pi, 2*math.pi/N), 2)): X, theta = x_theta[0], x_theta[1:] R0, R1 = math.sqrt(1-X), math.sqrt(X) yield Quaternion(math.sin(theta[0]) * R0, math.cos(theta[0]) * R0, math.sin(theta[1]) * R1, math.cos(theta[1]) * R1).axis_angle def rotation_matrix(*angles): theta, (x, y, z) = angles c = math.cos(theta) s = math.sin(theta) return
np.array([[c+x*x*(1-c), x*y*(1-c)-z*s, (1-c)*x*z+y*s], [y*x*(1-c)+z*s, c+y*y*(1-c), y*z*(1-c)-x*s], [z*x*(1-c)-y*s, z*y*(1-c)+x*s, c+z*z*(1-c)]]) def pairwise_sqdist(X, Y)
numpy.array
''' This script has functions in it which are used in network which evaluate images. If this script here is run it returns the object_dc-score of each segmented object by the predicition with respect to the groundtruth ''' import os import skimage import scipy import numpy as np import matplotlib.pyplot as plt ##################################### # Plotting functions # ##################################### def plot_img_and_hist(image, axes, bins=256): """Plot an image along with its histogram and cumulative histogram. Source: https://scikit-image.org/docs/stable/auto_examples/color_exposure/plot_equalize.html#sphx-glr-auto-examples-color-exposure-plot-equalize-py """ image = skimage.img_as_float(image) ax_img, ax_hist = axes ax_cdf = ax_hist.twinx() # Display image ax_img.imshow(image, cmap=plt.cm.gray) ax_img.set_axis_off() # Display histogram ax_hist.hist(image.ravel(), bins=bins, histtype='step', color='black') ax_hist.ticklabel_format(axis='y', style='scientific', scilimits=(0, 0)) ax_hist.set_xlabel('Pixel intensity') ax_hist.set_xlim(0, 1) ax_hist.set_yticks([]) # Display cumulative distribution img_cdf, bins = skimage.exposure.cumulative_distribution(image, bins) ax_cdf.plot(bins, img_cdf, 'r') ax_cdf.set_yticks([]) return ax_img, ax_hist, ax_cdf def plot_img_and_segmentations(imgs_dict, names_list, color_list): fig, axs = plt.subplots(1, len(names_list), figsize=(5 * len(names_list),5)) #plt.title('Visualization of data and prediction') for ax, img_name, colormap in zip(axs, names_list, color_list): pic = imgs_dict[img_name] ax.imshow(pic, cmap=colormap) ax.axis('off') ax.set_title(img_name.capitalize()) plt.show() return def plot_img_and_segm_overlayed(img, msks_dict, msk_names_list, color_list, change_bg_color_list): fig, axs = plt.subplots(len(msk_names_list), 1, figsize=(15, 15 * len(msk_names_list))) for ax, msk_name, colormap, change_bg in zip(axs, msk_names_list, color_list, change_bg_color_list): ax.imshow(img) if change_bg: overlay_mask = msks_dict[msk_name] else: overlay_mask = np.ma.masked_array(msks_dict[msk_name], msks_dict[msk_name] == 0) ax.imshow(overlay_mask, colormap, alpha=0.5) ax.axis('off') ax.set_title(msk_name.capitalize()) plt.show() def plot_segmentations_dice(imgs_dict, names_list, label_list): fig, axs = plt.subplots(1, len(names_list), figsize=(len(names_list) * 10, 10)) handles = label_list # plt.title('Visualization of data and prediction') for ax, msk_name, in zip(axs, names_list): pic = imgs_dict[msk_name] ax.imshow(pic * 255) ax.axis('off') subtitle = msk_name + " comparison" ax.set_title(subtitle.capitalize()) ax.legend(handles=handles) plt.show() return #################################### # Metric, Micron extraction # #################################### def dice_coeff_numpy(y_true, y_pred): intersection = np.sum(y_true * y_pred) score = (2 * intersection + 1.) / (y_true.sum() + y_pred.sum() + 1.) return score def get_micron_info(pathtofile, filename): """ Returns the pixel per micron ratio for x and y. Works with .tif images from ImageJ Parameters: ----------- pathtofile: string path of the folder where the file is in filename: string name of the file Returns: -------- (pix mic x, pix mic y) tuple Tuple with the pixel per micron ratio for x and y """ # Load microns unit with skimage.external.tifffile.TiffFile(os.path.join(pathtofile, filename)) as tif: metadata = tif.info() # Find info about pixels per micron x_pos = metadata.find("* 282 x_resolution") y_pos = metadata.find("* 283 y_resolution") pixel_per_micron_x = float(metadata[x_pos + 25: x_pos + 32]) * 0.000001 pixel_per_micron_y = float(metadata[y_pos + 25: y_pos + 32]) * 0.000001 if pixel_per_micron_x != pixel_per_micron_y: print("Error. The resolution in micron in x and y are different. ", "Please check the image. If there is no error in the image, this has to be implemented!", "get_micron_info will return nothing.") return return (pixel_per_micron_x, pixel_per_micron_y) #################################### # Area analyis of images # #################################### def get_zero_area_in_img(image, area_threshold=0.1): """ Finds the sliced away area in an image Parameters: ----------- image: array with shape e.g. (1024, 1024, 3) values in [0,1] area_threshold: float values in [0,1] percentage of zero_area size necessary to define it as cropped_img_area Returns: -------- cropped_img_area: array with same shape as image values: True or False """ # Reduce image to grayscale image grayscale_image = skimage.color.rgb2gray(image) # Set all values which are 0 to 1 in a new array cropped_img_area = np.zeros(grayscale_image.shape) cropped_img_area[grayscale_image == 0] = 1 # Find connected components labelled_image, count_image = scipy.ndimage.label(cropped_img_area) refined_cropped_img_area = cropped_img_area.copy() # Filter out all connected components with size smaller or equal area_threshold for label in range(1, count_image + 1): if len(refined_cropped_img_area[labelled_image == label]) <= area_threshold * cropped_img_area.size: refined_cropped_img_area[labelled_image == label] = 0 # count_refined_mask -= 1 # Return a boolean array final_cropped_img_area = np.array(refined_cropped_img_area > 0) # Debug: if np.max(final_cropped_img_area) > 0: print("zero area in image detected") print("Percentage of cropped area:", np.sum(final_cropped_img_area) / final_cropped_img_area.size) return final_cropped_img_area def get_count_and_area(mask, filter_th, keep_only_largest_label=False, verbose=False): labelled_mask, count_mask = scipy.ndimage.label(mask) # Keep only the biggest connected component if keep_only_largest_label: refined_mask = mask.copy() len_largest_label = 0 id_largest_label = 0 for label in range(1, count_mask + 1): if len(refined_mask[labelled_mask == label]) > len_largest_label: len_largest_label = len(refined_mask[labelled_mask == label]) id_largest_label = label refined_mask[:] = 0 refined_mask[labelled_mask == id_largest_label] = 1 count_mask = 1 if verbose: print(refined_mask.shape, refined_mask.min(), refined_mask.max()) print("Kept only the largest region and set count_mask to 1.") else: # count_refined_mask = count_mask refined_mask = mask.copy() # Filter out all connected components with size smaller or equal filter_th for label in range(1, count_mask + 1): if len(refined_mask[labelled_mask == label]) <= filter_th: refined_mask[labelled_mask == label] = 0 # count_refined_mask -= 1 # refined_mask has to be relabeled now. relabelled_mask, recounted_mask = scipy.ndimage.label(refined_mask) if recounted_mask < count_mask and verbose: print("Removed ", count_mask - recounted_mask, " regions because they are smaller or equal ", filter_th, " pixels.") filtered_mask = np.array(relabelled_mask > 0) return relabelled_mask, recounted_mask, filtered_mask def get_count_and_area_rmv_podo_outside(cfg, mask, filter_mask, filter_th, verbose=False): # Outputs the labelled_mask, the mask_count and the filtered_mask # The mask is labeled, then cropped by the filter_mask # Afterwards, all labels which are contained in the mask are not removed in the labelled_mask labelled_mask, count_mask = scipy.ndimage.label(mask) if cfg.GLOM_POSTPROCESSING_KEEP_ONLY_LARGEST is True: labeled_filter_mask, dataset_filter_mask_count, filtered_filter_mask = get_count_and_area\ (filter_mask, cfg.FILTER_CLASSES[0], keep_only_largest_label=True, verbose=verbose) else: labeled_filter_mask, dataset_filter_mask_count, filtered_filter_mask = get_count_and_area\ (filter_mask, cfg.FILTER_CLASSES[0], verbose=verbose) labelled_mask_copy = labelled_mask.copy() labelled_mask_copy2 = labelled_mask.copy() labelled_mask_copy[filtered_filter_mask == 0] = 0 if verbose: print(labelled_mask_copy.max(), labelled_mask_copy.min()) labels_not_cropped = np.unique(labelled_mask_copy) labels_not_cropped = np.trim_zeros(labels_not_cropped) if verbose: print(labels_not_cropped) final_mask = np.isin(labelled_mask_copy2, labels_not_cropped) if verbose: print(final_mask.max(), final_mask.min()) return get_count_and_area(final_mask, filter_th, verbose=verbose) def image_to_label_image(img): label, count = scipy.ndimage.label(img) return label, count def coregistrate_and_get_object_dc_score(label_pred, count_pred, label_mask, count_mask, verbose=0): def dice_coeff_with_intersect_matrix(matrix, tensor): intersection_matrices = matrix * tensor intersection_sum_array = np.sum(intersection_matrices, axis=(1,2)) score_array = (2 * intersection_sum_array + 1.) / (np.sum(matrix) + np.sum(tensor, axis=(1,2)) + 1.) return score_array, intersection_sum_array def get_true_positives_and_false_negatives_all_cells(): true_positives = [] false_negatives = [] array_dim = label_pred.shape prediction_array = np.empty((count_pred, array_dim[0], array_dim[1])) score_arrays = np.zeros((count_mask, count_pred)) for i in range(count_pred): prediction_array[i,:,:] =
np.array([label_pred == i+1])
numpy.array
import os import random import math import numpy as np import torch import yaml from tqdm import tqdm from src.metric.bleu_scorer import SacreBLEUScorer from src.decoding.beam_search import beam_search from src.data.data_iterator import DataIterator from src.data.dataset import TextLineDataset, ZipDataset from src.data.vocabulary import Vocabulary, BOS, EOS, PAD from src.models import build_model from src.utils.bleu_util import count_gram from src.utils.common_utils import * from src.utils.logging import * def set_seed(seed): torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) random.seed(seed) np.random.seed(seed) torch.backends.cudnn.deterministic = True def load_model_parameters(path, map_location): state_dict = torch.load(path, map_location=map_location) if "model" in state_dict: return state_dict["model"] return state_dict def split_shard(*inputs, split_size=1): if split_size <= 1: yield inputs else: lengths = [len(s) for s in inputs[-1]] # sorted_indices = np.argsort(lengths) # sorting inputs inputs = [ [inp[ii] for ii in sorted_indices] for inp in inputs ] # split shards total_batch = sorted_indices.shape[0] # total number of batches if split_size >= total_batch: yield inputs else: shard_size = total_batch // split_size _indices = list(range(total_batch))[::shard_size] + [total_batch] for beg, end in zip(_indices[:-1], _indices[1:]): yield (inp[beg:end] for inp in inputs) def prepare_data(seqs_x, seqs_y=None, cuda=False, batch_first=True): """ Args: eval ('bool'): indicator for eval/infer. Returns: """ def _np_pad_batch_2D(samples, pad, batch_first=True, cuda=True): batch_size = len(samples) sizes = [len(s) for s in samples] max_size = max(sizes) x_np = np.full((batch_size, max_size), fill_value=pad, dtype='int64') for ii in range(batch_size): x_np[ii, :sizes[ii]] = samples[ii] if batch_first is False: x_np =
np.transpose(x_np, [1, 0])
numpy.transpose
''' Unit-tests for SuffStatBag ''' from bnpy.suffstats.SuffStatBag import SuffStatBag import numpy as np import unittest class TestSuffStatBag(unittest.TestCase): def shortDescription(self): return None def test_copy(self, K=2, D=2): SS = self.makeSuffStatBagAndFillWithOnes(K,D) self.addELBOtoSuffStatBag(SS,K) SS2 = SS.copy() assert SS2.s == SS.s assert np.all(SS2.N == SS.N) assert np.all(SS2.getELBOTerm('Elogz') == SS.getELBOTerm('Elogz')) assert id(SS2.s) != id(SS.s) assert id(SS2.N) != id(SS.N) def test_ampFactor(self, K=2, D=2): SS = self.makeSuffStatBagAndFillWithOnes(K,D) SS.applyAmpFactor(3.0) assert np.allclose(SS.s, 3.0) assert np.allclose(SS.N, 3.0*np.ones(K)) assert np.allclose(SS.x, 3.0*np.ones((K,D))) assert np.allclose(SS.xxT, 3.0*np.ones((K,D,D))) assert SS.hasAmpFactor() assert SS.ampF == 3.0 def makeSuffStatBagAndFillWithOnes(self, K, D): SS = SuffStatBag(K=K, D=D) s = 1.0 N = np.ones(K) x = np.ones((K,D)) xxT = np.ones((K,D,D)) SS.setField('s', s) SS.setField('N', N, dims='K') SS.setField('x', x, dims=('K','D')) SS.setField('xxT', xxT, dims=('K','D','D')) return SS def addELBOtoSuffStatBag(self, SS, K): SS.setELBOTerm('Elogz', np.ones(K), dims='K') SS.setELBOTerm('Econst', 1.0, dims=None) SS.setMergeTerm('Elogz', 2*np.ones((K,K)), dims=('K','K')) return SS def getExpectedMergedFields(self, K, D, kA=0): s = 1.0 N = np.ones( K-1) N[kA] = 2 x = np.ones((K-1, D)) x[kA] = 2 xxT = np.ones((K-1,D,D)) xxT[kA] = 2 return s, N, x, xxT def test_mergeComps_K2_D3_noELBO(self, K=2, D=3): SS = self.makeSuffStatBagAndFillWithOnes(K=K, D=D) SS.mergeComps(0, 1) assert SS.K == K - 1 assert np.allclose(SS.s, 1) assert np.allclose(SS.N, 2) assert np.allclose(SS.x, 2*np.ones(D)) assert np.allclose(SS.xxT, 2*np.ones((D,D))) def test_mergeComps_K2_D3_withELBO(self, K=2, D=3): SS = self.makeSuffStatBagAndFillWithOnes(K, D) self.addELBOtoSuffStatBag(SS, K) SS.mergeComps(0, 1) assert SS.K == K - 1 assert np.allclose(SS.s, 1) assert np.allclose(SS.N, 2) assert np.allclose(SS.x, 2*np.ones(D)) assert np.allclose(SS.xxT, 2*np.ones((D,D))) assert np.allclose(SS.getELBOTerm('Elogz'), 2.0) assert np.allclose(SS.getELBOTerm('Econst'), 1.0) assert SS._ELBOTerms.K == K - 1 assert SS._MergeTerms.K == K - 1 def test_mergeComps_K5_D3_withELBO_kA0(self, K=5, D=3): SS = self.makeSuffStatBagAndFillWithOnes(K, D) self.addELBOtoSuffStatBag(SS, K) SS.mergeComps(0, 1) s, N, x, xxT = self.getExpectedMergedFields(K, D) assert SS.K == K - 1 assert SS._ELBOTerms.K == K - 1 assert SS._MergeTerms.K == K - 1 assert np.allclose(SS.s, s) assert
np.allclose(SS.N, N)
numpy.allclose
import numpy as np import lsst.geom from lsst.afw.math import ChebyshevBoundedField, ChebyshevBoundedFieldControl def get_approx_psf_size_and_shape(bbox, psf, wcs, ra, dec, nx=20, ny=20, orderx=2, ordery=2): pts = [lsst.geom.SpherePoint(r*lsst.geom.degrees, d*lsst.geom.degrees) for r, d in zip(ra, dec)] pixels = wcs.skyToPixel(pts) ctrl = ChebyshevBoundedFieldControl() ctrl.orderX = orderx ctrl.orderY = ordery ctrl.triangular = False xSteps = np.linspace(bbox.getMinX(), bbox.getMaxX(), nx) ySteps = np.linspace(bbox.getMinY(), bbox.getMaxY(), ny) x = np.tile(xSteps, nx) y = np.repeat(ySteps, ny) psf_size = np.zeros(x.size) psf_e1 = np.zeros(x.size) psf_e2 = np.zeros(x.size) for i in range(x.size): shape = psf.computeShape(lsst.geom.Point2D(x[i], y[i])) psf_size[i] = shape.getDeterminantRadius() ixx = shape.getIxx() iyy = shape.getIyy() ixy = shape.getIxy() psf_e1[i] = (ixx - iyy)/(ixx + iyy + 2.*psf_size[i]**2.) psf_e2[i] = (2.*ixy)/(ixx + iyy + 2.*psf_size[i]**2.) pixel_x = np.array([pix.getX() for pix in pixels]) pixel_y = np.array([pix.getY() for pix in pixels]) cheb_size = ChebyshevBoundedField.fit(lsst.geom.Box2I(bbox), x, y, psf_size, ctrl) psf_size_pts = cheb_size.evaluate(pixel_x, pixel_y) cheb_e1 = ChebyshevBoundedField.fit(lsst.geom.Box2I(bbox), x, y, psf_e1, ctrl) psf_e1_pts = cheb_e1.evaluate(pixel_x, pixel_y) cheb_e2 = ChebyshevBoundedField.fit(lsst.geom.Box2I(bbox), x, y, psf_e2, ctrl) psf_e2_pts = cheb_e2.evaluate(pixel_x, pixel_y) return psf_size_pts, psf_e1_pts, psf_e2_pts def get_psf_area_center(bbox, psf): im = psf.computeKernelImage(bbox.getCenter()) return np.sum(im.array)/
np.sum(im.array**2.)
numpy.sum
# <NAME>,2020 # https://stackoverflow.com/a/62931912/238978 import cv2 import numpy as np from PIL import Image def stroke(origin_image, threshold, stroke_size, color): img = cv2.cvtColor(np.array(origin_image), cv2.COLOR_RGBA2BGRA) h, w, _ = img.shape padding = stroke_size alpha = img[:, :, 3] rgb_img = img[:, :, 0:3] bigger_img = cv2.copyMakeBorder( rgb_img, padding, padding, padding, padding, cv2.BORDER_CONSTANT, value=(0, 0, 0, 0), ) alpha = cv2.copyMakeBorder( alpha, padding, padding, padding, padding, cv2.BORDER_CONSTANT, value=0 ) bigger_img = cv2.merge((bigger_img, alpha)) h, w, _ = bigger_img.shape _, alpha_without_shadow = cv2.threshold( alpha, threshold, 255, cv2.THRESH_BINARY ) # threshold=0 in photoshop alpha_without_shadow = 255 - alpha_without_shadow dist = cv2.distanceTransform( alpha_without_shadow, cv2.DIST_L2, cv2.DIST_MASK_3 ) # dist l1 : L1 , dist l2 : l2 stroked = change_matrix(dist, stroke_size) stroke_alpha = (stroked * 255).astype(np.uint8) stroke_b =
np.full((h, w), color[2], np.uint8)
numpy.full
#!/usr/bin/env python # coding: utf-8 from dask.distributed import Client from glob import glob import dask.dataframe as dd import json import numpy as np import pandas as pd import os import os.path import geopandas from shapely.geometry import Point csv_schema = """trip_duration,start_time,stop_time,start_station_id, start_station_name,start_station_latitude,start_station_longitude, end_station_id,end_station_name,end_station_latitude, end_station_longitude,bike_id,user_type,birth_year,gender""".split(',') csv_schema = [x.strip() for x in csv_schema] dtype_list = { 'trip_duration': np.int32, 'start_station_id': np.int32, 'start_station_name': object, 'start_station_latitude': np.float64, 'start_station_longitude': np.float64, 'end_station_id': np.int32, 'end_station_name': object, 'end_station_latitude': np.float64, 'end_station_longitude': np.float64, 'bike_id': np.int32, 'user_type': object, 'birth_year': np.float64, 'gender': np.int32, } with open('config.json', 'r') as fh: config = json.load(fh) def assign_taxi_zones(df, lon_var, lat_var, locid_var): """Joins DataFrame with Taxi Zones shapefile. This function takes longitude values provided by `lon_var`, and latitude values provided by `lat_var` in DataFrame `df`, and performs a spatial join with the NYC taxi_zones shapefile. The shapefile is hard coded in, as this function makes a hard assumption of latitude and longitude coordinates. It also assumes latitude=0 and longitude=0 is not a datapoint that can exist in your dataset. Which is reasonable for a dataset of New York, but bad for a global dataset. Only rows where `df.lon_var`, `df.lat_var` are reasonably near New York, and `df.locid_var` is set to np.nan are updated. Parameters ---------- df : pandas.DataFrame or dask.DataFrame DataFrame containing latitudes, longitudes, and location_id columns. lon_var : string Name of column in `df` containing longitude values. Invalid values should be np.nan. lat_var : string Name of column in `df` containing latitude values. Invalid values should be np.nan locid_var : string Name of column in `df` containing taxi_zone location ids. Rows with valid, nonzero values are not overwritten. """ import geopandas from shapely.geometry import Point localdf = df[[lon_var, lat_var, locid_var]].copy() # localdf = localdf.reset_index() localdf[lon_var] = localdf[lon_var].fillna(value=0.) localdf[lat_var] = localdf[lat_var].fillna(value=0.) localdf['replace_locid'] = (localdf[locid_var].isnull() & (localdf[lon_var] != 0.) & (localdf[lat_var] != 0.)) if (
np.any(localdf['replace_locid'])
numpy.any
#%% import imp import numpy as np import pandas as pd import matplotlib.pyplot as plt import anthro.viz import anthro.tessellation as tess import shapely import scipy.spatial from shapely.geometry import LineString, MultiLineString, MultiPoint, Point from shapely.geometry import Polygon, box, MultiPolygon from shapely.ops import nearest_points, linemerge, unary_union, polygonize from shapely import affinity import tqdm imp.reload(tess) # CHoose random starting values values = np.array([30, 5, 1, 8]) target = values / values.sum() N = len(target) S = 5 * tess.disc_uniform_pick(N) W = .8 *
np.random.random(N)
numpy.random.random
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: <NAME> # Contact: <EMAIL> # Date: 18/12/2018 # This code generates train/test splits of edges from input graphs for evaluating graph embeddings # on link prediction. It also provides false train and test edge sets of the required sizes. # The train/test sets are efficiently generated by: i) obtaining a spanning tree of the input graph # selected uniformly at random. ii) adding more edges to the spanning tree until the required amount # of train edges is reached. from __future__ import division from __future__ import print_function import os import random import warnings import networkx as nx import numpy as np import scipy as sp from scipy.sparse import triu from scipy.sparse import tril from scipy.sparse.csgraph import depth_first_tree from sklearn.externals.joblib import Parallel, delayed def _sanity_check(G): r""" Helper function that checks if the input graphs contains a single connected component. Raises an error if not. Parameters ---------- G : graph A NetworkX graph Raises ------ ValueError If the graph has more than one (weakly) connected component. """ # Compute the number of connected components if G.is_directed(): num_ccs = nx.number_weakly_connected_components(G) else: num_ccs = nx.number_connected_components(G) # Rise an error if more than one CC exists if num_ccs != 1: raise ValueError("Input graph should contain one (weakly) connected component. " "This graph contains: " + str(num_ccs)) def broder_alg(G, E): r""" Runs Andrei Broder's algorithm to select uniformly at random a spanning tree of the input graph.The direction of the edges included in train_E is taken from E which respects the edge directions in the original graph, thus, the results are still valid for directed graphs. For pairs of nodes in the original digraphs which have edges in both directions, we randomly select the direction of the edge included in the ST. Parameters ---------- G : graph A NetworkX graph E : set A set of directed or undirected edges constituting the graph G. Returns ------- train_E : set A set of edges of G describing the random spanning tree References ---------- .. [1] <NAME>, "Generating Random Spanning Trees", Proc. of the 30th Annual Symposium on Foundations of Computer Science, pp. 442--447, 1989. """ # Create two partitions, S and T. Initially store all nodes in S. S = set(G.nodes) T = set() # Pick a random node as the "current node" and mark it as visited. current_node = random.sample(S, 1).pop() S.remove(current_node) T.add(current_node) # Perform random walk on the graph train_E = set() while S: if G.is_directed(): neighbour_node = random.sample(list(G.successors(current_node)) + list(G.predecessors(current_node)), 1).pop() else: neighbour_node = random.sample(list(G.neighbors(current_node)), 1).pop() if neighbour_node not in T: S.remove(neighbour_node) T.add(neighbour_node) if random.random() < 0.5: if (current_node, neighbour_node) in E: train_E.add((current_node, neighbour_node)) else: train_E.add((neighbour_node, current_node)) else: if (neighbour_node, current_node) in E: train_E.add((neighbour_node, current_node)) else: train_E.add((current_node, neighbour_node)) current_node = neighbour_node # Return the set of edges constituting the spanning tree return train_E def wilson_alg(G, E): r""" Runs Willson's algorithm also known as loop erasing random walk to select uniformly at random a spanning tree of the input graph. A set E contains the original direction of edges in graph G, and train_E will only include edges which exist in E, thus, the results are still valid for digraphs. For pairs of nodes in the original digraphs, which have edges in both directions, we select the direction of the edge in the ST at random. Parameters ---------- G : graph A NetworkX graph E : set A set of directed or undirected edges constituting the graph G. Returns ------- train_E : set A set of edges of G describing the random spanning tree References ---------- .. [1] <NAME>, "Generating Random Spanning Trees More Quickly than the Cover Time", In Proceedings of STOC, pp. 296--303, 1996. .. [2] <NAME> and <NAME>, "How to Get a Perfectly Random Sample from a Generic Markov Chain and Generate a Random Spanning Tree of a Directed Graph", Journal of Algorithms 27, pp. 170--217, 1998. """ # Stores the nodes which are part of the trees created by the LERW. intree = set() # A dictionary which works as a linked list and stores the spanning tree tree = dict() # Pick a random node as the root of the spanning tree and add it to intree # For undirected graphs this is the correct approach r = random.sample(G.nodes, 1).pop() intree.add(r) for node in G.nodes: i = node while i not in intree: # This random successor works for weighted and unweighted graphs because we just # want to select a bunch of edges from the graph, no matter what the weights are. if G.is_directed(): tree[i] = random.sample(list(G.successors(i)) + list(G.predecessors(i)), 1).pop() else: tree[i] = random.sample(list(G.neighbors(i)), 1).pop() i = tree[i] i = node while i not in intree: intree.add(i) i = tree[i] # Create a set to store the train edges train_E = set() # This is only relevant for directed graphs to make the selection of edge direction equiprobable for e in set(zip(tree.keys(), tree.values())): if random.random() < 0.5: if e in E: train_E.add(e) else: train_E.add(e[::-1]) else: if e[::-1] in E: train_E.add(e[::-1]) else: train_E.add(e) # Return the edges of the random spanning tree return train_E def _compute_one_split(G, output_path, owa=True, train_frac=0.51, num_fe_train=None, num_fe_test=None, split_id=0): r""" Computes one split of train/test edges as well as non-edges from an input graph and writes the data to files. The train sets are always connected / weakly connected and span all nodes of the input graph. Input graphs (digraphs) cannot contain more than one (weakly) connected component. Parameters ---------- G : graph A NetworkX graph output_path : string Indicates the path where data will be stored. Can include a name for all splits to share. owa : bool, optional Encodes the belief that the network respects or not the open world assumption. Default is True. If OWA=True, false train edges can be true test edges. False edges sampled from train graph. If OWA=False, closed world is assumed so false train edges are known to be false (not in G) train_frac : float, optional The relative size (in range (0.0, 1.0]) of the train set with respect to the total number of edges in the graph. Default is 0.51. num_fe_train : int, optional The number of train false edges to generate. Default is same number as true train edges. num_fe_test : int, optional The number of test false edges to generate. Default is same number as true test edges. split_id : int, optional The ID of train/test split. Default is 0. """ # Generate train and test edge splits train_E, test_E = split_train_test(G, train_frac) # Generate the train/test false edges if owa: train_E_false, test_E_false = generate_false_edges_owa(G, train_E, test_E, num_fe_train, num_fe_test) else: train_E_false, test_E_false = generate_false_edges_cwa(G, train_E, test_E, num_fe_train, num_fe_test) # Write the computed split to a file store_train_test_splits(output_path, train_E, train_E_false, test_E, test_E_false, split_id) def compute_splits_parallel(G, output_path, owa=True, train_frac=0.51, num_fe_train=None, num_fe_test=None, num_splits=10): r""" Computes in parallel the required number of train/test splits of edges and non-edges from an input graph and writes the data to files. The train sets are always connected / weakly connected and span all nodes of the input graph. Input graphs (digraphs) cannot contain more than one (weakly) connected component. Parameters ---------- G : graph A NetworkX graph output_path : string Indicates the path where data will be stored. Can include a name for all splits to share. owa : bool, optional Encodes the belief that the network respects or not the open world assumption. Default is True. If OWA=True, false train edges can be true test edges. False edges sampled from train graph. If OWA=False, closed world is assumed so false train edges are known to be false (not in G) train_frac : float, optional The relative size (in range (0.0, 1.0]) of the train set with respect to the total number of edges in the graph. Default is 0.51. num_fe_train : int, optional The number of train false edges to generate. Default is same number as true train edges. num_fe_test : int, optional The number of test false edges to generate. Default is same number as true test edges. num_splits : int, optional The number of train/test splits to generate. Default is 10. """ # Compute the splits sequentially or in parallel backend = 'multiprocessing' path_func = delayed(_compute_one_split) Parallel(n_jobs=num_splits, verbose=True, backend=backend)( path_func(G, output_path, owa, train_frac, num_fe_train, num_fe_test, split) for split in range(num_splits)) def split_train_test(G, train_frac=0.51, st_alg='wilson'): r""" Computes one train/test split of edges from an input graph and returns the results. The train set will be (weakly) connected and span all nodes of the input graph (digraph). Input graph (digraph) cannot contain more than one (weakly) connected component. Parameters ---------- G : graph A NetworkX graph train_frac : float, optional The relative size (in range (0.0, 1.0]) of the train set with respect to the total number of edges in the graph. Default is 0.51. st_alg : basestring, optional The algorithm to use for generating the spanning tree constituting the backbone of the train set. Options are: 'wilson' and 'broder'. The first option, 'wilson', also known as LERW is much faster in most cases. Default is 'wilson'. Returns ------- train_E : set The set of train edges test_E : set The set of test edges Raises ------ ValueError If the train_frac parameter is not in range (0, 1]. If the input graph G has more than one (weakly) connected component. """ # Sanity check to make sure the input is correct _sanity_check(G) if train_frac <= 0.0 or train_frac > 1.0: raise ValueError('The train_frac parameter needs to be in range: (0.0, 1.0]') if train_frac == 1.0: return set(G.edges()), set() # Create a set of all edges in G E = set(G.edges) if st_alg == 'broder': # Compute a random spanning tree using broder's algorithm train_E = broder_alg(G, E) else: # Compute a random spanning tree using wilson's algorithm train_E = wilson_alg(G, E) # Fill test edge set as all edges not in the spanning tree test_E = E - train_E # Compute num train edges num_E = len(E) num_train_E = np.ceil(train_frac * num_E) # Check if the num edges in the spanning tree is already greater than the num train edges num_toadd = int(num_train_E - len(train_E)) if num_toadd <= 0: print("WARNING: In order to return a connected train set the train_frac parameter needs to be higher!") print("In this case, the provided train set constitutes a random spanning tree of the input graph.") print("The train_frac value used is: {}".format(len(train_E) / num_E)) print("Edges requested: train = {}, test = {}".format(num_train_E, num_E - num_train_E)) print("Edges returned: train = {}, test = {}".format(len(train_E), num_E - len(train_E))) else: # Add more edges to train set from test set until it has desired size edges = set(random.sample(test_E, num_toadd)) test_E = test_E - edges train_E = train_E | edges # Perform some simple checks assert E == (test_E | train_E) assert len(E) == len(test_E) + len(train_E) if num_toadd > 0: assert num_train_E == len(train_E) # Return the sets of edges return train_E, test_E def rand_split_train_test(G, train_frac=0.51): r""" Computes one train/test split of edges from an input graph and returns the results. The train/test split is computed by randomly removing 1-train_frac edges from the graph. From the remaining edges, those in the mainCC constitute the train edges. From the set of removed edges, those whose nodes are in the train set, are considered part or the test set. The proportion of train/test edges returned might not be the required one. The train set will be (weakly) connected and span all nodes of the input graph. Input graph (digraph) can contain one or many (weakly) connected components. Parameters ---------- G : graph A NetworkX graph train_frac : float, optional The relative size (in range (0.0, 1.0]) of the train set with respect to the total number of edges in the graph. Default is 0.51. Returns ------- train_E : set The set of train edges test_E : set The set of test edges Raises ------ ValueError If the train_frac parameter is not in range (0, 1]. """ if train_frac <= 0.0 or train_frac > 1.0: raise ValueError('The train_frac parameter needs to be in range: (0.0, 1.0]') if train_frac == 1.0: return set(G.edges()), set() # Create a set of all edges in G E = set(G.edges) num_E = len(E) # Compute the potential number of train and test edges which corresponds to the fraction given num_train_E = int(np.ceil(train_frac * num_E)) num_test_E = int(num_E - num_train_E) # Randomly remove 1-train_frac edges from the graph and store them as potential test edges pte_edges = set(random.sample(E, num_test_E)) # The remaining edges are potential train edges ptr_edges = E - pte_edges # Create a graph containing all ptr_edges and compute the mainCC if G.is_directed(): H = nx.DiGraph() H.add_edges_from(ptr_edges) maincc = max(nx.weakly_connected_component_subgraphs(H), key=len) else: H = nx.Graph() H.add_edges_from(ptr_edges) maincc = max(nx.connected_component_subgraphs(H), key=len) # The edges in the mainCC graph are the actual train edges train_E = set(maincc.edges) # Remove potential test edges for which the end nodes do not exist in the train_E test_E = set() for (src, dst) in pte_edges: if src in maincc.nodes and dst in maincc.nodes: test_E.add((src, dst)) # Return the sets of edges return train_E, test_E def naive_split_train_test(G, train_frac=0.51): r""" Computes one train/test split of edges from an input graph and returns the results. The sets are computed using the naive approach that checks connectivity of the graph for each removed edge. If graph gets disconnected, that edges is not removed. The train set will be (weakly) connected and span all nodes of the input graph. Input graph (digraph) cannot contain more than one (weakly) connected component. Parameters ---------- G : graph A NetworkX graph train_frac : float, optional The relative size (in range (0.0, 1.0]) of the train set with respect to the total number of edges in the graph. Default is 0.51. Returns ------- train_E : set The set of train edges test_E : set The set of test edges Raises ------ ValueError If the train_frac parameter is not in range (0, 1]. If the input graph G has more than one (weakly) connected component. """ # Sanity check to make sure the input is correct _sanity_check(G) if train_frac <= 0.0 or train_frac > 1.0: raise ValueError('The train_frac parameter needs to be in range: (0.0, 1.0]') if train_frac == 1.0: return set(G.edges()), set() # Is directed directed = G.is_directed() G = G.copy() # Create a set of all edges in G aux =
np.array(G.edges)
numpy.array
import copy import logging import math import matplotlib.pyplot as plt import multiprocessing as mp import numpy as np import random import time import torch import torch.multiprocessing as tmp import torch.nn.functional as F import torch.tensor as tt from torchvision.utils import save_image from dist import Master, Worker from net import CAModel from pool import CustomPool from utils import load_emoji, to_rgb, visualize_batch, append_file, write_file, export_model, dmg from weight_updates import hebbian_update HIDDEN_SIZE = None class EvolutionStrategy: """Master class for performing an evolution. Keeps track of hyperparameters, weights/coeffs. Contains methods for running the environment, evaluate performances and update parameters. """ def __init__(self, args): self.iterations = args.iter self.learning_rate = args.lr self.sigma = args.sigma self.pop_size = args.pop_size self.fire_rate = args.fire_rate self.target_size = args.size self.target_padding = args.pad self.new_size = self.target_size + 2 * self.target_padding self.channel_n = args.channels self.hidden_size = args.hidden_size HIDDEN_SIZE = self.hidden_size self.target_img = load_emoji(args.emoji, self.target_size) self.use_hebb = args.hebb self.use_pool = args.pool self.damage = args.damage self.damageChannels = args.damageChannels self.use_mp = args.use_mp self.decay_state = 0 self.log_main_every = 10 self.hit_goal = False self.cross_machine = args.cross_machine self.is_master = args.master self.nodes = args.nodes if self.damage > 0: if not self.use_pool and not self.damage <=3: raise ValueError("use_pool needs to be true and damage_bottom_n < 4.") if self.cross_machine: if self.is_master: self.master = Master(nodes=args.nodes) else: self.worker = Worker(run_id=0) p = self.target_padding self.pad_target = F.pad(tt(self.target_img), (0, 0, p, p, p, p)) h, w = self.pad_target.shape[:2] self.seed = np.zeros([h, w, self.channel_n], np.float64) self.seed[h // 2, w // 2, 3:] = 1.0 if self.use_pool: self.pool_size = 1024 self.batch_size = 4 self.pool = CustomPool(self.seed, self.pool_size) else: self.batch_size = 1 if self.use_hebb: self.coefficients_per_synapse = 5 plastic_weights = 3 * self.channel_n * self.hidden_size + self.hidden_size * self.channel_n self.coeffs_start_interval = 0.001 self.coeffs = np.random.uniform(-self.coeffs_start_interval, self.coeffs_start_interval, (plastic_weights, self.coefficients_per_synapse)) self.net = CAModel(channel_n=self.channel_n, fire_rate=self.fire_rate, new_size_pad=self.new_size, disable_grad=True, hidden_size=self.hidden_size, batch_size=self.batch_size, use_hebb=True) else: self.net = CAModel(channel_n=self.channel_n, fire_rate=self.fire_rate, new_size_pad=self.new_size, disable_grad=True, hidden_size=self.hidden_size, batch_size=self.batch_size) self.parameters_shape = [tuple(w.shape) for w in self.net.parameters()] self.log_folder = args.log_folder logging.basicConfig(filename=self.log_folder + "/logging.txt", format='%(message)s', filemode="w", level=logging.INFO) if args.pre_trained != "": if self.use_hebb: self.coeffs = np.load(args.pre_trained) else: self.load_model(args.pre_trained) logging.info("lr/(pop*sigma) at start: " + str(self.learning_rate / (self.pop_size * self.sigma))) # For logging self.x_range = [] self.y_lin = [] self.avg = [] self.avg_iter = [] self.losses_main = [] self.iter_main = [] t_rgb = to_rgb(self.pad_target).permute(2, 0, 1) save_image(t_rgb, self.log_folder + "/target_image.png") def load_model(self, path): """Load a PyTorch model from path.""" self.net.load_state_dict(torch.load(path)) self.net.double() def fitness_shaping(self, x): """Sort x and and map x to linear values between -0.5 and 0.5 Return standard score of x """ shaped = np.zeros(len(x)) shaped[x.argsort()] = np.arange(len(x), dtype=np.float64) shaped /= (len(x) - 1) shaped -= 0.5 shaped = (shaped - shaped.mean()) / shaped.std() return shaped def update_coeffs(self, fitnesses, epsilons): """Update parent Hebbian coefficients using evaluated mutants and fitness.""" fitnesses = self.fitness_shaping(fitnesses) for index, c in enumerate(self.coeffs): layer_population = np.array([p[index] for p in epsilons]) update_factor = self.learning_rate / (self.pop_size * self.sigma) self.coeffs[index] = c + update_factor * np.dot(layer_population.T, fitnesses).T def update_parameters(self, fitnesses, epsilons): """Update parent network weights using evaluated mutants and fitness.""" fitnesses = self.fitness_shaping(fitnesses) for i, e in enumerate(epsilons): for j, w in enumerate(self.net.parameters()): w.data += self.learning_rate * 1 / (self.pop_size * self.sigma) * fitnesses[i] * e[j] def get_population(self, use_seed=None): """Return an array with values sampled from N(0, sigma). The shape of the array is (pop_size, (layer1_size, layer2_size)) using ES and (pop_size, plastic_weights, 5) """ if use_seed is not None:
np.random.seed(use_seed)
numpy.random.seed
"""Module for performing optimization over the stiefel manifold.""" import numpy as np from scipy import linalg as linalg import neuropy.temp as tmp def optimize(ObjFn): """Perform optimization over the Stiefel manifold.""" # Parameters max_iter = 1000 max_ls_iter = 500 # Maximum number of line search iterations n_restarts = 5 # Number of random restarts to use delta_b = 0.9 # eps_f = 1e-10 # Get size of space -- it would be good to get these from the obj. fn. x_dim = ObjFn.x_dim # Size of the data (high-d) m_dim = ObjFn.m_dim # Size of the desired orthonormal space # Initialize results S = [] # List to store results for each random restart for i in range(n_restarts): # Initialize M (randomly) A = np.random.randn(x_dim, m_dim) M = linalg.orth(A) # Run gradient descent J = [] # Objective function value J_terms = [] # Value of objective function terms converged_flag = False J_iter_prev = np.inf for grad_iter in range(max_iter): b = 0.1 # Reset step size # Step 1: Calculate free gradient Z = ObjFn.gradient(M) # Step 2: Compute the search direction Z = search_dir(-Z, M) # Step 3: Line search with retraction df = [] for ls_iter in range(max_ls_iter): # Adjust B b = b * delta_b # Evaluate step fM, _ = ObjFn.evaluate(M) fR, _ = ObjFn.evaluate(retract(b*Z, M)) df_iter = fM - fR df.append(df_iter) # Check for convergence if df_iter >= 0: break # Break out of line search # Step 4: Update estimate of M M = retract(b*Z, M) # Step 5: Check for convergence J_iter, J_terms_iter = ObjFn.evaluate(M) J.append(J_iter) J_terms.append(J_terms_iter) dJ = J_iter - J_iter_prev J_iter_prev = J_iter # Print convergence status if grad_iter % 10 == 0: print('Restart {}, Iter {}: J = {:0.3e}, dJ = {:0.3e}'.format( i, grad_iter, J_iter, dJ)) if abs(dJ) < eps_f: converged_flag = True break # Break out of gradient descent # Save results for current random restart S.append({ 'M': M, 'J': J, 'J_terms': np.concatenate(J_terms), 'J_final': J[-1], 'converged': converged_flag, 'n_iter': grad_iter }) # Find the random restart with the smallest objective function J = [s['J_final'] for s in S] # Final objective function values min_idx = np.argmin(J) S_final = S[min_idx] return S_final def search_dir(Z, M): """Compute Stiefel optimization search direction.""" x_dim = M.shape[0] SK = (1/2) * (M.T @ Z - Z.T @ M) Z = M @ SK + (np.eye(x_dim) - M @ M.T) @ Z return Z def retract(Z, M): """Retract onto Stiefel manifold. See section A.3 of Cunningham and Ghahramani, 2015 """ # Note that this requires computing the inverse of the square root of a # matrix (X^(-1/2)), which is defined as the solution to XX = B. S = np.eye(M.shape[1]) + Z.T @ Z d, Q = np.linalg.eig(S) D = np.diag(d**(-1/2)) S_root_inv = Q @ D @ Q.T # S^(-1/2) # Calculate final retraction Z = (M + Z) @ S_root_inv return Z class ObjFn: """Objective function class. This serves as the base class for objective functions used in the stiefel optimization-based approach for finding specific orthogonal projections of neural activity. """ def __init__(self, data, params=None): """Initialization function.""" self.params = params self.data = data self.x_dim = None self.m_dim = None def evaluate(self, M): """Evaluate objective function.""" J = 0 J_terms = [0] return J, J_terms def gradient(self, M): """Evaluate gradient of objective function.""" dJ = 0 return dJ class AsymmetryStandard(ObjFn): """Standard (default) asymmetry-defining objective function. This class implements a weighted version of the 'standard' objective function used for the energy landscape experiments. It seeks to find a projection showing a strong trajectory asymmetry, where the midpoint of the A->B and B->A trajectories are maximally different along one axis of the projection. The weighting parameters (w_mid, w_var, w_start) are used to weight the various terms in the objective function. This was needed b/c the variance term can dominate the objective, particularly because it is a second-order term and the others are first-order. Note that a similar objective function can instead use squared distance to minimize this issue. The 'AsymmetrySquared' class implements this objective function. """ def __init__(self, data, params=None): """Initialization function.""" # Set default parameters if params is None: params = { 'w_mid': 1, 'w_var': 1, 'w_start': 1 } # Call super method -- this adds the params and data to the object super().__init__(data, params) # TODO: check parameters structure here self.term_str = [ 'midpoint distance', 'midpoint variance', 'start distance' ] # Get size of data self.x_dim = self.data['mu_start'][0].shape[0] self.m_dim = 2 # Hard-coded based on obj. fn. def evaluate(self, M): """Evaluate objective function.""" # Unpack parameters (for clarity) w_mid = self.params['w_mid'] w_var = self.params['w_var'] w_start = self.params['w_start'] # Unpack data mu_A = self.data['mu_start'][0] mu_B = self.data['mu_start'][1] mu_AB = self.data['mu_center'][0] mu_BA = self.data['mu_center'][1] sig_AB = self.data['cov_center'][0] sig_BA = self.data['cov_center'][1] # Unpack orthonormal projection p_1 = M[:, [0]] p_2 = M[:, [1]] # --- Compute individual terms in the objective function --- # Term 1 -- distance between the centers of the midpoints. This is # positive b/c we want this quantity to be large (meaning that there is # a strong asymmetry). term_1 = w_mid * p_1.T @ (mu_AB - mu_BA) # Term 2 -- sum of variance along p_2 at the midpoint of the # trajectories. This is negative b/c we want this quantity to be small # (meaning that the trajectories are consistent at the midpoint). term_2 = -w_var * p_1.T @ (sig_AB + sig_BA) @ p_1 # Term 3 -- distance between the starting points. This is positive b/c # we want this quantity to be large (meaning that the distance # between the starting positions is as large as possible. term_3 = w_start * p_2.T @ (mu_A - mu_B) # Compute overall objective -- this is negative b/c we want to minimize J = - (term_1 + term_2 + term_3) J = J[0, 0] # Convert from np array to a scalar J_terms = np.concatenate([-term_1, -term_2, -term_3], axis=1) return J, J_terms def gradient(self, M): """Calculate gradient.""" # Unpack parameters (for clarity) w_mid = self.params['w_mid'] w_var = self.params['w_var'] w_start = self.params['w_start'] # Unpack data mu_A = self.data['mu_start'][0] mu_B = self.data['mu_start'][1] mu_AB = self.data['mu_center'][0] mu_BA = self.data['mu_center'][1] sig_AB = self.data['cov_center'][0] sig_BA = self.data['cov_center'][1] # Unpack orthonormal projection p_1 = M[:, [0]] p_2 = M[:, [1]] # NOTE -- this is not used # --- Compute derivatives of terms in the objective function --- term_1 = w_mid * (mu_AB - mu_BA) term_2 = -w_var * 2 * (sig_AB + sig_BA) @ p_1 term_3 = w_start * (mu_A - mu_B) # Combine terms d_p_1 = - (term_1 + term_2) d_p_2 = -term_3 dJ =
np.concatenate([d_p_1, d_p_2], axis=1)
numpy.concatenate
import numpy as np from image_denoising.image_denoising.ConverterModel.FastModel.FastModel_init_utils import generate_pswf_quad, parameters_for_forward from image_denoising.image_denoising.ConverterModel.FastModel.FastModel_forward_utils import forward class FastModel: def __init__(self, resolution, truncation, beta, pswf2d, even): # find max alpha for each N max_ns = [] a = np.square(float(beta * resolution) / 2) m = 0 alpha_all = [] while True: alpha = pswf2d.alpha_all[m] lambda_var = a * np.square(
np.absolute(alpha)
numpy.absolute
#! /usr/bin/env python from __future__ import division, print_function import argparse import collections import logging import os import random import threading import numpy as np import pandas as pd from itertools import cycle, islice import keras from keras import backend as K from keras import optimizers from keras.models import Model from keras.layers import Input, Dense, Dropout from keras.callbacks import Callback, ModelCheckpoint, ReduceLROnPlateau, LearningRateScheduler, TensorBoard from keras.utils import get_custom_objects from keras.utils.vis_utils import plot_model from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error from sklearn.model_selection import KFold, StratifiedKFold, GroupKFold from scipy.stats.stats import pearsonr import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import combo import p1_common # import p1_common_keras from solr_keras import CandleRemoteMonitor, compute_trainable_params, TerminateOnTimeOut # import argparser # from datasets import NCI60 import NCI60 import combo logger = logging.getLogger(__name__) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' def set_seed(seed): os.environ['PYTHONHASHSEED'] = '0' np.random.seed(seed) random.seed(seed) if K.backend() == 'tensorflow': import tensorflow as tf tf.set_random_seed(seed) # session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) # sess = tf.Session(graph=tf.get_default_graph(), config=session_conf) # K.set_session(sess) # Uncommit when running on an optimized tensorflow where NUM_INTER_THREADS and # NUM_INTRA_THREADS env vars are set. # session_conf = tf.ConfigProto(inter_op_parallelism_threads=int(os.environ['NUM_INTER_THREADS']), # intra_op_parallelism_threads=int(os.environ['NUM_INTRA_THREADS'])) # sess = tf.Session(graph=tf.get_default_graph(), config=session_conf) # K.set_session(sess) def verify_path(path): folder = os.path.dirname(path) if folder and not os.path.exists(folder): os.makedirs(folder) def set_up_logger(logfile, verbose): verify_path(logfile) fh = logging.FileHandler(logfile) fh.setFormatter(logging.Formatter("[%(asctime)s %(process)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S")) fh.setLevel(logging.DEBUG) sh = logging.StreamHandler() sh.setFormatter(logging.Formatter('')) sh.setLevel(logging.DEBUG if verbose else logging.INFO) logger.setLevel(logging.DEBUG) logger.addHandler(fh) logger.addHandler(sh) def extension_from_parameters(args): """Construct string for saving model with annotation of parameters""" ext = '' ext += '.A={}'.format(args.activation) ext += '.B={}'.format(args.batch_size) ext += '.E={}'.format(args.epochs) ext += '.O={}'.format(args.optimizer) # ext += '.LEN={}'.format(args.maxlen) ext += '.LR={}'.format(args.learning_rate) ext += '.CF={}'.format(''.join([x[0] for x in sorted(args.cell_features)])) ext += '.DF={}'.format(''.join([x[0] for x in sorted(args.drug_features)])) if args.feature_subsample > 0: ext += '.FS={}'.format(args.feature_subsample) if args.drop > 0: ext += '.DR={}'.format(args.drop) if args.warmup_lr: ext += '.wu_lr' if args.reduce_lr: ext += '.re_lr' if args.residual: ext += '.res' if args.use_landmark_genes: ext += '.L1000' if args.gen: ext += '.gen' if args.use_combo_score: ext += '.scr' for i, n in enumerate(args.dense): if n > 0: ext += '.D{}={}'.format(i+1, n) if args.dense_feature_layers != args.dense: for i, n in enumerate(args.dense): if n > 0: ext += '.FD{}={}'.format(i+1, n) return ext def discretize(y, bins=5): percentiles = [100 / bins * (i + 1) for i in range(bins - 1)] thresholds = [np.percentile(y, x) for x in percentiles] classes = np.digitize(y, thresholds) return classes class ComboDataLoader(object): """Load merged drug response, drug descriptors and cell line essay data """ def __init__(self, seed, val_split=0.2, shuffle=True, cell_features=['expression'], drug_features=['descriptors'], use_landmark_genes=False, use_combo_score=False, preprocess_rnaseq=None, exclude_cells=[], exclude_drugs=[], feature_subsample=None, scaling='std', scramble=False, cv_partition='overlapping', cv=0): """Initialize data merging drug response, drug descriptors and cell line essay. Shuffle and split training and validation set Parameters ---------- seed: integer seed for random generation val_split : float, optional (default 0.2) fraction of data to use in validation cell_features: list of strings from 'expression', 'expression_5platform', 'mirna', 'proteome', 'all', 'categorical' (default ['expression']) use one or more cell line feature sets: gene expression, microRNA, proteome use 'all' for ['expression', 'mirna', 'proteome'] use 'categorical' for one-hot encoded cell lines drug_features: list of strings from 'descriptors', 'latent', 'all', 'categorical', 'noise' (default ['descriptors']) use dragon7 descriptors, latent representations from Aspuru-Guzik's SMILES autoencoder trained on NSC drugs, or both; use random features if set to noise use 'categorical' for one-hot encoded drugs shuffle : True or False, optional (default True) if True shuffles the merged data before splitting training and validation sets scramble: True or False, optional (default False) if True randomly shuffle dose response data as a control feature_subsample: None or integer (default None) number of feature columns to use from cellline expressions and drug descriptors use_landmark_genes: True or False only use LINCS1000 landmark genes use_combo_score: bool (default False) use combination score in place of percent growth (stored in 'GROWTH' column) scaling: None, 'std', 'minmax' or 'maxabs' (default 'std') type of feature scaling: 'maxabs' to [-1,1], 'maxabs' to [-1, 1], 'std' for standard normalization """ self.cv_partition = cv_partition
np.random.seed(seed)
numpy.random.seed
from scannerpy import Database, DeviceType from scannerpy.stdlib import NetDescriptor, parsers, bboxes import scipy.misc import numpy as np import cv2 import sys import random import json import time import os import os.path import struct def write_dmb_file(path, image): with open(path, 'wb') as f: # type f.write(struct.pack('i', 1)) # type # height f.write(struct.pack('i', image.shape[0])) # width f.write(struct.pack('i', image.shape[1])) # channels if len(image.shape) > 2: f.write(struct.pack('i', image.shape[2])) else: f.write(struct.pack('i', 1)) f.write(image.tobytes()) def make_p_matrices(calib): cameras = calib['cameras'] p_matrices = {} for cam in cameras: K = np.array(cam['K']) R = np.array(cam['R']) t = np.array(cam['t']) p = K.dot(np.hstack((R, t))) p_matrices[(cam['panel'], cam['node'])] = p return p_matrices def main(): with open('/n/scanner/apoms/panoptic/160422_mafia2/calibration_160422_mafia2.json', 'r') as f: calib = json.load(f) p_matrices = make_p_matrices(calib) dataset = '160422_haggling1' template_path = '/n/scanner/apoms/panoptic/' + dataset + '/vgaVideos/vga_{:02d}_{:02d}.mp4' i = 0 video_paths = [] table_idx = {} for p in range(1, 21): for c in range(1, 25): video_paths.append(template_path.format(p, c)) table_idx[(p, c)] = i i += 1 with Database(debug=True) as db: # Ingest if False: #collection, _ = db.ingest_video_collection(dataset, video_paths, # force=True) collection = db.collection(dataset) # Setup tables with calibration data calibration_table_names = [] columns = ['P'] for p in range(1, 21): for c in range(1, 25): table_name = 'calibration_{:02d}_{:02d}'.format(p, c) num_rows = collection.tables(len(calibration_table_names)).num_rows() cam = db.protobufs.Camera() if (p == 14 and c == 18) or num_rows == 0: rows = [[cam.SerializeToString()]] db.new_table(table_name, columns, rows, force=True) calibration_table_names.append(table_name) continue P = p_matrices[(p, c)] for i in range(3): for j in range(4): cam.p.append(P[i, j]) rows = [] for i in range(num_rows): rows.append([cam.SerializeToString()]) print(table_name) db.new_table(table_name, columns, rows, force=True) calibration_table_names.append(table_name) calib_collection = db.new_collection(dataset + '_calibration', calibration_table_names, force=True) collection = db.collection(dataset) calib_collection = db.collection(dataset + '_calibration') gipuma_args = db.protobufs.GipumaArgs() gipuma_args.min_disparity = 0 gipuma_args.max_disparity = 384 gipuma_args.min_depth = 30 gipuma_args.max_depth = 500 gipuma_args.iterations = 8 gipuma_args.kernel_width = 19 gipuma_args.kernel_height = 19 columns = [] camera_groups_length = 4 for i in range(camera_groups_length): columns += ["frame" + str(i), "fi" + str(i), "calib" + str(i)] input_op = db.ops.Input(["index"] + columns) op = db.ops.Gipuma( inputs=[(input_op, columns)], args=gipuma_args, device=DeviceType.GPU) tasks = [] start_frame = 4300 end_frame = 4302 item_size = 64 sampler_args = db.protobufs.StridedRangeSamplerArgs() sampler_args.stride = 1 start = start_frame end = end_frame while start < end: sampler_args.warmup_starts.append(start) sampler_args.starts.append(start) sampler_args.ends.append(min(start + item_size, end)) start += item_size camera_groups = [ [(1, 1), (1, 2), (5, 1), (16, 13)], # [(3, 1), (3, 3), (5, 3), (1, 6)], # [(4, 2), (1, 3), (5, 3), (3, 3)], # [(7, 4), (7, 8), (6, 3), (8, 3)], # [(10, 4), (9, 3), (10, 3), (11, 3)], # [(13, 8), (13, 10), (12, 8), (14, 20)], # [(16, 4), (16, 16), (15, 2), (16, 8)], ] for group in camera_groups: first_idx = table_idx[group[0]] print(first_idx) first_table = collection.tables(first_idx) first_calib_table = calib_collection.tables(first_idx) task = db.protobufs.Task() task.output_table_name = 'disparity_{:02d}_{:02d}'.format( group[0][0], group[0][1]) column_names = [c.name() for c in first_table.columns()] # Load frames sample = task.samples.add() sample.table_name = first_table.name() sample.column_names.extend(column_names) sample.sampling_function = "StridedRange" sample.sampling_args = sampler_args.SerializeToString() # Load calibration sample = task.samples.add() sample.table_name = first_calib_table.name() sample.column_names.extend(['P']) sample.sampling_function = "StridedRange" sample.sampling_args = sampler_args.SerializeToString() for c, p in group[1:]: idx = table_idx[(c, p)] print(idx) table = collection.tables(idx) calib_table = calib_collection.tables(idx) sample = task.samples.add() sample.table_name = table.name() sample.column_names.extend(["frame", "frame_info"]) sample.sampling_function = "StridedRange" sample.sampling_args = sampler_args.SerializeToString() sample = task.samples.add() sample.table_name = calib_table.name() sample.column_names.extend(['P']) sample.sampling_function = "StridedRange" sample.sampling_args = sampler_args.SerializeToString() tasks.append(task) # Output data for fusibile top_folder = 'gipuma_results/' frame_folder = top_folder + '{:08d}/' images_folder = frame_folder + 'images/' image_name = '{:03d}.png' image_path = images_folder + image_name krt_path = images_folder + 'cam.txt' results_folder = frame_folder + 'results/' cam_results_folder = results_folder + '2hat_cam_{:03d}/' normals_path = cam_results_folder + 'normals.dmb' depth_path = cam_results_folder + 'disp.dmb' output_tables = db.run(tasks, op, pipeline_instances_per_node=4, force=True) # Export data directory corresponding to image files # for i, table in enumerate(collection.tables()): # for fi, tup in table.load(['frame'], rows=range(start_frame, # end_frame)): # if not os.path.exists(images_folder.format(fi)): # os.makedirs(images_folder.format(fi)) # img = tup[0] # cv2.imwrite(image_path.format(fi, i), img) # Export camera calibration params file (krt_file) for fi in range(end_frame - start_frame): with open(krt_path.format(fi), 'w') as f: f.write(str(479) + '\n') i = -1 offset = 0 cameras = calib['cameras'] for p in range(1, 21): for c in range(1, 25): i += 1 if p == 14 and c == 18: continue f.write(image_name.format(i) + ' ') cam = cameras[offset] K = cam['K'] for n in [item for sublist in K for item in sublist]: f.write(str(n) + ' ') R = cam['R'] for n in [item for sublist in R for item in sublist]: f.write(str(n) + ' ') t = cam['t'] for n in [item for sublist in t for item in sublist]: f.write(str(n) + ' ') f.write('\n') offset += 1 # Export normals and depth dmb files for i, table in enumerate(output_tables): for fi, tup in table.load(['points', 'cost']): if not os.path.exists(cam_results_folder.format(fi, i)): os.makedirs(cam_results_folder.format(fi, i)) points = np.frombuffer(tup[0], dtype=np.float32).reshape(480, 640, 4) cost = np.frombuffer(tup[1], dtype=np.float32).reshape(480, 640, 1) avg =
np.median(cost[:])
numpy.median
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2020-07-24 15:18:47 # @Author : <NAME> (<EMAIL>) # @Link : https://blog.csdn.net/taifengzikai/ # @Version : $1.0$ import json import pickle import numpy as np import os.path as osp class kittidataset(object): def __init__(self, detection_file): self.detection_file =detection_file self.fp = open(self.detection_file,"rb+") self.detection = pickle.load(self.fp) "dict_keys(['name', 'truncated', 'occluded', 'alpha', 'bbox', " \ "'dimensions', 'location', 'rotation_y', 'score', 'metadata'])" # def analysis_detection(self): # self.data = self.detection def __len__(self): return len(self.detection) # def save_kitti(self, kitti_infos_test_video): # # file = "kitti_infos_train.pkl" # filename = './results/000002/test/output_test_video_kalman.pkl'#self.output_path # print(f"Kitti info test video file is saved to {filename}") # with open('./results/000002/test/output_test_video_kalman.pkl', "wb") as f: # pickle.dump(kitti_infos_test_video, f) def get_label_anno(self, tracking_results): annotations = {} annotations.update( { "name": [], "truncated": [], "occluded": [], "alpha": [], "bbox": [], "dimensions": [], "location": [], "rotation_y": [], "score": [], } ) ind = 0 for gt in tracking_results: name = gt['tracking_name'] truncated = -1 occluded = -1 alpha = -1 bbox = [-1, -1, -1, -1] dimensions = np.array([float(dim) for dim in gt['size']]) location = np.array([float(loc) for loc in gt['translation']]) rotation_y = float(gt['rotation']) score = float(gt['tracking_score']) annotations['name'].append(name) annotations['truncated'].append(truncated) annotations['occluded'].append(occluded) annotations['alpha'].append(alpha) annotations['bbox'].append(bbox) annotations['dimensions'].append(dimensions) annotations['location'].append(location) annotations['rotation_y'].append(rotation_y) annotations['score'].append(score) annotations['name'] = np.array(annotations['name']) annotations['truncated'] =
np.array(annotations['truncated'])
numpy.array
#!/usr/bin/python import sys import textadapter import unittest from .generate import (generate_dataset, IntIter, MissingValuesIter, FixedWidthIter) import numpy as np from numpy.testing import assert_array_equal import gzip import os import io from six import StringIO class TestTextAdapter(unittest.TestCase): num_records = 100000 def assert_equality(self, left, right): try: if isinstance(left, np.ndarray) and isinstance(right, np.ndarray): self.assert_array_equal(left, right) else: self.assertTrue(left == right) except AssertionError: raise AssertionError('FAIL: {0} != {1}'.format(left, right)) # Basic parsing tests def test_string_parsing(self): data = StringIO('1,2,3\n') adapter = textadapter.text_adapter(data, field_names=False) adapter.set_field_types({0:'S5', 1:'S5', 2:'S5'}) assert_array_equal(adapter[:], np.array([('1', '2', '3')], dtype='S5,S5,S5')) data = io.StringIO(u'1,2,3\n') adapter = textadapter.text_adapter(data, field_names=False) adapter.set_field_types({0:'S5', 1:'S5', 2:'S5'}) assert_array_equal(adapter[:], np.array([('1', '2', '3')], dtype='S5,S5,S5')) data = io.BytesIO(b'1,2,3\n') adapter = textadapter.text_adapter(data, field_names=False) adapter.set_field_types({0:'S5', 1:'S5', 2:'S5'}) assert_array_equal(adapter[:], np.array([('1', '2', '3')], dtype='S5,S5,S5')) # basic utf_8 tests def test_utf8_parsing(self): # test single byte character data = io.BytesIO(u'1,2,\u0033'.encode('utf_8')) adapter = textadapter.text_adapter(data, field_names=False) expected = np.array([('1', '2', '3')], dtype='u8,u8,u8') assert_array_equal(adapter[:], expected) # test multibyte character data = io.BytesIO(u'1,2,\u2092'.encode('utf_8')) adapter = textadapter.text_adapter(data, field_names=False) expected = np.array([('1', '2', u'\u2092')], dtype='u8,u8,O') assert_array_equal(adapter[:], expected) def test_no_whitespace_stripping(self): data = StringIO('1 ,2 ,3 \n') adapter = textadapter.text_adapter(data, field_names=False) adapter.set_field_types({0:'S3', 1:'S3', 2:'S3'}) assert_array_equal(adapter[:], np.array([('1 ', '2 ', '3 ')], dtype='S3,S3,S3')) data = StringIO(' 1, 2, 3\n') adapter = textadapter.text_adapter(data, field_names=False) adapter.set_field_types({0:'S3', 1:'S3', 2:'S3'}) assert_array_equal(adapter[:], np.array([(' 1', ' 2', ' 3')], dtype='S3,S3,S3')) data = StringIO(' 1 , 2 , 3 \n') adapter = textadapter.text_adapter(data, field_names=False) adapter.set_field_types({0:'S5', 1:'S5', 2:'S5'}) assert_array_equal(adapter[:], np.array([(' 1 ', ' 2 ', ' 3 ')], dtype='S5,S5,S5')) data = StringIO('\t1\t,\t2\t,\t3\t\n') adapter = textadapter.text_adapter(data, field_names=False) adapter.set_field_types({0:'S3', 1:'S3', 2:'S3'}) assert_array_equal(adapter[:], np.array([('\t1\t', '\t2\t', '\t3\t')], dtype='S3,S3,S3')) def test_quoted_whitespace(self): data = StringIO('"1 ","2 ","3 "\n') adapter = textadapter.text_adapter(data, field_names=False) adapter.set_field_types({0:'S3', 1:'S3', 2:'S3'}) assert_array_equal(adapter[:], np.array([('1 ', '2 ', '3 ')], dtype='S3,S3,S3')) data = StringIO('"\t1\t"\t"\t2\t"\t"\t3\t"\n') adapter = textadapter.text_adapter(data, field_names=False, delimiter='\t') adapter.set_field_types({0:'S3', 1:'S3', 2:'S3'}) assert_array_equal(adapter[:], np.array([('\t1\t', '\t2\t', '\t3\t')], dtype='S3,S3,S3')) def test_fixed_simple(self): # TODO: fix this test on 32-bit and on Windows if tuple.__itemsize__ == 4: # This test does not work on 32-bit, so we skip it return if sys.platform == 'win32': # This test does not work on Windows return data = StringIO(" 1 2 3\n 4 5 67\n890123 4") adapter = textadapter.FixedWidthTextAdapter(data, 3, infer_types=False, field_names=False) adapter.set_field_types({0:'i', 1:'i', 2:'i'}) control = np.array([(1, 2, 3), (4, 5, 67), (890, 123, 4)], dtype='i,i,i') assert_array_equal(adapter[:], control) def test_spaces_around_numeric_values(self): data = StringIO(' 1 , -2 , 3.3 , -4.4 \n 5 , -6 , 7.7 , -8.8 ') adapter = textadapter.text_adapter(data, field_names=False) adapter.set_field_types({0:'u4', 1:'i8', 2:'f4', 3:'f8'}) array = adapter[:] control = np.array([(1,-2,3.3,-4.4), (5,-6,7.7,-8.8)], dtype='u4,i8,f4,f8') assert_array_equal(array, control) def test_slicing(self): data = StringIO() generate_dataset(data, IntIter(), ',', self.num_records) adapter = textadapter.text_adapter(data, field_names=False) adapter.set_field_types({0:'u4',1:'u4',2:'u4',3:'u4',4:'u4'}) assert_array_equal(adapter[0], np.array([(0, 1, 2, 3, 4)], dtype='u4,u4,u4,u4,u4')) expected_values = [((self.num_records-1)*5)+x for x in range(5)] self.assert_equality(adapter[self.num_records-1].item(), tuple(expected_values)) #adapter.create_index() #self.assert_equality(adapter[-1].item(), tuple(expected_values)) self.assert_equality(adapter['f0'][0].item(), (0,)) self.assert_equality(adapter['f4'][1].item(), (9,)) #self.assert_equality(adapter[self.num_records-1]['f4'], (self.num_records*5)-1) array = adapter[:] record = [x for x in range(0, 5)] self.assert_equality(array.size, self.num_records) for i in range(0, self.num_records): self.assert_equality(array[i].item(), tuple(record)) record = [x+5 for x in record] array = adapter[:-1] record = [x for x in range(0, 5)] self.assert_equality(array.size, self.num_records-1) for i in range(0, self.num_records-1): self.assert_equality(array[i].item(), tuple(record)) record = [x+5 for x in record] array = adapter[0:10] self.assert_equality(array.size, 10) record = [x for x in range(0, 5)] for i in range(0, 10): self.assert_equality(array[i].item(), tuple(record)) record = [x+5 for x in record] array = adapter[1:] self.assert_equality(array.size, self.num_records-1) record = [x for x in range(5, 10)] for i in range(0, self.num_records-1): self.assert_equality(array[i].item(), tuple(record)) record = [x+5 for x in record] array = adapter[0:10:2] self.assert_equality(array.size, 5) record = [x for x in range(0, 5)] for i in range(0, 5): self.assert_equality(array[i].item(), tuple(record)) record = [x+10 for x in record] array = adapter[['f0', 'f4']][:] record = [0, 4] self.assert_equality(array.size, self.num_records) for i in range(0, self.num_records): self.assert_equality(array[i].item(), tuple(record)) record = [x+5 for x in record] adapter.field_filter = [0, 'f4'] array = adapter[:] record = [0, 4] self.assert_equality(array.size, self.num_records) for i in range(0, self.num_records): self.assert_equality(array[i].item(), tuple(record)) record = [x+5 for x in record] adapter.field_filter = None array = adapter[:] record = [0, 1, 2, 3, 4] self.assert_equality(array.size, self.num_records) for i in range(0, self.num_records): self.assert_equality(array[i].item(), tuple(record)) record = [x+5 for x in record] try: adapter[self.num_records] except textadapter.AdapterIndexError: pass else: self.fail('AdaperIndexError not thrown') try: adapter[0:self.num_records+1] except textadapter.AdapterIndexError: pass else: self.fail('AdaperIndexError not thrown') def test_converters(self): data = StringIO() generate_dataset(data, IntIter(), ',', self.num_records) adapter = textadapter.text_adapter(data, delimiter=',', field_names=False) #adapter.set_field_types({0:'u4', 1:'u4', 2:'u4', 3:'u4', 4:'u4'}) def increment(input_str): return int(input_str) + 1 def double(input_str): return int(input_str) + int(input_str) if sys.platform == 'win32' and tuple.__itemsize__ == 8: # TODO: there problems below here 64-bit Windows, I get # OverflowError: can't convert negative value to unigned PY_LONG_LONG return adapter.set_converter(0, increment) adapter.set_converter('f1', double) array = adapter[:] self.assert_equality(array.size, self.num_records) record = [1, 2, 2, 3, 4] for i in range(0, self.num_records): self.assert_equality(array[i].item(), tuple(record)) record[0] += 5 record[1] = (10 * (i+1)) + 2 record[2] += 5 record[3] += 5 record[4] += 5 def test_missing_fill_values(self): data = StringIO() generate_dataset(data, MissingValuesIter(), ',', self.num_records) adapter = textadapter.text_adapter(data, delimiter=',', field_names=False, infer_types=False) adapter.set_field_types({'f0':'u4', 1:'u4', 2:'u4', 3:'u4', 'f4':'u4'}) adapter.set_missing_values({0:['NA', 'NaN'], 'f4':['xx','inf']}) adapter.set_fill_values({0:99, 4:999}) array = adapter[:] self.assert_equality(array.size, self.num_records) record = [x for x in range(0, 5)] for i in range(0, self.num_records): if i % 4 == 0 or i % 4 == 1: record[0] = 99 record[4] = 999 else: record[0] = record[1] - 1 record[4] = record[3] + 1 self.assert_equality(array[i].item(), tuple(record)) record[1] += 5 record[2] += 5 record[3] += 5 data.seek(0) adapter = textadapter.text_adapter(data, delimiter=',', field_names=False, infer_types=True) adapter.set_missing_values({0:['NA', 'NaN'], 4:['xx','inf']}) array = adapter[:] self.assert_equality(array.size, self.num_records) record = [x for x in range(0, 5)] for i in range(0, self.num_records): if i % 4 == 0 or i % 4 == 1: record[0] = 0 record[4] = 0 else: record[0] = record[1] - 1 record[4] = record[3] + 1 self.assert_equality(array[i].item(), tuple(record)) record[1] += 5 record[2] += 5 record[3] += 5 # Test missing field data = StringIO('1,2,3\n4,5\n7,8,9') adapter = textadapter.text_adapter(data, field_names=False) adapter.field_types = {0:'O', 1:'O', 2:'O'} adapter.set_fill_values({0:np.nan, 1:np.nan, 2:np.nan}) array = adapter[:] # NumPy assert_array_equal no longer supports mixed O/nan types expected = [('1','2','3'),('4','5',np.nan),('7','8','9')] self.assert_equality(array.tolist(), expected) def test_fixed_width(self): data = StringIO() generate_dataset(data, FixedWidthIter(), '', self.num_records) adapter = textadapter.FixedWidthTextAdapter(data, [2,3,4,5,6], field_names=False, infer_types=False) adapter.set_field_types({0:'u4',1:'u4',2:'u4',3:'u4',4:'u4'}) array = adapter[:] self.assert_equality(array.size, self.num_records) record = [0, 0, 0, 0, 0] for i in range(0, self.num_records): self.assert_equality(array[i].item(), tuple(record)) record = [x+1 for x in record] if record[0] == 100: record[0] = 0 if record[1] == 1000: record[1] = 0 if record[2] == 10000: record[2] = 0 if record[3] == 100000: record[3] = 0 if record[4] == 1000000: record[4] = 0 # Test skipping blank lines data = StringIO(' 1 2 3\n\n 4 5 6') adapter = textadapter.text_adapter(data, parser='fixed_width', field_widths=[2,2,2], field_names=False) array = adapter[:] assert_array_equal(array, np.array([(1,2,3), (4,5,6)], dtype=[('f0','<u8'),('f1','<u8'),('f2','<u8')])) # Test comment lines data = StringIO('# 1 2 3\n 1 2 3\n# foo\n 4 5 6') adapter = textadapter.text_adapter(data, parser='fixed_width', field_widths=[2,2,2], field_names=False) array = adapter[:] assert_array_equal(array, np.array([(1,2,3), (4,5,6)], dtype=[('f0','<u8'),('f1','<u8'),('f2','<u8')])) # Test field names line data = StringIO(' a b c\n 1 2 3') adapter = textadapter.text_adapter(data, parser='fixed_width', field_widths=[2,2,2], field_names=True) array = adapter[:] assert_array_equal(array, np.array([(1,2,3)], dtype=[('a','<u8'),('b','<u8'),('c','<u8')])) # Test field names line as comment line data = StringIO('# a b c\n 1 2 3') adapter = textadapter.text_adapter(data, parser='fixed_width', field_widths=[2,2,2], field_names=True) array = adapter[:] assert_array_equal(array, np.array([(1,2,3)], dtype=[('a','<u8'),('b','<u8'),('c','<u8')])) # Test incomplete field names line data = StringIO(' a\n 1 2 3') adapter = textadapter.text_adapter(data, parser='fixed_width', field_widths=[2,2,2], field_names=True) array = adapter[:] assert_array_equal(array, np.array([(1,2,3)], dtype=[('a','<u8'),('f1','<u8'),('f2','<u8')])) def test_regex(self): data = StringIO() generate_dataset(data, IntIter(), ',', self.num_records) adapter = textadapter.RegexTextAdapter(data, '([0-9]*),([0-9]*),([0-9]*),([0-9]*),([0-9]*)\n', field_names=False, infer_types=False) adapter.set_field_types({0:'u4',1:'u4',2:'u4',3:'u4',4:'u4'}) array = adapter[:] self.assert_equality(array.size, self.num_records) record = [x for x in range(0, 5)] for i in range(0, self.num_records): self.assert_equality(array[i].item(), tuple(record)) record = [x+5 for x in record] # Test skipping blank lines data = StringIO('1 2 3\n\n4 5 6') adapter = textadapter.text_adapter(data, parser='regex', regex_string='([0-9]) ([0-9]) ([0-9])', field_names=False) array = adapter[:] assert_array_equal(array, np.array([(1,2,3), (4,5,6)], dtype=[('f0','<u8'),('f1','<u8'),('f2','<u8')])) # Test comment lines data = StringIO('#1 2 3\n1 2 3\n# foo\n4 5 6') adapter = textadapter.text_adapter(data, parser='regex', regex_string='([0-9]) ([0-9]) ([0-9])', field_names=False) array = adapter[:] assert_array_equal(array, np.array([(1,2,3), (4,5,6)], dtype=[('f0','<u8'),('f1','<u8'),('f2','<u8')])) # Test field names line data = StringIO('a b c\n4 5 6') adapter = textadapter.text_adapter(data, parser='regex', regex_string='([0-9]) ([0-9]) ([0-9])', field_names=True) array = adapter[:] assert_array_equal(array, np.array([(4,5,6)], dtype=[('a','<u8'),('b','<u8'),('c','<u8')])) # Test field names line as comment line data = StringIO('#a b c\n4 5 6') adapter = textadapter.text_adapter(data, parser='regex', regex_string='([0-9]) ([0-9]) ([0-9])', field_names=True) array = adapter[:] assert_array_equal(array, np.array([(4,5,6)], dtype=[('a','<u8'),('b','<u8'),('c','<u8')])) # Test incomplete field names line data = StringIO('a b\n4 5 6') adapter = textadapter.text_adapter(data, parser='regex', regex_string='([0-9]) ([0-9]) ([0-9])', field_names=True) array = adapter[:] assert_array_equal(array, np.array([(4,5,6)], dtype=[('a','<u8'),('b','<u8'),('f2','<u8')])) # Test field names line that doesn't match regex data = StringIO('a b c\n1 2 3 4 5 6') adapter = textadapter.text_adapter(data, parser='regex', regex_string='([0-9\s]+) ([0-9\s]+) ([0-9\s]+)', field_names=True) array = adapter[:] assert_array_equal(array, np.array([('1 2', '3 4', '5 6')], dtype=[('a','O'),('b','O'),('c','O')])) def test_index(self): if sys.platform == 'win32': # TODO: this test fails on Windows because of file lock problems return num_records = 100000 expected_values = [((num_records-1)*5) + x for x in range(5)] data = StringIO() generate_dataset(data, IntIter(), ',', num_records) # test explicit index building adapter = textadapter.text_adapter(data, delimiter=',', field_names=False, infer_types=False) adapter.set_field_types({0:'u4',1:'u4',2:'u4',3:'u4',4:'u4'}) adapter.create_index() self.assert_equality(adapter[0].item(), tuple([(0*5) + x for x in range(5)])) self.assert_equality(adapter[10].item(), tuple([(10*5) + x for x in range(5)])) self.assert_equality(adapter[100].item(), tuple([(100*5) + x for x in range(5)])) self.assert_equality(adapter[1000].item(), tuple([(1000*5) + x for x in range(5)])) self.assert_equality(adapter[10000].item(), tuple([(10000*5) + x for x in range(5)])) self.assert_equality(adapter[num_records - 1].item(), tuple([((num_records - 1)*5) + x for x in range(5)])) #self.assert_equality(adapter[-1].item(), tuple(expected_values)) # test implicitly creating disk index on the fly if os.path.exists('test.idx'): os.remove('test.idx') data.seek(0) adapter = textadapter.text_adapter(data, delimiter=',', field_names=False, infer_types=False, index_name='test.idx') adapter.set_field_types({0:'u4',1:'u4',2:'u4',3:'u4',4:'u4'}) adapter.to_array() self.assert_equality(adapter[0].item(), tuple([(0*5) + x for x in range(5)])) self.assert_equality(adapter[10].item(), tuple([(10*5) + x for x in range(5)])) self.assert_equality(adapter[100].item(), tuple([(100*5) + x for x in range(5)])) self.assert_equality(adapter[1000].item(), tuple([(1000*5) + x for x in range(5)])) self.assert_equality(adapter[10000].item(), tuple([(10000*5) + x for x in range(5)])) self.assert_equality(adapter[num_records - 1].item(), tuple([((num_records - 1)*5) + x for x in range(5)])) #self.assert_equality(adapter[-1].item(), tuple(expected_values)) adapter.close() # test loading disk index data.seek(0) adapter2 = textadapter.text_adapter(data, delimiter=',', field_names=False, infer_types=False, index_name='test.idx') adapter2.set_field_types({0:'u4',1:'u4',2:'u4',3:'u4',4:'u4'}) self.assert_equality(adapter2[0].item(), tuple([(0*5) + x for x in range(5)])) self.assert_equality(adapter2[10].item(), tuple([(10*5) + x for x in range(5)])) self.assert_equality(adapter2[100].item(), tuple([(100*5) + x for x in range(5)])) self.assert_equality(adapter2[1000].item(), tuple([(1000*5) + x for x in range(5)])) self.assert_equality(adapter2[10000].item(), tuple([(10000*5) + x for x in range(5)])) self.assert_equality(adapter2[num_records - 1].item(), tuple([((num_records - 1)*5) + x for x in range(5)])) #self.assert_equality(adapter2[-1].item(), tuple(expected_values)) adapter.close() os.remove('test.idx') def test_gzip_index(self): num_records = 1000000 data = StringIO() generate_dataset(data, IntIter(), ',', num_records) #if sys.version > '3': if True: dataz = io.BytesIO() else: dataz = StringIO() gzip_output = gzip.GzipFile(fileobj=dataz, mode='wb') #if sys.version > '3': if True: gzip_output.write(data.getvalue().encode('utf8')) else: gzip_output.write(data.getvalue()) gzip_output.close() dataz.seek(0) # test explicit index building adapter = textadapter.text_adapter(dataz, compression='gzip', delimiter=',', field_names=False, infer_types=False) adapter.set_field_types({0:'u4',1:'u4',2:'u4',3:'u4',4:'u4'}) adapter.create_index() self.assert_equality(adapter[0].item(), tuple([(0*5) + x for x in range(5)])) self.assert_equality(adapter[10].item(), tuple([(10*5) + x for x in range(5)])) self.assert_equality(adapter[100].item(), tuple([(100*5) + x for x in range(5)])) self.assert_equality(adapter[1000].item(), tuple([(1000*5) + x for x in range(5)])) self.assert_equality(adapter[10000].item(), tuple([(10000*5) + x for x in range(5)])) self.assert_equality(adapter[100000].item(), tuple([(100000*5) + x for x in range(5)])) self.assert_equality(adapter[num_records - 1].item(), tuple([((num_records - 1)*5) + x for x in range(5)])) #self.assert_equality(adapter[-1].item(), tuple(expected_values)) # test 'trouble' records that have caused crashes in the past self.assert_equality(adapter[290000].item(), tuple([(290000*5) + x for x in range(5)])) self.assert_equality(adapter[818000].item(), tuple([(818000*5) + x for x in range(5)])) # test implicitly creating disk index on the fly # JNB: not implemented yet '''adapter = textadapter.text_adapter(dataz, compression='gzip', delimiter=',', field_names=False, infer_types=False, indexing=True, index_filename='test.idx') adapter.set_field_types({0:'u4',1:'u4',2:'u4',3:'u4',4:'u4'}) adapter.to_array() self.assert_equality(adapter[0].item(), tuple([(0*5) + x for x in range(5)])) self.assert_equality(adapter[10].item(), tuple([(10*5) + x for x in range(5)])) self.assert_equality(adapter[100].item(), tuple([(100*5) + x for x in range(5)])) self.assert_equality(adapter[1000].item(), tuple([(1000*5) + x for x in range(5)])) self.assert_equality(adapter[10000].item(), tuple([(10000*5) + x for x in range(5)])) self.assert_equality(adapter[100000].item(), tuple([(100000*5) + x for x in range(5)])) self.assert_equality(adapter[num_records - 1].item(), tuple([((num_records - 1)*5) + x for x in range(5)])) #self.assert_equality(adapter[-1].item(), tuple(expected_values)) # test 'trouble' records that have caused crashes in the past self.assert_equality(adapter[290000].item(), tuple([(290000*5) + x for x in range(5)])) self.assert_equality(adapter[818000].item(), tuple([(818000*5) + x for x in range(5)])) # test loading disk index adapter2 = textadapter.text_adapter(dataz, compression='gzip', delimiter=',', field_names=False, infer_types=False, indexing=True, index_filename='test.idx') adapter2.set_field_types({0:'u4',1:'u4',2:'u4',3:'u4',4:'u4'}) self.assert_equality(adapter2[0].item(), tuple([(0*5) + x for x in range(5)])) self.assert_equality(adapter2[10].item(), tuple([(10*5) + x for x in range(5)])) self.assert_equality(adapter2[100].item(), tuple([(100*5) + x for x in range(5)])) self.assert_equality(adapter2[1000].item(), tuple([(1000*5) + x for x in range(5)])) self.assert_equality(adapter2[10000].item(), tuple([(10000*5) + x for x in range(5)])) self.assert_equality(adapter2[100000].item(), tuple([(100000*5) + x for x in range(5)])) self.assert_equality(adapter2[num_records - 1].item(), tuple([((num_records - 1)*5) + x for x in range(5)])) #self.assert_equality(adapter[-1].item(), tuple(expected_values)) # test 'trouble' records that have caused crashes in the past self.assert_equality(adapter2[290000].item(), tuple([(290000*5) + x for x in range(5)])) self.assert_equality(adapter2[818000].item(), tuple([(818000*5) + x for x in range(5)])) os.remove('test.idx')''' def test_header_footer(self): data = StringIO('0,1,2,3,4\n5,6,7,8,9\n10,11,12,13,14') adapter = textadapter.text_adapter(data, header=1, field_names=False) adapter.field_types = dict(zip(range(5), ['u4']*5)) assert_array_equal(adapter[:], np.array([(5,6,7,8,9), (10,11,12,13,14)], dtype='u4,u4,u4,u4,u4')) data.seek(0) adapter = textadapter.text_adapter(data, header=2, field_names=False) adapter.field_types = dict(zip(range(5), ['u4']*5)) assert_array_equal(adapter[:], np.array([(10,11,12,13,14)], dtype='u4,u4,u4,u4,u4')) data.seek(0) adapter = textadapter.text_adapter(data, header=1, field_names=True) adapter.field_types = dict(zip(range(5), ['u4']*5)) assert_array_equal(adapter[:], np.array([(10,11,12,13,14)], dtype=[('5','u4'),('6','u4'),('7','u4'),('8','u4'),('9','u4')])) def test_delimiter(self): data = StringIO('1,2,3\n') adapter = textadapter.text_adapter(data, field_names=False) self.assert_equality(adapter[0].item(), (1,2,3)) data = StringIO('1 2 3\n') adapter = textadapter.text_adapter(data, field_names=False) self.assert_equality(adapter[0].item(), (1,2,3)) data = StringIO('1\t2\t3\n') adapter = textadapter.text_adapter(data, field_names=False) self.assert_equality(adapter[0].item(), (1,2,3)) data = StringIO('1x2x3\n') adapter = textadapter.text_adapter(data, field_names=False) self.assert_equality(adapter[0].item(), (1,2,3)) # Test no delimiter in single field csv data data = StringIO('aaa\nbbb\nccc') array = textadapter.text_adapter(data, field_names=False, delimiter=None)[:] assert_array_equal(array, np.array([('aaa',), ('bbb',), ('ccc',)], dtype=[('f0', 'O')])) def test_auto_type_inference(self): data = StringIO('0,1,2,3,4\n5.5,6,7,8,9\n10,11,12,13,14a\n15,16,xxx,18,19') adapter = textadapter.text_adapter(data, field_names=False, infer_types=True) array = adapter.to_array() self.assert_equality(array.dtype.fields['f0'][0], np.dtype('float64')) self.assert_equality(array.dtype.fields['f1'][0], np.dtype('uint64')) self.assert_equality(array.dtype.fields['f2'][0], np.dtype('O')) self.assert_equality(array.dtype.fields['f3'][0], np.dtype('uint64')) self.assert_equality(array.dtype.fields['f4'][0],
