prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import math, sys, os, time import numpy as np import pandas as pd from matplotlib import pyplot as plt from scipy.stats import bayes_mvs as bayesest sys.path.insert(0, '../../PyEcoLib') from simulator import Simulator mean_size = 3 doubling_time = 18 tmax = 180 sample_time = 2 div_steps = 10 ncells = 1000 gr = np.log(2)/doubling_time kd = div_steps * gr/mean_size sampling_time = sample_time rprom = 10 pprom = 1000 gammar = 5 * gr kr = rprom*(gr+gammar) kp = pprom*gr/rprom pop = np.zeros([ncells, 6]) indexes = np.int(tmax/sampling_time) rarray =
np.zeros([ncells, indexes])
numpy.zeros
#!/usr/bin/env python # ------------------------------------------------------------------------------------------------------% # Created by "<NAME>" at 22:16, 21/04/2020 % # % # Email: <EMAIL> % # Homepage: https://www.researchgate.net/profile/Thieu_Nguyen6 % # Github: https://github.com/thieunguyen5991 % #-------------------------------------------------------------------------------------------------------% from numpy import dot, ones, array, ceil from opfunu.cec.cec2014.utils import * SUPPORT_DIMENSION = [2, 10, 20, 30, 50, 100] SUPPORT_DIMENSION_2 = [10, 20, 30, 50, 100] def F1(solution=None, name="Rotated High Conditioned Elliptic Function", shift_data_file="shift_data_1.txt", bias=100): problem_size = len(solution) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 if problem_size in SUPPORT_DIMENSION: f_matrix = "M_1_D" + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 2, 10, 20, 30, 50, 100") return 1 shift_data = load_shift_data__(shift_data_file)[:problem_size] matrix = load_matrix_data__(f_matrix) z = dot(solution - shift_data, matrix) return f1_elliptic__(z) + bias def F2(solution=None, name="Rotated Bent Cigar Function", shift_data_file="shift_data_2.txt", bias=200): problem_size = len(solution) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 if problem_size in SUPPORT_DIMENSION: f_matrix = "M_2_D" + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 2, 10, 20, 30, 50, 100") return 1 shift_data = load_shift_data__(shift_data_file)[:problem_size] matrix = load_matrix_data__(f_matrix) z = dot(solution - shift_data, matrix) return f2_bent_cigar__(z) + bias def F3(solution=None, name="Rotated Discus Function", shift_data_file="shift_data_3.txt", bias=300): problem_size = len(solution) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 if problem_size in SUPPORT_DIMENSION: f_matrix = "M_3_D" + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 2, 10, 20, 30, 50, 100") return 1 shift_data = load_shift_data__(shift_data_file)[:problem_size] matrix = load_matrix_data__(f_matrix) z = dot(solution - shift_data, matrix) return f3_discus__(z) + bias def F4(solution=None, name="Shifted and Rotated Rosenbrock’s Function", shift_data_file="shift_data_4.txt", bias=400): problem_size = len(solution) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 if problem_size in SUPPORT_DIMENSION: f_matrix = "M_4_D" + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 2, 10, 20, 30, 50, 100") return 1 shift_data = load_shift_data__(shift_data_file)[:problem_size] matrix = load_matrix_data__(f_matrix) z = 2.048 * (solution - shift_data) / 100 z = dot(z, matrix) + 1 return f4_rosenbrock__(z) + bias def F5(solution=None, name="Shifted and Rotated Ackley’s