np.dtype('O')
numpy.dtype
import numpy as np from neuron import neuron import random from recep_field import rf from spike_train import encode from parameters import param as par from weight_initialization import learned_weights_x, learned_weights_o, learned_weights_synapse import imageio #Parameters global time, T, dt, t_back, t_fore, w_min time = np.arange(1, par.T+1, 1) layer2 = [] # creating the hidden layer of neurons for i in range(par.n): a = neuron() layer2.append(a) #synapse matrix synapse =
np.zeros((par.n,par.m))
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ # NAME: RMpeakfit_3D.py # # # # PURPOSE: Fit peak of RM spectra, for every pixel in 3D FDF cube. # # # Initial version: <NAME>, Dec 2020 """ import sys import os import numpy as np import astropy.io.fits as pf from RMutils.util_RM import measure_FDF_parms from RMutils.util_misc import interp_images,progress from RMutils.util_RM import fits_make_lin_axis from RMtools_3D.do_RMsynth_3D import readFitsCube, readFreqFile C = 2.997924538e8 # Speed of light [m/s] def pixelwise_peak_fitting(FDF, phiArr, fwhmRMSF,lamSqArr_m2, lam0Sq, product_list,noiseArr=None,stokesIcube=None): """ Performs the 1D FDF peak fitting used in RMsynth/RMclean_1D, pixelwise on all pixels in a 3D FDF cube. Inputs: FDF: FDF cube (3D array). This is assumed to be in astropy axis ordering (Phi, dec, ra) phiArr: (1D) array of phi values fwhmRMSF: 2D array of RMSF FWHM values lamSqArr_m2: 1D array of channel lambda^2 values. lam0Sq: scalar value for lambda^2_0, the reference wavelength squared. product_list: list containing the names of the fitting products to save. dFDF: 2D array of theoretical noise values. If not supplied, the peak fitting will default to using the measured noise. Outputs: dictionary of 2D maps, 1 per fit output """ #FDF: output by synth3d or clean3d #phiArr: can be generated from FDF cube #fwhm: 2D map produced synth3D #dFDFth: not currently produced (default mode not to input noise!) # If not present, measure_FDF_parms uses the corMAD noise. # #lamSqArr is only needed for computing errors in derotated angles # This could be compressed to a map or single value from RMsynth? #lam0Sq is necessary for de-rotation map_size=FDF.shape[1:] #Create pixel location arrays: xarr,yarr=np.meshgrid(range(map_size[0]),range(map_size[1])) xarr=xarr.ravel() yarr=yarr.ravel() #Create empty maps: map_dict={} for parameter in product_list: map_dict[parameter]=np.zeros(map_size) freqArr_Hz=C/np.sqrt(lamSqArr_m2) freq0_Hz=C/
np.sqrt(lam0Sq)
numpy.sqrt
import bpy import numpy as np from PIL import Image class CarModelViewToImage(): # def __init__: # self.camera_ = None # self.image_folder_ = None # self.car_width_ = 0 # self.car_length_ = 0 # self.viewport_width_ = 0 # self.viewport_height_ = 0 # self.stride_ = 0 # self.stride_radians_ = 0 # self.car_ = None # self.scene_length_ = 0 # self.scene_height_ = 0 # self.light_ctr_ = None def init(self, info): """ info: { "car_width" : float, "car_length": float, "viewport_width" : float, "viewport_height" : float, "image_folder" : string } """ # get base information self.car_width_ = info["car_width"] self.car_length_ = info["car_length"] self.viewport_width_ = info["viewport_width"] self.viewport_height_ = info["viewport_height"] self.image_folder_ = info["image_folder"] self.scene_length_ = self.car_length_ * 2 self.scene_height_ = self.car_length_ bpy.context.scene.render.resolution_x = self.viewport_width_ bpy.context.scene.render.resolution_y = self.viewport_height_ bpy.context.scene.render.filepath = self.image_folder_ # resize model and light # save model dimensions and location self.car_ = bpy.data.objects["car"] # save light location self.light_ctr_ = [bpy.data.objects["left_light"], bpy.data.objects["right_light"], bpy.data.objects["top_light"]] # move model and light offset = self.car_.location.copy() self.car_.location -= offset for l in self.light_ctr_: l.location -= offset # calculate prop from length and resize car_length_now = max(self.car_.dimensions) scale_size = self.car_length_ / car_length_now self.car_.scale *= scale_size for l in self.light_ctr_: l.location *= scale_size l.scale *= scale_size # set camera bpy.ops.object.camera_add() self.camera_ = bpy.data.objects["Camera"] # set camera base info self.camera_.data.lens_unit = "FOV" self.camera_.data.angle = np.radians(90) self.camera_.data.clip_start = 0.1 self.camera_.data.clip_end = self.scene_length_ * 2 # set camera constraint bpy.ops.object.constraint_add(type="TRACK_TO") bpy.context.object.constraints["Track To"].up_axis = 'UP_Y' bpy.context.object.constraints["Track To"].track_axis = 'TRACK_NEGATIVE_Z' bpy.context.object.constraints["Track To"].target = self.car_ bpy.context.object.constraints["Track To"].use_target_z = True # set render Node self.scene_ = bpy.context.scene self.scene_.use_nodes = True self.tree_ = self.scene_.node_tree self.links_ = self.tree_.links # clear default nodes for n in self.tree_.nodes: self.tree_.nodes.remove(n) self.render_layer_ = self.tree_.nodes.new('CompositorNodeRLayers') self.viewer_image_ = self.tree_.nodes.new('CompositorNodeViewer') self.viewer_image_.use_alpha = False def set_camera_pos(self, x, y, z=None): # 计算真实坐标 real_x =
np.clip(x, -1, 1)
numpy.clip
""" Run experiments with several segmentation techniques for instance segmentation Require installation of Morph. Snakes - https://github.com/Borda/morph-snakes :: pip install --user git+https://github.com/Borda/morph-snakes.git Sample usage:: python run_ovary_egg-segmentation.py \ -list data_images/drosophila_ovary_slice/list_imgs-segm-center-points.csv \ -out results -n ovary_slices --nb_workers 1 \ -m ellipse_moments \ ellipse_ransac_mmt \ ellipse_ransac_crit \ GC_pixels-large \ GC_pixels-shape \ GC_slic-shape \ rg2sp_greedy-mixture \ rg2sp_GC-mixture \ watershed_morph Copyright (C) 2016-2017 <NAME> <<EMAIL>> """ import os import sys import time import argparse import logging import pickle from functools import partial import matplotlib if os.environ.get('DISPLAY', '') == '' and matplotlib.rcParams['backend'] != 'agg': print('No display found. Using non-interactive Agg backend.') matplotlib.use('Agg') import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy import ndimage from skimage import segmentation, morphology from skimage import measure, draw # from sklearn.externals import joblib # from sklearn import metrics, cross_validation from skimage.measure.fit import EllipseModel sys.path += [os.path.abspath('.'), os.path.abspath('..')] # Add path to root import imsegm.utilities.data_io as tl_data import imsegm.utilities.experiments as tl_expt import imsegm.utilities.drawing as tl_visu import imsegm.superpixels as seg_spx import imsegm.region_growing as seg_rg import imsegm.ellipse_fitting as ell_fit from morphsnakes import morphsnakes, multi_snakes # from libs import chanvese NB_WORKERS = tl_expt.nb_workers(0.8) NAME_EXPERIMENT = 'experiment_egg-segment' TYPE_LOAD_IMAGE = '2d_struct' DIR_VISUAL_POSIX = '___visu' DIR_CENTRE_POSIX = '___centres' DIR_DEBUG_POSIX = '___debug' # setting default file names NAME_FIG_LABEL_HISTO = 'fig_histo_annot_segments.png' NAME_CSV_SEGM_STAT_SLIC_ANNOT = 'statistic_segm_slic_annot.csv' NAME_CSV_SEGM_STAT_RESULT = 'statistic_segm_results.csv' NAME_CSV_SEGM_STAT_RESULT_GC = 'statistic_segm_results_gc.csv' EACH_UNIQUE_EXPERIMENT = False INIT_MASK_BORDER = 50. # minimal diameter for estimating ellipse MIN_ELLIPSE_DAIM = 25. # subfigure size for experting images MAX_FIGURE_SIZE = 14 # threshold if two segmentation overlap more, keep just one of them SEGM_OVERLAP = 0.5 # paramters for SLIC segmentation SLIC_SIZE = 40 SLIC_REGUL = 0.3 # Region Growing configuration DEBUG_EXPORT = False RG2SP_THRESHOLDS = { # thresholds for updating between iterations 'centre': 20, 'shift': 10, 'volume': 0.05, 'centre_init': 50 } COLUMNS_ELLIPSE = ('xc', 'yc', 'a', 'b', 'theta') PATH_DATA = tl_data.update_path('data_images', absolute=True) PATH_IMAGES = os.path.join(PATH_DATA, 'drosophila_ovary_slice') # sample segmentation methods LIST_SAMPLE_METHODS = ( 'ellipse_moments', 'ellipse_ransac_mmt', 'ellipse_ransac_crit', 'GC_pixels-large', 'GC_pixels-shape', 'GC_slic-large', 'GC_slic-shape', 'rg2sp_greedy-mixture', 'rg2sp_GC-mixture', 'watershed_morph' ) # default segmentation configuration SEGM_PARAMS = { # ovary labels: background, funicular cells, nurse cells, cytoplasm 'tab-proba_ellipse': [0.01, 0.95, 0.95, 0.85], 'tab-proba_graphcut': [0.01, 0.6, 0.99, 0.75], 'tab-proba_RG2SP': [0.01, 0.6, 0.95, 0.75], 'path_single-model': os.path.join(PATH_DATA, 'RG2SP_eggs_single-model.pkl'), 'path_multi-models': os.path.join(PATH_DATA, 'RG2SP_eggs_mixture-model.pkl'), 'gc-pixel_regul': 3., 'gc-slic_regul': 2., 'RG2SP-shape': 5., 'RG2SP-pairwise': 3., 'RG2SP-swap': True, 'label_trans': [0.1, 0.03], 'overlap_theshold': SEGM_OVERLAP, 'RG2SP_theshold': RG2SP_THRESHOLDS, 'slic_size': SLIC_SIZE, 'slic_regul': SLIC_REGUL, 'path_list': os.path.join(PATH_IMAGES, 'list_imgs-segm-center-points_short.csv'), 'path_out': tl_data.update_path('results', absolute=True) } def arg_parse_params(params): """ SEE: https://docs.python.org/3/library/argparse.html :return {str: str}: """ parser = argparse.ArgumentParser() parser.add_argument('-list', '--path_list', type=str, required=False, help='path to the list of image', default=params['path_list']) parser.add_argument('-out', '--path_out', type=str, required=False, help='path to the output directory', default=params['path_out']) parser.add_argument('-n', '--name', type=str, required=False, help='name of the experiment', default='ovary') parser.add_argument('-cfg', '--path_config', type=str, required=False, help='path to the configuration', default=None) parser.add_argument('--nb_workers', type=int, required=False, default=NB_WORKERS, help='number of processes in parallel') parser.add_argument('-m', '--methods', type=str, required=False, nargs='+', help='list of segment. methods', default=None) arg_params = vars(parser.parse_args()) params.update(arg_params) if not isinstance(arg_params['path_config'], str) \ or arg_params['path_config'].lower() == 'none': params['path_config'] = '' else: params['path_config'] = tl_data.update_path(params['path_config']) assert os.path.isfile(params['path_config']), \ 'missing file: %s' % params['path_config'] ext = os.path.splitext(params['path_config'])[-1] assert (ext == '.yaml' or ext == '.yml'), \ '"%s" should be YAML file' % os.path.basename(params['path_config']) data = tl_expt.load_config_yaml(params['path_config']) params.update(data) params.update(arg_params) for k in (k for k in arg_params if 'path' in k): if not arg_params[k]: continue params[k] = tl_data.update_path(arg_params[k], absolute=True) assert os.path.exists(params[k]), 'missing: %s' % params[k] # load saved configuration logging.info('ARG PARAMETERS: \n %r', params) return params def load_image(path_img, img_type=TYPE_LOAD_IMAGE): """ load image from given path according specification :param str path_img: :param str img_type: :return ndarray: """ path_img = os.path.abspath(os.path.expanduser(path_img)) assert os.path.isfile(path_img), 'missing: "%s"' % path_img if img_type == 'segm': img = tl_data.io_imread(path_img) elif img_type == '2d_struct': img, _ = tl_data.load_img_double_band_split(path_img) assert img.ndim == 2, 'image can be only single color' else: logging.error('not supported loading img_type: %s', img_type) img = tl_data.io_imread(path_img) logging.debug('image shape: %r, value range %f - %f', img.shape, img.min(), img.max()) return img def path_out_img(params, dir_name, name): return os.path.join(params['path_exp'], dir_name, name + '.png') def export_draw_image_segm(path_fig, img, segm=None, segm_obj=None, centers=None): """ draw and export visualisation of image and segmentation :param str path_fig: path to the exported figure :param ndarray img: :param ndarray segm: :param ndarray segm_obj: :param ndarray centers: """ size = np.array(img.shape[:2][::-1], dtype=float) fig, ax = plt.subplots(figsize=(size / size.max() * MAX_FIGURE_SIZE)) ax.imshow(img, alpha=1., cmap=plt.cm.Greys) if segm is not None: ax.contour(segm) if segm_obj is not None: ax.imshow(segm_obj, alpha=0.1) assert len(np.unique(segm_obj)) < 1e2, \ 'too many labeled objects - %i' % len(np.unique(segm_obj)) ax.contour(segm_obj, levels=np.unique(segm_obj).tolist(), cmap=plt.cm.jet_r, linewidths=(10, )) if centers is not None: ax.plot(np.array(centers)[:, 1], np.array(centers)[:, 0], 'o', color='r') fig = tl_visu.figure_image_adjustment(fig, img.shape) fig.savefig(path_fig) plt.close(fig) def segment_watershed(seg, centers, post_morph=False): """ perform watershed segmentation on input imsegm and optionally run some postprocessing using morphological operations :param ndarray seg: input image / segmentation :param [[int, int]] centers: position of centres / seeds :param bool post_morph: apply morphological postprocessing :return ndarray, [[int, int]]: resulting segmentation, updated centres """ logging.debug('segment: watershed...') seg_binary = (seg > 0) seg_binary = ndimage.morphology.binary_fill_holes(seg_binary) # thr_area = int(0.05 * np.sum(seg_binary)) # seg_binary = morphology.remove_small_holes(seg_binary, min_size=thr_area) distance = ndimage.distance_transform_edt(seg_binary) markers = np.zeros_like(seg) for i, pos in enumerate(centers): markers[int(pos[0]), int(pos[1])] = i + 1 segm = morphology.watershed(-distance, markers, mask=seg_binary) # if morphological postprocessing was not selected, ends here if not post_morph: return segm, centers, None segm_clean = np.zeros_like(segm) for lb in range(1, np.max(segm) + 1): seg_lb = (segm == lb) # some morphology operartion for cleaning seg_lb = morphology.binary_closing(seg_lb, selem=morphology.disk(5)) seg_lb = ndimage.morphology.binary_fill_holes(seg_lb) # thr_area = int(0.15 * np.sum(seg_lb)) # seg_lb = morphology.remove_small_holes(seg_lb, min_size=thr_area) seg_lb = morphology.binary_opening(seg_lb, selem=morphology.disk(15)) segm_clean[seg_lb] = lb return segm_clean, centers, None def create_circle_center(img_shape, centers, radius=10): """ create initialisation from centres as small circles :param img_shape: :param [[int, int]] centers: :param int radius: :return: """ mask_circle = np.zeros(img_shape, dtype=int) mask_perimeter = np.zeros(img_shape, dtype=int) center_circles = list() for i, pos in enumerate(centers): rr, cc = draw.circle(int(pos[0]), int(pos[1]), radius, shape=img_shape[:2]) mask_circle[rr, cc] = i + 1 rr, cc = draw.circle_perimeter(int(pos[0]), int(pos[1]), radius, shape=img_shape[:2]) mask_perimeter[rr, cc] = i + 1 center_circles.append(np.array([rr, cc]).transpose()) return center_circles, mask_circle, mask_perimeter def segment_active_contour(img, centers): """ segmentation using acive contours :param ndarray img: input image / segmentation :param [[int, int]] centers: position of centres / seeds :return (ndarray, [[int, int]]): resulting segmentation, updated centres """ logging.debug('segment: active_contour...') # http://scikit-image.org/docs/dev/auto_examples/edges/plot_active_contours.html segm = np.zeros(img.shape[:2]) img_smooth = ndimage.filters.gaussian_filter(img, 5) center_circles, _, _ = create_circle_center(img.shape[:2], centers) for i, snake in enumerate(center_circles): snake = segmentation.active_contour(img_smooth, snake.astype(float), alpha=0.015, beta=10, gamma=0.001, w_line=0.0, w_edge=1.0, max_px_move=1.0, max_iterations=2500, convergence=0.2) seg =
np.zeros(segm.shape, dtype=bool)
numpy.zeros
import glob import math import os import sys import warnings from decimal import Decimal import numpy as np import pandas as pd import pytest from packaging.version import parse as parse_version import dask import dask.dataframe as dd import dask.multiprocessing from dask.blockwise import Blockwise, optimize_blockwise from dask.dataframe._compat import PANDAS_GT_110, PANDAS_GT_121, PANDAS_GT_130 from dask.dataframe.io.parquet.utils import _parse_pandas_metadata from dask.dataframe.optimize import optimize_dataframe_getitem from dask.dataframe.utils import assert_eq from dask.layers import DataFrameIOLayer from dask.utils import natural_sort_key from dask.utils_test import hlg_layer try: import fastparquet except ImportError: fastparquet = False fastparquet_version = parse_version("0") else: fastparquet_version = parse_version(fastparquet.__version__) try: import pyarrow as pa except ImportError: pa = False pa_version = parse_version("0") else: pa_version = parse_version(pa.__version__) try: import pyarrow.parquet as pq except ImportError: pq = False SKIP_FASTPARQUET = not fastparquet FASTPARQUET_MARK = pytest.mark.skipif(SKIP_FASTPARQUET, reason="fastparquet not found") if sys.platform == "win32" and pa and pa_version == parse_version("2.0.0"): SKIP_PYARROW = True SKIP_PYARROW_REASON = ( "skipping pyarrow 2.0.0 on windows: " "https://github.com/dask/dask/issues/6093" "|https://github.com/dask/dask/issues/6754" ) else: SKIP_PYARROW = not pq SKIP_PYARROW_REASON = "pyarrow not found" PYARROW_MARK = pytest.mark.skipif(SKIP_PYARROW, reason=SKIP_PYARROW_REASON) # "Legacy" and "Dataset"-specific MARK definitions SKIP_PYARROW_LE = SKIP_PYARROW SKIP_PYARROW_LE_REASON = "pyarrow not found" SKIP_PYARROW_DS = SKIP_PYARROW SKIP_PYARROW_DS_REASON = "pyarrow not found" if not SKIP_PYARROW_LE: # NOTE: We should use PYARROW_LE_MARK to skip # pyarrow-legacy tests once pyarrow officially # removes ParquetDataset support in the future. PYARROW_LE_MARK = pytest.mark.filterwarnings( "ignore::DeprecationWarning", "ignore::FutureWarning", ) else: PYARROW_LE_MARK = pytest.mark.skipif(SKIP_PYARROW_LE, reason=SKIP_PYARROW_LE_REASON) PYARROW_DS_MARK = pytest.mark.skipif(SKIP_PYARROW_DS, reason=SKIP_PYARROW_DS_REASON) ANY_ENGINE_MARK = pytest.mark.skipif( SKIP_FASTPARQUET and SKIP_PYARROW, reason="No parquet engine (fastparquet or pyarrow) found", ) nrows = 40 npartitions = 15 df = pd.DataFrame( { "x": [i * 7 % 5 for i in range(nrows)], # Not sorted "y": [i * 2.5 for i in range(nrows)], # Sorted }, index=pd.Index([10 * i for i in range(nrows)], name="myindex"), ) ddf = dd.from_pandas(df, npartitions=npartitions) @pytest.fixture( params=[ pytest.param("fastparquet", marks=FASTPARQUET_MARK), pytest.param("pyarrow-legacy", marks=PYARROW_LE_MARK), pytest.param("pyarrow-dataset", marks=PYARROW_DS_MARK), ] ) def engine(request): return request.param def write_read_engines(**kwargs): """Product of both engines for write/read: To add custom marks, pass keyword of the form: `mark_writer_reader=reason`, or `mark_engine=reason` to apply to all parameters with that engine.""" backends = {"pyarrow-dataset", "pyarrow-legacy", "fastparquet"} # Skip if uninstalled skip_marks = { "fastparquet": FASTPARQUET_MARK, "pyarrow-legacy": PYARROW_LE_MARK, "pyarrow-dataset": PYARROW_DS_MARK, } marks = {(w, r): [skip_marks[w], skip_marks[r]] for w in backends for r in backends} # Custom marks for kw, val in kwargs.items(): kind, rest = kw.split("_", 1) key = tuple(rest.split("_")) if kind not in ("xfail", "skip") or len(key) > 2 or set(key) - backends: raise ValueError("unknown keyword %r" % kw) val = getattr(pytest.mark, kind)(reason=val) if len(key) == 2: marks[key].append(val) else: for k in marks: if key in k: marks[k].append(val) return pytest.mark.parametrize( ("write_engine", "read_engine"), [pytest.param(*k, marks=tuple(v)) for (k, v) in sorted(marks.items())], ) pyarrow_fastparquet_msg = "pyarrow schema and pandas metadata may disagree" write_read_engines_xfail = write_read_engines( **{ "xfail_pyarrow-dataset_fastparquet": pyarrow_fastparquet_msg, "xfail_pyarrow-legacy_fastparquet": pyarrow_fastparquet_msg, } ) if ( fastparquet and fastparquet_version < parse_version("0.5") and PANDAS_GT_110 and not PANDAS_GT_121 ): # a regression in pandas 1.1.x / 1.2.0 caused a failure in writing partitioned # categorical columns when using fastparquet 0.4.x, but this was (accidentally) # fixed in fastparquet 0.5.0 fp_pandas_msg = "pandas with fastparquet engine does not preserve index" fp_pandas_xfail = write_read_engines( **{ "xfail_pyarrow-dataset_fastparquet": pyarrow_fastparquet_msg, "xfail_pyarrow-legacy_fastparquet": pyarrow_fastparquet_msg, "xfail_fastparquet_fastparquet": fp_pandas_msg, "xfail_fastparquet_pyarrow-dataset": fp_pandas_msg, "xfail_fastparquet_pyarrow-legacy": fp_pandas_msg, } ) else: fp_pandas_msg = "pandas with fastparquet engine does not preserve index" fp_pandas_xfail = write_read_engines() @PYARROW_MARK def test_pyarrow_getengine(): from dask.dataframe.io.parquet.arrow import ArrowDatasetEngine from dask.dataframe.io.parquet.core import get_engine # Check that the default engine for "pyarrow"/"arrow" # is the `pyarrow.dataset`-based engine assert get_engine("pyarrow") == ArrowDatasetEngine assert get_engine("arrow") == ArrowDatasetEngine if SKIP_PYARROW_LE: with pytest.warns(FutureWarning): get_engine("pyarrow-legacy") @write_read_engines() def test_local(tmpdir, write_engine, read_engine): tmp = str(tmpdir) data = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) df = dd.from_pandas(data, chunksize=500) df.to_parquet(tmp, write_index=False, engine=write_engine) files = os.listdir(tmp) assert "_common_metadata" in files assert "_metadata" in files assert "part.0.parquet" in files df2 = dd.read_parquet(tmp, index=False, engine=read_engine) assert len(df2.divisions) > 1 out = df2.compute(scheduler="sync").reset_index() for column in df.columns: assert (data[column] == out[column]).all() @pytest.mark.parametrize("index", [False, True]) @write_read_engines_xfail def test_empty(tmpdir, write_engine, read_engine, index): fn = str(tmpdir) df = pd.DataFrame({"a": ["a", "b", "b"], "b": [4, 5, 6]})[:0] if index: df.set_index("a", inplace=True, drop=True) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet(fn, write_index=index, engine=write_engine) read_df = dd.read_parquet(fn, engine=read_engine) assert_eq(ddf, read_df) @write_read_engines() def test_simple(tmpdir, write_engine, read_engine): fn = str(tmpdir) if write_engine != "fastparquet": df = pd.DataFrame({"a": [b"a", b"b", b"b"], "b": [4, 5, 6]}) else: df = pd.DataFrame({"a": ["a", "b", "b"], "b": [4, 5, 6]}) df.set_index("a", inplace=True, drop=True) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet(fn, engine=write_engine) read_df = dd.read_parquet(fn, index=["a"], engine=read_engine) assert_eq(ddf, read_df) @write_read_engines() def test_delayed_no_metadata(tmpdir, write_engine, read_engine): fn = str(tmpdir) df = pd.DataFrame({"a": ["a", "b", "b"], "b": [4, 5, 6]}) df.set_index("a", inplace=True, drop=True) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet( fn, engine=write_engine, compute=False, write_metadata_file=False ).compute() files = os.listdir(fn) assert "_metadata" not in files # Fastparquet doesn't currently handle a directory without "_metadata" read_df = dd.read_parquet( os.path.join(fn, "*.parquet"), index=["a"], engine=read_engine, gather_statistics=True, ) assert_eq(ddf, read_df) @write_read_engines() def test_read_glob(tmpdir, write_engine, read_engine): tmp_path = str(tmpdir) ddf.to_parquet(tmp_path, engine=write_engine) if os.path.exists(os.path.join(tmp_path, "_metadata")): os.unlink(os.path.join(tmp_path, "_metadata")) files = os.listdir(tmp_path) assert "_metadata" not in files ddf2 = dd.read_parquet( os.path.join(tmp_path, "*.parquet"), engine=read_engine, index="myindex", # Must specify index without _metadata gather_statistics=True, ) assert_eq(ddf, ddf2) @write_read_engines() def test_gather_statistics_false(tmpdir, write_engine, read_engine): tmp_path = str(tmpdir) ddf.to_parquet(tmp_path, write_index=False, engine=write_engine) ddf2 = dd.read_parquet( tmp_path, engine=read_engine, index=False, gather_statistics=False, ) assert_eq(ddf, ddf2, check_index=False, check_divisions=False) @write_read_engines() def test_read_list(tmpdir, write_engine, read_engine): if write_engine == read_engine == "fastparquet" and os.name == "nt": # fastparquet or dask is not normalizing filepaths correctly on # windows. pytest.skip("filepath bug.") tmpdir = str(tmpdir) ddf.to_parquet(tmpdir, engine=write_engine) files = sorted( ( os.path.join(tmpdir, f) for f in os.listdir(tmpdir) if not f.endswith("_metadata") ), key=natural_sort_key, ) ddf2 = dd.read_parquet( files, engine=read_engine, index="myindex", gather_statistics=True ) assert_eq(ddf, ddf2) @write_read_engines() def test_columns_auto_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=write_engine) # XFAIL, auto index selection no longer supported (for simplicity) # ### Empty columns ### # With divisions if supported assert_eq(dd.read_parquet(fn, columns=[], engine=read_engine), ddf[[]]) # No divisions assert_eq( dd.read_parquet(fn, columns=[], engine=read_engine, gather_statistics=False), ddf[[]].clear_divisions(), check_divisions=True, ) # ### Single column, auto select index ### # With divisions if supported assert_eq(dd.read_parquet(fn, columns=["x"], engine=read_engine), ddf[["x"]]) # No divisions assert_eq( dd.read_parquet(fn, columns=["x"], engine=read_engine, gather_statistics=False), ddf[["x"]].clear_divisions(), check_divisions=True, ) @write_read_engines() def test_columns_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=write_engine) # With Index # ---------- # ### Empty columns, specify index ### # With divisions if supported assert_eq( dd.read_parquet(fn, columns=[], engine=read_engine, index="myindex"), ddf[[]] ) # No divisions assert_eq( dd.read_parquet( fn, columns=[], engine=read_engine, index="myindex", gather_statistics=False ), ddf[[]].clear_divisions(), check_divisions=True, ) # ### Single column, specify index ### # With divisions if supported assert_eq( dd.read_parquet(fn, index="myindex", columns=["x"], engine=read_engine), ddf[["x"]], ) # No divisions assert_eq( dd.read_parquet( fn, index="myindex", columns=["x"], engine=read_engine, gather_statistics=False, ), ddf[["x"]].clear_divisions(), check_divisions=True, ) # ### Two columns, specify index ### # With divisions if supported assert_eq( dd.read_parquet(fn, index="myindex", columns=["x", "y"], engine=read_engine), ddf, ) # No divisions assert_eq( dd.read_parquet( fn, index="myindex", columns=["x", "y"], engine=read_engine, gather_statistics=False, ), ddf.clear_divisions(), check_divisions=True, ) def test_nonsense_column(tmpdir, engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=engine) with pytest.raises((ValueError, KeyError)): dd.read_parquet(fn, columns=["nonesense"], engine=engine) with pytest.raises((Exception, KeyError)): dd.read_parquet(fn, columns=["nonesense"] + list(ddf.columns), engine=engine) @write_read_engines() def test_columns_no_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=write_engine) ddf2 = ddf.reset_index() # No Index # -------- # All columns, none as index assert_eq( dd.read_parquet(fn, index=False, engine=read_engine, gather_statistics=True), ddf2, check_index=False, check_divisions=True, ) # Two columns, none as index assert_eq( dd.read_parquet( fn, index=False, columns=["x", "y"], engine=read_engine, gather_statistics=True, ), ddf2[["x", "y"]], check_index=False, check_divisions=True, ) # One column and one index, all as columns assert_eq( dd.read_parquet( fn, index=False, columns=["myindex", "x"], engine=read_engine, gather_statistics=True, ), ddf2[["myindex", "x"]], check_index=False, check_divisions=True, ) @write_read_engines() def test_gather_statistics_no_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=write_engine, write_index=False) df = dd.read_parquet(fn, engine=read_engine, index=False) assert df.index.name is None assert not df.known_divisions def test_columns_index_with_multi_index(tmpdir, engine): fn = os.path.join(str(tmpdir), "test.parquet") index = pd.MultiIndex.from_arrays( [np.arange(10), np.arange(10) + 1], names=["x0", "x1"] ) df = pd.DataFrame(np.random.randn(10, 2), columns=["a", "b"], index=index) df2 = df.reset_index(drop=False) if engine == "fastparquet": fastparquet.write(fn, df.reset_index(), write_index=False) else: pq.write_table(pa.Table.from_pandas(df.reset_index(), preserve_index=False), fn) ddf = dd.read_parquet(fn, engine=engine, index=index.names) assert_eq(ddf, df) d = dd.read_parquet(fn, columns="a", engine=engine, index=index.names) assert_eq(d, df["a"]) d = dd.read_parquet(fn, index=["a", "b"], columns=["x0", "x1"], engine=engine) assert_eq(d, df2.set_index(["a", "b"])[["x0", "x1"]]) # Just index d = dd.read_parquet(fn, index=False, engine=engine) assert_eq(d, df2) d = dd.read_parquet(fn, columns=["b"], index=["a"], engine=engine) assert_eq(d, df2.set_index("a")[["b"]]) d = dd.read_parquet(fn, columns=["a", "b"], index=["x0"], engine=engine) assert_eq(d, df2.set_index("x0")[["a", "b"]]) # Just columns d = dd.read_parquet(fn, columns=["x0", "a"], index=["x1"], engine=engine) assert_eq(d, df2.set_index("x1")[["x0", "a"]]) # Both index and columns d = dd.read_parquet(fn, index=False, columns=["x0", "b"], engine=engine) assert_eq(d, df2[["x0", "b"]]) for index in ["x1", "b"]: d = dd.read_parquet(fn, index=index, columns=["x0", "a"], engine=engine) assert_eq(d, df2.set_index(index)[["x0", "a"]]) # Columns and index intersect for index in ["a", "x0"]: with pytest.raises(ValueError): d = dd.read_parquet(fn, index=index, columns=["x0", "a"], engine=engine) # Series output for ind, col, sol_df in [ ("x1", "x0", df2.set_index("x1")), (False, "b", df2), (False, "x0", df2[["x0"]]), ("a", "x0", df2.set_index("a")[["x0"]]), ("a", "b", df2.set_index("a")), ]: d = dd.read_parquet(fn, index=ind, columns=col, engine=engine) assert_eq(d, sol_df[col]) @write_read_engines() def test_no_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet(fn, engine=write_engine) ddf2 = dd.read_parquet(fn, engine=read_engine) assert_eq(df, ddf2, check_index=False) def test_read_series(tmpdir, engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=engine) ddf2 = dd.read_parquet(fn, columns=["x"], index="myindex", engine=engine) assert_eq(ddf[["x"]], ddf2) ddf2 = dd.read_parquet(fn, columns="x", index="myindex", engine=engine) assert_eq(ddf.x, ddf2) def test_names(tmpdir, engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=engine) def read(fn, **kwargs): return dd.read_parquet(fn, engine=engine, **kwargs) assert set(read(fn).dask) == set(read(fn).dask) assert set(read(fn).dask) != set(read(fn, columns=["x"]).dask) assert set(read(fn, columns=("x",)).dask) == set(read(fn, columns=["x"]).dask) @write_read_engines() def test_roundtrip_from_pandas(tmpdir, write_engine, read_engine): fn = str(tmpdir.join("test.parquet")) dfp = df.copy() dfp.index.name = "index" dfp.to_parquet( fn, engine="pyarrow" if write_engine.startswith("pyarrow") else "fastparquet" ) ddf = dd.read_parquet(fn, index="index", engine=read_engine) assert_eq(dfp, ddf) @write_read_engines() def test_categorical(tmpdir, write_engine, read_engine): tmp = str(tmpdir) df = pd.DataFrame({"x": ["a", "b", "c"] * 100}, dtype="category") ddf = dd.from_pandas(df, npartitions=3) dd.to_parquet(ddf, tmp, engine=write_engine) ddf2 = dd.read_parquet(tmp, categories="x", engine=read_engine) assert ddf2.compute().x.cat.categories.tolist() == ["a", "b", "c"] ddf2 = dd.read_parquet(tmp, categories=["x"], engine=read_engine) assert ddf2.compute().x.cat.categories.tolist() == ["a", "b", "c"] # autocat if read_engine == "fastparquet": ddf2 = dd.read_parquet(tmp, engine=read_engine) assert ddf2.compute().x.cat.categories.tolist() == ["a", "b", "c"] ddf2.loc[:1000].compute() assert assert_eq(df, ddf2) # dereference cats ddf2 = dd.read_parquet(tmp, categories=[], engine=read_engine) ddf2.loc[:1000].compute() assert (df.x == ddf2.x.compute()).all() def test_append(tmpdir, engine): """Test that appended parquet equal to the original one.""" tmp = str(tmpdir) df = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) df.index.name = "index" half = len(df) // 2 ddf1 = dd.from_pandas(df.iloc[:half], chunksize=100) ddf2 = dd.from_pandas(df.iloc[half:], chunksize=100) ddf1.to_parquet(tmp, engine=engine) ddf2.to_parquet(tmp, append=True, engine=engine) ddf3 = dd.read_parquet(tmp, engine=engine) assert_eq(df, ddf3) def test_append_create(tmpdir, engine): """Test that appended parquet equal to the original one.""" tmp_path = str(tmpdir) df = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) df.index.name = "index" half = len(df) // 2 ddf1 = dd.from_pandas(df.iloc[:half], chunksize=100) ddf2 = dd.from_pandas(df.iloc[half:], chunksize=100) ddf1.to_parquet(tmp_path, append=True, engine=engine) ddf2.to_parquet(tmp_path, append=True, engine=engine) ddf3 = dd.read_parquet(tmp_path, engine=engine) assert_eq(df, ddf3) def test_append_with_partition(tmpdir, engine): tmp = str(tmpdir) df0 = pd.DataFrame( { "lat": np.arange(0, 10, dtype="int64"), "lon": np.arange(10, 20, dtype="int64"), "value": np.arange(100, 110, dtype="int64"), } ) df0.index.name = "index" df1 = pd.DataFrame( { "lat": np.arange(10, 20, dtype="int64"), "lon": np.arange(10, 20, dtype="int64"), "value": np.arange(120, 130, dtype="int64"), } ) df1.index.name = "index" # Check that nullable dtypes work # (see: https://github.com/dask/dask/issues/8373) df0["lat"] = df0["lat"].astype("Int64") df1["lat"].iloc[0] = np.nan df1["lat"] = df1["lat"].astype("Int64") dd_df0 = dd.from_pandas(df0, npartitions=1) dd_df1 = dd.from_pandas(df1, npartitions=1) dd.to_parquet(dd_df0, tmp, partition_on=["lon"], engine=engine) dd.to_parquet( dd_df1, tmp, partition_on=["lon"], append=True, ignore_divisions=True, engine=engine, ) out = dd.read_parquet( tmp, engine=engine, index="index", gather_statistics=True ).compute() # convert categorical to plain int just to pass assert out["lon"] = out.lon.astype("int64") # sort required since partitioning breaks index order assert_eq( out.sort_values("value"), pd.concat([df0, df1])[out.columns], check_index=False ) def test_partition_on_cats(tmpdir, engine): tmp = str(tmpdir) d = pd.DataFrame( { "a": np.random.rand(50), "b": np.random.choice(["x", "y", "z"], size=50), "c": np.random.choice(["x", "y", "z"], size=50), } ) d = dd.from_pandas(d, 2) d.to_parquet(tmp, partition_on=["b"], engine=engine) df = dd.read_parquet(tmp, engine=engine) assert set(df.b.cat.categories) == {"x", "y", "z"} @PYARROW_MARK @pytest.mark.parametrize("meta", [False, True]) @pytest.mark.parametrize("stats", [False, True]) def test_partition_on_cats_pyarrow(tmpdir, stats, meta): tmp = str(tmpdir) d = pd.DataFrame( { "a": np.random.rand(50), "b": np.random.choice(["x", "y", "z"], size=50), "c": np.random.choice(["x", "y", "z"], size=50), } ) d = dd.from_pandas(d, 2) d.to_parquet(tmp, partition_on=["b"], engine="pyarrow", write_metadata_file=meta) df = dd.read_parquet(tmp, engine="pyarrow", gather_statistics=stats) assert set(df.b.cat.categories) == {"x", "y", "z"} def test_partition_on_cats_2(tmpdir, engine): tmp = str(tmpdir) d = pd.DataFrame( { "a": np.random.rand(50), "b": np.random.choice(["x", "y", "z"], size=50), "c": np.random.choice(["x", "y", "z"], size=50), } ) d = dd.from_pandas(d, 2) d.to_parquet(tmp, partition_on=["b", "c"], engine=engine) df = dd.read_parquet(tmp, engine=engine) assert set(df.b.cat.categories) == {"x", "y", "z"} assert set(df.c.cat.categories) == {"x", "y", "z"} df = dd.read_parquet(tmp, columns=["a", "c"], engine=engine) assert set(df.c.cat.categories) == {"x", "y", "z"} assert "b" not in df.columns assert_eq(df, df.compute()) df = dd.read_parquet(tmp, index="c", engine=engine) assert set(df.index.categories) == {"x", "y", "z"} assert "c" not in df.columns # series df = dd.read_parquet(tmp, columns="b", engine=engine) assert set(df.cat.categories) == {"x", "y", "z"} def test_append_wo_index(tmpdir, engine): """Test append with write_index=False.""" tmp = str(tmpdir.join("tmp1.parquet")) df = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) half = len(df) // 2 ddf1 = dd.from_pandas(df.iloc[:half], chunksize=100) ddf2 = dd.from_pandas(df.iloc[half:], chunksize=100) ddf1.to_parquet(tmp, engine=engine) with pytest.raises(ValueError) as excinfo: ddf2.to_parquet(tmp, write_index=False, append=True, engine=engine) assert "Appended columns" in str(excinfo.value) tmp = str(tmpdir.join("tmp2.parquet")) ddf1.to_parquet(tmp, write_index=False, engine=engine) ddf2.to_parquet(tmp, write_index=False, append=True, engine=engine) ddf3 = dd.read_parquet(tmp, index="f", engine=engine) assert_eq(df.set_index("f"), ddf3) def test_append_overlapping_divisions(tmpdir, engine): """Test raising of error when divisions overlapping.""" tmp = str(tmpdir) df = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) half = len(df) // 2 ddf1 = dd.from_pandas(df.iloc[:half], chunksize=100) ddf2 = dd.from_pandas(df.iloc[half - 10 :], chunksize=100) ddf1.to_parquet(tmp, engine=engine) with pytest.raises(ValueError) as excinfo: ddf2.to_parquet(tmp, engine=engine, append=True) assert "Appended divisions" in str(excinfo.value) ddf2.to_parquet(tmp, engine=engine, append=True, ignore_divisions=True) def test_append_different_columns(tmpdir, engine): """Test raising of error when non equal columns.""" tmp = str(tmpdir) df1 = pd.DataFrame({"i32": np.arange(100, dtype=np.int32)}) df2 = pd.DataFrame({"i64": np.arange(100, dtype=np.int64)}) df3 = pd.DataFrame({"i32": np.arange(100, dtype=np.int64)}) ddf1 = dd.from_pandas(df1, chunksize=2) ddf2 = dd.from_pandas(df2, chunksize=2) ddf3 = dd.from_pandas(df3, chunksize=2) ddf1.to_parquet(tmp, engine=engine) with pytest.raises(ValueError) as excinfo: ddf2.to_parquet(tmp, engine=engine, append=True) assert "Appended columns" in str(excinfo.value) with pytest.raises(ValueError) as excinfo: ddf3.to_parquet(tmp, engine=engine, append=True) assert "Appended dtypes" in str(excinfo.value) def test_append_dict_column(tmpdir, engine): # See: https://github.com/dask/dask/issues/7492 if engine == "fastparquet": pytest.xfail("Fastparquet engine is missing dict-column support") elif pa_version < parse_version("1.0.1"): pytest.skip("PyArrow 1.0.1+ required for dict-column support.") tmp = str(tmpdir) dts = pd.date_range("2020-01-01", "2021-01-01") df = pd.DataFrame( {"value": [{"x": x} for x in range(len(dts))]}, index=dts, ) ddf1 = dd.from_pandas(df, npartitions=1) # Write ddf1 to tmp, and then append it again ddf1.to_parquet(tmp, append=True, engine=engine) ddf1.to_parquet(tmp, append=True, engine=engine, ignore_divisions=True) # Read back all data (ddf1 + ddf1) ddf2 = dd.read_parquet(tmp, engine=engine) # Check computed result expect = pd.concat([df, df]) result = ddf2.compute() assert_eq(expect, result) @write_read_engines_xfail def test_ordering(tmpdir, write_engine, read_engine): tmp = str(tmpdir) df = pd.DataFrame( {"a": [1, 2, 3], "b": [10, 20, 30], "c": [100, 200, 300]}, index=pd.Index([-1, -2, -3], name="myindex"), columns=["c", "a", "b"], ) ddf = dd.from_pandas(df, npartitions=2) dd.to_parquet(ddf, tmp, engine=write_engine) if read_engine == "fastparquet": pf = fastparquet.ParquetFile(tmp) assert pf.columns == ["myindex", "c", "a", "b"] ddf2 = dd.read_parquet(tmp, index="myindex", engine=read_engine) assert_eq(ddf, ddf2, check_divisions=False) def test_read_parquet_custom_columns(tmpdir, engine): tmp = str(tmpdir) data = pd.DataFrame( {"i32": np.arange(1000, dtype=np.int32), "f": np.arange(1000, dtype=np.float64)} ) df = dd.from_pandas(data, chunksize=50) df.to_parquet(tmp, engine=engine) df2 = dd.read_parquet(tmp, columns=["i32", "f"], engine=engine) assert_eq(df[["i32", "f"]], df2, check_index=False) fns = glob.glob(os.path.join(tmp, "*.parquet")) df2 = dd.read_parquet(fns, columns=["i32"], engine=engine).compute() df2.sort_values("i32", inplace=True) assert_eq(df[["i32"]], df2, check_index=False, check_divisions=False) df3 = dd.read_parquet(tmp, columns=["f", "i32"], engine=engine) assert_eq(df[["f", "i32"]], df3, check_index=False) @pytest.mark.parametrize( "df,write_kwargs,read_kwargs", [ (pd.DataFrame({"x": [3, 2, 1]}), {}, {}), (pd.DataFrame({"x": ["c", "a", "b"]}), {}, {}), (pd.DataFrame({"x": ["cc", "a", "bbb"]}), {}, {}), (pd.DataFrame({"x": [b"a", b"b", b"c"]}), {"object_encoding": "bytes"}, {}), ( pd.DataFrame({"x": pd.Categorical(["a", "b", "a"])}), {}, {"categories": ["x"]}, ), (pd.DataFrame({"x": pd.Categorical([1, 2, 1])}), {}, {"categories": ["x"]}), (pd.DataFrame({"x": list(map(pd.Timestamp, [3000, 2000, 1000]))}), {}, {}), (pd.DataFrame({"x": [3000, 2000, 1000]}).astype("M8[ns]"), {}, {}), pytest.param( pd.DataFrame({"x": [3, 2, 1]}).astype("M8[ns]"), {}, {}, ), (pd.DataFrame({"x": [3, 2, 1]}).astype("M8[us]"), {}, {}), (pd.DataFrame({"x": [3, 2, 1]}).astype("M8[ms]"), {}, {}), (pd.DataFrame({"x": [3000, 2000, 1000]}).astype("datetime64[ns]"), {}, {}), (pd.DataFrame({"x": [3000, 2000, 1000]}).astype("datetime64[ns, UTC]"), {}, {}), (pd.DataFrame({"x": [3000, 2000, 1000]}).astype("datetime64[ns, CET]"), {}, {}), (pd.DataFrame({"x": [3, 2, 1]}).astype("uint16"), {}, {}), (pd.DataFrame({"x": [3, 2, 1]}).astype("float32"), {}, {}), (pd.DataFrame({"x": [3, 1, 2]}, index=[3, 2, 1]), {}, {}), (pd.DataFrame({"x": [3, 1, 5]}, index=pd.Index([1, 2, 3], name="foo")), {}, {}), (pd.DataFrame({"x": [1, 2, 3], "y": [3, 2, 1]}), {}, {}), (pd.DataFrame({"x": [1, 2, 3], "y": [3, 2, 1]}, columns=["y", "x"]), {}, {}), (pd.DataFrame({"0": [3, 2, 1]}), {}, {}), (pd.DataFrame({"x": [3, 2, None]}), {}, {}), (pd.DataFrame({"-": [3.0, 2.0, None]}), {}, {}), (pd.DataFrame({".": [3.0, 2.0, None]}), {}, {}), (pd.DataFrame({" ": [3.0, 2.0, None]}), {}, {}), ], ) def test_roundtrip(tmpdir, df, write_kwargs, read_kwargs, engine): if "x" in df and df.x.dtype == "M8[ns]" and "arrow" in engine: pytest.xfail(reason="Parquet pyarrow v1 doesn't support nanosecond precision") if ( "x" in df and df.x.dtype == "M8[ns]" and engine == "fastparquet" and fastparquet_version <= parse_version("0.6.3") ): pytest.xfail(reason="fastparquet doesn't support nanosecond precision yet") if ( PANDAS_GT_130 and read_kwargs.get("categories", None) and engine == "fastparquet" and fastparquet_version <= parse_version("0.6.3") ): pytest.xfail("https://github.com/dask/fastparquet/issues/577") tmp = str(tmpdir) if df.index.name is None: df.index.name = "index" ddf = dd.from_pandas(df, npartitions=2) oe = write_kwargs.pop("object_encoding", None) if oe and engine == "fastparquet": dd.to_parquet(ddf, tmp, engine=engine, object_encoding=oe, **write_kwargs) else: dd.to_parquet(ddf, tmp, engine=engine, **write_kwargs) ddf2 = dd.read_parquet(tmp, index=df.index.name, engine=engine, **read_kwargs) if str(ddf2.dtypes.get("x")) == "UInt16" and engine == "fastparquet": # fastparquet choooses to use masked type to be able to get true repr of # 16-bit int assert_eq(ddf.astype("UInt16"), ddf2) else: assert_eq(ddf, ddf2) def test_categories(tmpdir, engine): fn = str(tmpdir) df = pd.DataFrame({"x": [1, 2, 3, 4, 5], "y": list("caaab")}) ddf = dd.from_pandas(df, npartitions=2) ddf["y"] = ddf.y.astype("category") ddf.to_parquet(fn, engine=engine) ddf2 = dd.read_parquet(fn, categories=["y"], engine=engine) # Shouldn't need to specify categories explicitly ddf3 = dd.read_parquet(fn, engine=engine) assert_eq(ddf3, ddf2) with pytest.raises(NotImplementedError): ddf2.y.cat.categories assert set(ddf2.y.compute().cat.categories) == {"a", "b", "c"} cats_set = ddf2.map_partitions(lambda x: x.y.cat.categories.sort_values()).compute() assert cats_set.tolist() == ["a", "c", "a", "b"] if engine == "fastparquet": assert_eq(ddf.y, ddf2.y, check_names=False) with pytest.raises(TypeError): # attempt to load as category that which is not so encoded ddf2 = dd.read_parquet(fn, categories=["x"], engine=engine).compute() with pytest.raises((ValueError, FutureWarning)): # attempt to load as category unknown column ddf2 = dd.read_parquet(fn, categories=["foo"], engine=engine) def test_categories_unnamed_index(tmpdir, engine): # Check that we can handle an unnamed categorical index # https://github.com/dask/dask/issues/6885 tmpdir = str(tmpdir) df = pd.DataFrame( data={"A": [1, 2, 3], "B": ["a", "a", "b"]}, index=["x", "y", "y"] ) ddf = dd.from_pandas(df, npartitions=1) ddf = ddf.categorize(columns=["B"]) ddf.to_parquet(tmpdir, engine=engine) ddf2 = dd.read_parquet(tmpdir, engine=engine) assert_eq(ddf.index, ddf2.index, check_divisions=False) def test_empty_partition(tmpdir, engine): fn = str(tmpdir) df = pd.DataFrame({"a": range(10), "b": range(10)}) ddf = dd.from_pandas(df, npartitions=5) ddf2 = ddf[ddf.a <= 5] ddf2.to_parquet(fn, engine=engine) ddf3 = dd.read_parquet(fn, engine=engine) assert ddf3.npartitions < 5 sol = ddf2.compute() assert_eq(sol, ddf3, check_names=False, check_index=False) def test_timestamp_index(tmpdir, engine): fn = str(tmpdir) df = dd._compat.makeTimeDataFrame() df.index.name = "foo" ddf = dd.from_pandas(df, npartitions=5) ddf.to_parquet(fn, engine=engine) ddf2 = dd.read_parquet(fn, engine=engine) assert_eq(ddf, ddf2) @FASTPARQUET_MARK @PYARROW_MARK def test_to_parquet_default_writes_nulls(tmpdir): fn = str(tmpdir.join("test.parquet")) df = pd.DataFrame({"c1": [1.0, np.nan, 2, np.nan, 3]}) ddf = dd.from_pandas(df, npartitions=1) ddf.to_parquet(fn) table = pq.read_table(fn) assert table[1].null_count == 2 @PYARROW_LE_MARK def test_to_parquet_pyarrow_w_inconsistent_schema_by_partition_fails_by_default(tmpdir): df = pd.DataFrame( {"partition_column": [0, 0, 1, 1], "strings": ["a", "b", None, None]} ) ddf = dd.from_pandas(df, npartitions=2) # In order to allow pyarrow to write an inconsistent schema, # we need to avoid writing the _metadata file (will fail >0.17.1) # and need to avoid schema inference (i.e. use `schema=None`) ddf.to_parquet( str(tmpdir), engine="pyarrow", partition_on=["partition_column"], write_metadata_file=False, schema=None, ) # Test that schema is not validated by default # (shouldn't raise error with legacy dataset) dd.read_parquet( str(tmpdir), engine="pyarrow-legacy", gather_statistics=False, ).compute() # Test that read fails when validate_schema=True # Note: This fails differently for pyarrow.dataset api with pytest.raises(ValueError) as e_info: dd.read_parquet( str(tmpdir), engine="pyarrow-legacy", gather_statistics=False, dataset={"validate_schema": True}, ).compute() assert e_info.message.contains("ValueError: Schema in partition") assert e_info.message.contains("was different") @PYARROW_MARK def test_to_parquet_pyarrow_w_inconsistent_schema_by_partition_succeeds_w_manual_schema( tmpdir, ): # Data types to test: strings, arrays, ints, timezone aware timestamps in_arrays = [[0, 1, 2], [3, 4], np.nan, np.nan] out_arrays = [[0, 1, 2], [3, 4], None, None] in_strings = ["a", "b", np.nan, np.nan] out_strings = ["a", "b", None, None] tstamp = pd.Timestamp(1513393355, unit="s") in_tstamps = [tstamp, tstamp, pd.NaT, pd.NaT] out_tstamps = [ # Timestamps come out in numpy.datetime64 format tstamp.to_datetime64(), tstamp.to_datetime64(), np.datetime64("NaT"), np.datetime64("NaT"), ] timezone = "US/Eastern" tz_tstamp = pd.Timestamp(1513393355, unit="s", tz=timezone) in_tz_tstamps = [tz_tstamp, tz_tstamp, pd.NaT, pd.NaT] out_tz_tstamps = [ # Timezones do not make it through a write-read cycle. tz_tstamp.tz_convert(None).to_datetime64(), tz_tstamp.tz_convert(None).to_datetime64(), np.datetime64("NaT"), np.datetime64("NaT"), ] df = pd.DataFrame( { "partition_column": [0, 0, 1, 1], "arrays": in_arrays, "strings": in_strings, "tstamps": in_tstamps, "tz_tstamps": in_tz_tstamps, } ) ddf = dd.from_pandas(df, npartitions=2) schema = pa.schema( [ ("arrays", pa.list_(pa.int64())), ("strings", pa.string()), ("tstamps", pa.timestamp("ns")), ("tz_tstamps", pa.timestamp("ns", timezone)), ("partition_column", pa.int64()), ] ) ddf.to_parquet( str(tmpdir), engine="pyarrow", partition_on="partition_column", schema=schema ) ddf_after_write = ( dd.read_parquet(str(tmpdir), engine="pyarrow", gather_statistics=False) .compute() .reset_index(drop=True) ) # Check array support arrays_after_write = ddf_after_write.arrays.values for i in range(len(df)): assert np.array_equal(arrays_after_write[i], out_arrays[i]), type(out_arrays[i]) # Check datetime support tstamps_after_write = ddf_after_write.tstamps.values for i in range(len(df)): # Need to test NaT separately if np.isnat(tstamps_after_write[i]): assert np.isnat(out_tstamps[i]) else: assert tstamps_after_write[i] == out_tstamps[i] # Check timezone aware datetime support tz_tstamps_after_write = ddf_after_write.tz_tstamps.values for i in range(len(df)): # Need to test NaT separately if np.isnat(tz_tstamps_after_write[i]): assert np.isnat(out_tz_tstamps[i]) else: assert tz_tstamps_after_write[i] == out_tz_tstamps[i] # Check string support assert np.array_equal(ddf_after_write.strings.values, out_strings) # Check partition column assert np.array_equal(ddf_after_write.partition_column, df.partition_column) @PYARROW_MARK @pytest.mark.parametrize("index", [False, True]) @pytest.mark.parametrize("schema", ["infer", "complex"]) def test_pyarrow_schema_inference(tmpdir, index, engine, schema): if schema == "complex": schema = {"index": pa.string(), "amount": pa.int64()} tmpdir = str(tmpdir) df = pd.DataFrame( { "index": ["1", "2", "3", "2", "3", "1", "4"], "date": pd.to_datetime( [ "2017-01-01", "2017-01-01", "2017-01-01", "2017-01-02", "2017-01-02", "2017-01-06", "2017-01-09", ] ), "amount": [100, 200, 300, 400, 500, 600, 700], }, index=range(7, 14), ) if index: df = dd.from_pandas(df, npartitions=2).set_index("index") else: df = dd.from_pandas(df, npartitions=2) df.to_parquet(tmpdir, engine="pyarrow", schema=schema) df_out = dd.read_parquet(tmpdir, engine=engine) df_out.compute() if index and engine == "fastparquet": # Fastparquet fails to detect int64 from _metadata df_out["amount"] = df_out["amount"].astype("int64") # Fastparquet not handling divisions for # pyarrow-written dataset with string index assert_eq(df, df_out, check_divisions=False) else: assert_eq(df, df_out) def test_partition_on(tmpdir, engine): tmpdir = str(tmpdir) df = pd.DataFrame( { "a1": np.random.choice(["A", "B", "C"], size=100), "a2": np.random.choice(["X", "Y", "Z"], size=100), "b": np.random.random(size=100), "c": np.random.randint(1, 5, size=100), "d": np.arange(0, 100), } ) d = dd.from_pandas(df, npartitions=2) d.to_parquet(tmpdir, partition_on=["a1", "a2"], engine=engine) # Note #1: Cross-engine functionality is missing # Note #2: The index is not preserved in pyarrow when partition_on is used out = dd.read_parquet( tmpdir, engine=engine, index=False, gather_statistics=False ).compute() for val in df.a1.unique(): assert set(df.d[df.a1 == val]) == set(out.d[out.a1 == val]) # Now specify the columns and allow auto-index detection out = dd.read_parquet(tmpdir, engine=engine, columns=["d", "a2"]).compute() for val in df.a2.unique(): assert set(df.d[df.a2 == val]) == set(out.d[out.a2 == val]) def test_partition_on_duplicates(tmpdir, engine): # https://github.com/dask/dask/issues/6445 tmpdir = str(tmpdir) df = pd.DataFrame( { "a1": np.random.choice(["A", "B", "C"], size=100), "a2": np.random.choice(["X", "Y", "Z"], size=100), "data": np.random.random(size=100), } ) d = dd.from_pandas(df, npartitions=2) for _ in range(2): d.to_parquet(tmpdir, partition_on=["a1", "a2"], engine=engine) out = dd.read_parquet(tmpdir, engine=engine).compute() assert len(df) == len(out) for root, dirs, files in os.walk(tmpdir): for file in files: assert file in ( "part.0.parquet", "part.1.parquet", "_common_metadata", "_metadata", ) @PYARROW_MARK @pytest.mark.parametrize("partition_on", ["aa", ["aa"]]) def test_partition_on_string(tmpdir, partition_on): tmpdir = str(tmpdir) with dask.config.set(scheduler="single-threaded"): tmpdir = str(tmpdir) df = pd.DataFrame( { "aa": np.random.choice(["A", "B", "C"], size=100), "bb": np.random.random(size=100), "cc": np.random.randint(1, 5, size=100), } ) d = dd.from_pandas(df, npartitions=2) d.to_parquet( tmpdir, partition_on=partition_on, write_index=False, engine="pyarrow" ) out = dd.read_parquet( tmpdir, index=False, gather_statistics=False, engine="pyarrow" ) out = out.compute() for val in df.aa.unique(): assert set(df.bb[df.aa == val]) == set(out.bb[out.aa == val]) @write_read_engines() def test_filters_categorical(tmpdir, write_engine, read_engine): tmpdir = str(tmpdir) cats = ["2018-01-01", "2018-01-02", "2018-01-03", "2018-01-04"] dftest = pd.DataFrame( { "dummy": [1, 1, 1, 1], "DatePart": pd.Categorical(cats, categories=cats, ordered=True), } ) ddftest = dd.from_pandas(dftest, npartitions=4).set_index("dummy") ddftest.to_parquet(tmpdir, partition_on="DatePart", engine=write_engine) ddftest_read = dd.read_parquet( tmpdir, index="dummy", engine=read_engine, filters=[(("DatePart", "<=", "2018-01-02"))], ) assert len(ddftest_read) == 2 @write_read_engines() def test_filters(tmpdir, write_engine, read_engine): tmp_path = str(tmpdir) df = pd.DataFrame({"x": range(10), "y": list("aabbccddee")}) ddf = dd.from_pandas(df, npartitions=5) assert ddf.npartitions == 5 ddf.to_parquet(tmp_path, engine=write_engine) a = dd.read_parquet(tmp_path, engine=read_engine, filters=[("x", ">", 4)]) assert a.npartitions == 3 assert (a.x > 3).all().compute() b = dd.read_parquet(tmp_path, engine=read_engine, filters=[("y", "==", "c")]) assert b.npartitions == 1 assert (b.y == "c").all().compute() c = dd.read_parquet( tmp_path, engine=read_engine, filters=[("y", "==", "c"), ("x", ">", 6)] ) assert c.npartitions <= 1 assert not len(c) assert_eq(c, c) d = dd.read_parquet( tmp_path, engine=read_engine, filters=[ # Select two overlapping ranges [("x", ">", 1), ("x", "<", 6)], [("x", ">", 3), ("x", "<", 8)], ], ) assert d.npartitions == 3 assert ((d.x > 1) & (d.x < 8)).all().compute() e = dd.read_parquet(tmp_path, engine=read_engine, filters=[("x", "in", (0, 9))]) assert e.npartitions == 2 assert ((e.x < 2) | (e.x > 7)).all().compute() f = dd.read_parquet(tmp_path, engine=read_engine, filters=[("y", "=", "c")]) assert f.npartitions == 1 assert len(f) assert (f.y == "c").all().compute() @write_read_engines() def test_filters_v0(tmpdir, write_engine, read_engine): if write_engine == "fastparquet" or read_engine == "fastparquet": pytest.importorskip("fastparquet", minversion="0.3.1") # Recent versions of pyarrow support full row-wise filtering # (fastparquet and older pyarrow versions do not) pyarrow_row_filtering = read_engine == "pyarrow-dataset" fn = str(tmpdir) df = pd.DataFrame({"at": ["ab", "aa", "ba", "da", "bb"]}) ddf = dd.from_pandas(df, npartitions=1) # Ok with 1 partition and filters ddf.repartition(npartitions=1, force=True).to_parquet( fn, write_index=False, engine=write_engine ) ddf2 = dd.read_parquet( fn, index=False, engine=read_engine, filters=[("at", "==", "aa")] ).compute() ddf3 = dd.read_parquet( fn, index=False, engine=read_engine, filters=[("at", "=", "aa")] ).compute() if pyarrow_row_filtering: assert_eq(ddf2, ddf[ddf["at"] == "aa"], check_index=False) assert_eq(ddf3, ddf[ddf["at"] == "aa"], check_index=False) else: assert_eq(ddf2, ddf) assert_eq(ddf3, ddf) # with >1 partition and no filters ddf.repartition(npartitions=2, force=True).to_parquet(fn, engine=write_engine) ddf2 = dd.read_parquet(fn, engine=read_engine).compute() assert_eq(ddf2, ddf) # with >1 partition and filters using base fastparquet if read_engine == "fastparquet": ddf.repartition(npartitions=2, force=True).to_parquet(fn, engine=write_engine) df2 = fastparquet.ParquetFile(fn).to_pandas(filters=[("at", "==", "aa")]) df3 = fastparquet.ParquetFile(fn).to_pandas(filters=[("at", "=", "aa")]) assert len(df2) > 0 assert len(df3) > 0 # with >1 partition and filters ddf.repartition(npartitions=2, force=True).to_parquet(fn, engine=write_engine) ddf2 = dd.read_parquet( fn, engine=read_engine, filters=[("at", "==", "aa")] ).compute() ddf3 = dd.read_parquet( fn, engine=read_engine, filters=[("at", "=", "aa")] ).compute() assert len(ddf2) > 0 assert len(ddf3) > 0 assert_eq(ddf2, ddf3) def test_filtering_pyarrow_dataset(tmpdir, engine): pytest.importorskip("pyarrow", minversion="1.0.0") fn = str(tmpdir) df = pd.DataFrame({"aa": range(100), "bb": ["cat", "dog"] * 50}) ddf = dd.from_pandas(df, npartitions=10) ddf.to_parquet(fn, write_index=False, engine=engine) # Filtered read aa_lim = 40 bb_val = "dog" filters = [[("aa", "<", aa_lim), ("bb", "==", bb_val)]] ddf2 = dd.read_parquet(fn, index=False, engine="pyarrow-dataset", filters=filters) # Check that partitions are filetered for "aa" filter nonempty = 0 for part in ddf[ddf["aa"] < aa_lim].partitions: nonempty += int(len(part.compute()) > 0) assert ddf2.npartitions == nonempty # Check that rows are filtered for "aa" and "bb" filters df = df[df["aa"] < aa_lim] df = df[df["bb"] == bb_val] assert_eq(df, ddf2.compute(), check_index=False) def test_fiters_file_list(tmpdir, engine): df = pd.DataFrame({"x": range(10), "y": list("aabbccddee")}) ddf = dd.from_pandas(df, npartitions=5) ddf.to_parquet(str(tmpdir), engine=engine) fils = str(tmpdir.join("*.parquet")) ddf_out = dd.read_parquet( fils, gather_statistics=True, engine=engine, filters=[("x", ">", 3)] ) assert ddf_out.npartitions == 3 assert_eq(df[df["x"] > 3], ddf_out.compute(), check_index=False) # Check that first parition gets filtered for single-path input ddf2 = dd.read_parquet( str(tmpdir.join("part.0.parquet")), gather_statistics=True, engine=engine, filters=[("x", ">", 3)], ) assert len(ddf2) == 0 def test_pyarrow_filter_divisions(tmpdir): pytest.importorskip("pyarrow") # Write simple dataset with an index that will only # have a sorted index if certain row-groups are filtered out. # In this case, we filter "a" <= 3 to get a sorted # index. Otherwise, "a" is NOT monotonically increasing. df = pd.DataFrame({"a": [0, 1, 10, 12, 2, 3, 8, 9], "b": range(8)}).set_index("a") df.iloc[:4].to_parquet( str(tmpdir.join("file.0.parquet")), engine="pyarrow", row_group_size=2 ) df.iloc[4:].to_parquet( str(tmpdir.join("file.1.parquet")), engine="pyarrow", row_group_size=2 ) # Only works for ArrowDatasetEngine. # Legacy code will not apply filters on individual row-groups # when `split_row_groups=False`. ddf = dd.read_parquet( str(tmpdir), engine="pyarrow-dataset", split_row_groups=False, gather_statistics=True, filters=[("a", "<=", 3)], ) assert ddf.divisions == (0, 2, 3) ddf = dd.read_parquet( str(tmpdir), engine="pyarrow-dataset", split_row_groups=True, gather_statistics=True, filters=[("a", "<=", 3)], ) assert ddf.divisions == (0, 2, 3) def test_divisions_read_with_filters(tmpdir): pytest.importorskip("fastparquet", minversion="0.3.1") tmpdir = str(tmpdir) # generate dataframe size = 100 categoricals = [] for value in ["a", "b", "c", "d"]: categoricals += [value] * int(size / 4) df = pd.DataFrame( { "a": categoricals, "b": np.random.random(size=size), "c": np.random.randint(1, 5, size=size), } ) d = dd.from_pandas(df, npartitions=4) # save it d.to_parquet(tmpdir, write_index=True, partition_on=["a"], engine="fastparquet") # read it out = dd.read_parquet(tmpdir, engine="fastparquet", filters=[("a", "==", "b")]) # test it expected_divisions = (25, 49) assert out.divisions == expected_divisions def test_divisions_are_known_read_with_filters(tmpdir): pytest.importorskip("fastparquet", minversion="0.3.1") tmpdir = str(tmpdir) # generate dataframe df = pd.DataFrame( { "unique": [0, 0, 1, 1, 2, 2, 3, 3], "id": ["id1", "id2", "id1", "id2", "id1", "id2", "id1", "id2"], }, index=[0, 0, 1, 1, 2, 2, 3, 3], ) d = dd.from_pandas(df, npartitions=2) # save it d.to_parquet(tmpdir, partition_on=["id"], engine="fastparquet") # read it out = dd.read_parquet(tmpdir, engine="fastparquet", filters=[("id", "==", "id1")]) # test it assert out.known_divisions expected_divisions = (0, 2, 3) assert out.divisions == expected_divisions @FASTPARQUET_MARK @pytest.mark.xfail(reason="No longer accept ParquetFile objects") def test_read_from_fastparquet_parquetfile(tmpdir): fn = str(tmpdir) df = pd.DataFrame( { "a": np.random.choice(["A", "B", "C"], size=100), "b": np.random.random(size=100), "c": np.random.randint(1, 5, size=100), } ) d = dd.from_pandas(df, npartitions=2) d.to_parquet(fn, partition_on=["a"], engine="fastparquet") pq_f = fastparquet.ParquetFile(fn) # OK with no filters out = dd.read_parquet(pq_f).compute() for val in df.a.unique(): assert set(df.b[df.a == val]) == set(out.b[out.a == val]) # OK with filters out = dd.read_parquet(pq_f, filters=[("a", "==", "B")]).compute() assert set(df.b[df.a == "B"]) == set(out.b) # Engine should not be set to 'pyarrow' with pytest.raises(AssertionError): out = dd.read_parquet(pq_f, engine="pyarrow") @pytest.mark.parametrize("scheduler", ["threads", "processes"]) def test_to_parquet_lazy(tmpdir, scheduler, engine): tmpdir = str(tmpdir) df = pd.DataFrame({"a": [1, 2, 3, 4], "b": [1.0, 2.0, 3.0, 4.0]}) df.index.name = "index" ddf = dd.from_pandas(df, npartitions=2) value = ddf.to_parquet(tmpdir, compute=False, engine=engine) assert hasattr(value, "dask") value.compute(scheduler=scheduler) assert os.path.exists(tmpdir) ddf2 = dd.read_parquet(tmpdir, engine=engine) assert_eq(ddf, ddf2) @FASTPARQUET_MARK def test_timestamp96(tmpdir): fn = str(tmpdir) df = pd.DataFrame({"a": [pd.to_datetime("now", utc=True)]}) ddf = dd.from_pandas(df, 1) ddf.to_parquet(fn, write_index=False, times="int96") pf = fastparquet.ParquetFile(fn) assert pf._schema[1].type == fastparquet.parquet_thrift.Type.INT96 out = dd.read_parquet(fn, index=False).compute() assert_eq(out, df) @FASTPARQUET_MARK def test_drill_scheme(tmpdir): fn = str(tmpdir) N = 5 df1 = pd.DataFrame({c: np.random.random(N) for i, c in enumerate(["a", "b", "c"])}) df2 = pd.DataFrame({c: np.random.random(N) for i, c in enumerate(["a", "b", "c"])}) files = [] for d in ["test_data1", "test_data2"]: dn = os.path.join(fn, d) if not os.path.exists(dn): os.mkdir(dn) files.append(os.path.join(dn, "data1.parq")) fastparquet.write(files[0], df1) fastparquet.write(files[1], df2) df = dd.read_parquet(files) assert "dir0" in df.columns out = df.compute() assert "dir0" in out assert (np.unique(out.dir0) == ["test_data1", "test_data2"]).all() def test_parquet_select_cats(tmpdir, engine): fn = str(tmpdir) df = pd.DataFrame( { "categories": pd.Series(
np.random.choice(["a", "b", "c", "d", "e", "f"], size=100)
numpy.random.choice
import os import numpy as np from bmtk.builder.networks import NetworkBuilder # helper functions def generate_positions(N, x0=0.0, x1=300.0, y0=0.0, y1=100.0): X = np.random.uniform(x0, x1, N) Y = np.random.uniform(y0, y1, N) return np.column_stack((X, Y)) # returns the stack in 3D space def generate_positions_3D(N, x0=0.0, x1=300.0, z0=0.0, z1=300, y0=0.0, y1=300.0): X = np.random.uniform(x0, x1, N) Y = np.random.uniform(y0, y1, N) Z = np.random.uniform(z0, z1, N) result=
np.column_stack((X, Y))
numpy.column_stack
""" The TensorProductState class and supporting functionality. """ #*************************************************************************************************** # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights # in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory. #*************************************************************************************************** import functools as _functools import itertools as _itertools import numpy as _np from pygsti.modelmembers.states.state import State as _State from pygsti.modelmembers import modelmember as _modelmember, term as _term from pygsti.baseobjs import statespace as _statespace from pygsti.tools import listtools as _lt from pygsti.tools import matrixtools as _mt class TensorProductState(_State): """ A state vector that is a tensor-product of other state vectors. Parameters ---------- factors : list of States a list of the component states to take the tensor product of. state_space : StateSpace, optional The state space for this operation. """ def __init__(self, factors, state_space): assert(len(factors) > 0), "Must have at least one factor!" self.factors = factors # do *not* copy - needs to reference common objects evotype = self.factors[0]._evotype rep = evotype.create_tensorproduct_state_rep([f._rep for f in factors], state_space) _State.__init__(self, rep, evotype) self.init_gpindices() # initialize our gpindices based on sub-members self._update_rep() # initializes rep data #Note: no to_memoized_dict needed, as ModelMember version does all we need. @classmethod def _from_memoized_dict(cls, mm_dict, serial_memo): state_space = _statespace.StateSpace.from_nice_serialization(mm_dict['state_space']) factors = [serial_memo[i] for i in mm_dict['submembers']] return cls(factors, state_space) def submembers(self): """ Get the ModelMember-derived objects contained in this one. Returns ------- list """ return self.factors # factor POVM object def _update_rep(self): self._rep.reps_have_changed() @property def parameter_labels(self): """ An array of labels (usually strings) describing this model member's parameters. """ vl = _np.empty(self.num_params, dtype=object) for factor_state, factor_local_inds in zip(self.factors, self._submember_rpindices): vl[factor_local_inds] = factor_state.parameter_labels return vl def to_dense(self, on_space='minimal', scratch=None): """ Return this state vector as a (dense) numpy array. The memory in `scratch` maybe used when it is not-None. Parameters ---------- on_space : {'minimal', 'Hilbert', 'HilbertSchmidt'} The space that the returned dense operation acts upon. For unitary matrices and bra/ket vectors, use `'Hilbert'`. For superoperator matrices and super-bra/super-ket vectors use `'HilbertSchmidt'`. `'minimal'` means that `'Hilbert'` is used if possible given this operator's evolution type, and otherwise `'HilbertSchmidt'` is used. scratch : numpy.ndarray, optional scratch space available for use. Returns ------- numpy.ndarray """ return self._rep.to_dense(on_space) def taylor_order_terms(self, order, max_polynomial_vars=100, return_coeff_polys=False): """ Get the `order`-th order Taylor-expansion terms of this state vector. This function either constructs or returns a cached list of the terms at the given order. Each term is "rank-1", meaning that it is a state preparation followed by or POVM effect preceded by actions on a density matrix `rho` of the form: `rho -> A rho B` The coefficients of these terms are typically polynomials of the State's parameters, where the polynomial's variable indices index the *global* parameters of the State's parent (usually a :class:`Model`) , not the State's local parameter array (i.e. that returned from `to_vector`). Parameters ---------- order : int The order of terms to get. max_polynomial_vars : int, optional maximum number of variables the created polynomials can have. return_coeff_polys : bool Whether a parallel list of locally-indexed (using variable indices corresponding to *this* object's parameters rather than its parent's) polynomial coefficients should be returned as well. Returns ------- terms : list A list of :class:`RankOneTerm` objects. coefficients : list Only present when `return_coeff_polys == True`. A list of *compact* polynomial objects, meaning that each element is a `(vtape,ctape)` 2-tuple formed by concatenating together the output of :method:`Polynomial.compact`. """ terms = [] fnq = [int(round(_np.log2(f.dim))) // 2 for f in self.factors] # num of qubits per factor # assumes density matrix evolution total_nQ = sum(fnq) # total number of qubits for p in _lt.partition_into(order, len(self.factors)): factor_lists = [self.factors[i].taylor_order_terms(pi, max_polynomial_vars) for i, pi in enumerate(p)] # When possible, create COLLAPSED factor_lists so each factor has just a single # (State) pre & post op, which can be formed into the new terms' # TensorProdState ops. # - DON'T collapse stabilizer states & clifford ops - can't for POVMs collapsible = False # bool(self._evotype =="svterm") # need to use reps for collapsing now... TODO? if collapsible: factor_lists = [[t.collapse_vec() for t in fterms] for fterms in factor_lists] for factors in _itertools.product(*factor_lists): # create a term with a TensorProdState - Note we always create # "prep"-mode vectors, since even when self._prep_or_effect == "effect" these # vectors are created with factor (prep- or effect-type) States not factor POVMs # we workaround this by still allowing such "prep"-mode # TensorProdStates to be represented as effects (i.e. in torep('effect'...) works) coeff = _functools.reduce(lambda x, y: x.mult(y), [f.coeff for f in factors]) pre_rep = self._evotype.create_tensorproduct_state_rep( [f.pre_state for f in factors if (f.pre_state is not None)], self.state_space) post_rep = self._evotype.create_tensorproduct_state_rep( [f.post_state for f in factors if (f.post_state is not None)], self.state_space) term = _term.RankOnePolynomialPrepTerm.create_from(coeff, pre_rep, post_rep, self._evotype, self.state_space) if not collapsible: # then may need to add more ops. Assume factor ops are clifford gates # Embed each factors ops according to their target qubit(s) and just daisy chain them ss = _statespace.QubitSpace(total_nQ); curQ = 0 for f, nq in zip(factors, fnq): targetLabels = tuple(range(curQ, curQ + nq)); curQ += nq term._rep.pre_ops.extend([self._evotype.create_embedded_rep(ss, targetLabels, op) for op in f.pre_ops]) # embed and add ops term._rep.post_ops.extend([self._evotype.create_embedded_rep(ss, targetLabels, op) for op in f.post_ops]) # embed and add ops terms.append(term) if return_coeff_polys: def _decompose_indices(x): return tuple(_modelmember._decompose_gpindices( self.gpindices, _np.array(x, _np.int64))) poly_coeffs = [t.coeff.map_indices(_decompose_indices) for t in terms] # with *local* indices tapes = [poly.compact(complex_coeff_tape=True) for poly in poly_coeffs] if len(tapes) > 0: vtape = _np.concatenate([t[0] for t in tapes]) ctape = _np.concatenate([t[1] for t in tapes]) else: vtape = _np.empty(0, _np.int64) ctape = _np.empty(0, complex) coeffs_as_compact_polys = (vtape, ctape) #self.local_term_poly_coeffs[order] = coeffs_as_compact_polys #FUTURE? return terms, coeffs_as_compact_polys else: return terms # Cache terms in FUTURE? @property def num_params(self): """ Get the number of independent parameters which specify this state vector. Returns ------- int the number of independent parameters. """ return len(self.gpindices_as_array()) def to_vector(self): """ Get the state vector parameters as an array of values. Returns ------- numpy array The parameters as a 1D array with length num_params(). """ v = _np.empty(self.num_params, 'd') for factor_state, factor_local_inds in zip(self.factors, self._submember_rpindices): v[factor_local_inds] = factor_state.to_vector() return v def from_vector(self, v, close=False, dirty_value=True): """ Initialize the state vector using a 1D array of parameters. Parameters ---------- v : numpy array The 1D vector of state vector parameters. Length must == num_params() close : bool, optional Whether `v` is close to this state vector's current set of parameters. Under some circumstances, when this is true this call can be completed more quickly. dirty_value : bool, optional The value to set this object's "dirty flag" to before exiting this call. This is passed as an argument so it can be updated *recursively*. Leave this set to `True` unless you know what you're doing. Returns ------- None """ for factor_state, factor_local_inds in zip(self.factors, self._submember_rpindices): factor_state.from_vector(v[factor_local_inds], close, dirty_value) #Update representation, which may be a dense matrix or # just fast-kron arrays or a stabilizer state. self._update_rep() # TODO - how does this apply to state reps?? def deriv_wrt_params(self, wrt_filter=None): """ The element-wise derivative this state vector. Construct a matrix whose columns are the derivatives of the state vector with respect to a single param. Thus, each column is of length dimension and there is one column per state vector parameter. An empty 2D array in the StaticState case (num_params == 0). Parameters ---------- wrt_filter : list or numpy.ndarray List of parameter indices to take derivative with respect to. (None means to use all the this operation's parameters.) Returns ------- numpy array Array of derivatives, shape == (dimension, num_params) """ typ = self.factors[0].to_dense(on_space='minimal').dtype if len(self.factors) > 0 else 'd' #HACK to deal with fact that output of to_dense is really what is differentiated # but this may not match self.dim == self.state_space.dim, e.g. for pure state vecs. dims = [len(fct.to_dense(on_space='minimal')) for fct in self.factors] dim = int(_np.product(dims)) derivMx = _np.zeros((dim, self.num_params), typ) #Product rule to compute jacobian # loop over the spamvec/povm we differentiate wrt: for i, (fct, fct_local_inds, fct_dim) in enumerate(zip(self.factors, self._submember_rpindices, dims)): vec = fct if vec.num_params == 0: continue # no contribution deriv = vec.deriv_wrt_params(None) # TODO: use filter?? / make relative to this gate... deriv.shape = (fct_dim, vec.num_params) if i > 0: # factors before ith pre = self.factors[0].to_dense(on_space='minimal') for vecA in self.factors[1:i]: pre = _np.kron(pre, vecA.to_dense(on_space='minimal')) deriv = _np.kron(pre[:, None], deriv) # add a dummy 1-dim to 'pre' and do kron properly... if i + 1 < len(self.factors): # factors after ith post = self.factors[i + 1].to_dense(on_space='minimal') for vecA in self.factors[i + 2:]: post = _np.kron(post, vecA.to_dense(on_space='minimal')) deriv = _np.kron(deriv, post[:, None]) # add a dummy 1-dim to 'post' and do kron properly... assert(fct_local_inds is not None), \ "Error: gpindices has not been initialized for factor %d - cannot compute derivative!" % i derivMx[:, fct_local_inds] += deriv derivMx.shape = (dim, self.num_params) # necessary? if wrt_filter is None: return derivMx else: return
_np.take(derivMx, wrt_filter, axis=1)
numpy.take
import numpy as np from numpy import shape class fft_basic: ''' 基础离散傅立叶变换类 ''' def __init__(self, matrix): self.matrix = matrix def do_fft(self): self.fft = np.fft.fft2(self.matrix) return np.log(
np.abs(self.fft)
numpy.abs
import numpy as np from scipy.optimize import minimize import math def isRotationMatrix(R: np.array): tag = False I = np.identity(R.shape[0]) if np.all(np.matmul(R, R.T) - I < 1e-6) and np.linalg.det(R) - 1 < 1e-6: tag = True return tag class W300(): def W300_GetInitGuess(self, l_vec, b_vec, f_vec): f_vec = np.cross(b_vec, l_vec) * -1 l_vec = np.cross(f_vec, b_vec) * -1 l_norm = np.linalg.norm(l_vec) l_vec /= l_norm b_norm = np.linalg.norm(b_vec) b_vec /= b_norm f_norm = np.linalg.norm(f_vec) f_vec /= f_norm l_vec = l_vec.reshape(3, 1) b_vec = b_vec.reshape(3, 1) f_vec = f_vec.reshape(3, 1) l = np.array([1, 0, 0]).reshape(1, 3) b = np.array([0, 1, 0]).reshape(1, 3) f = np.array([0, 0, 1]).reshape(1, 3) R = l_vec @ l + b_vec @ b + f_vec @ f yaw = math.asin(R[0, 2]) roll = math.atan2(-R[0, 1], R[0, 0]) pitch = math.atan2(-R[1, 2], R[2, 2]) yaw *= -1 return np.array([pitch, yaw, roll]) def W300_ObjectiveV3(self, x, l_vec, b_vec, f_vec): rx = x[0] ry = x[1] rz = x[2] l_hat, b_hat, f_hat = self.W300_EulerAngles2Vectors(rx, ry, rz) l_vec_dot = np.clip(l_hat[0] * l_vec[0] + l_hat[1] * l_vec[1] + l_hat[2] * l_vec[2], -1, 1) b_vec_dot = np.clip(b_hat[0] * b_vec[0] + b_hat[1] * b_vec[1] + b_hat[2] * b_vec[2], -1, 1) f_vec_dot = np.clip(f_hat[0] * f_vec[0] + f_hat[1] * f_vec[1] + f_hat[2] * f_vec[2], -1, 1) return math.acos(l_vec_dot) ** 2 + math.acos(b_vec_dot) ** 2 + math.acos(f_vec_dot) ** 2 def W300_EulerAngles2Vectors(self, rx, ry, rz): ''' rx: pitch ry: yaw rz: roll ''' ry *= -1 R_x = np.array([[1.0, 0.0, 0.0], [0.0, np.cos(rx), -np.sin(rx)], [0.0, np.sin(rx), np.cos(rx)]]) R_y = np.array([[np.cos(ry), 0.0, np.sin(ry)], [0.0, 1.0, 0.0], [-np.sin(ry), 0.0, np.cos(ry)]]) R_z = np.array([[np.cos(rz), -np.sin(rz), 0.0], [np.sin(rz),
np.cos(rz)
numpy.cos
###Package Importing import numpy as np import pandas as pd from sklearn import metrics import logging from sklearn.externals import joblib from sklearn.metrics import f1_score import matplotlib.pyplot as plt import os from datetime import datetime from preprocessing import hash_col from preprocessing import onehot from preprocessing import normalize from model import machine_learning as ml from preprocessing import discretize #from sklearn.ensemble import RandomForestClassifier wkdir = "" #set parameters dump_path = wkdir + "/" + "model" data_path = wkdir + "/" + "data" out_path = wkdir + "/" + "output" colList_float = [] colList_cnt = [] colList_days = [] colList_unicode = [] colList_dup = [] keys = '' labels = '' def train(*args, **kwargs) : ###Setup logging logger = logging.getLogger(__name__) logger.setLevel(level = logging.INFO) handler = logging.FileHandler("log.txt") handler.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) logger.info("START training") # Mandatory Args wkdir, dump_path, data_path, out_path = kwargs["path_list"] filename0, filename1 = kwargs["filenames"] colList_float, colList_cnt, colList_days, colList_unicode = kwargs["column_lists"] keys = kwargs["keys"] # Optional Args oversampling_ratio = kwargs["oversampling_ratio"] if "oversampling_ratio" in kwargs.keys() else 0.5 comprehensive_search = kwargs["comprehensive_search"] if "comprehensive_search" in kwargs.keys() else False ###Data Loading os.chdir(wkdir) try : data_ori0 = pd.read_csv(data_path + "/" + filename0 #/rex_up_features_sample0.csv" , low_memory=False, encoding=u'utf-8') \ .drop_duplicates(subset=keys,keep='first') data_ori1 = pd.read_csv(data_path + "/" + filename1 , low_memory=False, encoding=u'utf-8').drop_duplicates(subset=keys,keep='first') #axis = 0 means merge by column(same column join) #axis = 1 means merge by row(same index join) data_tmp = pd.concat([data_ori0, data_ori1], axis=0) data_tmp.index = data_tmp[keys] #print(data_ori0.shape, data_ori1.shape, data_tmp.shape) #print(data_tmp) assert data_ori0.shape[0]+data_ori1.shape[0] == data_tmp.shape[0] , "0/1 Merging failed" assert data_ori0.shape[1] == data_ori1.shape[1] == data_tmp.shape[1] , "Column number not match" logger.info("shapes of data_ori0, data_ori1, data_tmp:" + str(data_ori0.shape) + str(data_ori1.shape) + str(data_tmp.shape)) #For numeric features including float, cnt and days, we fill NaN and normalize #No need to discretize in this model. #n_disc = 5 clients_discretized = data_tmp.loc[:, :].copy() #nsamples = clients_discretized.shape[0] features_num = clients_discretized[[keys]+colList_float + colList_days + colList_cnt].drop_duplicates( keep='first') features_num = features_num[colList_float + colList_days + colList_cnt] \ .applymap(discretize.clean_cell) \ .applymap(lambda x : np.float64(x)) # save (mean, std) into tables so that can be retrieved at predict phase features_num.apply(lambda x : pd.Series([np.mean(x),
np.std(x)
numpy.std
import numpy as np from astropy.io import ascii from sys import argv import kinematics import lacewing import ellipse ######################################################### ######################################################### ### MAIN ROUTINE ### ARR 2016-07-29 ### 1.3: Now compatible with LACEwING v1.3, and uses the ### lacewing.lacewing() and lacewing_moving_group_loader() ### functions ### 1.4: Now includes a UVWXYZ test mode ######################################################### ######################################################### iterations = int(argv[1]) number = argv[2] uvw = False if len(argv) > 3: if argv[3] == "UVW": uvw = True moving_groups = lacewing.moving_group_loader() outfile = [] if uvw: outfile2 = open('test_points_{0:}'.format(number),'wb') else: for i in xrange(len(moving_groups)): outfile.append(open('{0:}{1:}'.format(moving_groups[i].name.replace(' ','_'),number),'wb')) weightednumber = [] for j in xrange(len(moving_groups)): weightednumber.append(moving_groups[j].weightednumber) for i in xrange(iterations): # Now begin the random number generators # 1. Decide which type of star this is going to be. selector = np.random.rand() # Choose the first type greater than 'selector' startype = np.where(np.asarray(weightednumber) > selector)[0][0] mgp = moving_groups[startype].name # 2. Now generate a star within the dispersion of the group. tu = np.random.randn()*float(moving_groups[startype].A) tv = np.random.randn()*float(moving_groups[startype].B) tw = np.random.randn()*float(moving_groups[startype].C) if moving_groups[startype].uniform == 0: # uniform random distribution of positions tx = ((np.random.rand()*2)-1)*float(moving_groups[startype].D) ty = ((np.random.rand()*2)-1)*float(moving_groups[startype].E) tz = ((np.random.rand()*2)-1)*float(moving_groups[startype].F) while ((tx/float(moving_groups[startype].D))**2 + (ty/float(moving_groups[startype].E))**2 + (tz/float(moving_groups[startype].F)**2)) > 1: tx = ((np.random.rand()*2)-1)*float(moving_groups[startype].D) ty = ((np.random.rand()*2)-1)*float(moving_groups[startype].E) tz = ((np.random.rand()*2)-1)*float(moving_groups[startype].F) # A quick test shows that an ellipse fit to a uniform distribution # has axes smaller than the initial ellipse by a factor of sqrt(3) tx = tx * np.sqrt(3) ty = ty * np.sqrt(3) tz = tz * np.sqrt(3) if moving_groups[startype].uniform == 1: # for clusters: use gaussians tx = np.random.randn()*float(moving_groups[startype].D) ty = np.random.randn()*float(moving_groups[startype].E) tz = np.random.randn()*float(moving_groups[startype].F) if moving_groups[startype].uniform == 2: # exponential disk dropoff (for the field stars) tx = ((np.random.rand()*2)-1)*float(moving_groups[startype].D) ty = ((np.random.rand()*2)-1)*float(moving_groups[startype].E) tz =
np.random.exponential(scale=300)
numpy.random.exponential
import numpy as np import sys import cv2 import time import copy import os import traceback import ffmpeg import subprocess as sp import os.path as path from pprint import pprint from concurrent.futures import ThreadPoolExecutor from PIL import ImageColor
np.set_printoptions(threshold=np.inf)
numpy.set_printoptions
import h5py from typing import List, Dict import networkx as nx import numpy as np import os from collections import Counter import pandas as pd import json from tqdm import tqdm __all__ = ['Graph'] class Graph(nx.Graph): """ Class for storing Nabo's SNN graph. Inherits from networkx's `Graph` class """ def __init__(self): super().__init__() self.refName = None self.refNodes: List[str] = [] self.refG = None self.targetNames: List[str] = [] self.targetNodes: Dict[str, List[str]] = {} self.deTestCells: List[str] = None self.deCtrlCells: List[str] = None self._agglomDendrogram = None def load_from_h5(self, fn: str, name: str, kind: str) -> None: """ Loads a graph saved by `Mapping` class in HDF5 format :param fn: Path to HDF5 file :param name: Label/name of sample used in Mapping object. This function assumes that the group in HDF5 containing graph data is named: `name` + '_graph' :param kind: Can have a value of either 'reference' or 'target'. Only be one sample can have kind='reference' for an instance of this class :return: None """ if os.path.exists(fn) is False: raise IOError('ERROR: File %s does not exist' % fn) if kind == 'reference': if self.refName is not None: raise ValueError('ERROR: A reference kind is already loaded') elif kind == 'target': if name in self.targetNames: raise ValueError('ERROR: %s target group already present in ' 'graph' % name) if self.refName is None: raise ValueError('ERROR: Please load reference kind first') else: raise ValueError('ERROR: Kind can be either "reference" or ' '"target"') try: h5 = h5py.File(fn, mode='r') except (IOError, OSError): raise IOError('ERROR: Unable to open file %s' % fn) if kind == 'reference': try: saved_name = h5['name_stash/ref_name'][0].decode('UTF-8') uid = h5['name_stash/ref_name'][1].decode('UTF-8') except KeyError: raise KeyError("ERROR: Could not find stashed names in the " "mapping file. Make sure reference graph has " "been created in the mapping file") if name != saved_name: raise KeyError("ERROR: The reference is named %s in the " "mapping file and not %s. Please verify that " "you are trying to load right reference." % ( saved_name, name)) else: try: target_names = h5['name_stash/target_names'][:] except KeyError: raise KeyError("ERROR: Could not find stashed names in the " "mapping file. Make sure reference graph has " "been created in the mapping file") uid = None for i in target_names: if i[0].decode('UTF-8') == name: uid = i[1].decode('UTF-8') if uid is None: raise KeyError("ERROR: The target name not could not be found " "in the mapping file") grp = uid + '_graph' if grp not in h5: h5.close() raise KeyError('ERROR: Group %s not found in HDF5 file %s' % (grp, fn)) attrs = {'kind': kind, 'name': name} existing_nodes = {x: None for x in self.nodes()} new_nodes = [] for node in h5[grp]: if node in existing_nodes: print('WARNING: node %s already present in the graph. Will ' 'not add.' % node) else: new_nodes.append(node) self.add_node(node, **attrs) for j in h5[grp][node]: node2 = j[0].decode('UTF-8') weight = float(j[1].decode('UTF-8')) self.add_edge(node, node2, weight=weight) h5.close() if kind == 'reference': self.refName = name self.refNodes = new_nodes self.refG = self.subgraph(self.refNodes) else: self.targetNames.append(name) self.targetNodes[name] = new_nodes return None def load_from_gml(self, fn: str) -> None: """ Load data from GML format file. It is critical that this graph was generated using Nabo's `Mapping` class. :param fn: Full path of GML file :return: None """ if len(self.nodes) > 0: raise ValueError('ERROR: The graph already contains nodes. ' 'Cannot load GML file on this object.') if os.path.exists(fn) is False: raise IOError('ERROR: File %s does not exist' % fn) try: g = nx.read_gml(fn) except (IOError, OSError): raise IOError('ERROR: Could open the file %s. Make sure the file ' 'is in GML format' % fn) for i in g.nodes(data=True): attrs = i[1] if 'kind' not in attrs or 'name' not in attrs: self.clear() raise ValueError('ERROR: Attributes "kind" and/or "name" ' 'not found for one or more cells. Make ' 'sure that the GML was saved using Nabo') if attrs['kind'] == 'reference': if self.refName is None: self.refName = attrs['name'] elif self.refName != attrs['name']: self.clear() raise ValueError('ERROR: Multiple reference samples ' 'found. Please make sure you saved ' 'the GML with Nabo.') self.refNodes.append(i[0]) elif attrs['kind'] == 'target': if attrs['name'] not in self.targetNames: self.targetNames.append(attrs['name']) self.targetNodes[attrs['name']] = [] self.targetNodes[attrs['name']].append(i[0]) else: self.clear() raise ValueError('ERROR: Kind can only be either "reference" ' 'or "target"') if 'pos' in i[1] and i[1]['pos'] == 'None': i[1]['pos'] = None self.add_node(i[0], **i[1]) for i in g.edges(data=True): self.add_edge(i[0], i[1], weight=i[2]['weight']) self.refG = self.subgraph(self.refNodes) return None def save_graph(self, save_name: str) -> None: """ Save graph in GML format :param save_name: Output filename with path :return: None """ nx.write_gml(self, save_name, stringizer=lambda x: str(x)) return None def set_ref_layout(self, niter: int = 500, verbose: bool = True, init_pos: dict = None, disable_rescaling: bool = False, outbound_attraction_distribution: bool = True, edge_weight_influence: float = 1.0, jitter_tolerance: float = 1.0, barnes_hut_optimize: bool = True, barnes_hut_theta: float = 1.2, scaling_ratio: float = 1.0, strong_gravity_mode: bool = False, gravity: float = 1.0) -> None: """ Calculates a 2D graph layout using ForceAtlas2 algorithm. The ForceAtlas2 implementation being used here will not prevent nodes in the graph from overlapping with each other. We aim to improve this in the future. :param niter: Number of iterations (default: 500) :param verbose: Print the progress (default: True) :param init_pos: Initial positions of nodes :param disable_rescaling: If True then layout coordinates are not rescaled to only have non negative positions (Default: False) :param outbound_attraction_distribution: :param edge_weight_influence: :param jitter_tolerance: :param barnes_hut_optimize: :param barnes_hut_theta: :param scaling_ratio: :param strong_gravity_mode: :param gravity: :return: None """ from fa2 import ForceAtlas2 force_atlas = ForceAtlas2( outboundAttractionDistribution=outbound_attraction_distribution, edgeWeightInfluence=edge_weight_influence, jitterTolerance=jitter_tolerance, barnesHutOptimize=barnes_hut_optimize, barnesHutTheta=barnes_hut_theta, scalingRatio=scaling_ratio, strongGravityMode=strong_gravity_mode, gravity=gravity, verbose=verbose) pos = force_atlas.forceatlas2_networkx_layout( self.refG, pos=init_pos, iterations=niter) if disable_rescaling is False: pos_array = np.array(list(pos.values())).T min_x, min_y = pos_array[0].min(), pos_array[1].min() # max_x, max_y = pos_array[0].max(), pos_array[1].max() pos = {k: ((v[0] - min_x), (v[1] - min_y)) for k, v in pos.items()} # pos = {k: ((v[0] - min_x) / (max_x - min_x), # (v[1] - min_y) / (max_y - min_y)) # for k, v in pos.items()} for node in pos: self.nodes[node]['pos'] = (float(pos[node][0]), float(pos[node][1])) for node in self: if node not in pos: self.nodes[node]['pos'] = None return None @property def clusters(self) -> Dict[str, str]: ret_val = {} for i in self.refG.nodes(data=True): if 'cluster' in i[1]: ret_val[i[0]] = i[1]['cluster'] return ret_val def make_clusters(self, n_clusters: int) -> None: """ Performs graph agglomerative clustering using algorithm in Newman 2004 :param n_clusters: Number of clusters :return: None """ import hac if self._agglomDendrogram is None: clusterer = hac.GreedyAgglomerativeClusterer() self._agglomDendrogram = clusterer.cluster(self.refG) cluster_list = self._agglomDendrogram.clusters(n_clusters) for n, node_group in enumerate(cluster_list): for node in node_group: clust_num = n + 1 self.nodes[node]['cluster'] = str(clust_num) return None def make_leiden_clusters(self, resolution: float = 1.0, random_seed = 4466) -> None: """ Leiden clustering :param n_clusters: Number of clusters :return: None """ try: import leidenalg except ImportError: raise ImportError("ERROR: 'leidenalg' package is not installed. Please find the installation instructions " "here: https://github.com/vtraag/leidenalg#installation.") import igraph # python-igraph adj = nx.to_scipy_sparse_matrix(self.refG) sources, targets = adj.nonzero() g = igraph.Graph() g.add_vertices(adj.shape[0]) g.add_edges(list(zip(sources, targets))) g.es['weight'] = adj[sources, targets].A1 part = leidenalg.find_partition(g, leidenalg.RBConfigurationVertexPartition, resolution_parameter=resolution, seed=random_seed) clusts = np.array(part.membership) + 1 for n, c in zip(self.refG.nodes, clusts): self.nodes[n]['cluster'] = str(c) return None def get_cluster_identity_weights(self) -> pd.Series: """ :return: Cluster identity weights for each cell """ ciw = {} clusters = self.clusters if clusters == {}: raise ValueError("ERROR: Please make sure that clusters have " "been assigned to cells. Run 'make_clusters' or " "import clusters") skipped_cells = 0 max_nodes = [] for i in tqdm(self.refG, total=len(self.refG)): cw = [] for j in self.refG.edges(i, data=True): try: cw.append((clusters[j[1]], j[2]['weight'])) except KeyError: skipped_cells += 1 continue if len(cw) > 0: cw = pd.DataFrame(cw) cw = cw.groupby(0).size() * \ cw.groupby(0).sum()[1].sort_values().values if len(cw) > 1: ciw[i] = cw[-1] / cw[:-1].sum() else: ciw[i] = cw[-1] max_nodes.append(i) else: skipped_cells += 1 if skipped_cells > 0: print("WARNING: %d cells were skipped" % skipped_cells) ciw = pd.Series(ciw) if len(max_nodes) > 0: for i in max_nodes: ciw[i] = ciw.max() return ciw def import_clusters(self, cluster_dict: Dict[str, str] = None, missing_val: str = 'NA') -> None: """ Import cluster information for reference cells. :param cluster_dict: Dictionary with cell names as keys and cluster number as values. Cluster numbers should start from 1 :param missing_val: This value will be filled in when fill_missing is True (Default: NA) :return: None """ skipped_nodes = len(cluster_dict) for node in self.refNodes: if node in cluster_dict: self.nodes[node]['cluster'] = str(cluster_dict[node]) skipped_nodes -= 1 else: self.nodes[node]['cluster'] = missing_val if skipped_nodes > 0: print('WARNING: %d cells do not exist in the reference graph and ' 'their cluster info was not imported.' % skipped_nodes) def import_clusters_from_json(self, fn): """ Import clusters om JSON file :param fn: Input file in JSON format. :return: None """ return self.import_clusters(json.load(open(fn))) def import_clusters_from_csv(self, csv: str, csv_sep: str = ',', cluster_col: int = 0, header = None, append_ref_name: bool = False): """ :param csv: Filename containing cluster information. Make sure that the first column contains cell names and second contains the cluster labels. :param csv_sep: Separator for CSV file (default: ',') :param cluster_col: Column number (0 based count) where cluster info is present (Default: 0) :param append_ref_name: Append the reference name to the cell name ( Default: True) :return: None """ df = pd.read_csv(csv, index_col=0, sep=csv_sep, header=header) cluster_dict = df[df.columns[cluster_col]].to_dict() if append_ref_name: cluster_dict = {k + '_' + self.refName: v for k, v in cluster_dict.items()} return self.import_clusters(cluster_dict) def save_clusters_as_json(self, outfn): """ :param outfn: Output JSON file :return: """ with open(outfn, 'w') as OUT: json.dump(self.clusters, OUT, indent=2) def save_clusters_as_csv(self, outfn): """ :param outfn: Output CSV file :return: """ pd.Series(self.clusters).to_csv(outfn) def _validate_clusters(self): nclusts = len(set(self.clusters.values())) if nclusts == 0: raise ValueError('ERROR: Calculate clusters first using ' '"make_clusters" or import clusters using ' '"import_clusters"') elif nclusts == 1: raise ValueError('ERROR: Cannot classify targets when only ' 'one cluster is present in the graph') return True def calc_modularity(self) -> float: """ Calculates modularity of the reference graph. The clusters should have already been defined. :return: Value between 0 and 1 """ partition = {} for k, v in self.clusters.items(): if v not in partition: partition[v] = {} partition[v][k] = None partition = list(partition.values()) if sum([len(x) for x in partition]) != len(self.refG): raise AssertionError('ERROR: Not all reference nodes have been ' 'assigned to a cluster. Cannot calculate ' 'modularity!') # noinspection PyCallingNonCallable w_degree = dict(self.refG.degree(weight='weight')) norm = 1 / (2 * self.refG.size(weight='weight')) q = 0 for p in partition: for i in p: t = -w_degree[i] * norm q += sum([t * w_degree[x] for x in p]) q += sum([self.refG[i][x]['weight'] for x in self.refG[i] if x in p]) return q * norm def import_layout(self, pos_dict) -> None: """ Alternatively one can provide a dictionary with keys as node name and values as coordinate (x, y) tuple. :param pos_dict: Dictionary with keys as node names and values as 2D coordinates of nodes on the graph. :return: None """ skipped_nodes = len(pos_dict) error_nodes = 0 for node in self.nodes: if node in pos_dict: try: self.nodes[node]['pos'] = ( float(pos_dict[node][0]), float(pos_dict[node][1]) ) skipped_nodes -= 1 except (IndexError, TypeError): error_nodes += 1 else: self.nodes[node]['pos'] = None if skipped_nodes > 0: print('WARNING: %d cells do not exist in the reference graph and ' 'their position info was not imported.' % skipped_nodes) if error_nodes > 0: print('WARNING: %d cells had position info in incorrect ' 'format' % error_nodes) return None def import_layout_from_json(self, fn): """ :param fn: Input json file :return: """ return self.import_layout(json.load(open(fn))) def import_layout_from_csv(self, csv: str, csv_sep: str = ',', dim_cols: tuple = (0, 1), header = None, append_ref_name: bool = False): """ Import graph layout coordinates from a CSV file :param csv: Filename containing layout coordinates. Make sure that the first column contains cell names and second and thrid contain the x and y coordinates :param csv_sep: Separator for CSV file (default: ',') :param append_ref_name: Append the reference name to the cell name ( Default: True) :return: None """ layout = pd.read_csv(csv, index_col=0, sep=csv_sep, header=header) d1 = layout.columns[dim_cols[0]] d2 = layout.columns[dim_cols[1]] if append_ref_name: layout = {x + '_' + self.refName: (layout[d1][x], layout[d2][x]) for x in layout.index} else: layout = {x: (layout[d1][x], layout[d2][x]) for x in layout.index} return self.import_layout(layout) @property def layout(self): """ Copies 'pos' attribute values (x/y coordinate tuple) from graph nodes and returns a dictionary :return: """ pos_dict = {} for i in self.nodes(data=True): try: pos_dict[i[0]] = i[1]['pos'] except (KeyError, IndexError): pos_dict[i[0]] = None return pos_dict def save_layout_as_json(self, out_fn): """ :param out_fn: Output json file :return: """ with open(out_fn, 'w') as OUT: json.dump(self.layout, OUT, indent=2) return None def save_layout_as_csv(self, out_fn): """ Saves the layout in CSV format :param out_fn: Output CSV file :return: """ pd.DataFrame(self.layout).T.to_csv(out_fn, header=None) return None @staticmethod def get_score_percentile(score: Dict[str, int], p: int) -> float: """ Get value for at a given percentile :param score: Mapping score or any other dictionary where values are numbers :param p: Percentile :return: Percentile value """ return np.percentile(list(score.values()), p) def get_mapping_score(self, target: str, min_weight: float = 0, min_score: float = 0, weighted: bool = True, by_cluster: bool = False, sorted_names_only: bool = False, top_n_only: int = None, all_nodes: bool = True, score_multiplier: int = 1000, ignore_nodes: List[str] = None, include_nodes: List[str] = None, remove_suffix: bool = False, verbose: bool = False): """ Calculate a weighted/unweighted degree of incident target nodes on reference nodes. :param target: Target sample name :param min_weight: Ignore a edge if edge weight is smaller then this value in the SNN graph. Only applicable if calculating a weighted mapping score :param min_score: If score is smaller then reset score to zero :param weighted: Use edge weights if True :param by_cluster: If True, then combine scores from nodes of same cluster into a list. The keys are cluster number in the output dictionary :param sorted_names_only: If True, then return only sorted list of base cells from highest to lowest mapping score. Cells with mapping score less than `min_score` are not reported (default: False) :param top_n_only: If sorted_names_only is True and an integer value is provided then this method will return top n number of nodes sorted based on score. min_score value will be ignored. :param all_nodes: if False, then returns only nodes with non-zero score (after resetting using min_score) :param score_multiplier: Score is multiplied by this number after normalizing for total number of target cells. :param ignore_nodes: List of nodes from 'target' sample to be ignored while calculating the score (default: None). :param include_nodes: List of target nodes from 'target' sample. Mapping score will be calculated ONLY for those reference cells that are connected to this subset of target cells in the graph. By default mapping score will be calculated against each target node. :param remove_suffix: Remove suffix from cell names (default: False) :param verbose: Prints graph stats :return: Mapping score """ if by_cluster: if set(self.clusters.values()) == 'NA': raise ValueError('ERROR: Calculate clusters first using ' '"make_clusters" or import clusters using ' '"import_clusters"') if target not in self.targetNames: raise ValueError('ERROR: %s not present in graph' % target) if ignore_nodes is not None and include_nodes is not None: raise ValueError("ERROR: PLease provide only one of " "either 'ignore_nodes' or 'include_nodes' at a " "time") target_nodes = {x: None for x in self.targetNodes[target]} if ignore_nodes is None: ignore_nodes = [] else: temp = [] for node in ignore_nodes: if node in target_nodes: temp.append(node) ignore_nodes = list(temp) if include_nodes is None: include_nodes = list(self.targetNodes[target]) else: temp = [] for node in include_nodes: if node in target_nodes: temp.append(node) include_nodes = list(temp) include_nodes = list(set(include_nodes).difference(ignore_nodes)) g = nx.Graph(self.subgraph(self.refNodes + include_nodes)) g.remove_edges_from(self.refG.edges) if verbose: isolates = set(list(nx.isolates(g))) print("INFO: The bipartite graph has %d edges" % g.size()) print("INFO: Mapping calculated against %d %s nodes" % ( len(include_nodes), target)) print("INFO: %d reference nodes do not connect with any target" " node" % len(isolates.intersection(self.refNodes))) print("INFO: %d target nodes do not connect with any reference" " node" % len(isolates.intersection(include_nodes))) score = {} for i in self.refNodes: score[i] = 0 for j in g.edges(i, data=True): if weighted: if j[2]['weight'] > min_weight: score[i] += j[2]['weight'] else: score[i] += 1 score = {k: score_multiplier * v / len(self.targetNodes[target]) for k, v in score.items()} if by_cluster: cluster_dict = self.clusters cluster_values = {x: [] for x in set(cluster_dict.values())} na_cluster_score = [] for node in score: try: cluster_values[cluster_dict[node]].append(score[node]) except KeyError: na_cluster_score.append(score[node]) if len(na_cluster_score) > 0: if 'NA' not in cluster_values: cluster_values['NA'] = [] else: print("WARNING: 'NA' cluster already exists. Appending " "value to it") cluster_values['NA'].extend(na_cluster_score) return cluster_values if sorted_names_only: if top_n_only is not None: if top_n_only > len(score): raise ValueError('ERROR: Value of top_n_only should be ' 'less than total number of nodes in ' 'reference graph') retval = [x[0] for x in sorted(score.items(), key=lambda x: x[1])][::-1][ :top_n_only] else: ms = {k: v for k, v in score.items() if v >= min_score} retval = [x[0] for x in sorted(ms.items(), key=lambda x: x[1])][::-1] if remove_suffix: return [x.rsplit('_', 1)[0] for x in retval] else: return retval if not all_nodes: retval = {k: v for k, v in score.items() if v >= min_score} else: retval = {k: v if v >= min_score else 0 for k, v in score.items()} if remove_suffix: return [x.rsplit('_', 1)[0] for x in retval] else: return retval def get_cells_from_clusters(self, clusters: List[str], remove_suffix: bool = True) -> List[str]: """ Get cell names for input cluster numbers :param clusters: list of cluster identifiers :param remove_suffix: Remove suffix from cell names :return: List of cell names """ if set(self.clusters.values()) == 'NA': raise ValueError('ERROR: Calculate clusters first using ' '"make_clusters" or import clusters using ' '"import_clusters"') cells = [] clusters = {str(x) for x in clusters} for k, v in self.clusters.items(): if v in clusters: if remove_suffix: cells.append(k.rsplit('_', 1)[0]) else: cells.append(k) return cells def classify_target(self, target: str, weight_frac: float = 0.5, min_degree: int = 2, min_weight: float = 0.1, cluster_dict: Dict[str, int] = None, na_label: str = 'NA', ret_counts: bool = False) -> dict: """ This classifier identifies the total weight of all the connections made by each target cell to each cluster (of reference cells). If a target cell has more than 50% (default value) of it's total connection weight in one of the clusters then the target cell is labeled to be from that cluster. One useful aspect of this classifier is that it will not classify the target cell to be from any cluster if it fails to reach the threshold (default, 50%) for any cluster (such target cell be labeled as '0' by default). :param target: Name of target sample :param weight_frac: Required minimum fraction of weight in a cluster to be classified into that cluster :param min_degree: Minimum degree of the target node :param min_weight: Minimum edge weight. Edges with less weight than min_weight will be ignored but will still contribute to total weight. :param cluster_dict: Cluster labels for each reference cell. If not provided then the stored cluster information is used. :param na_label: Label for cells that failed to get classified into any cluster :param ret_counts: It True, then returns number of target cells classified to each cluster, else returns predicted cluster for each target cell :return: Dictionary. Keys are target cell names and value their predicted custer if re_Count is False. Otherwise, keys are cluster labels and values are the number of target cells classified to that cluster """ import operator if cluster_dict is None: self._validate_clusters() cluster_dict = self.clusters clusts = set(cluster_dict.values()) classified_clusters = [] degrees = dict(self.degree) for i in self.targetNodes[target]: if i not in degrees: continue if degrees[i] < min_degree: classified_clusters.append(na_label) continue clust_weights = {x: 0 for x in clusts} tot_weight = 0 for j in self.edges(i, data=True): if j[2]['weight'] > min_weight and j[1] in cluster_dict: clust_weights[cluster_dict[j[1]]] += j[2]['weight'] tot_weight += j[2]['weight'] # even low weight is added to # total weight to allow poor mappings to be penalized. max_clust = max(clust_weights.items(), key=operator.itemgetter(1))[0] if clust_weights[max_clust] > (weight_frac * tot_weight): classified_clusters.append(max_clust) else: classified_clusters.append(na_label) if ret_counts: counts = Counter(classified_clusters) if na_label not in counts: counts[na_label] = 0 for i in set(cluster_dict.values()): if i not in counts: counts[i] = 0 return counts else: return dict(zip(self.targetNodes[target], classified_clusters)) def get_mapping_specificity(self, target_name: str, fill_na: bool = True) -> Dict[str, float]: """ Calculates the mapping specificity of target nodes. Mapping specificity of a target node is calculated as the mean of shortest path lengths between all pairs of mapped reference nodes. :param target_name: Name of target sample :param fill_na: if True, then nan values will be replaced with largest value (default: True) :return: Dictionary with target node names as keys and mapping specificity as values """ path_lengths = {} # TODO: FIX FOR MISSING TARGET NODES IF NODES ARE REMOVED MANUALLY for node in tqdm(self.targetNodes[target_name]): spls = [] targets = [x[1] for x in self.edges(node)] nt = len(targets) for i in range(nt): for j in range(nt): if i < j: spls.append(nx.algorithms.shortest_path_length( self.refG, source=targets[i], target=targets[j])) path_lengths[node] = float(np.mean(spls)) if fill_na: max_val = max(path_lengths.values()) return pd.Series(path_lengths).fillna(max_val).to_dict() else: return path_lengths def get_ref_specificity(self, target: str, target_values: Dict[str, float], incl_unmapped: bool = False) -> Dict[str, float]: """ Calculates the average mapping specificity of all target nodes that mapped to a given a reference node. Requires that the mapping specificity of target nodes is already calculated. :param target: Name of target sample :param target_values: Mapping specificity values of target nodes :param incl_unmapped: If True, then includes unmapped reference nodes in the dictionary with value set at 0 Default: False) :return: Dictionary with reference node names as keys and values as mean mapping specificity of their mapped target nodes """ back_prom = {} for i in self.refNodes: back_prom[i] = [] for j in self.edges(i, data=True): if j[1][-len(target):] == target: back_prom[i].append(target_values[j[1]]) new_back_prom = {} for i in back_prom: if len(back_prom[i]) > 1: new_back_prom[i] = np.mean(back_prom[i]) elif len(back_prom[i]) == 1: new_back_prom[i] = back_prom[i][0] else: if incl_unmapped: new_back_prom[i] = 0 return new_back_prom def get_mapped_cells(self, target: str, ref_cells: str, remove_suffix: bool = True) -> List[str]: """ Get target cells that map to a given list of reference cells. :param target: Name of target sample :param ref_cells: List of reference cell names :param remove_suffix: If True then removes target name suffix from end of node name :return: List of target cell names """ if target not in self.targetNames: raise ValueError('ERROR: %s not present in graph!' % target) target_cells = {x: None for x in self.targetNodes[target]} mapped_cells = [] for i in ref_cells: if remove_suffix: i = i + '_' + self.refName for j in self.edges(i): if j[1] in target_cells: mapped_cells.append(j[1]) mapped_cells = list(set(mapped_cells)) if remove_suffix: return [x.rsplit('_', 1)[0] for x in mapped_cells] else: return mapped_cells def get_random_nodes(self, n: int) -> List[str]: """ Get random list of nodes from reference graph. :param n: Number of nodes to return :return: A list of reference nodes """ all_nodes = list(self.refNodes) if n >= len(all_nodes): raise ValueError('ERROR: n should be lower than total nodes in ' 'reference graph') random_nodes = [] for i in range(n): x = np.random.choice(all_nodes) random_nodes.append(x) all_nodes.remove(x) return sorted(random_nodes) def calc_contiguous_spl(self, nodes: List[str]) -> float: """ Calculates mean of shortest path lengths between subsequent nodes provided in the input list in reference graph. :param nodes: List of nodes from reference sample :return: Mean shortest path length """ spl = [] for i in range(len(nodes) - 1): spl.append(nx.shortest_path_length(self.refG, nodes[i], nodes[i + 1])) return float(
np.mean(spl)
numpy.mean
import os import h5py import numpy as np from hdmf import Container, Data from hdmf.backends.hdf5 import H5DataIO from hdmf.build import (GroupBuilder, DatasetBuilder, ObjectMapper, BuildManager, TypeMap, ReferenceBuilder, ReferenceTargetNotBuiltError) from hdmf.data_utils import DataChunkIterator from hdmf.spec import (AttributeSpec, DatasetSpec, DtypeSpec, GroupSpec, SpecCatalog, SpecNamespace, NamespaceCatalog, RefSpec) from hdmf.spec.spec import ZERO_OR_MANY from hdmf.testing import TestCase from hdmf.utils import docval, getargs, call_docval_func from tests.unit.utils import Foo, CORE_NAMESPACE class Baz(Data): @docval({'name': 'name', 'type': str, 'doc': 'the name of this Baz'}, {'name': 'data', 'type': (list, h5py.Dataset, 'data', 'array_data'), 'doc': 'some data'}, {'name': 'baz_attr', 'type': str, 'doc': 'an attribute'}) def __init__(self, **kwargs): name, data, baz_attr = getargs('name', 'data', 'baz_attr', kwargs) super().__init__(name=name, data=data) self.__baz_attr = baz_attr @property def baz_attr(self): return self.__baz_attr class BazHolder(Container): @docval({'name': 'name', 'type': str, 'doc': 'the name of this Baz'}, {'name': 'bazs', 'type': list, 'doc': 'some Baz data', 'default': list()}) def __init__(self, **kwargs): name, bazs = getargs('name', 'bazs', kwargs) super().__init__(name=name) self.__bazs = {b.name: b for b in bazs} # note: collections of groups are unordered in HDF5 for b in bazs: b.parent = self @property def bazs(self): return self.__bazs class BazSpecMixin: def setUp(self): self.setUpBazSpec() self.spec_catalog = SpecCatalog() self.spec_catalog.register_spec(self.baz_spec, 'test.yaml') self.namespace = SpecNamespace('a test namespace', CORE_NAMESPACE, [{'source': 'test.yaml'}], version='0.1.0', catalog=self.spec_catalog) self.namespace_catalog = NamespaceCatalog() self.namespace_catalog.add_namespace(CORE_NAMESPACE, self.namespace) self.type_map = TypeMap(self.namespace_catalog) self.type_map.register_container_type(CORE_NAMESPACE, 'Baz', Baz) self.type_map.register_map(Baz, ObjectMapper) self.manager = BuildManager(self.type_map) self.mapper = ObjectMapper(self.baz_spec) def setUpBazSpec(self): raise NotImplementedError('Test must implement this method.') class TestDataMap(BazSpecMixin, TestCase): def setUp(self): self.setUpBazSpec() self.spec_catalog = SpecCatalog() self.spec_catalog.register_spec(self.baz_spec, 'test.yaml') self.namespace = SpecNamespace('a test namespace', CORE_NAMESPACE, [{'source': 'test.yaml'}], version='0.1.0', catalog=self.spec_catalog) self.namespace_catalog = NamespaceCatalog() self.namespace_catalog.add_namespace(CORE_NAMESPACE, self.namespace) self.type_map = TypeMap(self.namespace_catalog) self.type_map.register_container_type(CORE_NAMESPACE, 'Baz', Baz) self.type_map.register_map(Baz, ObjectMapper) self.manager = BuildManager(self.type_map) self.mapper = ObjectMapper(self.baz_spec) def setUpBazSpec(self): self.baz_spec = DatasetSpec( doc='an Baz type', dtype='int', name='MyBaz', data_type_def='Baz', shape=[None], attributes=[AttributeSpec('baz_attr', 'an example string attribute', 'text')] ) def test_build(self): ''' Test default mapping functionality when no attributes are nested ''' container = Baz('MyBaz', list(range(10)), 'abcdefghijklmnopqrstuvwxyz') builder = self.mapper.build(container, self.manager) expected = DatasetBuilder('MyBaz', list(range(10)), attributes={'baz_attr': 'abcdefghijklmnopqrstuvwxyz'}) self.assertBuilderEqual(builder, expected) def test_build_empty_data(self): """Test building of a Data object with empty data.""" baz_inc_spec = DatasetSpec(doc='doc', data_type_inc='Baz', quantity=ZERO_OR_MANY) baz_holder_spec = GroupSpec(doc='doc', data_type_def='BazHolder', datasets=[baz_inc_spec]) self.spec_catalog.register_spec(baz_holder_spec, 'test.yaml') self.type_map.register_container_type(CORE_NAMESPACE, 'BazHolder', BazHolder) self.holder_mapper = ObjectMapper(baz_holder_spec) baz = Baz('MyBaz', [], 'abcdefghijklmnopqrstuvwxyz') holder = BazHolder('holder', [baz]) builder = self.holder_mapper.build(holder, self.manager) expected = GroupBuilder( name='holder', datasets=[DatasetBuilder( name='MyBaz', data=[], attributes={'baz_attr': 'abcdefghijklmnopqrstuvwxyz', 'data_type': 'Baz', 'namespace': 'test_core', 'object_id': baz.object_id} )] ) self.assertBuilderEqual(builder, expected) def test_append(self): with h5py.File('test.h5', 'w') as file: test_ds = file.create_dataset('test_ds', data=[1, 2, 3], chunks=True, maxshape=(None,)) container = Baz('MyBaz', test_ds, 'abcdefghijklmnopqrstuvwxyz') container.append(4)
np.testing.assert_array_equal(container[:], [1, 2, 3, 4])
numpy.testing.assert_array_equal
import numpy from hmmlearn.base import _BaseHMM from hmmlearn.hmm import _check_and_set_gaussian_n_features from hmmlearn import _utils class FullPTHMM(_BaseHMM): r"""Hidden Markov Model for Particle Tracking. Args: n_components (int): Number of states. min_var (float, optional): Floor on the variance to prevent overfitting. Defaults to 1e-5. startprob_prior (array, optional): shape (n_components, ). Parameters of the Dirichlet prior distribution for :attr:`startprob_`. transmat_prior (array, optional): shape (n_components, n_components). Parameters of the Dirichlet prior distribution for each row of the transition probabilities :attr:`transmat_`. algorithm (string, optional): Decoder algorithm. Must be one of "viterbi" or`"map". Defaults to "viterbi". random_state (RandomState or an int seed, optional): A random number generator instance. n_iter (int, optional): Maximum number of iterations to perform. tol (float, optional): Convergence threshold. EM will stop if the gain in log-likelihood is below this value. verbose (bool, optional): When ``True`` per-iteration convergence reports are printed to :data:`sys.stderr`. You can diagnose convergence via the :attr:`monitor_` attribute. params (string, optional): Controls which parameters are updated in the training process. Can contain any combination of 's' for startprob, 't' for transmat, 'd' for diffusivities, 'm' for intensity means and 'v' for intensity variances. Defaults to all parameters. init_params (string, optional): Controls which parameters are initialized prior to training. Can contain any combination of 's' for startprob, 't' for transmat, 'd' for diffusivities, 'm' for intensity means and 'v' for intensity variances. Defaults to all parameters. Attributes: monitor\_ (ConvergenceMonitor): Monitor object used to check the convergence of EM. startprob\_ (array): shape (n_components, ). Initial state occupation distribution. transmat\_ (array): shape (n_components, n_components). Matrix of transition probabilities between states. diffusivities\_ (array): shape (n_components, 1). Diffusion constants for each state. intensity_means\_ (array): shape (n_components, 1). Mean parameters of intensity distribution for each state. intensity_vars\_ (array): shape (n_components, 1). Variance parameters of intensity distribution for each state. """ def __init__(self, n_components=1, min_var=1e-5, startprob_prior=1.0, transmat_prior=1.0, algorithm="viterbi", random_state=None, n_iter=10, tol=1e-2, verbose=False, params="stdmv", init_params="stdmv"): _BaseHMM.__init__(self, n_components, startprob_prior=startprob_prior, transmat_prior=transmat_prior, algorithm=algorithm, random_state=random_state, n_iter=n_iter, tol=tol, params=params, verbose=verbose, init_params=init_params) self.min_var = min_var def _check(self): super()._check() self.diffusivities_ = numpy.asarray(self.diffusivities_) assert self.diffusivities_.shape == (self.n_components, 1) self.intensity_means_ = numpy.asarray(self.intensity_means_) assert self.intensity_means_.shape == (self.n_components, 1) self.intensity_vars_ =
numpy.asarray(self.intensity_vars_)
numpy.asarray
# -*- coding: utf-8 -*- import numpy as np from neural import activations, costs __all__ = ["NeuralNetwork", "activations", "costs"] class NeuralNetwork(object): """A Feed-forward Neural Network""" def __init__(self, sizes, activations, cost=costs.quad_cost, stddev=1.0): if not hasattr(activations, '__iter__'): activations = [activations] * (len(sizes) - 1) self.activations = activations self.cost = cost self.weights = [] for i in range(1, len(sizes) - 1): r = 2 * np.random.normal( size=(sizes[i - 1] + 1, sizes[i] + 1), scale=stddev ) - 1 self.weights.append(r) r = 2 * np.random.normal( size=(sizes[-2] + 1, sizes[-1]), scale=stddev ) - 1 self.weights.append(r) self.layer_count = len(self.weights) def train( self, x, y, alpha=0.2, epochs=100, batch_size=1, momentum=0, use_softcross=False, after_epoch=None ): """Train the network on a set of input/output values.""" # TODO: make biases work properly # Reshape target data prev_adj = [0] * self.layer_count ys = np.array(y) while ys.ndim < 2: ys = np.expand_dims(ys, -1) # Add bias to input data xs = np.array(x, ndmin=2) xs = np.concatenate(( xs, np.ones((xs.shape[0], 1)) ), axis=1) num_cases = xs.shape[0] # Chunk cases into batches if batch_size < 1: # Full-batch learning batch_size = ys.shape[0] i_batches =
np.array_split(xs, num_cases // batch_size)
numpy.array_split
import os import time from typing import Union from typing import Optional from typing import Tuple from gym import Env import numpy as np import cv2 as cv import tensorflow as tf physical_devices = tf.config.experimental.list_physical_devices('GPU') tf.config.experimental.set_memory_growth(physical_devices[0], True) from dqn.agents import DQNAgent from dqn.environments import GameWrapper, game_wrapper class Agent(): def __init__( self, env: Union[str, Env], input_shape: Tuple[int]=(84, 84), batch_size: int=4, history_length: int=4, learning_rate: float=0.00001, grad_descent_freq: int=4, target_update_freq: int=1000, max_frames: int=30000000, max_episode_length: int=18000, frames_between_eval: int=100000, eval_length: int=10000, gamma: float=0.99, # discount factor replay_buffer_start_size: int=50000, replay_buffer_size: int=100000, no_op_steps: int=20, save_path: Optional[str]='agent-checkpoints', load_replay_buffer: bool=True, use_tensorboard: bool=True, tensorboard_path: Optional[str]='trainer-tensorboard', priority_scale: float=0.7, clip_reward: bool=True, use_per: bool=False) -> None: self.max_frames = max_frames self.grad_descent_freq = grad_descent_freq self.target_update_freq = target_update_freq self.max_episode_length = max_episode_length self.frames_between_eval = frames_between_eval self.eval_length = eval_length self.gamma = gamma self.priority_scale = priority_scale self.clip_reward = clip_reward self.replay_buffer_start_size = replay_buffer_start_size self.batch_size = batch_size self.load_replay_buffer = load_replay_buffer self.use_tensorboard = use_tensorboard # self.tensorboard_path = tensorboard_path self.save_path = save_path self.game_wrapper = GameWrapper(env, no_op_steps=no_op_steps) self.agent = DQNAgent( n_actions=self.game_wrapper.env.action_space.n, input_shape=input_shape, batch_size=batch_size, history_length=history_length, learning_rate=learning_rate, max_frames=max_frames, replay_buffer_size=replay_buffer_size, replay_buffer_start_size=replay_buffer_start_size, use_per=use_per) self.logger = tf.summary.create_file_writer(tensorboard_path) self.frame_number: int = 0 self.rewards: list = [] self.loss_list: list = [] self._is_exist_load_saved_agent_from(self.save_path) def load(self, path: str) -> None: print(f'Loading from {path}') meta = self.agent.load(path, self.load_replay_buffer) self.frame_number = meta['frame_number'] self.rewards = meta['rewards'] self.loss_list = meta['loss_list'] print(f'Loaded from {path}') def run(self) -> None: try: with self.logger.as_default(): while self.frame_number < self.max_frames: # Why this need to be a while eval_interval = 0 while eval_interval < self.frames_between_eval: start_time = time.time() self.game_wrapper.reset() life_lost: bool = True episode_reward_sum: int = 0 for _ in range(self.max_episode_length): action = self.agent.get_action(self.game_wrapper.state, frame_number=self.frame_number) processed_frame, reward, terminal, life_lost, frame = self.game_wrapper.step(action) # Show game cv.imshow('Game', frame) if cv.waitKey(1) & 0xFF == ord('q'): raise KeyboardInterrupt self.frame_number += 1 eval_interval += 1 episode_reward_sum += reward self.agent.add_experience( action=action, frame=processed_frame[:, :, 0], reward=reward, clip_reward=self.clip_reward, terminal=terminal) if self.frame_number % self.grad_descent_freq == 0 and self.frame_number > self.replay_buffer_start_size: loss, _ = self.agent.learn( gamma=self.gamma, frame_number=self.frame_number, priority_scale=self.priority_scale) self.loss_list.append(loss) if self.frame_number % self.target_update_freq == 0 and self.frame_number > self.replay_buffer_start_size: self.agent.update_target_network() if terminal: terminal = False break self.rewards.append(episode_reward_sum) if len(self.rewards) % 10 == 0: if self.use_tensorboard: tf.summary.scalar('Reward', np.mean(self.rewards[-10:]), self.frame_number) tf.summary.scalar('Loss', np.mean(self.loss_list[-100:]), self.frame_number) self.logger.flush() print(f'Game number: {str(len(self.rewards)).zfill(6)} Frame number: {str(self.frame_number).zfill(8)} Average reward: {
np.mean(self.rewards[-10:])
numpy.mean
# Copyright 2020 The PyMC Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import numpy as np import numpy.testing as npt import pymc3 from pymc3.aesaraf import floatX from pymc3.step_methods.hmc.base_hmc import BaseHMC from pymc3.tests import models logger = logging.getLogger("pymc3") def test_leapfrog_reversible(): n = 3
np.random.seed(42)
numpy.random.seed
import os import numpy as np import pandas as pd import codecs, json import math def cal_varn_4 (data_num) : mat = np.cov(data_num.T) mat = np.diag(np.diag(mat)) return np.divide(mat,100) def generate_num_neighbors_4 (inst_num, n, varn): return np.random.multivariate_normal(inst_num,varn,n) def generate_categ_neighbors_4 (inst_categ,n ,mat_nb_categ,special) : rs = np.random.RandomState() p_categ = np.size(inst_categ) categ_neigh = np.zeros(n*p_categ).reshape(n,p_categ) for j in range(0,p_categ) : med = int(n/2) if j in special : categ_neigh[:med,j] = inst_categ[j] - 1 else : categ_neigh[:med,j] = inst_categ[j] categ_neigh[med:,j] = rs.choice(mat_nb_categ[j], size=(1, med))[0] return categ_neigh def generate_all_neighbors_4(data, num_indices, categ_indices, mat_nb_categ, n_neigh,special) : list_neigh = [] n =
np.size(data,0)
numpy.size
"""This module handles Planck's law of blackbody radiation. **Global Variables** * ``pysynphot.planck.H`` - Planck's constant in CGS units. * ``pysynphot.planck.HS`` - Planck's constant in SI units. * ``pysynphot.planck.C`` - Speed of light in SI units. * ``pysynphot.planck.K`` - Boltzmann constant in SI units. These are used in calculations to prevent floating point overflow, as defined in IRAF STSDAS SYNPHOT ``bbfunc`` task: * ``pysynphot.planck.LOWER`` * ``pysynphot.planck.UPPER`` These are constants used in :func:`llam_SI`: * ``pysynphot.planck.C1`` - Power :math:`\\times` unit area per steradian. * ``pysynphot.planck.C2`` This is used in :func:`bb_photlam_arcsec`: * ``pysynphot.planck.F`` - Factor for conversion from :math:`\\textnormal{m}^{2} \\; \\textnormal{sr}^{-1} \\; \\textnormal{m}^{-1}` to :math:`\\textnormal{cm}^{2} \\; \\textnormal{arcsec}^{-2} \\; \\AA^{-1}`. """ from __future__ import division import math import numpy as N H = 6.6262E-27 # Planck's constant in cgs units HS = 6.6262E-34 # Planck's constant in standard units C = 2.997925E+8 # speed of light in standard units K = 1.38062E-23 # Boltzmann constant in standard units C1 = 2.0 * HS * C * C # Power * unit area / steradian C2 = HS * C / K # Anand's original comments for the F factor: # # >>> af = 0.01 * 0.01 # per m^2 --> per cm^2 # >>> af # 0.0001 # >>> sf = 206265.0 * 206265.0 # >>> sf = 1/sf # >>> sf # per sr --> per sqarcsec # 2.3504386381829067e-11 # >>> af * sf # 2.3504386381829069e-15 # >>> af * sf * 1.0e-10 # per m --> per Angstrom # 2.3504386381829069e-25 # F = 2.3504386381829069E-25 # convert from m^2/steradian/m to # cm^2/sq.arcsec/A (see below) LOWER = 1.0E-4 # taken from synphot's bbfunc. UPPER = 85. def bbfunc(wave, temperature): """Evaluate Planck's law in ``photlam`` (per steradian). .. note:: Adapted from IRAF STSDAS SYNPHOT ``bbfunc`` task. Parameters ---------- wave : array_like Wavelength values in Angstrom. temperature : float Blackbody temperature in Kelvin. Returns ------- result : array_like Blackbody radiation in ``photlam`` per steradian. """ x = wave * temperature mask = N.where(x > 0.0, 1, 0) x =
N.where(mask==1, 1.43883E8 / x, 0.0)
numpy.where
import argparse from collections import deque import numpy as np from sklearn.preprocessing import StandardScaler import tensorflow as tf from tensorflow.python import keras as K from PIL import Image import gym import gym_ple from fn_framework import FNAgent, Trainer, Observer tf.compat.v1.disable_eager_execution() class ActorCriticAgent(FNAgent): def __init__(self, actions): # ActorCriticAgent uses self policy (doesn't use epsilon). super().__init__(epsilon=0.0, actions=actions) self._updater = None @classmethod def load(cls, env, model_path): actions = list(range(env.action_space.n)) agent = cls(actions) agent.model = K.models.load_model(model_path, custom_objects={ "SampleLayer": SampleLayer}) agent.initialized = True return agent def initialize(self, experiences, optimizer): feature_shape = experiences[0].s.shape self.make_model(feature_shape) self.set_updater(optimizer) self.initialized = True print("Done initialization. From now, begin training!") def make_model(self, feature_shape): normal = K.initializers.glorot_normal() model = K.Sequential() model.add(K.layers.Conv2D( 32, kernel_size=8, strides=4, padding="same", input_shape=feature_shape, kernel_initializer=normal, activation="relu")) model.add(K.layers.Conv2D( 64, kernel_size=4, strides=2, padding="same", kernel_initializer=normal, activation="relu")) model.add(K.layers.Conv2D( 64, kernel_size=3, strides=1, padding="same", kernel_initializer=normal, activation="relu")) model.add(K.layers.Flatten()) model.add(K.layers.Dense(256, kernel_initializer=normal, activation="relu")) actor_layer = K.layers.Dense(len(self.actions), kernel_initializer=normal) action_evals = actor_layer(model.output) actions = SampleLayer()(action_evals) critic_layer = K.layers.Dense(1, kernel_initializer=normal) values = critic_layer(model.output) self.model = K.Model(inputs=model.input, outputs=[actions, action_evals, values]) def set_updater(self, optimizer, value_loss_weight=1.0, entropy_weight=0.1): actions = tf.compat.v1.placeholder(shape=(None), dtype="int32") values = tf.compat.v1.placeholder(shape=(None), dtype="float32") _, action_evals, estimateds = self.model.output neg_logs = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=action_evals, labels=actions) # tf.stop_gradient: Prevent policy_loss influences critic_layer. advantages = values - tf.stop_gradient(estimateds) policy_loss = tf.reduce_mean(neg_logs * advantages) value_loss = tf.keras.losses.MeanSquaredError()(values, estimateds) action_entropy = tf.reduce_mean(self.categorical_entropy(action_evals)) loss = policy_loss + value_loss_weight * value_loss loss -= entropy_weight * action_entropy updates = optimizer.get_updates(loss=loss, params=self.model.trainable_weights) self._updater = K.backend.function( inputs=[self.model.input, actions, values], outputs=[loss, policy_loss, value_loss, tf.reduce_mean(neg_logs), tf.reduce_mean(advantages), action_entropy], updates=updates) def categorical_entropy(self, logits): """ From OpenAI baseline implementation. https://github.com/openai/baselines/blob/master/baselines/common/distributions.py#L192 """ a0 = logits - tf.reduce_max(logits, axis=-1, keepdims=True) ea0 = tf.exp(a0) z0 = tf.reduce_sum(ea0, axis=-1, keepdims=True) p0 = ea0 / z0 return tf.reduce_sum(p0 * (tf.math.log(z0) - a0), axis=-1) def policy(self, s): if not self.initialized: return np.random.randint(len(self.actions)) else: action, action_evals, values = self.model.predict(np.array([s])) return action[0] def estimate(self, s): action, action_evals, values = self.model.predict(np.array([s])) return values[0][0] def update(self, states, actions, rewards): return self._updater([states, actions, rewards]) class SampleLayer(K.layers.Layer): def __init__(self, **kwargs): self.output_dim = 1 # sample one action from evaluations super(SampleLayer, self).__init__(**kwargs) def build(self, input_shape): super(SampleLayer, self).build(input_shape) def call(self, x): noise = tf.random.uniform(tf.shape(x)) return tf.argmax(x - tf.math.log(-tf.math.log(noise)), axis=1) def compute_output_shape(self, input_shape): return (input_shape[0], self.output_dim) class ActorCriticAgentTest(ActorCriticAgent): def make_model(self, feature_shape): normal = K.initializers.glorot_normal() model = K.Sequential() model.add(K.layers.Dense(10, input_shape=feature_shape, kernel_initializer=normal, activation="relu")) model.add(K.layers.Dense(10, kernel_initializer=normal, activation="relu")) actor_layer = K.layers.Dense(len(self.actions), kernel_initializer=normal) action_evals = actor_layer(model.output) actions = SampleLayer()(action_evals) critic_layer = K.layers.Dense(1, kernel_initializer=normal) values = critic_layer(model.output) self.model = K.Model(inputs=model.input, outputs=[actions, action_evals, values]) class CatcherObserver(Observer): def __init__(self, env, width, height, frame_count): super().__init__(env) self.width = width self.height = height self.frame_count = frame_count self._frames = deque(maxlen=frame_count) def transform(self, state): grayed = Image.fromarray(state).convert("L") resized = grayed.resize((self.width, self.height)) resized = np.array(resized).astype("float") normalized = resized / 255.0 # scale to 0~1 if len(self._frames) == 0: for i in range(self.frame_count): self._frames.append(normalized) else: self._frames.append(normalized) feature =
np.array(self._frames)
numpy.array
#!/usr/bin/env python # # test_fsl_ents.py - # # Author: <NAME> <<EMAIL>> # import sys import numpy as np import pytest import fsl.utils.tempdir as tempdir import fsl.scripts.fsl_ents as extn def test_genComponentIndexList(): with tempdir.tempdir(): # sequence of 1-indexed integers/file paths icomps = [1, 5, 28, 12, 42, 54] fcomps1 = [1, 4, 6, 3, 7] fcomps2 = [12, 42, 31, 1, 4, 8] with open('comps1.txt', 'wt') as f: f.write(','.join([str(l) for l in fcomps1])) with open('comps2.txt', 'wt') as f: f.write(','.join([str(l) for l in fcomps2])) ncomps = 60 comps = icomps + ['comps1.txt', 'comps2.txt'] expcomps = list(sorted(set(icomps + fcomps1 + fcomps2))) expcomps = [c - 1 for c in expcomps] assert extn.genComponentIndexList(comps, ncomps) == expcomps with pytest.raises(ValueError): extn.genComponentIndexList(comps + [-1], 60) with pytest.raises(ValueError): extn.genComponentIndexList(comps, 40) def test_loadConfoundFiles(): with tempdir.tempdir(): npts = 50 confs = [ np.random.randint(1, 100, (50, 10)), np.random.randint(1, 100, (50, 1)), np.random.randint(1, 100, (50, 5))] badconfs = [ np.random.randint(1, 100, (40, 10)), np.random.randint(1, 100, (60, 10))] expected = np.empty((50, 16), dtype=np.float64) expected[:, :] = np.nan expected[:, :10] = confs[0] expected[:, 10:11] = confs[1] expected[:, 11:16] = confs[2] conffiles = [] for i, c in enumerate(confs): fname = 'conf{}.txt'.format(i) conffiles.append(fname) np.savetxt(fname, c) result = extn.loadConfoundFiles(conffiles, npts) amask = ~np.isnan(expected) assert np.all(~np.isnan(result) == amask) assert np.all(result[amask] == expected[amask]) assert np.all(result[amask] == expected[amask]) badconfs = [ np.random.randint(1, 100, (40, 10)), np.random.randint(1, 100, (60, 10))] conffiles = [] for i, c in enumerate(badconfs): fname = 'conf{}.txt'.format(i) conffiles.append(fname) np.savetxt(fname, c) with pytest.raises(ValueError): extn.loadConfoundFiles(conffiles, npts) def test_fsl_ents(): with tempdir.tempdir() as td: # (npts, ncomps) melmix = np.random.randint(1, 100, (100, 20)) np.savetxt('melodic_mix', melmix) sys.argv = ['fsl_ents', td] + '-o out.txt 1 2 3'.split() extn.main() assert np.all(
np.loadtxt('out.txt')
numpy.loadtxt
import itasca import math import numpy as np itasca.command(""" set echo off call AE_postprocess2D.dat set echo on """) def AE_draw_ball(r_min,r_max): #绘制事件的效果图 itasca.fish.set('r_min',r_min) itasca.fish.set('r_max',r_max) itasca.fish.call_function('AE_draw_ball') print('Finsh draw_ball') def cal_ratio_R(): #计算事件矩张量R值 hit_num = itasca.fish.get('hit_num') if hit_num > 0: for num_h in range(1,hit_num+1): itasca.fish.set('num_h',num_h) itasca.fish.call_function('copy_data') m1 = itasca.fish.get('m_xx') m2 = itasca.fish.get('m_xy') m3 = itasca.fish.get('m_yx') m4 = itasca.fish.get('m_yy') m = [[m1, m2],[m3,m4]] lis = np.array(m) instead=np.linalg.eig(lis) m_1 = instead[0][0] m_2 = instead[0][1] m_3 = 0 #2D模拟,m_3为0 if m_1 == 0 and m_2 == 0 and m_3 == 0: print('The eigenvalue is equal to zero. Pass!') elif np.isnan(m_1) or np.isnan(m_2) or np.isnan(m_3): print('The eigenvalue is equal to nan. Pass!') else: M_0_new = math.sqrt((math.pow(m_1,2) + math.pow(m_2,2) + math.pow(m_3,2))/2) M_0 = itasca.fish.get('M_0') M_w = itasca.fish.get('M_w') if M_0 <= M_0_new: M_0 = M_0_new M_w = 2*math.log10(M_0)/3 - 6 tr_M = m_1 + m_2 #+ m_3 sum_m = abs(m_1-tr_M/2) + abs(m_2-tr_M/2) #+ abs(m_3-tr_M/3) value_R = tr_M*100/(abs(tr_M)+sum_m) if isinstance(m_1,complex) or isinstance(m_2,complex): print('The m_1 or m_2 is complex. Pass!') itasca.fish.set('m_1',0) itasca.fish.set('m_2',0) else: itasca.fish.set('m_1',m_1) itasca.fish.set('m_2',m_2) itasca.fish.set('M_0',M_0) itasca.fish.set('M_w',M_w) if isinstance(value_R,complex): print('The value_R is complex. Pass!') itasca.fish.set('value_R',200) else: itasca.fish.set('value_R',value_R) itasca.fish.call_function('assign_data') def draw_ratio_R(end_time,r_R): #绘事件矩张量R值形状图 itasca.fish.call_function('draw_R_main') hit_num = itasca.fish.get('hit_num') itasca.fish.set('r_R',r_R) for num_h in range(1,hit_num+1): itasca.fish.set('num_h',num_h) itasca.fish.call_function('copy_data') hit_begin = itasca.fish.get('hit_begin') if end_time == 0 or hit_begin <= end_time: #设置截止时间s,0绘制全部结果 itasca.fish.call_function('draw_ratio_R') print('Finsh draw_ratio_R') def draw_tensor(): #绘制事件矩张量图 hit_num = itasca.fish.get('hit_num') itasca.fish.call_function('delete_vector') for num_t in range(1,hit_num+1): itasca.fish.set('num_t',num_t) itasca.fish.call_function('copy_data') #t_now = itasca.fish.get('t_now') #AE_long = itasca.fish.get('AE_long') #if t_now > AE_long: m1 = itasca.fish.get('m_xx') m2 = itasca.fish.get('m_xy') m3 = itasca.fish.get('m_yx') m4 = itasca.fish.get('m_yy') m = [[m1, m2],[m3,m4]] lis =
np.array(m)
numpy.array
from itertools import islice import numpy as np from scrtbp.system import coeffs from scrtbp.taylor import integrators def test_fixed_stepper(): mu = 0.01215 taylor_params = coeffs.generate_taylor_coeffs(mu) period = 21.1810525829419 n_points = 70 step = period / (n_points - 1) order = 20 solve = integrators.generate_fixed_step_integrator(taylor_params, step, order) init_cond = np.array( [ 0.440148176542848, 0.783403421942971, 0.0, -0.905419824338076, 0.540413382924902, 0.0, ] ) points = solve(init_cond, n_points) assert np.allclose(points[0], points[-1], 0.0, 1e-14) def test_adaptive_dense_integration(): mu = 0.01215 taylor_params = coeffs.generate_taylor_coeffs(mu) order = 20 solve = integrators.generate_adaptive_dense_integrator( taylor_params, order, tol_abs=1e-16, tol_rel=1e-16 ) init_cond = np.array( [ 0.440148176542848, 0.783403421942971, 0.0, -0.905419824338076, 0.540413382924902, 0.0, ] ) period = 21.1810525829419 t = np.linspace(0.0, period, 1000, endpoint=True) points = solve(init_cond, t) assert np.allclose(points[0], points[-1], 0.0, 1e-14) def test_adaptive_fixed_integration(): mu = 0.01215 taylor_params = coeffs.generate_taylor_coeffs(mu) order = 20 def exit_condition(state): y = state[1] return y < 0.2 solve = integrators.generate_fixed_step_adaptive_integrator( taylor_params, order, tol_abs=1e-16, tol_rel=1e-16, py_exit_condition=exit_condition, ) init_cond = np.array( [0.39785, 0.7101408311032396, 0.0, -0.9860206223973105, 0.5715886728443681, 0.0] ) points = solve(init_cond, 20, 5.0) assert points.shape[0] == 20 last_state = np.array( [ -0.13265194931562035, 1.0531334795398335, 0.0, -0.9420753032804786, -0.08777226445063985, 0.0, ] ) assert
np.allclose(last_state, points[-1], 0.0, 1e-14)
numpy.allclose
import matplotlib matplotlib.use('TkAgg') import numpy as np from scipy.spatial import cKDTree from models import BoundingBox, Frame from os.path import join, isfile from os import listdir from oxt import load_oxts_lite_data, oxts2pose from frame_handler import FrameHandler from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import time class BoundingBoxPredictor(): def __init__(self, frame_handler): self.n_segs = (1,1) self.n_iter=5 self.n_lpr=500 self.th_seeds=.4 self.th_dist=.2 self.frame_handler = frame_handler self.oxt_path = "oxts/" self.oxts = {drive: load_oxts_lite_data(join(FrameHandler.DATASET_DIR, drive), self.frame_handler.drives[drive]) for drive in self.frame_handler.drives.keys()} self.poses = {drive: oxts2pose(self.oxts[drive]) for drive in self.oxts.keys()} def transform_coords(self, fname, x, inv=False): if x.size == 2: x = np.append(x, [0, 1]) if x.size == 3: x = np.append(x, [1]) idx = self.frame_handler.frame_names.index(fname) transform = self.poses[idx] if inv: transform = np.linalg.inv(transform) return transform @ x def get_velocities(self, prev_frame, cur_frame, ref_fname): bounding_boxes = sorted(cur_frame.bounding_boxes, key=lambda box: box.box_id) velocities = {} prev_frame_bounding_boxes = {box.box_id:box for box in prev_frame.bounding_boxes} for i, box in enumerate(bounding_boxes): box_id = box.box_id print(box_id) cur_center = box.center if box_id in prev_frame_bounding_boxes: prev_center = prev_frame_bounding_boxes[box_id].center cur_center_corr = self.transform_coords(cur_frame.fname, cur_center) prev_center_corr = self.transform_coords(prev_frame.fname, prev_center) velocities[box_id] = self.transform_coords(ref_fname, cur_center - prev_center, inv=True)[:2] return velocities def predict_next_frame_bounding_boxes(self, frame): drivename, fname = frame.fname.split('.')[0].split("/") print(self.frame_handler.drives[drivename]) idx = self.frame_handler.drives[drivename].index(fname) next_fname = self.frame_handler.drives[drivename][idx+1] pc = self.frame_handler.get_pointcloud(drivename, fname, dtype=float, ground_removed=True) next_pc = self.frame_handler.get_pointcloud(drivename, next_fname, dtype=float, ground_removed=True) print(fname) print([box.box_id for box in frame.bounding_boxes]) bounding_boxes = sorted(frame.bounding_boxes, key=lambda box:box.box_id) centers = {box.box_id:box.center for box in bounding_boxes} velocities = {box_id:np.zeros(2) for box_id in centers.keys()} next_pc[:,2] = 0 next_pc = next_pc[:,:3] np.random.shuffle(next_pc) next_pc_small = next_pc[::4] next_bounding_boxes = {} for bounding_box in bounding_boxes: try: next_bounding_boxes[str(bounding_box.box_id)] = self._predict_next_frame_bounding_box(bounding_box, next_pc_small) except: pass # next_bounding_boxes = {str(bounding_box.box_id):self._predict_next_frame_bounding_box(bounding_box, next_pc_small) # for bounding_box in bounding_boxes} return next_bounding_boxes def _predict_next_frame_bounding_box(self, bounding_box, pc): start = time.time() without_cluster, cluster = bounding_box.filter_pointcloud(pc) np.random.shuffle(cluster) sample_indices = [] kd_tree = cKDTree(pc) # for point in cluster: # dists, nn_indices = kd_tree.query(point, 1) # sample_indices.append(nn_indices) point = np.mean(cluster, axis=0) #trim png dists, ii = kd_tree.query(point, len(pc)) cutoff_idx = np.where(dists < 6)[0][-1] pc_trimmed = pc[ii[:cutoff_idx]] np.random.shuffle(pc_trimmed) if pc_trimmed.shape[0] > 5000: pc_trimmed = pc_trimmed[::4] elif pc_trimmed.shape[0] > 2500: pc_trimmed = pc_trimmed[::2] pc_trimmed = pc_trimmed[::2] kd_tree = cKDTree(pc_trimmed) # Create random starting points for clustering algorithm # std = .3 # seeds = np.random.randn(100, 3) * std + point # seeds = np.vstack((point, seeds)) # seeds = kd_tree.query(point, 50) dists, sample_indices = kd_tree.query(point, 50) # cluster_res = self.find_cluster(sample_indices, pc_trimmed, th_dist=.4, num_nn=20, num_samples=20) # edges, corners = self.search_rectangle_fit(cluster_res['cluster'], variance_criterion) res = self.predict_bounding_box(point, pc, num_seeds=5, plot=False) print("time to predict bounding box: ", time.time() - start) # return self.corners_to_bounding_box(corners, context=bounding_box) return res def corners_to_bounding_box(self, corners, context=None): sorted_corners = sorted(corners, key=lambda x:x[1]) if sorted_corners[2][0] > sorted_corners[3][0]: sorted_corners[2], sorted_corners[3] = sorted_corners[3], sorted_corners[2] if sorted_corners[0][0] > sorted_corners[1][0]: sorted_corners[0], sorted_corners[1] = sorted_corners[1], sorted_corners[0] top_right_corner = sorted_corners[3] top_left_corner = sorted_corners[2] bottom_left_corner = sorted_corners[0] bottom_right_corner = sorted_corners[1] center = np.mean(np.vstack((top_right_corner, bottom_left_corner)), axis=0) w = np.linalg.norm(top_right_corner - top_left_corner) l = np.linalg.norm(top_left_corner[1] - bottom_left_corner[1]) if w < l: w, l = l, w top_left_corner, top_right_corner, bottom_right_corner, bottom_left_corner = top_right_corner, bottom_right_corner, bottom_left_corner, top_left_corner top_right_corner = top_right_corner - top_left_corner angle = np.arctan2(top_right_corner[1], top_right_corner[0]) top_right_corner += top_left_corner if context: candidate_angles = np.array([angle-np.pi, angle, angle+np.pi]) prev_angle = context.angle angle = candidate_angles[np.argmin(np.abs(candidate_angles - prev_angle))] bounding_box = {"center":center.tolist(), "angle":angle, "width":w, "length":l, "corner1":top_right_corner.tolist(), "corner2":bottom_left_corner.tolist()} return bounding_box def predict_bounding_box(self, point, pc, num_seeds=5, plot=False): # png = self.ground_plane_fitting(pc)["png"] print("point: {}".format(point)) assert len(pc.shape) == 2, "pointcloud must have 2-dimensional shape" png = pc if png.shape[1] == 4: png = png[:,:3] if point.size == 2: point = np.append(point, [0]) if point.size == 4: point = point[:3] png[:,2] = 0 kd_tree = cKDTree(png) print(len(png)) #trim png dists, ii = kd_tree.query(point, len(png)) cutoff_idx = np.where(dists < 6)[0][-1] png_trimmed = png[ii[:cutoff_idx]] print(png_trimmed.shape) np.random.shuffle(png_trimmed) if png_trimmed.shape[0] > 5000: png_trimmed = png_trimmed[::4] elif png_trimmed.shape[0] > 2500: png_trimmed = png_trimmed[::2] kd_tree = cKDTree(png_trimmed) # Create random starting points for clustering algorithm std = .1 seeds = np.random.randn(num_seeds, 3) * std + point seeds = np.vstack((point, seeds)) dists, sample_indices = kd_tree.query(seeds) cluster_res = self.find_cluster(sample_indices, png_trimmed, th_dist=.5, num_nn=20, num_samples=20) edges, corners = self.search_rectangle_fit(cluster_res["cluster"], variance_criterion) if plot: fig = plt.figure(figsize=(8,8)) plt.scatter(cluster_res["cluster"][:,1], cluster_res["cluster"][:,0], c='g') plt.scatter(corners[:,1], corners[:,0], c='r') self.plot_edges(corners) plt.show() return self.corners_to_bounding_box(corners) def plot_edges(self, corners, num_samples=100, c='r', label=''): for i in range(4): v1, v2 = corners[i], corners[(i+1)%4] x = np.linspace(v1[0], v2[0], num_samples) y = np.linspace(v1[1], v2[1], num_samples) plt.plot(y, x, c=c, label=label) def search_farthest_nearest_neighbor(self, point, kd_tree, th_dist): num_nn = 2 dists, nn_indices = kd_tree.query(point, num_nn) # print("th dist: ", th_dist) while (dists[-1] < th_dist): num_nn = num_nn * 2 dists, nn_indices = kd_tree.query(point, num_nn) return dists, nn_indices def find_cluster(self, sample_indices, pc, th_dist=.2, density_thresh=10, num_nn=16, num_samples=20, overlap_thresh=.2): clusters = [] seen_indices = [] kd_tree = cKDTree(pc) for idx in sample_indices[:num_samples]: cluster = [] queue = [] seen = set() seen.add(idx) queue.append(idx) while len(queue): idx = queue.pop(0) point = pc[idx] cluster.append(point) dists, nn_indices = self.search_farthest_nearest_neighbor(point, kd_tree, th_dist) # dists, nn_indices = kd_tree.query(point, num_nn) if (len(nn_indices) > density_thresh): for i in range(len(nn_indices)): if nn_indices[i] not in seen and dists[i] < th_dist: seen.add(nn_indices[i]) queue.append(nn_indices[i]) clusters.append(np.vstack(cluster)) seen_indices.append(np.array(list(seen))) overlapping_clusters = [] # for i in range(len(seen_indices)): # num_overlapping = sum([len(np.intersect1d(seen_indices[i], seen_indices[j]))/len(seen_indices[i]) > overlap_thresh for j in range(len(seen_indices)) if j!=i]) # overlapping_clusters.append(num_overlapping) # largest_cluster = np.argmax(overlapping_clusters) # res = {"cluster": clusters[largest_cluster], "indices": seen_indices[largest_cluster]} # largest_cluster = np.unique(np.concatenate(seen_indices)) largest_cluster = max(clusters, key=lambda cl:len(cl)) res = {"cluster": largest_cluster, "indices": largest_cluster} return res def ground_plane_fitting(self, pc): x_max, x_min = np.max(pc[:,0]), np.min(pc[:,0]) y_max, y_min = np.max(pc[:,1]), np.min(pc[:,1]) seg_size_x = (x_max - x_min) / self.n_segs[0] seg_size_y = (y_max - y_min) / self.n_segs[1] res_pg = [] res_png = [] for i in range(self.n_segs[0]): for j in range(self.n_segs[1]): indices = np.intersect1d(np.intersect1d(np.where(pc[:,0] >= x_min + i*seg_size_x)[0], np.where(pc[:,0] < x_min + (i+1)*seg_size_x)[0]), np.intersect1d(np.where(pc[:,1] >= y_min + j*seg_size_y)[0], np.where(pc[:,1] < y_min + (j+1)*seg_size_y)[0])) if not len(indices): continue # print(len(indices)) seg = pc[indices] pg = self.extract_initial_seeds(seg, self.n_lpr, self.th_seeds) png = [] for _ in range(self.n_iter): model = self.estimate_plane(pg) pg, png = [], [np.zeros((1, 3))] for p in seg: if model(p) < self.th_dist: pg.append(p) else: png.append(p) # print(len(pg), len(png)) pg, png = np.vstack(pg), np.vstack(png) png = np.delete(png, 0, axis=0) res_pg.append(pg) res_png.append(png) res_pg = np.vstack(list(filter(len, res_pg))) res_png = np.vstack(list(filter(len, res_png))) res = {"pg": pg, "png": png} return res def extract_initial_seeds(self, pc, n_lpr, th_seeds): seeds = [] psorted = np.sort(pc[:,2]) LPR = np.mean(psorted[:self.n_lpr]) for i in range(len(pc)): if pc[i,2] < LPR + self.th_seeds: seeds.append(pc[i]) return np.vstack(seeds) def estimate_plane(self, pg): s_hat = np.mean(pg, axis=0) cov = sum([np.outer(s - s_hat, s - s_hat) for s in pg]) u, s, vh = np.linalg.svd(cov, full_matrices=True) n = vh[2] d = -n @ s_hat def model(p): return abs((p - s_hat) @ n) return model def search_rectangle_fit(self, pc, criterion): pc = pc[:,:2] Q = dict() delta = np.pi / 180 for theta in np.linspace(0, np.pi/2 - delta, 90): e1 = np.array([np.cos(theta), np.sin(theta)]) e2 = np.array([-np.sin(theta), np.cos(theta)]) C1 = pc @ e1 C2 = pc @ e2 q = criterion(C1, C2) Q[theta] = q theta_star = max(Q.items(), key=lambda kv: kv[1])[0] # print(theta_star) C1_star = pc @ np.array([np.cos(theta_star), np.sin(theta_star)]) C2_star = pc @ np.array([-np.sin(theta_star), np.cos(theta_star)]) a1, b1, c1 = np.cos(theta_star), np.sin(theta_star), np.min(C1_star) a2, b2, c2 = -np.sin(theta_star), np.cos(theta_star), np.min(C2_star) a3, b3, c3 = np.cos(theta_star), np.sin(theta_star), np.max(C1_star) a4, b4, c4 = -np.sin(theta_star), np.cos(theta_star), np.max(C2_star) v1 = line_intersection(a1, b1, c1, a2, b2, c2) v2 = line_intersection(a2, b2, c2, a3, b3, c3) v3 = line_intersection(a3, b3, c3, a4, b4, c4) v4 = line_intersection(a1, b1, c1, a4, b4, c4) return [(a1, b1, c1), (a2, b2, c2), (a3, b3, c3), (a4, b4, c4)], np.vstack([v1, v2, v3, v4]) def line_intersection(a1, b1, c1, a2, b2, c2): x = (c1*b2 - c2*b1) / (a1*b2 - a2*b1) y = (c1*a2 - c2*a1) / (b1*a2 - b2*a1) return np.array([x, y]) def variance_criterion(C1, C2): c1_max, c1_min = np.max(C1), np.min(C1) c2_max, c2_min = np.max(C2), np.min(C2) D1 = np.argmin([np.linalg.norm(c1_max - C1), np.linalg.norm(C1 - c1_min)]) D2 = np.argmin([np.linalg.norm(c2_max - C2), np.linalg.norm(C2 - c2_min)]) D1 = [c1_max - C1, C1 - c1_min][D1] D2 = [c2_max - C2, C2 - c2_min][D2] E1 = D1[np.where(D1 < D2)[0]] E2 = D2[np.where(D2 < D1)[0]] gamma = -np.var(E1) - np.var(E2) return gamma def closeness_criterion(C1, C2, d=1e-4): c1_max, c1_min = np.max(C1),
np.min(C1)
numpy.min
""" Genetic algorithm to identify good location for services. Score_matrix: 0: Number of hospitals 1: Average distance 2: Maximum distance 3: Maximum admissions to any one hospital 4: Minimum admissions to any one hospital 5: Proportion patients within target time/distance 6: Proportion patients attending unit with target admission numbers 7: Proportion of patients meeting distance and admissions target 8: 90th percentile travel 9: 95th percentile travel 10: 99th percentile travel Programme written based on objects. For object classes are used each with one instance: """ # Import general libraries import pandas as pd import numpy as np import random as rn import os import sys import datetime from scipy.spatial.distance import pdist class GlobVariables(): """Global variables""" def __init__(self): # Set general model parameters and create output folder if necessary self.pareto_scores_used = [0, 1, 2, 3, 4, 5, 6, 7, 9] self.output_location = 'hospital_regions' self.target_travel = 30 # target distance/time self.target_min_admissions = 100 # target sustainable admissions self.maximum_generations = 300 # generations of genetic algorithm self.fix_hospital_status = False # Allows hospitals to be forced open or closed self.initial_random_population_size = 10000 self.minimum_population_size = 1000 self.maximum_population_size = 20000 self.mutation_rate = 0.005 self.max_crossover_points = 3 self.use_regions = True # Limits choice of hospital to regions self.proportion_new_random_each_generation = 0.05 # Create output folder if neeed self.check_output_folder_exists() return def check_output_folder_exists(self): """Create new folder if folder does not already exist""" if not os.path.exists(self.output_location): os.makedirs(self.output_location) return class Data(): """ Data class loads and stores core data for location algorithm. """ def __init__(self, use_regions, fix_hospital_status): """Initialise data class""" # Define attributes self.admissions = [] self.admissions_index = [] self.hospitals = [] self.travel_matrix = [] self.travel_matrix_LSOA_index = [] self.travel_matrix_hopspital_index = [] self.hospital_count = 0 self.loaded_population = [] self.regions_dictionary = {} # Load data self.load_data() # Identify regions if required if use_regions: self.identify_region() self.create_regions_dictionary(fix_hospital_status) return # Check loaded data indicies for hospitals and LSOAs match def check_loaded_data_indices_match(self): """Check hospitals and LSOAs macth in number and text""" if len(self.admissions_index) != len(self.travel_matrix.index): sys.exit("LSOA admissions different length from travel matrix") check_lsoa_match = (self.travel_matrix.index == self.admissions_index).mean() if not check_lsoa_match == 1: sys.exit("LSOA admission names do not match travel matrix") if len(self.hospitals) != len(list(self.travel_matrix)): sys.exit("Hospital list different length from travel matrix") check_hospital_match = (list(self.travel_matrix) == self.hospitals.index).mean() if not check_hospital_match == 1: sys.exit("Hospital list names do not match travel matrix") return def create_regions_dictionary(self, use_fixed_status): hospitals_region = self.hospitals[['index_#', 'region', 'Fixed']] for index, values in hospitals_region.iterrows(): index_number, region, fix = values index_number = int(index_number) # If using fixed hospitals ignore those with fixed status of -1 if not all((use_fixed_status, fix == -1)): if region in self.regions_dictionary: self.regions_dictionary[region].append(index_number) else: self.regions_dictionary[region] = [index_number] return def identify_region(self): use_admissions_region = True if use_admissions_region: self.admissions_region = self.admissions_with_index['region'] else: # Allocate admissions region to closest possible (used) hospital region mask = self.hospitals['Fixed'] mask = mask.values != -1 mask = mask.flatten() open_hospitals = self.hospitals.loc[mask].index # Get available hospital postcodes masked_matrix = self.travel_matrix.loc[:, open_hospitals] closest_hospital_ID = np.argmin(masked_matrix.values, axis=1) closest_hospital_postcode = open_hospitals[list(closest_hospital_ID)] self.admissions_region = self.hospitals.loc[closest_hospital_postcode]['region'] # Adjust travel matrix so out of region hospitals have infinite travel distances x = list(self.travel_matrix) # list of hospitals in travel matrix matrix_region = list(self.hospitals.loc[x]['region']) # list of regions of hospitals in travel matrix matrix_hospital_region = np.array([matrix_region, ] * len(self.admissions_region)) # repeat list of regions matrix_LSOA_region = np.repeat(self.admissions_region, self.hospitals.shape[0]).values.reshape(len( self.admissions_region), self.hospitals.shape[0]) hospital_not_in_LSOA_region = matrix_LSOA_region != matrix_hospital_region matrix_correction = np.ones(self.travel_matrix.shape) matrix_correction[hospital_not_in_LSOA_region] = np.inf self.travel_matrix += matrix_correction return def load_data(self): print(datetime.datetime.now().strftime("%Y-%m-%d %H:%M"), 'Loading data') # Load hospital list self.hospitals = pd.read_csv('data/hospitals.csv', index_col=0) self.hospital_count = len(self.hospitals) self.hospitals['index_#'] = list(range(0, self.hospital_count)) # Load admissions and split index from data self.admissions_with_index = pd.read_csv('data/admissions.csv') self.admissions_index = self.admissions_with_index['LSOA'] self.admissions = self.admissions_with_index['Admissions'] # Load time/distance matrix self.travel_matrix = pd.read_csv('data/travel_matrix.csv', index_col=0) # Check data indices match self.check_loaded_data_indices_match() # Load initial population if data/load.csv exists try: self.loaded_population = np.loadtxt('data/load.csv', delimiter=',') print(datetime.datetime.now().strftime("%Y-%m-%d %H:%M"), 'Loaded starting population from file') except: print(datetime.datetime.now().strftime("%Y-%m-%d %H:%M"), 'No initial population loaded from file') return class Master(): """ Main algorithm code. 1) Initialise algorithm object and load data """ def __init__(self): """ Set up algorithm environment. Load: Global variables Underlying data for algorithm: List of hospitals Patients by LSOA Travel matrix from all LSOA to all hospitals """ # Set up class environment self.global_vars = GlobVariables() self.data = Data(self.global_vars.use_regions, self.global_vars.fix_hospital_status) self.pop = Pop() self.score = ScorePareto(self.global_vars.maximum_generations) self.generation = 0 return def initialise_population(self): """ This method creates a starting population. This may consist of a) a random population, b) a loaded population, or c) both. """ self.pop.population = [] if self.global_vars.initial_random_population_size > 0: self.pop.population = self.pop.create_random_population( self.global_vars.initial_random_population_size, self.data.hospitals, self.global_vars.fix_hospital_status, self.global_vars.use_regions, self.data.regions_dictionary) if len(self.data.loaded_population) > 0: self.pop.population = np.vstack((self.data.loaded_population, self.pop.population)) self.pop.population = np.unique(self.pop.population, axis=0) return def run_algorithm(self): # Create initial population print(datetime.datetime.now().strftime("%Y-%m-%d %H:%M"), 'Loading coffee and biscuits') print(datetime.datetime.now().strftime("%Y-%m-%d %H:%M"), 'Starting generations') self.initialise_population() (self.pop.population, pareto_size) = self.select_population(0) # 0 indicates base generation print(datetime.datetime.now().strftime("%Y-%m-%d %H:%M"), 'Generation: %3.0f Patients in target ' 'distance/admissions: %1.4f Hamming: %1.4f Pareto size: %6.0f' \ % (0, self.score.progress_track[0], self.score.hamming[0], pareto_size)) for gen in range(1, self.global_vars.maximum_generations): # Add new random population new_population_members_required = (int(self.pop.population.shape[ 0] * self.global_vars.proportion_new_random_each_generation) + 1) new_population = self.pop.create_random_population( new_population_members_required, self.data.hospitals, self.global_vars.fix_hospital_status, self.global_vars.use_regions, self.data.regions_dictionary) # Combine populations before breeding self.pop.population = np.vstack((self.pop.population, new_population)) # Get new children child_population = (self.pop.generate_child_population( self.global_vars.max_crossover_points, self.global_vars.mutation_rate, self.data.hospitals, self.global_vars.fix_hospital_status)) # Combine populations self.pop.population = np.vstack((self.pop.population, child_population)) # Remove scenarios with no hospitals check_hospitals = np.sum(self.pop.population, axis=1) > 0 self.pop.population = self.pop.population[check_hospitals, :] # Remove non-unique rows self.pop.population = np.unique(self.pop.population, axis=0) # Select new Pareto front population (self.pop.population, pareto_size) = self.select_population(gen) print(datetime.datetime.now().strftime("%Y-%m-%d %H:%M"), 'Generation: %3.0f Patients in target ' 'distance/admissions: %1.4f Hamming: %1.4f Pareto size: %6.0f' \ % (gen, self.score.progress_track[gen], self.score.hamming[gen], pareto_size)) print(datetime.datetime.now().strftime("%Y-%m-%d %H:%M"), 'End\n') return def save_pareto(self, scores, population, admissions): """Save latest Pareto front each generation""" scores_headers = (['#Hosp', 'Av_travel', 'Max_travel', 'Max_admissions', 'Min_admissions', 'Target_travel', 'Target_admissions', 'Target_travel+distance', '90th percentile travel', '95th percentile travel', '99th percentile travel']) hospital_headers = self.data.hospitals.index scores_df = pd.DataFrame(scores, columns=scores_headers) scores_df.index.name = 'Index' population_df = pd.DataFrame(population, columns=hospital_headers) population_df.index.name = 'Index' admissions_df = pd.DataFrame(admissions, columns=hospital_headers) admissions_df.index.name = 'Index' scores_df.to_csv(self.global_vars.output_location + '/scores.csv') population_df.to_csv(self.global_vars.output_location + '/population.csv') admissions_df.to_csv(self.global_vars.output_location + '/admissions.csv') return def select_population(self, generation): # Score population (self.score.scores, self.score.hospital_admissions) = ( self.score.score_pop(self.pop.population, self.data.travel_matrix.values, self.data.admissions, self.global_vars.target_travel, self.global_vars.target_min_admissions, self.data.hospital_count)) # When regionalisation is selected remove solution where some patients are unallocated if self.global_vars.use_regions: mask = self.score.scores[:, 1] != np.inf if sum(mask) == 0: sys.exit("No feasible solutions in population. Exiting.") self.score.scores = self.score.scores[mask, :] self.score.hospital_admissions = self.score.hospital_admissions[mask, :] self.pop.population = self.pop.population[mask, :] # Check solution population is at least the minimum taregt population if self.score.scores.shape[0] < self.global_vars.minimum_population_size: # Population too small do not select from within population new_population = self.pop.population new_population_ids = np.arange(0, new_population.shape[0]) new_population_scores = self.score.scores if len(new_population_ids) < 20000: hamming = np.average(pdist(new_population, 'hamming')) else: hamming = 999 pareto_front = self.score.identify_pareto(new_population_scores, self.global_vars.pareto_scores_used) pareto_size = sum(pareto_front) self.save_pareto(new_population_scores, new_population, self.score.hospital_admissions) self.score.hamming[generation] = hamming print('No selection this generation; feasible solution population too small') else: unselected_scores = self.score.scores unselected_population_ids = np.arange(0, self.pop.population.shape[0]) # First Pareto front pareto_front = self.score.identify_pareto(unselected_scores, self.global_vars.pareto_scores_used) selected_population_ids = unselected_population_ids[pareto_front] selected_scores = unselected_scores[pareto_front] # store first complete Pareto front pareto_population_ids = selected_population_ids pareto_size = len(selected_population_ids) pareto_population_scores = self.score.scores[selected_population_ids, :] pareto_population = self.pop.population[pareto_population_ids, :] pareto_hospital_admissions = self.score.hospital_admissions[pareto_population_ids, :] if len(selected_population_ids) < 20000: hamming = np.average(pdist(pareto_population, 'hamming')) else: hamming = 999 self.score.hamming[generation] = hamming np.savetxt(self.global_vars.output_location + '/hamming.csv', self.score.hamming, delimiter=',') self.save_pareto(pareto_population_scores, pareto_population, pareto_hospital_admissions) # New population may need to be expanded or reduced depedning on required min/max size new_population_ids = pareto_population_ids # This may be enlarged/reduced new_population_scores = selected_scores # This may be enlarged/reduced unselected_population_ids = unselected_population_ids[np.invert(pareto_front)] unselected_scores = unselected_scores[np.invert(pareto_front)] # Check whether first Pareto front is within the population size required select_more = False if new_population_ids.shape[0] > self.global_vars.maximum_population_size: selection_size = self.global_vars.maximum_population_size (new_population_ids, new_population_scores) = self.score.reduce_by_crowding( new_population_ids, new_population_scores, selection_size) if new_population_ids.shape[0] < self.global_vars.minimum_population_size: select_more = True while select_more: # Get next pareto front pareto_front = self.score.identify_pareto(unselected_scores, self.global_vars.pareto_scores_used) selected_population_ids = unselected_population_ids[pareto_front] selected_scores = unselected_scores[pareto_front] if new_population_ids.shape[0] + selected_population_ids.shape[0] > \ self.global_vars.minimum_population_size: select_more = False if new_population_ids.shape[0] + selected_population_ids.shape[0] < \ self.global_vars.maximum_population_size: # New population smaller than maximum permitted new_population_ids = np.hstack((new_population_ids, selected_population_ids)) new_population_scores = np.vstack((new_population_scores, selected_scores)) else: # New population larger than permitted; reduce size selection_size = self.global_vars.minimum_population_size - new_population_ids.shape[0] (selected_population_ids, selected_scores) = self.score.reduce_by_crowding( new_population_ids, new_population_scores, selection_size) new_population_ids = np.hstack((new_population_ids, selected_population_ids)) new_population_scores =