Function", shift_data_file="shift_data_5.txt", bias=500): problem_size = len(solution) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 if problem_size in SUPPORT_DIMENSION: f_matrix = "M_5_D" + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 2, 10, 20, 30, 50, 100") return 1 shift_data = load_shift_data__(shift_data_file)[:problem_size] matrix = load_matrix_data__(f_matrix) z = dot(solution - shift_data, matrix) return f5_ackley__(z) + bias def F6(solution=None, name="Shifted and Rotated Weierstrass Function", shift_data_file="shift_data_6.txt", bias=600): problem_size = len(solution) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 if problem_size in SUPPORT_DIMENSION: f_matrix = "M_6_D" + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 2, 10, 20, 30, 50, 100") return 1 shift_data = load_shift_data__(shift_data_file)[:problem_size] matrix = load_matrix_data__(f_matrix) z = 0.5 * (solution - shift_data) / 100 z = dot(z, matrix) return f6_weierstrass__(z) + bias def F7(solution=None, name="Shifted and Rotated Griewank’s Function", shift_data_file="shift_data_7.txt", bias=700): problem_size = len(solution) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 if problem_size in SUPPORT_DIMENSION: f_matrix = "M_7_D" + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 2, 10, 20, 30, 50, 100") return 1 shift_data = load_shift_data__(shift_data_file)[:problem_size] matrix = load_matrix_data__(f_matrix) z = 600 * (solution - shift_data) / 100 z = dot(z, matrix) return f7_griewank__(z) + bias def F8(solution=None, name="Shifted Rastrigin’s Function", shift_data_file="shift_data_8.txt", bias=800): problem_size = len(solution) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 if problem_size in SUPPORT_DIMENSION: f_matrix = "M_8_D" + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 2, 10, 20, 30, 50, 100") return 1 shift_data = load_shift_data__(shift_data_file)[:problem_size] matrix = load_matrix_data__(f_matrix) z = 5.12 * (solution - shift_data) / 100 z = dot(z, matrix) return f8_rastrigin__(z) + bias def F9(solution=None, name="Shifted and Rotated Rastrigin’s Function", shift_data_file="shift_data_9.txt", bias=900): problem_size = len(solution) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 if problem_size in SUPPORT_DIMENSION: f_matrix = "M_9_D" + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 2, 10, 20, 30, 50, 100") return 1 shift_data = load_shift_data__(shift_data_file)[:problem_size] matrix = load_matrix_data__(f_matrix) z = 5.12 * (solution - shift_data) / 100 z = dot(z, matrix) return f9_modified_schwefel__(z) + bias def F10(solution=None, name="Shifted Schwefel’s Function", shift_data_file="shift_data_10.txt", bias=1000): problem_size = len(solution) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 if problem_size in SUPPORT_DIMENSION: f_matrix = "M_10_D" + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 2, 10, 20, 30, 50, 100") return 1 shift_data = load_shift_data__(shift_data_file)[:problem_size] matrix = load_matrix_data__(f_matrix) z = 1000 * (solution - shift_data) / 100 z = dot(z, matrix) return f9_modified_schwefel__(z) + bias def F11(solution=None, name="Shifted and Rotated Schwefel’s Function", shift_data_file="shift_data_11.txt", bias=1100): problem_size = len(solution) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 if problem_size