np.vstack((new_population_scores, selected_scores))
numpy.vstack
import cv2 import numpy as np import matplotlib.pyplot as plt from MyDIPUtils.config import * # check_ol1: circle[i] and circle[j] overlaps too much # check_ol2: circle[i] lies too much outside original image # check_ol3: compare the overlapping area between different stepsize def direction_map(edge, clockwise): # edge_pad = np.pad(edge, 1, mode='constant', constant_values=255) # pdb.set_trace() edge_copy = edge.copy() flag = np.zeros_like(edge_copy) edge_y, edge_x = np.nonzero(edge_copy == 0) leftmost_x = np.min(edge_x) leftmost_y = np.max(edge_y[edge_x == leftmost_x]) original_point = (leftmost_x, leftmost_y) points = [] neigh = edge_copy[leftmost_y-1:leftmost_y+2, leftmost_x-1:leftmost_x+2] if not clockwise: direction = 0 if neigh[1, 2] == 0 else 7/4 if direction == 0: next_point = (leftmost_x+1, leftmost_y) else: next_point = (leftmost_x+1, leftmost_y+1) else: direction = 0 if neigh[1, 2] == 0 else 1/4 if direction == 0: next_point = (leftmost_x+1, leftmost_y) else: next_point = (leftmost_x+1, leftmost_y-1) points.append((direction, original_point)) # flag[leftmost_y, leftmost_x] = 1 while next_point != original_point: x, y = next_point neigh = edge_copy[y-1:y+2, x-1:x+2] flag_neigh = flag[y-1:y+2, x-1:x+2] this_point = next_point direction, next_point = find_next_direction(neigh, this_point, flag_neigh) points.append((direction, this_point)) flag[this_point[1], this_point[0]] = 1 # dir_map[y, x] = direction return points def find_next_direction(neigh, this_point, flag_neigh): x, y = this_point neigh[flag_neigh==1] = 255 # 4-neighbour is prior to 8-neighbour if neigh[0, 1] == 0: return 1/2, (x, y-1) if neigh[1, 2] == 0: return 0, (x+1, y) if neigh[2, 1] == 0: return 3/2, (x, y+1) if neigh[1, 0] == 0: return 1, (x-1, y) if neigh[0, 2] == 0: return 1/4, (x+1, y-1) if neigh[0, 0] == 0: return 3/4, (x-1, y-1) if neigh[2, 0] == 0: return 5/4, (x-1, y+1) if neigh[2, 2] == 0: return 7/4, (x+1, y+1) def tangent_line(points, seq_num, img, draw=True): k = 0 angle = 0 for i in range(1, max_neigh): s0 = 0 for j in range(i): s0 += points[j+seq_num][0] angle += s0/i k += np.tan(s0*np.pi/(i)) angle /= (max_neigh-1) k /= (max_neigh-1) x0, y0 = points[seq_num][1] y0 = img.shape[0] - y0 b = y0-k*x0 if draw: line_point(k, b, img) return k, angle, b def points_sequence(points): # points should be passed directly from cv2.goodFeaturesToTrack # shape is (N, 1, 2) sequence = [] points = np.squeeze(points) leftmost = np.argmin(points[:, 0]) sequence.append(points[leftmost]) for direction in ['lr', 'ur', 'ul', 'll']: next_point = find_next_anticlock(sequence[-1], points, direction) while np.any(next_point) is not None: sequence.append(next_point) next_point = find_next_anticlock(sequence[-1], points, direction) return sequence def find_next_anticlock(point, points, direction): if direction not in ['lr', 'ur', 'ul', 'll']: raise ValueError('Unknown direction') x, y = point if direction == 'lr': target = points[points[:, 1] > y] if len(target) == 0: return None return target[np.argmin(target[:, 0])] if direction == 'ur': target = points[points[:, 0] > x] if len(target) == 0: return None return target[np.argmax(target[:, 1])] if direction == 'll': target = points[points[:, 0] < x] if len(target) == 0: return None return target[np.argmin(target[:, 1])] if direction == 'ul': target = points[points[:, 1] < y] if len(target) == 0: return None return target[np.argmax(target[:, 0])] def find_line(point1, point2, img_size, pb): x1, y1 = point1 x2, y2 = point2 y1, y2 = img_size - y1, img_size - y2 if pb == True: if np.abs(y1-y2) > l1_norm_threshold: k = -(x1-x2)/(y1-y2) b = (y1+y2)/2 - k*(x1+x2)/2 else: k = None b = (x1+x2)/2 else: if np.abs(x1-x2) > l1_norm_threshold: k = (y1-y2)/(x1-x2) b = y2 - k*x2 else: k = None b = x1 return k, b def find_para_line(k, point, img_size): if k != None: return -k*point[0]+(img_size-point[1]) else: return point[0] def line_point(k, b, img): if k != None: if b > 0: point1 = (0, img.shape[0] - int(b)) else: point1 = (int(-b/k), img.shape[0]) if k*img.shape[0] + b > img.shape[0]: point2 = (int((img.shape[0] - b)/k), 0) else: point2 = (img.shape[0], int(img.shape[0] - (k*img.shape[0] + b))) else: point1 = (b, 0) point2 = (b, img.shape[0]) cv2.line(img, point1, point2, 0) # return img def line_gen_1(k, b, img_size): # img[i, j]: i->y, j->x if k != None: return lambda x, y: k*x-(img_size-y)+b else: return lambda x, y: x-b def line_gen_2(k, b, img_size): # Warning: if k == None, cannot use this function assert k != None return lambda x: img_size-(k*x+b) def distance(x1, y1, x2, y2, norm='l2'): if norm == 'l1': return min(np.abs(x1-x2), np.abs(y1-y2)) else: return np.sqrt((x1-x2)**2+(y1-y2)**2) def find_center_and_radius(point1, point2, points, img): # 1. find the side of the arc k0, b0 = find_line(point1, point2, img.shape[0], pb=False) line = line_gen_1(k0, b0, img.shape[0]) for point in points: if not np.any(np.logical_or(point == point1, point == point2)): flag = np.sign(line(*point)) break # 2. mask only the interested arc arc_ma = np.full_like(img, 255, dtype=np.uint8) arc_y, arc_x = np.nonzero(img != 255) for i in range(len(arc_x)): if flag != np.sign(line(arc_x[i], arc_y[i])): arc_ma[arc_y[i], arc_x[i]] = 0 # 3. further mask only the area between 2 corner point k, b = find_line(point1, point2, img.shape[0], pb=True) b1, b2 = find_para_line(k, point1, img.shape[0]), find_para_line(k, point2, img.shape[0]) line1, line2 = line_gen_1(k, b1, img.shape[0]), line_gen_1(k, b2, img.shape[0]) sgn1, sgn2 = np.sign(line1(*point2)), np.sign(line2(*point1)) arc_y, arc_x = np.nonzero(arc_ma != 255) for i in range(len(arc_x)): i_sgn1, i_sgn2 = np.sign(line1(arc_x[i], arc_y[i])), np.sign(line2(arc_x[i], arc_y[i])) if sgn1 != i_sgn1 or sgn2 != i_sgn2: arc_ma[arc_y[i], arc_x[i]] = 255 # test = draw_points([tuple(point1), tuple(point2)], arc_ma) # line_point(k, b, test) # line_point(k0, b0, test) # imgshow(test) # plt.figure() # plt.imshow(arc_ma, cmap='gray') # 3.find center and radius arc_y, arc_x = np.nonzero(arc_ma == 0) len_arc = len(arc_y) if len_arc < 5: return None if k != None: lower_x = max((point1[0]+point2[0])//2-max_radius, 0) upper_x = min((point1[0]+point2[0])//2+max_radius, img.shape[0]) line = line_gen_2(k, b, img.shape[0]) dis_var = [] dis = [] for x in range(lower_x, upper_x): tmp_dis = [] y = line(x) for i in range(len_arc): ay, ax = arc_y[i], arc_x[i] tmp_dis.append(distance(x, y, ax, ay)) dis_var.append(np.var(tmp_dis)) dis.append(np.mean(tmp_dis)) cur = np.argmin(dis_var) center_x = lower_x + cur center_y = int(line(center_x)) radius = dis[cur] else: lower_y = max((point1[1]+point2[1])//2-max_radius, 0) upper_y = min((point1[1]+point2[1])//2+max_radius, img.shape[0]) x = b dis_var = [] dis = [] for y in range(lower_y, upper_y): tmp_dis = [] for i in range(len_arc): ay, ax = arc_y[i], arc_x[i] tmp_dis.append(distance(x, y, ax, ay)) dis_var.append(np.var(tmp_dis)) dis.append(np.mean(tmp_dis)) cur = np.argmin(dis_var) center_x = b center_y = lower_y + cur radius = dis[cur] return (int(center_x), int(center_y)), int(radius) def check_close(circles): flags = [-1 for _ in range(len(circles))] count = 0 for i in range(len(circles)): if flags[i] == -1: color = count count += 1 else: color = flags[i] flags[i] = color for j in range(len(circles)): if j != i and distance(*circles[i][0], *circles[j][0]) < distance_threshold: flags[j] = color final = [] for i in range(len(flags)): if flags[i] != -1: color = flags[i] flags[i] = -1 tmp_center = [circles[i][0]] tmp_radius = [circles[i][1]] for j in range(i+1, len(flags)): if flags[j] == color: tmp_center.append(circles[j][0]) tmp_radius.append(circles[j][1]) flags[j] = -1 mean_center = np.mean(tmp_center, axis=0) mean_radius = np.mean(tmp_radius) final.append(((int(mean_center[0]), int(mean_center[1])), int(mean_radius))) return final def overlapping(circle1, circle2, img_shape): tmp1 = np.full(img_shape, 255, dtype=np.uint8) tmp2 = np.full(img_shape, 255, dtype=np.uint8) cv2.circle(tmp1, circle1[0], circle1[1], 0, cv2.FILLED) cv2.circle(tmp2, circle2[0], circle2[1], 0, cv2.FILLED) ol = np.full(img_shape, 255, dtype=np.uint8) ol[np.logical_and(tmp1==0, tmp2==0)] = 0 area1 = np.sum(tmp1==0) area2 = np.sum(tmp2==0) area_ol = np.sum(ol==0) return area_ol/area1, area_ol/area2 def check_ol1(circles, shape): final = [] flags = [-1 for _ in range(len(circles))] for i in range(len(circles)): if flags[i] == -1: for j in range(i+1, len(circles)): if flags[j] == -1: ol_i, ol_j = overlapping(circles[i], circles[j], shape) if max(ol_i, ol_j) > overlapping1_threshold: if max(ol_i, ol_j) == ol_i: flags[i] = 0 else: flags[j] = 0 if flags[i] == -1: final.append(circles[i]) return final def check_ol2(circles, ori_img): final = [] for circle in circles: tmp = np.full(ori_img.shape, 255, dtype=np.uint8) cv2.circle(tmp, circle[0], circle[1], 0, cv2.FILLED) ol = np.full(ori_img.shape, 255, dtype=np.uint8) ol[np.logical_and(tmp==0, ori_img==0)]=0 if np.sum(ol==0)/np.sum(tmp==0) > overlapping2_threshold: final.append(circle) return final def check_ol3(circles, ori_img): tmp = np.full(ori_img.shape, 255, dtype=np.uint8) for circle in circles: cv2.circle(tmp, circle[0], circle[1], 0, cv2.FILLED) intersec = np.full(ori_img.shape, 255, dtype=np.uint8) intersec[np.logical_and(tmp==0, ori_img==0)]=0 ol = np.sum(intersec==0) tmp[intersec==0] = 255 sub =
np.sum(tmp==0)
numpy.sum
import pandas as pd import numpy as np import statsmodels.tsa.filters.filtertools as sm from brightics.common.groupby import _function_by_group from brightics.common.utils import check_required_parameters def ewma(table, group_by=None, **params): check_required_parameters(_ewma, params, ['table']) if group_by is not None: return _function_by_group(_ewma, table, group_by=group_by, **params) else: return _ewma(table, **params) def _ewma(table, input_cols, ratio_type, custom_ratio=0.5, period_number=1): out_table = table.copy() def ewma_col(column): result_col = [] for i in range(0, period_number - 1): result_col.append(None) result_col.append(
np.mean(out_table[column][0:period_number])
numpy.mean
import numpy as np import xarray as xr import matplotlib import matplotlib.pyplot as plt import matplotlib.colors as colors from matplotlib.animation import FuncAnimation from matplotlib.animation import writers import pf_dynamic_cart as pfc import pf_dynamic_sph as pfs import Grid from scipy import interpolate from timeit import default_timer as timer if __name__ == "__main__": mpegWriter = writers['ffmpeg'](fps=2, bitrate=1800) matplotlib.rcParams.update({'font.size': 12}) labelsize = 13 legendsize = 12 # ---- INITIALIZE GRIDS ---- (Lx, Ly, Lz) = (60, 60, 60) (dx, dy, dz) = (0.25, 0.25, 0.25) higherCutoff = False; cutoffRat = 1.5 betterResolution = True; resRat = 0.5 # (Lx, Ly, Lz) = (21, 21, 21) # (dx, dy, dz) = (0.375, 0.375, 0.375) # higherCutoff = False; cutoffRat = 1.5 # betterResolution = False; resRat = 0.5 NGridPoints_cart = (1 + 2 * Lx / dx) * (1 + 2 * Ly / dy) * (1 + 2 * Lz / dz) massRat = 1.0 IRrat = 1 print(NGridPoints_cart) # Toggle parameters toggleDict = {'Dynamics': 'real'} # import solarized # Sol = solarized.Solarized() # cmap = Sol.cmap(type='linear') # cmap = 'gist_gray' cmap = 'afmhot' # cmap = 'inferno' my_cmap = matplotlib.cm.get_cmap(cmap) avmin = 1e-5; avmax = 1e-1 # ---- SET OUTPUT DATA FOLDER ---- datapath = '/Users/kis/Dropbox/VariationalResearch/HarvardOdyssey/genPol_data/NGridPoints_{:.2E}'.format(NGridPoints_cart) animpath = '/Users/kis/Dropbox/VariationalResearch/DataAnalysis/figs/rdyn_twophonon/hostGasDensity/NGridPoints_1.11E+08_resRat_0.50' if higherCutoff is True: datapath = datapath + '_cutoffRat_{:.2f}'.format(cutoffRat) if betterResolution is True: datapath = datapath + '_resRat_{:.2f}'.format(resRat) datapath = datapath + '/massRatio={:.1f}'.format(massRat) if toggleDict['Dynamics'] == 'real': innerdatapath = datapath + '/redyn' cartdatapath = '/media/kis/Storage/Dropbox/VariationalResearch/HarvardOdyssey/genPol_data/NGridPoints_{:.2E}/massRatio={:.1f}/redyn_cart'.format(1.44e6, 1) elif toggleDict['Dynamics'] == 'imaginary': innerdatapath = datapath + '/imdyn' cartdatapath = '/media/kis/Storage/Dropbox/VariationalResearch/HarvardOdyssey/genPol_data/NGridPoints_{:.2E}/massRatio={:.1f}/imdyn_cart'.format(1.44e6, 1) innerdatapath = innerdatapath + '_spherical' # # Analysis of Total Dataset interpdatapath = innerdatapath + '/interp' aIBi = -5 Pnorm_des = 4.0 # Pnorm_des = 3.0 # Pnorm_des = 2.067 # Pnorm_des = 1.8 # Pnorm_des = 1.4 # Pnorm_des = 1.34 # Pnorm_des = 1.28 # Pnorm_des = 1.22 # Pnorm_des = 1.1 # Pnorm_des = 1.04 # Pnorm_des = 0.8 # Pnorm_des = 0.52 linDimList = [(2, 2), (10, 10)] linDimMajor, linDimMinor = linDimList[1] qds_orig = xr.open_dataset(innerdatapath + '/P_{:.3f}_aIBi_{:.2f}.nc'.format(Pnorm_des * 0.7926654595212022, aIBi)) n0 = qds_orig.attrs['n0']; gBB = qds_orig.attrs['gBB']; mI = qds_orig.attrs['mI']; mB = qds_orig.attrs['mB'] nu = np.sqrt(n0 * gBB / mB) mc = mI * nu aBB = (mB / (4 * np.pi)) * gBB xi = (8 * np.pi * n0 * aBB)**(-1 / 2) tscale = xi / nu P = qds_orig.attrs['P'] Pnorm = P / mc tVals = qds_orig['tc'].values t = tVals[-1] # print(tVals) print(xi, -10 * xi, -5 * xi, -2 * xi) print('P/mc: {:.2f}'.format(P / mc)) print(P) print(massRat, aIBi) print(t / tscale) # All Plotting: # # ORIGINAL SPHERICAL DATA PLOTS # Individual Phonon Momentum Distribution(Original Spherical data) Bk_2D_orig = (qds_orig['Real_CSAmp'] + 1j * qds_orig['Imag_CSAmp']).sel(tc=t).values Nph_orig = qds_orig['Nph'].sel(t=t).values PhDen_orig_Vals = ((1 / Nph_orig) * np.abs(Bk_2D_orig)**2).real.astype(float) kgrid = Grid.Grid("SPHERICAL_2D"); kgrid.initArray_premade('k', qds_orig.coords['k'].values); kgrid.initArray_premade('th', qds_orig.coords['th'].values) kVec = kgrid.getArray('k'); dk = kVec[1] - kVec[0] thVec = kgrid.getArray('th'); dth = thVec[1] - thVec[0] print(P, np.max(kVec)) kg, thg = np.meshgrid(kVec, thVec, indexing='ij') kxg = kg * np.sin(thg) kzg = kg * np.cos(thg) # interpmul = 2 # PhDen_orig_da = xr.DataArray(PhDen_orig_Vals, coords=[kVec, thVec], dims=['k', 'th']) # PhDen_orig_smooth, kg_orig_smooth, thg_orig_smooth = pfc.xinterp2D(PhDen_orig_da, 'k', 'th', interpmul) # dk_smooth = kg_orig_smooth[1, 0] - kg_orig_smooth[0, 0] # dth_smooth = thg_orig_smooth[0, 1] - thg_orig_smooth[0, 0] # kxg_smooth = kg_orig_smooth * np.sin(thg_orig_smooth) # kzg_smooth = kg_orig_smooth * np.cos(thg_orig_smooth) # PhDen_orig_sum = np.sum(PhDen_orig_Vals * kg**2 * np.sin(thg) * dk * dth * (2 * np.pi)**(-2)) # PhDen_smooth_sum = np.sum(PhDen_orig_smooth * kg_orig_smooth**2 * np.sin(thg_orig_smooth) * dk_smooth * dth_smooth * (2 * np.pi)**(-2)) # print(PhDen_orig_sum, PhDen_smooth_sum) fig1, ax1 = plt.subplots() vmax = np.max(PhDen_orig_Vals) # vmax = 8414555 # P=2.4 # vmax = 2075494 # P=1.20 # vmax = 1055106 # P=0.38 quad1 = ax1.pcolormesh(kzg, kxg, PhDen_orig_Vals, norm=colors.LogNorm(vmin=1e-3, vmax=vmax), cmap='inferno') quad1m = ax1.pcolormesh(kzg, -1 * kxg, PhDen_orig_Vals, norm=colors.LogNorm(vmin=1e-3, vmax=vmax), cmap='inferno') ax1.set_xlim([-1 * linDimMajor, linDimMajor]) ax1.set_ylim([-1 * linDimMinor, linDimMinor]) # print(vmax) ax1.set_xlabel('kz (Impurity Propagation Direction)') ax1.set_ylabel('kx') ax1.set_title('Individual Phonon Momentum Distribution (Sph Orig)', size='smaller') fig1.colorbar(quad1, ax=ax1, extend='both') # CARTESIAN INTERPOLATION PLOTS interp_ds = xr.open_dataset(interpdatapath + '/InterpDat_P_{:.2f}_aIBi_{:.2f}_t_{:.2f}_lDM_{:.2f}_lDm_{:.2f}.nc'.format(P, aIBi, t, linDimMajor, linDimMinor)) # interp_ds = xr.open_dataset(interpdatapath + '/InterpDat_P_{:.2f}_aIBi_{:.2f}_lDM_{:.2f}_lDm_{:.2f}_unique.nc'.format(P, aIBi, linDimMajor, linDimMinor)); print('unique') kxL = interp_ds['kx'].values; dkxL = kxL[1] - kxL[0] kyL = interp_ds['ky'].values; dkyL = kyL[1] - kyL[0] kzL = interp_ds['kz'].values; dkzL = kzL[1] - kzL[0] xL = interp_ds['x'].values yL = interp_ds['y'].values zL = interp_ds['z'].values PI_mag = interp_ds['PI_mag'].values kxLg_xz_slice, kzLg_xz_slice = np.meshgrid(kxL, kzL, indexing='ij') xLg_xz, zLg_xz = np.meshgrid(xL, zL, indexing='ij') xLg_xy, yLg_xy =
np.meshgrid(xL, yL, indexing='ij')
numpy.meshgrid
#!/usr/bin/env python # -*- coding: utf-8 -*- # # ナップサック問題を分枝限定法で解く # main(重さのリスト, 最大重量, 価値のリスト) # import numpy as np import pandas as pd class Brand_and_Bound: def __init__(self, weights, max_, target): r = np.array(target)/np.array(weights) df = pd.DataFrame({ "r":r, "weights":weights, "target":target}) # target/weight で並び替え self.df = df.sort_values(by='r') self.problems = [(list(self.df["weights"]), max_, list(self.df["target"]), 0, [])] self.constant = 0 # 欲張り法で求めたxを初期xに self.df["x_initial"] = self.greedy_method(max_) self.x_tmp = list(self.df["x_initial"]) x_sorted = list(self.df.sort_index()["x_initial"]) self.value_tmp = np.dot(
np.array(target)
numpy.array
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tensorflow_transform.tf_utils.""" import os import numpy as np from packaging import version import tensorflow as tf from tensorflow_transform import analyzers from tensorflow_transform import annotators from tensorflow_transform import tf_utils from tensorflow_transform import test_case import unittest from tensorflow.python.framework import composite_tensor # pylint: disable=g-direct-tensorflow-import _CONSTRUCT_TABLE_PARAMETERS = [ dict(testcase_name='_string', asset_path_input_fn=lambda x: x), dict(testcase_name='_string_tensor', asset_path_input_fn=tf.constant), ] def _construct_table(asset_file_path, key_dtype=tf.string, key_index=0, value_dtype=tf.int64, value_index=1, default_value=-1): initializer = tf.lookup.TextFileInitializer( asset_file_path, key_dtype=key_dtype, key_index=key_index, value_dtype=value_dtype, value_index=value_index) return tf.lookup.StaticHashTable(initializer, default_value=default_value) def _value_to_tensor(value): if isinstance(value, tf.compat.v1.SparseTensorValue): return tf.compat.v1.convert_to_tensor_or_sparse_tensor(value) elif isinstance(value, tf.compat.v1.ragged.RaggedTensorValue): return tf.ragged.constant(value.to_list()) else: return tf.constant(value) class _SparseTensorSpec: def __init__(self, shape, dtype): self._shape = shape self._dtype = dtype if not hasattr(tf, 'SparseTensorSpec'): tf.SparseTensorSpec = _SparseTensorSpec class TFUtilsTest(test_case.TransformTestCase): def _assertCompositeRefEqual(self, left, right): """Asserts that a two `tf_util._CompositeTensorRef`s are equal.""" self.assertEqual(left.type_spec, right.type_spec) self.assertAllEqual(left.list_of_refs, right.list_of_refs) def test_copy_tensors_produces_different_tensors(self): with tf.compat.v1.Graph().as_default(): tensors = { 'dense': tf.compat.v1.placeholder( tf.int64, (None,), name='my_dense_input'), 'sparse': tf.compat.v1.sparse_placeholder(tf.int64, name='my_sparse_input'), 'ragged': tf.compat.v1.ragged.placeholder( tf.int64, ragged_rank=2, name='my_ragged_input') } copied_tensors = tf_utils.copy_tensors(tensors) self.assertNotEqual(tensors['dense'], copied_tensors['dense']) self.assertNotEqual(tensors['sparse'].indices, copied_tensors['sparse'].indices) self.assertNotEqual(tensors['sparse'].values, copied_tensors['sparse'].values) self.assertNotEqual(tensors['sparse'].dense_shape, copied_tensors['sparse'].dense_shape) self.assertNotEqual(tensors['ragged'].values, copied_tensors['ragged'].values) self.assertNotEqual(tensors['ragged'].row_splits, copied_tensors['ragged'].row_splits) def test_copy_tensors_produces_equivalent_tensors(self): with tf.compat.v1.Graph().as_default(): tensors = { 'dense': tf.compat.v1.placeholder( tf.int64, (None,), name='my_dense_input'), 'sparse': tf.compat.v1.sparse_placeholder(tf.int64, name='my_sparse_input'), 'ragged': tf.compat.v1.ragged.placeholder( tf.int64, ragged_rank=1, name='my_ragged_input') } copied_tensors = tf_utils.copy_tensors(tensors) with tf.compat.v1.Session() as session: dense_value = [1, 2] sparse_value = tf.compat.v1.SparseTensorValue( indices=[[0, 0], [0, 2], [1, 1]], values=[3, 4, 5], dense_shape=[2, 3]) ragged_value = tf.compat.v1.ragged.RaggedTensorValue( values=np.array([3, 4, 5], dtype=np.int64), row_splits=np.array([0, 2, 3], dtype=np.int64)) sample_tensors = session.run( copied_tensors, feed_dict={ tensors['dense']: dense_value, tensors['sparse']: sparse_value, tensors['ragged']: ragged_value }) self.assertAllEqual(sample_tensors['dense'], dense_value) self.assertAllEqual(sample_tensors['sparse'].indices, sparse_value.indices) self.assertAllEqual(sample_tensors['sparse'].values, sparse_value.values) self.assertAllEqual(sample_tensors['sparse'].dense_shape, sparse_value.dense_shape) self.assertAllEqual(sample_tensors['ragged'].values, ragged_value.values) self.assertAllEqual(sample_tensors['ragged'].row_splits, ragged_value.row_splits) @test_case.named_parameters( test_case.cross_with_function_handlers([ dict( testcase_name='2d', tensor=tf.compat.v1.ragged.RaggedTensorValue( values=np.array([1.2, 1., 1.2, 1.]), row_splits=np.array([0, 2, 4])), rowids=[0, 0, 1, 1], tensor_spec=tf.RaggedTensorSpec([None, None], tf.float32)), dict( testcase_name='3d', tensor=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array([1.2, 1., 1.2, 1.]), row_splits=np.array([0, 3, 4])), row_splits=np.array([0, 1, 1, 2])), rowids=[0, 0, 0, 2], tensor_spec=tf.RaggedTensorSpec([None, None, None], tf.float32)), ])) def test_get_ragged_batch_value_rowids(self, tensor, rowids, tensor_spec, function_handler): @function_handler(input_signature=[tensor_spec]) def get_ragged_batch_value_rowids(tensor): return tf_utils._get_ragged_batch_value_rowids(tensor) self.assertAllEqual(get_ragged_batch_value_rowids(tensor), rowids) @test_case.named_parameters( test_case.cross_with_function_handlers([ dict( testcase_name='rank1', x=['a', 'b', 'a'], x_spec=tf.TensorSpec(None, tf.string), weights=[1, 1, 2], filter_regex=None, expected_unique_x=[b'a', b'b'], expected_summed_weights_per_x=[3, 1]), dict( testcase_name='rank2', x=[['a', 'b\n', 'a'], ['b\n', 'a', 'b\n']], x_spec=tf.TensorSpec(None, tf.string), weights=[[1, 2, 1], [1, 2, 2]], filter_regex=None, expected_unique_x=[b'a', b'b\n'], expected_summed_weights_per_x=[4, 5]), dict( testcase_name='rank3', x=[[['a', 'b', 'a'], ['b', 'a', 'b']], [['a', 'b', 'a'], ['b', 'a', 'b']]], x_spec=tf.TensorSpec(None, tf.string), weights=[[[1, 1, 2], [1, 2, 1]], [[1, 2, 1], [1, 2, 1]]], filter_regex=None, expected_unique_x=[b'a', b'b'], expected_summed_weights_per_x=[9, 7]), dict( testcase_name='sparse', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [0, 1], [2, 1]], values=['a', 'a', 'b'], dense_shape=[4, 2]), x_spec=tf.SparseTensorSpec([4, 2], tf.string), weights=[2, 3, 4], filter_regex=None, expected_unique_x=[b'a', b'b'], expected_summed_weights_per_x=[5, 4]), dict( testcase_name='ragged', x=tf.compat.v1.ragged.RaggedTensorValue( # pylint: disable=g-long-lambda values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array(['a', 'b', 'b', 'a']), row_splits=np.array([0, 2, 4])), row_splits=np.array([0, 2])), x_spec=tf.RaggedTensorSpec([None, None, None], tf.string), weights=[2, 3, 4, 6], filter_regex=None, expected_unique_x=[b'a', b'b'], expected_summed_weights_per_x=[8, 7]), dict( testcase_name='regex_filtering', x=[['a\n', '', '\n\r'], ['\r', 'a', 'b']], x_spec=tf.TensorSpec(None, tf.string), weights=[[1, 2, 1], [1, 2, 2]], filter_regex=analyzers._EMPTY_STRING_OR_NEWLINE_CHARS_REGEX, expected_unique_x=[b'a', b'b'], expected_summed_weights_per_x=[2, 2]), dict( testcase_name='regex_filtering_invalid_utf8', x=[[b'\xe1\n', b'\xa9', b'\n\xb8\r'], [b'\xe8\r', b'\xc6', b'\n\xb3']], x_spec=tf.TensorSpec(None, tf.string), weights=[[1, 3, 1], [1, 4, 2]], filter_regex=analyzers._EMPTY_STRING_OR_NEWLINE_CHARS_REGEX, expected_unique_x=[b'\xa9', b'\xc6'], expected_summed_weights_per_x=[3, 4]), ])) def test_reduce_batch_weighted_counts(self, x, x_spec, weights, filter_regex, expected_unique_x, expected_summed_weights_per_x, function_handler): input_signature = [x_spec, tf.TensorSpec(None, tf.float32)] @function_handler(input_signature=input_signature) def _reduce_batch_weighted_counts(x, weights): (unique_x, summed_weights_per_x, summed_positive_per_x_and_y, counts_per_x) = tf_utils.reduce_batch_weighted_counts( x, weights, filter_regex=filter_regex) self.assertIsNone(summed_positive_per_x_and_y) self.assertIsNone(counts_per_x) return unique_x, summed_weights_per_x unique_x, summed_weights_per_x = _reduce_batch_weighted_counts(x, weights) self.assertAllEqual(unique_x, expected_unique_x) self.assertAllEqual(summed_weights_per_x, expected_summed_weights_per_x) @test_case.named_parameters( test_case.cross_with_function_handlers([ dict( testcase_name='rank1', x=['a', 'b', 'a'], filter_regex=None, expected_result=[b'a', b'b', b'a'], ), dict( testcase_name='rank2', x=[['a', 'b\r', 'a'], ['b\r', 'a', 'b\r']], filter_regex=None, expected_result=[b'a', b'b\r', b'a', b'b\r', b'a', b'b\r'], ), dict( testcase_name='rank3', x=[[['a', 'b', 'a'], ['b', 'a', 'b']], [['a', 'b', 'a'], ['b', 'a', 'b']]], filter_regex=None, expected_result=[ b'a', b'b', b'a', b'b', b'a', b'b', b'a', b'b', b'a', b'b', b'a', b'b' ], ), dict( testcase_name='regex_filtering_empty_result', x=['a\n\r', 'b\n', 'a\r', '', 'a\rsd', ' \r', '\nas'], filter_regex=analyzers._EMPTY_STRING_OR_NEWLINE_CHARS_REGEX, expected_result=[], ), ])) def test_reduce_batch_weighted_counts_weights_none(self, x, filter_regex, expected_result, function_handler): input_signature = [tf.TensorSpec(None, tf.string)] @function_handler(input_signature=input_signature) def _reduce_batch_weighted_counts(x): (unique_x, summed_weights_per_x, summed_positive_per_x_and_y, counts_per_x) = tf_utils.reduce_batch_weighted_counts( x, force=False, filter_regex=filter_regex) self.assertIsNone(summed_weights_per_x) self.assertIsNone(summed_positive_per_x_and_y) self.assertIsNone(counts_per_x) return unique_x unique_x = _reduce_batch_weighted_counts(x) self.assertAllEqual(unique_x, expected_result) @test_case.named_parameters( test_case.cross_with_function_handlers([ dict( testcase_name='rank1', x=['a', 'b', 'a'], filter_regex=None, expected_result=([b'a', b'b'], [2, 1]), ), dict( testcase_name='rank3', x=[[['a', 'b', 'a'], ['b', 'a', 'b']], [['a', 'b', 'a'], ['b', 'a', 'b']]], filter_regex=None, expected_result=([b'a', b'b'], [6, 6]), ), dict( testcase_name='regex_filtering', x=['a\n\r', 'b\n', 'a\r', '', 'asd', ' ', '\nas'], filter_regex=analyzers._EMPTY_STRING_OR_NEWLINE_CHARS_REGEX, expected_result=([b'asd', b' '], [1, 1]), ), dict( testcase_name='regex_filtering_empty_result', x=['a\n\r', 'b\n', 'a\r', '', 'a\rsd', ' \r', '\nas'], filter_regex=analyzers._EMPTY_STRING_OR_NEWLINE_CHARS_REGEX, expected_result=([], []), ), ])) def test_reduce_batch_weighted_counts_weights_none_force( self, x, filter_regex, expected_result, function_handler): input_signature = [tf.TensorSpec(None, tf.string)] @function_handler(input_signature=input_signature) def _reduce_batch_weighted_counts(x): (unique_x, summed_weights_per_x, summed_positive_per_x_and_y, counts_per_x) = tf_utils.reduce_batch_weighted_counts( x, force=True, filter_regex=filter_regex) self.assertIsNone(summed_weights_per_x) self.assertIsNone(summed_positive_per_x_and_y) return unique_x, counts_per_x expected_unique_x, expected_counts_per_x = expected_result unique_x, counts_per_x = _reduce_batch_weighted_counts(x) self.assertAllEqual(unique_x, expected_unique_x) self.assertAllEqual(counts_per_x, expected_counts_per_x) @test_case.named_parameters([ dict(testcase_name='constant', get_value_fn=lambda: tf.constant([1.618])), dict(testcase_name='op', get_value_fn=lambda: tf.identity), dict(testcase_name='int', get_value_fn=lambda: 4), dict(testcase_name='object', get_value_fn=object), dict( testcase_name='sparse', get_value_fn=lambda: tf.SparseTensor( # pylint: disable=g-long-lambda indices=[[0, 0], [2, 1]], values=['a', 'b'], dense_shape=[4, 2])), dict( testcase_name='ragged', get_value_fn=lambda: tf.RaggedTensor.from_row_splits( # pylint: disable=g-long-lambda values=['a', 'b'], row_splits=[0, 1, 2])), dict( testcase_name='ragged_multi_dimension', get_value_fn=lambda: tf.RaggedTensor.from_row_splits( # pylint: disable=g-long-lambda values=tf.RaggedTensor.from_row_splits( values=[[0, 1], [2, 3]], row_splits=[0, 1, 2]), row_splits=[0, 2])), ]) def test_hashable_tensor_or_op(self, get_value_fn): with tf.compat.v1.Graph().as_default(): input_value = get_value_fn() input_ref = tf_utils.hashable_tensor_or_op(input_value) input_dict = {input_ref: input_value} input_deref = tf_utils.deref_tensor_or_op(input_ref) if isinstance(input_value, composite_tensor.CompositeTensor): self._assertCompositeRefEqual( input_ref, tf_utils.hashable_tensor_or_op(input_deref)) else: self.assertAllEqual(input_ref, tf_utils.hashable_tensor_or_op(input_deref)) if isinstance(input_value, tf.SparseTensor): input_deref = input_deref.values input_dict[input_ref] = input_dict[input_ref].values input_value = input_value.values self.assertAllEqual(input_value, input_deref) self.assertAllEqual(input_value, input_dict[input_ref]) @test_case.named_parameters( test_case.cross_with_function_handlers([ dict( testcase_name='rank1_with_weights_and_binary_y', x=['a', 'b', 'a'], weights=[1, 1, 2], y=[0, 1, 1], expected_result=tf_utils.ReducedBatchWeightedCounts( [b'a', b'b', b'global_y_count_sentinel'], [3, 1, 4], [[1, 2], [0, 1], [1, 3]], [2, 1, 3]), filter_regex=None, ), dict( testcase_name='rank1_with_weights_and_multi_class_y', x=['a', 'b\n', 'a', 'a'], weights=[1, 1, 2, 2], y=[0, 2, 1, 1], expected_result=tf_utils.ReducedBatchWeightedCounts( [b'a', b'b\n', b'global_y_count_sentinel'], [5, 1, 6], [[1, 4, 0], [0, 0, 1], [1, 4, 1]], [3, 1, 4]), filter_regex=None, ), dict( testcase_name='rank1_with_weights_and_missing_y_values', x=['a', 'b', 'a', 'a'], weights=[1, 1, 2, 2], y=[3, 5, 6, 6], expected_result=tf_utils.ReducedBatchWeightedCounts( [b'a', b'b', b'global_y_count_sentinel'], [5, 1, 6], [[0, 0, 0, 1, 0, 0, 4], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 1, 0, 1, 4]], [3, 1, 4]), filter_regex=None, ), dict( testcase_name='rank2_with_weights_and_binary_y', x=[['a', 'b', 'a'], ['b', 'a', 'b']], weights=[[1, 2, 1], [1, 2, 2]], y=[[1, 0, 1], [1, 0, 0]], expected_result=tf_utils.ReducedBatchWeightedCounts( [b'a', b'b', b'global_y_count_sentinel'], [4, 5, 9], [[2, 2], [4, 1], [6, 3]], [3, 3, 6]), filter_regex=None, ), dict( testcase_name='rank3_with_weights_and_binary_y', x=[[['a', 'b', 'a'], ['b', 'a', 'b']], [['a', 'b', 'a'], ['b', 'a', 'b']]], weights=[[[1, 1, 2], [1, 2, 1]], [[1, 2, 1], [1, 2, 1]]], y=[[[1, 1, 0], [1, 0, 1]], [[1, 0, 1], [1, 0, 1]]], expected_result=tf_utils.ReducedBatchWeightedCounts( [b'a', b'b', b'global_y_count_sentinel'], [9, 7, 16], [[6, 3], [2, 5], [8, 8]], [6, 6, 12]), filter_regex=None, ), dict( testcase_name='rank1_with_weights_multi_class_y_and_filtering', x=['\na\r', '', '\na\r', 'a', ''], weights=[1, 1, 2, 2, 3], y=[0, 2, 1, 1, 2], expected_result=tf_utils.ReducedBatchWeightedCounts( [b'a', b'global_y_count_sentinel'], [2, 9], [[0, 2, 0], [1, 4, 4]], [1, 5]), filter_regex=analyzers._EMPTY_STRING_OR_NEWLINE_CHARS_REGEX, ), dict( testcase_name='rank1_with_weights_filtering_empty_result', x=['\na\r', '', '\na\r', '\ra', ''], weights=[1, 1, 2, 2, 3], y=[0, 2, 1, 1, 2], expected_result=tf_utils.ReducedBatchWeightedCounts( [b'global_y_count_sentinel'], [9], [[1, 4, 4]], [5]), filter_regex=analyzers._EMPTY_STRING_OR_NEWLINE_CHARS_REGEX, ), ])) def test_reduce_batch_coocurrences(self, x, weights, y, expected_result, filter_regex, function_handler): input_signature = [tf.TensorSpec(None, tf.string), tf.TensorSpec(None, tf.int64), tf.TensorSpec(None, tf.int64)] @function_handler(input_signature=input_signature) def _reduce_batch_weighted_cooccurrences(x, y, weights): return tf_utils.reduce_batch_weighted_cooccurrences( x, y, weights, filter_regex=filter_regex) result = _reduce_batch_weighted_cooccurrences(x, y, weights) self.assertAllEqual(result.unique_x, expected_result.unique_x) self.assertAllEqual(result.summed_weights_per_x, expected_result.summed_weights_per_x) self.assertAllEqual(result.summed_positive_per_x_and_y, expected_result.summed_positive_per_x_and_y) self.assertAllEqual(result.counts_per_x, expected_result.counts_per_x) @test_case.named_parameters( test_case.cross_with_function_handlers([ dict( testcase_name='rank1_with_binary_y', x=['a', 'b', 'a'], y=[0, 1, 1], expected_result=tf_utils.ReducedBatchWeightedCounts( [b'a', b'b', b'global_y_count_sentinel'], [2, 1, 3], [[1, 1], [0, 1], [1, 2]], [2, 1, 3]), input_signature=[ tf.TensorSpec(None, tf.string), tf.TensorSpec(None, tf.int64) ], filter_regex=None), dict( testcase_name='rank1_with_multi_class_y', x=['yes', 'no', 'yes', 'may\rbe', 'yes'], y=[1, 1, 0, 2, 3], expected_result=tf_utils.ReducedBatchWeightedCounts( [b'yes', b'no', b'may\rbe', b'global_y_count_sentinel'], [3, 1, 1, 5], [[1, 1, 0, 1], [0, 1, 0, 0], [0, 0, 1, 0], [1, 2, 1, 1]], [3, 1, 1, 5]), input_signature=[ tf.TensorSpec(None, tf.string), tf.TensorSpec(None, tf.int64) ], filter_regex=None), dict( testcase_name='rank2_with_binary_y', x=[['a', 'b', 'a'], ['b', 'a', 'b']], y=[[1, 0, 1], [1, 0, 0]], expected_result=tf_utils.ReducedBatchWeightedCounts( [b'a', b'b', b'global_y_count_sentinel'], [3, 3, 6], [[1, 2], [2, 1], [3, 3]], [3, 3, 6]), input_signature=[ tf.TensorSpec(None, tf.string), tf.TensorSpec(None, tf.int64) ], filter_regex=None), dict( testcase_name='rank2_with_missing_y_values', x=[['a', 'b', 'a'], ['b', 'a', 'b']], y=[[2, 0, 2], [2, 0, 0]], # The label 1 isn't in the batch but it will have a position (with # weights of 0) in the resulting array. expected_result=tf_utils.ReducedBatchWeightedCounts( [b'a', b'b', b'global_y_count_sentinel'], [3, 3, 6], [[1, 0, 2], [2, 0, 1], [3, 0, 3]], [3, 3, 6]), input_signature=[ tf.TensorSpec(None, tf.string), tf.TensorSpec(None, tf.int64) ], filter_regex=None), dict( testcase_name='rank2_with_multi_class_y', x=[['a', 'b', 'a'], ['b', 'a', 'b']], y=[[1, 0, 1], [1, 0, 2]], expected_result=tf_utils.ReducedBatchWeightedCounts( [b'a', b'b', b'global_y_count_sentinel'], [3, 3, 6], [[1, 2, 0], [1, 1, 1], [2, 3, 1]], [3, 3, 6]), input_signature=[ tf.TensorSpec(None, tf.string), tf.TensorSpec(None, tf.int64) ], filter_regex=None), dict( testcase_name='rank3_with_binary_y', x=[[['a', 'b', 'a'], ['b', 'a', 'b']], [['a', 'b', 'a'], ['b', 'a', 'b']]], y=[[[1, 1, 0], [1, 0, 1]], [[1, 0, 1], [1, 0, 1]]], expected_result=tf_utils.ReducedBatchWeightedCounts( [b'a', b'b', b'global_y_count_sentinel'], [6, 6, 12], [[3, 3], [1, 5], [4, 8]], [6, 6, 12]), input_signature=[ tf.TensorSpec(None, tf.string), tf.TensorSpec(None, tf.int64) ], filter_regex=None), dict( testcase_name='sparse', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [2, 1]], values=['a', 'b'], dense_shape=[4, 2]), y=[0, 1, 0, 0], expected_result=tf_utils.ReducedBatchWeightedCounts( [b'a', b'b', b'global_y_count_sentinel'], [1, 1, 4], [[1, 0], [1, 0], [3, 1]], [1, 1, 4]), input_signature=[ tf.SparseTensorSpec([None, 2], tf.string), tf.TensorSpec([None], tf.int64) ], filter_regex=None), dict( testcase_name='empty_sparse', x=tf.compat.v1.SparseTensorValue( indices=np.empty([0, 2]), values=[], dense_shape=[4, 2]), y=[1, 0, 1, 1], expected_result=tf_utils.ReducedBatchWeightedCounts( [b'global_y_count_sentinel'], [4], [[1, 3]], [4]), input_signature=[ tf.SparseTensorSpec([None, 2], tf.string), tf.TensorSpec([None], tf.int64) ], filter_regex=None), dict( testcase_name='ragged', x=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array(['a', 'b', 'a', 'b', 'b']), row_splits=np.array([0, 2, 3, 4, 5])), row_splits=np.array([0, 2, 3, 4])), row_splits=np.array([0, 2, 3])), y=[1, 0], expected_result=tf_utils.ReducedBatchWeightedCounts( [b'a', b'b', b'global_y_count_sentinel'], [2, 3, 2], [[0, 2], [1, 2], [1, 1]], [2, 3, 2]), input_signature=[ tf.RaggedTensorSpec([None, None, None, None], tf.string), tf.TensorSpec([None], tf.int64) ], filter_regex=None), dict( testcase_name='rank1_with_filtering', x=['yes\n', 'no', 'yes\n', '', 'yes\n'], y=[1, 1, 0, 2, 3], expected_result=tf_utils.ReducedBatchWeightedCounts( [b'no', b'global_y_count_sentinel'], [1, 5], [[0, 1, 0, 0], [1, 2, 1, 1]], [1, 5]), input_signature=[ tf.TensorSpec(None, tf.string), tf.TensorSpec(None, tf.int64) ], filter_regex=analyzers._EMPTY_STRING_OR_NEWLINE_CHARS_REGEX), ])) def test_reduce_batch_coocurrences_no_weights(self, x, y, expected_result, input_signature, filter_regex, function_handler): @function_handler(input_signature=input_signature) def _reduce_batch_weighted_cooccurrences_no_weights(x, y): return tf_utils.reduce_batch_weighted_cooccurrences( x, y, filter_regex=filter_regex) result = _reduce_batch_weighted_cooccurrences_no_weights(x, y) self.assertAllEqual(result.unique_x, expected_result.unique_x) self.assertAllEqual(result.summed_weights_per_x, expected_result.summed_weights_per_x) self.assertAllEqual(result.summed_positive_per_x_and_y, expected_result.summed_positive_per_x_and_y) self.assertAllEqual(result.counts_per_x, expected_result.counts_per_x) @test_case.parameters( ([[1], [2]], [[1], [2], [3]], None, None, tf.errors.InvalidArgumentError, 'Condition x == y did not hold element-wise:'), ([[1], [2], [3]], [[1], [2], [3]], [None, None], [None], ValueError, r'Shapes \(None, None\) and \(None,\) are incompatible'), ) def test_same_shape_exceptions(self, x_input, y_input, x_shape, y_shape, exception_cls, error_string): with tf.compat.v1.Graph().as_default(): x = tf.compat.v1.placeholder(tf.int32, x_shape) y = tf.compat.v1.placeholder(tf.int32, y_shape) with tf.compat.v1.Session() as sess: with self.assertRaisesRegexp(exception_cls, error_string): sess.run(tf_utils.assert_same_shape(x, y), {x: x_input, y: y_input}) @test_case.named_parameters(test_case.FUNCTION_HANDLERS) def test_same_shape(self, function_handler): input_signature = [tf.TensorSpec(None, tf.int64), tf.TensorSpec(None, tf.int64)] @function_handler(input_signature=input_signature) def _assert_shape(x, y): x_return, _ = tf_utils.assert_same_shape(x, y) return x_return input_list = [[1], [2], [3]] x_return = _assert_shape(input_list, input_list) self.assertAllEqual(x_return, input_list) @test_case.named_parameters([ dict( testcase_name='_all_keys_in_vocab', query_list=['a', 'a', 'b', 'a', 'b'], key_vocab_list=['a', 'b'], query_shape=[None], expected_output=[0, 0, 1, 0, 1]), dict( testcase_name='_missing_keys_in_vocab', query_list=['a', 'c', 'b', 'a', 'b'], key_vocab_list=['a', 'b'], query_shape=[None], expected_output=[0, -1, 1, 0, 1]), dict( testcase_name='_nd_keys', query_list=[['a', 'c', 'b'], ['a', 'b', 'a']], key_vocab_list=['a', 'b'], query_shape=[None, None], expected_output=[[0, -1, 1], [0, 1, 0]]), dict( testcase_name='_empty_vocab', query_list=['a', 'c', 'b', 'a', 'b'], key_vocab_list=[], query_shape=[None], expected_output=[-1, -1, -1, -1, -1]), dict( testcase_name='_empty_query', query_list=[], key_vocab_list=['a'], query_shape=[None], expected_output=[]), ]) def test_lookup_key(self, query_list, key_vocab_list, query_shape, expected_output): with tf.compat.v1.Graph().as_default(): query_ph = tf.compat.v1.placeholder( dtype=tf.string, shape=query_shape, name='query') key_vocab_ph = tf.compat.v1.placeholder( dtype=tf.string, shape=[None], name='key_vocab') key_indices = tf_utils.lookup_key(query_ph, key_vocab_ph) with tf.compat.v1.Session().as_default() as sess: output = sess.run( key_indices, feed_dict={ query_ph.name: query_list, key_vocab_ph.name: key_vocab_list }) self.assertAllEqual(expected_output, output) @test_case.named_parameters([ dict( testcase_name='_with_default', with_default_value=True, input_keys=['<KEY>']), dict( testcase_name='_wihout_default', with_default_value=False, input_keys=['<KEY>']), dict( testcase_name='_single_oov_key', with_default_value=False, input_keys=['e']) ]) def test_apply_per_key_vocab(self, with_default_value, input_keys): default_value = '-7,-5' if with_default_value else None vocab_data = [('0,0', 'a'), ('1,-1', 'b'), ('-1,1', 'c'), ('-2,2', 'd')] expected_missing_key_result = [-7, -5] if default_value else [0, 0] expected_lookup_results = { 'a': [0, 0], 'b': [1, -1], 'c': [-1, 1], 'd': [-2, 2], } with tf.compat.v1.Graph().as_default(): input_tensor = _value_to_tensor(input_keys) vocab_filename = os.path.join(self.get_temp_dir(), 'test.txt') encoded_vocab = '\n'.join([' '.join(pair) for pair in vocab_data]) with tf.io.gfile.GFile(vocab_filename, 'w') as f: f.write(encoded_vocab) output_tensor = tf_utils.apply_per_key_vocabulary( tf.constant(vocab_filename), input_tensor, default_value=default_value) with tf.compat.v1.Session() as sess: sess.run(tf.compat.v1.tables_initializer()) output = output_tensor.eval() expected_data = [ expected_lookup_results.get(key, expected_missing_key_result) for key in input_keys ] self.assertAllEqual(output, expected_data) @test_case.named_parameters( test_case.cross_with_function_handlers([ dict( testcase_name='dense', x=[[[1], [2]], [[1], [2]]], expected_result=4, reduce_instance_dims=True, input_signature=[tf.TensorSpec(None, tf.int64)]), dict( testcase_name='dense_with_nans', x=[[[1], [np.nan]], [[1], [2]]], expected_result=3, reduce_instance_dims=True, input_signature=[tf.TensorSpec(None, tf.float32)]), dict( testcase_name='dense_elementwise', x=[[[1], [2]], [[1], [2]]], expected_result=[[2], [2]], reduce_instance_dims=False, input_signature=[tf.TensorSpec(None, tf.int64)]), dict( testcase_name='dense_elementwise_with_nans', x=[[[1], [2]], [[1], [np.nan]]], expected_result=[[2], [1]], reduce_instance_dims=False, input_signature=[tf.TensorSpec(None, tf.float32)]), dict( testcase_name='sparse', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0, 0], [0, 2, 0], [1, 1, 0], [1, 2, 0]], values=[1., 2., 3., 4.], dense_shape=[2, 4, 1]), expected_result=4, reduce_instance_dims=True, input_signature=[tf.SparseTensorSpec([None, 4, 1], tf.float32)]), dict( testcase_name='sparse_with_nans', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0, 0], [0, 2, 0], [1, 1, 0], [1, 2, 0], [1, 3, 0]], values=[1., 2., 3., 4., np.nan], dense_shape=[2, 4, 1]), expected_result=4, reduce_instance_dims=True, input_signature=[tf.SparseTensorSpec([None, 4, 1], tf.float32)]), dict( testcase_name='sparse_elementwise', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0, 0], [0, 2, 0], [1, 1, 0], [1, 2, 0]], values=[1., 2., 3., 4.], dense_shape=[2, 4, 1]), expected_result=[[1], [1], [2], [0]], reduce_instance_dims=False, input_signature=[tf.SparseTensorSpec([None, 4, 1], tf.float32)]), dict( testcase_name='sparse_elementwise_with_nans', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0, 0], [0, 2, 0], [1, 1, 0], [1, 2, 0], [1, 3, 0]], values=[1., 2., 3., 4., np.nan], dense_shape=[2, 4, 1]), expected_result=[[1], [1], [2], [0]], reduce_instance_dims=False, input_signature=[tf.SparseTensorSpec([None, 4, 1], tf.float32)]), dict( testcase_name='ragged', x=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array([1., 2., 3., 4., 5.], np.float32), row_splits=np.array([0, 2, 3, 4, 5])), row_splits=np.array([0, 2, 3, 4])), row_splits=np.array([0, 2, 3])), expected_result=5, reduce_instance_dims=True, input_signature=[ tf.RaggedTensorSpec([None, None, None, None], tf.float32) ]), dict( testcase_name='ragged_with_nans', x=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array([1., 2., 3., 4., 5., np.nan], np.float32), row_splits=np.array([0, 2, 3, 4, 6])), row_splits=np.array([0, 2, 3, 4])), row_splits=np.array([0, 2, 3])), expected_result=5, reduce_instance_dims=True, input_signature=[ tf.RaggedTensorSpec([None, None, None, None], tf.float32) ]), dict( testcase_name='ragged_elementwise', x=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array([1., 2., 3., 4., 5.], np.float32), row_splits=np.array([0, 2, 2, 4, 5])), row_splits=np.array([0, 3, 3, 4])), row_splits=np.array([0, 2, 3])), expected_result=[[[2, 1], [0., 0], [1, 1]], [[0, 0], [0, 0], [0, 0]]], reduce_instance_dims=False, input_signature=[ tf.RaggedTensorSpec([None, None, None, None], tf.float32) ]), dict( testcase_name='ragged_elementwise_with_nans', x=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array([1., 2., 3., 4., 5., np.nan], np.float32), row_splits=np.array([0, 2, 2, 4, 6])), row_splits=np.array([0, 3, 3, 4])), row_splits=np.array([0, 2, 3])), expected_result=[[[2, 1], [0., 0], [1, 1]], [[0, 0], [0, 0], [0, 0]]], reduce_instance_dims=False, input_signature=[ tf.RaggedTensorSpec([None, None, None, None], tf.float32) ]), ])) def test_reduce_batch_count(self, x, input_signature, expected_result, reduce_instance_dims, function_handler): @function_handler(input_signature=input_signature) def _reduce_batch_count(x): result = tf_utils.reduce_batch_count( x, reduce_instance_dims=reduce_instance_dims) # Verify that the output shape is maintained. # TODO(b/178189903): This will fail if _dense_shape_default isn't set in # reduce_batch_count. if (not isinstance(x, tf.RaggedTensor) and not reduce_instance_dims and x.get_shape().ndims): self.assertEqual(x.get_shape()[1:].as_list(), result.get_shape().as_list()) return result result = _reduce_batch_count(x) self.assertAllEqual(result, expected_result) @test_case.named_parameters( test_case.cross_with_function_handlers([ dict( testcase_name='dense', x=[[[1], [2]], [[3], [4]]], expected_count=4, expected_mean=2.5, expected_var=1.25, reduce_instance_dims=True, input_signature=[tf.TensorSpec(None, tf.float32)]), dict( testcase_name='dense_with_nans', x=[[[1], [2]], [[3], [np.nan]], [[np.nan], [4]]], expected_count=4, expected_mean=2.5, expected_var=1.25, reduce_instance_dims=True, input_signature=[tf.TensorSpec(None, tf.float32)]), dict( testcase_name='dense_elementwise', x=[[[1], [2]], [[3], [4]]], expected_count=[[2.], [2.]], expected_mean=[[2.], [3.]], expected_var=[[1.], [1.]], reduce_instance_dims=False, input_signature=[tf.TensorSpec(None, tf.float32)]), dict( testcase_name='dense_elementwise_with_nans', x=[[[1], [2]], [[3], [np.nan]], [[np.nan], [4]]], expected_count=[[2.], [2.]], expected_mean=[[2.], [3.]], expected_var=[[1.], [1.]], reduce_instance_dims=False, input_signature=[tf.TensorSpec(None, tf.float32)]), dict( testcase_name='sparse', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [0, 2], [1, 1], [1, 2]], values=[1., 2., 3., 4.], dense_shape=[2, 4]), expected_count=4, expected_mean=2.5, expected_var=1.25, reduce_instance_dims=True, input_signature=[tf.SparseTensorSpec([None, 4], tf.float32)]), dict( testcase_name='sparse_with_nans', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [0, 2], [1, 1], [1, 2], [1, 3]], values=[1., 2., 3., 4., np.nan], dense_shape=[2, 4]), expected_count=4, expected_mean=2.5, expected_var=1.25, reduce_instance_dims=True, input_signature=[tf.SparseTensorSpec([None, 4], tf.float32)]), dict( testcase_name='sparse_elementwise', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [0, 3], [1, 1], [1, 3]], values=[1., 2., 3., 4.], dense_shape=[2, 5]), expected_count=[1.0, 1.0, 0.0, 2.0, 0.0], expected_mean=[1.0, 3.0, 0.0, 3.0, 0.0], expected_var=[0.0, 0.0, 0.0, 1.0, 0.0], reduce_instance_dims=False, input_signature=[tf.SparseTensorSpec([None, 5], tf.float32)]), dict( testcase_name='sparse_elementwise_with_nans', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [0, 3], [1, 1], [1, 2], [1, 3]], values=[1., 2., 3., np.nan, 4.], dense_shape=[2, 5]), expected_count=[1.0, 1.0, 0.0, 2.0, 0.0], expected_mean=[1.0, 3.0, 0.0, 3.0, 0.0], expected_var=[0.0, 0.0, 0.0, 1.0, 0.0], reduce_instance_dims=False, input_signature=[tf.SparseTensorSpec([None, 5], tf.float32)]), dict( testcase_name='sparse_3d_elementwise', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0, 3], [0, 1, 0], [0, 1, 3], [1, 1, 1], [1, 1, 3]], values=[-10., 1., 2., 3., 4.], dense_shape=[2, 3, 5]), expected_count=[[0, 0, 0, 1, 0], [1, 1, 0, 2, 0], [0] * 5], expected_mean=[[0, 0, 0, -10, 0], [1, 3, 0, 3, 0], [0] * 5], expected_var=[[0] * 5, [0, 0, 0, 1, 0], [0] * 5], reduce_instance_dims=False, input_signature=[tf.SparseTensorSpec([None, 3, 5], tf.float32)]), dict( testcase_name='ragged', x=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array([1., 2., 3., 4., 5.], np.float32), row_splits=np.array([0, 2, 3, 4, 5])), row_splits=np.array([0, 2, 3, 4])), row_splits=np.array([0, 2, 3])), expected_count=5, expected_mean=3, expected_var=2, reduce_instance_dims=True, input_signature=[ tf.RaggedTensorSpec([None, None, None, None], tf.float32) ]), dict( testcase_name='ragged_with_nans', x=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array([1., 2., 3., 4., 5., np.nan], np.float32), row_splits=np.array([0, 2, 3, 4, 6])), row_splits=np.array([0, 2, 3, 4])), row_splits=np.array([0, 2, 3])), expected_count=5, expected_mean=3, expected_var=2, reduce_instance_dims=True, input_signature=[ tf.RaggedTensorSpec([None, None, None, None], tf.float32) ]), dict( testcase_name='ragged_elementwise', x=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array([1., 2., 3., 4., 5.], np.float32), row_splits=np.array([0, 2, 2, 4, 5])), row_splits=np.array([0, 3, 3, 4])), row_splits=np.array([0, 2, 3])), expected_count=[[[2., 1.], [0., 0.], [1., 1.]], [[0., 0.], [0., 0.], [0., 0.]]], expected_mean=[[[3., 2.], [0., 0.], [3., 4.]], [[0., 0.], [0., 0.], [0., 0.]]], expected_var=[[[4., 0.], [0., 0.], [0., 0.]], [[0., 0.], [0., 0.], [0., 0.]]], reduce_instance_dims=False, input_signature=[ tf.RaggedTensorSpec([None, None, None, None], tf.float32) ]), dict( testcase_name='ragged_elementwise_with_nans', x=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array([1., 2., 3., 4., 5., np.nan], np.float32), row_splits=np.array([0, 2, 2, 4, 6])), row_splits=np.array([0, 3, 3, 4])), row_splits=np.array([0, 2, 3])), expected_count=[[[2., 1.], [0., 0.], [1., 1.]], [[0., 0.], [0., 0.], [0., 0.]]], expected_mean=[[[3., 2.], [0., 0.], [3., 4.]], [[0., 0.], [0., 0.], [0., 0.]]], expected_var=[[[4., 0.], [0., 0.], [0., 0.]], [[0., 0.], [0., 0.], [0., 0.]]], reduce_instance_dims=False, input_signature=[ tf.RaggedTensorSpec([None, None, None, None], tf.float32) ]), ])) def test_reduce_batch_count_mean_and_var( self, x, input_signature, expected_count, expected_mean, expected_var, reduce_instance_dims, function_handler): @function_handler(input_signature=input_signature) def _reduce_batch_count_mean_and_var(x): result = tf_utils.reduce_batch_count_mean_and_var( x, reduce_instance_dims=reduce_instance_dims) # Verify that the output shapes are maintained. # TODO(b/178189903): This will fail if _dense_shape_default isn't set in # reduce_batch_count. if (not isinstance(x, tf.RaggedTensor) and not reduce_instance_dims and x.get_shape().ndims): for tensor in result: self.assertEqual(x.get_shape()[1:].as_list(), tensor.get_shape().as_list()) return result count, mean, var = _reduce_batch_count_mean_and_var(x) self.assertAllEqual(expected_count, count) self.assertAllEqual(expected_mean, mean) self.assertAllEqual(expected_var, var) @test_case.named_parameters([ dict( testcase_name='num_samples_1', num_samples=1, dtype=tf.float32, expected_counts=np.array([1, 0, 0, 0], np.float32), expected_factors=np.array([[1.0], [0.0], [0.0], [0.0]], np.float32)), dict( testcase_name='num_samples_2', num_samples=2, dtype=tf.float32, expected_counts=np.array([2, 1, 0, 0], np.float32), expected_factors=np.array( [[1. / 2., 1. / 2.], [-1. / 2., 1. / 2.], [0., 0.], [0., 0.]], np.float32)), dict( testcase_name='num_samples_3', num_samples=3, dtype=tf.float32, expected_counts=np.array([3, 3, 1, 0], np.float32), expected_factors=np.array( [[1. / 3., 1. / 3., 1. / 3.], [-1. / 3., 0., 1. / 3.], [1. / 3., -2. / 3., 1. / 3.], [0., 0., 0.]], np.float32)), dict( testcase_name='num_samples_4', num_samples=4, dtype=tf.float32, expected_counts=np.array([4, 6, 4, 1], np.float32), expected_factors=np.array( [[1. / 4., 1. / 4., 1. / 4., 1. / 4.], [-3. / 12., -1. / 12., 1. / 12., 3. / 12.], [1. / 4., -1. / 4., -1. / 4., 1. / 4.], [-1. / 4., 3. / 4., -3. / 4., 1. / 4.]], np.float32)) ]) def test_num_terms_and_factors( self, num_samples, dtype, expected_counts, expected_factors): results = tf_utils._num_terms_and_factors(num_samples, dtype) counts = results[0:4] assert len(expected_counts) == len(counts), (expected_counts, counts) for result, expected_count in zip(counts, expected_counts): self.assertEqual(result.dtype, dtype) self.assertAllClose(result, expected_count) factors = results[4:] assert len(expected_factors) == len(factors), (expected_factors, factors) for result, expected_factor in zip(factors, expected_factors): self.assertEqual(result.dtype, dtype) self.assertAllClose(result, expected_factor) @test_case.named_parameters( test_case.cross_with_function_handlers([ dict( testcase_name='dense', x=[[[1], [2]], [[3], [4]]], expected_counts=np.array([4., 6., 4., 1.], np.float32), expected_moments=np.array([2.5, 10.0 / 12.0, 0.0, 0.0], np.float32), reduce_instance_dims=True, input_signature=[tf.TensorSpec(None, tf.float32)]), dict( testcase_name='dense_large', x=[2.0, 3.0, 4.0, 2.4, 5.5, 1.2, 5.4, 2.2, 7.1, 1.3, 1.5], expected_counts=np.array( [11, 11 * 10 // 2, 11 * 10 * 9 // 6, 11 * 10 * 9 * 8 // 24], np.float32), expected_moments=np.array([ 3.2363636363636363, 1.141818181818182, 0.31272727272727263, 0.026666666666666616 ], np.float32), reduce_instance_dims=True, input_signature=[tf.TensorSpec(None, tf.float32)]), dict( testcase_name='dense_very_large', x=-np.log(1.0 - np.arange(0, 1, 1e-6, dtype=np.float32)), expected_counts=np.array([ 1000000, 499999500000.0, 1.66666166667e+17, 4.1666416667125e+22 ], np.float32), expected_moments=np.array([ 0.99999217330, 0.4999936732947, 0.166660839941, 0.0833278399134 ], np.float32), reduce_instance_dims=True, input_signature=[tf.TensorSpec(None, tf.float32)]), dict( testcase_name='dense_elementwise', x=[[[1], [2]], [[3], [4]]], expected_counts=np.array( [[[2], [2]], [[1], [1]], [[0], [0]], [[0], [0]]], np.float32), expected_moments=np.array([[[2.0], [3.0]], [[1.0], [1.0]], [[0.0], [0.0]], [[0.0], [0.0]]], np.float32), reduce_instance_dims=False, input_signature=[tf.TensorSpec(None, tf.float32)]), dict( testcase_name='sparse', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [0, 2], [2, 0], [2, 2]], values=[1., 2., 3., 4.], dense_shape=[3, 4]), expected_counts=np.array([4, 6, 4, 1], np.float32), expected_moments=np.array([2.5, 10.0 / 12.0, 0.0, 0.0], np.float32), reduce_instance_dims=True, input_signature=[tf.SparseTensorSpec([None, 4], tf.float32)]), dict( testcase_name='sparse_elementwise', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0, 0], [0, 2, 0], [2, 0, 0], [2, 2, 0], [3, 3, 0]], values=[1., 2., 3., 4., 5.], dense_shape=[3, 5, 1]), expected_counts=np.array( [[[2], [0], [2], [1], [0]], [[1], [0], [1], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]]], np.float32), expected_moments=np.array([[[2.0], [0.0], [3.0], [5.0], [0.0]], [[1.0], [0.0], [1.0], [0.0], [0.0]], [[0.0], [0.0], [0.0], [0.0], [0.0]], [[0.0], [0.0], [0.0], [0.0], [0.0]]], np.float32), reduce_instance_dims=False, input_signature=[tf.SparseTensorSpec([None, 5, 1], tf.float32)]), dict( testcase_name='ragged', x=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array([1., 2., 3., 4., 5.], np.float32), row_splits=np.array([0, 2, 3, 4, 5])), row_splits=np.array([0, 2, 3, 4])), row_splits=np.array([0, 2, 3])), expected_counts=np.array([5., 10., 10., 5.], np.float32), expected_moments=np.array([3., 1., 0., 0.], np.float32), reduce_instance_dims=True, input_signature=[ tf.RaggedTensorSpec([None, None, None, None], tf.float32) ]), ])) def test_reduce_batch_count_l_moments( self, x, input_signature, expected_counts, expected_moments, reduce_instance_dims, function_handler): @function_handler(input_signature=input_signature) def _reduce_batch_count_l_moments(x): result = tf_utils.reduce_batch_count_l_moments( x, reduce_instance_dims=reduce_instance_dims) for tensor in result: if not reduce_instance_dims and x.get_shape().ndims: self.assertEqual(x.get_shape()[1:].as_list(), tensor.get_shape().as_list()) return result count_and_moments = _reduce_batch_count_l_moments(x) counts = count_and_moments[0::2] moments = count_and_moments[1::2] for i in range(0, 4): self.assertEqual(counts[i].dtype, expected_counts[i].dtype) self.assertAllClose(counts[i], expected_counts[i], rtol=1e-8) self.assertEqual(moments[i].dtype, expected_moments[i].dtype) self.assertAllClose(moments[i], expected_moments[i], rtol=1e-8) @test_case.named_parameters( test_case.cross_with_function_handlers([ dict( testcase_name='dense', x=[[1], [2], [3], [4], [4]], key=['a', 'a', 'a', 'b', 'a'], expected_key_vocab=[b'a', b'b'], expected_count=[4., 1.], expected_mean=[2.5, 4.], expected_var=[1.25, 0.], reduce_instance_dims=True, input_signature=[ tf.TensorSpec([None, 1], tf.float32), tf.TensorSpec([None], tf.string) ]), dict( testcase_name='dense_with_nans', x=[[1], [2], [3], [4], [4], [np.nan], [np.nan]], key=['a', 'a', 'a', 'b', 'a', 'a', 'b'], expected_key_vocab=[b'a', b'b'], expected_count=[4., 1.], expected_mean=[2.5, 4.], expected_var=[1.25, 0.], reduce_instance_dims=True, input_signature=[ tf.TensorSpec([None, 1], tf.float32), tf.TensorSpec([None], tf.string) ]), dict( testcase_name='dense_elementwise', x=[[1, 2], [3, 4], [1, 2]], key=['a', 'a', 'b'], expected_key_vocab=[b'a', b'b'], expected_count=[[2., 2.], [1., 1.]], expected_mean=[[2., 3.], [1., 2.]], expected_var=[[1., 1.], [0., 0.]], reduce_instance_dims=False, input_signature=[ tf.TensorSpec([None, 2], tf.float32), tf.TensorSpec([None], tf.string) ]), dict( testcase_name='dense_elementwise_with_nans', x=[[1, 2], [3, 4], [1, 2], [np.nan, np.nan]], key=['a', 'a', 'b', 'a'], expected_key_vocab=[b'a', b'b'], expected_count=[[2., 2.], [1., 1.]], expected_mean=[[2., 3.], [1., 2.]], expected_var=[[1., 1.], [0., 0.]], reduce_instance_dims=False, input_signature=[ tf.TensorSpec([None, 2], tf.float32), tf.TensorSpec([None], tf.string) ]), dict( testcase_name='sparse', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [0, 2], [1, 1], [1, 2], [2, 3]], values=[1., 2., 3., 4., 4.], dense_shape=[3, 4]), key=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [0, 2], [1, 1], [1, 2], [2, 3]], values=['a', 'a', 'a', 'a', 'b'], dense_shape=[3, 4]), expected_key_vocab=[b'a', b'b'], expected_count=[4, 1], expected_mean=[2.5, 4], expected_var=[1.25, 0], reduce_instance_dims=True, input_signature=[ tf.SparseTensorSpec([None, 4], tf.float32), tf.SparseTensorSpec([None, 4], tf.string) ]), dict( testcase_name='sparse_with_nans', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [0, 2], [1, 1], [1, 2], [2, 2], [2, 3]], values=[1., 2., 3., 4., np.nan, 4.], dense_shape=[3, 4]), key=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [0, 2], [1, 1], [1, 2], [2, 2], [2, 3]], values=['a', 'a', 'a', 'a', 'a', 'b'], dense_shape=[3, 4]), expected_key_vocab=[b'a', b'b'], expected_count=[4, 1], expected_mean=[2.5, 4], expected_var=[1.25, 0], reduce_instance_dims=True, input_signature=[ tf.SparseTensorSpec([None, 4], tf.float32), tf.SparseTensorSpec([None, 4], tf.string) ]), dict( testcase_name='sparse_x_dense_key', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [0, 2], [1, 1], [1, 2], [2, 3]], values=[1., 2., 3., 4., 4.], dense_shape=[3, 4]), key=['a', 'a', 'b'], expected_key_vocab=[b'a', b'b'], expected_count=[4, 1], expected_mean=[2.5, 4], expected_var=[1.25, 0], reduce_instance_dims=True, input_signature=[ tf.SparseTensorSpec([None, 4], tf.float32), tf.TensorSpec([None], tf.string) ]), dict( testcase_name='ragged', x=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array([3., 2., 3., 4., 5.], np.float32), row_splits=np.array([0, 2, 3, 4, 5])), row_splits=np.array([0, 2, 3, 4])), row_splits=np.array([0, 2, 3])), key=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array(['a', 'a', 'b', 'a', 'b']), row_splits=np.array([0, 2, 3, 4, 5])), row_splits=np.array([0, 2, 3, 4])), row_splits=np.array([0, 2, 3])), expected_key_vocab=[b'a', b'b'], expected_count=[3, 2], expected_mean=[3, 4], expected_var=[np.float32(0.666667), 1.], reduce_instance_dims=True, input_signature=[ tf.RaggedTensorSpec([None, None, None, None], tf.float32), tf.RaggedTensorSpec([None, None, None, None], tf.string) ]), dict( testcase_name='ragged_x_dense_key', x=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array([3., 2., 3., 4., 5.], np.float32), row_splits=np.array([0, 2, 3, 4, 5])), row_splits=np.array([0, 2, 3, 4])), row_splits=np.array([0, 2, 3])), key=['a', 'b'], expected_key_vocab=[b'a', b'b'], expected_count=[4, 1], expected_mean=[3, 5], expected_var=[.5, 0.], reduce_instance_dims=True, input_signature=[ tf.RaggedTensorSpec([2, None, None, None], tf.float32), tf.TensorSpec([2], tf.string) ]), dict( testcase_name='ragged_with_nans', x=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array([3., 2., 3., 4., 5., np.nan], np.float32), row_splits=np.array([0, 2, 3, 4, 6])), row_splits=np.array([0, 2, 3, 4])), row_splits=np.array([0, 2, 3])), key=['a', 'b'], expected_key_vocab=[b'a', b'b'], expected_count=[4, 1], expected_mean=[3, 5], expected_var=[.5, 0.], reduce_instance_dims=True, input_signature=[ tf.RaggedTensorSpec([2, None, None, None], tf.float32), tf.TensorSpec([2], tf.string) ]), ])) def test_reduce_batch_count_mean_and_var_per_key( self, x, key, input_signature, expected_key_vocab, expected_count, expected_mean, expected_var, reduce_instance_dims, function_handler): @function_handler(input_signature=input_signature) def _reduce_batch_count_mean_and_var_per_key(x, key): return tf_utils.reduce_batch_count_mean_and_var_per_key( x, key, reduce_instance_dims=reduce_instance_dims) key_vocab, count, mean, var = _reduce_batch_count_mean_and_var_per_key( x, key) self.assertAllEqual(key_vocab, expected_key_vocab) self.assertAllEqual(count, expected_count) self.assertAllEqual(mean, expected_mean) self.assertAllEqual(var, expected_var) @test_case.named_parameters( test_case.cross_with_function_handlers([ dict( testcase_name='sparse', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [0, 1], [0, 2]], values=[3, 2, -1], dense_shape=[1, 5]), expected_x_minus_min=1, expected_x_max=3, reduce_instance_dims=True, input_signature=[tf.SparseTensorSpec([None, None], tf.int64)]), dict( testcase_name='float', x=[[1, 5, 2]], expected_x_minus_min=-1, expected_x_max=5, reduce_instance_dims=True, input_signature=[tf.TensorSpec([None, None], tf.float32)]), dict( testcase_name='sparse_float_elementwise', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [0, 1], [1, 0]], values=[3, 2, -1], dense_shape=[2, 3]), expected_x_minus_min=[1, -2, np.nan], expected_x_max=[3, 2, np.nan], reduce_instance_dims=False, input_signature=[tf.SparseTensorSpec([None, None], tf.float32)]), dict( testcase_name='float_elementwise', x=[[1, 5, 2], [2, 3, 4]], reduce_instance_dims=False, expected_x_minus_min=[-1, -3, -2], expected_x_max=[2, 5, 4], input_signature=[tf.TensorSpec([None, None], tf.float32)]), dict( testcase_name='sparse_int64_elementwise', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [0, 1], [1, 0]], values=[3, 2, -1], dense_shape=[2, 3]), reduce_instance_dims=False, expected_x_minus_min=[1, -2, tf.int64.min + 1], expected_x_max=[3, 2, tf.int64.min + 1], input_signature=[tf.SparseTensorSpec([None, None], tf.int64)]), dict( testcase_name='sparse_int32_elementwise', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [0, 1], [1, 0]], values=[3, 2, -1], dense_shape=[2, 3]), reduce_instance_dims=False, expected_x_minus_min=[1, -2, tf.int32.min + 1], expected_x_max=[3, 2, tf.int32.min + 1], input_signature=[tf.SparseTensorSpec([None, None], tf.int32)]), dict( testcase_name='sparse_float64_elementwise', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [0, 1], [1, 0]], values=[3, 2, -1], dense_shape=[2, 3]), reduce_instance_dims=False, expected_x_minus_min=[1, -2, np.nan], expected_x_max=[3, 2, np.nan], input_signature=[tf.SparseTensorSpec([None, None], tf.float64)]), dict( testcase_name='sparse_float32_elementwise', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [0, 1], [1, 0]], values=[3, 2, -1], dense_shape=[2, 3]), reduce_instance_dims=False, expected_x_minus_min=[1, -2, np.nan], expected_x_max=[3, 2, np.nan], input_signature=[tf.SparseTensorSpec([None, None], tf.float32)]), dict( testcase_name='sparse_3d_elementwise', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0, 0], [0, 0, 1], [1, 0, 1]], values=[3, 2, -1], dense_shape=[2, 3, 3]), reduce_instance_dims=False, expected_x_minus_min=[[-3, 1, np.nan], [np.nan] * 3, [np.nan] * 3], expected_x_max=[[3, 2, np.nan], [np.nan] * 3, [np.nan] * 3], input_signature=[ tf.SparseTensorSpec([None, None, None], tf.float32) ]), dict( testcase_name='ragged', x=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array([1., 2., 3., 4., 5.], np.float32), row_splits=np.array([0, 2, 3, 5])), row_splits=np.array([0, 2, 3])), reduce_instance_dims=True, expected_x_minus_min=-1., expected_x_max=5., input_signature=[ tf.RaggedTensorSpec([2, None, None], tf.float32) ]), dict( testcase_name='ragged_elementwise', x=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array([1., 2., 3., 4., 5.], np.float32), row_splits=np.array([0, 2, 2, 4, 5])), row_splits=np.array([0, 3, 3, 4])), row_splits=np.array([0, 2, 3])), reduce_instance_dims=False, expected_x_minus_min=[[[-1.0, -2.0], [np.nan, np.nan], [-3.0, -4.0]], [[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]]], expected_x_max=[[[5.0, 2.0], [np.nan, np.nan], [3.0, 4.0]], [[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]]], input_signature=[ tf.RaggedTensorSpec([2, None, None, None], tf.float32) ]), dict( testcase_name='all_nans', x=[[np.nan, np.nan, np.nan]], # Output of `tf.reduce_max` if all inputs are NaNs for older # versions of TF is -inf. expected_x_minus_min=(-np.inf if version.parse(tf.__version__) < version.parse('2.4') else np.nan), expected_x_max=(-np.inf if version.parse(tf.__version__) < version.parse('2.4') else np.nan), reduce_instance_dims=True, input_signature=[tf.TensorSpec([None, None], tf.float32)]), dict( testcase_name='empty_batch', x=[[]], expected_x_minus_min=-np.inf, expected_x_max=-np.inf, reduce_instance_dims=True, input_signature=[tf.TensorSpec([None, None], tf.float32)]), ])) def test_reduce_batch_minus_min_and_max( self, x, expected_x_minus_min, expected_x_max, reduce_instance_dims, input_signature, function_handler): @function_handler(input_signature=input_signature) def _reduce_batch_minus_min_and_max(x): result = tf_utils.reduce_batch_minus_min_and_max( x, reduce_instance_dims=reduce_instance_dims) # Verify that the output shapes are maintained. if (not reduce_instance_dims and not isinstance(x, tf.RaggedTensor)): for tensor in result: self.assertEqual(x.get_shape()[1:].as_list(), tensor.get_shape().as_list()) return result x_minus_min, x_max = _reduce_batch_minus_min_and_max(x) self.assertAllEqual(x_minus_min, expected_x_minus_min) self.assertAllEqual(x_max, expected_x_max) @test_case.named_parameters( test_case.cross_with_function_handlers([ dict( testcase_name='sparse', x=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [1, 1], [2, 2], [3, 1]], values=[3, 2, -1, 3], dense_shape=[4, 5]), key=['<KEY>'], expected_key_vocab=[b'a', b'b'], expected_x_minus_min=[1, -3], expected_x_max=[3, 3], input_signature=[ tf.SparseTensorSpec([None, None], tf.int64), tf.TensorSpec([None], tf.string) ]), dict( testcase_name='float', x=[[1], [5], [2], [3]], key=['<KEY>'], expected_key_vocab=[b'a', b'b'], expected_x_minus_min=[-1, -3], expected_x_max=[5, 3], input_signature=[ tf.TensorSpec([None, None], tf.float32), tf.TensorSpec([None], tf.string) ]), dict( testcase_name='float3dims', x=[[[1, 5], [1, 1]], [[5, 1], [5, 5]], [[2, 2], [2, 5]], [[3, -3], [3, 3]]], key=['<KEY>'], expected_key_vocab=[b'a', b'b'], expected_x_minus_min=[-1, 3], expected_x_max=[5, 3], input_signature=[ tf.TensorSpec([None, None, None], tf.float32), tf.TensorSpec([None], tf.string) ]), dict( testcase_name='ragged', x=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array([3., 2., 3., 4., 5.], np.float32), row_splits=np.array([0, 2, 3, 4, 5])), row_splits=np.array([0, 2, 3, 4])), row_splits=np.array([0, 2, 3])), key=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array(['a', 'a', 'b', 'a', 'b']), row_splits=np.array([0, 2, 3, 4, 5])), row_splits=np.array([0, 2, 3, 4])), row_splits=np.array([0, 2, 3])), expected_key_vocab=[b'a', b'b'], expected_x_minus_min=[-2., -3.], expected_x_max=[4., 5.], input_signature=[ tf.RaggedTensorSpec([None, None, None, None], tf.float32), tf.RaggedTensorSpec([None, None, None, None], tf.string) ]), ])) def test_reduce_batch_minus_min_and_max_per_key( self, x, key, expected_key_vocab, expected_x_minus_min, expected_x_max, input_signature, function_handler): @function_handler(input_signature=input_signature) def _reduce_batch_minus_min_and_max_per_key(x, key): return tf_utils.reduce_batch_minus_min_and_max_per_key(x, key) key_vocab, x_minus_min, x_max = _reduce_batch_minus_min_and_max_per_key( x, key) self.assertAllEqual(key_vocab, expected_key_vocab) self.assertAllEqual(x_minus_min, expected_x_minus_min) self.assertAllEqual(x_max, expected_x_max) @test_case.named_parameters( test_case.cross_with_function_handlers([ dict( testcase_name='dense', key=['a', 'a', 'a', 'b'], spec=tf.TensorSpec([None], tf.string), expected_key_vocab=[b'a', b'b'], expected_count=[3, 1]), dict( testcase_name='sparse', key=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [1, 1], [2, 2], [3, 1]], values=[3, 2, -1, 3], dense_shape=[4, 5]), spec=tf.SparseTensorSpec([4, 5], tf.int64), expected_key_vocab=[b'3', b'2', b'-1'], expected_count=[2, 1, 1]), dict( testcase_name='ragged', key=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array([1.2, 1., 1.2, 1.]), row_splits=np.array([0, 2, 4])), row_splits=np.array([0, 2])), spec=tf.RaggedTensorSpec([1, None, None], tf.float32), expected_key_vocab=[b'1.200000', b'1.000000'], expected_count=[2, 2]), ])) def test_reduce_batch_count_per_key(self, key, spec, expected_key_vocab, expected_count, function_handler): @function_handler(input_signature=[spec]) def _reduce_batch_count_per_key(key): return tf_utils.reduce_batch_count_per_key(key) key_vocab, key_counts = _reduce_batch_count_per_key(key) self.assertAllEqual(key_vocab, expected_key_vocab) self.assertAllEqual(key_counts, expected_count) @test_case.named_parameters(test_case.cross_with_function_handlers([ dict( testcase_name='full', bucket_vocab=['1', '2', '0'], counts=[3, 1, 4], boundary_size=3, expected_counts=[4, 3, 1]), dict( testcase_name='missing', bucket_vocab=['1', '3', '0'], counts=[3, 1, 4], boundary_size=5, expected_counts=[4, 3, 0, 1, 0]), ])) def test_reorder_histogram( self, bucket_vocab, counts, boundary_size, expected_counts, function_handler): input_signature = [tf.TensorSpec([None], tf.string), tf.TensorSpec([None], tf.int64), tf.TensorSpec([], tf.int32)] @function_handler(input_signature=input_signature) def _reorder_histogram(bucket_vocab, counts, boundary_size): return tf_utils.reorder_histogram(bucket_vocab, counts, boundary_size) counts = _reorder_histogram(bucket_vocab, counts, boundary_size) self.assertAllEqual(counts, expected_counts) @test_case.named_parameters( test_case.cross_with_function_handlers([ dict( testcase_name='simple', x=[0.0, 2.0, 3.5, 4.0], x_spec=tf.TensorSpec([None], tf.float32), boundaries=[[1.0, 2.0, 3.0, 3.9]], boundaries_spec=tf.TensorSpec([1, None], tf.float32), side=tf_utils.Side.LEFT, expected_buckets=[0, 1, 3, 3]), dict( testcase_name='simple_right', x=[0.0, 2.0, 3.5, 4.0], x_spec=tf.TensorSpec([None], tf.float32), boundaries=[1.0, 2.0, 3.0, 3.9], boundaries_spec=tf.TensorSpec([None], tf.float32), side=tf_utils.Side.RIGHT, expected_buckets=[0, 2, 3, 4]), dict( testcase_name='2dim', x=[[0.0, 4.0, 3.5, 2.0, 1.7]], x_spec=tf.TensorSpec([1, None], tf.float32), boundaries=[[1.0, 2.0, 3.0, 5.0]], boundaries_spec=tf.TensorSpec([1, None], tf.float32), side=tf_utils.Side.LEFT, expected_buckets=[[0, 3, 3, 1, 1]]), dict( testcase_name='large_buckets', x=[[50_000_000]], x_spec=tf.TensorSpec([1, None], tf.int64), boundaries=[0, 50_000_001, 100_000_001], boundaries_spec=tf.TensorSpec([None], tf.int64), side=tf_utils.Side.RIGHT, expected_buckets=[[1]]), ])) def test_assign_buckets(self, x, x_spec, boundaries, boundaries_spec, side, expected_buckets, function_handler): @function_handler(input_signature=[x_spec, boundaries_spec]) def _assign_buckets(x, boundaries): return tf_utils.assign_buckets(x, boundaries, side) buckets = _assign_buckets(x, boundaries) self.assertAllEqual(buckets, expected_buckets) def test_sparse_indices(self): exception_cls = tf.errors.InvalidArgumentError error_string = 'Condition x == y did not hold element-wise:' value = tf.compat.v1.SparseTensorValue( indices=[[0, 0], [1, 1], [2, 2], [3, 1]], values=[3, 2, -1, 3], dense_shape=[4, 5]) key_value = tf.compat.v1.SparseTensorValue( indices=[[0, 0], [1, 2], [2, 2], [3, 1]], values=['a', 'a', 'a', 'b'], dense_shape=[4, 5]) with tf.compat.v1.Graph().as_default(): x = tf.compat.v1.sparse_placeholder(tf.int64, shape=[None, None]) key = tf.compat.v1.sparse_placeholder(tf.string, shape=[None, None]) with tf.compat.v1.Session() as sess: with self.assertRaisesRegexp(exception_cls, error_string): sess.run(tf_utils.reduce_batch_minus_min_and_max_per_key(x, key), feed_dict={x: value, key: key_value}) def test_convert_sparse_indices(self): exception_cls = tf.errors.InvalidArgumentError error_string = 'Condition x == y did not hold element-wise:' sparse = tf.SparseTensor( indices=[[0, 0, 0], [1, 0, 1], [2, 0, 2], [3, 0, 1]], values=[3, 2, -1, 3], dense_shape=[4, 2, 5]) dense = tf.constant(['a', 'b', 'c', 'd']) x, key = tf_utils._validate_and_get_dense_value_key_inputs(sparse, sparse) self.assertAllEqual(self.evaluate(x), sparse.values) self.assertAllEqual(self.evaluate(key), sparse.values) x, key = tf_utils._validate_and_get_dense_value_key_inputs(sparse, dense) self.assertAllEqual(self.evaluate(x), sparse.values) self.assertAllEqual(self.evaluate(key), dense) with tf.compat.v1.Graph().as_default(): sparse1 = tf.compat.v1.sparse_placeholder( tf.int64, shape=[None, None, None]) sparse2 = tf.compat.v1.sparse_placeholder( tf.int64, shape=[None, None, None]) sparse_value1 = tf.compat.v1.SparseTensorValue( indices=[[0, 0, 0], [1, 0, 1], [2, 0, 2], [3, 0, 1]], values=[3, 2, -1, 3], dense_shape=[4, 2, 5]) sparse_value2 = tf.compat.v1.SparseTensorValue( indices=[[0, 0, 0], [1, 0, 2], [2, 0, 2], [3, 0, 1]], values=[3, 2, -1, 3], dense_shape=[4, 2, 5]) with tf.compat.v1.Session() as sess: with self.assertRaisesRegexp(exception_cls, error_string): sess.run(tf_utils._validate_and_get_dense_value_key_inputs(sparse1, sparse2), feed_dict={sparse1: sparse_value1, sparse2: sparse_value2}) def test_convert_ragged_indices(self): exception_cls = tf.errors.InvalidArgumentError error_string = 'Condition x == y did not hold element-wise:' ragged = tf.RaggedTensor.from_row_splits( values=tf.RaggedTensor.from_row_splits( values=np.array([1.2, 1., 1.2, 1.]), row_splits=np.array([0, 2, 4])), row_splits=np.array([0, 1, 2])) dense = tf.constant(['a', 'b']) dense_result = tf.constant(['a', 'a', 'b', 'b']) x, key = tf_utils._validate_and_get_dense_value_key_inputs(ragged, ragged) self.assertAllEqual(self.evaluate(x), ragged.flat_values) self.assertAllEqual(self.evaluate(key), ragged.flat_values) x, key = tf_utils._validate_and_get_dense_value_key_inputs(ragged, dense) self.assertAllEqual(self.evaluate(x), ragged.flat_values) self.assertAllEqual(self.evaluate(key), dense_result) with tf.compat.v1.Graph().as_default(): ragged1 = tf.compat.v1.ragged.placeholder(tf.float32, 2) ragged2 = tf.compat.v1.ragged.placeholder(tf.float32, 2) ragged_value1 = tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array([1.2, 1., 1.2, 1.]), row_splits=np.array([0, 2, 4])), row_splits=np.array([0, 2])) ragged_value2 = tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array([1.2, 1., 1.2, 1.]), row_splits=np.array([0, 3, 4])), row_splits=np.array([0, 2])) with tf.compat.v1.Session() as sess: with self.assertRaisesRegex(exception_cls, error_string): sess.run( tf_utils._validate_and_get_dense_value_key_inputs( ragged1, ragged2), feed_dict={ ragged1: ragged_value1, ragged2: ragged_value2 }) @test_case.named_parameters( dict( testcase_name='dense_tensor', key=['b', 'a', 'b'], key_vocab=['a', 'b'], reductions=([1, 2], [3, 4]), x=[5, 6, 7], expected_results=([2, 1, 2], [4, 3, 4])), dict( testcase_name='sparse_tensor_dense_key', key=['b', 'a', 'b'], key_vocab=['a', 'b'], reductions=([1, 2], [3, 4]), x=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [1, 2], [2, 2], [2, 3]], values=[3, 2, -1, 3], dense_shape=[3, 5]), expected_results=([2, 1, 2, 2], [4, 3, 4, 4])), dict( testcase_name='sparse_tensor_sparse_key', key=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [1, 2], [2, 2], [2, 3]], values=['b', 'a', 'b', 'b'], dense_shape=[3, 5]), key_vocab=['a', 'b'], reductions=([1, 2], [3, 4]), x=tf.compat.v1.SparseTensorValue( indices=[[0, 0], [1, 2], [2, 2], [2, 3]], values=[3, 2, -1, 3], dense_shape=[3, 5]), expected_results=([2, 1, 2, 2], [4, 3, 4, 4])), dict( testcase_name='ragged_tensor_dense_key', key=['a', 'b', 'a'], key_vocab=['a', 'b'], reductions=([1, 2], [3, 4]), x=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=
np.array([1.2, 1., 1.2, 1.])
numpy.array
""" Gaussian copula mutual information estimation. | **Authors** : <NAME> | **Original code** : https://github.com/robince/gcmi | **Reference** : | RAA Ince, <NAME>, <NAME>, <NAME>, <NAME> and <NAME> "A statistical framework for neuroimaging data analysis based on mutual information estimated via a Gaussian copula" Human Brain Mapping (2017) 38 p. 1541-1573 doi:10.1002/hbm.23471 """ import numpy as np import scipy as sp from frites.core import copnorm_nd, copnorm_cat_nd def ent_1d_g(x, biascorrect=True): """Entropy of a Gaussian variable in bits. H = ent_g(x) returns the entropy of a (possibly multidimensional) Gaussian variable x with bias correction. Parameters ---------- x : array_like Array of data of shape (n_epochs,) biascorrect : bool | True Specifies whether bias correction should be applied to the estimated MI Returns ------- hx : float Entropy of the gaussian variable (in bits) """ x = np.atleast_2d(x) if x.ndim > 2: raise ValueError("x must be at most 2d") # noqa nvarx, ntrl = x.shape # demean data x = x - x.mean(axis=1)[:, np.newaxis] # covariance c = np.dot(x, x.T) / float(ntrl - 1) chc = np.linalg.cholesky(c) # entropy in nats hx = np.sum(np.log(np.diagonal(chc))) + .5 * nvarx * ( np.log(2 * np.pi) + 1.) ln2 = np.log(2) if biascorrect: psiterms = sp.special.psi((ntrl - np.arange(1, nvarx + 1).astype( np.float)) / 2.) / 2. dterm = (ln2 - np.log(ntrl - 1.)) / 2. hx = hx - nvarx * dterm - psiterms.sum() # convert to bits return hx / ln2 def mi_1d_gg(x, y, biascorrect=True, demeaned=False): """Mutual information (MI) between two Gaussian variables in bits. I = mi_gg(x,y) returns the MI between two (possibly multidimensional) Gaussian variables, x and y, with bias correction. Parameters ---------- x, y : array_like Gaussian arrays of shape (n_epochs,) or (n_dimensions, n_epochs) biascorrect : bool | True Specifies whether bias correction should be applied to the estimated MI demeaned : bool | False Specifies whether the input data already has zero mean (true if it has been copula-normalized) Returns ------- i : float Information shared by x and y (in bits) """ x, y = np.atleast_2d(x), np.atleast_2d(y) if (x.ndim > 2) or (y.ndim > 2): raise ValueError("x and y must be at most 2d") nvarx, ntrl = x.shape nvary = y.shape[0] nvarxy = nvarx + nvary if y.shape[1] != ntrl: raise ValueError("number of trials do not match") # joint variable xy = np.vstack((x, y)) if not demeaned: xy = xy - xy.mean(axis=1)[:, np.newaxis] cxy = np.dot(xy, xy.T) / float(ntrl - 1) # submatrices of joint covariance cx = cxy[:nvarx, :nvarx] cy = cxy[nvarx:, nvarx:] chcxy = np.linalg.cholesky(cxy) chcx = np.linalg.cholesky(cx) chcy = np.linalg.cholesky(cy) # entropies in nats # normalizations cancel for mutual information hx = np.sum(np.log(np.diagonal(chcx))) hy = np.sum(np.log(np.diagonal(chcy))) hxy = np.sum(np.log(np.diagonal(chcxy))) ln2 = np.log(2) if biascorrect: psiterms = sp.special.psi( (ntrl - np.arange(1, nvarxy + 1)).astype(np.float) / 2.) / 2. dterm = (ln2 - np.log(ntrl - 1.)) / 2. hx = hx - nvarx * dterm - psiterms[:nvarx].sum() hy = hy - nvary * dterm - psiterms[:nvary].sum() hxy = hxy - nvarxy * dterm - psiterms[:nvarxy].sum() # MI in bits i = (hx + hy - hxy) / ln2 return i def gcmi_1d_cc(x, y): """Gaussian-Copula MI between two continuous variables. I = gcmi_cc(x,y) returns the MI between two (possibly multidimensional) continuous variables, x and y, estimated via a Gaussian copula. Parameters ---------- x, y : array_like Continuous arrays of shape (n_epochs,) or (n_dimensions, n_epochs) Returns ------- i : float Information shared by x and y (in bits) """ x, y = np.atleast_2d(x), np.atleast_2d(y) if x.ndim > 2 or y.ndim > 2: raise ValueError("x and y must be at most 2d") nvarx, ntrl = x.shape if y.shape[1] != ntrl: raise ValueError("number of trials do not match") # copula normalization cx, cy = copnorm_nd(x, axis=1), copnorm_nd(y, axis=1) # parametric Gaussian MI return mi_1d_gg(cx, cy, True, True) def mi_model_1d_gd(x, y, biascorrect=True, demeaned=False): """Mutual information between a Gaussian and a discrete variable in bits. This method is based on ANOVA style model comparison. I = mi_model_gd(x,y) returns the MI between the (possibly multidimensional) Gaussian variable x and the discrete variable y. Parameters ---------- x, y : array_like Gaussian arrays of shape (n_epochs,) or (n_dimensions, n_epochs). y must be an array of integers biascorrect : bool | True Specifies whether bias correction should be applied to the estimated MI demeaned : bool | False Specifies whether the input data already has zero mean (true if it has been copula-normalized) Returns ------- i : float Information shared by x and y (in bits) """ x, y = np.atleast_2d(x), np.squeeze(y) if x.ndim > 2: raise ValueError("x must be at most 2d") if y.ndim > 1: raise ValueError("only univariate discrete variables supported") if not np.issubdtype(y.dtype, np.integer): raise ValueError("y should be an integer array") nvarx, ntrl = x.shape ym = np.unique(y) if y.size != ntrl: raise ValueError("number of trials do not match") if not demeaned: x = x - x.mean(axis=1)[:, np.newaxis] # class-conditional entropies ntrl_y = np.zeros(len(ym)) hcond = np.zeros(len(ym)) for n_yi, yi in enumerate(ym): idx = y == yi xm = x[:, idx] ntrl_y[n_yi] = xm.shape[1] xm = xm - xm.mean(axis=1)[:, np.newaxis] cm = np.dot(xm, xm.T) / float(ntrl_y[n_yi] - 1) chcm = np.linalg.cholesky(cm) hcond[n_yi] = np.sum(np.log(np.diagonal(chcm))) # class weights w = ntrl_y / float(ntrl) # unconditional entropy from unconditional Gaussian fit cx = np.dot(x, x.T) / float(ntrl - 1) chc = np.linalg.cholesky(cx) hunc = np.sum(np.log(np.diagonal(chc))) # + c*nvarx ln2 = np.log(2) if biascorrect: vars = np.arange(1, nvarx + 1) psiterms = sp.special.psi((ntrl - vars).astype(np.float) / 2.) / 2. dterm = (ln2 - np.log(float(ntrl - 1))) / 2. hunc = hunc - nvarx * dterm - psiterms.sum() dterm = (ln2 - np.log((ntrl_y - 1).astype(np.float))) / 2.0 psiterms = np.zeros(len(ym)) for vi in vars: idx = ntrl_y - vi psiterms = psiterms + sp.special.psi(idx.astype(np.float) / 2.) hcond = hcond - nvarx * dterm - (psiterms / 2.) # MI in bits i = (hunc - np.sum(w * hcond)) / ln2 return i def gcmi_model_1d_cd(x, y): """Gaussian-Copula MI between a continuous and a discrete variable. This method is based on ANOVA style model comparison. I = gcmi_model_cd(x,y,Ym) returns the MI between the (possibly multidimensional) continuous variable x and the discrete variable y. Parameters ---------- x, y : array_like Continuous arrays of shape (n_epochs,) or (n_dimensions, n_epochs). y must be an array of integers Returns ------- i : float Information shared by x and y (in bits) """ x, y = np.atleast_2d(x), np.squeeze(y) if x.ndim > 2: raise ValueError("x must be at most 2d") if y.ndim > 1: raise ValueError("only univariate discrete variables supported") if not np.issubdtype(y.dtype, np.integer): raise ValueError("y should be an integer array") nvarx, ntrl = x.shape if y.size != ntrl: raise ValueError("number of trials do not match") # copula normalization cx = copnorm_nd(x, axis=1) # parametric Gaussian MI return mi_model_1d_gd(cx, y, True, True) def mi_mixture_1d_gd(x, y): """Mutual information between a Gaussian and a discrete variable in bits. This method evaluate MI from a Gaussian mixture. I = mi_mixture_gd(x,y) returns the MI between the (possibly multidimensional) Parameters ---------- x, y : array_like Gaussian arrays of shape (n_epochs,) or (n_dimensions, n_epochs). y must be an array of integers Returns ------- i : float Information shared by x and y (in bits) """ x, y = np.atleast_2d(x), np.squeeze(y) if x.ndim > 2: raise ValueError("x must be at most 2d") if y.ndim > 1: raise ValueError("only univariate discrete variables supported") if not np.issubdtype(y.dtype, np.integer): raise ValueError("y should be an integer array") nvarx, ntrl = x.shape ym = np.unique(y) if y.size != ntrl: raise ValueError("number of trials do not match") # class-conditional entropies ntrl_y = np.zeros((len(ym),)) hcond = np.zeros((len(ym),)) m = np.zeros((len(ym), nvarx)) w = np.zeros((len(ym),)) cc = .5 * (
np.log(2. * np.pi)
numpy.log
""" The pymaf submodule is designed for working with MAF files. It implements ``pymaf.MafFrame`` which stores MAF data as ``pandas.DataFrame`` to allow fast computation and easy manipulation. The ``pymaf.MafFrame`` class also contains many useful plotting methods such as ``MafFrame.plot_oncoplot`` and ``MafFrame.plot_summary``. The submodule strictly adheres to the standard `MAF specification <https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format/>`_. A typical MAF file contains many columns ranging from gene symbol to protein change. However, most of the analysis in pymaf uses the following columns: +-----+------------------------+----------------------+-------------------------------+ | No. | Name | Description | Examples | +=====+========================+======================+===============================+ | 1 | Hugo_Symbol | HUGO gene symbol | 'TP53', 'Unknown' | +-----+------------------------+----------------------+-------------------------------+ | 2 | Chromosome | Chromosome name | 'chr1', '1', 'X' | +-----+------------------------+----------------------+-------------------------------+ | 3 | Start_Position | Start coordinate | 119031351 | +-----+------------------------+----------------------+-------------------------------+ | 4 | End_Position | End coordinate | 44079555 | +-----+------------------------+----------------------+-------------------------------+ | 5 | Variant_Classification | Translational effect | 'Missense_Mutation', 'Silent' | +-----+------------------------+----------------------+-------------------------------+ | 6 | Variant_Type | Mutation type | 'SNP', 'INS', 'DEL' | +-----+------------------------+----------------------+-------------------------------+ | 7 | Reference_Allele | Reference allele | 'T', '-', 'ACAA' | +-----+------------------------+----------------------+-------------------------------+ | 8 | Tumor_Seq_Allele1 | First tumor allele | 'A', '-', 'TCA' | +-----+------------------------+----------------------+-------------------------------+ | 9 | Tumor_Seq_Allele2 | Second tumor allele | 'A', '-', 'TCA' | +-----+------------------------+----------------------+-------------------------------+ | 10 | Tumor_Sample_Barcode | Sample ID | 'TCGA-AB-3002' | +-----+------------------------+----------------------+-------------------------------+ | 11 | Protein_Change | Protein change | 'p.L558Q' | +-----+------------------------+----------------------+-------------------------------+ It is also recommended to include additional custom columns such as variant allele frequecy (VAF) and transcript name. If sample annotation data are available for a given MAF file, use the :class:`common.AnnFrame` class to import the data. There are nine nonsynonymous variant classifcations that pymaf primarily uses: Missense_Mutation, Frame_Shift_Del, Frame_Shift_Ins, In_Frame_Del, In_Frame_Ins, Nonsense_Mutation, Nonstop_Mutation, Splice_Site, and Translation_Start_Site. """ import re import copy import warnings import itertools from . import pyvcf, common import numpy as np import pandas as pd import statsmodels.formula.api as smf from matplotlib_venn import venn2, venn3 from scipy.stats import fisher_exact import seaborn as sns import matplotlib.pyplot as plt import matplotlib.patches as mpatches import matplotlib.gridspec as gridspec CHROM_LENGTHS = { 'hg18': [ 247249719, 242951149, 199501827, 191273063, 180857866, 170899992, 158821424, 146274826, 140273252, 135374737, 134452384, 132349534, 114142980, 106368585, 100338915, 88827254, 78774742, 76117153, 63811651, 62435964, 46944323, 49691432, 154913754, 57772954 ], 'hg19': [ 249250621, 243199373, 198022430, 191154276, 180915260, 171115067, 159138663, 146364022, 141213431, 135534747, 135006516, 133851895, 115169878, 107349540, 102531392, 90354753, 81195210, 78077248, 59128983, 63025520, 48129895, 51304566, 155270560, 59373566 ], 'hg38': [ 248956422, 242193529, 198295559, 190214555, 181538259, 170805979, 159345973, 145138636, 138394717, 133797422, 135086622, 133275309, 114364328, 107043718, 101991189, 90338345, 83257441, 80373285, 58617616, 64444167, 46709983, 50818468, 156040895, 57227415 ], } COMMON_COLUMNS = [ 'Hugo_Symbol', 'Entrez_Gene_Id', 'Center', 'NCBI_Build', 'Chromosome', 'Start_Position', 'End_Position', 'Strand', 'Variant_Classification', 'Variant_Type', 'Reference_Allele', 'Tumor_Seq_Allele1', 'Tumor_Seq_Allele2', 'Tumor_Sample_Barcode', 'Protein_Change' ] # Below is the list of calculated variant consequences from Ensembl VEP: # https://m.ensembl.org/info/genome/variation/prediction/predicted_data.html # (accessed on 2021-05-31) # # Note that both frameshift_variant and protein_altering_variant require # additional information to find their correct Variant_Classification. VEP_CONSEQUENCES = { 'transcript_ablation': 'Splice_Site', 'splice_acceptor_variant': 'Splice_Site', 'splice_donor_variant': 'Splice_Site', 'stop_gained': 'Nonsense_Mutation', 'frameshift_variant': 'AMBIGUOUS', 'stop_lost': 'Nonstop_Mutation', 'start_lost': 'Translation_Start_Site', 'transcript_amplification': 'Intron', 'inframe_insertion': 'In_Frame_Ins', 'inframe_deletion': 'In_Frame_Del', 'missense_variant': 'Missense_Mutation', 'protein_altering_variant': 'AMBIGUOUS', 'splice_region_variant': 'Splice_Region', 'incomplete_terminal_codon_variant': 'Silent', 'start_retained_variant': 'Silent', 'stop_retained_variant': 'Silent', 'synonymous_variant': 'Silent', 'coding_sequence_variant': 'Missense_Mutation', 'mature_miRNA_variant': 'RNA', '5_prime_UTR_variant': "5'UTR", '3_prime_UTR_variant': "3'UTR", 'non_coding_transcript_exon_variant': 'RNA', 'intron_variant': 'Intron', 'NMD_transcript_variant': 'Silent', 'non_coding_transcript_variant': 'RNA', 'upstream_gene_variant': "5'Flank", 'downstream_gene_variant': "3'Flank", 'TFBS_ablation': 'Targeted_Region', 'TFBS_amplification': 'Targeted_Region', 'TF_binding_site_variant': 'IGR', 'regulatory_region_ablation': 'Targeted_Region', 'regulatory_region_amplification': 'Targeted_Region', 'feature_elongation': 'Targeted_Region', 'regulatory_region_variant': 'IGR', 'feature_truncation': 'Targeted_Region', 'intergenic_variant': 'IGR', } VARCLS_LIST = [ "3'Flank", "3'UTR", "5'Flank", "5'UTR", 'De_novo_Start_InFrame', 'De_novo_Start_OutOfFrame', 'Frame_Shift_Del', 'Frame_Shift_Ins', 'IGR', 'In_Frame_Del', 'In_Frame_Ins', 'Intron', 'Missense_Mutation', 'Nonsense_Mutation', 'Nonstop_Mutation', 'RNA', 'Silent', 'Splice_Region', 'Splice_Site', 'Start_Codon_Ins', 'Start_Codon_SNP', 'Stop_Codon_Del', 'Targeted_Region', 'Translation_Start_Site', 'lincRNA', ] NONSYN_NAMES = [ 'Missense_Mutation', 'Frame_Shift_Del', 'Frame_Shift_Ins', 'In_Frame_Del', 'In_Frame_Ins', 'Nonsense_Mutation', 'Nonstop_Mutation', 'Splice_Site', 'Translation_Start_Site' ] NONSYN_COLORS = [ 'tab:green', 'tab:blue', 'tab:purple', 'tab:olive', 'tab:red', 'tab:cyan', 'tab:pink', 'tab:orange', 'tab:brown' ] SNV_CLASSES = { 'A>C': {'class': 'T>G', 'type': 'Tv'}, 'A>G': {'class': 'T>C', 'type': 'Ti'}, 'A>T': {'class': 'T>A', 'type': 'Tv'}, 'C>A': {'class': 'C>A', 'type': 'Tv'}, 'C>G': {'class': 'C>G', 'type': 'Tv'}, 'C>T': {'class': 'C>T', 'type': 'Ti'}, 'G>A': {'class': 'C>T', 'type': 'Ti'}, 'G>C': {'class': 'C>G', 'type': 'Tv'}, 'G>T': {'class': 'C>A', 'type': 'Tv'}, 'T>A': {'class': 'T>A', 'type': 'Tv'}, 'T>C': {'class': 'T>C', 'type': 'Ti'}, 'T>G': {'class': 'T>G', 'type': 'Tv'}, } SNV_CLASS_ORDER = ['C>A', 'C>G', 'C>T', 'T>A', 'T>C', 'T>G'] class MafFrame: """Class for storing MAF data. Parameters ---------- df : pandas.DataFrame DataFrame containing MAF data. See Also -------- MafFrame.from_file Construct MafFrame from a MAF file. """ def __init__(self, df): self.df = df.reset_index(drop=True) @property def shape(self): """tuple : Dimensionality of MafFrame (variants, samples).""" return (self.df.shape[0], len(self.samples)) @property def samples(self): """list : List of the sample names.""" return list(self.df.Tumor_Sample_Barcode.unique()) @property def genes(self): """list : List of the genes.""" return list(self.df.Hugo_Symbol.unique()) def copy(self): """Return a copy of the MafFrame.""" return self.__class__(self.df.copy()) def compute_clonality(self, vaf_col, threshold=0.25): """ Compute the clonality of variants based on :ref:`VAF <glossary:Variant allele frequency (VAF)>`. A mutation will be defined as "Subclonal" if the VAF is less than the threshold percentage (e.g. 25%) of the highest VAF in the sample and is defined as "Clonal" if it is equal to or above this threshold. Parameters ---------- vaf_col : str MafFrame column containing VAF data. threshold : float Minimum VAF to be considered as "Clonal". Returns ------- panda.Series Clonality for each variant. Examples -------- >>> import matplotlib.pyplot as plt >>> from fuc import common, pymaf >>> common.load_dataset('tcga-laml') >>> maf_file = '~/fuc-data/tcga-laml/tcga_laml.maf.gz' >>> mf = pymaf.MafFrame.from_file(maf_file) >>> mf.df['Clonality'] = mf.compute_clonality('i_TumorVAF_WU') >>> mf.df['Clonality'][:10] 0 Clonal 1 Clonal 2 Clonal 3 Clonal 4 Clonal 5 Clonal 6 Clonal 7 Clonal 8 Clonal 9 Clonal Name: Clonality, dtype: object """ d = self.df.groupby('Tumor_Sample_Barcode')[vaf_col].max().to_dict() def one_row(r): m = d[r.Tumor_Sample_Barcode] if r[vaf_col] < m * threshold: result = 'Subclonal' else: result = 'Clonal' return result s = self.df.copy().apply(one_row, axis=1) return s @classmethod def from_file(cls, fn): """ Construct MafFrame from a MAF file. Parameters ---------- fn : str MAF file (compressed or uncompressed). Returns ------- MafFrame MafFrame object. See Also -------- MafFrame MafFrame object creation using constructor. Examples -------- >>> from fuc import common, pymaf >>> common.load_dataset('tcga-laml') >>> maf_file = '~/fuc-data/tcga-laml/tcga_laml.maf.gz' >>> mf = pymaf.MafFrame.from_file(maf_file) """ # Read the input MAF file. df = pd.read_table(fn) # Check the letter case of column names. This will help distinguish # missing columns from columns with incorrect letter case (e.g. # 'End_Position' vs. 'End_position'). lower_names = [x.lower() for x in COMMON_COLUMNS] for col in df.columns: if col.lower() in lower_names: i = lower_names.index(col.lower()) if col != COMMON_COLUMNS[i]: message = ( f"Input column '{col}' will be renamed " f"as '{COMMON_COLUMNS[i]}'." ) warnings.warn(message) df = df.rename(columns={col: COMMON_COLUMNS[i]}) # Set the data type of chromosomes as string (e.g. 'chr1' vs. '1'). if 'Chromosome' in df.columns: df.Chromosome = df.Chromosome.astype(str) return cls(df) @classmethod def from_vcf(cls, vcf, keys=None, names=None): """ Construct MafFrame from a VCF file or VcfFrame. It is recommended that the input VCF data be functionally annotated by an annotation tool such as Ensembl VEP, SnpEff, and ANNOVAR; however, the method can handle unannotated VCF data as well. The preferred tool for functional annotation is Ensembl VEP with "RefSeq transcripts" as the transcript database and the filtering option "Show one selected consequence per variant". Parameters ---------- vcf : str or VcfFrame VCF file or VcfFrame. keys : str or list Genotype key (e.g. 'AD', 'AF') or list of genotype keys to be added to the MafFrame. names : str or list Column name or list of column names for ``keys`` (must be the same length). By default, the genotype keys will be used as column names. Examples -------- Below is a simple example: >>> from fuc import pyvcf, pymaf >>> data = { ... 'CHROM': ['chr1', 'chr2'], ... 'POS': [100, 101], ... 'ID': ['.', '.'], ... 'REF': ['G', 'T'], ... 'ALT': ['A', 'C'], ... 'QUAL': ['.', '.'], ... 'FILTER': ['.', '.'], ... 'INFO': ['CSQ=T|missense_variant|MODERATE|MTOR|2475|Transcript|NM_001386500.1|protein_coding|47/58||||6792|6644|2215|S/Y|tCt/tAt|rs587777894&COSV63868278&COSV63868313||-1||EntrezGene||||||||G|G||deleterious(0)|possibly_damaging(0.876)||||||||||||||||||likely_pathogenic&pathogenic|0&1&1|1&1&1|26619011&27159400&24631838&26018084&27830187|||||', 'CSQ=C|splice_donor_variant|HIGH|MTOR|2475|Transcript|NM_001386500.1|protein_coding||46/57||||||||||-1||EntrezGene||||||||A|A|||||||||||||||||||||||||||||'], ... 'FORMAT': ['GT:AD:DP:AF', 'GT:AD:DP:AF'], ... 'A': ['0/1:176,37:213:0.174', '0/1:966,98:1064:0.092'] ... } >>> vf = pyvcf.VcfFrame.from_dict([], data) >>> vf.df CHROM POS ID REF ALT QUAL FILTER INFO FORMAT A 0 chr1 100 . G A . . CSQ=T|missense_variant|MODERATE|MTOR|2475|Tran... GT:AD:DP:AF 0/1:176,37:213:0.174 1 chr2 101 . T C . . CSQ=C|splice_donor_variant|HIGH|MTOR|2475|Tran... GT:AD:DP:AF 0/1:966,98:1064:0.092 >>> mf = pymaf.MafFrame.from_vcf(vf) >>> mf.df Hugo_Symbol Entrez_Gene_Id Center NCBI_Build Chromosome Start_Position End_Position Strand Variant_Classification Variant_Type Reference_Allele Tumor_Seq_Allele1 Tumor_Seq_Allele2 Protein_Change Tumor_Sample_Barcode 0 MTOR 2475 . . chr1 100 100 - Missense_Mutation SNP G A A p.S2215Y A 1 MTOR 2475 . . chr2 101 101 - Splice_Site SNP T C C . A We can add genotype keys such as AD and AF: >>> mf = pymaf.MafFrame.from_vcf(vf, keys=['AD', 'AF']) >>> mf.df Hugo_Symbol Entrez_Gene_Id Center NCBI_Build Chromosome Start_Position End_Position Strand Variant_Classification Variant_Type Reference_Allele Tumor_Seq_Allele1 Tumor_Seq_Allele2 Protein_Change Tumor_Sample_Barcode AD AF 0 MTOR 2475 . . chr1 100 100 - Missense_Mutation SNP G A A p.S2215Y A 176,37 0.174 1 MTOR 2475 . . chr2 101 101 - Splice_Site SNP T C C . A 966,98 0.092 The method can accept a VCF file as input instead of VcfFrame: >>> mf = pymaf.MafFrame.from_vcf('annotated.vcf') The method can also handle unannotated VCF data: >>> data = { ... 'CHROM': ['chr1', 'chr1', 'chr1'], ... 'POS': [100, 200, 300], ... 'ID': ['.', '.', '.'], ... 'REF': ['G', 'C', 'TTC'], ... 'ALT': ['A', 'CAG', 'T'], ... 'QUAL': ['.', '.', '.'], ... 'FILTER': ['.', '.', '.'], ... 'INFO': ['.', '.', '.'], ... 'FORMAT': ['GT', 'GT', 'GT'], ... 'A': ['0/1', '0/1', '0/1'] ... } >>> vf = pyvcf.VcfFrame.from_dict([], data) >>> vf.df CHROM POS ID REF ALT QUAL FILTER INFO FORMAT A 0 chr1 100 . G A . . . GT 0/1 1 chr1 200 . C CAG . . . GT 0/1 2 chr1 300 . TTC T . . . GT 0/1 >>> mf = pymaf.MafFrame.from_vcf(vf) >>> mf.df Hugo_Symbol Entrez_Gene_Id Center NCBI_Build Chromosome Start_Position End_Position Strand Variant_Classification Variant_Type Reference_Allele Tumor_Seq_Allele1 Tumor_Seq_Allele2 Protein_Change Tumor_Sample_Barcode 0 . . . . chr1 100 100 . . SNP G A A . A 1 . . . . chr1 200 201 . . INS - AG AG . A 2 . . . . chr1 301 302 . . DEL TC - - . A """ # Parse the input VCF. if isinstance(vcf, str): vf = pyvcf.VcfFrame.from_file(vcf) else: vf = vcf # Set some default values in case the VCF is not annotated. ncbi_build = '.' # Get the NCBI_Build data. for line in vf.meta: if line.startswith('##VEP'): ncbi_build = re.search(r'assembly="(.*?)"', line).group(1) break # Define the conversion algorithm. def one_row(r): has_annot = 'CSQ=' in r.INFO # Set some default values in case the VCF is not annotated. strand = '.' variant_classification = '.' protein_change = '.' hugo_symbol = '.' entrez_gene_id = '.' # Get the sequence data. inframe = abs(len(r.REF) - len(r.ALT)) / 3 == 0 if len(r.REF) == len(r.ALT) == 1: variant_type = 'SNP' start_position = r.POS end_position = r.POS reference_allele = r.REF tumor_seq_allele1 = r.ALT tumor_seq_allele2 = r.ALT elif len(r.REF) > len(r.ALT): variant_type = 'DEL' start_position = r.POS + 1 end_position = r.POS + len(r.REF) - len(r.ALT) reference_allele = r.REF[1:] tumor_seq_allele1 = '-' tumor_seq_allele2 = '-' else: variant_type = 'INS' start_position = r.POS end_position = r.POS + 1 reference_allele = '-' tumor_seq_allele1 = r.ALT[1:] tumor_seq_allele2 = r.ALT[1:] fields = r.INFO.replace('CSQ=', '').split(',')[0].split('|') # Get the Strand data. if has_annot: strand = '+' if fields[19] == '1' else '-' # Get the Variant_Classification data. if has_annot: consequence = fields[1].split('&')[0] if consequence == 'frameshift_variant': if variant_type == 'DEL': variant_classification = 'Frame_Shift_Del' else: variant_classification = 'Frame_Shift_Ins' elif consequence == 'protein_altering_variant': if inframe: if variant_type == 'DEL': variant_classification = 'In_Frame_Del' else: variant_classification = 'In_Frame_Ins' else: if variant_type == 'DEL': variant_classification = 'Frame_Shift_Del' else: variant_classification = 'Frame_Shift_Ins' elif consequence in VEP_CONSEQUENCES: variant_classification = VEP_CONSEQUENCES[consequence] else: m = f'Found unknown Ensembl VEP consequence: {consequence}' raise ValueError(m) # Get the Tumor_Sample_Barcode data. s = r[9:].apply(pyvcf.gt_hasvar) tumor_sample_barcode = ','.join(s[s].index.to_list()) # Get the Protein_Change data. if has_annot: pos = fields[14] aa = fields[15].split('/') if len(aa) > 1: protein_change = f'p.{aa[0]}{pos}{aa[1]}' # Get other data. if has_annot: hugo_symbol = fields[3] entrez_gene_id = fields[4] d = dict( Hugo_Symbol = hugo_symbol, Entrez_Gene_Id = entrez_gene_id, Center = '.', NCBI_Build = ncbi_build, Chromosome = r.CHROM, Start_Position = start_position, End_Position = end_position, Strand = strand, Variant_Classification = variant_classification, Variant_Type = variant_type, Reference_Allele = reference_allele, Tumor_Seq_Allele1 = tumor_seq_allele1, Tumor_Seq_Allele2 = tumor_seq_allele2, Tumor_Sample_Barcode = tumor_sample_barcode, Protein_Change = protein_change, CHROM = r.CHROM, # will be dropped POS = r.POS, # will be dropped REF = r.REF, # will be dropped ALT = r.ALT, # will be dropped ) return pd.Series(d) # Apply the conversion algorithm. df = vf.df.apply(one_row, axis=1) # Expand the Tumor_Sample_Barcode column to multiple rows. s = df['Tumor_Sample_Barcode'].str.split(',').apply( pd.Series, 1).stack() s.index = s.index.droplevel(-1) s.name = 'Tumor_Sample_Barcode' del df['Tumor_Sample_Barcode'] df = df.join(s) # Append extra genotype keys, if necessary. if keys is not None: if names is None: names = keys if isinstance(keys, str): keys = [keys] if isinstance(names, str): names = [names] for i, key in enumerate(keys): temp_df = vf.extract_format(key) temp_df = pd.concat([vf.df.iloc[:, :9], temp_df], axis=1) temp_df = temp_df.drop( columns=['ID', 'QUAL', 'FILTER', 'INFO', 'FORMAT']) temp_df = pd.melt( temp_df, id_vars=['CHROM', 'POS', 'REF', 'ALT'], var_name='Tumor_Sample_Barcode', ) temp_df = temp_df[temp_df.value != '.'] df = df.merge(temp_df, on=['CHROM', 'POS', 'REF', 'ALT', 'Tumor_Sample_Barcode']) df = df.rename(columns={'value': names[i]}) # Drop the extra columns. df = df.drop(columns=['CHROM', 'POS', 'REF', 'ALT']) return cls(df) def matrix_prevalence(self): """ Compute a matrix of variant counts with a shape of (genes, samples). Returns ------- pandas.DataFrame The said matrix. """ s = self.df.groupby( 'Hugo_Symbol')['Tumor_Sample_Barcode'].value_counts() s.name = 'Count' df = s.to_frame().reset_index() df = df.pivot(index='Hugo_Symbol', columns='Tumor_Sample_Barcode', values='Count') df.columns.name = '' df = df.fillna(0) return df def matrix_genes(self, mode='variants', count=10): """ Compute a matrix of counts with a shape of (genes, variant classifications). This method only considers the nine nonsynonymous variant classifications. Parameters ---------- mode : {'variants', 'samples'}, default: 'variants' Determines how to identify top mutated genes: * 'variants': Count the number of observed variants. * 'samples': Count the number of affected samples. Using this option will create an additional variant classification called 'Multi_Hit'. count : int, default: 10 Number of top mutated genes to include. Returns ------- pandas.DataFrame The said matrix. """ if mode == 'variants': df = self.df[self.df.Variant_Classification.isin(NONSYN_NAMES)] df = df.groupby('Hugo_Symbol')[ 'Variant_Classification'].value_counts().to_frame() df.columns = ['Count'] df = df.reset_index() df = df.pivot(index='Hugo_Symbol', columns='Variant_Classification', values='Count') df = df.fillna(0) for varcls in NONSYN_NAMES: if varcls not in df.columns: df[varcls] = 0 i = df.sum(axis=1).sort_values(ascending=False).index df = df.reindex(index=i) df = df[NONSYN_NAMES] df = df[:count] df = df.rename_axis(None, axis=1) elif mode == 'samples': df = self.matrix_waterfall(count) df = df.apply(lambda r: r.value_counts(), axis=1) for varcls in NONSYN_NAMES + ['Multi_Hit']: if varcls not in df.columns: df[varcls] = np.nan df = df[NONSYN_NAMES + ['Multi_Hit']] df = df.fillna(0) else: raise ValueError(f'Found incorrect mode: {mode}') return df def matrix_tmb(self): """ Compute a matrix of variant counts with a shape of (samples, variant classifications). Returns ------- pandas.DataFrame The said matrix. """ df = self.df[self.df.Variant_Classification.isin(NONSYN_NAMES)] df = df.groupby('Tumor_Sample_Barcode')[ 'Variant_Classification'].value_counts().to_frame() df.columns = ['Count'] df = df.reset_index() df = df.pivot(index='Tumor_Sample_Barcode', columns='Variant_Classification', values='Count') df = df.fillna(0) for varcls in NONSYN_NAMES: if varcls not in df.columns: df[varcls] = 0 i = df.sum(axis=1).sort_values(ascending=False).index df = df.reindex(index=i) df = df[NONSYN_NAMES] df = df.rename_axis(None, axis=1) return df def matrix_waterfall(self, count=10, keep_empty=False): """ Compute a matrix of variant classifications with a shape of (genes, samples). If there are multiple variant classifications available for a given cell, they will be replaced as 'Multi_Hit'. Parameters ---------- count : int, default: 10 Number of top mutated genes to include. keep_empty : bool, default: False If True, keep samples with all ``NaN``'s. Returns ------- pandas.DataFrame The said matrix. """ df = self.df[self.df.Variant_Classification.isin(NONSYN_NAMES)] f = lambda x: ''.join(x) if len(x) == 1 else 'Multi_Hit' df = df.groupby(['Hugo_Symbol', 'Tumor_Sample_Barcode'])[ 'Variant_Classification'].apply(f).to_frame() df = df.reset_index() df = df.pivot(index='Hugo_Symbol', columns='Tumor_Sample_Barcode', values='Variant_Classification') # Sort the rows (genes). i = df.isnull().sum(axis=1).sort_values(ascending=True).index df = df.reindex(index=i) # Select the top mutated genes. df = df[:count] # Drop samples with all NaN's. if not keep_empty: df = df.dropna(axis=1, how='all') # Sort the columns (samples). c = df.applymap(lambda x: 0 if pd.isnull(x) else 1).sort_values( df.index.to_list(), axis=1, ascending=False).columns df = df[c] df = df.fillna('None') df = df.rename_axis(None, axis=1) return df def plot_genes( self, mode='variants', count=10, flip=False, ax=None, figsize=None, **kwargs ): """ Create a bar plot showing variant distirbution for top mutated genes. Parameters ---------- mode : {'variants', 'samples'}, default: 'variants' Determines how to identify top mutated genes: * 'variants': Count the number of observed variants. * 'samples': Count the number of affected samples. Using this option will create an additional variant classification called 'Multi_Hit'. count : int, default: 10 Number of top mutated genes to display. flip : bool, default: False If True, flip the x and y axes. ax : matplotlib.axes.Axes, optional Pre-existing axes for the plot. Otherwise, crete a new one. figsize : tuple, optional Width, height in inches. Format: (float, float). kwargs Other keyword arguments will be passed down to :meth:`pandas.DataFrame.plot.bar` or :meth:`pandas.DataFrame.plot.barh`. Returns ------- matplotlib.axes.Axes The matplotlib axes containing the plot. Examples -------- By default (``mode='variants'``), the method identifies top mutated genes by counting the number of observed variants: .. plot:: :context: close-figs >>> import matplotlib.pyplot as plt >>> from fuc import common, pymaf >>> common.load_dataset('tcga-laml') >>> maf_file = '~/fuc-data/tcga-laml/tcga_laml.maf.gz' >>> mf = pymaf.MafFrame.from_file(maf_file) >>> mf.plot_genes() >>> plt.tight_layout() We can also identify top mutated genes by counting the number of affected samples: .. plot:: :context: close-figs >>> mf.plot_genes(mode='samples') >>> plt.tight_layout() """ if mode == 'variants': colors = NONSYN_COLORS elif mode == 'samples': colors = NONSYN_COLORS + ['k'] else: raise ValueError(f'Found incorrect mode: {mode}') df = self.matrix_genes(count=count, mode=mode) df = df.iloc[::-1] if ax is None: fig, ax = plt.subplots(figsize=figsize) if flip: df = df.iloc[::-1] kind = 'bar' xlabel, ylabel = '', 'Count' else: kind = 'barh' xlabel, ylabel = 'Count', '' df.plot( kind=kind, ax=ax, stacked=True, legend=False, color=colors, **kwargs ) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) return ax def plot_oncoplot( self, count=10, keep_empty=False, figsize=(15, 10), label_fontsize=15, ticklabels_fontsize=15, legend_fontsize=15 ): """ Create an oncoplot. See this :ref:`tutorial <tutorials:Create customized oncoplots>` to learn how to create customized oncoplots. Parameters ---------- count : int, default: 10 Number of top mutated genes to display. keep_empty : bool, default: False If True, display samples that do not have any mutations. figsize : tuple, default: (15, 10) Width, height in inches. Format: (float, float). label_fontsize : float, default: 15 Font size of labels. ticklabels_fontsize : float, default: 15 Font size of tick labels. legend_fontsize : float, default: 15 Font size of legend texts. Examples -------- .. plot:: >>> import matplotlib.pyplot as plt >>> from fuc import common, pymaf >>> common.load_dataset('tcga-laml') >>> maf_file = '~/fuc-data/tcga-laml/tcga_laml.maf.gz' >>> mf = pymaf.MafFrame.from_file(maf_file) >>> mf.plot_oncoplot() """ g = {'height_ratios': [1, 10, 1], 'width_ratios': [10, 1]} fig, axes = plt.subplots(3, 2, figsize=figsize, gridspec_kw=g) [[ax1, ax2], [ax3, ax4], [ax5, ax6]] = axes # Create the TMB plot. samples = list(self.matrix_waterfall(count=count, keep_empty=keep_empty).columns) self.plot_tmb(ax=ax1, samples=samples, width=0.95) ax1.set_xlabel('') ax1.spines['right'].set_visible(False) ax1.spines['top'].set_visible(False) ax1.spines['bottom'].set_visible(False) ax1.set_xlim(-0.5, len(samples)-0.5) ax1.set_ylabel('TMB', fontsize=label_fontsize) ax1.set_yticks([0, self.matrix_tmb().sum(axis=1).max()]) ax1.tick_params(axis='y', which='major', labelsize=ticklabels_fontsize) # Remove the top right plot. ax2.remove() # Create the waterfall plot. self.plot_waterfall(count=count, ax=ax3, linewidths=1, keep_empty=keep_empty) ax3.set_xlabel('') ax3.tick_params(axis='y', which='major', labelrotation=0, labelsize=ticklabels_fontsize) # Create the genes plot. self.plot_genes(count=count, ax=ax4, mode='samples', width=0.95) ax4.spines['right'].set_visible(False) ax4.spines['left'].set_visible(False) ax4.spines['top'].set_visible(False) ax4.set_yticks([]) ax4.set_xlabel('Samples', fontsize=label_fontsize) ax4.set_xticks([0, self.matrix_genes( count=10, mode='samples').sum(axis=1).max()]) ax4.set_ylim(-0.5, count-0.5) ax4.tick_params(axis='x', which='major', labelsize=ticklabels_fontsize) # Create the legend. handles = common.legend_handles(NONSYN_NAMES+['Multi_Hit'], colors=NONSYN_COLORS+['k']) ax5.legend( handles=handles, title='Variant_Classification', loc='upper center', ncol=4, fontsize=legend_fontsize, title_fontsize=legend_fontsize ) ax5.axis('off') # Remove the bottom right plot. ax6.remove() plt.tight_layout() plt.subplots_adjust(wspace=0.01, hspace=0.01) def plot_oncoplot_matched( self, af, patient_col, group_col, group_order, colors='Set2', figsize=(15, 10), label_fontsize=12, ticklabels_fontsize=12, legend_fontsize=12 ): """ Create an oncoplot for mached samples. Parameters ---------- af : AnnFrame AnnFrame containing sample annotation data. patient_col : str AnnFrame column containing patient information. group_col : str AnnFrame column containing sample group information. group_order : list, optional List of sample group names. colors : str Colormap name for the sample groups. figsize : tuple, default: (15, 10) Width, height in inches. Format: (float, float). label_fontsize : float, default: 12 Font size of labels. ticklabels_fontsize : float, default: 12 Font size of tick labels. legend_fontsize : float, default: 12 Font size of legend texts. """ fig, axes = plt.subplots(3, 2, figsize=figsize, gridspec_kw={'height_ratios': [1, 10, 1.5], 'width_ratios': [10, 1]} ) [[ax1, ax2], [ax3, ax4], [ax5, ax6]] = axes patients = self.matrix_waterfall_matched(af, patient_col, group_col, group_order).columns self.plot_tmb_matched( af, patient_col, group_col, group_order=group_order, ax=ax1, legend=False, patients=patients, width=0.90, color=sns.color_palette(colors)[:3] ) ax1.set_xticks([]) ax1.set_xlim(-0.5, 53-0.5) ax1.spines['right'].set_visible(False) ax1.spines['top'].set_visible(False) ax1.spines['bottom'].set_visible(False) ax1.set_ylabel('TMB', fontsize=label_fontsize) ax1.tick_params(axis='y', which='major', labelsize=ticklabels_fontsize) ax2.remove() self.plot_waterfall_matched(af, patient_col, group_col, group_order=group_order, ax=ax3) ax3.set_xticks([]) ax3.tick_params(axis='y', which='major', labelrotation=0, labelsize=ticklabels_fontsize) self.plot_mutated_matched( af, patient_col, group_col, group_order=group_order, ax=ax4, palette=colors ) ax4.set_yticks([]) ax4.legend().remove() ax4.spines['right'].set_visible(False) ax4.spines['left'].set_visible(False) ax4.spines['top'].set_visible(False) ax4.tick_params(axis='x', which='major', labelsize=ticklabels_fontsize) ax4.set_xlabel('Patients', fontsize=label_fontsize) # Create the legends. handles1 = common.legend_handles(NONSYN_NAMES+['Multi_Hit'], colors=NONSYN_COLORS+['k']) handles2 = common.legend_handles(group_order, colors=colors) leg1 = ax5.legend(handles=handles1, loc=(0, 0), title='Variant_Classification', ncol=4, fontsize=legend_fontsize, title_fontsize=legend_fontsize) leg2 = ax5.legend(handles=handles2, loc=(0.8, 0), title=group_col, fontsize=legend_fontsize, title_fontsize=legend_fontsize) ax5.add_artist(leg1) ax5.add_artist(leg2) ax5.axis('off') # Remove the bottom right plot. ax6.remove() plt.tight_layout() plt.subplots_adjust(wspace=0.01, hspace=0.01) def plot_clonality( self, vaf_col, af=None, group_col=None, group_order=None, count=10, threshold=0.25, subclonal=False, ax=None, figsize=None ): """ Create a bar plot summarizing the clonality of variants in top mutated genes. Clonality will be calculated based on VAF using :meth:`MafFrame.compute_clonality`. Parameters ---------- vaf_col : str MafFrame column containing VAF data. af : AnnFrame, optional AnnFrame containing sample annotation data. group_col : str, optional AnnFrame column containing sample group information. group_order : list, optional List of sample group names. count : int, defualt: 10 Number of top mutated genes to display. threshold : float, default: 0.25 VAF threshold percentage. subclonal : bool, default: False If True, display subclonality (1 - clonality). ax : matplotlib.axes.Axes, optional Pre-existing axes for the plot. Otherwise, crete a new one. figsize : tuple, optional Width, height in inches. Format: (float, float). kwargs Other keyword arguments will be passed down to :meth:`seaborn.barplot`. Returns ------- matplotlib.axes.Axes The matplotlib axes containing the plot. See Also -------- MafFrame.compute_clonality Compute the clonality of variants based on VAF. Examples -------- Below is a simple example: .. plot:: :context: close-figs >>> import matplotlib.pyplot as plt >>> from fuc import common, pymaf >>> common.load_dataset('tcga-laml') >>> maf_file = '~/fuc-data/tcga-laml/tcga_laml.maf.gz' >>> mf = pymaf.MafFrame.from_file(maf_file) >>> mf.plot_clonality('i_TumorVAF_WU') >>> plt.tight_layout() We can create a grouped bar plot based on FAB classification: .. plot:: :context: close-figs >>> annot_file = '~/fuc-data/tcga-laml/tcga_laml_annot.tsv' >>> af = common.AnnFrame.from_file(annot_file, sample_col=0) >>> mf.plot_clonality('i_TumorVAF_WU', ... af=af, ... group_col='FAB_classification', ... group_order=['M0', 'M1', 'M2']) >>> plt.tight_layout() """ df = self.df.copy() df['Clonality'] = self.compute_clonality(vaf_col, threshold=threshold) if group_col is None: s = df.groupby('Hugo_Symbol')['Clonality'].value_counts() s.name = 'Count' df = s.to_frame().reset_index() df = df.pivot(index='Hugo_Symbol', columns='Clonality', values='Count') else: df = df.merge(af.df[group_col], left_on='Tumor_Sample_Barcode', right_index=True) s = df.groupby(['Hugo_Symbol', group_col])['Clonality'].value_counts() s.name = 'Count' df = s.to_frame().reset_index() df = df.pivot(index=['Hugo_Symbol', group_col], columns='Clonality', values='Count') df = df.reset_index() df = df.fillna(0) l = ['Clonal', 'Subclonal'] df[l] = df[l].div(df[l].sum(axis=1), axis=0) genes = self.matrix_genes(count=count).index if ax is None: fig, ax = plt.subplots(figsize=figsize) if subclonal: y = 'Subclonal' else: y = 'Clonal' sns.barplot( x='Hugo_Symbol', y=y, data=df, order=genes, hue=group_col, hue_order=group_order, ax=ax ) ax.set_xlabel('') return ax def plot_evolution( self, samples, vaf_col, anchor=None, normalize=True, count=5, ax=None, figsize=None, **kwargs ): """ Create a line plot visualizing changes in VAF between specified samples. Parameters ---------- samples : list List of samples to display. vaf_col : str MafFrame column containing VAF data. anchor : str, optional Sample to use as the anchor. If absent, use the first sample in the list. normalize : bool, default: True If False, do not normalize VAF by the maximum value. count : int, default: 5 Number of top variants to display. ax : matplotlib.axes.Axes, optional Pre-existing axes for the plot. Otherwise, crete a new one. figsize : tuple, optional Width, height in inches. Format: (float, float). kwargs Other keyword arguments will be passed down to :meth:`seaborn.lineplot`. Returns ------- matplotlib.axes.Axes The matplotlib axes containing the plot. """ df = self.df[self.df.Tumor_Sample_Barcode.isin(samples)] if df.empty: message = f'No variants to display for the samples: {samples}.' raise ValueError(message) df = df[df.Variant_Classification.isin(NONSYN_NAMES)] def one_row(r): if r.Protein_Change == '.': variant_name = f'{r.Hugo_Symbol} ({r.Variant_Classification})' else: variant_name = f'{r.Hugo_Symbol} ({r.Protein_Change})' return variant_name df['Variant_Name'] = df.apply(one_row, axis=1) df = df.pivot(index=['Variant_Name'], columns=['Tumor_Sample_Barcode'], values=[vaf_col]) df.columns = df.columns.get_level_values(1) df.columns.name = '' df = df.fillna(0) for sample in samples: if sample not in df.columns: df[sample] = 0 df = df[samples] if anchor is None: anchor = samples[0] df = df.sort_values(by=anchor, ascending=False) if normalize: df = df / df.max() df = df.fillna(0) df = df.iloc[:count, :].T df = df.loc[samples] if ax is None: fig, ax = plt.subplots(figsize=figsize) sns.lineplot(data=df, ax=ax, **kwargs) ax.set_ylabel('Fraction') return ax def plot_genepair( self, x, y, vaf_col, af=None, group_col=None, group_order=None, ax=None, figsize=None, **kwargs ): """ Create a scatter plot of VAF between Gene X and Gene Y. Parameters ---------- x, y : str Gene names. vaf_col : str MafFrame column containing VAF data. af : AnnFrame, optional AnnFrame containing sample annotation data. group_col : str, optional AnnFrame column containing sample group information. group_order : list, optional List of sample group names. ax : matplotlib.axes.Axes, optional Pre-existing axes for the plot. Otherwise, crete a new one. figsize : tuple, optional Width, height in inches. Format: (float, float). kwargs Other keyword arguments will be passed down to :meth:`seaborn.scatterplot`. Returns ------- matplotlib.axes.Axes The matplotlib axes containing the plot. Examples -------- Below is a simple example: .. plot:: :context: close-figs >>> import matplotlib.pyplot as plt >>> import seaborn as sns >>> from fuc import common, pymaf >>> common.load_dataset('tcga-laml') >>> maf_file = '~/fuc-data/tcga-laml/tcga_laml.maf.gz' >>> mf = pymaf.MafFrame.from_file(maf_file) >>> mf.plot_genepair('DNMT3A', 'FLT3', 'i_TumorVAF_WU') >>> plt.tight_layout() We can create a grouped bar plot based on FAB classification: .. plot:: :context: close-figs >>> annot_file = '~/fuc-data/tcga-laml/tcga_laml_annot.tsv' >>> af = common.AnnFrame.from_file(annot_file, sample_col=0) >>> mf.plot_genepair('DNMT3A', 'FLT3', 'i_TumorVAF_WU', ... af=af, ... group_col='FAB_classification') >>> plt.tight_layout() """ df = self.df[self.df.Hugo_Symbol.isin([x, y])] df = df[['Tumor_Sample_Barcode', 'Hugo_Symbol', vaf_col]] df = df.sort_values(vaf_col, ascending=False) df = df.drop_duplicates(subset=['Tumor_Sample_Barcode', 'Hugo_Symbol']) df = df.pivot(index='Tumor_Sample_Barcode', columns='Hugo_Symbol', values=vaf_col) df = df.fillna(0) if group_col is not None: df = df.merge(af.df[group_col], left_index=True, right_index=True) if ax is None: fig, ax = plt.subplots(figsize=figsize) sns.scatterplot( x=x, y=y, data=df, ax=ax, hue=group_col, hue_order=group_order, **kwargs ) # Print summary statistics including R-squared and p-value. results = smf.ols(f'{y} ~ {x}', data=df).fit() print(f'Results for {y} ~ {x}:') print(f'R^2 = {results.rsquared:.2f}') print(f' P = {results.f_pvalue:.2e}') return ax def plot_regplot( self, af, group_col, a, b, a_size=None, b_size=None, genes=None, count=10, to_csv=None, ax=None, figsize=None, **kwargs ): """ Create a scatter plot with a linear regression model fit visualizing correlation between gene mutation frequencies in two sample groups A and B. Each point in the plot represents a gene. The method will automatically calculate and print summary statistics including R-squared and p-value. Parameters ---------- af : AnnFrame AnnFrame containing sample annotation data. group_col : str AnnFrame column containing sample group information. a, b : str Sample group names. a_size, b_size : int, optional Sample group sizes to use as denominator. By default, these are inferred from the MafFrame and AnnFrame objects. genes : list, optional Genes to display. When absent, top mutated genes (``count``) will be used. count : int, defualt: 10 Number of top mutated genes to display. Ignored if ``genes`` is specified. to_csv : str, optional Write the plot's data to a CSV file. ax : matplotlib.axes.Axes, optional Pre-existing axes for the plot. Otherwise, crete a new one. figsize : tuple, optional Width, height in inches. Format: (float, float). kwargs Other keyword arguments will be passed down to :meth:`seaborn.regplot`. Returns ------- matplotlib.axes.Axes The matplotlib axes containing the plot. Examples -------- .. plot:: >>> import matplotlib.pyplot as plt >>> from fuc import common, pymaf >>> common.load_dataset('tcga-laml') >>> maf_file = '~/fuc-data/tcga-laml/tcga_laml.maf.gz' >>> annot_file = '~/fuc-data/tcga-laml/tcga_laml_annot.tsv' >>> mf = pymaf.MafFrame.from_file(maf_file) >>> af = common.AnnFrame.from_file(annot_file, sample_col=0) >>> mf.plot_regplot(af, 'FAB_classification', 'M1', 'M2') Results for M2 ~ M1: R^2 = 0.43 P = 3.96e-02 >>> plt.tight_layout() """ df1 = self.matrix_prevalence() df2 = af.df[af.df.index.isin(df1.columns)] i_a = df2[df2[group_col] == a].index i_b = df2[df2[group_col] == b].index # Determine which genes to display. if genes is None: genes = self.matrix_genes(count=count).index.to_list() # Determine each group's sample size. if a_size is None: a_size = len(i_a) if b_size is None: b_size = len(i_b) f = lambda x: 0 if x == 0 else 1 s_a = df1.T.loc[i_a].applymap(f).sum().loc[genes] / a_size s_b = df1.T.loc[i_b].applymap(f).sum().loc[genes] / b_size df3 = pd.concat([s_a, s_b], axis=1) df3.columns = [a, b] if ax is None: fig, ax = plt.subplots(figsize=figsize) # Draw the main plot. sns.regplot(x=a, y=b, data=df3, ax=ax, **kwargs) # Write the DataFrame to a CSV file. if to_csv is not None: df3.to_csv(to_csv) # Print summary statistics including R-squared and p-value. results = smf.ols(f'{b} ~ {a}', data=df3).fit() print(f'Results for {b} ~ {a}:') print(f'R^2 = {results.rsquared:.2f}') print(f' P = {results.f_pvalue:.2e}') return ax def plot_interactions( self, count=10, cmap=None, ax=None, figsize=None, **kwargs ): """ Create a heatmap representing mutually exclusive or co-occurring set of genes. This method performs pair-wise Fisher’s Exact test to detect such significant pair of genes. Parameters ---------- count : int, defualt: 10 Number of top mutated genes to display. cmap : str, optional Color map. ax : matplotlib.axes.Axes, optional Pre-existing axes for the plot. Otherwise, crete a new one. figsize : tuple, optional Width, height in inches. Format: (float, float). kwargs Other keyword arguments will be passed down to :meth:`seaborn.heatmap`. Returns ------- matplotlib.axes.Axes The matplotlib axes containing the plot. Examples -------- .. plot:: >>> import matplotlib.pyplot as plt >>> from fuc import common, pymaf >>> common.load_dataset('tcga-laml') >>> maf_file = '~/fuc-data/tcga-laml/tcga_laml.maf.gz' >>> mf = pymaf.MafFrame.from_file(maf_file) >>> mf.plot_interactions(count=25, cmap='BrBG') >>> plt.tight_layout() """ df = self.matrix_prevalence() genes = self.matrix_genes(count=count, mode='samples').index.to_list() df = df.loc[genes] df = df.applymap(lambda x: True if x else False) df = df.T pairs = list(itertools.combinations(genes, 2)) data = [] def one_pair(a, b): s_a = df[a].to_list() s_b = df[b].to_list() ab = 0 AB = 0 aB = 0 Ab = 0 for i in range(len(s_a)): if s_a[i] and s_b[i]: AB += 1 elif s_a[i] and not s_b[i]: Ab += 1 elif not s_a[i] and s_b[i]: aB += 1 else: ab += 1 return (ab, AB, aB, Ab) for pair in pairs: a = pair[0] b = pair[1] ab, AB, aB, Ab = one_pair(a, b) event = 'Co_Occurence' if AB else 'Mutually_Exclusive' data.append([a, b, ab, AB, aB, Ab, event]) df = pd.DataFrame(data, columns=['A', 'B', 'ab', 'AB', 'aB', 'Ab', 'Event']) def one_row(r): oddsr, p = fisher_exact([[r.AB, r.aB], [r.Ab, r.ab]], alternative='two-sided') return pd.Series([oddsr, p], index=['Odds_Ratio', 'P_Value']) df = pd.concat([df.apply(one_row, axis=1), df], axis=1) df = df.sort_values('P_Value') def one_row(r): r['Log_P_Value'] = -np.log10(r.P_Value) if r.P_Value < 0.05: r['Label'] = '*' elif r.P_Value < 0.1: r['Label'] = '.' else: r['Label'] = '' if r.Event == 'Mutually_Exclusive': r.Log_P_Value *= -1 return r df = df.apply(one_row, axis=1) annot = df.pivot(index='A', columns='B', values='Label') annot = annot.fillna('') df = df.pivot(index='A', columns='B', values='Log_P_Value') df = df.fillna(0) for gene in genes: if gene not in df.columns: df[gene] = 0 if gene not in annot.columns: annot[gene] = '' df = df.T annot = annot.T for gene in genes: if gene not in df.columns: df[gene] = 0 if gene not in annot.columns: annot[gene] = '' annot = annot[genes] annot = annot.loc[genes] df = df[genes] df = df.loc[genes] if ax is None: fig, ax = plt.subplots(figsize=figsize) # Create a mask for the heatmap. corr = np.corrcoef(np.random.randn(count, 200)) mask = np.zeros_like(corr) mask[np.triu_indices_from(mask)] = True sns.heatmap( df, annot=annot, fmt='', cmap=cmap, mask=mask, vmax=3, vmin=-3, center=0, ax=ax, **kwargs ) ax.set_xlabel('') ax.set_ylabel('') return ax def plot_lollipop( self, gene, alpha=0.7, ax=None, figsize=None, legend=True ): """ Create a lollipop or stem plot showing amino acid changes of a gene. Parameters ---------- gene : str Name of the gene. alpha : float, default: 0.7 Set the color transparency. Must be within the 0-1 range, inclusive. ax : matplotlib.axes.Axes, optional Pre-existing axes for the plot. Otherwise, crete a new one. figsize : tuple, optional Width, height in inches. Format: (float, float). Returns ------- matplotlib.axes.Axes The matplotlib axes containing the plot. Examples -------- .. plot:: >>> import matplotlib.pyplot as plt >>> from fuc import common, pymaf >>> common.load_dataset('tcga-laml') >>> maf_file = '~/fuc-data/tcga-laml/tcga_laml.maf.gz' >>> mf = pymaf.MafFrame.from_file(maf_file) >>> mf.plot_lollipop('DNMT3A') >>> plt.tight_layout() """ # Only select variants from the gene. df1 = self.df[self.df.Hugo_Symbol == gene] # Raise an error if there are no SNVs to plot. if df1.empty: raise ValueError(f"No variants to plot for the gene: '{gene}'.") # Count each amino acid change. df2 = df1.Protein_Change.value_counts().to_frame().reset_index() df2.columns = ['Protein_Change', 'Count'] # Identify variant classification for each amino acid change. df3 = df1[['Protein_Change', 'Variant_Classification'] ].drop_duplicates(subset=['Protein_Change']) df4 = pd.merge(df2, df3, on='Protein_Change') # Extract amino acid positions. Sort the counts by position. def one_row(r): digits = [x for x in r.Protein_Change if x.isdigit()] if not digits: return np.nan return int(''.join(digits)) df4['Protein_Position'] = df4.apply(one_row, axis=1) df4 = df4.dropna(subset=['Protein_Position']) df4 = df4.sort_values(['Protein_Position']) if ax is None: fig, ax = plt.subplots(figsize=figsize) for i, nonsyn_name in enumerate(NONSYN_NAMES): temp = df4[df4.Variant_Classification == nonsyn_name] color = NONSYN_COLORS[i] ax.vlines(temp.Protein_Position, ymin=0, ymax=temp.Count, alpha=alpha, color=color) ax.plot(temp.Protein_Position, temp.Count, 'o', alpha=alpha, color=color, label=nonsyn_name) ax.set_xlabel('Position') ax.set_ylabel('Count') if legend: ax.legend() return ax def plot_mutated( self, af=None, group_col=None, group_order=None, genes=None, count=10, ax=None, figsize=None ): """ Create a bar plot visualizing the mutation prevalence of top mutated genes. Parameters ---------- af : AnnFrame, optional AnnFrame containing sample annotation data. group_col : str, optional AnnFrame column containing sample group information. group_order : list, optional List of sample group names. genes : list, optional Genes to display. When absent, top mutated genes (``count``) will be used. count : int, defualt: 10 Number of top mutated genes to display. Ignored if ``genes`` is specified. ax : matplotlib.axes.Axes, optional Pre-existing axes for the plot. Otherwise, crete a new one. figsize : tuple, optional Width, height in inches. Format: (float, float). kwargs Other keyword arguments will be passed down to :meth:`seaborn.barplot`. Returns ------- matplotlib.axes.Axes The matplotlib axes containing the plot. Examples -------- Below is a simple example: .. plot:: :context: close-figs >>> import matplotlib.pyplot as plt >>> import seaborn as sns >>> from fuc import common, pymaf >>> common.load_dataset('tcga-laml') >>> maf_file = '~/fuc-data/tcga-laml/tcga_laml.maf.gz' >>> mf = pymaf.MafFrame.from_file(maf_file) >>> mf.plot_mutated() >>> plt.tight_layout() We can create a grouped bar plot based on FAB classification: .. plot:: :context: close-figs >>> annot_file = '~/fuc-data/tcga-laml/tcga_laml_annot.tsv' >>> af = common.AnnFrame.from_file(annot_file, sample_col=0) >>> mf.plot_mutated(af=af, ... group_col='FAB_classification', ... group_order=['M0', 'M1', 'M2']) >>> plt.tight_layout() """ df = self.matrix_prevalence() # Determine which genes to display. if genes is None: genes = self.matrix_genes(count=count).index.to_list() df = df.loc[genes] df = df.applymap(lambda x: True if x else False) if group_col is None: df = (df.sum(axis=1) / df.shape[1]).to_frame().reset_index() df.columns.values[1] = 'Prevalence' else: df = df.T df = pd.merge(df, af.df[group_col], left_index=True, right_index=True) df = df.groupby([group_col]).mean().reset_index() df = df.melt(id_vars=[group_col]) df.columns = [group_col, 'Hugo_Symbol', 'Prevalence'] if ax is None: fig, ax = plt.subplots(figsize=figsize) sns.barplot( x='Hugo_Symbol', y='Prevalence', data=df, hue=group_col, hue_order=group_order, ax=ax ) ax.set_xlabel('') return ax def plot_mutated_matched( self, af, patient_col, group_col, group_order, ax=None, figsize=None, **kwargs ): """ Create a bar plot visualizing the mutation prevalence of top mutated genes. Parameters ---------- af : AnnFrame AnnFrame containing sample annotation data. patient_col : str AnnFrame column containing patient information. group_col : str AnnFrame column containing sample group information. group_order : list List of sample group names. ax : matplotlib.axes.Axes, optional Pre-existing axes for the plot. Otherwise, crete a new one. figsize : tuple, optional Width, height in inches. Format: (float, float). kwargs Other keyword arguments will be passed down to :meth:`seaborn.barplot`. Returns ------- matplotlib.axes.Axes The matplotlib axes containing the plot. """ df = self.matrix_waterfall_matched(af, patient_col, group_col, group_order) df = df.applymap(lambda x: 0 if x == 'None' else 1) s = df.sum(axis=1) / len(df.columns) * 100 s.name = 'Count' df = s.to_frame().reset_index() if ax is None: fig, ax = plt.subplots(figsize=figsize) sns.barplot( x='Count', y='Gene', hue='Group', data=df, hue_order=group_order, orient='h', ax=ax, **kwargs ) ax.set_xlabel('Patients (%)') ax.set_ylabel('') return ax def plot_rainfall( self, sample, palette=None, legend='auto', ax=None, figsize=None, **kwargs ): """ Create a rainfall plot visualizing inter-variant distance on a linear genomic scale for single sample. Parameters ---------- sample : str Name of the sample. palette : str, optional Name of the seaborn palette. See the :ref:`tutorials:Control plot colors` tutorial for details. legend : {'auto', 'brief', 'full', False}, default: 'auto' Display setting of the legend according to :meth:`seaborn.scatterplot`. ax : matplotlib.axes.Axes, optional Pre-existing axes for the plot. Otherwise, crete a new one. figsize : tuple, optional Width, height in inches. Format: (float, float). kwargs Other keyword arguments will be passed down to :meth:`seaborn.scatterplot`. Returns ------- matplotlib.axes.Axes The matplotlib axes containing the plot. Examples -------- .. plot:: >>> import matplotlib.pyplot as plt >>> import seaborn as sns >>> from fuc import common, pymaf >>> common.load_dataset('brca') >>> maf_file = '~/fuc-data/brca/brca.maf.gz' >>> mf = pymaf.MafFrame.from_file(maf_file) >>> mf.plot_rainfall('TCGA-A8-A08B', ... figsize=(14, 7), ... palette=sns.color_palette('Set2')[:6]) >>> plt.tight_layout() """ # Select variants from the sample. df = self.df[self.df.Tumor_Sample_Barcode == sample] # Remove indels. df = df[df.Variant_Type == 'SNP'] # Raise an error if there are no SNVs to plot. if df.empty: message = ( 'There are no SNVs to be drawn ' f"for the sample: '{sample}'." ) raise ValueError(message) # Get SNV class for each variant. def one_row(r): change = r.Reference_Allele + '>' + r.Tumor_Seq_Allele2 return SNV_CLASSES[change]['class'] df['SNV_Class'] = df.apply(one_row, axis=1) # Convert string chromosomes to integers for ordering. def one_row(r): r.Chromosome = int(r.Chromosome.replace( 'chr', '').replace('X', '23').replace('Y', '24')) return r df = df.apply(one_row, axis=1) df = df[['Chromosome', 'Start_Position', 'SNV_Class']] df = df.sort_values(['Chromosome', 'Start_Position']) # Update positions as if all chromosomes are one long molecule. def one_row(r): if r.Chromosome == 1: return r r.Start_Position += sum(CHROM_LENGTHS['hg19'][:r.Chromosome-1]) return r df = df.apply(one_row, axis=1) s = np.diff(df.Start_Position) s = np.insert(s, 0, 0) s =
np.log10(s + 1)
numpy.log10
""" General tools for dealing with ATAC-Seq data using Python. @author: <NAME>, Greenleaf Lab, Stanford University """ import numpy as np import matplotlib.pyplot as plt from pyatac.bedgraph import BedGraphFile from pyatac.chunk import Chunk from pyatac.utils import smooth from pyatac.fragments import getInsertions, getStrandedInsertions from pyatac.seq import get_sequence, seq_to_mat, complement class Track(Chunk): """Generic class for various types of signal tracks""" def __init__(self, chrom, start, end, name = "track", vals=None , log = False): Chunk.__init__(self, chrom, start, end, name = name) self.log = log if vals is None: self.vals = None elif len(vals) == self.length(): self.vals = vals else: raise Exception("Input vals must be of length as set by start and end!") def assign_track(self, vals, start = None, end = None): """Assign values to track""" if start: self.start = start if end: self.end = end if len(vals)!= self.end - self.start: raise Exception("The values being assigned to track do not \ span the start to end of the track") self.vals = vals def write_track(self, handle, start = None, end = None, vals = None, write_zero = True): """Write track to output file handle If vals are specified use those values Othersise use self.vals """ if start is None: start = self.start if end is None: end = self.end if vals is None: vals=self.vals if len(vals)!=self.end-self.start: print(len(vals),self.end-self.start) raise Exception("Error! Inconsistency between length of \ values and start/end values") prev_value = None start_range = 0 output = "" for i in range(len(vals)): if vals[i] == prev_value: pass elif
np.isnan(vals[i])
numpy.isnan
import numpy as np import cv2 import warnings warnings.filterwarnings('ignore') import matplotlib matplotlib.use('Qt5Agg') import matplotlib.pyplot as plt import os import scipy import imageio from scipy.ndimage import gaussian_filter1d, gaussian_filter from sklearn import linear_model from sklearn.model_selection import train_test_split from matplotlib.colors import ListedColormap import statsmodels.api as sm import pandas as pd from statsmodels.stats.anova import AnovaRM from sklearn import linear_model from helper_code.registration_funcs import model_arena, get_arena_details from helper_code.processing_funcs import speed_colors from helper_code.analysis_funcs import * from important_code.shuffle_test import permutation_test, permutation_correlation plt.rcParams.update({'font.size': 30}) def plot_traversals(self): ''' plot all traversals across the arena ''' # initialize parameters sides = ['back', 'front'] # sides = ['back'] types = ['spontaneous'] #, 'evoked'] fast_color = np.array([.5, 1, .5]) slow_color = np.array([1, .9, .9]) edge_vector_color = np.array([1, .95, .85]) homing_vector_color = np.array([.725, .725, .725]) edge_vector_color =
np.array([.98, .9, .6])
numpy.array
#!/usr/bin/python # -*- coding: utf-8 -*- ################# ## Import modules ################# import sys # walk directories import glob # access to OS functionality import os # copy things import copy # numpy import numpy as np # open3d import open3d # matplotlib for colormaps import matplotlib.cm import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # struct for reading binary ply files import struct # the main class that loads raw 3D scans class Kitti360Viewer3DRaw(object): # Constructor def __init__(self, seq=0, mode='velodyne'): if 'KITTI360_DATASET' in os.environ: kitti360Path = os.environ['KITTI360_DATASET'] else: kitti360Path = os.path.join(os.path.dirname( os.path.realpath(__file__)), '..', '..') if mode=='velodyne': self.sensor_dir='velodyne_points' elif mode=='sick': self.sensor_dir='sick_points' else: raise RuntimeError('Unknown sensor type!') sequence = '2013_05_28_drive_%04d_sync' % seq self.raw3DPcdPath = os.path.join(kitti360Path, 'data_3d_raw', sequence, self.sensor_dir, 'data') def loadVelodyneData(self, frame=0): pcdFile = os.path.join(self.raw3DPcdPath, '%010d.bin' % frame) if not os.path.isfile(pcdFile): raise RuntimeError('%s does not exist!' % pcdFile) pcd = np.fromfile(pcdFile, dtype=np.float32) pcd = np.reshape(pcd,[-1,4]) return pcd def loadSickData(self, frame=0): pcdFile = os.path.join(self.raw3DPcdPath, '%010d.bin' % frame) if not os.path.isfile(pcdFile): raise RuntimeError('%s does not exist!' % pcdFile) pcd = np.fromfile(pcdFile, dtype=np.float32) pcd = np.reshape(pcd,[-1,2]) pcd = np.concatenate([np.zeros_like(pcd[:,0:1]), -pcd[:,0:1], pcd[:,1:2]], axis=1) return pcd def projectVeloToImage(cam_id=0, seq=0): from kitti360scripts.devkits.commons.loadCalibration import loadCalibrationCameraToPose, loadCalibrationRigid from kitti360scripts.helpers.project import CameraPerspective, CameraFisheye from PIL import Image import matplotlib.pyplot as plt if 'KITTI360_DATASET' in os.environ: kitti360Path = os.environ['KITTI360_DATASET'] else: kitti360Path = os.path.join(os.path.dirname( os.path.realpath(__file__)), '..', '..') sequence = '2013_05_28_drive_%04d_sync'%seq # perspective camera if cam_id in [0,1]: camera = CameraPerspective(kitti360Path, sequence, cam_id) # fisheye camera elif cam_id in [2,3]: camera = CameraFisheye(kitti360Path, sequence, cam_id) else: raise RuntimeError('Unknown camera ID!') # object for parsing 3d raw data velo = Kitti360Viewer3DRaw(mode='velodyne', seq=seq) # cam_0 to velo fileCameraToVelo = os.path.join(kitti360Path, 'calibration', 'calib_cam_to_velo.txt') TrCam0ToVelo = loadCalibrationRigid(fileCameraToVelo) # all cameras to system center fileCameraToPose = os.path.join(kitti360Path, 'calibration', 'calib_cam_to_pose.txt') TrCamToPose = loadCalibrationCameraToPose(fileCameraToPose) # velodyne to all cameras TrVeloToCam = {} for k, v in TrCamToPose.items(): # Tr(cam_k -> velo) = Tr(cam_k -> cam_0) @ Tr(cam_0 -> velo) TrCamkToCam0 =
np.linalg.inv(TrCamToPose['image_00'])
numpy.linalg.inv
#! /usr/bin/env python """ This script produces the stacks for emission line luminosity limited samples. """ import sys import os from os.path import join import glob import numpy as n import astropy.io.fits as fits import SpectraStackingEBOSS as sse from scipy.interpolate import interp1d import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as p import lineListVac as ll em_line_list = [ [1240.14, 'N V' , 'darkgreen'], [1305.53, 'O I' , 'darkgreen'], [1335.31, 'C II', 'darkgreen' ], [1397.61, 'Si IV', 'darkgreen' ], [1399.8, 'Si IV + O IV', 'darkgreen' ], [ll.C4_1548, r'C IV', 'darkgreen'], [1640.42, 'He II', 'darkgreen'], [1750.26, 'N III]', 'darkgreen'], [ll.C3_1908 , r'C III', 'darkgreen' ], [2327.00, 'CII]', 'darkgreen'], [2396.36, 'FeII*', 'darkgreen'], [2626.45, 'FeII*', 'darkgreen'], [3346.82, '[Ne V]', 'darkgreen'], [3426.84, '[Ne V]', 'darkgreen'], [ll.O2_mean , r'[O II]', 'darkgreen'], [3759.99, '[Fe VII]', 'darkgreen'], [ll.Ne3_3869 , r'[Ne III]', 'darkgreen'], # [ll.Ne3_3968 , r'[Ne III]', 'darkgreen'], [ll.O3_4363 , r'[O III]' , 'darkgreen'], [ll.O3_4960 , r'[O III]' , 'darkgreen'], [ll.O3_5007 , r'[O III]' , 'darkgreen'], [5160.33, '[Fe VII]', 'darkgreen'], [ll.O1_5578 , r'O I', 'darkgreen' ], [5722.30, '[Fe VII]', 'darkgreen'], [5877.29, 'He I', 'darkgreen'], [6087.98, '[Fe VII]', 'darkgreen'], [ll.O1_6302 , r'O I' , 'darkgreen'], [ll.O1_6365 , r'O I' , 'darkgreen'], [ll.N2_5756 , r'[N II]' , 'darkgreen'], [ll.N2_6549 , r'[N II]' , 'darkgreen'], [ll.N2_6585 , r'[N II]' , 'darkgreen'], [ll.S2_6718 , r'[S II]', 'darkgreen'], [ll.S2_6732 , r'[S II]', 'darkgreen'], [ll.Ar3_7137 , r'[Ar III]' , 'darkgreen'], ] abs_line_list = [ [911.753, r'Ly$_{limit}$', 'black'], [1025.7220, r'Ly$_\beta$', 'black'], [ll.H1_1216, r'Ly$_\alpha$', 'black'], [1857.40, 'Al III', 'darkgreen'], # [2344.21, 'FeII', 'darkgreen'], [2382.76, 'Fe II', 'darkgreen'], [2600.17, 'FeII', 'darkgreen'], [2798.75, 'MgII', 'darkgreen'], # [3835.397, r'H$\eta$', 'black'], [3889.064, r'H$\zeta$', 'black'], [3934.777, 'Ca(K)', 'magenta'], [3969.588, 'Ca(H)', 'magenta'], [ll.H1_3970 , r'H$_\epsilon$', 'black'], # [ll.H1_4102 , r'H$_\delta$', 'black'], [4305.61, 'G', 'magenta'], [ll.H1_4341 , r'H$_\gamma$', 'black'], [ll.He2_4686 , r'He II', 'darkgreen'], [ll.H1_4862 , r'H$_\beta$', 'black'], # [5176.7, 'MgI b', 'magenta'], [ll.He2_5411, r'He II', 'darkgreen'], [5895.6, r'NaI D$_{1,2}$', 'magenta'], [ll.H1_6564 , r'H$_\alpha$', 'black'], # [8500.36, 'Ca II', 'magenta'], [8544.44, 'Ca II', 'magenta'], [8664.52, 'Ca II', 'magenta'], ] # line_list_abs = n.array([ 2249.88, 2260.78, 2344.21, 2374.46, 2382.76, 2576.88, 2586.65, 2594.50, 2600.17, 2606.46, 2796.35, 2803.53, 2852.96]) # line_list_abs_names = n.array(['FeII' , 'FeII', 'FeII', 'FeII', 'FeII', 'MnII', 'FeII', 'MnII', 'FeII', 'MnII', 'MgII', 'MgII', 'MgI']) # line_list_em = n.array([2327, 2365.55, 2396.36, 2612.65,2626.45]) # line_list_em_names = n.array(['CII]', 'FeII*', 'FeII*', 'FeII*', 'FeII*']) #stack_dir = join( os.environ['HOME'], "SDSS/stacks/v2" ) stack_dir = join( os.environ['HOME'], "SDSS/stacks" ) file_out = join(stack_dir,"X_AGN", "DR16_ELG-stitched-stack.fits") def plot_spec( p_2_stack = file_out ): print('plots', p_2_stack) # fig=p.figure(7, (14.0, 14.0), frameon=False) # fig.add_subplot(411, ylabel=r'F$_\lambda$') fig=p.figure(5, (14.0, 8.0))#, frameon=False) fig.add_subplot(111, ylabel=r'F$_\lambda$', xlabel='Wavelength rest-frame [Angstrom]') stack = fits.open(p_2_stack)[1].data s1 = (stack['wavelength']>0) stack = stack[s1] y_min = n.min(stack['medianStack']) y_max = n.max(stack['medianStack']) delta_y = y_max - y_min p.xlim((n.min(stack['wavelength']), 9500 )) # n.max(stack['wavelength']))) p.ylim((y_min - delta_y * 0.2 , y_max + delta_y * 0.2 )) #p.xscale('log') # lines above for elem in em_line_list: print(elem) if elem[0]>
n.min(stack['wavelength'][5])
numpy.min
#The DF of a tidal stream import copy import multiprocessing import warnings from pkg_resources import parse_version import numpy import scipy from scipy import special, interpolate, integrate, optimize _SCIPY_VERSION= parse_version(scipy.__version__) if _SCIPY_VERSION < parse_version('0.10'): #pragma: no cover from scipy.maxentropy import logsumexp elif _SCIPY_VERSION < parse_version('0.19'): #pragma: no cover from scipy.misc import logsumexp else: from scipy.special import logsumexp from ..orbit import Orbit from .df import df from ..util import coords, fast_cholesky_invert, \ conversion, multi, plot, stable_cho_factor, ars from ..util.conversion import physical_conversion, _APY_UNITS, _APY_LOADED from ..actionAngle.actionAngleIsochroneApprox import dePeriod from ..potential import flatten as flatten_potential from ..util import galpyWarning if _APY_LOADED: from astropy import units _INTERPDURINGSETUP= True _USEINTERP= True _USESIMPLE= True # cast a wide net _TWOPIWRAPS= numpy.arange(-4,5)*2.*numpy.pi _labelDict= {'x': r'$X$', 'y': r'$Y$', 'z': r'$Z$', 'r': r'$R$', 'phi': r'$\phi$', 'vx':r'$V_X$', 'vy':r'$V_Y$', 'vz':r'$V_Z$', 'vr':r'$V_R$', 'vt':r'$V_T$', 'll':r'$\mathrm{Galactic\ longitude\, (deg)}$', 'bb':r'$\mathrm{Galactic\ latitude\, (deg)}$', 'dist':r'$\mathrm{distance\, (kpc)}$', 'pmll':r'$\mu_l\,(\mathrm{mas\,yr}^{-1})$', 'pmbb':r'$\mu_b\,(\mathrm{mas\,yr}^{-1})$', 'vlos':r'$V_{\mathrm{los}}\,(\mathrm{km\,s}^{-1})$'} class streamdf(df): """The DF of a tidal stream""" def __init__(self,sigv,progenitor=None,pot=None,aA=None,useTM=False, tdisrupt=None,sigMeanOffset=6.,leading=True, sigangle=None, deltaAngleTrack=None,nTrackChunks=None,nTrackIterations=None, progIsTrack=False, ro=None,vo=None, Vnorm=None,Rnorm=None, R0=8.,Zsun=0.0208,vsun=[-11.1,8.*30.24,7.25], multi=None,interpTrack=_INTERPDURINGSETUP, useInterp=_USEINTERP,nosetup=False,nospreadsetup=False, approxConstTrackFreq=False,useTMHessian=False, custom_transform=None): """ NAME: __init__ PURPOSE: Initialize a quasi-isothermal DF INPUT: sigv - radial velocity dispersion of the progenitor (can be Quantity) tdisrupt= (5 Gyr) time since start of disruption (can be Quantity) leading= (True) if True, model the leading part of the stream if False, model the trailing part progenitor= progenitor orbit as Orbit instance (will be re-integrated, so don't bother integrating the orbit before) progIsTrack= (False) if True, then the progenitor (x,v) is actually the (x,v) of the stream track at zero angle separation; useful when initializing with an orbit fit; the progenitor's position will be calculated pot= Potential instance or list thereof aA= actionAngle instance used to convert (x,v) to actions useTM= (False) if set to an actionAngleTorus instance, use this to speed up calculations sigMeanOffset= (6.) offset between the mean of the frequencies and the progenitor, in units of the largest eigenvalue of the frequency covariance matrix (along the largest eigenvector), should be positive; to model the trailing part, set leading=False sigangle= (sigv/122/[1km/s]=1.8sigv in natural coordinates) estimate of the angle spread of the debris initially (can be Quantity) deltaAngleTrack= (None) angle to estimate the stream track over (rad; or can be Quantity) nTrackChunks= (floor(deltaAngleTrack/0.15)+1) number of chunks to divide the progenitor track in nTrackIterations= Number of iterations to perform when establishing the track; each iteration starts from a previous approximation to the track in (x,v) and calculates a new track based on the deviation between the previous track and the desired track in action-angle coordinates; if not set, an appropriate value is determined based on the magnitude of the misalignment between stream and orbit, with larger numbers of iterations for larger misalignments interpTrack= (might change), interpolate the stream track while setting up the instance (can be done by hand by calling self._interpolate_stream_track() and self._interpolate_stream_track_aA()) useInterp= (might change), use interpolation by default when calculating approximated frequencies and angles nosetup= (False) if True, don't setup the stream track and anything else that is expensive nospreadsetup= (False) if True, don't setup the spread around the stream track (only for nosetup is False) multi= (None) if set, use multi-processing Coordinate transformation inputs: vo= (220) circular velocity to normalize velocities with [used to be Vnorm; can be Quantity] ro= (8) Galactocentric radius to normalize positions with [used to be Rnorm; can be Quantity] R0= (8) Galactocentric radius of the Sun (kpc) [can be different from ro; can be Quantity] Zsun= (0.0208) Sun's height above the plane (kpc; can be Quantity) vsun= ([-11.1,241.92,7.25]) Sun's motion in cylindrical coordinates (vR positive away from center) (can be Quantity) custom_transform= (None) matrix implementing the rotation from (ra,dec) to a custom set of sky coordinates approxConstTrackFreq= (False) if True, approximate the stream assuming that the frequency is constant along the stream (only works with useTM, for which this leads to a significant speed-up) useTMHessian= (False) if True, compute the basic Hessian dO/dJ_prog using TM; otherwise use aA OUTPUT: object HISTORY: 2013-09-16 - Started - Bovy (IAS) 2013-11-25 - Started over - Bovy (IAS) """ if ro is None and not Rnorm is None: warnings.warn("WARNING: Rnorm keyword input to streamdf is deprecated in favor of the standard ro keyword", galpyWarning) ro= Rnorm if vo is None and not Vnorm is None: warnings.warn("WARNING: Vnorm keyword input to streamdf is deprecated in favor of the standard vo keyword", galpyWarning) vo= Vnorm df.__init__(self,ro=ro,vo=vo) sigv= conversion.parse_velocity(sigv,vo=self._vo) self._sigv= sigv if tdisrupt is None: self._tdisrupt= 5./conversion.time_in_Gyr(self._vo,self._ro) else: self._tdisrupt= conversion.parse_time(tdisrupt,ro=self._ro,vo=self._vo) self._sigMeanOffset= sigMeanOffset if pot is None: #pragma: no cover raise IOError("pot= must be set") self._pot= flatten_potential(pot) self._aA= aA if not self._aA._pot == self._pot: raise IOError("Potential in aA does not appear to be the same as given potential pot") self._check_consistent_units() if useTM: self._useTM= True self._aAT= useTM # confusing, no? self._approxConstTrackFreq= approxConstTrackFreq if not self._aAT._pot == self._pot: raise IOError("Potential in useTM=actionAngleTorus instance does not appear to be the same as given potential pot") else: self._useTM= False if (multi is True): #if set to boolean, enable cpu_count processes self._multi= multiprocessing.cpu_count() else: self._multi= multi self._progenitor_setup(progenitor,leading,useTMHessian) sigangle= conversion.parse_angle(sigangle) deltaAngleTrack= conversion.parse_angle(deltaAngleTrack) self._offset_setup(sigangle,leading,deltaAngleTrack) # if progIsTrack, calculate the progenitor that gives a track that is approximately the given orbit if progIsTrack: self._setup_progIsTrack() R0= conversion.parse_length_kpc(R0) Zsun= conversion.parse_length_kpc(Zsun) vsun= conversion.parse_velocity_kms(vsun) vsun[0]= conversion.parse_velocity_kms(vsun[0]) vsun[1]= conversion.parse_velocity_kms(vsun[1]) vsun[2]= conversion.parse_velocity_kms(vsun[2]) self._setup_coord_transform(R0,Zsun,vsun,progenitor,custom_transform) #Determine the stream track if not nosetup: self._determine_nTrackIterations(nTrackIterations) self._determine_stream_track(nTrackChunks) self._useInterp= useInterp if interpTrack or self._useInterp: self._interpolate_stream_track() self._interpolate_stream_track_aA() self.calc_stream_lb() if not nospreadsetup: self._determine_stream_spread() return None def _progenitor_setup(self,progenitor,leading,useTMHessian): """The part of the setup relating to the progenitor's orbit""" #Progenitor orbit: Calculate actions, frequencies, and angles for the progenitor self._progenitor= progenitor() #call to get new Orbit # Make sure we do not use physical coordinates self._progenitor.turn_physical_off() acfs= self._aA.actionsFreqsAngles(self._progenitor, _firstFlip=(not leading), use_physical=False) self._progenitor_jr= acfs[0][0] self._progenitor_lz= acfs[1][0] self._progenitor_jz= acfs[2][0] self._progenitor_Omegar= acfs[3] self._progenitor_Omegaphi= acfs[4] self._progenitor_Omegaz= acfs[5] self._progenitor_Omega= numpy.array([acfs[3],acfs[4],acfs[5]]).reshape(3) self._progenitor_angler= acfs[6] self._progenitor_anglephi= acfs[7] self._progenitor_anglez= acfs[8] self._progenitor_angle= numpy.array([acfs[6],acfs[7],acfs[8]]).reshape(3) #Calculate dO/dJ Jacobian at the progenitor if useTMHessian: h, fr,fp,fz,e= self._aAT.hessianFreqs(self._progenitor_jr, self._progenitor_lz, self._progenitor_jz) self._dOdJp= h # Replace frequencies with TM frequencies self._progenitor_Omegar= fr self._progenitor_Omegaphi= fp self._progenitor_Omegaz= fz self._progenitor_Omega= numpy.array([self._progenitor_Omegar, self._progenitor_Omegaphi, self._progenitor_Omegaz]).reshape(3) else: self._dOdJp= calcaAJac(self._progenitor.vxvv[0], self._aA,dxv=None,dOdJ=True, _initacfs=acfs) self._dOdJpInv= numpy.linalg.inv(self._dOdJp) self._dOdJpEig= numpy.linalg.eig(self._dOdJp) return None def _offset_setup(self,sigangle,leading,deltaAngleTrack): """The part of the setup related to calculating the stream/progenitor offset""" #From the progenitor orbit, determine the sigmas in J and angle self._sigjr= (self._progenitor.rap()-self._progenitor.rperi())/numpy.pi*self._sigv self._siglz= self._progenitor.rperi()*self._sigv self._sigjz= 2.*self._progenitor.zmax()/numpy.pi*self._sigv #Estimate the frequency covariance matrix from a diagonal J matrix x dOdJ self._sigjmatrix= numpy.diag([self._sigjr**2., self._siglz**2., self._sigjz**2.]) self._sigomatrix= numpy.dot(self._dOdJp, numpy.dot(self._sigjmatrix,self._dOdJp.T)) #Estimate angle spread as the ratio of the largest to the middle eigenvalue self._sigomatrixEig= numpy.linalg.eig(self._sigomatrix) self._sigomatrixEigsortIndx= numpy.argsort(self._sigomatrixEig[0]) self._sortedSigOEig= sorted(self._sigomatrixEig[0]) if sigangle is None: self._sigangle= self._sigv*1.8 else: self._sigangle= sigangle self._sigangle2= self._sigangle**2. self._lnsigangle= numpy.log(self._sigangle) #Estimate the frequency mean as lying along the direction of the largest eigenvalue self._dsigomeanProgDirection= self._sigomatrixEig[1][:,numpy.argmax(self._sigomatrixEig[0])] self._progenitor_Omega_along_dOmega= \ numpy.dot(self._progenitor_Omega,self._dsigomeanProgDirection) #Make sure we are modeling the correct part of the stream self._leading= leading self._sigMeanSign= 1. if self._leading and self._progenitor_Omega_along_dOmega < 0.: self._sigMeanSign= -1. elif not self._leading and self._progenitor_Omega_along_dOmega > 0.: self._sigMeanSign= -1. self._progenitor_Omega_along_dOmega*= self._sigMeanSign self._sigomean= self._progenitor_Omega\ +self._sigMeanOffset*self._sigMeanSign\ *numpy.sqrt(numpy.amax(self._sigomatrixEig[0]))\ *self._dsigomeanProgDirection #numpy.dot(self._dOdJp, # numpy.array([self._sigjr,self._siglz,self._sigjz])) self._dsigomeanProg= self._sigomean-self._progenitor_Omega self._meandO= self._sigMeanOffset\ *numpy.sqrt(numpy.amax(self._sigomatrixEig[0])) #Store cholesky of sigomatrix for fast evaluation self._sigomatrixNorm=\ numpy.sqrt(numpy.sum(self._sigomatrix**2.)) self._sigomatrixinv, self._sigomatrixLogdet= \ fast_cholesky_invert(self._sigomatrix/self._sigomatrixNorm, tiny=10.**-15.,logdet=True) self._sigomatrixinv/= self._sigomatrixNorm deltaAngleTrackLim = (self._sigMeanOffset+4.) * numpy.sqrt( self._sortedSigOEig[2]) * self._tdisrupt if (deltaAngleTrack is None): deltaAngleTrack = deltaAngleTrackLim else: if (deltaAngleTrack > deltaAngleTrackLim): warnings.warn("WARNING: angle range large compared to plausible value.", galpyWarning) self._deltaAngleTrack= deltaAngleTrack return None def _setup_coord_transform(self,R0,Zsun,vsun,progenitor,custom_transform): #Set the coordinate-transformation parameters; check that these do not conflict with those in the progenitor orbit object; need to use the original, since this objects _progenitor has physical turned off if progenitor._roSet \ and (numpy.fabs(self._ro-progenitor._ro) > 10.**-.8 \ or numpy.fabs(R0-progenitor._ro) > 10.**-8.): warnings.warn("Warning: progenitor's ro does not agree with streamdf's ro and R0; this may have unexpected consequences when projecting into observables", galpyWarning) if progenitor._voSet \ and numpy.fabs(self._vo-progenitor._vo) > 10.**-8.: warnings.warn("Warning: progenitor's vo does not agree with streamdf's vo; this may have unexpected consequences when projecting into observables", galpyWarning) if (progenitor._roSet or progenitor._voSet) \ and numpy.fabs(Zsun-progenitor._zo) > 10.**-8.: warnings.warn("Warning: progenitor's zo does not agree with streamdf's Zsun; this may have unexpected consequences when projecting into observables", galpyWarning) if (progenitor._roSet or progenitor._voSet) \ and numpy.any(numpy.fabs(vsun-numpy.array([0.,self._vo,0.])\ -progenitor._solarmotion) > 10.**-8.): warnings.warn("Warning: progenitor's solarmotion does not agree with streamdf's vsun (after accounting for vo); this may have unexpected consequences when projecting into observables", galpyWarning) self._R0= R0 self._Zsun= Zsun self._vsun= vsun self._custom_transform= custom_transform return None def _setup_progIsTrack(self): """If progIsTrack, the progenitor orbit that was passed to the streamdf initialization is the track at zero angle separation; this routine computes an actual progenitor position that gives the desired track given the parameters of the streamdf""" # We need to flip the sign of the offset, to go to the progenitor self._sigMeanSign*= -1. # Use _determine_stream_track_single to calculate the track-progenitor # offset at zero angle separation prog_stream_offset=\ _determine_stream_track_single(self._aA, self._progenitor, 0., #time = 0 self._progenitor_angle, self._sigMeanSign, self._dsigomeanProgDirection, lambda x: self.meanOmega(x,use_physical=False), 0.) #angle = 0 # Setup the new progenitor orbit progenitor= Orbit(prog_stream_offset[3]) # Flip the offset sign again self._sigMeanSign*= -1. # Now re-do the previous setup self._progenitor_setup(progenitor,self._leading,False) self._offset_setup(self._sigangle,self._leading, self._deltaAngleTrack) return None @physical_conversion('angle',pop=True) def misalignment(self,isotropic=False,**kwargs): """ NAME: misalignment PURPOSE: calculate the misalignment between the progenitor's frequency and the direction along which the stream disrupts INPUT: isotropic= (False), if True, return the misalignment assuming an isotropic action distribution OUTPUT: misalignment in rad HISTORY: 2013-12-05 - Written - Bovy (IAS) 2017-10-28 - Changed output unit to rad - Bovy (UofT) """ warnings.warn("In versions >1.3, the output unit of streamdf.misalignment has been changed to radian (from degree before)",galpyWarning) if isotropic: dODir= self._dOdJpEig[1][:,numpy.argmax(numpy.fabs(self._dOdJpEig[0]))] else: dODir= self._dsigomeanProgDirection out= numpy.arccos(numpy.sum(self._progenitor_Omega*dODir)/numpy.sqrt(numpy.sum(self._progenitor_Omega**2.))) if out > numpy.pi/2.: return out-numpy.pi else: return out def freqEigvalRatio(self,isotropic=False): """ NAME: freqEigvalRatio PURPOSE: calculate the ratio between the largest and 2nd-to-largest (in abs) eigenvalue of sqrt(dO/dJ^T V_J dO/dJ) (if this is big, a 1D stream will form) INPUT: isotropic= (False), if True, return the ratio assuming an isotropic action distribution (i.e., just of dO/dJ) OUTPUT: ratio between eigenvalues of fabs(dO / dJ) HISTORY: 2013-12-05 - Written - Bovy (IAS) """ if isotropic: sortedEig= sorted(numpy.fabs(self._dOdJpEig[0])) return sortedEig[2]/sortedEig[1] else: return numpy.sqrt(self._sortedSigOEig)[2]\ /numpy.sqrt(self._sortedSigOEig)[1] @physical_conversion('time',pop=True) def estimateTdisrupt(self,deltaAngle): """ NAME: estimateTdisrupt PURPOSE: estimate the time of disruption INPUT: deltaAngle- spread in angle since disruption OUTPUT: time in natural units HISTORY: 2013-11-27 - Written - Bovy (IAS) """ return deltaAngle\ /numpy.sqrt(numpy.sum(self._dsigomeanProg**2.)) def subhalo_encounters(self,venc=numpy.inf,sigma=150./220., nsubhalo=0.3,bmax=0.025,yoon=False): """ NAME: subhalo_encounters PURPOSE: estimate the number of encounters with subhalos over the lifetime of this stream, using a formalism similar to that of Yoon et al. (2011) INPUT: venc= (numpy.inf) count encounters with (relative) speeds less than this (relative radial velocity in cylindrical stream frame, unless yoon is True) (can be Quantity) sigma= (150/220) velocity dispersion of the DM subhalo population (can be Quantity) nsubhalo= (0.3) spatial number density of subhalos (can be Quantity) bmax= (0.025) maximum impact parameter (if larger than width of stream) (can be Quantity) yoon= (False) if True, use erroneous Yoon et al. formula OUTPUT: number of encounters HISTORY: 2016-01-19 - Written - Bovy (UofT) """ venc= conversion.parse_velocity(venc,vo=self._vo) sigma= conversion.parse_velocity(sigma,vo=self._vo) nsubhalo= conversion.parse_numdens(nsubhalo,ro=self._ro) bmax= conversion.parse_length(bmax,ro=self._ro) Ravg= numpy.mean(numpy.sqrt(self._progenitor.orbit[0,:,0]**2. +self._progenitor.orbit[0,:,3]**2.)) if numpy.isinf(venc): vencFac= 1. elif yoon: vencFac= (1.-(1.+venc**2./4./sigma**2.)\ *numpy.exp(-venc**2./4./sigma**2.)) else: vencFac= (1.-numpy.exp(-venc**2./2./sigma**2.)) if yoon: yoonFac= 2*numpy.sqrt(2.) else: yoonFac= 1. # Figure out width of stream w= self.sigangledAngle(self._meandO*self._tdisrupt,simple=True, use_physical=False) if bmax < w*Ravg/2.: bmax= w*Ravg/2. return yoonFac/numpy.sqrt(2.)*numpy.sqrt(numpy.pi)*Ravg*sigma\ *self._tdisrupt**2.*self._meandO\ *bmax*nsubhalo*vencFac ############################STREAM TRACK FUNCTIONS############################# def plotTrack(self,d1='x',d2='z',interp=True,spread=0,simple=_USESIMPLE, *args,**kwargs): """ NAME: plotTrack PURPOSE: plot the stream track INPUT: d1= plot this on the X axis ('x','y','z','R','phi','vx','vy','vz','vR','vt','ll','bb','dist','pmll','pmbb','vlos') d2= plot this on the Y axis (same list as for d1) interp= (True) if True, use the interpolated stream track spread= (0) if int > 0, also plot the spread around the track as spread x sigma scaleToPhysical= (False), if True, plot positions in kpc and velocities in km/s simple= (False), if True, use a simple estimate for the spread in perpendicular angle galpy.util.plot.plotplot args and kwargs OUTPUT: plot to output device HISTORY: 2013-12-09 - Written - Bovy (IAS) """ if not hasattr(self,'_ObsTrackLB') and \ (d1.lower() == 'll' or d1.lower() == 'bb' or d1.lower() == 'dist' or d1.lower() == 'pmll' or d1.lower() == 'pmbb' or d1.lower() == 'vlos' or d2.lower() == 'll' or d2.lower() == 'bb' or d2.lower() == 'dist' or d2.lower() == 'pmll' or d2.lower() == 'pmbb' or d2.lower() == 'vlos'): self.calc_stream_lb() phys= kwargs.pop('scaleToPhysical',False) tx= self._parse_track_dim(d1,interp=interp,phys=phys) ty= self._parse_track_dim(d2,interp=interp,phys=phys) plot.plot(tx,ty,*args, xlabel=_labelDict[d1.lower()], ylabel=_labelDict[d2.lower()], **kwargs) if spread: addx, addy= self._parse_track_spread(d1,d2,interp=interp,phys=phys, simple=simple) if ('ls' in kwargs and kwargs['ls'] == 'none') \ or ('linestyle' in kwargs \ and kwargs['linestyle'] == 'none'): kwargs.pop('ls',None) kwargs.pop('linestyle',None) spreadls= 'none' else: spreadls= '-.' spreadmarker= kwargs.pop('marker',None) spreadcolor= kwargs.pop('color',None) spreadlw= kwargs.pop('lw',1.) plot.plot(tx+spread*addx,ty+spread*addy,ls=spreadls, marker=spreadmarker,color=spreadcolor, lw=spreadlw, overplot=True) plot.plot(tx-spread*addx,ty-spread*addy,ls=spreadls, marker=spreadmarker,color=spreadcolor, lw=spreadlw, overplot=True) return None def plotProgenitor(self,d1='x',d2='z',*args,**kwargs): """ NAME: plotProgenitor PURPOSE: plot the progenitor orbit INPUT: d1= plot this on the X axis ('x','y','z','R','phi','vx','vy','vz','vR','vt','ll','bb','dist','pmll','pmbb','vlos') d2= plot this on the Y axis (same list as for d1) scaleToPhysical= (False), if True, plot positions in kpc and velocities in km/s galpy.util.plot.plot args and kwargs OUTPUT: plot to output device HISTORY: 2013-12-09 - Written - Bovy (IAS) """ tts= self._progenitor.t[self._progenitor.t \ < self._trackts[self._nTrackChunks-1]] obs= [self._R0,0.,self._Zsun] obs.extend(self._vsun) phys= kwargs.pop('scaleToPhysical',False) tx= self._parse_progenitor_dim(d1,tts,ro=self._ro,vo=self._vo, obs=obs,phys=phys) ty= self._parse_progenitor_dim(d2,tts,ro=self._ro,vo=self._vo, obs=obs,phys=phys) plot.plot(tx,ty,*args, xlabel=_labelDict[d1.lower()], ylabel=_labelDict[d2.lower()], **kwargs) return None def _parse_track_dim(self,d1,interp=True,phys=False): """Parse the dimension to plot the stream track for""" if interp: interpStr= 'interpolated' else: interpStr= '' if d1.lower() == 'x': tx= self.__dict__['_%sObsTrackXY' % interpStr][:,0] elif d1.lower() == 'y': tx= self.__dict__['_%sObsTrackXY' % interpStr][:,1] elif d1.lower() == 'z': tx= self.__dict__['_%sObsTrackXY' % interpStr][:,2] elif d1.lower() == 'r': tx= self.__dict__['_%sObsTrack' % interpStr][:,0] elif d1.lower() == 'phi': tx= self.__dict__['_%sObsTrack' % interpStr][:,5] elif d1.lower() == 'vx': tx= self.__dict__['_%sObsTrackXY' % interpStr][:,3] elif d1.lower() == 'vy': tx= self.__dict__['_%sObsTrackXY' % interpStr][:,4] elif d1.lower() == 'vz': tx= self.__dict__['_%sObsTrackXY' % interpStr][:,5] elif d1.lower() == 'vr': tx= self.__dict__['_%sObsTrack' % interpStr][:,1] elif d1.lower() == 'vt': tx= self.__dict__['_%sObsTrack' % interpStr][:,2] elif d1.lower() == 'll': tx= self.__dict__['_%sObsTrackLB' % interpStr][:,0] elif d1.lower() == 'bb': tx= self.__dict__['_%sObsTrackLB' % interpStr][:,1] elif d1.lower() == 'dist': tx= self.__dict__['_%sObsTrackLB' % interpStr][:,2] elif d1.lower() == 'pmll': tx= self.__dict__['_%sObsTrackLB' % interpStr][:,4] elif d1.lower() == 'pmbb': tx= self.__dict__['_%sObsTrackLB' % interpStr][:,5] elif d1.lower() == 'vlos': tx= self.__dict__['_%sObsTrackLB' % interpStr][:,3] if phys and (d1.lower() == 'x' or d1.lower() == 'y' \ or d1.lower() == 'z' or d1.lower() == 'r'): tx= copy.copy(tx) tx*= self._ro if phys and (d1.lower() == 'vx' or d1.lower() == 'vy' \ or d1.lower() == 'vz' or d1.lower() == 'vr' \ or d1.lower() == 'vt'): tx= copy.copy(tx) tx*= self._vo return tx def _parse_progenitor_dim(self,d1,ts,ro=None,vo=None,obs=None, phys=False): """Parse the dimension to plot the progenitor orbit for""" if d1.lower() == 'x': tx= self._progenitor.x(ts,ro=ro,vo=vo,obs=obs,use_physical=False) elif d1.lower() == 'y': tx= self._progenitor.y(ts,ro=ro,vo=vo,obs=obs,use_physical=False) elif d1.lower() == 'z': tx= self._progenitor.z(ts,ro=ro,vo=vo,obs=obs,use_physical=False) elif d1.lower() == 'r': tx= self._progenitor.R(ts,ro=ro,vo=vo,obs=obs,use_physical=False) elif d1.lower() == 'phi': tx= self._progenitor.phi(ts,ro=ro,vo=vo,obs=obs) elif d1.lower() == 'vx': tx= self._progenitor.vx(ts,ro=ro,vo=vo,obs=obs,use_physical=False) elif d1.lower() == 'vy': tx= self._progenitor.vy(ts,ro=ro,vo=vo,obs=obs,use_physical=False) elif d1.lower() == 'vz': tx= self._progenitor.vz(ts,ro=ro,vo=vo,obs=obs,use_physical=False) elif d1.lower() == 'vr': tx= self._progenitor.vR(ts,ro=ro,vo=vo,obs=obs,use_physical=False) elif d1.lower() == 'vt': tx= self._progenitor.vT(ts,ro=ro,vo=vo,obs=obs,use_physical=False) elif d1.lower() == 'll': tx= self._progenitor.ll(ts,ro=ro,vo=vo,obs=obs) elif d1.lower() == 'bb': tx= self._progenitor.bb(ts,ro=ro,vo=vo,obs=obs) elif d1.lower() == 'dist': tx= self._progenitor.dist(ts,ro=ro,vo=vo,obs=obs) elif d1.lower() == 'pmll': tx= self._progenitor.pmll(ts,ro=ro,vo=vo,obs=obs) elif d1.lower() == 'pmbb': tx= self._progenitor.pmbb(ts,ro=ro,vo=vo,obs=obs) elif d1.lower() == 'vlos': tx= self._progenitor.vlos(ts,ro=ro,vo=vo,obs=obs) if phys and (d1.lower() == 'x' or d1.lower() == 'y' \ or d1.lower() == 'z' or d1.lower() == 'r'): tx= copy.copy(tx) tx*= self._ro if phys and (d1.lower() == 'vx' or d1.lower() == 'vy' \ or d1.lower() == 'vz' or d1.lower() == 'vr' \ or d1.lower() == 'vt'): tx= copy.copy(tx) tx*= self._vo return tx def _parse_track_spread(self,d1,d2,interp=True,phys=False, simple=_USESIMPLE): """Determine the spread around the track""" if not hasattr(self,'_allErrCovs'): self._determine_stream_spread(simple=simple) okaySpreadR= ['r','vr','vt','z','vz','phi'] okaySpreadXY= ['x','y','z','vx','vy','vz'] okaySpreadLB= ['ll','bb','dist','vlos','pmll','pmbb'] #Determine which coordinate system we're in coord= [False,False,False] #R, XY, LB if d1.lower() in okaySpreadR and d2.lower() in okaySpreadR: coord[0]= True elif d1.lower() in okaySpreadXY and d2.lower() in okaySpreadXY: coord[1]= True elif d1.lower() in okaySpreadLB and d2.lower() in okaySpreadLB: coord[2]= True else: raise NotImplementedError("plotting the spread for coordinates from different systems not implemented yet ...") #Get the right 2D Jacobian indxDict= {} indxDict['r']= 0 indxDict['vr']= 1 indxDict['vt']= 2 indxDict['z']= 3 indxDict['vz']= 4 indxDict['phi']= 5 indxDictXY= {} indxDictXY['x']= 0 indxDictXY['y']= 1 indxDictXY['z']= 2 indxDictXY['vx']= 3 indxDictXY['vy']= 4 indxDictXY['vz']= 5 indxDictLB= {} indxDictLB['ll']= 0 indxDictLB['bb']= 1 indxDictLB['dist']= 2 indxDictLB['vlos']= 3 indxDictLB['pmll']= 4 indxDictLB['pmbb']= 5 if coord[0]: relevantCov= self._allErrCovs relevantDict= indxDict if phys:#apply scale factors tcov= copy.copy(relevantCov) scaleFac= numpy.array([self._ro,self._vo,self._vo, self._ro,self._vo,1.]) tcov*= numpy.tile(scaleFac,(6,1)) tcov*= numpy.tile(scaleFac,(6,1)).T relevantCov= tcov elif coord[1]: relevantCov= self._allErrCovsXY relevantDict= indxDictXY if phys:#apply scale factors tcov= copy.copy(relevantCov) scaleFac= numpy.array([self._ro,self._ro,self._ro, self._vo,self._vo,self._vo]) tcov*= numpy.tile(scaleFac,(6,1)) tcov*= numpy.tile(scaleFac,(6,1)).T relevantCov= tcov elif coord[2]: relevantCov= self._allErrCovsLBUnscaled relevantDict= indxDictLB indx0= numpy.array([[relevantDict[d1.lower()],relevantDict[d1.lower()]], [relevantDict[d2.lower()],relevantDict[d2.lower()]]]) indx1= numpy.array([[relevantDict[d1.lower()],relevantDict[d2.lower()]], [relevantDict[d1.lower()],relevantDict[d2.lower()]]]) cov= relevantCov[:,indx0,indx1] #cov contains all nTrackChunks covs if not interp: out= numpy.empty((self._nTrackChunks,2)) eigDir= numpy.array([1.,0.]) for ii in range(self._nTrackChunks): covEig= numpy.linalg.eig(cov[ii]) minIndx= numpy.argmin(covEig[0]) minEigvec= covEig[1][:,minIndx] #this is the direction of the transverse spread if numpy.sum(minEigvec*eigDir) < 0.: minEigvec*= -1. #Keep them pointing in the same direction out[ii]= minEigvec*numpy.sqrt(covEig[0][minIndx]) eigDir= minEigvec else: #We slerp the minor eigenvector and interpolate the eigenvalue #First store all of the eigenvectors on the track allEigval= numpy.empty(self._nTrackChunks) allEigvec= numpy.empty((self._nTrackChunks,2)) eigDir= numpy.array([1.,0.]) for ii in range(self._nTrackChunks): covEig= numpy.linalg.eig(cov[ii]) minIndx= numpy.argmin(covEig[0]) minEigvec= covEig[1][:,minIndx] #this is the direction of the transverse spread if numpy.sum(minEigvec*eigDir) < 0.: minEigvec*= -1. #Keep them pointing in the same direction allEigval[ii]= numpy.sqrt(covEig[0][minIndx]) allEigvec[ii]= minEigvec eigDir= minEigvec #Now interpolate where needed interpEigval=\ interpolate.InterpolatedUnivariateSpline(self._thetasTrack, allEigval,k=3) interpolatedEigval= interpEigval(self._interpolatedThetasTrack) #Interpolate in chunks interpolatedEigvec= numpy.empty((len(self._interpolatedThetasTrack), 2)) for ii in range(self._nTrackChunks-1): slerpOmega= numpy.arccos(numpy.sum(allEigvec[ii]*allEigvec[ii+1])) slerpts= (self._interpolatedThetasTrack-self._thetasTrack[ii])/\ (self._thetasTrack[ii+1]-self._thetasTrack[ii]) slerpIndx= (slerpts >= 0.)*(slerpts <= 1.) for jj in range(2): interpolatedEigvec[slerpIndx,jj]=\ (numpy.sin((1-slerpts[slerpIndx])*slerpOmega)*allEigvec[ii,jj] +numpy.sin(slerpts[slerpIndx]*slerpOmega)*allEigvec[ii+1,jj])/numpy.sin(slerpOmega) out= numpy.tile(interpolatedEigval.T,(2,1)).T*interpolatedEigvec if coord[2]: #if LB, undo rescalings that were applied before out[:,0]*= self._ErrCovsLBScale[relevantDict[d1.lower()]] out[:,1]*= self._ErrCovsLBScale[relevantDict[d2.lower()]] return (out[:,0],out[:,1]) def plotCompareTrackAAModel(self,**kwargs): """ NAME: plotCompareTrackAAModel PURPOSE: plot the comparison between the underlying model's dOmega_perp vs. dangle_r (line) and the track in (x,v)'s dOmega_perp vs. dangle_r (dots; explicitly calculating the track's action-angle coordinates) INPUT: galpy.util.plot.plot kwargs OUTPUT: plot HISTORY: 2014-08-27 - Written - Bovy (IAS) """ #First calculate the model model_adiff= (self._ObsTrackAA[:,3:]-self._progenitor_angle)[:,0]\ *self._sigMeanSign model_operp= numpy.dot(self._ObsTrackAA[:,:3]-self._progenitor_Omega, self._dsigomeanProgDirection)\ *self._sigMeanSign #Then calculate the track's frequency-angle coordinates if self._multi is None: aatrack=