in SUPPORT_DIMENSION: f_matrix = "M_11_D" + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 2, 10, 20, 30, 50, 100") return 1 shift_data = load_shift_data__(shift_data_file)[:problem_size] matrix = load_matrix_data__(f_matrix) z = 1000 * (solution - shift_data) / 100 z = dot(z, matrix) return f9_modified_schwefel__(z) + bias def F12(solution=None, name="Shifted and Rotated Katsuura Function", shift_data_file="shift_data_12.txt", bias=1200): problem_size = len(solution) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 if problem_size in SUPPORT_DIMENSION: f_matrix = "M_12_D" + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 2, 10, 20, 30, 50, 100") return 1 shift_data = load_shift_data__(shift_data_file)[:problem_size] matrix = load_matrix_data__(f_matrix) z = 5 * (solution - shift_data) / 100 z = dot(z, matrix) return f10_katsuura__(z) + bias def F13(solution=None, name="Shifted and Rotated HappyCat Function", shift_data_file="shift_data_13.txt", bias=1300): problem_size = len(solution) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 if problem_size in SUPPORT_DIMENSION: f_matrix = "M_13_D" + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 2, 10, 20, 30, 50, 100") return 1 shift_data = load_shift_data__(shift_data_file)[:problem_size] matrix = load_matrix_data__(f_matrix) z = 5 * (solution - shift_data) / 100 z = dot(z, matrix) return f11_happy_cat__(z) + bias def F14(solution=None, name="Shifted and Rotated HGBat Function", shift_data_file="shift_data_14.txt", bias=1400): problem_size = len(solution) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 if problem_size in SUPPORT_DIMENSION: f_matrix = "M_14_D" + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 2, 10, 20, 30, 50, 100") return 1 shift_data = load_shift_data__(shift_data_file)[:problem_size] matrix = load_matrix_data__(f_matrix) z = 5 * (solution - shift_data) / 100 z = dot(z, matrix) return f12_hgbat__(z) + bias def F15(solution=None, name="Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s Function", shift_data_file="shift_data_15.txt", bias=1500): problem_size = len(solution) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 if problem_size in SUPPORT_DIMENSION: f_matrix = "M_15_D" + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 2, 10, 20, 30, 50, 100") return 1 shift_data = load_shift_data__(shift_data_file)[:problem_size] matrix = load_matrix_data__(f_matrix) z = 5 * (solution - shift_data) / 100 z = dot(z, matrix) + 1 return f13_expanded_griewank__(z) + bias def F16(solution=None, name="Shifted and Rotated Expanded Scaffer’s F6 Function", shift_data_file="shift_data_16.txt", bias=1600): problem_size = len(solution) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 if problem_size in SUPPORT_DIMENSION: f_matrix = "M_16_D" + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 2, 10, 20, 30, 50, 100") return 1 shift_data = load_shift_data__(shift_data_file)[:problem_size] matrix = load_matrix_data__(f_matrix) z = dot(solution - shift_data, matrix) + 1 return f14_expanded_scaffer__(z) + bias ### ================== Hybrid function ======================== def F17(solution=None, name="Hybrid Function 1", shift_data_file="shift_data_17.txt", bias=1700, shuffle=None): problem_size = len(solution) p = array([0.3, 0.3, 0.4]) n1 = int(ceil(p[0] * problem_size)) n2 = int(ceil(p[1] * problem_size)) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 if problem_size in SUPPORT_DIMENSION_2: f_matrix = "M_17_D" + str(problem_size) + ".txt" if shuffle is None: f_shuffle = "shuffle_data_17_D" + str(problem_size) + ".txt" else: f_shuffle = "shuffle_data_" + str(shuffle) + "_D" + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 10, 20, 30, 50, 100") return 1 shift_data = load_shift_data__(shift_data_file)[:problem_size] matrix = load_matrix_data__(f_matrix) shuffle = (load_shift_data__(f_shuffle)[:problem_size] - ones(problem_size)).astype(int) idx1 = shuffle[:n1] idx2 = shuffle[n1:(n1+n2)] idx3 = shuffle[(n1+n2):] mz = dot(solution - shift_data, matrix) return f9_modified_schwefel__(mz[idx1]) + f8_rastrigin__(mz[idx2]) + f1_elliptic__(mz[idx3]) + bias def F18(solution=None, name="Hybrid Function 2", shift_data_file="shift_data_18.txt", bias=1800, shuffle=None): problem_size = len(solution) p = array([0.3, 0.3, 0.4]) n1 = int(ceil(p[0] * problem_size)) n2 = int(ceil(p[1] * problem_size)) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 if problem_size in SUPPORT_DIMENSION_2: f_matrix = "M_18_D" + str(problem_size) + ".txt" if shuffle is None: f_shuffle = "shuffle_data_18_D" + str(problem_size) + ".txt" else: f_shuffle = "shuffle_data_" + str(shuffle) + "_D" + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 10, 20, 30, 50, 100") return 1 shift_data = load_shift_data__(shift_data_file)[:problem_size] matrix = load_matrix_data__(f_matrix) shuffle = (load_shift_data__(f_shuffle)[:problem_size] - ones(problem_size)).astype(int) idx1 = shuffle[:n1] idx2 = shuffle[n1:(n1 + n2)] idx3 = shuffle[(n1 + n2):] mz = dot(solution - shift_data, matrix) return f2_bent_cigar__(mz[idx1]) + f12_hgbat__(mz[idx2]) + f8_rastrigin__(mz[idx3]) + bias def F19(solution=None, name="Hybrid Function 3", shift_data_file="shift_data_19.txt", bias=1900, shuffle=None): problem_size = len(solution) p = array([0.2, 0.2, 0.3, 0.3]) n1 = int(ceil(p[0] * problem_size)) n2 = int(ceil(p[1] * problem_size)) n3 = int(ceil(p[2] * problem_size)) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 if problem_size in SUPPORT_DIMENSION_2: f_matrix = "M_19_D" + str(problem_size) + ".txt" if shuffle is None: f_shuffle = "shuffle_data_19_D" + str(problem_size) + ".txt" else: f_shuffle = "shuffle_data_" + str(shuffle) + "_D" + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 10, 20, 30, 50, 100") return 1 shift_data = load_shift_data__(shift_data_file)[:problem_size] matrix = load_matrix_data__(f_matrix) shuffle = (load_shift_data__(f_shuffle)[:problem_size] - ones(problem_size)).astype(int) idx1 = shuffle[:n1] idx2 = shuffle[n1:(n1 + n2)] idx3 = shuffle[(n1 + n2):(n1+n2+n3)] idx4 = shuffle[n1+n2+n3:] mz = dot(solution - shift_data, matrix) return f7_griewank__(mz[idx1]) + f6_weierstrass__(mz[idx2]) + f4_rosenbrock__(mz[idx3]) + f14_expanded_scaffer__(mz[idx4])+ bias def F20(solution=None, name="Hybrid Function 4", shift_data_file="shift_data_20.txt", bias=2000, shuffle=None): problem_size = len(solution) p = array([0.2, 0.2, 0.3, 0.3]) n1 = int(ceil(p[0] * problem_size)) n2 = int(ceil(p[1] * problem_size)) n3 = int(ceil(p[2] * problem_size)) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 if problem_size in SUPPORT_DIMENSION_2: f_matrix = "M_20_D" + str(problem_size) + ".txt" if shuffle is None: f_shuffle = "shuffle_data_20_D" + str(problem_size) + ".txt" else: f_shuffle = "shuffle_data_" + str(shuffle) + "_D" + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 10, 20, 30, 50, 100") return 1 shift_data = load_shift_data__(shift_data_file)[:problem_size] matrix = load_matrix_data__(f_matrix) shuffle = (load_shift_data__(f_shuffle)[:problem_size] - ones(problem_size)).astype(int) idx1 = shuffle[:n1] idx2 = shuffle[n1:(n1 + n2)] idx3 = shuffle[(n1 + n2):(n1 + n2 + n3)] idx4 = shuffle[n1 + n2 + n3:] mz = dot(solution - shift_data, matrix) return f12_hgbat__(mz[idx1]) + f3_discus__(mz[idx2]) + f13_expanded_griewank__(mz[idx3]) + f8_rastrigin__(mz[idx4]) + bias def F21(solution=None, name="Hybrid Function 5", shift_data_file="shift_data_21.txt", bias=2100, shuffle=None): problem_size = len(solution) p = array([0.1, 0.2, 0.2, 0.2, 0.3]) n1 = int(ceil(p[0] * problem_size)) n2 = int(ceil(p[1] * problem_size)) n3 = int(ceil(p[2] * problem_size)) n4 = int(ceil(p[3] * problem_size)) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 if problem_size in SUPPORT_DIMENSION_2: f_matrix = "M_21_D" + str(problem_size) + ".txt" if shuffle is None: f_shuffle = "shuffle_data_21_D" + str(problem_size) + ".txt" else: f_shuffle = "shuffle_data_" + str(shuffle) + "_D" + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 10, 20, 30, 50, 100") return 1 shift_data = load_shift_data__(shift_data_file)[:problem_size] matrix = load_matrix_data__(f_matrix) shuffle = (load_shift_data__(f_shuffle)[:problem_size] - ones(problem_size)).astype(int) idx1 = shuffle[:n1] idx2 = shuffle[n1:(n1 + n2)] idx3 = shuffle[(n1 + n2):(n1 + n2 + n3)] idx4 = shuffle[(n1+n2+n3):(n1+n2+n3+n4)] idx5 = shuffle[n1+n2+n3+n4:] mz = dot(solution - shift_data, matrix) return f14_expanded_scaffer__(mz[idx1]) + f12_hgbat__(mz[idx2]) + f4_rosenbrock__(mz[idx3]) + \ f9_modified_schwefel__(mz[idx4]) + f1_elliptic__(mz[idx5]) + bias def F22(solution=None, name="Hybrid Function 6", shift_data_file="shift_data_22.txt", bias=2200, shuffle=None): problem_size = len(solution) p = array([0.1, 0.2, 0.2, 0.2, 0.3]) n1 = int(ceil(p[0] * problem_size)) n2 = int(ceil(p[1] * problem_size)) n3 = int(ceil(p[2] * problem_size)) n4 = int(ceil(p[3] * problem_size)) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 if problem_size in SUPPORT_DIMENSION_2: f_matrix = "M_22_D" + str(problem_size) + ".txt" if shuffle is None: f_shuffle = "shuffle_data_21_D" + str(problem_size) + ".txt" else: f_shuffle = "shuffle_data_" + str(shuffle) + "_D" + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 10, 20, 30, 50, 100") return 1 shift_data = load_shift_data__(shift_data_file)[:problem_size] matrix = load_matrix_data__(f_matrix) shuffle = (load_shift_data__(f_shuffle)[:problem_size] - ones(problem_size)).astype(int) idx1 = shuffle[:n1] idx2 = shuffle[n1:(n1 + n2)] idx3 = shuffle[(n1 + n2):(n1 + n2 + n3)] idx4 = shuffle[(n1 + n2 + n3):(n1 + n2 + n3 + n4)] idx5 = shuffle[n1 + n2 + n3 + n4:] mz = dot(solution - shift_data, matrix) return f10_katsuura__(mz[idx1]) + f11_happy_cat__(mz[idx2]) + f13_expanded_griewank__(mz[idx3]) + \ f9_modified_schwefel__(mz[idx4]) + f5_ackley__(mz[idx5]) + bias ### ================== Composition function ======================== def F23(solution=None, name="Composition Function 1", f_shift_file="shift_data_23.txt", f_matrix="M_23_D", f_bias=2300): problem_size = len(solution) xichma = array([10, 20, 30, 40, 50]) lamda = array([1, 1e-6, 1e-26, 1e-6, 1e-6]) bias = array([0, 100, 200, 300, 400]) if problem_size in SUPPORT_DIMENSION_2: f_matrix = f_matrix + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 10, 20, 30, 50, 100") return 1 shift_data = load_matrix_data__(f_shift_file)[:problem_size] shift_data = shift_data[:, :problem_size] matrix = load_matrix_data__(f_matrix) # 1. Rotated Rosenbrock’s Function F4’ t1 = solution - shift_data[0] g1 = lamda[0] * f4_rosenbrock__(dot(t1, matrix[:problem_size, :])) + bias[0] w1 = (1.0 / sqrt(sum(t1 ** 2))) * exp(-sum(t1 ** 2) / (2 * problem_size * xichma[0] ** 2)) # 2. High Conditioned Elliptic Function F1’ t2 = solution - shift_data[1] g2 = lamda[1] * f1_elliptic__(solution) + bias[1] w2 = (1.0 / sqrt(sum(t2 ** 2))) * exp(-sum(t2 ** 2) / (2 * problem_size * xichma[1] ** 2)) # 3. Rotated Bent Cigar Function F2’ t3 = solution - shift_data[2] g3 = lamda[2] * f2_bent_cigar__(dot(matrix[2 * problem_size: 3 * problem_size, :], t3)) + bias[2] w3 = (1.0 / sqrt(sum(t3 ** 2))) * exp(-sum(t3 ** 2) / (2 * problem_size * xichma[2] ** 2)) # 4. Rotated Discus Function F3’ t4 = solution - shift_data[3] g4 = lamda[3] * f3_discus__(dot(matrix[3 * problem_size: 4 * problem_size, :], t4)) + bias[3] w4 = (1.0 / sqrt(sum(t4 ** 2))) * exp(-sum(t4 ** 2) / (2 * problem_size * xichma[3] ** 2)) # 4. High Conditioned Elliptic Function F1’ t5 = solution - shift_data[4] g5 = lamda[4] * f1_elliptic__(solution) + bias[4] w5 = (1.0 / sqrt(sum(t5 ** 2))) * exp(-sum(t5 ** 2) / (2 * problem_size * xichma[4] ** 2)) sw = sum([w1, w2, w3, w4, w5]) result = (w1 * g1 + w2 * g2 + w3 * g3 + w4 * g4 + w5 * g5) / sw return result + f_bias def F24(solution=None, name="Composition Function 2", f_shift_file="shift_data_24.txt", f_matrix="M_24_D", f_bias=2400): problem_size = len(solution) xichma = array([20, 20, 20]) lamda = array([1, 1, 1]) bias = array([0, 100, 200]) if problem_size in SUPPORT_DIMENSION_2: f_matrix = f_matrix + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 10, 20, 30, 50, 100") return 1 shift_data = load_matrix_data__(f_shift_file)[:problem_size] shift_data = shift_data[:, :problem_size] matrix = load_matrix_data__(f_matrix) # 1. Rotated Rosenbrock’s Function F4’ t1 = solution - shift_data[0] g1 = lamda[0] * f9_modified_schwefel__(solution) + bias[0] w1 = (1.0 / sqrt(sum(t1 ** 2))) * exp(-sum(t1 ** 2) / (2 * problem_size * xichma[0] ** 2)) # 2. Rotated Rastrigin’s Function F9’ t2 = solution - shift_data[1] g2 = lamda[1] * f8_rastrigin__(dot(matrix[problem_size: 2 * problem_size], t2)) + bias[1] w2 = (1.0 / sqrt(sum(t2 ** 2))) * exp(-sum(t2 ** 2) / (2 * problem_size * xichma[1] ** 2)) # 3. Rotated HGBat Function F14’ t3 = solution - shift_data[2] g3 = lamda[2] * f12_hgbat__(dot(matrix[2 * problem_size: 3 * problem_size, :], t3)) + bias[2] w3 = (1.0 / sqrt(sum(t3 ** 2))) * exp(-sum(t3 ** 2) / (2 * problem_size * xichma[2] ** 2)) sw = sum([w1, w2, w3]) result = (w1 * g1 + w2 * g2 + w3 * g3) / sw return result + f_bias def F25(solution=None, name="Composition Function 3", f_shift_file="shift_data_25.txt", f_matrix="M_25_D", f_bias=2500): problem_size = len(solution) xichma = array([10, 30, 50]) lamda = array([0.25, 1, 1e-7]) bias = array([0, 100, 200]) if problem_size in SUPPORT_DIMENSION_2: f_matrix = f_matrix + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 