numpy.empty((self._nTrackChunks,6))
numpy.empty
# MIT License # # Copyright (c) 2019 Morning Project Samurai (MPS) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. __author__ = '<NAME> <<EMAIL>>' import os import json import numpy as np from tensorflow import keras from sklearn.model_selection import train_test_split class Model: def __init__(self, *args, **kwargs): print('INITIALIZE MODEL %s' % self.__class__.__name__) self._model = None print('MODEL %s INITIALIZED' % self.__class__.__name__) def fit(self, X, y): return self def predict(self, X): raise NotImplementedError def score(self, X, y): raise NotImplementedError def save(self, save_dir): pass def load(self, save_dir): pass class BehaviorClassifier(Model): def __init__(self, shape=None, fps=None, labels=None, *args, **kwargs): super().__init__(*args, **kwargs) self._shape = shape self._fps = fps self.labels = labels @property def shape(self): return self._shape @property def shape_with_batch(self): return -1, self._shape[0], self._shape[1], self._shape[2] @property def image_size(self): return self._shape[1], self._shape[0] @property def time_steps(self): return self._shape[2] @property def fps(self): return self._fps @property def config(self): return { 'image_size': self.image_size, 'time_steps': self.time_steps, 'fps': self.fps } def _create_model(self): ipt = keras.layers.Input(shape=self._shape) cnn1_1 = keras.layers.SeparableConv2D(16, (3, 3), activation='relu')(ipt) pool1_1 = keras.layers.MaxPool2D()(cnn1_1) cnn2_1 = keras.layers.SeparableConv2D(32, (3, 3), activation='relu')(pool1_1) pool2_1 = keras.layers.MaxPool2D()(cnn2_1) fc1 = keras.layers.Dense(128, activation='relu')(keras.layers.Flatten()(pool2_1)) fc2 = keras.layers.Dense(len(self.labels), activation='softmax')(fc1) self._model = keras.models.Model(inputs=[ipt, ], outputs=[fc2, ]) def fit(self, X, y, optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy', ], train_size=0.75, epochs=20): self._create_model() X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=train_size) self._model.compile(optimizer=optimizer, loss=loss, metrics=metrics) self._model.fit(X_train, y_train, epochs=epochs) test_loss, test_acc = self._model.evaluate(X_test, y_test) print('TEST LOSS:', test_loss) print('TEST ACCURACY:', test_acc) return self def predict(self, X): return np.argmax(self._model.predict(X), axis=1) def score(self, X, y): return self._model.evaluate(X, y) def predict_probs(self, X): return self.predict(X) def predict_labels(self, X): return [self.labels[i] for i in self.predict(X)] def save(self, save_dir): print('SAVE MODEL %s' % self.__class__.__name__) with open(os.path.join(save_dir, 'model.json'), 'w') as f: json.dump({'shape': list(self._shape), 'fps': self._fps, 'labels': self.labels}, f) self._model.save(os.path.join(save_dir, 'model.h5')) print('MODEL %s SAVED' % self.__class__.__name__) def load(self, save_dir): print('LOAD MODEL %s' % self.__class__.__name__) with open(os.path.join(save_dir, 'model.json'), 'r') as f: params = json.load(f) self._shape, self._fps, self.labels = (params[key] for key in ['shape', 'fps', 'labels']) self._model = keras.models.load_model(os.path.join(save_dir, 'model.h5')) print('MODEL %s LOADED' % self.__class__.__name__) class SleepDetector(Model): def __init__(self, time_steps=None, weights=None, fps=None, threshold=None, *args, **kwargs): super().__init__(*args, **kwargs) self._time_steps = time_steps if isinstance(weights, np.ndarray): self._weights = weights elif isinstance(weights, list): self._weights = np.array(weights) elif weights is None: self._weights = weights else: raise ValueError('weights must be np.ndarray, list or None') self._fps = fps self._threshold = threshold @property def time_steps(self): return self._time_steps @property def threshold(self): return self._threshold def fit(self, X, y): pass def predict(self, X): return [1 if y > self._threshold else 0 for y in
np.average(X, axis=1, weights=self._weights)
numpy.average
# -*- coding: utf-8 -*- """ @date Created on Fri May 22 2020 @author martin_g for Eomys """ # Standard library imports import math # Third party import import numpy as np def _nl_loudness(core_loudness): """Simulate the nonlinear temporal decay of the hearing system Parameters ---------- core_loudness : numpy.ndarray Core loudness Outputs ------- nl_loudness : numpy.ndarray Loudness with non linear temporal decay """ # Initialization sample_rate = 2000 nl_loudness = np.copy(core_loudness) # Factor for virtual upsampling/inner iterations nl_iter = 24 # Time constants for non_linear temporal decay t_short = 0.005 t_long = 0.015 t_var = 0.075 # Initializes constants B and states of capacitors C1 and C2 delta_t = 1 / (sample_rate * nl_iter) P = (t_var + t_long) / (t_var * t_short) Q = 1 / (t_short * t_var) lambda_1 = -P / 2 + math.sqrt(P * P / 4 - Q) lambda_2 = -P / 2 - math.sqrt(P * P / 4 - Q) den = t_var * (lambda_1 - lambda_2) e1 = math.exp(lambda_1 * delta_t) e2 = math.exp(lambda_2 * delta_t) B = [ (e1 - e2) / den, ((t_var * lambda_2 + 1) * e1 - (t_var * lambda_1 + 1) * e2) / den, ((t_var * lambda_1 + 1) * e1 - (t_var * lambda_2 + 1) * e2) / den, (t_var * lambda_1 + 1) * (t_var * lambda_2 + 1) * (e1 - e2) / den, math.exp(-delta_t / t_long), math.exp(-delta_t / t_var), ] nl_lp = {"B": B} #nl_lp["uo_last"] = 0 #nl_lp["u2_last"] = 0 delta = np.copy(core_loudness,) delta = np.roll(delta, -1, axis=1) delta[:, -1] = 0 delta = (delta - nl_loudness)/nl_iter ui_delta =
np.zeros(core_loudness.size*nl_iter)
numpy.zeros
""" Modified from https://github.com/google-research/ssl_detection/blob/master/detection/utils/augmentation.py. """ import copy import cv2 import mmcv import numpy as np from PIL import Image, ImageEnhance, ImageOps from mmcv.image.colorspace import bgr2rgb, rgb2bgr from mmdet.core.mask import BitmapMasks, PolygonMasks from mmdet.datasets import PIPELINES from mmdet.datasets.pipelines import Compose as BaseCompose from mmdet.datasets.pipelines import transforms from .geo_utils import GeometricTransformationBase as GTrans PARAMETER_MAX = 10 def int_parameter(level, maxval, max_level=None): if max_level is None: max_level = PARAMETER_MAX return int(level * maxval / max_level) def float_parameter(level, maxval, max_level=None): if max_level is None: max_level = PARAMETER_MAX return float(level) * maxval / max_level class RandAug(object): """refer to https://github.com/google-research/ssl_detection/blob/00d52272f 61b56eade8d5ace18213cba6c74f6d8/detection/utils/augmentation.py#L240.""" def __init__( self, prob: float = 1.0, magnitude: int = 10, random_magnitude: bool = True, record: bool = False, magnitude_limit: int = 10, ): assert 0 <= prob <= 1, f"probability should be in (0,1) but get {prob}" assert ( magnitude <= PARAMETER_MAX ), f"magnitude should be small than max value {PARAMETER_MAX} but get {magnitude}" self.prob = prob self.magnitude = magnitude self.magnitude_limit = magnitude_limit self.random_magnitude = random_magnitude self.record = record self.buffer = None def __call__(self, results): if np.random.random() < self.prob: magnitude = self.magnitude if self.random_magnitude: magnitude = np.random.randint(1, magnitude) if self.record: if "aug_info" not in results: results["aug_info"] = [] results["aug_info"].append(self.get_aug_info(magnitude=magnitude)) results = self.apply(results, magnitude) # clear buffer return results def apply(self, results, magnitude: int = None): raise NotImplementedError() def __repr__(self): return f"{self.__class__.__name__}(prob={self.prob},magnitude={self.magnitude},max_magnitude={self.magnitude_limit},random_magnitude={self.random_magnitude})" def get_aug_info(self, **kwargs): aug_info = dict(type=self.__class__.__name__) aug_info.update( dict( prob=1.0, random_magnitude=False, record=False, magnitude=self.magnitude, ) ) aug_info.update(kwargs) return aug_info def enable_record(self, mode: bool = True): self.record = mode @PIPELINES.register_module() class Identity(RandAug): def apply(self, results, magnitude: int = None): return results @PIPELINES.register_module() class AutoContrast(RandAug): def apply(self, results, magnitude=None): for key in results.get("img_fields", ["img"]): img = bgr2rgb(results[key]) results[key] = rgb2bgr( np.asarray(ImageOps.autocontrast(Image.fromarray(img)), dtype=img.dtype) ) return results @PIPELINES.register_module() class RandEqualize(RandAug): def apply(self, results, magnitude=None): for key in results.get("img_fields", ["img"]): img = bgr2rgb(results[key]) results[key] = rgb2bgr( np.asarray(ImageOps.equalize(Image.fromarray(img)), dtype=img.dtype) ) return results @PIPELINES.register_module() class RandSolarize(RandAug): def apply(self, results, magnitude=None): for key in results.get("img_fields", ["img"]): img = results[key] results[key] = mmcv.solarize( img, min(int_parameter(magnitude, 256, self.magnitude_limit), 255) ) return results def _enhancer_impl(enhancer): """Sets level to be between 0.1 and 1.8 for ImageEnhance transforms of PIL.""" def impl(pil_img, level, max_level=None): v = float_parameter(level, 1.8, max_level) + 0.1 # going to 0 just destroys it return enhancer(pil_img).enhance(v) return impl class RandEnhance(RandAug): op = None def apply(self, results, magnitude=None): for key in results.get("img_fields", ["img"]): img = bgr2rgb(results[key]) results[key] = rgb2bgr( np.asarray( _enhancer_impl(self.op)( Image.fromarray(img), magnitude, self.magnitude_limit ), dtype=img.dtype, ) ) return results @PIPELINES.register_module() class RandColor(RandEnhance): op = ImageEnhance.Color @PIPELINES.register_module() class RandContrast(RandEnhance): op = ImageEnhance.Contrast @PIPELINES.register_module() class RandBrightness(RandEnhance): op = ImageEnhance.Brightness @PIPELINES.register_module() class RandSharpness(RandEnhance): op = ImageEnhance.Sharpness @PIPELINES.register_module() class RandPosterize(RandAug): def apply(self, results, magnitude=None): for key in results.get("img_fields", ["img"]): img = bgr2rgb(results[key]) magnitude = int_parameter(magnitude, 4, self.magnitude_limit) results[key] = rgb2bgr( np.asarray( ImageOps.posterize(Image.fromarray(img), 4 - magnitude), dtype=img.dtype, ) ) return results @PIPELINES.register_module() class Sequential(BaseCompose): def __init__(self, transforms, record: bool = False): super().__init__(transforms) self.record = record self.enable_record(record) def enable_record(self, mode: bool = True): # enable children to record self.record = mode for transform in self.transforms: transform.enable_record(mode) @PIPELINES.register_module() class OneOf(Sequential): def __init__(self, transforms, record: bool = False): self.transforms = [] for trans in transforms: if isinstance(trans, list): self.transforms.append(Sequential(trans)) else: assert isinstance(trans, dict) self.transforms.append(Sequential([trans])) self.enable_record(record) def __call__(self, results): transform = np.random.choice(self.transforms) return transform(results) @PIPELINES.register_module() class ShuffledSequential(Sequential): def __call__(self, data): order = np.random.permutation(len(self.transforms)) for idx in order: t = self.transforms[idx] data = t(data) if data is None: return None return data """ Geometric Augmentation. Modified from thirdparty/mmdetection/mmdet/datasets/pipelines/auto_augment.py """ def bbox2fields(): """The key correspondence from bboxes to labels, masks and segmentations.""" bbox2label = {"gt_bboxes": "gt_labels", "gt_bboxes_ignore": "gt_labels_ignore"} bbox2mask = {"gt_bboxes": "gt_masks", "gt_bboxes_ignore": "gt_masks_ignore"} bbox2seg = { "gt_bboxes": "gt_semantic_seg", } return bbox2label, bbox2mask, bbox2seg class GeometricAugmentation(object): def __init__( self, img_fill_val=125, seg_ignore_label=255, min_size=0, prob: float = 1.0, random_magnitude: bool = True, record: bool = False, ): if isinstance(img_fill_val, (float, int)): img_fill_val = tuple([float(img_fill_val)] * 3) elif isinstance(img_fill_val, tuple): assert len(img_fill_val) == 3, "img_fill_val as tuple must have 3 elements." img_fill_val = tuple([float(val) for val in img_fill_val]) assert np.all( [0 <= val <= 255 for val in img_fill_val] ), "all elements of img_fill_val should between range [0,255]." self.img_fill_val = img_fill_val self.seg_ignore_label = seg_ignore_label self.min_size = min_size self.prob = prob self.random_magnitude = random_magnitude self.record = record def __call__(self, results): if np.random.random() < self.prob: magnitude: dict = self.get_magnitude(results) if self.record: if "aug_info" not in results: results["aug_info"] = [] results["aug_info"].append(self.get_aug_info(**magnitude)) results = self.apply(results, **magnitude) self._filter_invalid(results, min_size=self.min_size) return results def get_magnitude(self, results) -> dict: raise NotImplementedError() def apply(self, results, **kwargs): raise NotImplementedError() def enable_record(self, mode: bool = True): self.record = mode def get_aug_info(self, **kwargs): aug_info = dict(type=self.__class__.__name__) aug_info.update( dict( # make op deterministic prob=1.0, random_magnitude=False, record=False, img_fill_val=self.img_fill_val, seg_ignore_label=self.seg_ignore_label, min_size=self.min_size, ) ) aug_info.update(kwargs) return aug_info def _filter_invalid(self, results, min_size=0): """Filter bboxes and masks too small or translated out of image.""" if min_size is None: return results bbox2label, bbox2mask, _ = bbox2fields() for key in results.get("bbox_fields", []): bbox_w = results[key][:, 2] - results[key][:, 0] bbox_h = results[key][:, 3] - results[key][:, 1] valid_inds = (bbox_w > min_size) & (bbox_h > min_size) valid_inds = np.nonzero(valid_inds)[0] results[key] = results[key][valid_inds] # label fields. e.g. gt_labels and gt_labels_ignore label_key = bbox2label.get(key) if label_key in results: results[label_key] = results[label_key][valid_inds] # mask fields, e.g. gt_masks and gt_masks_ignore mask_key = bbox2mask.get(key) if mask_key in results: results[mask_key] = results[mask_key][valid_inds] return results def __repr__(self): return f"""{self.__class__.__name__}( img_fill_val={self.img_fill_val}, seg_ignore_label={self.seg_ignore_label}, min_size={self.magnitude}, prob: float = {self.prob}, random_magnitude: bool = {self.random_magnitude}, )""" @PIPELINES.register_module() class RandTranslate(GeometricAugmentation): def __init__(self, x=None, y=None, **kwargs): super().__init__(**kwargs) self.x = x self.y = y if self.x is None and self.y is None: self.prob = 0.0 def get_magnitude(self, results): magnitude = {} if self.random_magnitude: if isinstance(self.x, (list, tuple)): assert len(self.x) == 2 x = np.random.random() * (self.x[1] - self.x[0]) + self.x[0] magnitude["x"] = x if isinstance(self.y, (list, tuple)): assert len(self.y) == 2 y = np.random.random() * (self.y[1] - self.y[0]) + self.y[0] magnitude["y"] = y else: if self.x is not None: assert isinstance(self.x, (int, float)) magnitude["x"] = self.x if self.y is not None: assert isinstance(self.y, (int, float)) magnitude["y"] = self.y return magnitude def apply(self, results, x=None, y=None): # ratio to pixel h, w, c = results["img_shape"] if x is not None: x = w * x if y is not None: y = h * y if x is not None: # translate horizontally self._translate(results, x) if y is not None: # translate veritically self._translate(results, y, direction="vertical") return results def _translate(self, results, offset, direction="horizontal"): if self.record: GTrans.apply( results, "shift", dx=offset if direction == "horizontal" else 0, dy=offset if direction == "vertical" else 0, ) self._translate_img(results, offset, direction=direction) self._translate_bboxes(results, offset, direction=direction) # fill_val defaultly 0 for BitmapMasks and None for PolygonMasks. self._translate_masks(results, offset, direction=direction) self._translate_seg( results, offset, fill_val=self.seg_ignore_label, direction=direction ) def _translate_img(self, results, offset, direction="horizontal"): for key in results.get("img_fields", ["img"]): img = results[key].copy() results[key] = mmcv.imtranslate( img, offset, direction, self.img_fill_val ).astype(img.dtype) def _translate_bboxes(self, results, offset, direction="horizontal"): """Shift bboxes horizontally or vertically, according to offset.""" h, w, c = results["img_shape"] for key in results.get("bbox_fields", []): min_x, min_y, max_x, max_y = np.split( results[key], results[key].shape[-1], axis=-1 ) if direction == "horizontal": min_x = np.maximum(0, min_x + offset) max_x = np.minimum(w, max_x + offset) elif direction == "vertical": min_y =
np.maximum(0, min_y + offset)
numpy.maximum
import os from pathlib import Path from tempfile import tempdir import numpy as np import pytest from numpy.testing import assert_allclose, assert_almost_equal import ross as rs from ross.defects.misalignment import MisalignmentFlex from ross.units import Q_ steel2 = rs.Material(name="Steel", rho=7850, E=2.17e11, Poisson=0.2992610837438423) # Rotor with 6 DoFs, with internal damping, with 10 shaft elements, 2 disks and 2 bearings. i_d = 0 o_d = 0.019 n = 33 # fmt: off L = np.array( [0 , 25, 64, 104, 124, 143, 175, 207, 239, 271, 303, 335, 345, 355, 380, 408, 436, 466, 496, 526, 556, 586, 614, 647, 657, 667, 702, 737, 772, 807, 842, 862, 881, 914] )/ 1000 # fmt: on L = [L[i] - L[i - 1] for i in range(1, len(L))] shaft_elem = [ rs.ShaftElement6DoF( material=steel2, L=l, idl=i_d, odl=o_d, idr=i_d, odr=o_d, alpha=8.0501, beta=1.0e-5, rotary_inertia=True, shear_effects=True, ) for l in L ] Id = 0.003844540885417 Ip = 0.007513248437500 disk0 = rs.DiskElement6DoF(n=12, m=2.6375, Id=Id, Ip=Ip) disk1 = rs.DiskElement6DoF(n=24, m=2.6375, Id=Id, Ip=Ip) kxx1 = 4.40e5 kyy1 = 4.6114e5 kzz = 0 cxx1 = 27.4 cyy1 = 2.505 czz = 0 kxx2 = 9.50e5 kyy2 = 1.09e8 cxx2 = 50.4 cyy2 = 100.4553 bearing0 = rs.BearingElement6DoF( n=4, kxx=kxx1, kyy=kyy1, cxx=cxx1, cyy=cyy1, kzz=kzz, czz=czz ) bearing1 = rs.BearingElement6DoF( n=31, kxx=kxx2, kyy=kyy2, cxx=cxx2, cyy=cyy2, kzz=kzz, czz=czz ) rotor = rs.Rotor(shaft_elem, [disk0, disk1], [bearing0, bearing1]) @pytest.fixture def rub(): unbalance_magnitudet = np.array([5e-4, 0]) unbalance_phaset = np.array([-np.pi / 2, 0]) rubbing = rotor.run_rubbing( dt=0.001, tI=0, tF=0.5, deltaRUB=7.95e-5, kRUB=1.1e6, cRUB=40, miRUB=0.3, posRUB=12, speed=125.66370614359172, unbalance_magnitude=unbalance_magnitudet, unbalance_phase=unbalance_phaset, print_progress=True, ) return rubbing @pytest.fixture def rub_units(): unbalance_magnitudet = Q_(np.array([0.043398083107259365, 0]), "lb*in") unbalance_phaset = Q_(
np.array([-90.0, 0.0])
numpy.array
import h5py as h5 import numpy as np import pytest from nexusformat.nexus import * string_dtype = h5.special_dtype(vlen=str) NX_ENCODING = nxgetencoding() arr1D = np.linspace(0.0, 100.0, 101, dtype=np.float64) arr2D =
np.array(((1,2,3,4),(5,6,7,8)), dtype=np.int32)
numpy.array
# uncompyle6 version 3.7.4 # Python bytecode 3.5 (3350) # Decompiled from: Python 3.8.5 (default, Jan 27 2021, 15:41:15) # [GCC 9.3.0] # Embedded file name: /home/docker/CSN/bin/gpu_ccsn.py # Compiled at: 2021-03-31 16:15:26 # Size of source mod 2**32: 19699 bytes """ python version of csn algorithm https://github.com/wys8c764/CSN """ import os, argparse, logging, pandas as pd, numpy as np from scipy import sparse from scipy import stats import sys sys.path.append('.') import useful_functions as uf def condition_g(adjmc, kk=50, dlimit=5): """return the degree >5 and top kk ρ统计量的gene index, 可优化参数 > degree limit""" a = np.sum(adjmc, axis=1) id1 = np.argwhere(a >= dlimit) INDEX = np.argsort(a[id1.flatten()])[::-1] id2 = INDEX[0:kk] return id2.tolist() def get_data(csv): if str(csv).endswith('csv'): df = pd.read_csv(csv, index_col=0, header=0) else: df = pd.read_csv(csv, index_col=0, header=0, sep='\t') return df class SSN: """Construction of cell-specific networks 模型构建过程用所有的样品数据,后续预测用整合有的大表做dm转化但仅输出少量样品(cells.list)的network和degree matrix 在dblur features水平做矩阵融合 The function performs the transformation from gene expression matrix to cell-specific network (csn). This is a groups style docs. Parameters: `data` Gene expression matrix, rows = genes, columns = cells Returns: None Raises: KeyError - raises an exception """ def __init__(self, data, outdir='./', log=None): """ default values when initialize. set log file """ self.outdir = outdir self.tablename = data uf.create_dir(self.outdir) self.log = os.path.join(self.outdir, log) if log else os.path.join(self.outdir, '{}_{}.log'.format(os.path.basename(data), uf.now())) self.logger = uf.create_logger(self.log) self.logger.info('start reading data from {}, log file is {}'.format(data, self.log)) df = get_data(data) self.data = df.loc[(df.sum(axis=1) != 0, df.sum(axis=0) != 0)] self.csn = None self.logger.info('finish reading data from {}'.format(data)) @uf.robust def get_cells(self, cells=None): """ Get cells in list format Parameters: file cells.list Returns: cells in list format Raises: KeyError - raises an exception """ if not cells: cells = list(self.data.columns) else: if isinstance(cells, list): cells = cells else: if os.access(cells, os.R_OK): cells = [cell.strip() for cell in open(cells).readlines()] else: print('cells must be list or file with one column') return cells @uf.robust def csnet(self, cells=None, alpha=0.01, boxsize=0.1, edgeW=0, kk=0, dlimit=5, to_csv=0, average=1, *args, **kwargs): """ fcndm = cndm(data, 0.1, 0.1, 1) for test Construct the CSN for sepecified cells Parameters: `cells` Construct the CSNs for all cells, set cells = None (Default) otherwise input cells.list `alpha` Significant level (eg. 0.001, 0.01, 0.05 ...) larger alpha leads to more edges, Default = 0.01 `boxsize` Size of neighborhood, the value between 1 to 2 is recommended, Default = 0.1, `edgeW` 1 edge is weighted (statistic pxy(x)) 0 edge is not weighted (Default) `nodeW` 1 node is weighted (gene or otu abundance) 0 node is not wieghted (Default) `csn` Cell-specific network, the kth CSN is in csn{k} rows = genes, columns = genes `kk` the number of conditional gene. when kk=0, the method is CSN `dlimit` the min degree limitation of conditional genes. `average` whether use the average(adjmc + adjmc1) network or intersection(adjmc.*adjmc1) network. Returns: csnet dict Raises: KeyError - raises an exception Notes: Too many cells or genes may lead to out of memory. 学习 dataframe 和array python的矩阵运算。 np index start from 0 每个new cell都要和原来所有的细胞一起计算lower upper边界矩阵,都要排序每个基因来计算。 如果数据库足够大,可以就用原来的边界矩阵,重新换算出upper和lower矩阵。带入new cell的基因表达数据就可以。 """ self.logger.info('start construction cell-specific network ') nr, nc = self.data.shape data = self.data upper = pd.DataFrame(np.zeros((nr, nc)), columns=data.columns, index=data.index) lower = pd.DataFrame(np.zeros((nr, nc)), columns=data.columns, index=data.index) for i in range(nr): sort_gi = data.iloc[i, :].sort_values(axis=0, ascending=True) s1 = sort_gi.values s2 = sort_gi.index n1 = sum(np.sign(s1)) n0 = nc - n1 h = round(boxsize * np.sqrt(n1)) k = 0 while k < nc: s = 0 while k + s + 1 < nc and s1[(k + s + 1)] == s1[k]: s = s + 1 if s >= h: upper.loc[(data.index[i], s2[range(k, k + s + 1)])] = data.loc[(data.index[i], s2[k])] lower.loc[(data.index[i], s2[range(k, k + s + 1)])] = data.loc[(data.index[i], s2[k])] else: upper.loc[(data.index[i], s2[range(k, k + s + 1)])] = data.loc[(data.index[i], s2[int(min(nc - 1, k + s + h))])] lower.loc[(data.index[i], s2[range(k, k + s + 1)])] = data.loc[(data.index[i], s2[int(max(n0 * (n0 > h), k - h))])] k = k + s + 1 # %If gene expression matrix is sparse, use the sparse matrix will accelerate # %the calculation and reduce memory footprint # %data = sparse(data); upper = sparse(upper); lower = sparse(lower); self.logger.info('finish caculate the neighborhood of each gene for each cell') cells = self.get_cells(cells=cells) csn = dict() B = pd.DataFrame(np.zeros((nr, nc)), columns=data.columns, index=data.index) p = -stats.norm.ppf(q=alpha, loc=0, scale=1) for k in cells: for j in B.columns: if average: B.loc[:, j] = (data.loc[:, j] <= upper.loc[:, k]) & (data.loc[:, j] >= lower.loc[:, k]) & (data.loc[:, k] > 0) else: B.loc[:, j] = (data.loc[:, j] <= upper.loc[:, k]) & (data.loc[:, j] >= lower.loc[:, k]) B = B * 1 a = np.matrix(B.sum(axis=1)) csnk = (B.dot(B.T) * nc - a.T * a) / np.sqrt(np.multiply(a.T * a, (nc - a).T * (nc - a)) / (nc - 1) + np.spacing(1)) csnlink = (csnk > p) * 1 if csnlink.sum().sum() == 0: self.logger.info('no genes in Cell {} has a link'.format(k)) continue if kk != 0: id = condition_g(csnlink, kk=kk, dlimit=dlimit) csnlink = pd.DataFrame(np.zeros([nr, nr])) if average else pd.DataFrame(np.ones([nr, nr])) for m in range(kk): B_z = B.iloc[id[m], :] * B idc = np.argwhere(B.iloc[id[m], :] != 0).flatten() B_z = B_z.iloc[:, idc] r = B_z.shape[1] a_z = np.mat(B_z.sum(axis=1)) c_z = B_z @ B_z.T csnk1 = (c_z * r - a_z.T * a_z) / np.sqrt(np.multiply(a_z.T * a_z, (r - a_z).T * (r - a_z)) / (r - 1) + np.spacing(1)) csnlink1 = (csnk1 > p) * 1 csnlink = csnlink + csnlink1 if average else csnlink * csnlink1 else: kk = 1 csnlink = csnlink / kk if average else csnlink csn[k] = csnlink if to_csv: filename = os.path.join(self.outdir, 'cellnws', '{}.nw.csv'.format(k)) uf.create_dir(self.outdir + '/cellnws') csn[k].to_csv(path_or_buf=filename) self.logger.info('Cell {} specific network is completed'.format(k)) self.logger.info('Finished constructing all {} cell specific networks'.format(len(cells))) self.upper = upper self.lower = lower self.csn = csn @uf.robust def csndm(self, cells=None, normalize=1, to_csv=1, nodeW=0, *args, **kwargs): """Construction of network degree matrix The function performs the transformation from gene expression matrix to network degree matrix (ndm). Parameters: `data` Gene expression matrix (TPM/RPKM/FPKM/count), rows = genes, columns = cells. otu_even.table `alpha` Significant level (eg. 0.001, 0.01, 0.05 ...), Default = 0.01 `boxsize` Size of neighborhood, Default = 0.1 (nx(k) = ny(k) = 0.1*n) `normalize`1 result is normalized (Default); 0 result is not normalized Note: If gene expression matrix is sparse, use the sparse matrix will accelerate the calculation and reduce memory footprint data = sparse(data); upper = sparse(upper); lower = sparse(lower); 可用于机器学习,样品分类预测等 只输出指定 cells 的degree matrix ,不指定就输出所有cell的全部gene's dm """ data = self.data self.logger.info('Constructing network degree matrix ...') cells = self.get_cells(cells=cells) nr, nc = self.data.shape ndm = pd.DataFrame(np.zeros((nr, nc)), columns=data.columns, index=data.index) csn = self.csn celln = 0 for k in cells: if k not in csn: self.logger.info('Cell {} has no network'.format(k)) continue if nodeW: ndm.loc[:, k] = csn[k].sum(axis=1) * data.loc[:, k] else: ndm.loc[:, k] = csn[k].sum(axis=1) celln += 1 self.logger.info('Network degree vector of cell {} is complete'.format(k)) if normalize: self.logger.info('Normalizing network degree matrix ...') a = ndm.mean(axis=0) ndm = ndm.div(a + np.spacing(1), axis=1) ndm = np.log(1 + ndm) self.ndm = ndm if to_csv: filename = os.path.join(self.outdir, '{}.{}cells.nwdm.csv'.format(os.path.basename(self.tablename), celln)) ndm.to_csv(path_or_buf=filename) self.logger.info('Finished network degree matrix, file: {}'.format(filename)) @uf.robust def nfe(self, cells=None, to_csv=1, *args, **kwargs): data = self.data csn = self.csn self.logger.info('caculate network_flow_entropy ...') cells = self.get_cells(cells=cells) nr, nc = data.shape NFE = pd.DataFrame(np.zeros((nc, 1)), columns=['network_flow_entropy'], index=data.columns) celln = 0 for k in cells: if k not in csn: self.logger.info('Cell {} has no network'.format(k)) NFE.loc[k] = None continue datak =
np.mat(data.loc[:, k])
numpy.mat
# Author: <NAME> # Demo: Compute largest inscribed spheres in (approximately) centroidal Laguerre diagram import numpy as np from scipy.optimize import linprog import vorostereology as vs from math import pi # NOTE: plotting requires packages not part of the dependencies. # Install via: # pip install vtk # pip install mayavi from mayavi import mlab from tvtk.api import tvtk def sphere_packing(laguerre, domain, points, weights, periodicity): L1 = domain[0][1] - domain[0][0] L2 = domain[1][1] - domain[1][0] L3 = domain[2][1] - domain[2][0] lengths = np.array([L1, L2, L3]) periodic = periodicity[0] or periodicity[1] or periodicity[2] n = points.shape[0] centers = np.zeros((n, 3)) r = np.zeros(n) c = np.zeros(4) c[3] = -1 if periodic: bounds = [(domain[0][0] - L1, domain[0][1] + L1), (domain[1][0] - L2, domain[1][1] + L2), (domain[2][0] - L3, domain[2][1] + L3), (0, None)] else: bounds = [(domain[0][0], domain[0][1]), (domain[1][0], domain[1][1]), (domain[2][0], domain[2][1]), (0, None)] for idx, cell in enumerate(laguerre): k = len(cell["faces"]) A = np.zeros((k, 4)) b = np.zeros(k) for face_idx, face in enumerate(cell["faces"]): face_vertices =
np.array(cell['vertices'])
numpy.array
from cgitb import grey from matplotlib.pyplot import axis, close, hot import numpy as np from numpy.random import default_rng import random import copy import math class ImageManipulator: def __init__(self): self._rng = default_rng(seed=42) def salt_pepper_noise(self, gray_img, ratio): noise = self._rng.choice( [-1, 0, 255], size=gray_img.shape, p=[1 - ratio, ratio / 2, ratio / 2] ) np.copyto(noise, gray_img, where=noise == -1) gray_img = noise.astype(np.uint8) return gray_img def gaussian_noise(self, gray_img, mean, std): noise = self._rng.normal(loc=mean, scale=std, size=gray_img.shape) gray_img = gray_img + noise gray_img = np.clip(gray_img, 0, 255) gray_img = np.rint(gray_img) gray_img = gray_img.astype(np.uint8) return gray_img def calc_histogram(self, gray_img): hist = np.zeros(256) for i in range(len(hist)): hist[i] = np.sum(gray_img == i) hist = hist.astype(np.uint) return hist def avg_histograms(self, hist_list): hist_arr = np.array(hist_list) hist = np.mean(hist_arr, axis=0) hist = np.rint(hist) hist = hist.astype(np.uint8) return hist def hist_equalization(self, gray_img, hist=None): if hist is None: hist = self.calc_histogram(gray_img) bins = range(len(hist)) hist = hist / np.sum(hist) cs = np.cumsum(hist) cs = (len(hist) - 1) * cs / cs[-1] gray_img = np.interp(gray_img, bins, cs) gray_img = np.rint(gray_img) gray_img = gray_img.astype(np.uint8) return gray_img def quantize_image(self, gray_img, thresholds): t = np.array(thresholds) if t[0] != 0: t = np.insert(t, 0, 0) if t[-1] != 256: t = np.append(t, 256) P = len(t) - 1 r = np.zeros(P) for i in range(len(r)): r[i] = (t[i] + t[i + 1]) / 2 Q = np.zeros(256) x = np.array(range(256)) for i in range(P): Q = Q + r[i] * ((x >= t[i]) & (x < t[i + 1])) B = Q[gray_img] gray_img = np.rint(B) gray_img = gray_img.astype(np.uint8) return gray_img def linear_filter(self, gray_img, filter, scale, dtype=np.uint8): filter = np.array(filter) f_w, f_h = filter.shape i_w, i_h = gray_img.shape o_w = i_w - f_w + 1 o_h = i_h - f_h + 1 new_img = np.zeros((o_w, o_h)) for i, j in np.ndindex(new_img.shape): result = np.sum(filter * gray_img[i : i + f_w, j : j + f_h]) scaled_result = result / scale new_img[i, j] = scaled_result new_img = np.rint(new_img) new_img = new_img.astype(dtype) return new_img def median_filter(self, gray_img, weights): weights = np.array(weights) f_w, f_h = weights.shape i_w, i_h = gray_img.shape o_w = i_w - f_w + 1 o_h = i_h - f_h + 1 new_img = np.zeros((o_w, o_h)) for i, j in np.ndindex(new_img.shape): pixel_list = np.array([]) for k, l in np.ndindex(f_w, f_h): pixel_list = np.append( pixel_list, [gray_img[i : i + f_w, j : j + f_h][k, l]] * weights[k, l], ) result = np.median(pixel_list) new_img[i, j] = result new_img = np.rint(new_img) new_img = new_img.astype(np.uint8) return new_img def edge_detect(self, gray_img, method="prewitt"): if method == "prewitt": filter_x = [[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]] filter_y = [[-1, -1, -1], [0, 0, 0], [1, 1, 1]] scale = 6 dx = self.linear_filter(gray_img, filter_x, scale=scale, dtype=np.int16) dy = self.linear_filter(gray_img, filter_y, scale=scale, dtype=np.int16) mag = np.sqrt((dx * dx) + (dy * dy)) dir = np.arctan2(dy, dx) dir = np.mod(dir, np.pi * 2) # normalize to 0-2pi scale elif method == "sobel": filter_x = [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]] filter_y = [[-1, -2, -1], [0, 0, 0], [1, 2, 1]] scale = 8 dx = self.linear_filter(gray_img, filter_x, scale=scale, dtype=np.int16) dy = self.linear_filter(gray_img, filter_y, scale=scale, dtype=np.int16) mag = np.sqrt((dx * dx) + (dy * dy)) dir = np.arctan2(dy, dx) dir = np.mod(dir, np.pi * 2) # normalize to 0-2pi scale elif method == "compass": filter_0 = [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]] filter_1 = [[-2, -1, 0], [-1, 0, 1], [0, 1, 2]] filter_2 = [[-1, -2, -1], [0, 0, 0], [1, 2, 1]] filter_3 = [[0, -1, -2], [1, 0, -1], [2, 1, 0]] scale = 8 d0 = self.linear_filter(gray_img, filter_0, scale=scale, dtype=np.int16) d1 = self.linear_filter(gray_img, filter_1, scale=scale, dtype=np.int16) d2 = self.linear_filter(gray_img, filter_2, scale=scale, dtype=np.int16) d3 = self.linear_filter(gray_img, filter_3, scale=scale, dtype=np.int16) d4 = -d0 d5 = -d1 d6 = -d2 d7 = -d3 dstack = np.array([d0, d1, d2, d3, d4, d5, d6, d7]) mag = np.amax(dstack, axis=0) dir = np.argmax(dstack, axis=0) dir = (dir * np.pi) / 4 # normalize to 0-2pi scale dir = (dir * 255) / (np.pi * 2) # re-normalize to 0-255 scale for easy viewing mag = mag * 10 # scaling factor so that the magnitude image is actually visible mag = np.rint(mag) mag = mag.astype(np.uint8) dir = np.rint(dir) dir = dir.astype(np.uint8) return mag, dir def _translate(self, bin_img, trans_x, trans_y): if trans_x > 0: bin_img = np.pad(bin_img, ((0, 0), (trans_x, 0)), mode="constant")[ :, :-trans_x ] elif trans_x < 0: trans_x = -trans_x bin_img = np.pad(bin_img, ((0, 0), (0, trans_x)), mode="constant")[ :, trans_x: ] if trans_y > 0: bin_img = np.pad(bin_img, ((trans_y, 0), (0, 0)), mode="constant")[ :-trans_y, : ] elif trans_y < 0: trans_y = -trans_y bin_img = np.pad(bin_img, ((0, trans_y), (0, 0)), mode="constant")[ trans_y:, : ] return bin_img def dilation(self, bin_img, strel, hot_x, hot_y): strel = np.array(strel) dil_img = np.zeros(bin_img.shape) for i, j in np.ndindex(strel.shape): if strel[i, j] > 0: trans_x = j - hot_x trans_y = i - hot_y trans_img = self._translate(bin_img, trans_x, trans_y) dil_img =
np.logical_or(trans_img > 0, dil_img > 0)
numpy.logical_or
# -*- coding: utf-8 -*- """ Created on 2017-5-5 @author: cheng.li """ import numpy as np from typing import Tuple from typing import Union from alphamind.exceptions.exceptions import PortfolioBuilderException from alphamind.cython.optimizers import LPOptimizer def linear_builder(er: np.ndarray, lbound: Union[np.ndarray, float], ubound: Union[np.ndarray, float], risk_constraints: np.ndarray, risk_target: Tuple[np.ndarray, np.ndarray], turn_over_target: float = None, current_position: np.ndarray = None, method: str='ecos') -> Tuple[str, np.ndarray, np.ndarray]: er = er.flatten() n, m = risk_constraints.shape if not risk_target: risk_lbound = -np.inf * np.ones((m, 1)) risk_ubound = np.inf * np.ones((m, 1)) else: risk_lbound = risk_target[0].reshape((-1, 1)) risk_ubound = risk_target[1].reshape((-1, 1)) if isinstance(lbound, float): lbound = np.ones(n) * lbound if isinstance(ubound, float): ubound =
np.ones(n)
numpy.ones
#!/usr/bin/env python # Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import numpy as np from pyscf import lib from pyscf.lib import logger from pyscf.cc import ccsd from pyscf.cc import eom_rccsd from pyscf.cc import gintermediates as imd ######################################## # EOM-IP-CCSD ######################################## def vector_to_amplitudes_ip(vector, nmo, nocc): nvir = nmo - nocc r1 = vector[:nocc].copy() r2 = np.zeros((nocc,nocc,nvir), dtype=vector.dtype) idx, idy = np.tril_indices(nocc, -1) r2[idx,idy] = vector[nocc:].reshape(nocc*(nocc-1)//2,nvir) r2[idy,idx] =-vector[nocc:].reshape(nocc*(nocc-1)//2,nvir) return r1, r2 def amplitudes_to_vector_ip(r1, r2): nocc = r1.size return np.hstack((r1, r2[np.tril_indices(nocc, -1)].ravel())) def ipccsd_matvec(eom, vector, imds=None, diag=None): # Ref: Tu, Wang, and Li, J. Chem. Phys. 136, 174102 (2012) Eqs.(8)-(9) if imds is None: imds = eom.make_imds() nocc = eom.nocc nmo = eom.nmo r1, r2 = vector_to_amplitudes_ip(vector, nmo, nocc) # Eq. (8) Hr1 = -np.einsum('mi,m->i', imds.Foo, r1) Hr1 += np.einsum('me,mie->i', imds.Fov, r2) Hr1 += -0.5*np.einsum('nmie,mne->i', imds.Wooov, r2) # Eq. (9) Hr2 = lib.einsum('ae,ije->ija', imds.Fvv, r2) tmp1 = lib.einsum('mi,mja->ija', imds.Foo, r2) Hr2 -= tmp1 - tmp1.transpose(1,0,2) Hr2 -= np.einsum('maji,m->ija', imds.Wovoo, r1) Hr2 += 0.5*lib.einsum('mnij,mna->ija', imds.Woooo, r2) tmp2 = lib.einsum('maei,mje->ija', imds.Wovvo, r2) Hr2 += tmp2 - tmp2.transpose(1,0,2) Hr2 += 0.5*lib.einsum('mnef,mnf,ijae->ija', imds.Woovv, r2, imds.t2) vector = amplitudes_to_vector_ip(Hr1, Hr2) return vector def ipccsd_diag(eom, imds=None): if imds is None: imds = eom.make_imds() t1, t2 = imds.t1, imds.t2 nocc, nvir = t1.shape Hr1 = -np.diag(imds.Foo) Hr2 = np.zeros((nocc,nocc,nvir), dtype=t1.dtype) for i in range(nocc): for j in range(nocc): for a in range(nvir): Hr2[i,j,a] += imds.Fvv[a,a] Hr2[i,j,a] += -imds.Foo[i,i] Hr2[i,j,a] += -imds.Foo[j,j] Hr2[i,j,a] += 0.5*(imds.Woooo[i,j,i,j]-imds.Woooo[j,i,i,j]) Hr2[i,j,a] += imds.Wovvo[i,a,a,i] Hr2[i,j,a] += imds.Wovvo[j,a,a,j] Hr2[i,j,a] += 0.5*(np.dot(imds.Woovv[i,j,:,a], t2[i,j,a,:]) -np.dot(imds.Woovv[j,i,:,a], t2[i,j,a,:])) vector = amplitudes_to_vector_ip(Hr1, Hr2) return vector class EOMIP(eom_rccsd.EOMIP): matvec = ipccsd_matvec l_matvec = None get_diag = ipccsd_diag ipccsd_star = None def vector_to_amplitudes(self, vector, nmo=None, nocc=None): if nmo is None: nmo = self.nmo if nocc is None: nocc = self.nocc return vector_to_amplitudes_ip(vector, nmo, nocc) def amplitudes_to_vector(self, r1, r2): return amplitudes_to_vector_ip(r1, r2) def vector_size(self): nocc = self.nocc nvir = self.nmo - nocc return nocc + nocc*(nocc-1)/2*nvir def make_imds(self, eris=None): imds = _IMDS(self._cc, eris) imds.make_ip() return imds ######################################## # EOM-EA-CCSD ######################################## def vector_to_amplitudes_ea(vector, nmo, nocc): nvir = nmo - nocc r1 = vector[:nvir].copy() r2 = np.zeros((nocc,nvir,nvir), vector.dtype) idx, idy = np.tril_indices(nvir, -1) r2[:,idx,idy] = vector[nvir:].reshape(nocc,-1) r2[:,idy,idx] =-vector[nvir:].reshape(nocc,-1) return r1, r2 def amplitudes_to_vector_ea(r1, r2): nvir = r1.size idx, idy = np.tril_indices(nvir, -1) return np.hstack((r1, r2[:,idx,idy].ravel())) def eaccsd_matvec(eom, vector, imds=None, diag=None): # Ref: Nooijen and Bartlett, <NAME>. Phys. 102, 3629 (1994) Eqs.(30)-(31) if imds is None: imds = eom.make_imds() nocc = eom.nocc nmo = eom.nmo r1, r2 = vector_to_amplitudes_ea(vector, nmo, nocc) # Eq. (30) Hr1 = np.einsum('ac,c->a', imds.Fvv, r1) Hr1 += np.einsum('ld,lad->a', imds.Fov, r2) Hr1 += 0.5*np.einsum('alcd,lcd->a', imds.Wvovv, r2) # Eq. (31) Hr2 = np.einsum('abcj,c->jab', imds.Wvvvo, r1) tmp1 = lib.einsum('ac,jcb->jab', imds.Fvv, r2) Hr2 += tmp1 - tmp1.transpose(0,2,1) Hr2 -= lib.einsum('lj,lab->jab', imds.Foo, r2) tmp2 = lib.einsum('lbdj,lad->jab', imds.Wovvo, r2) Hr2 += tmp2 - tmp2.transpose(0,2,1) Hr2 += 0.5*lib.einsum('abcd,jcd->jab', imds.Wvvvv, r2) Hr2 -= 0.5*lib.einsum('klcd,lcd,kjab->jab', imds.Woovv, r2, imds.t2) vector = amplitudes_to_vector_ea(Hr1, Hr2) return vector def eaccsd_diag(eom, imds=None): if imds is None: imds = eom.make_imds() t1, t2 = imds.t1, imds.t2 nocc, nvir = t1.shape Hr1 = np.diag(imds.Fvv) Hr2 =
np.zeros((nocc,nvir,nvir),dtype=t1.dtype)
numpy.zeros
""" Methods for interpolating data from structured data sets on Thetis fields. Simple example of an atmospheric pressure interpolator: .. code-block:: python def to_latlon(x, y, positive_lon=False): # Converts mesh (x,y) points to coordinates used in the atm data lon, lat = coordsys_spcs.spcs2lonlat(x, y) if positive_lon and lon < 0.0: lon += 360. return lat, lon class WRFInterpolator(object): # Interpolates WRF atmospheric model data on 2D fields def __init__(self, function_space, atm_pressure_field, ncfile_pattern, init_date): self.atm_pressure_field = atm_pressure_field # object that interpolates forcing data from structured grid on the local mesh self.grid_interpolator = NetCDFLatLonInterpolator2d(function_space, to_latlon) # reader object that can read fields from netCDF files, applies spatial interpolation self.reader = NetCDFSpatialInterpolator(self.grid_interpolator, ['prmsl']) # object that can find previous/next time stamps in a collection of netCDF files self.timesearch_obj = NetCDFTimeSearch(ncfile_pattern, init_date, NetCDFTimeParser) # finally a linear intepolator class that performs linar interpolation in time self.interpolator = LinearTimeInterpolator(self.timesearch_obj, self.reader) def set_fields(self, time): # Evaluates forcing fields at the given time pressure = self.interpolator(time) self.atm_pressure_field.dat.data_with_halos[:] = pressure Usage: .. code-block:: python atm_pressure_2d = Function(solver_obj.function_spaces.P1_2d, name='atm pressure') wrf_pattern = 'forcings/atm/wrf/wrf_air.2016_*_*.nc' wrf_atm = WRFInterpolator( solver_obj.function_spaces.P1_2d, wind_stress_2d, atm_pressure_2d, wrf_pattern, init_date) simulation_time = 3600. wrf_atm.set_fields(simulation_time) """ import glob import os from .timezone import * from .log import * import numpy as np import scipy.spatial.qhull as qhull import netCDF4 from abc import ABCMeta, abstractmethod from firedrake import * import re import string TIMESEARCH_TOL = 1e-6 class GridInterpolator(object): """ A reuseable griddata interpolator object. Usage: .. code-block:: python interpolator = GridInterpolator(source_xyz, target_xyz) vals = interpolator(source_data) Example: .. code-block:: python x0 = np.linspace(0, 10, 10) y0 = np.linspace(5, 10, 10) X, Y = np.meshgrid(x, y) x = X.ravel(); y = Y.ravel() data = x + 25.*y x_target = np.linspace(1, 10, 20) y_target = np.linspace(5, 10, 20) interpolator = GridInterpolator(np.vstack((x, y)).T, np.vstack((target_x, target_y)).T) vals = interpolator(data) Based on http://stackoverflow.com/questions/20915502/speedup-scipy-griddata-for-multiple-interpolations-between-two-irregular-grids """ def __init__(self, grid_xyz, target_xyz, fill_mode=None, fill_value=np.nan, normalize=False, dont_raise=False): """ :arg grid_xyz: Array of source grid coordinates, shape (npoints, 2) or (npoints, 3) :arg target_xyz: Array of target grid coordinates, shape (n, 2) or (n, 3) :kwarg fill_mode: Determines how points outside the source grid will be treated. If 'nearest', value of the nearest source point will be used. Otherwise a constant fill value will be used (default). :kwarg float fill_value: Set the fill value (default: NaN) :kwarg bool normalize: If true the data is scaled to unit cube before interpolation. Default: False. :kwarg bool dont_raise: Do not raise a Qhull error if triangulation fails. In this case the data will be set to fill value or nearest neighbor value. """ self.fill_value = fill_value self.fill_mode = fill_mode self.normalize = normalize self.fill_nearest = self.fill_mode == 'nearest' self.shape = (target_xyz.shape[0], ) ngrid_points = grid_xyz.shape[0] if self.fill_nearest: assert ngrid_points > 0, 'at least one source point is needed' if self.normalize: def get_norm_params(x, scale=None): min = x.min() max = x.max() if scale is None: scale = max - min a = 1./scale b = -min*a return a, b ax, bx = get_norm_params(target_xyz[:, 0]) ay, by = get_norm_params(target_xyz[:, 1]) az, bz = get_norm_params(target_xyz[:, 2]) self.norm_a = np.array([ax, ay, az]) self.norm_b = np.array([bx, by, bz]) ngrid_xyz = self.norm_a*grid_xyz + self.norm_b ntarget_xyz = self.norm_a*target_xyz + self.norm_b else: ngrid_xyz = grid_xyz ntarget_xyz = target_xyz self.cannot_interpolate = False try: d = ngrid_xyz.shape[1] tri = qhull.Delaunay(ngrid_xyz) # NOTE this becomes expensive in 3D for npoints > 10k simplex = tri.find_simplex(ntarget_xyz) vertices = np.take(tri.simplices, simplex, axis=0) temp =
np.take(tri.transform, simplex, axis=0)
numpy.take
import math import cv2 import numpy as np import pandas as pd ################################################################## ## ## ## create a 3d skeleton video in a blank background ## ## ## ################################################################## # {0, "Nose"} # {1, "Neck"}, # {2, "RShoulder"}, # {3, "RElbow"}, # {4, "RWrist"}, # {5, "LShoulder"}, # {6, "LElbow"}, # {7, "LWrist"}, # {8, "REye"}, # {9, "LEye"}, # {10, "MidHip"}, PARTS = [ "Nose", "Neck", "RShoulder", "RElbow", "RWrist", "LShoulder", "LElbow", "LWrist", "REye", "LEye", "MidHip", ] SKELETON_EDGES = np.array( [ [0, 1], [1, 2], [2, 3], [3, 4], [1, 5], [5, 6], [6, 7], [1, 10], [8, 0], [9, 0], ] ) # theta, phi = 3.1415/4, -3.1415/6 theta, phi = -0.3, 0.24 should_rotate = False scale_dx = 800 scale_dy = 800 # plot 3d skeleton class Plotter3d: def __init__( self, canvas_size, origin=(0.5, 0.5), scale=1, parts=PARTS, skeleton_edges=SKELETON_EDGES, ): self.origin = np.array( [origin[1] * canvas_size[1], origin[0] * canvas_size[0]], dtype=np.float32, ) # x, y self.scale = np.float32(scale) self.theta = 0 self.phi = 0 self.parts = parts self.skeleton_edges = skeleton_edges axis_length = 200 axes = [ np.array( [ [-axis_length / 2, -axis_length / 2, 0], [axis_length / 2, -axis_length / 2, 0], ], dtype=np.float32, ), np.array( [ [-axis_length / 2, -axis_length / 2, 0], [-axis_length / 2, axis_length / 2, 0], ], dtype=np.float32, ), np.array( [ [-axis_length / 2, -axis_length / 2, 0], [-axis_length / 2, -axis_length / 2, axis_length], ], dtype=np.float32, ), ] step = 20 for step_id in range(axis_length // step + 1): # add grid axes.append( np.array( [ [ -axis_length / 2, -axis_length / 2 + step_id * step, 0, ], [ axis_length / 2, -axis_length / 2 + step_id * step, 0, ], ], dtype=np.float32, ) ) axes.append( np.array( [ [ -axis_length / 2 + step_id * step, -axis_length / 2, 0, ], [ -axis_length / 2 + step_id * step, axis_length / 2, 0, ], ], dtype=np.float32, ) ) self.axes = np.array(axes) def plot(self, img, vertices, edges): global theta, phi img.fill(0) R = self._get_rotation(theta, phi) self._draw_axes(img, R) if len(edges) != 0: self._plot_edges(img, vertices, edges, R) def _draw_axes(self, img, R): axes_2d = np.dot(self.axes, R) axes_2d = axes_2d * self.scale + self.origin for axe in axes_2d: axe = axe.astype(int) cv2.line( img, tuple(axe[0]), tuple(axe[1]), (128, 128, 128), 1, cv2.LINE_AA, ) def _plot_edges(self, img, vertices, edges, R): vertices_2d = np.dot(vertices, R) edges_vertices = ( vertices_2d.reshape((-1, 2))[edges] * self.scale + self.origin ) for edge_vertices in edges_vertices: edge_vertices = edge_vertices.astype(int) cv2.line( img, tuple(edge_vertices[0]), tuple(edge_vertices[1]), (255, 255, 255), 1, cv2.LINE_AA, ) def _get_rotation(self, theta, phi): sin, cos = math.sin, math.cos return np.array( [ [cos(theta), sin(theta) * sin(phi)], [-sin(theta), cos(theta) * sin(phi)], [0, -cos(phi)], ], dtype=np.float32, ) # transposed @staticmethod def mouse_callback(event, x, y, flags, params): global previous_position, theta, phi, should_rotate, scale_dx, scale_dy if event == cv2.EVENT_LBUTTONDOWN: previous_position = [x, y] should_rotate = True if event == cv2.EVENT_MOUSEMOVE and should_rotate: theta += (x - previous_position[0]) / scale_dx * 6.2831 # 360 deg phi -= ( (y - previous_position[1]) / scale_dy * 6.2831 * 2 ) # 360 deg phi = max(min(3.1415 / 2, phi), -3.1415 / 2) previous_position = [x, y] if event == cv2.EVENT_LBUTTONUP: should_rotate = False # read skeleton data from the csv def read_csv(filename): """ Parameters ---------- filename : str Path to the CSV file. Returns ------- df_new : dataframe Normalised coordinates of 3D pose. """ dataframe = pd.read_csv(filename, index_col="Body Part") # find the bbox of the player for crop xmax = -10000 ymax = -10000 zmax = -10000 xmin = 10000 ymin = 10000 zmin = 10000 # find the max/min value for each axis for key in dataframe.keys(): data = list(dataframe[key][1:]) data = list(map(float, data)) data_num = np.array(data) data_num = data_num[np.where(~np.isnan(data_num))] keys = key.split(".") if len(keys) == 1: key_new = (keys[0], "x") xmax = max(xmax, np.max(data_num)) xmin = min(xmin, np.min(data_num)) elif len(keys) == 2 and keys[1] == "1": key_new = (keys[0], "y") ymax = max(ymax, np.max(data_num)) ymin = min(ymin, np.min(data_num)) elif len(keys) == 2 and keys[1] == "2": key_new = (keys[0], "y") zmax = max(zmax, np.max(data_num)) zmin = min(zmin, np.min(data_num)) if key == "MidHip": data_midhip = data_num if key == "Neck": data_neck = data_num # determine the center of x, y, z xc = (np.mean(data_neck) + np.mean(data_midhip)) / 2 yc = (ymax + ymin) / 2 zc = (zmax + zmin) / 2 # determine the width, height and depth width = 2 * max(xc - xmin, xmax - xc) height = ymax - ymin depth = zmax - zmin # select a cubic sq = max(width, height) sq = max(sq, depth) sq = np.ceil(sq / 100) * 100 depth = width = height = sq xmin = xc - sq / 2 ymin = yc - sq / 2 zmin = zc - sq / 2 # normalise the absolute coordinates with length of the cubic df = dict() for key in dataframe.keys(): data = list(dataframe[key][1:]) data = list(map(float, data)) nan_idx = np.where(np.isnan(data))[0] if len(nan_idx) == len(data): data[:] = 0 elif len(nan_idx) > 0: for jj in nan_idx: if jj == 0: data[jj] = np.where(~np.isnan(data))[0][0] else: data[jj] = data[jj - 1] keys = key.split(".") if len(keys) == 1: key_new = (keys[0], "x") data = np.round(list((np.array(data) - xmin) / (width)), 5) elif len(keys) == 2 and keys[1] == "1": key_new = (keys[0], "y") data = np.round(list((
np.array(data)
numpy.array
''' @Authors: <NAME>, <NAME>, <NAME>, <NAME> @Purpose: Explore 6DOF rocket trajectory, esspecially quaternion rotation Learning resources: https://eater.net/quaternions ''' import numpy as np import oyaml as yaml import math class Rotator: def __init__(self): self.re = 0; self.i = 0; self.j = 0; self.k = 1 self.body_vector = np.array([[0],[1],[0],[0]]) ''' https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Using_quaternions_as_rotations This function should take inputs: 'Cartesian, unit rotation-axis (Vector), Rotation Angle in radians (Theta) and form a quaternion vector ''' def form_quaternion(self, vector, theta): assert self.vector_is_unit(vector), 'Class: Rotator, Fxn: form_quaternion, vector is not a unit quaternion' r = np.cos(theta/2) i = -1*np.sin(theta/2)*vector[0] j = -1*
np.sin(theta/2)
numpy.sin
import copy import argparse import os import datetime from collections import deque import random import numpy as np import matplotlib.pyplot as plt import time from multiprocessing import Pool from env import Env class QLearning: def __init__(self, action_space, eps, decay, alpha, min_eps=0, qtables=None, verbose=1,): self.i = 0 self.verbose = verbose self.n_agents = action_space.shape[0] self.high = action_space.high self.low = action_space.low self.max = self.high.max() if qtables is None: self.qtables = [] for a in range(len(self.high)): n = self.high[a] - self.low[a] + 1 qtable = np.zeros(n) self.qtables.append(qtable) else: self.qtables = copy.deepcopy(qtables) self.eps = eps self.min_eps = min_eps self.decay = decay self.alpha = alpha def act(self): actions = np.zeros(self.n_agents, dtype=int) random_actions = np.random.rand(self.n_agents) * (self.high + 1) random_actions = np.floor(random_actions) probs = np.random.rand(self.n_agents) rand_mask = probs < self.eps actions[rand_mask] = random_actions[rand_mask] play_idx = np.where(~rand_mask)[0] actions[play_idx] = [self.qtables[i].argmax() for i in play_idx] return list(actions) def update(self, actions, rewards): self.eps = max(self.eps * self.decay, self.min_eps) for a, qtable in enumerate(self.qtables): action = actions[a] reward = rewards[a] qtable[action] = qtable[action] + self.alpha * (reward - qtable[action]) if self.verbose: self.i += 1 if self.i == 500: self.i = 0 print('\nEps:', self.eps) def init_qtables(env): qtables = [] for agent in env.all_agents: qtable = np.zeros(len(env.choices[agent])) for i, route in enumerate(env.choices[agent]): qtable[i] = 1 / len(route) qtables.append(qtable) def parse_args(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) # Environment Params parser.add_argument('netfile', help='File containing the network') parser.add_argument('--s', help='Max number of steps allowed from an origin to a destination node.', default=2, type=int) parser.add_argument('--k', help='Max number of shortest paths from an origin to a destination node.', default=2, type=int) # Agent Params parser.add_argument('--eps', help='Starting epsilon for QLearning.', default=.05, type=float) parser.add_argument('--decay', help='Epsilon decay rate.', default=1, type=float) parser.add_argument('--alpha', help='Learning rate alpha value of QLearning.', default=0.5, type=float) # Simulation Params parser.add_argument('--episodes', help='Number of episodes for a run of QLearning.', default=1000,type=int) parser.add_argument('--runs', help='Number of runs for QLearning.', default=1, type=int) parser.add_argument('--outdir', help='Output dir for the plot.', default='./figs/') return parser.parse_args() def run_ql(env, n_runs, episodes, ql_params): all_avg_rewards =
np.zeros((n_runs, episodes))
numpy.zeros
# Version 3.1; <NAME>; Polar Geospatial Center, University of Minnesota; 2019 # Translated from MATLAB code written by <NAME>, Ohio State University, 2018 from __future__ import division import os import sys import traceback import warnings import ogr import numpy as np import scipy.stats from scipy import interpolate if sys.version_info[0] < 3: import raster_array_tools as rat from filter_scene import getDataDensityMap, readSceneMeta, rescaleDN else: from lib import raster_array_tools as rat from lib.filter_scene import getDataDensityMap, readSceneMeta, rescaleDN # The spatial reference of the strip, set at the beginning of scenes2strips() # to the spatial reference of the first scene DEM in order and used for # comparison to the spatial references of all other source raster files. __STRIP_SPAT_REF__ = None # The Catalog ID of "Image 1" as parsed from the output scene metadata files for # an intrack stereo SETSM DEM strip. It is expected that all ortho scenes in the # intrack strip correspond to the same Catalog ID. __INTRACK_ORTHO_CATID__ = None HOLD_GUESS_OFF = 0 HOLD_GUESS_ALL = 1 HOLD_GUESS_UPDATE_RMSE = 2 class InvalidArgumentError(Exception): def __init__(self, msg=""): super(Exception, self).__init__(msg) class SpatialRefError(Exception): def __init__(self, msg=""): super(Exception, self).__init__(msg) class RasterDimensionError(Exception): def __init__(self, msg=""): super(Exception, self).__init__(msg) class MetadataError(Exception): def __init__(self, msg=""): super(Exception, self).__init__(msg) def scenes2strips(demFiles, maskSuffix=None, filter_options=(), max_coreg_rmse=1, trans_guess=None, trans_err_guess=None, rmse_guess=None, hold_guess=HOLD_GUESS_OFF, check_guess=True, use_second_ortho=False): """ From MATLAB version in Github repo 'setsm_postprocessing', 3.0 branch: function [X,Y,Z,M,O,trans,rmse,f]=scenes2strips(varargin) %SCENES2STRIPS merge scenes into strips % % [x,y,z,m,o,trans,rmse,f]=scenes2strips(demdir,f) merges the % scene geotiffs listed in cellstr f within directory demdir after % ordering them by position. If a break in coverage is detected between % scene n and n+1 only the first 1:n scenes will be merged. The data are % coregistered at overlaps using iterative least squares, starting with % scene n=1. % Outputs are the strip grid coorinates x,y and strip elevation, z, % matchtag, m and orthoimage, o. The 3D translations are given in 3xn % vector trans, along with root-mean-squared of residuals, rmse. The % output f gives the list of filenames in the mosaic. If a break is % detected, the list of output files will be less than the input. % % [...]=scenes2strips(...,'maskFileSuffix',value) will apply the mask % identified as the dem filename with the _dem.tif replaced by % _maskSuffix % [...]=scenes2strips(...,'max_coreg_rmse',value) will set a new maximum % coregistration error limit in meters (default=1). Errors above this % limit will result in a segment break. % % Version 3.1, <NAME>, Ohio State University, 2015. If maskFileSuffix='edgemask', edge and data masks identified as the DEM filename with the _dem.tif replaced by _edgemask.tif and _datamask.tif, respectively, will be applied. """ from batch_scenes2strips import getDemSuffix, selectBestMatchtag, selectBestOrtho, selectBestOrtho2 demSuffix = getDemSuffix(demFiles[0]) cluster_min_px = 1000 # Minimum data cluster area for 2m. add_min_px = 50000 # Minimum number of unmasked pixels scene must add to existing segment to not be skipped. # Order scenes in north-south or east-west direction by aspect ratio. num_scenes = len(demFiles) if trans_guess is None and trans_err_guess is None and rmse_guess is None: print("Ordering {} scenes".format(num_scenes)) demFiles_ordered = orderPairs(demFiles) elif trans_err_guess is not None and trans_guess is None: raise InvalidArgumentError("`trans_guess_err` argument can only be used in conjunction " "with `trans_guess` argument") elif trans_guess is not None and trans_guess.shape[1] != num_scenes: raise InvalidArgumentError("`trans_guess` array must be of shape (3, N) where N is the number " "of scenes in `demFiles`, but was {}".format(trans_guess.shape)) elif rmse_guess is not None and rmse_guess.shape[1] != num_scenes: raise InvalidArgumentError("`rmse_guess` array must be of shape (1, N) where N is the number " "of scenes in `demFiles`, but was {}".format(rmse_guess.shape)) else: # Files should already be properly ordered if a guess is provided. # Running `orderPairs` on them could detrimentally change their order. demFiles_ordered = list(demFiles) num_scenes = len(demFiles_ordered) # Initialize output stats. trans = np.zeros((3, num_scenes)) trans_err = trans.copy() rmse = np.zeros((1, num_scenes)) if check_guess: trans_check = np.copy(trans) trans_err_check = np.copy(trans_err) rmse_check = np.copy(rmse) # Get projection reference of the first scene to be used in equality checks # with the projection reference of all scenes that follow. global __STRIP_SPAT_REF__ __STRIP_SPAT_REF__ = rat.extractRasterData(demFiles_ordered[0], 'spat_ref') if __STRIP_SPAT_REF__.ExportToProj4() == '': raise SpatialRefError("DEM '{}' spatial reference ({}) has no PROJ4 representation " "and is likely erroneous".format(demFiles_ordered[0], __STRIP_SPAT_REF__.ExportToWkt())) # File loop. skipped_scene = False segment_break = False for i in range(num_scenes+1): if skipped_scene: skipped_scene = False trans[:, i-1] = np.nan trans_err[:, i-1] = np.nan rmse[0, i-1] = np.nan if i >= num_scenes: break if ( (trans_guess is not None and np.any(np.isnan(trans_guess[:, i]))) or (trans_err_guess is not None and np.any(np.isnan(trans_err_guess[:, i]))) or (rmse_guess is not None and np.isnan(rmse_guess[0, i]))): # State of scene is somewhere between naturally redundant # or redundant by masking, as classified by prior s2s run. skipped_scene = True continue # Construct filenames. demFile = demFiles_ordered[i] matchFile = selectBestMatchtag(demFile) orthoFile = selectBestOrtho(demFile) ortho2File = selectBestOrtho2(demFile) if use_second_ortho else None metaFile = demFile.replace(demSuffix, 'meta.txt') if maskSuffix is None: print("No mask applied") maskFile = None else: maskFile = demFile.replace(demSuffix, maskSuffix) if use_second_ortho and ortho2File is None: raise InvalidArgumentError("`use_second_ortho=True`, but second ortho could not be found") print("Scene {} of {}: {}".format(i+1, len(demFiles_ordered), demFile)) # try: x, y, z, m, o, o2, md = loadData(demFile, matchFile, orthoFile, ortho2File, maskFile, metaFile) # except: # print("Data read error:") # traceback.print_exc() # print("...skipping") # continue # Apply masks. x, y, z, m, o, o2, md = applyMasks(x, y, z, m, o, o2, md, filter_options, maskSuffix) # Check for redundant scene. if np.count_nonzero(~np.isnan(z)) <= add_min_px: print("Not enough (unmasked) data, skipping") skipped_scene = True continue dx = x[1] - x[0] dy = y[1] - y[0] # Fix grid so that x, y coordinates of # pixels in overlapping scenes will match up. if ((x[1] / dx) % 1 != 0) or ((y[1] / dy) % 1 != 0): x, y, z, m, o, o2, md = regrid(x, y, z, m, o, o2, md) # If this is the first scene in strip, # set as strip and continue to next scene. if 'X' not in vars(): X, Y, Z, M, O, O2, MD = x, y, z, m, o, o2, md del x, y, z, m, o, o2, md continue # Pad new arrays to stabilize interpolation. buff = int(10*dx + 1) z = np.pad(z, buff, 'constant', constant_values=np.nan) m = np.pad(m, buff, 'constant', constant_values=0) o = np.pad(o, buff, 'constant', constant_values=0) o2 = np.pad(o2, buff, 'constant', constant_values=0) if o2 is not None else None md = np.pad(md, buff, 'constant', constant_values=1) x = np.concatenate((x[0] - dx*np.arange(buff, 0, -1), x, x[-1] + dx*np.arange(1, buff+1))) y = np.concatenate((y[0] + dx*np.arange(buff, 0, -1), y, y[-1] - dx*np.arange(1, buff+1))) # Expand strip coverage to encompass new scene. if x[0] < X[0]: X1 = np.arange(x[0], X[0], dx) X = np.concatenate((X1, X)) Z, M, O, O2, MD = expandCoverage(Z, M, O, O2, MD, X1, direction='left') del X1 if x[-1] > X[-1]: X1 = np.arange(X[-1]+dx, x[-1]+dx, dx) X =
np.concatenate((X, X1))
numpy.concatenate
""" This module contains routines for modeling cluster and source signals. """ import os import sys from pixell import enmap import astropy import astropy.wcs as enwcs import astropy.io.fits as pyfits import astropy.constants as constants #from astropy.cosmology import FlatLambdaCDM from astLib import * from scipy import ndimage from scipy import interpolate from scipy import stats import time import astropy.table as atpy import nemo from . import maps from . import catalogs from . import photometry from . import filters from . import gnfw from . import plotSettings import numpy as np import numpy.fft as fft import math import pylab as plt import pickle import operator import pyximport; pyximport.install() import nemoCython import nemo import glob import shutil import yaml import warnings #import IPython np.random.seed() #------------------------------------------------------------------------------------------------------------ # Global constants (we could move others here but then need to give chunky obvious names, not just e.g. h) TCMB=2.72548 Mpc_in_cm=constants.pc.value*100*1e6 MSun_in_g=constants.M_sun.value*1000 # Default cosmology (e.g., for fitQ) #fiducialCosmoModel=FlatLambdaCDM(H0 = 70.0, Om0 = 0.3, Ob0 = 0.05, Tcmb0 = TCMB) # Default cosmology (e.g., for fitQ) - now based on CCL rather than astropy Om0=0.3 Ob0=0.05 H0=70 sigma8=0.8 ns=0.95 transferFunction="boltzmann_camb" on_rtd=os.environ.get('READTHEDOCS', None) if on_rtd is None: import pyccl as ccl fiducialCosmoModel=ccl.Cosmology(Omega_c=Om0-Ob0, Omega_b=Ob0, h=0.01*H0, sigma8=sigma8, n_s=ns, transfer_function=transferFunction) # For CCL-based mass conversions M200mDef=ccl.halos.MassDef(200, "matter", c_m_relation = 'Bhattacharya13') M200cDef=ccl.halos.MassDef(200, "critical", c_m_relation = 'Bhattacharya13') M500cDef=ccl.halos.MassDef(500, "critical") else: fiducialCosmoModel=None M200mDef=None M200cDef=None M500cDef=None #------------------------------------------------------------------------------------------------------------ class BeamProfile(object): """Describes the beam profile (i.e., the point spread function for some instrument in real space). This can be either read from a white-space delimited text file (with the angle in degrees in the first column and the response in the second column), or can be set directly using arrays. Args: beamFileName(:obj:`str`, optional): Path to text file containing a beam profile in the ACT format. profile1d (:obj:`np.ndarray`, optional): One dimensional beam profile, with index 0 at the centre. rDeg (:obj:`np.ndarray`, optional): Corresponding angular distance in degrees from the centre for the beam profile. Attributes: profile1d (:obj:`np.ndarray`): One dimensional beam profile, with index 0 at the centre. rDeg (:obj:`np.ndarray`): Corresponding angular distance in degrees from the centre for the beam profile. tck (:obj:`tuple`): Spline knots for interpolating the beam onto different angular binning (in degrees), for use with :meth:`scipy.interpolate.splev`. FWHMArcmin (float): Estimate of the beam FWHM in arcmin. """ def __init__(self, beamFileName = None, profile1d = None, rDeg = None): if beamFileName is not None: beamData=np.loadtxt(beamFileName).transpose() self.profile1d=beamData[1] self.rDeg=beamData[0] else: self.profile1d=profile1d self.rDeg=rDeg if self.profile1d is not None and self.rDeg is not None: self.tck=interpolate.splrep(self.rDeg, self.profile1d) # This is really just for sorting a list of beams by resolution self.FWHMArcmin=self.rDeg[np.argmin(abs(self.profile1d-0.5))]*60*2 #------------------------------------------------------------------------------------------------------------ class QFit(object): """A class for managing the filter mismatch function, referred to as `Q` in the ACT papers from `Hasselfield et al. (2013) <http://adsabs.harvard.edu/abs/2013JCAP...07..008H>`_ onwards. Args: QFitFileName (:obj:`str`): Path to a FITS-table format file as made by :meth:`fitQ`. tileNames (:obj:`list`): If given, the Q-function will be defined only for these tiles (their names must appear in the file specified by `QFitFileName`). Attributes: fitDict (:obj:`dict`): Dictionary of interpolation objects, indexed by `tileName`. You should not need to access this directly - use :meth:`getQ` instead. """ def __init__(self, QFitFileName = None, tileNames = None): self._zGrid=np.array([0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.2, 1.6, 2.0]) self._theta500ArcminGrid=np.logspace(np.log10(0.1), np.log10(55), 10) self.zMin=(self._zGrid).min() self.zMax=(self._zGrid).max() self.zDependent=None self.zDepThetaMax=None self.fitDict={} if QFitFileName is not None: self.loadQ(QFitFileName, tileNames = tileNames) def loadQ(self, source, tileNames = None): """Load the filter mismatch function Q (see `Hasselfield et al. 2013 <https://ui.adsabs.harvard.edu/abs/2013JCAP...07..008H/abstract>`_) as a dictionary of spline fits. Args: source (:obj:`nemo.startUp.NemoConfig` or str): Either the path to a .fits table (containing Q fits for all tiles - this is normally ``selFn/QFit.fits``), or a :obj:`nemo.startUp.NemoConfig` object (from which the path and tiles to use will be inferred). tileNames (optional, list): A list of tiles for which the Q function spline fit coefficients will be extracted. If source is a :obj:`nemo.startUp.NemoConfig` object, this should be set to ``None``. Returns: A dictionary (with tilNames as keys), containing spline knots for the Q function for each tile. Q values can then be obtained by using these with :func:`scipy.interpolate.splev`. """ # Bit messy, but two modes here: # - combined Q fit file for all tiles # - single Q fit for a single tile (interim stage, when under nemo MPI run) if type(source) == nemo.startUp.NemoConfig: tileNames=source.tileNames combinedQTabFileName=source.selFnDir+os.path.sep+"QFit.fits" loadMode=None if os.path.exists(combinedQTabFileName) == True: tileNamesInFile=[] with pyfits.open(combinedQTabFileName) as QTabFile: for ext in QTabFile: if type(ext) == astropy.io.fits.hdu.table.BinTableHDU: tileNamesInFile.append(ext.name) tileNamesInFile.sort() if tileNames is None: tileNames=tileNamesInFile loadMode="combined" else: globStr=source.selFnDir+os.path.sep+"QFit#*.fits" QTabFileNames=glob.glob(globStr) loadMode="single" if len(QTabFileNames) == 0: raise Exception("could not find either '%s' or '%s' - needed to make QFit object" % (combinedQTabFileName, globStr)) zMin=self._zGrid.max() zMax=self._zGrid.min() for tileName in tileNames: if loadMode == "combined": QTab=atpy.Table().read(combinedQTabFileName, hdu = tileName) elif loadMode == "single": QTab=atpy.Table().read(source.selFnDir+os.path.sep+"QFit#%s.fits" % (tileName)) else: raise Exception("loadMode is not defined") if QTab['z'].min() < zMin: self.zMin=QTab['z'].min() if QTab['z'].max() > zMax: self.zMax=QTab['z'].max() self.fitDict[tileName]=self._makeInterpolator(QTab) elif os.path.exists(source) == True: # Inspect file and get tile names if MEF if tileNames is None: tileNames=[] with pyfits.open(source) as QTab: for ext in QTab: if type(ext) == astropy.io.fits.hdu.table.BinTableHDU: tileNames.append(ext.name) zMin=self._zGrid.max() zMax=self._zGrid.min() for tileName in tileNames: if tileName == '': # Individual, interim file name assert(source.find("QFit#") > 0) tileName=os.path.split(source)[-1].split("QFit#")[-1].split(".fits")[0] QTab=atpy.Table().read(source) else: QTab=atpy.Table().read(source, hdu = tileName) if QTab['z'].min() < zMin: self.zMin=QTab['z'].min() if QTab['z'].max() > zMax: self.zMax=QTab['z'].max() self.fitDict[tileName]=self._makeInterpolator(QTab) def _makeInterpolator(self, QTab): """Inspects QTab, and makes an interpolator object - 2d if there is z-dependence, 1d if not. """ if QTab.meta['ZDEPQ'] == 0: QTab.sort('theta500Arcmin') spline=interpolate.InterpolatedUnivariateSpline(QTab['theta500Arcmin'], QTab['Q'], ext = 1) if self.zDependent == True: raise Exception("QFit contains a mixture of z-dependent and z-independent tables") self.zDepThetaMax=None self.zDependent=False elif QTab.meta['ZDEPQ'] == 1: with warnings.catch_warnings(): warnings.simplefilter('ignore', UserWarning) spline=interpolate.LSQBivariateSpline(QTab['z'], QTab['theta500Arcmin'], QTab['Q'], self._zGrid, self._theta500ArcminGrid) zs=np.unique(QTab['z']) thetaMaxs=[] for z in zs: thetaMaxs.append(QTab['theta500Arcmin'][QTab['z'] == z].max()) self.zDepThetaMax=interpolate.InterpolatedUnivariateSpline(zs, thetaMaxs) if self.zDependent == False: raise Exception("QFit contains a mixture of z-dependent and z-independent tables") self.zDependent=True else: raise Exception("Valid ZDEPQ values are 0 or 1 only") return spline def getQ(self, theta500Arcmin, z = None, tileName = None): """Return the value of Q (the filter mismatch function) using interpolation. Args: theta500Arcmin (:obj:`float` or :obj:`np.ndarray`): The angular scale at which *Q* will be calculated. This can be an array or a single value. z (:obj:`float`, optional): Redshift, only used if *Q* is a function of redshift, otherwise it is ignored. This must be a single value only, i.e., not an array. tileName (:obj:`str`, optional): The name of the tile to use for the *Q* function. Returns: The value of *Q* (an array or a single float, depending on the input). Note: In the case where *Q* is a function of redshift, values outside of the range for which *Q* has been calculated will be filled with zeros (i.e., there is no extrapolation in redshift). """ if z is not None: if type(z) == np.ndarray and z.shape == (1,): z=float(z) if type(z) is not float and type(z) is not np.float64: raise Exception("z must be a float, and not, e.g., an array") if self.zDependent == True: Qs=self.fitDict[tileName](z, theta500Arcmin)[0] thetaMask=theta500Arcmin > self.zDepThetaMax(z) Qs[thetaMask]=0.0 if z < self.zMin or z > self.zMax: Qs=0 else: # Univariate case handles own valid bounds checking Qs=self.fitDict[tileName](theta500Arcmin) return Qs #------------------------------------------------------------------------------------------------------------ def fSZ(obsFrequencyGHz, TCMBAlpha = 0.0, z = None): """Returns the frequency dependence of the (non-relativistic) Sunyaev-Zel'dovich effect. Args: obsFrequencyGHz (float): Frequency in GHz at which to calculate fSZ. TCMBAlpha (float, optional): This should always be zero unless you really do want to make a model where CMB temperature evolves T0*(1+z)^{1-TCMBAlpha}. z (float, optional): Redshift - needed only if TCMBAlpha is non-zero. Returns: Value of SZ spectral shape at given frequency (neglecting relativistic corrections). """ h=constants.h.value kB=constants.k_B.value sigmaT=constants.sigma_T.value me=constants.m_e.value c=constants.c.value x=(h*obsFrequencyGHz*1e9)/(kB*TCMB) if TCMBAlpha != 0 and z is not None: assert(z >= 0) x=x*
np.power(1+z, TCMBAlpha)
numpy.power
#! /home/drcl_yang/anaconda3/envs/py36/bin/python import rospy import sys from gazebo_msgs.srv import * from geometry_msgs.msg import * import tf.transformations as tft import numpy as np import math import roslib from std_msgs.msg import Empty as EmptyMsg from std_msgs.msg import Float64 from nav_msgs.msg import Odometry import time roslib.load_manifest('mecanum_robot_gazebo') g_get_state = rospy.ServiceProxy("/gazebo/get_model_state", GetModelState) left_ball_state= [] right_ball_state= [] pre_z = np.nan pre_gradient = np.nan t0 = time.time() t1 = time.time() dt = t0 - t1 def check_ball_bounce(cnt_z): global pre_z global pre_gradient if np.isnan(pre_z): pre_z = cnt_z return False cnt_gradient = cnt_z - pre_z if np.isnan(pre_gradient): pre_gradient = cnt_gradient return False if (cnt_gradient > 0 )== True and (pre_gradient < 0) == False: pre_gradient = cnt_gradient return True else: pre_gradient = cnt_gradient return False def gat_ball_stats(ball_name): ball_state = g_get_state(model_name = ball_name) """object_pose.position.x = float(robot_state.pose.position.x) object_pose.position.y = float(robot_state.pose.position.y) object_pose.position.z = float(robot_state.pose.position.z) object_pose.orientation.x = float(robot_state.pose.orientation.x) object_pose.orientation.y = float(robot_state.pose.orientation.y) object_pose.orientation.z = float(robot_state.pose.orientation.z) object_pose.orientation.w = float(robot_state.pose.orientation.w) angle = qua2eular(object_pose.orientation.x, object_pose.orientation.y, object_pose.orientation.z, object_pose.orientation.w)""" return ball_state def check_ball_exist(ball_name_list): global t0 t0 = time.time() if g_get_state(model_name = ball_name_list[0]).success: return 1 elif g_get_state(model_name = ball_name_list[1]).success: return 2 else: return 0 def cal_drag_lift_force(down_motion, drag_force, lift_force, angle_xy, angle_x, cl): if down_motion == 0 : if cl < 0: drag_force_z = drag_force * np.sin(angle_xy) drag_force_xy = drag_force * np.cos(angle_xy) drag_force_x = drag_force_xy * np.cos(angle_x) drag_force_y = drag_force_xy * np.sin(angle_x) lift_force_z = lift_force * np.sin(angle_xy) lift_force_xy = lift_force * np.cos(angle_xy) lift_force_x = -lift_force_xy * np.cos(angle_x) lift_force_y = lift_force_xy * np.sin(angle_x) else: drag_force_z = drag_force * np.sin(angle_xy) drag_force_xy = drag_force *
np.cos(angle_xy)
numpy.cos
"""The ``templates`` module allows for fast creation of a few select sample types and diffraction geometries without having to worry about any of the "under the hood" scripting. """ import numpy as np import pygalmesh from scipy.spatial.transform import Rotation from xrd_simulator.detector import Detector from xrd_simulator.beam import Beam from xrd_simulator.motion import RigidBodyMotion from xrd_simulator.polycrystal import Polycrystal from xrd_simulator.mesh import TetraMesh from xrd_simulator.phase import Phase from xrd_simulator import utils PARAMETER_KEYS = [ "detector_distance", "number_of_detector_pixels_z", "number_of_detector_pixels_y", "detector_center_pixel_z", "detector_center_pixel_y", "pixel_side_length_z", "pixel_side_length_y", "wavelength", "beam_side_length_z", "beam_side_length_y", "rotation_step", "rotation_axis" ] def s3dxrd(parameters): """Construct a scaning-three-dimensional-xray diffraction experiment. This is a helper/utility function for quickly creating an experiment. For full controll over the diffraction geometry consider custom creation of the primitive quantities: (:obj:`xrd_simulator.beam.Beam`), and (:obj:`xrd_simulator.detector.Detector`) seperately. Args: parameters (:obj:`dict`): Dictionary with fields as \n ``"detector_distance"`` : (:obj:`float`) Distance form sample origin to detector centre in units of microns. \n ``"number_of_detector_pixels_z"`` : (:obj:`int`) Number of detector pixels along z-axis. \n ``"number_of_detector_pixels_y"`` : (:obj:`int`) Number of detector pixels along y-axis. \n ``"detector_center_pixel_z"`` : (:obj:`float`) Intersection pixel coordinate between beam centroid line and detector along z-axis. \n ``"detector_center_pixel_y"`` : (:obj:`float`) Intersection pixel coordinate between beam centroid line and detector along y-axis. \n ``"pixel_side_length_z"`` : (:obj:`float`) Detector pixel side length in units of microns along z-axis. \n ``"pixel_side_length_y"`` : (:obj:`float`) Detector pixel side length in units of microns along y-axis. \n ``"wavelength"`` : (:obj:`float`) Wavelength in units of Angstrom. \n ``"beam_side_length_z"`` : (:obj:`float`) Beam side length in units of microns. \n ``"beam_side_length_y"`` : (:obj:`float`) Beam side length in units of microns. \n ``"rotation_step"`` : (:obj:`float`) Angular frame integration step in units of radians. \n ``"rotation_axis"`` : (:obj:`numpy array`) Axis around which to positively rotate the sample by ``rotation_step`` radians. \n Returns: (:obj:`xrd_simulator`) objects defining an experiment: (:obj:`xrd_simulator.beam.Beam`), (:obj:`xrd_simulator.detector.Detector`), (:obj:`xrd_simulator.motion.RigidBodyMotion`). Examples: .. literalinclude:: examples/example_s3dxrd.py """ for key in PARAMETER_KEYS: if key not in list(parameters): raise ValueError( "No keyword " + key + " found in the input parameters dictionary") detector = _get_detector_from_params(parameters) beam = _get_beam_from_params(parameters) motion = _get_motion_from_params(parameters) return beam, detector, motion def polycrystal_from_odf(orientation_density_function, number_of_crystals, sample_bounding_cylinder_height, sample_bounding_cylinder_radius, unit_cell, sgname, path_to_cif_file=None, maximum_sampling_bin_seperation=np.radians(5.0), strain_tensor=lambda x: np.zeros((3, 3))): """Fill a cylinder with crystals from a given orientation density function. The ``orientation_density_function`` is sampled by discretizing orientation space over the unit quarternions. Each bin is assigned its apropiate probability, assuming the ``orientation_density_function`` is approximately constant over a single bin. Each sampled orientation is constructed by first drawing a random bin and next drawing uniformly from within that bin, again assuming that ``orientation_density_function`` is approximately constant over a bin. Args: orientation_density_function (:obj:`callable`): orientation_density_function(x, q) -> :obj:`float` where input variable ``x`` is a :obj:`numpy array` of shape ``(3,)`` representing a spatial coordinate in the cylinder (x,y,z) and ``q`` is a :obj:`numpy array` of shape ``(4,)`` representing a orientation in so3 by a unit quarternion. The format of the quarternion is "scalar last" (same as in scipy.spatial.transform.Rotation). number_of_crystals (:obj:`int`): Approximate number of crystal elements to compose the cylinder volume. sample_bounding_cylinder_height (:obj:`float`): Height of sample cylinder in units of microns. sample_bounding_cylinder_radius (:obj:`float`): Radius of sample cylinder in units of microns. unit_cell (:obj:`list` of :obj:`float`): Crystal unit cell representation of the form [a,b,c,alpha,beta,gamma], where alpha,beta and gamma are in units of degrees while a,b and c are in units of anstrom. sgname (:obj:`string`): Name of space group , e.g 'P3221' for quartz, SiO2, for instance path_to_cif_file (:obj:`string`): Path to CIF file. Defaults to None, in which case no structure factors are computed. maximum_sampling_bin_seperation (:obj:`float`): Discretization steplength of orientation space using spherical coordinates over the unit quarternions in units of radians. A smaller steplength gives more accurate sampling of the input ``orientation_density_function`` but is computationally slower. strain_tensor (:obj:`callable`): Strain tensor field over sample cylinder. strain_tensor(x) -> :obj:`numpy array` of shape ``(3,3)`` where input variable ``x`` is a :obj:`numpy array` of shape ``(3,)`` representing a spatial coordinate in the cylinder (x,y,z). Returns: (:obj:`xrd_simulator.polycrystal.Polycrystal`) Examples: .. literalinclude:: examples/example_polycrystal_from_odf.py """ # Sample topology volume_per_crystal = np.pi * (sample_bounding_cylinder_radius**2) * \ sample_bounding_cylinder_height / number_of_crystals max_cell_circumradius = (3 * volume_per_crystal / (np.pi * 4.))**(1 / 3.) # Fudge factor 2.6 gives approximately number_of_crystals elements in the # mesh max_cell_circumradius = 2.65 * max_cell_circumradius dz = sample_bounding_cylinder_height / 2. R = float(sample_bounding_cylinder_radius) cylinder = pygalmesh.generate_mesh( pygalmesh.Cylinder(-dz, dz, R, max_cell_circumradius), max_cell_circumradius=max_cell_circumradius, max_edge_size_at_feature_edges=max_cell_circumradius, verbose=False) mesh = TetraMesh._build_tetramesh(cylinder) # Sample is uniformly single phase phases = [Phase(unit_cell, sgname, path_to_cif_file)] element_phase_map = np.zeros((mesh.number_of_elements,)).astype(int) # Sample spatial texture orientation = _sample_ODF( orientation_density_function, maximum_sampling_bin_seperation, mesh.ecentroids) # Sample spatial strain strain_lab = np.zeros((mesh.number_of_elements, 3, 3)) for ei in range(mesh.number_of_elements): # strain in lab/sample-coordinates strain_lab[ei] = strain_tensor(mesh.ecentroids[ei]) return Polycrystal( mesh, orientation, strain=strain_lab, phases=phases, element_phase_map=element_phase_map) def get_uniform_powder_sample( sample_bounding_radius, number_of_grains, unit_cell, sgname, strain_tensor=np.zeros((3, 3)), path_to_cif_file=None): """Generate a polycyrystal with grains overlayed at the origin and orientations drawn uniformly. Args: sample_bounding_radius (:obj:`float`): Bounding radius of sample. All tetrahedral crystal elements will be overlayed within a sphere of ``sample_bounding_radius`` radius. number_of_grains (:obj:`int`): Number of grains composing the polycrystal sample. unit_cell (:obj:`list` of :obj:`float`): Crystal unit cell representation of the form [a,b,c,alpha,beta,gamma], where alpha,beta and gamma are in units of degrees while a,b and c are in units of anstrom. sgname (:obj:`string`): Name of space group , e.g 'P3221' for quartz, SiO2, for instance strain_tensor (:obj:`numpy array`): Strain tensor to apply to all tetrahedral crystal elements contained within the sample. ``shape=(3,3)``. path_to_cif_file (:obj:`string`): Path to CIF file. Defaults to None, in which case no structure factors are computed. Returns: (:obj:`xrd_simulator.polycrystal`) A polycyrystal sample with ``number_of_grains`` grains. Examples: .. literalinclude:: examples/example_get_uniform_powder_sample.py """ coord, enod, node_number = [], [], 0 r = sample_bounding_radius for _ in range(number_of_grains): coord.append([r / np.sqrt(3.), r / np.sqrt(3.), -r / np.sqrt(3.)]) coord.append([r /
np.sqrt(3.)
numpy.sqrt
""" Isentropic properties. """ from __future__ import absolute_import, division import numpy as np import scipy as sp from scipy.optimize import bisect, newton from skaero.util.decorators import implicit def mach_angle(M): r"""Returns Mach angle given supersonic Mach number. .. math:: \mu = \arcsin{\left ( \frac{1}{M} \right )} Parameters ---------- M : float Mach number. Returns ------- mu : float Mach angle. Raises ------ ValueError If given Mach number is subsonic. """ try: with np.errstate(invalid="raise"): mu = np.arcsin(1 / M) except FloatingPointError: raise ValueError("Mach number must be supersonic") return mu def mach_from_area_ratio(A_Astar, fl=None): """Computes the Mach number given an area ratio asuming isentropic flow. Uses the relation between Mach number and area ratio for isentropic flow, and returns both the subsonic and the supersonic solution. Parameters ---------- A_Astar : float Cross sectional area. fl : IsentropicFlow, optional Isentropic flow object, default flow with gamma = 7 / 5. Returns ------- out : tuple of floats Subsonic and supersonic Mach number solution of the equation. Raises ------ ValueError If the area ratio is less than 1.0 (the critical area is always the minimum). """ if not fl: fl = IsentropicFlow(gamma=1.4) eq = implicit(fl.A_Astar) if A_Astar < 1.0: raise ValueError("Area ratio must be greater than 1") elif A_Astar == 1.0: M_sub = M_sup = 1.0 else: M_sub = bisect(eq, 0.0, 1.0, args=(A_Astar,)) M_sup = newton(eq, 2.0, args=(A_Astar,)) return M_sub, M_sup def mach_from_nu(nu, in_radians=True, gamma=1.4): r"""Computes the Mach number given a Prandtl-Meyer angle, :math:`\nu`. Uses the relation between Mach number and Prandtl-Meyer angle for isentropic flow, to iteratively compute and return the Mach number. Parameters ---------- nu : float Prandtl-Meyer angle, by default in radians. in_radians : bool, optional When set as False, converts nu from degrees to radians. gamma : float, optional Specific heat ratio. Returns ------- M : float Mach number corresponding to :math:`\nu`. Raises ------ ValueError If :math:`\nu` is 0 or negative or above the theoretical maxima based on :math:`\gamma`. """ if not in_radians: nu = np.radians(nu) nu_max = np.pi / 2.0 * (np.sqrt((gamma + 1.0) / (gamma - 1.0)) - 1) if nu <= 0.0 or nu >= nu_max: raise ValueError( "Prandtl-Meyer angle must be between (0, %f) radians." % nu_max ) eq = implicit(PrandtlMeyerExpansion.nu) M = newton(eq, 2.0, args=(nu,)) return M class IsentropicFlow(object): """Class representing an isentropic gas flow. Isentropic flow is characterized by: * Viscous and heat conductivity effects are negligible. * No chemical or radioactive heat production. """ def __init__(self, gamma=1.4): """Constructor of IsentropicFlow. Parameters ---------- gamma : float, optional Specific heat ratio, default 7 / 5. """ self.gamma = gamma def p_p0(self, M): r"""Pressure ratio from Mach number. .. math:: \left ( \frac{P}{P_{0}} \right ) = \left ( \frac{T}{T_{0}} \right )^{\frac{\gamma}{(\gamma - 1)}} Parameters ---------- M : array_like Mach number. Returns ------- p_p0 : array_like Pressure ratio. """ M = np.asanyarray(M) p_p0 = self.T_T0(M) ** (self.gamma / (self.gamma - 1)) return p_p0 def rho_rho0(self, M): r"""Density ratio from Mach number. .. math:: \left ( \frac{\rho}{\rho_{0}} \right ) = \left ( \frac{T}{T_{0}} \right )^{\frac{1}{(\gamma - 1)}} Parameters ---------- M : array_like Mach number. Returns ------- rho_rho0 : array_like Density ratio. """ M = np.asanyarray(M) rho_rho0 = self.T_T0(M) ** (1 / (self.gamma - 1)) return rho_rho0 def T_T0(self, M): r"""Temperature ratio from Mach number. .. math:: \left ( \frac{T}{T_{0}} \right ) = \left (1 + \frac{\gamma - 1}{2}M^{2} \right )^{-1} Parameters ---------- M : array_like Mach number. Returns ------- T_T0 : array_like Temperature ratio. """ M = np.asanyarray(M) T_T0 = 1 / (1 + (self.gamma - 1) * M * M / 2) return T_T0 def A_Astar(self, M): """Area ratio from Mach number. Duct area divided by critial area given Mach number. Parameters ---------- M : array_like Mach number. Returns ------- A_Astar : array_like Area ratio. """ M = np.asanyarray(M) # If there is any zero entry, NumPy array division gives infinity, # which is correct. with np.errstate(divide="ignore"): A_Astar = (2 / self.T_T0(M) / (self.gamma + 1)) ** ( (self.gamma + 1) / (2 * (self.gamma - 1)) ) / M return A_Astar def a_a0(self, M): """ Speed of sound ratio from Mach number. Parameters ---------- M: array_like Mach number. Returns ------- a_a0: array_like Speed of sound ratio. """ M =
np.asarray(M)
numpy.asarray
""" Defines the unit tests for the :mod:`colour.models.rgb.transfer_functions.linear` module. """ import numpy as np import unittest from colour.models.rgb.transfer_functions import linear_function from colour.utilities import ignore_numpy_errors __author__ = "<NAME>" __copyright__ = "Copyright 2013 Colour Developers" __license__ = "New BSD License - https://opensource.org/licenses/BSD-3-Clause" __maintainer__ = "Colour Developers" __email__ = "<EMAIL>" __status__ = "Production" __all__ = [ "TestLinearFunction", ] class TestLinearFunction(unittest.TestCase): """ Define :func:`colour.models.rgb.transfer_functions.linear.\ linear_function` definition unit tests methods. """ def test_linear_function(self): """ Test :func:`colour.models.rgb.transfer_functions.linear.\ linear_function` definition. """ self.assertEqual(linear_function(0.0), 0.0) self.assertEqual(linear_function(0.18), 0.18) self.assertEqual(linear_function(1.0), 1.0) def test_n_dimensional_linear_function(self): """ Test :func:`colour.models.rgb.transfer_functions.linear.\ linear_function` definition n-dimensional arrays support. """ a = 0.18 a_p = linear_function(a) a = np.tile(a, 6) a_p = np.tile(a_p, 6) np.testing.assert_almost_equal(linear_function(a), a_p, decimal=7) a = np.reshape(a, (2, 3)) a_p =
np.reshape(a_p, (2, 3))
numpy.reshape
#!/usr/bin/env/python import argparse import numpy as np import os import pandas as pd import yaml import micro_dl.inference.evaluation_metrics as metrics import micro_dl.utils.aux_utils as aux_utils import micro_dl.utils.preprocess_utils as preprocess_utils import micro_dl.utils.image_utils as image_utils import micro_dl.utils.normalize as normalize def parse_args(): """Parse command line arguments In python namespaces are implemented as dictionaries :return: namespace containing the arguments passed. """ parser = argparse.ArgumentParser() parser.add_argument( '--model_dir', type=str, required=True, help='Directory containing model weights, config and csv files', ) parser.add_argument( '--model_fname', type=str, default=None, help='File name of weights in model dir (.hdf5). If None grab newest.', ) parser.add_argument( '--test_data', dest='test_data', action='store_true', help="Use test indices in split_samples.json", ) parser.add_argument( '--all_data', dest='test_data', action='store_false', ) parser.set_defaults(test_data=True) parser.add_argument( '--image_dir', type=str, required=True, help="Directory containing target images", ) parser.add_argument( '--metrics', type=str, required=True, nargs='*', help='Metrics for model evaluation' ) parser.add_argument( '--orientations', type=str, default='xyz', nargs='*', help='Evaluate metrics along these orientations (xy, xz, yz, xyz)' ) parser.add_argument( '--name_parser', type=str, default='parse_sms_name', help="The function in aux_utils that will parse the file name for indices", ) return parser.parse_args() def compute_metrics(model_dir, image_dir, metrics_list, orientations_list, test_data=True, name_parser='parse_sms_name'): """ Compute specified metrics for given orientations for predictions, which are assumed to be stored in model_dir/predictions. Targets are stored in image_dir. Writes metrics csv files for each orientation in model_dir/predictions. :param str model_dir: Assumed to contain config, split_samples.json and subdirectory predictions/ :param str image_dir: Directory containing target images with frames_meta.csv :param list metrics_list: See inference/evaluation_metrics.py for options :param list orientations_list: Any subset of {xy, xz, yz, xyz} (see evaluation_metrics) :param bool test_data: Uses test indices in split_samples.json, otherwise all indices :param str name_parser: Type of name parser (default or parse_idx_from_name) """ # Load config file config_name = os.path.join(model_dir, 'config.yml') with open(config_name, 'r') as f: config = yaml.safe_load(f) preprocess_config = preprocess_utils.get_preprocess_config(config['dataset']['data_dir']) # Load frames metadata and determine indices frames_meta = pd.read_csv(os.path.join(image_dir, 'frames_meta.csv')) if isinstance(metrics_list, str): metrics_list = [metrics_list] metrics_inst = metrics.MetricsEstimator(metrics_list=metrics_list) split_idx_name = config['dataset']['split_by_column'] if test_data: idx_fname = os.path.join(model_dir, 'split_samples.json') try: split_samples = aux_utils.read_json(idx_fname) test_ids = np.sort(split_samples['test']) except FileNotFoundError as e: print("No split_samples file. Will predict all images in dir.") else: test_ids = np.sort(
np.unique(frames_meta[split_idx_name])
numpy.unique
################################################################################ # tabulation.py # # The Tabulation class represents a function by a sequence of linear # interpolations between points defined by arrays of x and y coordinates. # # <NAME>, PDS Rings Node, December 2011 ################################################################################ from __future__ import division import numpy as np from scipy.interpolate import interp1d import unittest class Tabulation(object): """A class that represents a function by a sequence of linear interpolations between points defined by arrays of x and y coordinates. The function is treated as equal to zero outside the range of the x coordinates.""" def __init__(self, x, y): """Constructor for a Tabulation object. Input: x a 1-D array of x-coordinates, which must be monotonic. y a 1-D array of y-values, given in the same order as the x-coordinates. """ ignore = self._update(x,y) ######################################## # Private methods ######################################## def _update(self, x, y): """Updates a tabulation in place with new x and y arrays.""" x = np.asfarray(x) y = np.asfarray(y) sorted = np.sort(x) if len(x.shape) != 1: raise ValueError("x array in not 1-dimensional") if x.shape != y.shape: raise ValueError("x and y arrays do not have the same size") if np.all(sorted == x): self.x = x self.y = y elif np.all(sorted == x[::-1]): self.x = x[::-1] self.y = y[::-1] else: raise ValueError("x-coordinates are not monotonic") self.func = None return self def _update_y(self, new_y): """Updates a tabulation in place with a new y array.""" y = np.asfarray(y) if new_y.shape != self.x.shape: raise ValueError("x and y arrays do not have the same size") self.y = y self.func = None return self def _trim(self): """Updates the given Tabulation by deleting leading and trailing regions of the domain that contain nothing but zeros. This is never strictly necessary but can improve efficiency and reduce memory requirements. It can be useful because many filter bandpass functions contains strings of zeros at one end or the other. NOTE that this function operates in-place, returning the same Tabulation object. """ # Trim the trailing end (new_x, new_y) = Tabulation._trim1(self.x[::-1], self.y[::-1]) # Trim the leading end (new_x, new_y) = Tabulation._trim1(new_x[::-1], new_y[::-1]) return self._update(new_x, new_y) @staticmethod def _trim1(x,y): """Private procedure used by trim() to strip away the leading end of an (x,y) array pair. """ # Define a mask at the low end mask = np.cumsum(y != 0.) != 0 # Shift left by one to keep last zero mask[:-1] = mask[1:] return (x[mask], y[mask]) @staticmethod def _xmerge(x1,x2): """Returns a new array of x-values containing the union of x-values found in each of the given arrays. """ # Confirm overlap if x1[0] > x2[-1] or x2[0] > x1[-1]: raise ValueError("domains do not overlap") # Merge and sort sorted = np.sort(np.hstack((x1, x2))) # Locate and remove duplicates mask = np.hstack((sorted[:-1] != sorted[1:], [True])) return sorted[mask] @staticmethod def _xoverlap(x1,x2): """Returns a new array of x-values containing the union of x-values from each of the given arrays that fall within the intersection of the two domains. """ new_x = Tabulation._xmerge(x1,x2) mask = (new_x >= max(x1[0],x2[0])) & (new_x <= min(x1[-1],x2[-1])) return new_x[mask] ######################################## # Standard operators ######################################## def __call__(self, x): # Fill in the 1-D interpolation if necessary if self.func is None: self.func = interp1d(self.x, self.y, kind="linear", bounds_error=False, fill_value=0.) if np.shape(x): return self.func(x) else: return float(self.func(x)[()]) def __mul__(self, other): # Multiplication of two Tabulations # Note: the new domain is the intersection of the given domains if type(other) == type(self): new_x = Tabulation._xoverlap(self.x, other.x) return Tabulation(new_x, self(new_x) * other(new_x))._trim() # Otherwise just scale the y-values elif np.shape(other) == (): return Tabulation(self.x, self.y * other) def __truediv__(self, other): # Division of two Tabulations # Note: the new domain is the intersection of the given domains if type(other) == type(self): new_x = Tabulation._xoverlap(self.x, other.x) return Tabulation(new_x, self(new_x) / other(new_x))._trim() # Otherwise just scale the y-values elif np.shape(other) == (): return Tabulation(self.x, self.y / other) def __add__(self, other): # Addition of two Tabulations # Note: the new domain is the union of the given domains if type(other) == type(self): new_x = Tabulation._xmerge(self.x, other.x) return Tabulation(new_x, self(new_x) + other(new_x)) # Otherwise just shift the y-values elif np.shape(other) == (): return Tabulation(self.x, self.y + other) # Note that a constant added to a Tabulation will still return zero # outside the domain. def __sub__(self, other): # Subtraction of two Tabulations # Note: the new domain is the union of the given domains if type(other) == type(self): new_x = Tabulation._xmerge(self.x, other.x) return Tabulation(new_x, self(new_x) - other(new_x)) # Otherwise just shift the y-values elif np.shape(other) == (): return Tabulation(self.x, self.y - other) # Note that a constant subtracted from a Tabulation will still return # zero outside the domain. def __imul__(self, other): # In-place multiplication of two Tabulations if type(other) == type(self): new_x = Tabulation._xoverlap(self.x, other.x) return self._update(new_x, self(new_x) * other(new_x))._trim() # Otherwise just scale the y-values elif np.shape(other) == (): return self._update_y(self.y * other) def __idiv__(self, other): # In-place division of two Tabulations if type(other) == type(self): new_x = Tabulation._xoverlap(self.x, other.x) return self._update(new_x, self(new_x) / other(new_x))._trim() # Otherwise just scale the y-values elif np.shape(other) == (): return self._update_y(self.y / other) def __iadd__(self, other): # In-place addition of two Tabulations if type(other) == type(self): new_x = Tabulation._xmerge(self.x, other.x) return self._update(new_x, self(new_x) + other(new_x)) # Otherwise just shift the y-values elif np.shape(other) == (): return self._update_y(self.y + other) # Note that a constant added to a Tabulation will still return zero # outside the domain. def __isub__(self, other): # In-place subtraction of two Tabulations if type(other) == type(self): new_x = Tabulation._xmerge(self.x, other.x) return self._update(new_x, self(new_x) - other(new_x)) # Otherwise just shift the y-values elif np.shape(other) == (): return self._update_y(self.y - other) # Note that a constant subtracted from a Tabulation will still return # zero outside the domain. ######################################## # Additional methods ######################################## def trim(self): """Returns a new Tabulation (shallow copy) in which the zero-valued leading and trailing regions of the domain have been removed.""" # Save the original arrays x = self.x y = self.y # Create a trimmed version self._trim() # operates in-place result = Tabulation(self.x, self.y) # Restore the original self.x = x self.y = y return result def domain(self): """Returns a tuple containing the range of x-values over which the function is nonzero. """ return (self.x[0], self.x[-1]) def clip(self, xmin, xmax): """Returns a tuple in which the domain has been redefined as (xmin,xmax). """ new_x = Tabulation._xmerge(self.x, np.array((xmin,xmax))) mask = (new_x >= xmin) & (new_x <= xmax) return self.resample(new_x[mask]) def locate(self, yvalue): """Returns a list of the x-values where the Tabulation has the given value of y. Note that the exact ends of the domain are not checked.""" signs = np.sign(self.y - yvalue) mask = (signs[:-1] * signs[1:]) < 0. xlo = self.x[:-1][mask] ylo = self.y[:-1][mask] xhi = self.x[1:][mask] yhi = self.y[1:][mask] xarray = xlo + (yvalue - ylo)/(yhi - ylo) * (xhi - xlo) xlist = list(xarray) + list(self.x[signs == 0]) xlist.sort() return xlist def integral(self): """Returns the integral of [y dx]. """ # Make an array consisting of the midpoints between the x-values # Begin with an array holding one extra element dx = np.empty(self.x.size + 1) dx[1:] = self.x # Load the array shifted right dx[0] = self.x[0] # Replicate the endpoint dx[:-1] += self.x # Add the array shifted left dx[-1] += self.x[-1] # dx[] is now actually 2x the value at each midpoint. # The weight on each value is the distance between the adjacent midpoints dx[:-1] -= dx[1:] # Subtract the midpoints shifted right (not left) # dx[] is now actually -2x the correct value of each weight. The last # element is to be ignored. # The integral is now the sum of the products y * dx return -0.5 * np.sum(self.y * dx[:-1]) def resample(self, new_x): """Re-samples a tabulation at a given list of x-values.""" return Tabulation(new_x, self(new_x)) def subsample(self, new_x): """Resamples a tabulation at the given list of x-values, while at the same time retaining all original x-values.""" new_x = Tabulation._xmerge(new_x, self.x) return Tabulation(new_x, self(new_x)) def mean(self, dx=None): """Returns the mean value of the tabulation. If specified, dx is the minimum step permitted along the x-axis during integration.""" trimmed = self.trim() if dx is None: resampled = Tabulation(self.x, self.y.copy()) # y cannot be a shallow copy... else: (x0,x1) = trimmed.domain() new_x =
np.arange(x0 + dx, x1, dx)
numpy.arange
from unittest import TestCase import numpy as np from numpy import ndarray from pandas import DataFrame from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder, StandardScaler from aix360.algorithms.rbm import FeatureBinarizerFromTrees # noinspection PyPep8Naming class TestFeatureBinarizerFromTrees(TestCase): def setUp(self) -> None: self.random_state = 0 d: dict = load_breast_cancer() X: DataFrame = DataFrame(d['data'], columns=d['feature_names']) self.col_ordinal = X.columns.to_list() np.random.seed(self.random_state) s = np.array(['a', 'b', 'c']) X['cat alpha'] = s[np.random.randint(0, 3, len(X))] X['cat num'] = np.random.randint(0, 3, len(X)) self.col_categorical = ['cat alpha', 'cat num'] s = np.array(['a', 'b']) X['bin alpha'] = s[np.random.randint(0, 2, len(X))] X['bin num'] = np.random.randint(0, 2, len(X)) self.col_binary = ['bin alpha', 'bin num'] self.X = X self.y: ndarray = d['target'] self.X_train, self.X_test, self.y_train, self.y_test = \ train_test_split(self.X, self.y, test_size=0.4, random_state=self.random_state) def test_init(self): # colCateg >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> fbt = FeatureBinarizerFromTrees(colCateg=self.col_categorical) self.assertListEqual(fbt.colCateg, self.col_categorical) # treeNum >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> with self.assertRaises(ValueError): fbt = FeatureBinarizerFromTrees(treeNum=None) with self.assertRaises(ValueError): fbt = FeatureBinarizerFromTrees(treeNum=0) with self.assertRaises(ValueError): fbt = FeatureBinarizerFromTrees(treeNum=-1) fbt = FeatureBinarizerFromTrees(treeNum=3) self.assertEqual(fbt.treeNum, 3) # treeDepth >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> with self.assertRaises(ValueError): fbt = FeatureBinarizerFromTrees(treeDepth=0) with self.assertRaises(ValueError): fbt = FeatureBinarizerFromTrees(treeDepth=-1) fbt = FeatureBinarizerFromTrees(treeDepth=3) self.assertEqual(fbt.treeDepth, 3) self.assertEqual(fbt.treeKwargs['max_depth'], 3) fbt = FeatureBinarizerFromTrees(treeDepth=None, treeKwargs=dict(max_depth=5)) self.assertEqual(fbt.treeKwargs['max_depth'], 5) self.assertEqual(fbt.treeDepth, 5) # treeFeatureSelection >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> with self.assertRaises(ValueError): fbt = FeatureBinarizerFromTrees(treeFeatureSelection=0) with self.assertRaises(ValueError): fbt = FeatureBinarizerFromTrees(treeFeatureSelection=-1) with self.assertRaises(ValueError): fbt = FeatureBinarizerFromTrees(treeFeatureSelection=3) with self.assertRaises(ValueError): fbt = FeatureBinarizerFromTrees(treeFeatureSelection='bad string value') fbt = FeatureBinarizerFromTrees(treeFeatureSelection=0.4) self.assertEqual(fbt.treeFeatureSelection, 0.4) self.assertEqual(fbt.treeKwargs['max_features'], 0.4) fbt = FeatureBinarizerFromTrees(treeFeatureSelection=None) self.assertTrue(fbt.treeFeatureSelection is None) self.assertTrue(fbt.treeKwargs['max_features'] is None) fbt = FeatureBinarizerFromTrees(treeFeatureSelection='log2') self.assertEqual(fbt.treeFeatureSelection, 'log2') self.assertEqual(fbt.treeKwargs['max_features'], 'log2') fbt = FeatureBinarizerFromTrees(treeFeatureSelection=None, treeKwargs=dict(max_features=0.2)) self.assertEqual(fbt.treeKwargs['max_features'], 0.2) self.assertEqual(fbt.treeFeatureSelection, 0.2) # threshRound >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> fbt = FeatureBinarizerFromTrees(threshRound=None) with self.assertRaises(ValueError): FeatureBinarizerFromTrees(threshRound=-1) fbt = FeatureBinarizerFromTrees(threshRound=3) self.assertTrue(fbt.threshRound == 3) # threshStr > >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> fbt = FeatureBinarizerFromTrees(threshStr=True) self.assertTrue(fbt.threshStr) fbt = FeatureBinarizerFromTrees(threshStr=False) self.assertFalse(fbt.threshStr) # returnOrd >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> fbt = FeatureBinarizerFromTrees(returnOrd=True) self.assertTrue(fbt.returnOrd) fbt = FeatureBinarizerFromTrees(returnOrd=False) self.assertFalse(fbt.returnOrd) # randomState >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> fbt = FeatureBinarizerFromTrees(randomState=3) self.assertEqual(fbt.randomState, 3) def test_fit_and_transform_exceptions(self): # >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> # fit() requires y. The error is raised at 'self.decisionTree.fit(X, y)' # >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> fbt = FeatureBinarizerFromTrees() with self.assertRaises((TypeError, ValueError)): fbt.fit(self.X_train) # >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> # fit() does not allow/support NaN/None # >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> fbt = FeatureBinarizerFromTrees() Xn = self.X_train.copy(True) Xn.iloc[[31, 27, 80], Xn.columns.get_loc('smoothness error')] = np.NaN with self.assertRaises(ValueError): fbt.fit(Xn, self.y_train) fbt = FeatureBinarizerFromTrees() Xn = self.X_train.copy(True) Xn.iloc[[3, 17, 20], Xn.columns.get_loc('bin num')] = np.NaN with self.assertRaises(ValueError): fbt.fit(Xn, self.y_train) fbt = FeatureBinarizerFromTrees(colCateg=self.col_categorical) Xn = self.X_train.copy(True) Xn.iloc[[3, 17, 20], Xn.columns.get_loc('cat num')] = np.NaN with self.assertRaises(ValueError): fbt.fit(Xn, self.y_train) def test_fit_and_transform_binary(self): # >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> # Test binary features with no categorical or ordinal features. # >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> fbt = FeatureBinarizerFromTrees(treeNum=1, treeDepth=1, randomState=self.random_state) fbt.fit(self.X_train[self.col_binary], self.y_train) self.assertListEqual(list(fbt.maps.keys()), ['bin alpha']) temp = [('bin alpha', '', ''), ('bin alpha', 'not', '')] self.assertListEqual(fbt.features.to_list(), temp) # Transform T = fbt.transform(self.X_test) self.assertListEqual(T.columns.to_list(), temp) # Now test taking all available features. fbt = FeatureBinarizerFromTrees(treeNum=1, treeDepth=None, randomState=self.random_state) fbt.fit(self.X_train[self.col_binary], self.y_train) self.assertListEqual(list(fbt.maps.keys()), self.col_binary) temp = [('bin alpha', '', ''), ('bin alpha', 'not', ''), ('bin num', '', ''), ('bin num', 'not', '')] self.assertListEqual(fbt.features.to_list(), temp) # Transform T = fbt.transform(self.X_test) self.assertListEqual(fbt.features.to_list(), temp) a = T[('bin num', '', '')].to_numpy() b = (self.X_test['bin num'] == 1).astype(int).to_numpy() self.assertTrue(np.all(a == b)) a = T[('bin num', 'not', '')].to_numpy() b = 1 - b self.assertTrue(np.all(a == b)) a = T[('bin alpha', '', '')].to_numpy() b = (self.X_test['bin alpha'] == 'b').astype(int).to_numpy() self.assertTrue(np.all(a == b)) a = T[('bin alpha', 'not', '')].to_numpy() b = 1 - b self.assertTrue(np.all(a == b)) def test_fit_and_transform_categorical(self): # >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> # Test categorical with no binary or ordinal features. # >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> # Two features (one feature with == and !=). fbt = FeatureBinarizerFromTrees(treeNum=1, treeDepth=1, colCateg=self.col_categorical, randomState=self.random_state) fbt.fit(self.X_train[self.col_categorical], self.y_train) self.assertListEqual(list(fbt.enc.keys()), [self.col_categorical[1]]) self.assertTrue(type(list(fbt.enc.values())[0]) is OneHotEncoder) temp = [('cat num', '!=', 0), ('cat num', '==', 0)] self.assertListEqual(fbt.features.to_list(), temp) # Test transform. Categorical values are converted to strings to be like FeatureBinarizer T = fbt.transform(self.X_test) self.assertListEqual(T.columns.to_list(), temp) # Test taking all available features. fbt = FeatureBinarizerFromTrees(treeNum=1, treeDepth=None, colCateg=self.col_categorical, randomState=self.random_state) fbt.fit(self.X_train[self.col_categorical], self.y_train) self.assertListEqual(self.col_categorical, fbt.colCateg) self.assertListEqual(self.col_categorical, list(fbt.enc.keys())) temp = [('cat alpha', '!=', 'a'), ('cat alpha', '!=', 'c'), ('cat alpha', '==', 'a'), ('cat alpha', '==', 'c'), ('cat num', '!=', 0), ('cat num', '!=', 2), ('cat num', '==', 0), ('cat num', '==', 2)] self.assertListEqual(fbt.features.to_list(), temp) # Transform T = fbt.transform(self.X_test) self.assertListEqual(T.columns.to_list(), temp) a = T[('cat alpha', '==', 'a')].to_numpy() b = (self.X_test['cat alpha'] == 'a').astype(int).to_numpy() self.assertTrue(np.all(a == b)) a = T[('cat alpha', '!=', 'a')].to_numpy() b = 1 - b self.assertTrue(np.all(a == b)) a = T[('cat num', '==', 2)].to_numpy() b = (self.X_test['cat num'] == 2).astype(int).to_numpy() self.assertTrue(np.all(a == b)) a = T[('cat num', '!=', 2)].to_numpy() b = 1 - b self.assertTrue(np.all(a == b)) def test_fit_and_transform_ordinal(self): # >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> # Test ordinal with no categorical or binary features. # >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> >> fbt = FeatureBinarizerFromTrees(treeNum=1, treeDepth=1, randomState=self.random_state) fbt.fit(self.X_train[self.col_ordinal], self.y_train) temp = [('mean concave points', '<=', 0.04892), ('mean concave points', '>', 0.04892)] self.assertListEqual(fbt.features.to_list(), temp) self.assertDictEqual(fbt.thresh, {'mean concave points': np.array([0.04892])}) # Transform T = fbt.transform(self.X_test) self.assertListEqual(T.columns.to_list(), temp) # Test threshStr fbt = FeatureBinarizerFromTrees(treeNum=1, treeDepth=1, randomState=self.random_state, threshStr=True) fbt.fit(self.X_train[self.col_ordinal], self.y_train) self.assertDictEqual(fbt.thresh, {'mean concave points': np.array([0.04892])}) # Transform T = fbt.transform(self.X_test) temp = [('mean concave points', '<=', '0.04892'), ('mean concave points', '>', '0.04892')] self.assertListEqual(T.columns.to_list(), temp) # Test threshRound fbt = FeatureBinarizerFromTrees(treeNum=1, treeDepth=1, threshRound=2, randomState=self.random_state) fbt.fit(self.X_train[self.col_ordinal], self.y_train) temp = [('mean concave points', '<=', 0.05), ('mean concave points', '>', 0.05)] self.assertListEqual(fbt.features.to_list(), temp) self.assertDictEqual(fbt.thresh, {'mean concave points': np.array([0.05])}) # Now test taking all available features. fbt = FeatureBinarizerFromTrees(treeNum=1, treeDepth=None, randomState=self.random_state) fbt.fit(self.X_train[self.col_ordinal], self.y_train) temp = {'area error': np.array([46.315001]), 'concavity error': np.array([0.016965]), 'mean area': np.array([995.5]), 'mean concave points': np.array([0.04892]), 'mean texture': np.array([19.9]), 'smoothness error':
np.array([0.003299, 0.005083])
numpy.array
import keras import keras.backend as K import tensorflow as tf import numpy as np import random np.random.seed(42) tf.set_random_seed(42) random.seed(42) from osgeo import gdal, gdalconst import os from sklearn.model_selection import train_test_split import skimage.io import skimage.transform from osgeo import ogr, osr from glob import glob def normalize_raster_locally(x): mx = x.max() mn = x.min() x = (x - mn + np.finfo(float).eps) / (mx - mn + np.finfo(float).eps) return x def recall_m(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) recall = true_positives / (possible_positives + K.epsilon()) return recall def precision_m(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1))) precision = true_positives / (predicted_positives + K.epsilon()) return precision def f1_m(y_true, y_pred): precision = precision_m(y_true, y_pred) recall = recall_m(y_true, y_pred) return 2*((precision*recall)/(precision+recall+K.epsilon())) def create_dataset(input_tif, label_tif, step_size, dim, x_dir, y_dir, threshold=0.15): ds = gdal.Open(input_tif, gdalconst.GA_ReadOnly) xsize = ds.RasterXSize ysize = ds.RasterYSize for x in range(0, xsize-dim, step_size): for y in range(0, ysize-dim, step_size): current_label = gdal.Translate('', label_tif, srcWin=[x, y, dim, dim], format='MEM') current_array = current_label.ReadAsArray() if np.count_nonzero(current_array) >= (threshold*dim*dim): print(x, y, xsize, ysize, np.unique(current_array, return_counts=True)) gdal.Translate(os.path.join(x_dir,'{}_{}.tif').format(x, y), input_tif, srcWin=[x, y, dim, dim]) gdal.Translate(os.path.join(y_dir,'{}_{}.tif').format(x, y), label_tif, srcWin=[x, y, dim, dim]) def get_input_label_pairs(input_dir, filenames, dim, multi_class=False): batch_size = len(filenames) xs = np.empty((len(filenames), dim, dim)) ys = np.empty((len(filenames), dim, dim)) for e, file in enumerate(filenames): im = skimage.io.imread(os.path.join(input_dir, 'x', file), plugin='pil') label = skimage.io.imread(os.path.join(input_dir, 'y', file), plugin='pil') if not multi_class: label[label != 0] = 1 xs[e] = normalize_raster_locally(im) ys[e] = label return np.expand_dims(xs, -1), np.expand_dims(ys, -1) class BinaryData(keras.utils.Sequence): def __init__(self, input_dir, filenames, batch_size, shuffle, dim=128, return_filenames=False): self.input_dir = input_dir self.filenames = filenames self.batch_size = batch_size self.shuffle = shuffle self.dim = dim self.return_filenames = return_filenames self.on_epoch_end() def __len__(self): return int(np.ceil(len(self.filenames) / self.batch_size)) def __getitem__(self, index): filenames = self.filenames[index*self.batch_size:(index+1)*self.batch_size] x, y = get_input_label_pairs(self.input_dir, filenames, self.dim) if self.return_filenames: return x, y, filenames else: return x, y def on_epoch_end(self): if self.shuffle == True: np.random.shuffle(self.filenames) class MultiData(keras.utils.Sequence): def __init__(self, input_dir, filenames, batch_size, shuffle, dim=128, return_filenames=False, num_classes=6): self.input_dir = input_dir self.filenames = filenames self.batch_size = batch_size self.shuffle = shuffle self.dim = dim self.return_filenames = return_filenames self.num_classes = 6 self.on_epoch_end() def __len__(self): return int(np.ceil(len(self.filenames) / self.batch_size)) def __getitem__(self, index): filenames = self.filenames[index*self.batch_size:(index+1)*self.batch_size] x, y = get_input_label_pairs(self.input_dir, filenames, self.dim, multi_class=True) if self.return_filenames: return x, y, filenames else: return x, y def on_epoch_end(self): if self.shuffle == True: np.random.shuffle(self.filenames) def mask_to_polygon_in_memory(original_data, array, field_name='label'): geotrans = original_data.GetGeoTransform() proj = original_data.GetProjection() driver = gdal.GetDriverByName('MEM') dataset = driver.Create('', array.shape[1], array.shape[0], 1, gdal.GDT_Float32) dataset.GetRasterBand(1).WriteArray(array) dataset.SetProjection(proj) dataset.SetGeoTransform(geotrans) band = dataset.GetRasterBand(1) driver_mask = gdal.GetDriverByName('MEM') ds_mask = driver_mask.Create('', array.shape[1], array.shape[0], 1, gdal.GDT_Float32) ds_mask.SetGeoTransform(geotrans) ds_mask.SetProjection(proj) ds_mask_array = (array>0).astype(np.int32) ds_mask.GetRasterBand(1).WriteArray( ds_mask_array ) mask_band = ds_mask.GetRasterBand(1) srs = osr.SpatialReference(wkt=proj) driver = gdal.GetDriverByName("Memory") outDatasource = driver.Create('',0,0,0,gdal.GDT_Float32) # outDatasource = driver.CreateDataSource('') outLayer = outDatasource.CreateLayer("polygonized", srs=srs) if field_name is None: field_name='MyFLD' newField = ogr.FieldDefn(field_name, ogr.OFTInteger) outLayer.CreateField(newField) gdal.Polygonize(band, mask_band, outLayer, 0, [], callback=None ) return outDatasource def merge_shp_files_from_memory(shp_files, outputMergefn): driverName = 'ESRI Shapefile' geometryType = ogr.wkbPolygon out_driver = ogr.GetDriverByName( driverName ) if os.path.exists(outputMergefn): out_driver.DeleteDataSource(outputMergefn) out_ds = out_driver.CreateDataSource(outputMergefn) out_layer = out_ds.CreateLayer(outputMergefn, geom_type=geometryType) only_ones = True for ds in shp_files: # ds = ogr.Open(file) lyr = ds.GetLayer() if only_ones: lyr_def = lyr.GetLayerDefn () for i in range(lyr_def.GetFieldCount()): out_layer.CreateField (lyr_def.GetFieldDefn(i) ) only_ones=False for feat in lyr: out_layer.CreateFeature(feat) del ds, lyr del out_ds, out_layer def make_predictions_and_vectorize_binary(model, test_data, output_shp_file, input_dir, field_name='label'): list_of_shps = [] batch_counter = 0 for x, y, files in test_data: predictions = model.predict(x) predictions = (predictions > 0.5).astype(np.uint8) for i in range(len(files)): cur_pred = predictions[i] cur_pred = np.squeeze(cur_pred, -1) original_data = gdal.Open(os.path.join(input_dir, 'x', files[i]), gdalconst.GA_ReadOnly) cur_shp = mask_to_polygon_in_memory(original_data, cur_pred, field_name=field_name) list_of_shps.append(cur_shp) if batch_counter % 10 == 0: print('done with batch: {}'.format(batch_counter)) batch_counter += 1 print('merging shp data!') merge_shp_files_from_memory(list_of_shps, output_shp_file) def make_predictions_and_vectorize_multiclass(model, test_data, output_shp_file, input_dir, field_name='label'): list_of_shps = [] batch_counter = 0 for x, y, files in test_data: predictions = model.predict(x) predictions =
np.argmax(predictions, -1)
numpy.argmax
# -*- coding: utf-8 -*- """ Created on Nov 04 2020 @author: <NAME> @supervisor: <NAME> Tools to work with Red Clumps """ import os import sys import copy import math import numpy as np import pandas as pd from astropy.coordinates import SkyCoord from astropy import units as u import matplotlib.pyplot as plt from matplotlib.patches import Rectangle from scipy.optimize import curve_fit from scipy.optimize import leastsq from scipy.signal import find_peaks # Use LaTex fonts from matplotlib import rc rc('text', usetex=True) plt.rcParams.update({'font.size': 12}) # set comma to dot - Brazilian decimal notation import locale locale.setlocale(locale.LC_ALL, 'pt_BR.UTF-8') locale.setlocale(locale.LC_NUMERIC, 'pt_BR.UTF-8') import matplotlib as mpl mpl.rcParams['axes.formatter.use_locale'] = True # my library sys.path.append('/home/botan/OneDrive/Doutorado/VVV_DATA/my_modules/') import math_functions class RedClump(object): def __init__(self,Rv): self.gc_distance = 8178 # +- 13 pc https://www.aanda.org/articles/aa/full_html/2019/05/aa35656-19/aa35656-19.html self.Rv = Rv self.path = '/home/botan/OneDrive/Doutorado/VVV_DATA' def cartezian_projections(self,d,gal_l,gal_b): dx = d*np.cos(math.radians(gal_b))*np.cos(math.radians(gal_l)) rx = dx - self.gc_distance ry = d*np.cos(math.radians(gal_b))*np.sin(math.radians(gal_l)) rz = d*np.sin(math.radians(gal_b)) return rx,ry,rz def red_clump_distance(self,Ks_mag,Ks_err,c,c_err): # Ruiz-Dern et al. (2018) https://ui.adsabs.harvard.edu/abs/2018A%26A...609A.116R/abstract c_0 = 0.66 c_0_err = 0.02 MKs = -1.605 MKs_err = 0.009 # Minniti (2011) AJ Letters 73:L43 mu = Ks_mag - self.Rv * (c - c_0) - MKs mu_err = np.sqrt(Ks_err**2 + c_err**2 + c_0_err**2 + MKs_err**2) dist = 10**((mu + 5)/5) dist_err = 2**((mu + 5)/5) * 5**(mu/5)*np.log(10) * mu_err return dist,dist_err def find_RC_color_peak(self, color, color_mask, bins=50, show=False): ''' Find RC peaks color and color sigma and return fit parameters for color peak (gaussian) ''' y = color[color_mask] hist, bin_edges = np.histogram(y,bins=bins) flor = hist > hist[0] binSize = bin_edges[1]-bin_edges[0] x = np.empty(len(bin_edges)-1) x[0] = bin_edges[0] + binSize/2 i = 1 while i < len(bin_edges)-1: x[i] = x[i-1] + binSize i+=1 guess = [hist.max(),y.median(),0.5] fit = leastsq(func=math_functions.single_gaussian_residuals, x0=guess, args=(x[flor],hist[flor])) if show: func = math_functions.single_gaussian(x,fit[0]) plt.hist(y,bins=bins) plt.plot(x,func,'-') plt.ylabel('\#\ stars') plt.xlabel('J-Ks') plt.show() return fit[0] def find_RC_mag_peak(self, mag, mag_mask, mu1, mu2, bins=100, show=False): ''' find RC peaks in magnitudes renturn fit parameters for peaks (two gaussians) and Luminosity Function (exponential) ''' hist, bin_edges = np.histogram(mag[mag_mask],bins=bins) binSize = bin_edges[1]-bin_edges[0] x = np.empty(len(bin_edges)-1) x[0] = bin_edges[0] + binSize/2 i = 1 while i < len(bin_edges)-1: x[i] = x[i-1] + binSize i+=1 # exponential fit to Luminosity Function mask2fit = ((x<12.2) | ((x>15.5) & (x<16))) # Mask mag around RC guess = [-1e4,3e3,0.1] lum_fit = leastsq( func = math_functions.exponential_residuals, x0 = guess, args=(x[mask2fit],hist[mask2fit])) lum_func = math_functions.exponential(x,lum_fit[0]) # RC peaks RC_peaks = hist - lum_func mask2peaks = ((x>12)&(x<14.5)) x_RC_peaks = x[mask2peaks] y_RC_peaks = RC_peaks[mask2peaks] guess = [RC_peaks.max(),mu1,0.5,0.7*RC_peaks.max(),mu2,0.2] peak_fit = leastsq( func=math_functions.double_gaussian_residuals, x0=guess, args=(x_RC_peaks,y_RC_peaks)) if show: y = math_functions.double_gaussian(x,peak_fit[0]) plt.hist(mag[mag_mask],bins=bins) plt.plot(x,y+lum_func,'-') plt.plot(x,lum_func,'k--') plt.ylabel('\#\ stars') plt.xlabel('J-Ks') plt.show() return peak_fit[0],lum_fit[0] def find_RC_dist_peak(self, distances, bins, show=False): ''' find RC peaks in disttance renturn fit parameters for peaks (two gaussians) ''' hist, bin_edges = np.histogram(distances,bins=bins) binSize = bin_edges[1]-bin_edges[0] x = np.empty(len(bin_edges)-1) x[0] = bin_edges[0] + binSize/2 i = 1 while i < len(bin_edges)-1: x[i] = x[i-1] + binSize i+=1 # gaussian guess = [hist.max(), 8000 ,1000 , 0.5*hist.max(), 11000, 2000] peak_fit = leastsq( func=math_functions.double_gaussian_residuals, x0=guess, args=(x,hist)) if show: y1 = math_functions.single_gaussian(x,peak_fit[0][:3]) y2 = math_functions.single_gaussian(x,peak_fit[0][3:]) plt.hist(distances,bins=bins) plt.plot(x,y1,'k--') plt.plot(x,y2,'r--') plt.ylabel('\#\ stars') plt.xlabel('d [pc]') plt.show() return peak_fit[0] def red_clump_inclination(self,method='2gaussian',plotHist=False): ''' method = '1gaussian' method = '2gaussian' method = 'polynomial' ''' # params dict [cmin,cmax,ymin,ymax,xmin,xmax] params_JKs = { 'b293':[0.85,1.00,11.01,15.49,0.7,2.6], 'b294':[0.86,1.00,11.01,15.49,0.7,2.6], 'b295':[0.95,1.20,11.01,15.49,0.7,2.6], 'b296':[1.05,1.35,11.01,15.49,0.7,2.6], 'b307':[1.00,1.40,11.01,15.49,0.7,2.6], 'b308':[1.19,1.71,11.01,15.49,0.7,2.6], 'b309':[1.19,1.71,11.01,15.49,0.7,2.6], 'b310':[1.45,1.80,11.01,15.49,0.7,2.6]} params_HKs = { 'b293':[0.19,0.32,11.01,15.49,0.1,0.9], 'b294':[0.19,0.32,11.01,15.49,0.1,0.9], 'b295':[0.23,0.36,11.01,15.49,0.1,0.9], 'b296':[0.29,0.45,11.01,15.49,0.1,0.9], 'b307':[0.22,0.45,11.01,15.49,0.1,0.9], 'b308':[0.30,0.59,11.01,15.49,0.1,0.9], 'b309':[0.32,0.62,11.01,15.49,0.1,0.9], 'b310':[0.45,0.70,11.01,15.49,0.1,0.9]} params_band = { 'J-Ks':params_JKs, 'H-Ks':params_HKs} # CMD axes dict axes_dict = { 'b293':[1,3], 'b294':[1,2], 'b295':[1,1], 'b296':[1,0], 'b307':[0,3], 'b308':[0,2], 'b309':[0,1], 'b310':[0,0]} for color_band in list(params_band.keys()):#[:1]: params_dict = params_band[color_band] plt.rcParams.update({'font.size': 14}) fig, axes = plt.subplots(2, 4, figsize=(16,8)) fig.subplots_adjust(wspace=0.1) tiles = sorted(os.listdir(f'{self.path}/data/psf_ts/')) for tile in tiles:#['b309','b310','b296']:#tiles:#[:1]: tileData = [] chips = [_[:-3] for _ in os.listdir(f'{self.path}/data/psf_ts/{tile}/chips/') if _.endswith('.ts')] for chip in chips: chipData = pd.read_csv(f'{self.path}/data/psf_ts/{tile}/chips/{chip}.ts',index_col='ID') tileData.append(chipData) tileData = pd.concat(tileData) magCols = [_ for _ in tileData.columns if _[:3] == 'MAG'] errCols = [_ for _ in tileData.columns if _[:3] == 'ERR'] err_msk = ( tileData[errCols] > 0.2).values f = color_band.split('-')[0] color = tileData[f'mag_{f}'] - tileData.mag_Ks msk = ~color.isnull() mag = tileData.mag_Ks mag = mag[msk] color = color[msk] yRCpeak = [] xRCpeak = [] if method == '1gaussian': # Single Gaussian fit num_bins = 20 cmin = params_dict[tile][0] cmax = params_dict[tile][1] n = cmin while n < cmax: dc = abs(cmax-cmin)/10 cmsk = ((color > n) & (color <= n+dc) & (mag < 14)) hist, bin_edges = np.histogram(mag[cmsk],bins=num_bins) binSize = bin_edges[1]-bin_edges[0] x = [bin_edges[0] + binSize/2] i = 1 while i < len(bin_edges)-1: x.append(x[i-1] + binSize) i+=1 guess = [500,13.2,0.5,] fit = leastsq(math_functions.single_gaussian_residuals,guess,args=(x,hist)) params = fit[0] yfit = math_functions.single_gaussian(x,params) if plotHist: fig,ax=plt.subplots() ax.hist(mag[cmsk],num_bins) ax.plot(x,yfit,'-') plt.show() yRCpeak.append(params[1]) xRCpeak.append(n) n+=dc if method == '2gaussian': # DOuble Gaussian num_bins = 80 cmin = params_dict[tile][0] cmax = params_dict[tile][1] n = cmin while n < cmax: dc = 0.05 #abs(cmax-cmin)/10 cmsk = ((color > n) & (color <= n+dc))# & (mag < 17.5)) hist, bin_edges = np.histogram(mag[cmsk],bins=num_bins) binSize = bin_edges[1]-bin_edges[0] x = [bin_edges[0] + binSize/2] i = 1 while i < len(bin_edges)-1: x.append(x[i-1] + binSize) i+=1 mu1 = 13.0 #params_dict[tile][6] # initial guess for fisrt peak mag mu2 = 13.6 #params_dict[tile][7] # initial guess for second peak mag peak_fit, lum_fit = self.find_RC_mag_peak(mag, cmsk, mu1, mu2, show=False) #peak_fit, lum_fit = find_RC_mag_peak(1,mag, cmsk, mu1, mu2, bins=num_bins, show=False) x = np.arange(11,18,(18-12)/1000) lum_func = math_functions.exponential(x,lum_fit) RC_fit = math_functions.double_gaussian(x,peak_fit) fitted_curve = RC_fit + lum_func crop = x < 14.5 mag_peak = x[crop][np.where(fitted_curve[crop] == fitted_curve[crop].max())[0][0]] if plotHist: yaxis_ref = np.histogram(mag[cmsk],bins=num_bins)[0].max() fig,ax=plt.subplots(figsize=[6,4]) ax.hist(x=mag[cmsk], bins=num_bins, histtype='barstacked', lw=0.5, color='dodgerblue', edgecolor='w', alpha=0.6) ax.plot(x,RC_fit+lum_func,'r-',lw=1) ax.plot(x,lum_func,'k--',lw=1) ptxt = '{:#.3n}'.format(mag_peak) ax.axvline(mag_peak,lw=0.8,c='gray') ax.text(s=ptxt,x=mag_peak+0.2,y=0.95*yaxis_ref,ha='left') title = '{:#.3n}'.format(n) + ' < J-Ks < ' + '{:#.3n}'.format(n+dc) ax.text(s=f'Tile: {tile} | {title}', x=0.5, y=1.02, ha='center', transform=ax.transAxes) ax.set_ylabel('Número de estrelas') ax.set_xlabel('Ks [mag]') ax.set_ylim(-yaxis_ref*0.01,yaxis_ref+yaxis_ref*0.04) plt.tight_layout() plt.savefig(f'{self.path}/figuras_tese/RC_peaks_{tile}_{n}.png',dpi=300) plt.show() plt.close() yRCpeak.append(mag_peak) xRCpeak.append(n) n+=dc if method == 'polynomial': # Polynomial fit num_bins = 100 cmin = params_dict[tile][0] cmax = params_dict[tile][1] n = cmin while n < cmax: dc = (cmax-cmin)/8 cmsk = ((color > n) & (color <= n+dc) & (mag < 17.5)) hist, bin_edges = np.histogram(mag[cmsk],bins=num_bins) binSize = bin_edges[1]-bin_edges[0] x = [bin_edges[0] + binSize/2] i = 1 while i < len(bin_edges)-1: x.append(x[i-1] + binSize) i+=1 x = np.array(x) fit = np.polyfit(x, hist, 200) yp = np.poly1d(fit) x2 = np.arange(mag[cmsk].min(),mag[cmsk].max(),(mag[cmsk].max() - mag[cmsk].min())/1000) msk = ((x2>12.5)&(x2<14)) peaks,_ = find_peaks(yp(x2[msk])) if plotHist: fig,ax=plt.subplots() ax.hist(mag[cmsk],num_bins) ax.plot(x,yp(x),'-') ax.plot(x2[msk][peaks],yp(x2[msk][peaks]),"*") ax.plot(x2[msk][peaks[0]],yp(x2[msk][peaks[0]]),"*") plt.show() yRCpeak.append(x2[msk][peaks[0]]) xRCpeak.append(n) n+=dc # CMD plot y = np.array(yRCpeak) x = np.array(xRCpeak) xlim= params_dict[tile][4:6] ylim= params_dict[tile][2:4] xlabel= color_band ylabel='Ks [mag]' guess = [0.6,13] c,cov = curve_fit( f = math_functions.linear, xdata = x, ydata = y, p0 = guess, sigma = y*.01, absolute_sigma = False) xfit = np.array(xlim) yfit = math_functions.linear(xfit,c[0],c[1]) bins=(600,400) cmap = copy.copy(mpl.cm.get_cmap("jet"))# plt.cm.jet cmap.set_bad('w', 1.) cmap_multicolor = copy.copy(mpl.cm.get_cmap("jet")) # plt.cm.jet cmap_multicolor.set_bad('w', 1.) clip = ~color.isnull() N, xedges, yedges = np.histogram2d(color[clip],mag[clip],bins=bins) ax1 = axes_dict[tile][0] ax2 = axes_dict[tile][1] img = axes[ax1,ax2].imshow(np.log10(N.T), origin='lower', extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]], aspect='auto', interpolation='nearest', cmap=cmap) red_inc = '{:#.3n}'.format(c[0]) if ax1==0: if ax2==1 or ax2==2: axes[ax1,ax2].plot(x,y,'k.') axes[ax1,ax2].plot(xfit,yfit,'k-') axes[ax1,ax2].text( s=f'Tile: {tile} | AKs/E({color_band}) = {red_inc}', x=0.5, y=1.025, ha='center', transform=axes[ax1,ax2].transAxes) else: axes[ax1,ax2].text( s=f'Tile: {tile}', x=0.025, y=1.025, ha='left', transform=axes[ax1,ax2].transAxes) else: axes[ax1,ax2].text( s=f'Tile: {tile}', x=0.025, y=1.025, ha='left', transform=axes[ax1,ax2].transAxes) axes[ax1,ax2].set_xlim(xlim) axes[ax1,ax2].set_ylim(ylim) axes[ax1,ax2].set_xlabel(xlabel) axes[ax1,ax2].set_ylabel(ylabel) axes[ax1,ax2].invert_yaxis() for im in plt.gca().get_images(): im.set_clim(0, 3) for ax in fig.get_axes(): ax.label_outer() cbar_ax = plt.axes([0.92, 0.2, 0.01, 0.6]) cb = fig.colorbar(img, ticks=[0, 1, 2, 3], format=r'$10^{%i}$', shrink=0.6 , cax=cbar_ax) cb.set_label('Número por pixel',rotation=90) #cb.set_label(r'$\mathrm{number\ in\ pixel}$',rotation=90) #plt.tight_layout() plt.savefig(f'{self.path}/figuras_tese/red_clump_reddening_{color_band}.png',dpi=200) plt.show() plt.rcParams.update({'font.size': 12}) plt.close() def find_RC_peaks(self,plot=False,show=False): # params dict [ymin,ymax,xmin,xmaxc,cmin,cmax,RC_peak1,RC_peak2] params_dict = { 'b293':[11,17.9,0.0,1.4,0.65,1.10,13.0,13.8], 'b294':[11,17.9,0.0,1.5,0.70,1.20,13.0,13.8], 'b295':[11,17.9,0.2,1.5,0.75,1.30,13.0,13.9], 'b296':[11,17.9,0.2,1.7,0.85,1.64,13.0,14.1], 'b307':[11,17.9,0.1,2.0,0.85,1.50,13.1,13.8], 'b308':[11,17.9,0.1,2.3,1.00,1.60,13.2,14.0], 'b309':[11,17.9,0.1,2.3,1.00,2.00,13.2,14.2], 'b310':[11,17.9,0.3,2.6,1.20,2.00,13.2,14.3]} tiles = sorted(os.listdir(f'{self.path}/data/psf_ts/')) cols = ['RC_peak1_Ks_mag','RC_peak1_Ks_sigma', 'RC_peak1_color' ,'RC_peak1_color_sigma', 'RC_peak1_dist' ,'RC_peak1_dist_sigma', 'RC_peak2_Ks_mag','RC_peak2_Ks_sigma', 'RC_peak2_color' ,'RC_peak2_color_sigma', 'RC_peak2_dist' ,'RC_peak2_dist_sigma', 'tile_central_l' ,'tile_central_b'] RC_info = pd.DataFrame(index=tiles,columns=cols) for tile in tiles:#[:1]: tileData = [] chips = [_[:-3] for _ in os.listdir(f'{self.path}/data/psf_ts/{tile}/chips/') if _.endswith('.ts')] for chip in chips: chipData = pd.read_csv(f'{self.path}/data/psf_ts/{tile}/chips/{chip}.ts',index_col='ID') tileData.append(chipData) tileData = pd.concat(tileData) ra = tileData.RA dec = tileData.DEC c_icrs = SkyCoord(ra=ra, dec=dec,unit=(u.deg, u.deg)) c_gal = c_icrs.galactic tileData.loc[tileData.index,'gal_l'] = c_gal.l.deg tileData.loc[tileData.index,'gal_b'] = c_gal.b.deg color = tileData.mag_J - tileData.mag_Ks msk = ~color.isnull() color = color[msk] mag = tileData.mag_Ks[msk] color_min = params_dict[tile][4] # get RC peaks magnitudes mag_mask = ((color > color_min)) mu1 = params_dict[tile][6] # initial guess for fisrt peak mag mu2 = params_dict[tile][7] # initial guess for second peak mag peak_fit, lum_fit = self.find_RC_mag_peak(mag, mag_mask, mu1, mu2, show=False) # get RC peaks colors color_masks = [] peak_colors = [] i = 1 while i < 6: peak_mag, peak_sigma = peak_fit[i], peak_fit[i+1] # RC peaks color and color sigma color_mask = (((color > color_min) & (color < 2.6)) & ((mag > peak_mag - abs(peak_sigma)) & (mag < peak_mag + abs(peak_sigma)))) color_fit = self.find_RC_color_peak(color, color_mask, show=False) peak_colors += [color_fit[1], abs(color_fit[2])] color_masks.append(color_mask) i+=3 # calculate distances dist1,dist1_sigma = self.red_clump_distance(peak_fit[1],peak_fit[2],peak_colors[0],abs(peak_colors[1])) dist2,dist2_sigma = self.red_clump_distance(peak_fit[4],peak_fit[5],peak_colors[2],abs(peak_colors[3])) # tile central l and b tile_l = (tileData.gal_l.max() - tileData.gal_l.min())/2 + tileData.gal_l.min() tile_b = (tileData.gal_b.max() - tileData.gal_b.min())/2 + tileData.gal_b.min() # save peaks info into a pandas DataFrame info = list(peak_fit[1:3]) + peak_colors[:2] + [dist1,dist1_sigma] + list(peak_fit[4:6]) + peak_colors[2:] + [dist2,dist2_sigma,tile_l,tile_b] RC_info.loc[tile,cols] = info if plot: # Plot CMD xlim = params_dict[tile][2:4] ylim = params_dict[tile][:2] xlabel='J-Ks' ylabel='Ks [mag]' bins=(600,400) cmap = copy.copy(mpl.cm.get_cmap("jet"))# plt.cm.jet cmap.set_bad('w', 1.) cmap_multicolor = copy.copy(mpl.cm.get_cmap("jet")) # plt.cm.jet cmap_multicolor.set_bad('w', 1.) clip = ~color.isnull() N, xedges, yedges = np.histogram2d(color[clip],mag[clip],bins=bins) fig, axes = plt.subplots(1, 2, figsize=(10,4)) img = axes[0].imshow( np.log10(N.T), origin='lower', extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]], aspect='auto', interpolation='nearest', cmap=cmap) axes[0].errorbar( x=info[2], y=info[0], xerr=info[3], yerr=info[1], marker="o", mfc='k', mec='k', ecolor='k', ms=3, lw=.8, capsize=3) axes[0].errorbar( x=info[6], y=info[4], xerr=info[7], yerr=info[5], marker="o", mfc='k', mec='k', ecolor='k', ms=3, lw=.8, capsize=3) axes[0].set_xlim(xlim) axes[0].set_ylim(ylim) axes[0].set_xlabel(xlabel) axes[0].set_ylabel(ylabel) axes[0].invert_yaxis() axes[0].axvline(color_min,c='k',lw=1) axes[0].text(s=f'Tile: {tile}',x=0.5,y=1.02,ha='center',transform=axes[0].transAxes) cb = fig.colorbar( img, ax=axes[0], ticks=[0, 1, 2, 3], format=r'$10^{%i}$', shrink=0.6, orientation='vertical') cb.set_label(r'$\mathrm{Número\ por\ pixel}$',rotation=90) # to plot luminosity ans peaks functions x = np.arange(11,18,(18-12)/1000) lum_func = math_functions.exponential(x,lum_fit) RC_fit = math_functions.double_gaussian(x,peak_fit) # mask test: #axes[0].plot(color[color_masks[0]],mag[color_masks[0]],'b.',ms=.8,alpha=.01) #axes[0].plot(color[color_masks[1]],mag[color_masks[1]],'b.',ms=.8,alpha=.01) yaxis_ref = np.histogram(mag[mag_mask],bins=100)[0].max() # reference value axes[1].hist( x=mag[mag_mask], bins=100, histtype='barstacked', lw=.5, color='dodgerblue', edgecolor='w', alpha=0.6)#,range=range) axes[1].plot(x,RC_fit+lum_func,'r-',lw=1) axes[1].plot(x,lum_func,'k--',lw=1) axes[1].axvline(x=peak_fit[1], ls='--', c='gray', lw=1) m1 = '{:#.4n}'.format(peak_fit[1]) axes[1].text( s=f'{m1}', x=peak_fit[1], y=.9*yaxis_ref) axes[1].axvline(x=peak_fit[4], ls='--', c='gray', lw=1) m2 = '{:#.4n}'.format(peak_fit[4]) axes[1].text( s=f'{m2}', x=peak_fit[4], y=.8*yaxis_ref) axes[1].set_xlabel(ylabel) axes[1].set_ylabel('Número de estrelas') a = '{:#.2n}'.format(color_min) axes[1].text(s=f'J-Ks > {a}',x=0.5,y=1.02,ha='center',transform=axes[1].transAxes) axes[1].yaxis.set_label_position("right") axes[1].yaxis.tick_right() axes[1].set_ylim(-yaxis_ref*.01,yaxis_ref+yaxis_ref*.04) plt.tight_layout() plt.savefig(f'{self.path}/figuras_tese/{tile}_RC_bumps.png',dpi=200) if show: plt.show() plt.close() return RC_info ''' ======================= WORK IN PROGRESS ========================''' def RC_peak_distance_distribution(self,plot=False,show=False): path = '/home/botan/OneDrive/Doutorado/VVV_DATA' params_dict = { 'b293':[11,17.9,0.0,1.4,0.65,1.10,13.0,13.8], 'b294':[11,17.9,0.0,1.5,0.70,1.20,13.0,13.8], 'b295':[11,17.9,0.2,1.5,0.75,1.30,13.0,13.9], 'b296':[11,17.9,0.2,1.7,0.85,1.64,13.0,14.1], 'b307':[11,17.9,0.1,2.0,0.85,1.50,13.1,13.8], 'b308':[11,17.9,0.1,2.3,1.00,1.60,13.2,14.0], 'b309':[11,17.9,0.1,2.3,1.00,2.00,13.2,14.2], 'b310':[11,17.9,0.3,2.6,1.20,2.00,13.2,14.3]} tiles = sorted(os.listdir(f'{path}/data/psf_ts/')) cols = ['mag_peak1','mag_err_peak1', 'color_peark1','color_err_peark1', 'distance1','distance_err1', 'x1','y1','z1', 'mag_peak2','err_peak2', 'color_peark2','color_err_peark2', 'distance2','distance_err2', 'x2','y2','z2', 'tile_l','tile_b'] RC_info = pd.DataFrame(index=tiles,columns=cols) for tile in tiles: tileData = [] chips = [_[:-3] for _ in os.listdir(f'{path}/data/psf_ts/{tile}/chips/') if _.endswith('.ts')] for chip in chips: chipData = pd.read_csv(f'{path}/data/psf_ts/{tile}/chips/{chip}.ts',index_col='ID') tileData.append(chipData) tileData = pd.concat(tileData) ra = tileData.RA dec = tileData.DEC c_icrs = SkyCoord(ra=ra, dec=dec,unit=(u.deg, u.deg)) c_gal = c_icrs.galactic tileData.loc[tileData.index,'gal_l'] = c_gal.l.deg tileData.loc[tileData.index,'gal_b'] = c_gal.b.deg color = tileData.mag_J - tileData.mag_Ks color_err = np.sqrt((tileData.er_J)**2 + (tileData.er_Ks)**2) msk = ~color.isnull() color = color[msk] color_err = color_err[msk] mag = tileData.mag_Ks[msk] err = tileData.er_Ks[msk] color_min = params_dict[tile][4] mag_max = 14.5 #CMD_crop = ((color > color_min) & (mag < mag_max)) # get RC peaks magnitudes mag_mask = ((color > color_min)) mu1 = params_dict[tile][6] # initial guess for fisrt peak mag mu2 = params_dict[tile][7] # initial guess for second peak mag peak_fit, lum_fit = self.find_RC_mag_peak(mag, mag_mask, mu1, mu2, show=False) peak_sigma = 2 peaks_lim = [peak_fit[1] - peak_sigma*peak_fit[2], peak_fit[4] + peak_sigma*peak_fit[5]] CMD_crop = ((color > color_min) & ((mag > peaks_lim[0])&(mag < peaks_lim[1]))) # get RC peaks colors color_masks = [] peak_colors = [] i = 1 while i < 6: peak_mag, peak_sigma = peak_fit[i], peak_fit[i+1] # RC peaks color and color sigma color_mask = (((color > color_min) & (color < 2.6)) & ((mag > peak_mag - abs(peak_sigma)) & (mag < peak_mag + abs(peak_sigma)))) color_fit = self.find_RC_color_peak(color, color_mask, show=False) peak_colors += list(abs(color_fit[1:])) color_masks.append(color_mask) i+=3 # get peaks distances Rv = 0.689 binsize = 50 dist, dist_sigma = self.red_clump_distance(mag,err,Rv,color,color_err) #gc_dist = self.gc_distance dist_peaks = self.find_RC_dist_peak(distances=dist[CMD_crop],bins=binsize) # distance using peak in mag dist2,dist_sigma2 = self.red_clump_distance(peak_fit[1],peak_fit[2],Rv,peak_colors[0],abs(peak_colors[1])) dist3,dist_sigma3 = self.red_clump_distance(peak_fit[4],peak_fit[5],Rv,peak_colors[2],abs(peak_colors[3])) tile_l = (tileData.gal_l.max() - tileData.gal_l.min())/2 tile_b = (tileData.gal_b.max() - tileData.gal_b.min())/2 cartesian2 = self.cartezian_projections(dist2,tile_l,tile_b,self.gc_distance) cartesian3 = self.cartezian_projections(dist3,tile_l,tile_b,self.gc_distance) params = (list(peak_fit[1:3]) + peak_colors[:2] + [dist2,dist_sigma2] + list(cartesian2) + list(peak_fit[4:]) + peak_colors[2:] + [dist3,dist_sigma3] + list(cartesian3) + [tile_l, tile_b]) RC_info.loc[tile,cols] = params if plot: # PLOT CMD ans HIST xlim = params_dict[tile][2:4] ylim = params_dict[tile][:2] xlabel='J-Ks' ylabel='Ks [mag]' bins=(600,400) cmap = copy.copy(mpl.cm.get_cmap("jet"))# plt.cm.jet cmap.set_bad('w', 1.) cmap_multicolor = copy.copy(mpl.cm.get_cmap("jet")) # plt.cm.jet cmap_multicolor.set_bad('w', 1.) N, xedges, yedges = np.histogram2d(color,mag,bins=bins) fig, axes = plt.subplots(1, 2, figsize=(10,4)) img = axes[0].imshow( np.log10(N.T), origin='lower', extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]], aspect='auto', interpolation='nearest', cmap=cmap) axes[0].add_patch(Rectangle(xy=(color_min,mag_max), width=xlim[1], height=peaks_lim[0]-peaks_lim[1], fc ='red', ec ='none', lw = 0, alpha=0.3) ) axes[0].set_xlim(xlim) axes[0].set_ylim(ylim) axes[0].set_xlabel(xlabel) axes[0].set_ylabel(ylabel) axes[0].invert_yaxis() axes[0].text(s=f'Tile: {tile}',x=0.5,y=1.02,ha='center',transform=axes[0].transAxes) cb = fig.colorbar( img, ax=axes[0], ticks=[0, 1, 2, 3], format=r'$10^{%i}$', shrink=0.6, orientation='vertical') cb.set_label(r'$\mathrm{Número\ por\ pixel}$',rotation=90) x = np.arange(dist[CMD_crop].min(),dist[CMD_crop].max(),(dist[CMD_crop].max() - dist[CMD_crop].min())/1000) y1 = math_functions.single_gaussian(x,dist_peaks[:3]) y2 = math_functions.single_gaussian(x,dist_peaks[3:]) axes[1].hist( x=dist[CMD_crop]/1000, bins=binsize, histtype='barstacked', lw=.5, color='dodgerblue', edgecolor='w', alpha=0.6)#,range=range) axes[1].plot(x/1000,y1,'r--',lw=.8) axes[1].plot(x/1000,y2,'r--',lw=.8) axes[1].plot(x/1000,y1+y2,'k-',lw=.8) axes[1].axvline(dist2/1000,ls='--',lw=.8,c='gray') axes[1].axvline(dist3/1000,ls='--',lw=.8,c='gray') axes[1].set_xlabel('d [kpc]') axes[1].set_ylabel('Número de estrelas') axes[1].yaxis.set_label_position("right") axes[1].yaxis.tick_right() plt.tight_layout() plt.savefig(f'{path}/figuras_tese/{tile}_RC_dist_hist.png',dpi=200) if show: plt.show() plt.close() return RC_info def cmd(self): #params dict [cmin,cmax,ymin,ymax,xmin,xmax] params_dict = { 'b293':[0.85,1.00,11,17.9,0.7,2.6], 'b294':[0.86,1.00,11,17.9,0.7,2.6], 'b295':[0.95,1.20,11,17.9,0.7,2.6], 'b296':[1.05,1.40,11,17.9,0.7,2.6], 'b307':[1.00,1.40,11,17.9,0.7,2.6], 'b308':[1.19,1.71,11,17.9,0.7,2.6], 'b309':[1.19,1.71,11,17.9,0.7,2.6], 'b310':[1.45,2.00,11,17.9,0.7,2.6]} params_HKs = { 'b293':[0.17,0.29,11,17.9,0.01,1.0], 'b294':[0.19,0.32,11,17.9,0.01,1.0], 'b295':[0.23,0.36,11,17.9,0.01,1.0], 'b296':[0.27,0.45,11,17.9,0.01,1.0], 'b307':[0.18,0.39,11,17.9,0.01,1.0], 'b308':[0.28,0.59,11,17.9,0.01,1.0], 'b309':[0.28,0.62,11,17.9,0.01,1.0], 'b310':[0.42,0.70,11,17.9,0.01,1.0]} # CMD axes dict axes_dict = { 'b293':[1,3], 'b294':[1,2], 'b295':[1,1], 'b296':[1,0], 'b307':[0,3], 'b308':[0,2], 'b309':[0,1], 'b310':[0,0]} filters = ['mag_H','mag_J'] for band in filters: fig, axes = plt.subplots(2, 4, figsize=(16,8)) tiles = sorted(os.listdir('/home/botan/OneDrive/Doutorado/VVV_DATA/data/psf_ts/')) for tile in tiles:#[:1]: tileData = [] chips = [_[:-3] for _ in os.listdir(f'/home/botan/OneDrive/Doutorado/VVV_DATA/data/psf_ts/{tile}/chips/') if _.endswith('.ts')] for chip in chips: chipData = pd.read_csv(f'/home/botan/OneDrive/Doutorado/VVV_DATA/data/psf_ts/{tile}/chips/{chip}.ts',index_col='ID') tileData.append(chipData) tileData = pd.concat(tileData) color = tileData[band] - tileData.mag_Ks msk = ~color.isnull() mag = tileData.mag_Ks mag = mag[msk] color = color[msk] xlim= params_dict[tile][4:6] ylim= params_dict[tile][2:4] xlabel=f'{band[-1]}-Ks' ylabel='Ks [mag]' bins=(600,400) cmap = copy.copy(mpl.cm.get_cmap("jet"))# plt.cm.jet cmap.set_bad('w', 1.) cmap_multicolor = copy.copy(mpl.cm.get_cmap("jet")) # plt.cm.jet cmap_multicolor.set_bad('w', 1.) N, xedges, yedges =
np.histogram2d(color,mag,bins=bins)
numpy.histogram2d
import copy import numpy as np # sympy order matters; it overrides scipy (???) import sympy as sym import scipy import scipy.signal import scipy.integrate from scipy.linalg import solve_continuous_are from matplotlib import pyplot as plt # define constants M = sym.Symbol("M") m1 = sym.Symbol("m1") m2 = sym.Symbol("m2") l1 = sym.Symbol("l1") l2 = sym.Symbol("l2") g = sym.Symbol("g") constant_values = [(g,9.81),(M,1000),(m1,100),(m2,100),(l1,20),(l2,10)] # core state variables t = sym.Symbol("t") x = sym.Function("x")(t) dx = x.diff(t) t1 = sym.Function("theta1")(t) dt1 = t1.diff(t) t2 = sym.Function("theta2")(t) dt2 = t2.diff(t) states = [x,dx,t1,dt1,t2,dt2] # other variables ddx = dx.diff(t) ddt1 = dt1.diff(t) ddt2 = dt2.diff(t) F = sym.Symbol("F") # Energy Equations (basic inputs) T = 0.5 * (M + m1 + m2)*dx**2 - m1*l1*dx*dt1*sym.cos(t1) + 0.5*m1*l1**2*dt1**2 - m2*l2*dx*dt2*sym.cos(t2) + 0.5*m2*l2**2*dt2**2 V = -m1*g*l1*sym.cos(t1) - m2*g*l2*sym.cos(t2) # Simulation and Control Parameters Times = np.arange(0,60,1e-3) IC = np.array([0,1e-3,0,5e-5,0,1e-4]) # Q = np.diag([1,100,1,10,1,10]) # R = 0.001 Q = np.diag([1,0.5,1000,500,1000,500]) R = 1.0e-4 STEP = 0.1 if __name__ == "__main__": ############################################################################################### ######################################## Part A ############################################### ############################################################################################### # compute Lagrangian L = T - V # compose equations of motion from Lagrangian EOM = [ sym.diff(sym.diff(L,dx),t) - sym.diff(L,x) - F, sym.diff(sym.diff(L,dt1),t) - sym.diff(L,t1), sym.diff(sym.diff(L,dt2),t) - sym.diff(L,t2) ] G = {k:v.simplify() for k,v in sym.solve(EOM, [ddx,ddt1,ddt2]).items()} print("Equations of motion:") sym.pprint(G) ############################################################################################### ######################################## Part B ############################################### ############################################################################################### # construct Jacobian J_orig = sym.Matrix([ [sym.diff(G[ddx],v) for v in states], [sym.diff(G[ddt1],v) for v in states], [sym.diff(G[ddt2],v) for v in states] ]) # substitute our origin conditions (x,dx,t1,dt1,t2,dt2) = 0 J = J_orig.subs([(v,0) for v in states]).doit() print("Jacobian at origin:") sym.pprint(J) # Convert to our linearized state space representation A = sym.Matrix([sym.zeros(1,6), J[0,:], sym.zeros(1,6), J[1,:], sym.zeros(1,6), J[2,:]]) A[0,1] = A[2,3] = A[4,5] = sym.Rational(1) B = sym.Matrix([0,1/M,0,1/(l1*M),0,1/(l2*M)]) print("State Space Representation (A,B):") sym.pprint(A) sym.pprint(B) ############################################################################################### ######################################## Part C ############################################### ############################################################################################### # Determine Controllability Conditions Controllability = B for i in range(1,6): Controllability = Controllability.row_join(A**i * B) print("Controllability matrix: ") sym.pprint(Controllability) # Controllability conditions: print("System is controllable iff the following is satisfied: ") print(Controllability.det()) ############################################################################################### ######################################## Part D ############################################### ############################################################################################### # check conditions in part D Controllability_subs = Controllability.subs(constant_values) # sanity check rank assert(Controllability_subs.rank() == 6) print("Part D: Rank {}".format(Controllability_subs.rank())) sym.pprint(Controllability_subs) # update A,B matrices with these values A = np.array(A.subs(constant_values),dtype=np.float32) B = np.array(B.subs(constant_values),dtype=np.float32) # solve the Riccati equation: P = solve_continuous_are(A, B, Q, R) K = (B.T@P)/R # plot the response to an initial offset from 0 # closed loop system SYS_CL = scipy.signal.StateSpace(A-B*K,B,np.eye(6)) # simulate the nonlinear system G_subs = {k:sym.lambdify(states,v.subs(constant_values).subs(F,0).evalf(),"numpy") for k,v in G.items()} def ODE(time, y): state = [ y[1], G_subs[ddx](*y), y[3], G_subs[ddt1](*y), y[5], G_subs[ddt2](*y) ] command = (B*K)@np.array(y) return state - command # integrate T,Y,X = scipy.signal.lsim(SYS_CL, None, Times, IC) # plot response plt.figure("Closed Loop Response") plt.plot(T,X[:,0], 'b') plt.plot(T,X[:,2], 'r') plt.plot(T,X[:,4], 'k') nonlinear = scipy.integrate.solve_ivp(ODE, [Times[0],Times[-1]], IC) assert(nonlinear.success) # plot the results plt.plot(nonlinear.t, nonlinear.y[0,:], '--b') plt.plot(nonlinear.t, nonlinear.y[2,:], '--r') plt.plot(nonlinear.t, nonlinear.y[4,:], '--k') plt.grid(True) plt.legend(["Linear X","Linear Theta1","Linear Theta2", "Nonlinear X", "Nonlinear Theta1", "Nonlinear Theta2"]) plt.show() # check that eigenvalues of the linearized closed loop system are all in the LHP eigenvalues = np.linalg.eig(A-B*K)[0] assert(np.all(eigenvalues < 0)) print("The linearized closed loop system is locally asymptotically stable.") ############################################################################################### ######################################## Part E ############################################### ############################################################################################### # examine the observability of various different C matrices Potentials = [ sym.Matrix([ [1,0,0,0,0,0], # x ]), sym.Matrix([ [0,0,1,0,0,0], # t1 [0,0,0,0,1,0] # t2 ]), sym.Matrix([ [1,0,0,0,0,0], # x [0,0,0,0,1,0] # t2 ]), sym.Matrix([ [1,0,0,0,0,0], # x [0,0,1,0,0,0], # t1 [0,0,0,0,1,0] # t2 ]) ] Observables = [] for i,c in enumerate(Potentials): # check determinant of full system A_temp = sym.Matrix(A) obs = sym.Matrix(c) for j in range(1,6): obs = obs.col_join(c*(A_temp)**j) if obs.rank() == 6: print("Potential C matrix #{} is observable. Rank: {}".format(i+1, obs.rank())) Observables.append(sym.Matrix(c)) else: print("Potential C matrix #{} is NOT observable. Rank: {}".format(i+1, obs.rank())) ############################################################################################### ######################################## Part F ############################################### ############################################################################################### # construct desired poles (order of magnitude larger than controller eigenvalues) observer_poles = np.array([np.complex(10*sym.re(eig), sym.im(eig)) for eig in eigenvalues]) # obtain observers for each output vector for i,C in enumerate(Observables): # initialize plots fig = plt.figure("Closed Loop Observer Response C_{}".format(i+1)) # place poles of A-LC an order of magnitude farther left than the controller poles C = np.array(C, dtype=np.float32) L = scipy.signal.place_poles(A.T, C.T, observer_poles).gain_matrix.T print("Found observer for potential C matrix #{}".format(i+1)) # simulate the linear response Ao = np.block([[A-B@K, B@K],[np.zeros(A.shape),A-L@C]]) Bo = np.block([[B],[np.zeros(B.shape)]]) Co = np.block([[C,
np.zeros(C.shape)
numpy.zeros
import os, os.path as osp import json import shutil import numpy as np from deeply.metrics import tversky_index from deeply.model.transfer.backbone import BackBone import tensorflow as tf from tensorflow.data import Dataset from tensorflow.keras.backend import int_shape from tensorflow.keras.layers import ( Layer, Conv2D, MaxPooling2D, Activation, Cropping2D, Conv2DTranspose, Dropout, Concatenate, Add, Multiply, BatchNormalization ) from tensorflow.keras.callbacks import ModelCheckpoint import imgaug.augmenters as iaa from deeply.util.model import get_checkpoint_prefix, get_input from deeply.model.base import BaseModel from deeply.model.layer import ActivationBatchNormDropout from deeply.generators import BaseDataGenerator from deeply.callbacks import GeneralizedEarlyStopping, PlotHistoryCallback from deeply.metrics import jaccard_index, dice_coefficient, tversky_index from bpyutils.util.array import sequencify from bpyutils.util.system import make_archive, make_temp_dir from bpyutils.util.datetime import get_timestamp_str # verify with paper... def kernel_initializer(shape, dtype = None): n = np.prod(shape[:3]) stddev = np.sqrt(2 / n) return tf.random.normal(shape, stddev = stddev, dtype = dtype) class ConvBlock(Layer): def __init__(self, filters, kernel_size = 3, activation = "relu", width = 2, batch_norm = True, dropout_rate = 0.2, kernel_initializer = kernel_initializer, padding = "valid", *args, **kwargs): self._super = super(ConvBlock, self) self._super.__init__(*args, **kwargs) self.filters = filters self.kernel_size = kernel_size self.activation = activation self.batch_norm = batch_norm self.dropout_rate = dropout_rate self.padding = padding self.kernel_initializer = kernel_initializer self.convs = [ ] self.batch_norms = [ ] self.activations = [ ] self.dropouts = [ ] for _ in range(width): conv = Conv2D(filters = filters, kernel_size = kernel_size, kernel_initializer = kernel_initializer, padding = padding) self.convs.append(conv) activation = ActivationBatchNormDropout(activation = activation, batch_norm = batch_norm, dropout_rate = dropout_rate) self.activations.append(activation) self.width = width # return x def call(self, inputs, training = False): x = inputs for i in range(self.width): x = self.convs[i](x, training = training) x = self.activations[i](x, training = training) return x def get_config(self): return { "filters": self.filters, "kernel_size": self.kernel_size, "activation": self.activation, "width": self.width, "batch_norm": self.batch_norm, "dropout_rate": self.dropout_rate, "padding": self.padding, "kernel_initializer": self.kernel_initializer } @classmethod def from_config(cls, config): return cls(**config) def get_crop_length(a, b): c = a - b assert (c >= 0) if c % 2 != 0: c1, c2 = int(c/2), int(c/2) + 1 else: c1, c2 = int(c/2), int(c/2) return (c1, c2) def get_crop_shape(a, b): a_shape = int_shape(a) b_shape = int_shape(b) cw1, cw2 = get_crop_length(a_shape[2], b_shape[2]) ch1, ch2 = get_crop_length(a_shape[1], b_shape[1]) return (ch1, ch2), (cw1, cw2) def copy_crop_concat_block(x, skip_layer, **kwargs): ch, cw = get_crop_shape(skip_layer, x) skip_layer_cropped = Cropping2D(cropping = (ch, cw))(skip_layer) x = Concatenate()([x, skip_layer_cropped]) return x class UNetModel(BaseModel): def __init__(self, *args, **kwargs): self._super = super(UNetModel, self) self._super.__init__(*args, **kwargs) def compile(self, *args, **kwargs): kwargs["optimizer"] = kwargs.get("optimizer", "sgd") kwargs["loss"] = kwargs.get("loss", "categorical_crossentropy") metrics = sequencify(kwargs.get("metrics", [])) if kwargs["loss"] == "categorical_crossentropy" and not metrics: metrics.append("categorical_accuracy") metrics.append(dice_coefficient) metrics.append(jaccard_index) metrics.append(tversky_index) kwargs["metrics"] = metrics return self._super.compile(*args, **kwargs) def UNet( x = None, y = None, channels = 1, n_classes = 2, layer_depth = 4, n_conv = 2, kernel_size = 3, init_filters = 64, filter_growth_rate = 2, activation = "relu", padding = "valid", batch_norm = True, # recommendation, don't use batch norm and dropout at the same time. dropout_rate = 0, pool_size = 2, mp_strides = 2, up_conv_size = 2, final_conv_size = 1, final_activation = "softmax", kernel_initializer = kernel_initializer, name = "unet", attention_gate = None, backbone = None, backbone_weights = "imagenet", freeze_backbone = False, weights = None, ): """ Constructs a U-Net. :param x: Input image width. :param y: Input image height. :param channels: Number of channels for input image. :param layer_depth: Depth of the U-Net. :param n_conv: Number of convolutions in each layer. :param kernel_size: Size of kernel in a convolution. :param init_filters: Number of filters in initial convolution. :param filter_growth_rate: Growth rate of filter over convolutions. :param activation: Activation function after each convolution. :param batch_norm: Batch Normalization after each convolution. :param dropout_rate: Dropout rate after each convolution. :param pool_size: Size of max pooling layer. :param mp_strides: Size of strides of max pooling layer. :param up_conv_size: Size of upsampling layer. :param final_activation: Activation function on final layer. :param final_conv_size: Kernel size of final convolution. :param kernel_initializer: Weight initializer for each convolution block. :param attention_gate: Use a custom attention gate. :param References [1]. Ronneberger, Olaf, et al. “U-Net: Convolutional Networks for Biomedical Image Segmentation.” ArXiv:1505.04597 [Cs], May 2015. arXiv.org, http://arxiv.org/abs/1505.04597. >>> from deeply.model.unet import UNet >>> model = UNet() """ input_shape = (x, y, channels) input_ = get_input(*input_shape) filters = init_filters conv_block_args = dict(kernel_size = kernel_size, activation = activation, dropout_rate = dropout_rate, width = n_conv, kernel_initializer = kernel_initializer, padding = padding, batch_norm = batch_norm) contracting_layers = [ ] if backbone: backbone = BackBone(backbone, input_tensor = input_, input_shape = input_shape, weights = backbone_weights) input_ = backbone._model.input m = backbone._model.output for feature_layer in backbone.get_feature_layers(): contracting_layers.append(feature_layer.output) filters = filters * filter_growth_rate else: m = input_ # contracting path for _ in range(layer_depth): m = ConvBlock(filters = filters, **conv_block_args)(m) contracting_layers.append(m) m = MaxPooling2D(pool_size = pool_size, strides = mp_strides)(m) filters = filters * filter_growth_rate m = ConvBlock(filters = filters, **conv_block_args)(m) # expanding path for skip_layer in reversed(contracting_layers): filters = filters // filter_growth_rate m = Conv2DTranspose(filters = filters, kernel_size = up_conv_size, strides = pool_size, padding = padding, kernel_initializer = kernel_initializer)(m) m = Activation(activation = activation)(m) if attention_gate: skip_layer = attention_gate(skip_layer, m) m = copy_crop_concat_block(m, skip_layer) m = ConvBlock(filters = filters, **conv_block_args)(m) m = Conv2D(filters = n_classes, kernel_size = final_conv_size, padding = padding, kernel_initializer = kernel_initializer)(m) output_layer = Activation(activation = final_activation, name = "outputs")(m) model = UNetModel(inputs = [input_], outputs = [output_layer], name = name) if weights: model.load_weights(weights) return model class AttentionGate(Layer): def __init__(self, batch_norm = True, dropout_rate = 0, *args, **kwargs): self.super = super(AttentionGate, self) self.super.__init__(*args, **kwargs) self.batch_norm = batch_norm self.droput_rate = dropout_rate def call(self, input_, gating_signal, training = False): t = Conv2D(filters = 1, kernel_size = (1, 1))(input_) g = Conv2D(filters = 1, kernel_size = (1, 1))(gating_signal) x = Add()([t, g]) if training and self.batch_norm: x = BatchNormalization()(x) x = Activation("relu")(x) if training and self.droput_rate: x = Dropout(rate = self.droput_rate)(x) x = Conv2D(filters = 1, kernel_size = (1, 1))(x) x = Activation("sigmoid")(x) x = Multiply()([input_, x]) return x def AttentionUNet(*args, **kwargs): """ Constructs an Attention U-Net. References [1]. Oktay, Ozan, et al. “Attention U-Net: Learning Where to Look for the Pancreas.” ArXiv:1804.03999 [Cs], May 2018. arXiv.org, http://arxiv.org/abs/1804.03999. >>> from deeply.model.unet import AttentionUNet >>> model = AttentionUNet() """ batch_norm = kwargs.get("batch_norm", True) dropout_rate = kwargs.get("dropout_rate", 0) _attention_gate = kwargs.pop("attention_gate", AttentionGate( batch_norm = batch_norm, dropout_rate = dropout_rate)) unet = UNet( name = "attention-unet", attention_gate = _attention_gate, **kwargs ) return unet def UnetPP(*args, **kwargs): """ Constructs a U-Net++. >>> from deeply.model.unet import UnetPP >>> model = UnetPP() """ layer_depth = kwargs.get("layer_depth", 4) unets = [ ] for i in range(layer_depth): unet = UNet( name = "unet++-%s" % i, layer_depth = i, **kwargs ) unets.append(unet) unetpp = None return unetpp def UNet3D(*args, **kwargs): """ Constructs a 3D U-Net. >>> from deeply.model.unet import UNet3D >>> model = UNet3D() """ unet = UNet( name = "unet-3d", **kwargs ) return unet def _center_crop(arr, shape): arr_shape = arr.shape diff_x = (arr_shape[0] - shape[0]) diff_y = (arr_shape[1] - shape[1]) assert diff_x >= 0 assert diff_y >= 0 if diff_x == 0 and diff_y == 0: return arr off_lx = diff_x // 2 off_ly = diff_y // 2 off_rx = diff_x - off_lx off_ry = diff_y - off_ly cropped = arr[ off_lx : -off_ly, off_rx : -off_ry ] return cropped # augmentor = iaa.Sequential([ # iaa.CenterCropToFixedSize( # width = shape[0], # height = shape[1] # ) # ]) # from_, to = (0, 1, 2), (1, 0, 2) # arr = arr.numpy() # arr = np.moveaxis(arr, from_, to) # aug = augmentor(images = [arr]) # aug = squash(aug) # aug = np.moveaxis(aug, to, from_) # return aug def _crop(shape): def crop(x, y): dtype = y.dtype label = tf.py_function(_center_crop, [y, shape], dtype) return x, label return crop def _format_dataset(ds, mapper = None, target_shape = None, batch_size = 1, **kwargs): if isinstance(ds, Dataset): if mapper: ds = ds.map(mapper) if target_shape: ds = ds.map(_crop(target_shape)) ds = ds.batch(batch_size) return ds class Trainer: def __init__(self, artifacts_path = None): self.artifacts_path = osp.abspath(artifacts_path or get_timestamp_str('%Y%m%d%H%M%S')) def fit(self, model, train, val = None, batch_size = 32, early_stopping = True, monitor = "loss", **kwargs): target_shape = model.output_shape[1:] mapper = kwargs.pop("mapper", None) format_args = dict(target_shape = target_shape, mapper = mapper, batch_size = batch_size) train = _format_dataset(train, **format_args) if val: val = _format_dataset(val, **format_args) if isinstance(train, BaseDataGenerator): kwargs["steps_per_epoch"] = train.n_samples // batch_size if isinstance(val, BaseDataGenerator): kwargs["validation_steps"] = val.n_samples // batch_size callbacks = sequencify(kwargs.get("callbacks", [])) prefix = get_checkpoint_prefix(model) if val: monitor = "val_%s" % monitor history = None with make_temp_dir() as tmp_dir: filepath = osp.join(tmp_dir, "%s.hdf5" % prefix) checkpoint = ModelCheckpoint( filepath = filepath, monitor = monitor, save_best_only = True, save_weights_only = True ) callbacks.append(checkpoint) plothistory = PlotHistoryCallback(fpath = osp.join(tmp_dir, "history.png")) callbacks.append(plothistory) # if early_stopping: # gen_early_stop = GeneralizedEarlyStopping(baseline = 0.05) # callbacks.append(gen_early_stop) kwargs["callbacks"] = callbacks history = model.fit(train, validation_data = val, **kwargs) filepath = osp.join(tmp_dir, "%s.json" % prefix) with open(filepath, mode = "w") as f: json.dump(history.history, f) make_archive(self.artifacts_path, "zip", tmp_dir) return history def _generate_samples(x = 200, y = None, channels = 1, n_samples = 100, r_min_f = 1, r_max_f = 10, seg_min_f = 1, seg_max_f = 5): if not y: y = x features, labels = np.empty((n_samples, y, x, channels)), \ np.empty((n_samples, y, x)) size = min(x, y) compute_factor = lambda f: (f / 100) * size min_radius = compute_factor(r_min_f) max_radius = compute_factor(r_max_f) min_segs = compute_factor(seg_min_f) max_segs = compute_factor(seg_max_f) for i in range(n_samples): feature = np.ones((y, x, channels)) mask = np.zeros((y, x), dtype = np.bool) n_segs = np.random.randint(min_segs, max_segs) for _ in range(n_segs): from_ = np.random.randint(0, x) to = np.random.randint(0, y) radius = np.random.randint(min_radius, max_radius) cx, cy = np.ogrid[-to:y-to, -from_:x-from_] circle = cx*cx + cy*cy <= radius*radius color = np.random.randint(1, 255) mask =