10, 20, 30, 50, 100") return 1 shift_data = load_matrix_data__(f_shift_file)[:problem_size] shift_data = shift_data[:, :problem_size] matrix = load_matrix_data__(f_matrix) # 1. Rotated Schwefel's Function F11’ t1 = solution - shift_data[0] g1 = lamda[0] * f9_modified_schwefel__(dot(matrix[:problem_size, :problem_size], t1)) + bias[0] w1 = (1.0 / sqrt(sum(t1 ** 2))) * exp(-sum(t1 ** 2) / (2 * problem_size * xichma[0] ** 2)) # 2. Rotated Rastrigin’s Function F9’ t2 = solution - shift_data[1] g2 = lamda[1] * f8_rastrigin__(dot(matrix[problem_size: 2 * problem_size], t2)) + bias[1] w2 = (1.0 / sqrt(sum(t2 ** 2))) * exp(-sum(t2 ** 2) / (2 * problem_size * xichma[1] ** 2)) # 3. Rotated High Conditioned Elliptic Function F1' t3 = solution - shift_data[2] g3 = lamda[2] * f1_elliptic__(dot(matrix[2 * problem_size: 3 * problem_size, :], t3)) + bias[2] w3 = (1.0 / sqrt(sum(t3 ** 2))) * exp(-sum(t3 ** 2) / (2 * problem_size * xichma[2] ** 2)) sw = sum([w1, w2, w3]) result = (w1 * g1 + w2 * g2 + w3 * g3) / sw return result + f_bias def F26(solution=None, name="Composition Function 4", f_shift_file="shift_data_26.txt", f_matrix="M_26_D", f_bias=2600): problem_size = len(solution) xichma = array([10, 10, 10, 10, 10]) lamda = array([0.25, 1, 1e-7, 2.5, 10]) bias = array([0, 100, 200, 300, 400]) if problem_size in SUPPORT_DIMENSION_2: f_matrix = f_matrix + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 10, 20, 30, 50, 100") return 1 shift_data = load_matrix_data__(f_shift_file)[:problem_size] shift_data = shift_data[:, :problem_size] matrix = load_matrix_data__(f_matrix) # 1. Rotated Schwefel's Function F11’ t1 = solution - shift_data[0] g1 = lamda[0] * f9_modified_schwefel__(dot(matrix[:problem_size, :], t1)) + bias[0] w1 = (1.0 / sqrt(sum(t1 ** 2))) * exp(-sum(t1 ** 2) / (2 * problem_size * xichma[0] ** 2)) # 2. Rotated HappyCat Function F13’ t2 = solution - shift_data[1] g2 = lamda[1] * f11_happy_cat__(dot(matrix[problem_size:2 * problem_size, :], t2)) + bias[1] w2 = (1.0 / sqrt(sum(t2 ** 2))) * exp(-sum(t2 ** 2) / (2 * problem_size * xichma[1] ** 2)) # 3. Rotated High Conditioned Elliptic Function F1’ t3 = solution - shift_data[2] g3 = lamda[2] * f1_elliptic__(dot(matrix[2 * problem_size: 3 * problem_size, :], t3)) + bias[2] w3 = (1.0 / sqrt(sum(t3 ** 2))) * exp(-sum(t3 ** 2) / (2 * problem_size * xichma[2] ** 2)) # 4. Rotated Weierstrass Function F6’ t4 = solution - shift_data[3] g4 = lamda[3] * f6_weierstrass__(dot(matrix[3 * problem_size: 4 * problem_size, :], t4)) + bias[3] w4 = (1.0 / sqrt(sum(t4 ** 2))) * exp(-sum(t4 ** 2) / (2 * problem_size * xichma[3] ** 2)) # 5. Rotated Griewank’s Function F7’ t5 = solution - shift_data[4] g5 = lamda[4] * f7_griewank__(dot(matrix[4*problem_size:, :], t5)) + bias[4] w5 = (1.0 / sqrt(sum(t5 ** 2))) * exp(-sum(t5 ** 2) / (2 * problem_size * xichma[4] ** 2)) sw = sum([w1, w2, w3, w4, w5]) result = (w1 * g1 + w2 * g2 + w3 * g3 + w4 * g4 + w5 * g5) / sw return result + f_bias def F27(solution=None, name="Composition Function 5", f_shift_file="shift_data_27.txt", f_matrix="M_27_D", f_bias=2700): problem_size = len(solution) xichma = array([10, 10, 10, 20, 20]) lamda = array([10, 10, 2.5, 25, 1e-6]) bias = array([0, 100, 200, 300, 400]) if problem_size in SUPPORT_DIMENSION_2: f_matrix = f_matrix + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 