np.logical_or(mask, circle)
numpy.logical_or
import pandas as pd import numpy as np import csv import urllib.request import json from datetime import datetime from datetime import timedelta from sklearn.preprocessing import MinMaxScaler import web_scrapers import os def load_real_estate_data(filename, state_attr, state): df = pd.read_csv(filename, encoding="ISO-8859-1") df = df.loc[df[state_attr] == state] return df def load_data(filenames): df_list=[] for i in range(0, len(filenames)): df = pd.read_csv(filenames[i], encoding="ISO-8859-1") df_list.append(df) return df_list def create_zipcode_list(filenames): zipcodes = {} # structured with within 5, 10 miles from another zipcode zip_list = [] for i in range(0, len(filenames)): with open(filenames[i], 'r', encoding='utf-8-sig') as f: reader = csv.reader(f) your_list = list(reader) for z in range(0, len(your_list)): zipcodes[your_list[z][0]] = [], [] zip_list.append(your_list[z][0]) return zipcodes, zip_list def wrangle_real_estate_data(df, zip_list, drop_columns): df = df[df['RegionName'].isin(zip_list)] df = df.drop(drop_columns, axis=1) return df def wrangle_IPO_data(df, zip_list): df['Date Filed'] = pd.to_datetime(df['Date Filed'], format='%Y-%m-%d') df['Lockup Expiration Date'] = pd.to_datetime(df['Lockup Expiration Date'], errors='coerce', format='%m/%d/%Y') df = df[df['Zipcode'].isin(zip_list)] df = df.drop(['Lockup Expiration Date'], axis=1) df['Lockup Expiration Date'] = df['Date Filed'] + timedelta(days=180) df = df[df['Date Filed']> df['Date Filed'].min()+ timedelta(days=366)] return df def wrangle_census_data(df_census_econ, df_census_dem, zip_list, census_econ_columns, census_dem_columns): df_census_econ.rename(columns={'Id2': 'Zipcode'}, inplace=True) df_census_econ.rename( columns={'Percent; EMPLOYMENT STATUS - Civilian labor force - Unemployment Rate': 'Unemployment Rate'}, inplace=True) df_census_econ.rename(columns={ 'Percent; INCOME AND BENEFITS (IN 2017 INFLATION-ADJUSTED DOLLARS) - Total households - Less than $10,000': 'l10000'}, inplace=True) df_census_econ.rename(columns={ 'Percent; INCOME AND BENEFITS (IN 2017 INFLATION-ADJUSTED DOLLARS) - Total households - $10,000 to $14,999': 'l15000'}, inplace=True) df_census_econ.rename(columns={ 'Percent; INCOME AND BENEFITS (IN 2017 INFLATION-ADJUSTED DOLLARS) - Total households - $15,000 to $24,999': 'l25000'}, inplace=True) df_census_econ.rename(columns={ 'Estimate; COMMUTING TO WORK - Mean travel time to work (minutes)': 'Mean Travel Time to Work Estimate (minutes)'}, inplace=True) df_census_econ.rename(columns={ 'Percent; INCOME AND BENEFITS (IN 2017 INFLATION-ADJUSTED DOLLARS) - Total households - $200,000 or more': 'Percent of Households with Income Greater than $200,000'}, inplace=True) df_census_econ.rename(columns={ 'Estimate; INCOME AND BENEFITS (IN 2017 INFLATION-ADJUSTED DOLLARS) - Total households - Median household income (dollars)': 'Median Household Income Estimate (dollars)'}, inplace=True) df_census_econ.rename(columns={ 'Estimate; INCOME AND BENEFITS (IN 2017 INFLATION-ADJUSTED DOLLARS) - Total households - Mean household income (dollars)': 'Mean Household Income Estimate (dollars)'}, inplace=True) df_census_econ.rename(columns={ 'Estimate; INCOME AND BENEFITS (IN 2017 INFLATION-ADJUSTED DOLLARS) - Per capita income (dollars)': 'Per Capita Income Estimate (dollars)'}, inplace=True) df_census_econ.rename(columns={ 'Percent; HEALTH INSURANCE COVERAGE - Civilian noninstitutionalized population - No health insurance coverage': 'Percent of Population with no Health Insurance Coverage'}, inplace=True) df_census_econ.rename(columns={ 'Percent; PERCENTAGE OF FAMILIES AND PEOPLE WHOSE INCOME IN THE PAST 12 MONTHS IS BELOW THE POVERTY LEVEL - All people': 'Percent of People whose Income in the Past 12 months has been Below Poverty Level'}, inplace=True) df_census_econ['l10000'].replace("-", "0.0", regex=True, inplace=True) df_census_econ['l10000'].replace("N", "0.0", regex=True, inplace=True) df_census_econ['l10000'] = df_census_econ['l10000'].astype(float) df_census_econ['l15000'].replace("-", "0.0", regex=True, inplace=True) df_census_econ['l15000'].replace("N", "0.0", regex=True, inplace=True) df_census_econ['l15000'] = df_census_econ['l15000'].astype(float) df_census_econ['l25000'].replace("-", "0.0", regex=True, inplace=True) df_census_econ['l25000'].replace("N", "0.0", regex=True, inplace=True) df_census_econ['l25000'] = df_census_econ['l25000'].astype(float) df_census_econ["Percent of Households With Income Less Than $24,999"] = df_census_econ['l10000'] + df_census_econ[ 'l15000'] + df_census_econ['l25000'] df_census_econ = df_census_econ.filter(census_econ_columns) df_census_dem.rename(columns={'Id2': 'Zipcode'}, inplace=True) df_census_dem.rename(columns={'Estimate; SEX AND AGE - Median age (years)': 'Median Age'}, inplace=True) df_census_dem.rename(columns={'Percent; SEX AND AGE - Under 18 years': 'Percent of People under 18 years of age'}, inplace=True) df_census_dem.rename(columns={'Percent; SEX AND AGE - 65 years and over': 'Percent of People 65 years and over'}, inplace=True) df_census_dem.rename(columns={'Percent; SEX AND AGE - 18 years and over - Male': 'Percent of Males'}, inplace=True) df_census_dem.rename(columns={'Percent; SEX AND AGE - 18 years and over - Female': 'Percent of Females'}, inplace=True) df_census_dem.rename(columns={ 'Percent; HISPANIC OR LATINO AND RACE - Total population - Hispanic or Latino (of any race)': 'Percent of People who are Hispanic'}, inplace=True) df_census_dem.rename(columns={ 'Percent; HISPANIC OR LATINO AND RACE - Total population - Not Hispanic or Latino - White alone': 'Percent of People who are White'}, inplace=True) df_census_dem.rename(columns={ 'Percent; HISPANIC OR LATINO AND RACE - Total population - Not Hispanic or Latino - Black or African American alone': 'Percent of People who are Black or African American'}, inplace=True) df_census_dem.rename(columns={ 'Percent; HISPANIC OR LATINO AND RACE - Total population - Not Hispanic or Latino - Asian alone': 'Percent of People who are Asian'}, inplace=True) df_census_dem = df_census_dem.filter(census_dem_columns) # filter data to only Silicon Valley + San Francisco Zip Codes df_census_dem = df_census_dem[df_census_dem['Zipcode'].isin(zip_list)] df_census_econ = df_census_econ[df_census_econ['Zipcode'].isin(zip_list)] return df_census_econ, df_census_dem def wrangle_real_estate_headers(df): ''' run before joining dataframes so keys match df_sale_counts_by_zip_silicon_valley.columns = df_sale_counts_by_zip_silicon_valley.columns.str.replace('Sales Counts ', '') df_sale_counts_by_zip_silicon_valley = df_sale_counts_by_zip_silicon_valley.add_prefix('Sales Counts ') df_sale_counts_by_zip_silicon_valley.rename(columns = {'Sales Counts RegionName':'Zipcode'}, inplace=True) ''' df.columns = df.columns.str.replace('All Homes ', '') df = df.add_prefix('All Homes ') df.rename(columns={'All Homes RegionName': 'Zipcode'}, inplace=True) return df def wrangle_ipo_headers(df): df.rename(columns={'Ticker': 'Symbol'}, inplace=True) df["Found"] = df["Found"].astype(dtype=np.int64) return df def join_data(df1, df2, key, join_type): df = df1.set_index(key).merge(df2, on=key, how=join_type) return df def merge_data(df1, df2, key): df = pd.merge(df1, df2, on=key, how='inner') return df def df_replace(df, replace_list): for i in range(0, len(replace_list)): df = df.replace([replace_list[i]], [''], regex=True) return df def drop_columns_and_nans(df, drop_columns, nan_columns): df = df.drop(['IPO Name', 'Offer date', 'CUSIP', 'PERM'], axis=1) for i in range(0, len(nan_columns)): df.drop_duplicates(subset=nan_columns[i], keep='first', inplace=True) return df def calculate_distance_between_zips(zipcode, min_radius, max_radius): # api-endpoint URL_base = "https://api.zip-codes.com/ZipCodesAPI.svc/1.0/FindZipCodesInRadius?zipcode=" URL = URL_base + zipcode + '&minimumradius=' + min_radius + '&maximumradius=' + max_radius + '&key=<KEY>' # sending get request and saving the response as response object contents = urllib.request.urlopen(URL).read() # printing the output zipcodes_nearby = [] print(json.loads(contents)) for i in range(1, len(json.loads(contents)['DataList'])): zipcodes_nearby.append(json.loads(contents)['DataList'][i]['Code']) return zipcodes_nearby def create_zipcode_distances_dictionary(zipcodes, zip_list): ''' ***DONT RUN IF THESE ARE ALREADY CREATED*** currently stored as data/processed/zipcodes_within_radius.txt ''' print(len(zip_list)) for i in range(0, len(zip_list)): zipcodes[zip_list[i]] = calculate_distance_between_zips(zip_list[i], '0', '5'), calculate_distance_between_zips( zip_list[i], '5', '10') return zipcodes def create_text_file_from_dictionary(filename, dictionary): ''' with open('data/processed/zipcodes_within_radius.txt', 'w') as json_file: json.dump(zipcodes, json_file) ''' with open(filename, 'w') as json_file: json.dump(dictionary, json_file) return dictionary def export_dataframe_to_dictionary(df, name): filename = 'data/processed/' + name + '.csv' export_csv = df.to_csv(filename, index=True, header=True) # Don't forget to add '.csv' at the end of the path def update_zipcodes_dict(zipcodes, zip_list): exists = os.path.isfile('../data/processed/zipcodes_within_radius.txt') if not exists: zipcodes = create_zipcode_distances_dictionary(zipcodes, zip_list) create_text_file_from_dictionary('../data/processed/zipcodes_within_radius.txt', zipcodes) else: zipcodes = {} with open('../data/processed/zipcodes_within_radius.txt', 'r') as f: zipcodes = json.load(f) return zipcodes def create_IPO_an_Zipcode_dataframe(census_econ_cols, census_dem_cols, df_ipo, df_zip, zipcodes): if 'Zipcode' in census_econ_cols: census_econ_cols.remove('Zipcode') if 'Zipcode' in census_dem_cols: census_dem_cols.remove('Zipcode') ipo_header_list = list(df_ipo.columns.values) +census_dem_cols+census_econ_cols + ['All Homes Date Filed', 'All Homes Lockup Expiration Date', 'All Homes 1 Year Before Date Filed', 'All Homes 2 Years After Date Filed'] ''' Distance from IPO = estimate is .2 if in the same zipcode as IPO = estimate is 0.5 if not in same zip code as IPO and less than 5 miles from zipcode to IPO = estimate is 1 if greater than 5 and less than 10 miles from zipcode to IPO ''' new_df_list = [] for index, row in df_ipo.iterrows(): ipo_zipcode = str(row['Zipcode']) zipcode_row = df_zip.loc[df_zip['Zipcode'] == int(ipo_zipcode)] headerList = join_IPO_and_Zip_Data(row['Date Filed'], row['Lockup Expiration Date'], census_econ_cols,census_dem_cols) data = np.concatenate((
np.array(row.values)
numpy.array
import sandz.ndft as ndft import sandz.util as util import sandz.arma as arma import numpy as np import numpy.testing as npt import sys def test_00(): np.random.seed(0) # fix randomness ts = np.array([0,.2,.4,.5]) data = np.array([2,-2,-1j,1j]) ans_acf = np.array([1,-.4,-.8-.4j,.8j]) npt.assert_allclose(([0, .1, .2, .3], ans_acf), util.acf_with_lags(times=ts, data=data, ndft_fun=ndft.exe_ndft, max_lag=.4, max_freq=10, os=100)) if 'nfft' in sys.modules: # python version npt.assert_allclose(ans_acf, ndft.calc_acf(times=ts, data=data, max_lag=.4, ndft_fun=ndft.exe_nfft_py, max_freq=10)) if 'pynfft' in sys.modules: # c version npt.assert_allclose(ans_acf, ndft.calc_acf(times=ts, data=data, max_lag=.4, ndft_fun=ndft.exe_nfft_c, max_freq=10)) npt.assert_allclose([1,.25,.5,.25], ndft.lag_strength(times=10*ts, max_lag=4, ndft_fun=ndft.exe_ndft)) data_padded = np.array([2,0,-2,0,-1j,1j]) ans_psd_embed = np.abs(np.fft.fft(data_padded))**2/4 ans_spec_win = np.array([1,1/16,1/16,.25,1/16,1/16]) mask =
np.array([True, False, True, False, True, True])
numpy.array
""" Tests of the command-line interface :Author: <NAME> <<EMAIL>> :Date: 2021-07-07 :Copyright: 2020, Center for Reproducible Biomedical Modeling :License: MIT """ from biosimulators_ginsim import __main__ from biosimulators_ginsim import core from biosimulators_ginsim.data_model import KISAO_ALGORITHM_MAP from biosimulators_ginsim.utils import read_model from biosimulators_utils.combine import data_model as combine_data_model from biosimulators_utils.combine.io import CombineArchiveWriter from biosimulators_utils.config import get_config from biosimulators_utils.report import data_model as report_data_model from biosimulators_utils.report.io import ReportReader from biosimulators_utils.simulator.exec import exec_sedml_docs_in_archive_with_containerized_simulator from biosimulators_utils.simulator.specs import gen_algorithms_from_specs from biosimulators_utils.sedml import data_model as sedml_data_model from biosimulators_utils.sedml.io import SedmlSimulationWriter from biosimulators_utils.sedml.utils import append_all_nested_children_to_doc from biosimulators_utils.warnings import BioSimulatorsWarning from kisao.exceptions import AlgorithmCannotBeSubstitutedException from unittest import mock import datetime import dateutil.tz import json import numpy import numpy.testing import os import shutil import tempfile import unittest import yaml class CliTestCase(unittest.TestCase): EXAMPLE_SBML_MODEL_FILENAME = os.path.join(os.path.dirname(__file__), 'fixtures', 'example-model.xml') EXAMPLE_ZGINML_MODEL_FILENAME = os.path.join(os.path.dirname(__file__), 'fixtures', 'SuppMat_Model_Master_Model.zginml') SPECIFICATIONS_FILENAME = os.path.join(os.path.dirname(__file__), '..', 'biosimulators.json') DOCKER_IMAGE = 'ghcr.io/biosimulators/biosimulators_ginsim/ginsim:latest' NAMESPACES = { None: 'http://sed-ml.org/sed-ml/level1/version3', 'sbml': 'http://www.sbml.org/sbml/level3/version1/core', 'qual': 'http://www.sbml.org/sbml/level3/version1/qual/version1', } def setUp(self): self.dirname = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.dirname) def test_exec_sbml_sed_task_successfully(self): task = sedml_data_model.Task( model=sedml_data_model.Model( source=self.EXAMPLE_SBML_MODEL_FILENAME, language=sedml_data_model.ModelLanguage.SBML.value, ), simulation=sedml_data_model.UniformTimeCourseSimulation( initial_time=0, output_start_time=0, output_end_time=10, number_of_points=10, algorithm=sedml_data_model.Algorithm( kisao_id='KISAO_0000449', ), ), ) variables = [ sedml_data_model.Variable( id='Time', symbol=sedml_data_model.Symbol.time, task=task), sedml_data_model.Variable( id='G0', target="/sbml:sbml/sbml:model/qual:listOfQualitativeSpecies/qual:qualitativeSpecies[@qual:id='G0']/@level", target_namespaces=self.NAMESPACES, task=task), sedml_data_model.Variable( id='G1', target="/sbml:sbml/sbml:model/qual:listOfQualitativeSpecies/qual:qualitativeSpecies[@qual:id='G1']/@level", target_namespaces=self.NAMESPACES, task=task), ] # synchronous method task.simulation.algorithm.kisao_id = 'KISAO_0000449' variable_results, log = core.exec_sed_task(task, variables) self.assertEqual(set(variable_results.keys()), set(['Time', 'G0', 'G1'])) for variable_result in variable_results.values(): self.assertFalse(numpy.any(numpy.isnan(variable_result))) numpy.testing.assert_allclose(variable_results['Time'], numpy.linspace(0, 10, 10 + 1)) # asynchronous method task.simulation.algorithm.kisao_id = 'KISAO_0000450' task.simulation.algorithm.changes.append(sedml_data_model.AlgorithmParameterChange( kisao_id='KISAO_0000574', )) variable_results, log = core.exec_sed_task(task, variables) self.assertEqual(set(variable_results.keys()), set(['Time', 'G0', 'G1'])) for variable_result in variable_results.values(): self.assertFalse(numpy.any(
numpy.isnan(variable_result)
numpy.isnan
import h5py import pickle import numpy as np def load_weights(): fff = h5py.File('Mybase/mask_rcnn_coco.h5','r') #打开h5文件 #print(list(f.keys())) mydict = {} mydict['global_step:0'] = 1000 ########res1######## dset = fff['conv1'] a = dset['conv1'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn_conv1'] a = dset['bn_conv1'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_0/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ########res2######## dset = fff['res2a_branch1'] a = dset['res2a_branch1'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2a_branch1'] a = dset['bn2a_branch1'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2a_branch2a'] a = dset['res2a_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2a_branch2a'] a = dset['bn2a_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2a_branch2b'] a = dset['res2a_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2a_branch2b'] a = dset['bn2a_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2a_branch2c'] a = dset['res2a_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2a_branch2c'] a = dset['bn2a_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ################################ dset = fff['res2b_branch2a'] a = dset['res2b_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2b_branch2a'] a = dset['bn2b_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2b_branch2b'] a = dset['res2b_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2b_branch2b'] a = dset['bn2b_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2b_branch2c'] a = dset['res2b_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2b_branch2c'] a = dset['bn2b_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res2c_branch2a'] a = dset['res2c_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2c_branch2a'] a = dset['bn2c_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2c_branch2b'] a = dset['res2c_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2c_branch2b'] a = dset['bn2c_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2c_branch2c'] a = dset['res2c_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2c_branch2c'] a = dset['bn2c_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ########res3######## dset = fff['res3a_branch1'] a = dset['res3a_branch1'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3a_branch1'] a = dset['bn3a_branch1'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3a_branch2a'] a = dset['res3a_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3a_branch2a'] a = dset['bn3a_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3a_branch2b'] a = dset['res3a_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3a_branch2b'] a = dset['bn3a_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3a_branch2c'] a = dset['res3a_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3a_branch2c'] a = dset['bn3a_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ################################ dset = fff['res3b_branch2a'] a = dset['res3b_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3b_branch2a'] a = dset['bn3b_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3b_branch2b'] a = dset['res3b_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3b_branch2b'] a = dset['bn3b_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3b_branch2c'] a = dset['res3b_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3b_branch2c'] a = dset['bn3b_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res3c_branch2a'] a = dset['res3c_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3c_branch2a'] a = dset['bn3c_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3c_branch2b'] a = dset['res3c_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3c_branch2b'] a = dset['bn3c_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3c_branch2c'] a = dset['res3c_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3c_branch2c'] a = dset['bn3c_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res3d_branch2a'] a = dset['res3d_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3d_branch2a'] a = dset['bn3d_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3d_branch2b'] a = dset['res3d_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3d_branch2b'] a = dset['bn3d_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3d_branch2c'] a = dset['res3d_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3d_branch2c'] a = dset['bn3d_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ########res4######## dset = fff['res4a_branch1'] a = dset['res4a_branch1'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4a_branch1'] a = dset['bn4a_branch1'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4a_branch2a'] a = dset['res4a_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4a_branch2a'] a = dset['bn4a_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4a_branch2b'] a = dset['res4a_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4a_branch2b'] a = dset['bn4a_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4a_branch2c'] a = dset['res4a_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4a_branch2c'] a = dset['bn4a_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ################################ dset = fff['res4b_branch2a'] a = dset['res4b_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4b_branch2a'] a = dset['bn4b_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4b_branch2b'] a = dset['res4b_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4b_branch2b'] a = dset['bn4b_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4b_branch2c'] a = dset['res4b_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4b_branch2c'] a = dset['bn4b_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4c_branch2a'] a = dset['res4c_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4c_branch2a'] a = dset['bn4c_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4c_branch2b'] a = dset['res4c_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4c_branch2b'] a = dset['bn4c_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4c_branch2c'] a = dset['res4c_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4c_branch2c'] a = dset['bn4c_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4d_branch2a'] a = dset['res4d_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4d_branch2a'] a = dset['bn4d_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4d_branch2b'] a = dset['res4d_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4d_branch2b'] a = dset['bn4d_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4d_branch2c'] a = dset['res4d_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4d_branch2c'] a = dset['bn4d_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4e_branch2a'] a = dset['res4e_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4e_branch2a'] a = dset['bn4e_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4e_branch2b'] a = dset['res4e_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4e_branch2b'] a = dset['bn4e_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4e_branch2c'] a = dset['res4e_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4e_branch2c'] a = dset['bn4e_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4f_branch2a'] a = dset['res4f_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4f_branch2a'] a = dset['bn4f_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4f_branch2b'] a = dset['res4f_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4f_branch2b'] a = dset['bn4f_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4f_branch2c'] a = dset['res4f_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4f_branch2c'] a = dset['bn4f_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4g_branch2a'] a = dset['res4g_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4g_branch2a'] a = dset['bn4g_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4g_branch2b'] a = dset['res4g_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4g_branch2b'] a = dset['bn4g_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4g_branch2c'] a = dset['res4g_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4g_branch2c'] a = dset['bn4g_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4h_branch2a'] a = dset['res4h_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4h_branch2a'] a = dset['bn4h_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4h_branch2b'] a = dset['res4h_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4h_branch2b'] a = dset['bn4h_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4h_branch2c'] a = dset['res4h_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4h_branch2c'] a = dset['bn4h_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4i_branch2a'] a = dset['res4i_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4i_branch2a'] a = dset['bn4i_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4i_branch2b'] a = dset['res4i_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4i_branch2b'] a = dset['bn4i_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4i_branch2c'] a = dset['res4i_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4i_branch2c'] a = dset['bn4i_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4j_branch2a'] a = dset['res4j_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4j_branch2a'] a = dset['bn4j_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4j_branch2b'] a = dset['res4j_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4j_branch2b'] a = dset['bn4j_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4j_branch2c'] a = dset['res4j_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4j_branch2c'] a = dset['bn4j_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4k_branch2a'] a = dset['res4k_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4k_branch2a'] a = dset['bn4k_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4k_branch2b'] a = dset['res4k_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4k_branch2b'] a = dset['bn4k_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4k_branch2c'] a = dset['res4k_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4k_branch2c'] a = dset['bn4k_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4l_branch2a'] a = dset['res4l_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4l_branch2a'] a = dset['bn4l_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4l_branch2b'] a = dset['res4l_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4l_branch2b'] a = dset['bn4l_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4l_branch2c'] a = dset['res4l_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4l_branch2c'] a = dset['bn4l_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4m_branch2a'] a = dset['res4m_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4m_branch2a'] a = dset['bn4m_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4m_branch2b'] a = dset['res4m_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4m_branch2b'] a = dset['bn4m_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4m_branch2c'] a = dset['res4m_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4m_branch2c'] a = dset['bn4m_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g =
np.array(a['moving_variance:0'], dtype=np.float32)
numpy.array
import numpy as np import random import pandas as pd from matplotlib import pyplot as plt ''' Perceptron algorithm that finds the idea weights given a data set and labels Parameters ---------- coords: data points in 2 dimensions ([x1, x2]) labels: binary target output for each data point (-1 or 1) epochs: number of iterations that needs to be run misclassifiedList Returns ------- w: resulting weight vector after learning the data points ''' def perceptron_algorithm(coords, labels, epochs, misclassifiedList): w = np.zeros((coords.shape[1]) + 1) for i in range(epochs): misclassified = 0 for x, y in zip(coords, labels): dotProd = np.dot(x, w[1:]) + w[0] target = 1.0 if (dotProd > 0.0) else -1.0 if(target != y): print(y, target, "classified incorrectly") misclassified += 1 w[1:] += y * x w[0] += x[0] else: print(y, target, "classified correctly") print("PRINTING W", w) misclassifiedList.append(misclassified) return w if __name__ == "__main__": # Set up the random generator seed np.random.seed(121232141) # Total number of random points total = 1000 # Create 20 random points that are linearly separable A = 2 * np.random.random_sample((total//2, 2)) + 0 B = 2 *
np.random.random_sample((total//2, 2))
numpy.random.random_sample
import glob, math, cv2 import numpy as np from scipy import misc from scipy import linalg EPS = 1e-6 XMIN = -32 # right (neg is left) XMAX = 32.0 # right YMIN = -16.0 # down (neg is up) YMAX = 16.0 # down ZMIN = -32 # forward ZMAX = 32 # forward def print_stats(name, tensor): print('%s min = %.2f, mean = %.2f, max = %.2f' % (name, np.min(tensor), np.mean(tensor), np.max(tensor))) def reduce_masked_mean(x, mask, axis=None, keepdims=False): # x and mask are the same shape # returns shape-1 # axis can be a list of axes prod = x*mask numer = np.sum(prod, axis=axis, keepdims=keepdims) denom = EPS+np.sum(mask, axis=axis, keepdims=keepdims) mean = numer/denom return mean def reduce_masked_sum(x, mask, axis=None, keepdims=False): # x and mask are the same shape # returns shape-1 # axis can be a list of axes prod = x*mask numer = np.sum(prod, axis=axis, keepdims=keepdims) return numer def get_nFiles(path): return len(glob.glob(path)) def get_file_list(path): return glob.glob(path) def rotm2eul(R): # R is 3x3 sy = math.sqrt(R[0,0] * R[0,0] + R[1,0] * R[1,0]) if sy > 1e-6: # singular x = math.atan2(R[2,1] , R[2,2]) y = math.atan2(-R[2,0], sy) z = math.atan2(R[1,0], R[0,0]) else: x = math.atan2(-R[1,2], R[1,1]) y = math.atan2(-R[2,0], sy) z = 0 return x, y, z def rad2deg(rad): return rad*180.0/np.pi def deg2rad(deg): return deg/180.0*np.pi def eul2rotm(rx, ry, rz): # copy of matlab, but order of inputs is different # R = [ cy*cz sy*sx*cz-sz*cx sy*cx*cz+sz*sx # cy*sz sy*sx*sz+cz*cx sy*cx*sz-cz*sx # -sy cy*sx cy*cx] sinz = np.sin(rz) siny = np.sin(ry) sinx = np.sin(rx) cosz = np.cos(rz) cosy = np.cos(ry) cosx = np.cos(rx) r11 = cosy*cosz r12 = sinx*siny*cosz - cosx*sinz r13 = cosx*siny*cosz + sinx*sinz r21 = cosy*sinz r22 = sinx*siny*sinz + cosx*cosz r23 = cosx*siny*sinz - sinx*cosz r31 = -siny r32 = sinx*cosy r33 = cosx*cosy r1 = np.stack([r11,r12,r13],axis=-1) r2 = np.stack([r21,r22,r23],axis=-1) r3 = np.stack([r31,r32,r33],axis=-1) r = np.stack([r1,r2,r3],axis=-2) return r def wrap2pi(rad_angle): # puts the angle into the range [-pi, pi] return np.arctan2(np.sin(rad_angle), np.cos(rad_angle)) def rot2view(rx,ry,rz,x,y,z): # takes rot angles and 3d position as input # returns viewpoint angles as output # (all in radians) # it will perform strangely if z <= 0 az = wrap2pi(ry - (-np.arctan2(z, x) - 1.5*np.pi)) el = -wrap2pi(rx - (-np.arctan2(z, y) - 1.5*np.pi)) th = -rz return az, el, th def invAxB(a,b): """ Compute the relative 3D transformation between a and b. Input: a -- first pose (homogeneous 4x4 matrix) b -- second pose (homogeneous 4x4 matrix) Output: Relative 3D transformation from a to b. """ return np.dot(np.linalg.inv(a),b) def merge_rt(r, t): # r is 3 x 3 # t is 3 or maybe 3 x 1 t = np.reshape(t, [3, 1]) rt = np.concatenate((r,t), axis=1) # rt is 3 x 4 br = np.reshape(np.array([0,0,0,1], np.float32), [1, 4]) # br is 1 x 4 rt = np.concatenate((rt, br), axis=0) # rt is 4 x 4 return rt def merge_rts(r, t): # r is S x 3 x 3 # t is S x 3 or maybe S x 3 x 1 S, D1, D2 = r.shape assert(D1 == 3 and D2 == 3) t = np.reshape(t, [S, 3, 1]) rt = np.concatenate((r,t), axis=-1) # rt is S x 3 x 4 br = np.reshape(np.tile(np.array([0,0,0,1], np.float32), (S, 1)), [S, 1, 4]) # br is S x 1 x 4 rt = np.concatenate((rt, br), axis=1) # rt is S x 4 x 4 return rt def split_rt(rt): r = rt[:3,:3] t = rt[:3,3] r = np.reshape(r, [3, 3]) t = np.reshape(t, [3, 1]) return r, t def split_rts(rt): N, _, _ = rt.shape r = rt[:, :3, :3] t = rt[:, :3, 3] r = np.reshape(r, [N, 3, 3]) t = np.reshape(t, [N, 3, 1]) return r, t def split_lrtlist(lrtlist): # splits a BN x 19 tensor # into N x 3 (lens) # and N x 4 x 4 (rts) N, D = list(lrtlist.shape) assert(D==19) lenlist = lrtlist[:,:3] ref_T_objs_list = lrtlist[:,3:].reshape(N, 4, 4) return lenlist, ref_T_objs_list def merge_lrtlist(lenlist, rtlist): # lenlist is N x 3 # rtlist is N x 4 x 4 # merges these into a N x 19 tensor N, D = list(lenlist.shape) assert(D==3) N2, E, F = list(rtlist.shape) assert(N==N2) assert(E==4 and F==4) rtlist = rtlist.reshape(N, 16) lrtlist = np.concatenate([lenlist, rtlist], axis=1) return lrtlist def split_intrinsics(K): # K is 3 x 4 or 4 x 4 fx = K[0,0] fy = K[1,1] x0 = K[0,2] y0 = K[1,2] return fx, fy, x0, y0 def merge_intrinsics(fx, fy, x0, y0): # inputs are shaped [] K = np.eye(4) K[0,0] = fx K[1,1] = fy K[0,2] = x0 K[1,2] = y0 # K is shaped 4 x 4 return K def scale_intrinsics(K, sx, sy): fx, fy, x0, y0 = split_intrinsics(K) fx *= sx fy *= sy x0 *= sx y0 *= sy return merge_intrinsics(fx, fy, x0, y0) # def meshgrid(H, W): # x = np.linspace(0, W-1, W) # y = np.linspace(0, H-1, H) # xv, yv = np.meshgrid(x, y) # return xv, yv def compute_distance(transform): """ Compute the distance of the translational component of a 4x4 homogeneous matrix. """ return numpy.linalg.norm(transform[0:3,3]) def radian_l1_dist(e, g): # if our angles are in [0, 360] we can follow this stack overflow answer: # https://gamedev.stackexchange.com/questions/4467/comparing-angles-and-working-out-the-difference # wrap2pi brings the angles to [-180, 180]; adding pi puts them in [0, 360] e = wrap2pi(e)+np.pi g = wrap2pi(g)+np.pi l = np.abs(np.pi - np.abs(np.abs(e-g) - np.pi)) return l def apply_4x4(RT, XYZ): # RT is 4 x 4 # XYZ is N x 3 # put into homogeneous coords X, Y, Z = np.split(XYZ, 3, axis=1) ones = np.ones_like(X) XYZ1 = np.concatenate([X, Y, Z, ones], axis=1) # XYZ1 is N x 4 XYZ1_t = np.transpose(XYZ1) # this is 4 x N XYZ2_t = np.dot(RT, XYZ1_t) # this is 4 x N XYZ2 = np.transpose(XYZ2_t) # this is N x 4 XYZ2 = XYZ2[:,:3] # this is N x 3 return XYZ2 def apply_4x4s(RT, XYZ): # RT is B x 4 x 4 # XYZ is B x N x 3 # put into homogeneous coords X, Y, Z = np.split(XYZ, 3, axis=2) ones = np.ones_like(X) XYZ1 = np.concatenate([X, Y, Z, ones], axis=2) # XYZ1 is B x N x 4 XYZ1_t = np.transpose(XYZ1, (0, 2, 1)) # this is B x 4 x N XYZ2_t = np.matmul(RT, XYZ1_t) # this is B x 4 x N XYZ2 = np.transpose(XYZ2_t, (0, 2, 1)) # this is B x N x 4 XYZ2 = XYZ2[:, :, :3] # this is B x N x 3 return XYZ2 def apply_4x4_to_lrtlist(Y_T_X, lrtlist_X): N, D = list(lrtlist_X.shape) assert (D == 19) N2, E, F = list(Y_T_X.shape) assert (N2 == N) assert (E == 4 and F == 4) lenlist, rtlist_X = split_lrtlist(lrtlist_X) # rtlist_X is N x 4 x 4 rtlist_Y = np.matmul(Y_T_X, rtlist_X) lrtlist_Y = merge_lrtlist(lenlist, rtlist_Y) return lrtlist_Y def apply_pix_T_cam(pix_T_cam, xyz): fx, fy, x0, y0 = split_intrinsics(pix_T_cam) # xyz is shaped B x H*W x 3 # returns xy, shaped B x H*W x 2 N, C = xyz.shape x, y, z = np.split(xyz, 3, axis=-1) EPS = 1e-4 z = np.clip(z, EPS, None) x = (x*fx)/(z)+x0 y = (y*fy)/(z)+y0 xy = np.concatenate([x, y], axis=-1) return xy def Ref2Mem(xyz, Z, Y, X): # xyz is N x 3, in ref coordinates # transforms ref coordinates into mem coordinates N, C = xyz.shape assert(C==3) mem_T_ref = get_mem_T_ref(Z, Y, X) xyz = apply_4x4(mem_T_ref, xyz) return xyz # def Mem2Ref(xyz_mem, MH, MW, MD): # # xyz is B x N x 3, in mem coordinates # # transforms mem coordinates into ref coordinates # B, N, C = xyz_mem.get_shape().as_list() # ref_T_mem = get_ref_T_mem(B, MH, MW, MD) # xyz_ref = utils_geom.apply_4x4(ref_T_mem, xyz_mem) # return xyz_ref def get_mem_T_ref(Z, Y, X): # sometimes we want the mat itself # note this is not a rigid transform # for interpretability, let's construct this in two steps... # translation center_T_ref = np.eye(4, dtype=np.float32) center_T_ref[0,3] = -XMIN center_T_ref[1,3] = -YMIN center_T_ref[2,3] = -ZMIN VOX_SIZE_X = (XMAX-XMIN)/float(X) VOX_SIZE_Y = (YMAX-YMIN)/float(Y) VOX_SIZE_Z = (ZMAX-ZMIN)/float(Z) # scaling mem_T_center = np.eye(4, dtype=np.float32) mem_T_center[0,0] = 1./VOX_SIZE_X mem_T_center[1,1] = 1./VOX_SIZE_Y mem_T_center[2,2] = 1./VOX_SIZE_Z mem_T_ref = np.dot(mem_T_center, center_T_ref) return mem_T_ref def safe_inverse(a): r, t = split_rt(a) t = np.reshape(t, [3, 1]) r_transpose = r.T inv = np.concatenate([r_transpose, -np.matmul(r_transpose, t)], 1) bottom_row = a[3:4, :] # this is [0, 0, 0, 1] inv = np.concatenate([inv, bottom_row], 0) return inv def get_ref_T_mem(Z, Y, X): mem_T_ref = get_mem_T_ref(X, Y, X) # note safe_inverse is inapplicable here, # since the transform is nonrigid ref_T_mem = np.linalg.inv(mem_T_ref) return ref_T_mem def voxelize_xyz(xyz_ref, Z, Y, X): # xyz_ref is N x 3 xyz_mem = Ref2Mem(xyz_ref, Z, Y, X) # this is N x 3 voxels = get_occupancy(xyz_mem, Z, Y, X) voxels = np.reshape(voxels, [Z, Y, X, 1]) return voxels def get_inbounds(xyz, Z, Y, X, already_mem=False): # xyz is H*W x 3 # proto is MH x MW x MD if not already_mem: xyz = Ref2Mem(xyz, Z, Y, X) x_valid = np.logical_and( np.greater_equal(xyz[:,0], -0.5), np.less(xyz[:,0], float(X)-0.5)) y_valid = np.logical_and( np.greater_equal(xyz[:,1], -0.5), np.less(xyz[:,1], float(Y)-0.5)) z_valid = np.logical_and( np.greater_equal(xyz[:,2], -0.5), np.less(xyz[:,2], float(Z)-0.5)) inbounds = np.logical_and(np.logical_and(x_valid, y_valid), z_valid) return inbounds def sub2ind3D_zyx(depth, height, width, d, h, w): # same as sub2ind3D, but inputs in zyx order # when gathering/scattering with these inds, the tensor should be Z x Y x X return d*height*width + h*width + w def sub2ind3D_yxz(height, width, depth, h, w, d): return h*width*depth + w*depth + d def get_occupancy(xyz_mem, Z, Y, X): # xyz_mem is N x 3 # we want to fill a voxel tensor with 1's at these inds inbounds = get_inbounds(xyz_mem, Z, Y, X, already_mem=True) inds = np.where(inbounds) xyz_mem = np.reshape(xyz_mem[inds], [-1, 3]) # xyz_mem is N x 3 # this is more accurate than a cast/floor, but runs into issues when Y==0 xyz_mem = np.round(xyz_mem).astype(np.int32) x = xyz_mem[:,0] y = xyz_mem[:,1] z = xyz_mem[:,2] voxels = np.zeros([Z, Y, X], np.float32) voxels[z, y, x] = 1.0 return voxels def Pixels2Camera(x,y,z,fx,fy,x0,y0): # x and y are locations in pixel coordinates, z is a depth image in meters # their shapes are H x W # fx, fy, x0, y0 are scalar camera intrinsics # returns xyz, sized [B,H*W,3] H, W = z.shape fx = np.reshape(fx, [1,1]) fy = np.reshape(fy, [1,1]) x0 = np.reshape(x0, [1,1]) y0 = np.reshape(y0, [1,1]) # unproject x = ((z+EPS)/fx)*(x-x0) y = ((z+EPS)/fy)*(y-y0) x = np.reshape(x, [-1]) y = np.reshape(y, [-1]) z = np.reshape(z, [-1]) xyz = np.stack([x,y,z], axis=1) return xyz def depth2pointcloud(z, pix_T_cam): H = z.shape[0] W = z.shape[1] y, x = meshgrid2D(H, W) z = np.reshape(z, [H, W]) fx, fy, x0, y0 = split_intrinsics(pix_T_cam) xyz = Pixels2Camera(x, y, z, fx, fy, x0, y0) return xyz def meshgrid2D(Y, X): grid_y = np.linspace(0.0, Y-1, Y) grid_y = np.reshape(grid_y, [Y, 1]) grid_y = np.tile(grid_y, [1, X]) grid_x = np.linspace(0.0, X-1, X) grid_x = np.reshape(grid_x, [1, X]) grid_x = np.tile(grid_x, [Y, 1]) # outputs are Y x X return grid_y, grid_x def gridcloud3D(Y, X, Z): x_ = np.linspace(0, X-1, X) y_ = np.linspace(0, Y-1, Y) z_ = np.linspace(0, Z-1, Z) y, x, z = np.meshgrid(y_, x_, z_, indexing='ij') x = np.reshape(x, [-1]) y = np.reshape(y, [-1]) z = np.reshape(z, [-1]) xyz = np.stack([x,y,z], axis=1).astype(np.float32) return xyz def gridcloud2D(Y, X): x_ =
np.linspace(0, X-1, X)
numpy.linspace
import re import numpy as np import torch import torchvision import torch.nn as nn import torchvision.datasets as dset from torch.autograd import Variable from torch.utils.data import DataLoader, Dataset from hanja import hangul from scipy import signal from scipy.io import wavfile # 그저 one_hot ... def one_hot(i, length): if i == -75: i += 1 pass array =
np.zeros(length)
numpy.zeros
# import required libraries import numpy as np import cv2 print('OpenCV version: '+cv2.__version__) import matplotlib.pyplot as plt import pandas as pd import datetime import os from collections import Counter # Set source folder SRC_FOLDER = "C:/Users/raksh/OneDrive - The Pennsylvania State University/PhD Research/Paper-4/SysID Experiment/OL Test 3/" # open and read file containing start and end timestamps of the videos df_vidTimes = pd.read_excel(SRC_FOLDER + "Video_Timestamps_1.xlsx") df_vidTimes.drop(df_vidTimes.columns[0],axis=1,inplace=True) ################ ALL FUNCTIONS DEFINITIONS ################ def perspCorrection(img,pt1,pt2,pt3,pt4,scale_width,scale_height): # Create a copy of the image img_copy = np.copy(img) # Convert to RGB so as to display via matplotlib # Using Matplotlib we can easily find the coordinates of the 4 points that is essential for finding then transformation matrix #img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) # to calculate the transformation matrix input_pts = np.float32([pt1,pt2,pt3,pt4]) output_pts = np.float32([[0,0],[scale_width-1,0],[0,scale_height-1],[scale_width-1,scale_height-1]]) # Compute the perspective transform M M = cv2.getPerspectiveTransform(input_pts,output_pts) # Apply the perspective transformation to the image imgPersp = cv2.warpPerspective(img,M,(scale_width, scale_height)) #,flags=cv2.INTER_LINEAR) cv2.INTER_CUBIC is also an option imgGrayPersp = cv2.cvtColor(imgPersp, cv2.COLOR_BGR2GRAY) # visulaize corners using cv2 circles for x in range (0,4): cv2.circle(img_copy,(round(input_pts[x][0]),round(input_pts[x][1])),5,(0,0,255),cv2.FILLED) return [img_copy,imgPersp,imgGrayPersp] def extractTopBottom(img,tStart,tEnd,bStart,bEnd): img_top = img[tStart[1]:tEnd[1],tStart[0]:tEnd[0]] img_bottom = img[bStart[1]:bEnd[1],bStart[0]:bEnd[0]] return [img_top,img_bottom] def gaussianBlur(img,fsize): # gaussian blur gblur = cv2.GaussianBlur(img,(fsize,fsize),0) return gblur def medianBlur(img,fsize=3): # median blur - effective at removing salt and pepper noise mblur = cv2.medianBlur(img,fsize) return mblur def bilateralFilter(img): # Bilateral filter preserves edges while removing noise bfblur = cv2.bilateralFilter(img,9,75,75) return bfblur def gAdaptiveThresholding(img): # median filtering adaptive_gaussian = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\ cv2.THRESH_BINARY,11,2) return adaptive_gaussian def morphOps(img,kernel1,kernel2,k1_num_passes=2): # Closing = Dilation + Erosion # dilation mask_dil = cv2.dilate(img,kernel1,iterations = k1_num_passes) # erosion mask_erode = cv2.erode(mask_dil,kernel2,iterations = 1) return mask_erode def computeW_Rev(img,img_debug): avg_num_pixels = 159 scaling_factor = 1.0 mm_per_pixel = ((1/32)*25.4)/(scaling_factor*avg_num_pixels) edge_length_threshold = 55 min_L_edge_threshold = False min_R_edge_threshold = False # Predefine arrays for data storage approx_edges = 10 num_edges = np.zeros(img.shape[0]) #,dtype=np.uint16) edge_start = np.zeros([img.shape[0],approx_edges])#,dtype=np.uint16) edge_end = np.zeros([img.shape[0],approx_edges])#,dtype=np.uint16) edge_count = 0 k=0 sse = False tse = False # start scanning from (0,0) until black pixel is found # go across columns first for i in range(img.shape[0]): found_edge = False temp_edge_count = 0 k=0 for j in range(img.shape[1]): if(img[i,j]<=50): # Black pixel found - edge if(found_edge==False): found_edge = True temp_edge_count += 1 num_edges[i] = temp_edge_count edge_start[i][k] = j k += 1 else: if(found_edge): edge_end[i][k-1] = j-1 found_edge = False x = Counter(num_edges) y = {z:count for z, count in x.items() if count >= edge_length_threshold and z > 1} #print(y) if(len(y)!=0): edge_condition = sorted(y,key=y.get)[0] else: print('num_edges > 1 and length(num_edges) >= threshold not satisfied . . . Lowering threshold to identify matches') w = {z:count for z, count in x.items() if count < edge_length_threshold and z > 1} if(len(w)!=0): print('Found num_edges > 1 and length(num_edges) < threshold!') edge_condition = sorted(w,key=w.get)[0] else: print('Unable to find edge condition . . . check image') edge_condition = -1 if img_debug: print('edge condition: ' + str(edge_condition)) if edge_condition == 2: #max(num_edges)==2: # max num_edges = 2 L1_edge_start = edge_start[:,0][np.argwhere(num_edges==2)][np.logical_and(edge_start[:,0][np.argwhere(num_edges==2)]>60,edge_start[:,0][np.argwhere(num_edges==2)]<300)] L1_edge_end = edge_end[:,0][np.argwhere(num_edges==2)][np.logical_and(edge_end[:,0][np.argwhere(num_edges==2)]>60,edge_end[:,0][np.argwhere(num_edges==2)]<300)] if(np.max(L1_edge_start)-np.min(L1_edge_start)>13): L1_edge_start = L1_edge_start[L1_edge_start >= (np.max(L1_edge_start)-10)] if(np.max(L1_edge_end)-np.min(L1_edge_end)>15): L1_edge_end = L1_edge_end[L1_edge_end >= (np.max(L1_edge_end)-10)] trueLedge_start = L1_edge_start trueLedge_end = L1_edge_end R1_edge_start = edge_start[:,1][np.argwhere(num_edges==2)][edge_start[:,1][np.argwhere(num_edges==2)]>350] R1_edge_end = edge_end[:,1][np.argwhere(num_edges==2)][edge_end[:,1][np.argwhere(num_edges==2)]>350] if(np.max(R1_edge_start)-np.min(R1_edge_start)>13): R1_edge_start = R1_edge_start[R1_edge_start <= (
np.min(R1_edge_start)
numpy.min
#!/usr/bin/env python from builtins import str import unittest from math import sqrt from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular from anuga.shallow_water.shallow_water_domain import Domain from anuga.abstract_2d_finite_volumes.generic_domain import Generic_Domain from anuga.abstract_2d_finite_volumes.tag_region import * #from anuga.config import epsilon import numpy as num """ This is what the mesh in these tests look like; 3---7 |5 /| | /6| 2---6 |3 /| | /2| 1---5 |1 /| | /0| 0---4 """ def add_x_y(x, y): return x+y def give_me_23(x, y): return 23.0 class Test_tag_region(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_region_tags(self): """get values based on triangle lists.""" #Create basic mesh points, vertices, boundary = rectangular(1, 3) #Create shallow water domain domain = Domain(points, vertices, boundary) domain.build_tagged_elements_dictionary({'bottom': [0,1], 'top': [4,5], 'all': [0,1,2,3,4,5]}) #Set friction manning = 0.07 domain.set_quantity('friction', manning) a = Set_tag_region('bottom', 'friction', 0.09) b = Set_tag_region('top', 'friction', 1.0) domain.set_tag_region([a, b]) expected = [[ 0.09, 0.09, 0.09], [ 0.09, 0.09, 0.09], [ 0.07, 0.07, 0.07], [ 0.07, 0.07, 0.07], [ 1.0, 1.0, 1.0], [ 1.0, 1.0, 1.0]] msg = ("\ndomain.quantities['friction']=%s\nexpected value=%s" % (str(domain.quantities['friction'].get_values()), str(expected))) assert num.allclose(domain.quantities['friction'].get_values(), expected), msg #c = Add_Value_To_region('all', 'friction', 10.0) domain.set_tag_region(Add_value_to_region('all', 'friction', 10.0)) #print domain.quantities['friction'].get_values() assert num.allclose(domain.quantities['friction'].get_values(), [[ 10.09, 10.09, 10.09], [ 10.09, 10.09, 10.09], [ 10.07, 10.07, 10.07], [ 10.07, 10.07, 10.07], [ 11.0, 11.0, 11.0], [ 11.0, 11.0, 11.0]]) # trying a function domain.set_tag_region(Set_tag_region('top', 'friction', add_x_y)) #print domain.quantities['friction'].get_values() assert num.allclose(domain.quantities['friction'].get_values(), [[ 10.09, 10.09, 10.09], [ 10.09, 10.09, 10.09], [ 10.07, 10.07, 10.07], [ 10.07, 10.07, 10.07], [ 5./3, 2.0, 2./3], [ 1.0, 2./3, 2.0]]) domain.set_quantity('elevation', 10.0) domain.set_quantity('stage', 10.0) domain.set_tag_region(Add_value_to_region('top', 'stage', 1.0,initial_quantity='elevation')) #print domain.quantities['stage'].get_values() assert num.allclose(domain.quantities['stage'].get_values(), [[ 10., 10., 10.], [ 10., 10., 10.], [ 10., 10., 10.], [ 10., 10., 10.], [ 11.0, 11.0, 11.0], [ 11.0, 11.0, 11.0]]) domain.set_quantity('elevation', 10.0) domain.set_quantity('stage', give_me_23) #this works as well, (is cleaner, but doesn't work for regions) #domain.set_quantity('stage', # domain.quantities['stage'].vertex_values+ \ # domain.quantities['elevation'].vertex_values) domain.set_tag_region(Add_quantities('top', 'elevation','stage')) #print domain.quantities['stage'].get_values() assert num.allclose(domain.quantities['elevation'].get_values(), [[ 10., 10., 10.], [ 10., 10., 10.], [ 10., 10., 10.], [ 10., 10., 10.], [ 33., 33.0, 33.], [ 33.0, 33., 33.]]) def test_unique_vertices(self): """get values based on triangle lists.""" #Create basic mesh points, vertices, boundary = rectangular(1, 3) #Create shallow water domain domain = Domain(points, vertices, boundary) domain.build_tagged_elements_dictionary({'bottom':[0,1], 'top':[4,5], 'all':[0,1,2,3,4,5]}) #Set friction manning = 0.07 domain.set_quantity('friction', manning) a = Set_tag_region('bottom', 'friction', 0.09, location = 'unique vertices') domain.set_tag_region(a) assert num.allclose(domain.quantities['friction'].get_values(), [[ 0.09, 0.09, 0.09], [ 0.09, 0.09, 0.09], [ 0.09, 0.07, 0.09], [ 0.07, 0.09, 0.07], [ 0.07, 0.07, 0.07], [ 0.07, 0.07, 0.07]]) def test_unique_verticesII(self): """ get values based on triangle lists. """ #Create basic mesh points, vertices, boundary = rectangular(1, 3) #Create shallow water domain domain = Domain(points, vertices, boundary) domain.build_tagged_elements_dictionary({'bottom':[0,1], 'top':[4,5], 'all':[0,1,2,3,4,5]}) #Set friction manning = 0.07 domain.set_quantity('friction', manning) domain.set_tag_region(Add_value_to_region('bottom', 'friction', 1.0,initial_quantity='friction', location = 'unique vertices')) #print domain.quantities['friction'].get_values() assert num.allclose(domain.quantities['friction'].get_values(),\ [[ 1.07, 1.07, 1.07], [ 1.07, 1.07, 1.07], [ 1.07, 0.07, 1.07], [ 0.07, 1.07, 0.07], [ 0.07, 0.07, 0.07], [ 0.07, 0.07, 0.07]]) def test_unique_vertices_average_loc_vert(self): """Get values based on triangle lists.""" #Create basic mesh points, vertices, boundary = rectangular(1, 3) #Create shallow water domain domain = Domain(points, vertices, boundary) domain.build_tagged_elements_dictionary({'bottom': [0, 1], 'top': [4, 5], 'not_bottom': [2, 3, 4, 5]}) #Set friction domain.set_quantity('friction', add_x_y) av_bottom = 2.0 / 3.0 add = 60.0 calc_frict = av_bottom + add domain.set_tag_region(Add_value_to_region('bottom', 'friction', add, initial_quantity='friction', location='vertices', average=True)) frict_points = domain.quantities['friction'].get_values() expected = [calc_frict, calc_frict, calc_frict] msg = ('frict_points[0]=%s\nexpected=%s' % (str(frict_points[0]), str(expected))) assert num.allclose(frict_points[0], expected), msg msg = ('frict_points[1]=%s\nexpected=%s' % (str(frict_points[1]), str(expected))) assert num.allclose(frict_points[1], expected), msg def test_unique_vertices_average_loc_unique_vert_1_5(self): """ get values based on triangle lists. """ #Create basic mesh points, vertices, boundary = rectangular(1, 3) #Create shallow water domain domain = Domain(points, vertices, boundary) domain.set_flow_algorithm('1_5') domain.build_tagged_elements_dictionary({'bottom':[0,1], 'top':[4,5], 'not_bottom':[2,3,4,5]}) #Set friction domain.set_quantity('friction', add_x_y) av_bottom = 2.0/3.0 add = 60.0 calc_frict = av_bottom + add domain.set_tag_region(Add_value_to_region('bottom', 'friction', add, initial_quantity='friction', location='unique vertices', average=True )) #print domain.quantities['friction'].get_values() frict_points = domain.quantities['friction'].get_values() assert num.allclose(frict_points[0],\ [ calc_frict, calc_frict, calc_frict]) assert num.allclose(frict_points[1],\ [ calc_frict, calc_frict, calc_frict]) assert num.allclose(frict_points[2],\ [ calc_frict, 1.0 + 2.0/3.0, calc_frict]) assert num.allclose(frict_points[3],\ [ 2.0/3.0,calc_frict, 1.0 + 2.0/3.0]) def test_unique_vertices_average_loc_unique_vert_de0(self): """ get values based on triangle lists. """ #Create basic mesh points, vertices, boundary = rectangular(1, 3) #Create shallow water domain domain = Domain(points, vertices, boundary) domain.build_tagged_elements_dictionary({'bottom':[0,1], 'top':[4,5], 'not_bottom':[2,3,4,5]}) #Set friction domain.set_quantity('friction', add_x_y) av_bottom = 2.0/3.0 add = 60.0 calc_frict = av_bottom + add domain.set_tag_region(Add_value_to_region('bottom', 'friction', add, initial_quantity='friction', location='unique vertices', average=True )) #print domain.quantities['friction'].get_values() frict_points = domain.quantities['friction'].get_values() expected0 = [ 60.77777778, 60.77777778, 60.77777778] expected1 = [ 60.77777778, 60.77777778, 60.77777778] expected2 = [ 60.77777778, 1.66666667, 60.77777778] expected3 = [ 0.66666667, 60.77777778, 1.66666667] assert num.allclose(frict_points[0],expected0) assert
num.allclose(frict_points[1],expected1)
numpy.allclose
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This module implements common utility functions and classes for the star finders. """ import math import warnings from astropy.stats import gaussian_fwhm_to_sigma import numpy as np from .peakfinder import find_peaks from ..utils._convolution import _filter_data from ..utils.exceptions import NoDetectionsWarning class _StarFinderKernel: """ Class to calculate a 2D Gaussian density enhancement kernel. The kernel has negative wings and sums to zero. It is used by both `DAOStarFinder` and `IRAFStarFinder`. Parameters ---------- fwhm : float The full-width half-maximum (FWHM) of the major axis of the Gaussian kernel in units of pixels. ratio : float, optional The ratio of the minor and major axis standard deviations of the Gaussian kernel. ``ratio`` must be strictly positive and less than or equal to 1.0. The default is 1.0 (i.e., a circular Gaussian kernel). theta : float, optional The position angle (in degrees) of the major axis of the Gaussian kernel, measured counter-clockwise from the positive x axis. sigma_radius : float, optional The truncation radius of the Gaussian kernel in units of sigma (standard deviation) [``1 sigma = FWHM / 2.0*sqrt(2.0*log(2.0))``]. The default is 1.5. normalize_zerosum : bool, optional Whether to normalize the Gaussian kernel to have zero sum, The default is `True`, which generates a density-enhancement kernel. Notes ----- The class attributes include the dimensions of the elliptical kernel and the coefficients of a 2D elliptical Gaussian function expressed as: ``f(x,y) = A * exp(-g(x,y))`` where ``g(x,y) = a*(x-x0)**2 + 2*b*(x-x0)*(y-y0) + c*(y-y0)**2`` References ---------- .. [1] https://en.wikipedia.org/wiki/Gaussian_function """ def __init__(self, fwhm, ratio=1.0, theta=0.0, sigma_radius=1.5, normalize_zerosum=True): if fwhm < 0: raise ValueError('fwhm must be positive.') if ratio <= 0 or ratio > 1: raise ValueError('ratio must be positive and less or equal ' 'than 1.') if sigma_radius <= 0: raise ValueError('sigma_radius must be positive.') self.fwhm = fwhm self.ratio = ratio self.theta = theta self.sigma_radius = sigma_radius self.xsigma = self.fwhm * gaussian_fwhm_to_sigma self.ysigma = self.xsigma * self.ratio theta_radians = np.deg2rad(self.theta) cost = np.cos(theta_radians) sint = np.sin(theta_radians) xsigma2 = self.xsigma**2 ysigma2 = self.ysigma**2 self.a = (cost**2 / (2.0 * xsigma2)) + (sint**2 / (2.0 * ysigma2)) # CCW self.b = 0.5 * cost * sint * ((1.0 / xsigma2) - (1.0 / ysigma2)) self.c = (sint**2 / (2.0 * xsigma2)) + (cost**2 / (2.0 * ysigma2)) # find the extent of an ellipse with radius = sigma_radius*sigma; # solve for the horizontal and vertical tangents of an ellipse # defined by g(x,y) = f self.f = self.sigma_radius**2 / 2.0 denom = (self.a * self.c) - self.b**2 # nx and ny are always odd self.nx = 2 * int(max(2, math.sqrt(self.c * self.f / denom))) + 1 self.ny = 2 * int(max(2, math.sqrt(self.a * self.f / denom))) + 1 self.xc = self.xradius = self.nx // 2 self.yc = self.yradius = self.ny // 2 # define the kernel on a 2D grid yy, xx = np.mgrid[0:self.ny, 0:self.nx] self.circular_radius = np.sqrt((xx - self.xc)**2 + (yy - self.yc)**2) self.elliptical_radius = (self.a * (xx - self.xc)**2 + 2.0 * self.b * (xx - self.xc) * (yy - self.yc) + self.c * (yy - self.yc)**2) self.mask = np.where( (self.elliptical_radius <= self.f) | (self.circular_radius <= 2.0), 1, 0).astype(int) self.npixels = self.mask.sum() # NOTE: the central (peak) pixel of gaussian_kernel has a value of 1. self.gaussian_kernel_unmasked = np.exp(-self.elliptical_radius) self.gaussian_kernel = self.gaussian_kernel_unmasked * self.mask # denom = variance * npixels denom = ((self.gaussian_kernel**2).sum() - (self.gaussian_kernel.sum()**2 / self.npixels)) self.relerr = 1.0 / np.sqrt(denom) # normalize the kernel to zero sum if normalize_zerosum: self.data = ((self.gaussian_kernel - (self.gaussian_kernel.sum() / self.npixels)) / denom) * self.mask else: self.data = self.gaussian_kernel self.shape = self.data.shape class _StarCutout: """ Class to hold a 2D image cutout of a single star for the star finder classes. Parameters ---------- data : 2D array_like The cutout 2D image from the input unconvolved 2D image. convdata : 2D array_like The cutout 2D image from the convolved 2D image. slices : tuple of two slices A tuple of two slices representing the minimal box of the cutout from the original image. xpeak, ypeak : float The (x, y) pixel coordinates of the peak pixel. kernel : `_StarFinderKernel` The convolution kernel. The shape of the kernel must match that of the input ``data``. threshold_eff : float The absolute image value above which to select sources. This threshold should be the threshold value input to the star finder class multiplied by the kernel relerr. """ def __init__(self, data, convdata, slices, xpeak, ypeak, kernel, threshold_eff): self.data = data self.convdata = convdata self.slices = slices self.xpeak = xpeak self.ypeak = ypeak self.kernel = kernel self.threshold_eff = threshold_eff self.shape = data.shape self.nx = self.shape[1] # always odd self.ny = self.shape[0] # always odd self.cutout_xcenter = int(self.nx // 2) self.cutout_ycenter = int(self.ny // 2) self.xorigin = self.slices[1].start # in original image self.yorigin = self.slices[0].start # in original image self.mask = kernel.mask # kernel mask self.npixels = kernel.npixels # unmasked pixels self.data_masked = self.data * self.mask def _find_stars(data, kernel, threshold_eff, min_separation=None, mask=None, exclude_border=False): """ Find stars in an image. Parameters ---------- data : 2D array_like The 2D array of the image. kernel : `_StarFinderKernel` The convolution kernel. threshold_eff : float The absolute image value above which to select sources. This threshold should be the threshold input to the star finder class multiplied by the kernel relerr. min_separation : float, optional The minimum separation for detected objects in pixels. mask : 2D bool array, optional A boolean mask with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Masked pixels are ignored when searching for stars. exclude_border : bool, optional Set to `True` to exclude sources found within half the size of the convolution kernel from the image borders. The default is `False`, which is the mode used by IRAF's `DAOFIND`_ and `starfind`_ tasks. Returns ------- objects : list of `_StarCutout` A list of `_StarCutout` objects containing the image cutout for each source. .. _DAOFIND: https://iraf.net/irafhelp.php?val=daofind .. _starfind: https://iraf.net/irafhelp.php?val=starfind """ convolved_data = _filter_data(data, kernel.data, mode='constant', fill_value=0.0, check_normalization=False) # define a local footprint for the peak finder if min_separation is None: # daofind footprint = kernel.mask.astype(bool) else: # define a circular footprint idx = np.arange(-min_separation, min_separation + 1) xx, yy = np.meshgrid(idx, idx) footprint =
np.array((xx**2 + yy**2) <= min_separation**2, dtype=int)
numpy.array
import numpy as np import tensorflow as tf import glob import os import re from multiprocessing import Value from src.readers.file_reader import NReader, AerReader from src.readers.event_reader import EventReader from src.readers.file_reader import FileReader class FileAnnotationsReader(FileReader): def __init__(self, **kargs): super().__init__(**kargs) def read_annotation(self, filename): bboxes = np.load(filename) return bboxes def read_example_and_annotation(self, events_filename): filename, ext = os.path.splitext(events_filename) bboxes_filename = os.path.join(os.path.dirname(filename), "annotations", os.path.basename(filename) + ".npy") l, x, y, ts, p = self.read_example(events_filename) bboxes = self.read_annotation(bboxes_filename) return l, x, y, ts, p, bboxes class DetectionReader(EventReader, FileAnnotationsReader): """ A modified version of the reader that considers labels as features allowing padding. The main difference is the fact that next_batch_** functions will return [length, labels, features...] instead of [labels, length, features...], and the fact that preprocessing function have (length, label, x, y, ts, p) arguments """ def _init(self, path, validation_size=None, test_size=None, tmp_dir=None, seed=1234): # Sets the seed np.random.seed(seed) self._seed = seed self._path = path self._tmp_dir = tmp_dir # Loads the filenames of the whole dataset test_filenames = glob.glob(os.path.join(path, 'test', '*.*')) train_filenames = glob.glob(os.path.join(path, 'train', '*.*')) validation_filenames = glob.glob(os.path.join(path, 'validation', '*.*')) params_filename = os.path.join(path, 'params.npz') if len(test_filenames) == 0 or len(train_filenames) == 0 or len(validation_filenames) == 0 or \ not os.path.exists(params_filename): raise Exception("The provided path does not contain any data or the directory structure is not valid.") params_values= np.load(params_filename) num_classes = np.asscalar(params_values['num_classes']) # Computes a mapping between directory names and integer labels self._labels = list(params_values['label_to_idx']) self._dir_to_label = dict(zip(params_values['label_to_idx'], np.arange(num_classes))) # Shuffles the filenames in-place
np.random.shuffle(train_filenames)
numpy.random.shuffle
#!/usr/bin/python3 #coding=utf-8 import os import sys sys.path.insert(0, '../') sys.dont_write_bytecode = True import cv2 import numpy as np import matplotlib.pyplot as plt plt.ion() import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader from tensorboardX import SummaryWriter import dataset from net import F3Net from transform import * import pydensecrf.densecrf as dcrf class Test(object): def __init__(self, Dataset, Network, path): ## dataset self.cfg = Dataset.Config(datapath=path, snapshot=args.model, mode='test') self.data = Dataset.Data(self.cfg) self.loader = DataLoader(self.data, batch_size=1, shuffle=False, num_workers=8) ## network self.net = Network(self.cfg) self.net.train(False) self.net.to('cuda:1') self.path = path def save(self): with torch.no_grad(): import datetime #start = datetime.datetime.now() cnt = 1 total = datetime.datetime(1999,1,1) for image, mask, shape, name in self.loader: #image.shape (1,3,352,352) #shape: init img shape ,which is for pre_mask to match the size of init img image = image.to('cuda:1').float() start = datetime.datetime.now() out1u, out2u, out2r, out3r, out4r, out5r = self.net(image, shape) total += datetime.datetime.now()-start print("inference time: ",(total-datetime.datetime(1999,1,1))/cnt) out = out2u pred = (torch.sigmoid(out[0,0])*255).cpu().numpy() # # Q = None # if args.crf: # Q = self.dense_crf(user_img.numpy().astype(np.uint8),pred) head = '../eval/maps/F3Net/'+ self.cfg.datapath.split('/')[-1] if not os.path.exists(head): os.makedirs(head) cv2.imwrite(head+'/'+name[0]+'.png',
np.round(pred)
numpy.round
import argparse import numpy as np def solve(*args, **kwargs): return None def main(args): print('Solving') print('Input: {0}'.format(args.input)) print('Output: {0}'.format(args.output)) with open(args.input, 'r') as in_file:import argparse import numpy as np import matplotlib.pyplot as plt import utils.parallel as parallel def preprocess(idx, photo1: tuple, all_photos: list): n = len(all_photos) intersections = np.zeros(n, np.int16) diffsizehalf = np.zeros(n, np.int16) u = np.zeros(n, np.int16) tags1 = photo1[3] for i, photo2 in enumerate(all_photos): if idx == i: continue tags2 = photo2[3] num_intersections = len(tags1.intersection(tags2)) if num_intersections == 0: continue h = int(np.abs(len(tags1) - len(tags2))) // 2 intersections[i] = num_intersections diffsizehalf[i] = h if photo2[1]: u[i] = intersections[i] else: u[i] = np.maximum(intersections[i] - diffsizehalf[i], 0) return idx, intersections, diffsizehalf, u def merge(v1, v2): assert v1[1] == v2[1] == True merged_tags = v1[3].union(v2[3]) return [v1[0], v2[0]], False, len(merged_tags), merged_tags #def select_vertical(photos): def solve(photos): tags_set = set() n = len(photos) intersections = np.zeros((n, n), dtype=np.int16) diffsizehalf = np.zeros((n, n), dtype=np.int16) """ for id, is_vertical, num_tags, tags in photos: tags_set.intersection_update(tags) for t in tags: tags_set.add(t) """ sorted_by_num_tags = sorted(photos, key=lambda v: v[2]) """ p = parallel.ParallelExecutor('thread') with p: for i in range(n - 1): p.dispatch(preprocess, i, sorted_by_num_tags[i], sorted_by_num_tags) for res in p.iterate_results(): idx, intersections_local, diffsizehalf_local = res intersections[idx, :] = intersections_local diffsizehalf[idx, :] = diffsizehalf_local """ results = [] start_idx = 0 #horizontal = list(filter(lambda p: p[1] == False, sorted_by_num_tags)) #vertical = filter(lambda p: p[1] == True, sorted_by_num_tags) merged = [] vertical = list(filter(lambda p: p[1], sorted_by_num_tags)) while True: if len(vertical) == 1: vertical.remove(vertical[0]) if len(vertical) == 0: break v1 = vertical[np.random.choice(len(vertical))] _, v1_intersections, _, _ = preprocess(v1[0], v1, vertical) non_zero_indices =
np.nonzero(v1_intersections)
numpy.nonzero
import numpy as np import matplotlib.pyplot as plt from utils.unit_conversions import db_to_lin from utils import constants from .aoa import make_gain_functions def crlb(snr, M, g, g_dot, psi_samples, psi_true): """ Computes the CRLB for a directional antenna with amplitude measurements taken at a series of angles. Supports M measurements from each of N different angles. If there are multiple true angles of arrival provided (psi_true), then the CRLB is computed independently for each one. Ported from MATLAB Code. <NAME> 14 January 2021 :param snr: Signal-to-Noise ratio [dB] :param M: Number of samples for each antenna position :param g: Function handle to g(psi) :param g_dot: Function handle to g_dot(psi) :param psi_samples: The sampled steering angles (radians) :param psi_true: The true angle of arrival (radians) :return crlb: Lower bound on the Mean Squared Error of an unbiased estimation of psi (radians) """ # Convert SNR from dB to linear units snr_lin = db_to_lin(snr) # Evaluate the antenna pattern and antenna gradient at each of the steering angles sampled. g_vec = np.array([g(psi-psi_true) for psi in psi_samples]) g_dot_vec = np.array([g_dot(psi-psi_true) for psi in psi_samples]) # Pre-compute steering vector inner products g_g = np.sum(g_vec * g_vec, axis=0) g_dot_g = np.sum(g_vec * g_dot_vec, axis=0) g_dot_g_dot = np.sum(g_dot_vec * g_dot_vec, axis=0) # Compute CRLB for each true angle theta jacobian = 2*M*snr_lin*(g_dot_g_dot-g_dot_g**2 / g_g) # Eq 7.25 return 1./jacobian # 1 x numel(th) def compute_df(s, psi_samples, g, psi_res = 0.1, min_psi = -np.pi, max_psi = np.pi): """ Computes an estimate of the angle of arrival psi (in radians) for a set of amplitude measurements s, taken at various steering angles psi_samples Ported from MATLAB Code. <NAME> 14 January 2021 :param s: Set of num_samples measurements taken at each of num_steering steering angles. :param psi_samples: Steering angles at which measurements were taken [radians] :param g: Function handle to gain equation, g(psi) :param psi_res: Desired resolution for output estimate [defualt = .1] :param min_psi: Lower bound on valid region for psi [default = -pi] :param max_psi: Upper bound on valid region for psi [default = pi] :return: Estimated angle of arrival [radians] """ # Determine how many samples exist num_steering, num_samples = np.shape(s) # Initialize the outer loop to .1 radians this_psi_res = .1 psi_vec = np.arange(start=min_psi, stop=max_psi + this_psi_res, step=this_psi_res) # Set up search vector psi = 0. # Initialize output # Iteratively search for the optimal index, until the sample spacing is less than the desired resolution if psi_res > this_psi_res: psi_res = this_psi_res while this_psi_res >= psi_res: # Find the difference between each possible AoA (psi_vec) and the measurement steering angles psi_diff = np.expand_dims(psi_samples, axis=1) - np.expand_dims(psi_vec, axis=0) # Compute the expected gain pattern for each candidate AoA value g_vec = np.reshape(np.asarray([g(psi) for psi in psi_diff]), newshape=psi_diff.shape) # Find the candidate AoA value that minimizes the MSE between the # expected and received gain patterns. sse = np.sum(np.sum((np.reshape(s, [num_steering, 1, num_samples])-np.expand_dims(g_vec, axis=2))**2, axis=2), axis=0) idx_opt = np.argmin(sse) psi = psi_vec[idx_opt] # Set up the bounds and resolution for the next iteration this_psi_res = this_psi_res / 10 min_psi = psi_vec[np.maximum(0, idx_opt - 2)] max_psi = psi_vec[np.minimum(np.size(psi_vec)-1, idx_opt + 2)] psi_vec = np.arange(start=min_psi, stop=max_psi + this_psi_res, step=this_psi_res) return psi def run_example(): """ Example evaluation of an Adcock and Rectangular-aperture DF receiver Ported from MATLAB code. <NAME> 14 January 2021 :return: None """ # ================================ Adcock Test Script ================================ # Create the antenna pattern generating function # --- NOTE --- g,g_dot take radian inputs (psi, not theta) d_lam = .25 [g,g_dot] = make_gain_functions(type='adcock', d_lam=d_lam, psi_0=0.) # Generate the angular samples and true gain values th_true = 5. # degrees psi_true = np.deg2rad(th_true) # radians psi_res = .001 # desired resolution from multi-stage search directional_df() for details. num_angles = 10. # Number of angular samples th = np.linspace(start=-180, stop=180, num=num_angles, endpoint=False) # evenly spaced across unit circle psi = np.deg2rad(th) x = g(psi-psi_true) # Actual gain values # Set up the parameter sweep num_samples_vec =
np.array([1, 10, 100])
numpy.array