10, 20, 30, 50, 100") return 1 shift_data = load_matrix_data__(f_shift_file)[:problem_size] shift_data = shift_data[:, :problem_size] matrix = load_matrix_data__(f_matrix) # 1. Rotated HGBat Function F14' t1 = solution - shift_data[0] g1 = lamda[0] * f12_hgbat__(dot(matrix[:problem_size, :], t1)) + bias[0] w1 = (1.0 / sqrt(sum(t1 ** 2))) * exp(-sum(t1 ** 2) / (2 * problem_size * xichma[0] ** 2)) # 2. Rotated Rastrigin’s Function F9’ t2 = solution - shift_data[1] g2 = lamda[1] * f8_rastrigin__(dot(matrix[problem_size:2 * problem_size, :], t2)) + bias[1] w2 = (1.0 / sqrt(sum(t2 ** 2))) * exp(-sum(t2 ** 2) / (2 * problem_size * xichma[1] ** 2)) # 3. Rotated Schwefel's Function F11’ t3 = solution - shift_data[2] g3 = lamda[2] * f9_modified_schwefel__(dot(matrix[2 * problem_size: 3 * problem_size, :], t3)) + bias[2] w3 = (1.0 / sqrt(sum(t3 ** 2))) * exp(-sum(t3 ** 2) / (2 * problem_size * xichma[2] ** 2)) # 4. Rotated Weierstrass Function F6’ t4 = solution - shift_data[3] g4 = lamda[3] * f6_weierstrass__(dot(matrix[3 * problem_size: 4 * problem_size, :], t4)) + bias[3] w4 = (1.0 / sqrt(sum(t4 ** 2))) * exp(-sum(t4 ** 2) / (2 * problem_size * xichma[3] ** 2)) # 5. Rotated High Conditioned Elliptic Function F1’ t5 = solution - shift_data[4] g5 = lamda[4] * f1_elliptic__(dot(matrix[4 * problem_size:, :], t5)) + bias[4] w5 = (1.0 / sqrt(sum(t5 ** 2))) * exp(-sum(t5 ** 2) / (2 * problem_size * xichma[4] ** 2)) sw = sum([w1, w2, w3, w4, w5]) result = (w1 * g1 + w2 * g2 + w3 * g3 + w4 * g4 + w5 * g5) / sw return result + f_bias def F28(solution=None, name="Composition Function 6", f_shift_file="shift_data_28.txt", f_matrix="M_28_D", f_bias=2800): problem_size = len(solution) xichma = array([10, 20, 30, 40, 50]) lamda = array([2.5, 10, 2.5, 5e-4, 1e-6]) bias = array([0, 100, 200, 300, 400]) if problem_size in SUPPORT_DIMENSION_2: f_matrix = f_matrix + str(problem_size) + ".txt" else: print("CEC 2014 function only support problem size 10, 20, 30, 50, 100") return 1 shift_data = load_matrix_data__(f_shift_file)[:problem_size] shift_data = shift_data[:, :problem_size] matrix = load_matrix_data__(f_matrix) # 1. Rotated Expanded Griewank’s plus Rosenbrock’s Function F15’ t1 = solution - shift_data[0] g1 = lamda[0] * F15(solution, bias=0) + bias[0] w1 = (1.0 / sqrt(sum(t1 ** 2))) * exp(-sum(t1 ** 2) / (2 * problem_size * xichma[0] ** 2)) # 2. Rotated HappyCat Function F13’ t2 = solution - shift_data[1] g2 = lamda[1] * f11_happy_cat__(dot(matrix[problem_size:2 * problem_size, :], t2)) + bias[1] w2 = (1.0 / sqrt(sum(t2 ** 2))) * exp(-sum(t2 ** 2) / (2 * problem_size * xichma[1] ** 2)) # 3. Rotated Schwefel's Function F11’ t3 = solution - shift_data[2] g3 = lamda[2] * f9_modified_schwefel__(dot(matrix[2 * problem_size: 3 * problem_size, :], t3)) + bias[2] w3 = (1.0 / sqrt(sum(t3 ** 2))) * exp(-sum(t3 ** 2) / (2 * problem_size * xichma[2] ** 2)) # 4. Rotated Expanded Scaffer’s F6 Function F16’ t4 = solution - shift_data[3] g4 = lamda[3] * f14_expanded_scaffer__(dot(matrix[3 * problem_size: 4 * problem_size, :], t4)) + bias[3] w4 = (1.0 / sqrt(sum(t4 ** 2))) * exp(-sum(t4 ** 2) / (2 * problem_size * xichma[3] ** 2)) # 5. Rotated High Conditioned Elliptic Function F1’ t5 = solution - shift_data[4] g5 = lamda[4] * f1_elliptic__(dot(matrix[4 * problem_size:, :], t5)) + bias[4] w5 = (1.0 / sqrt(sum(t5 ** 2))) * exp(-sum(t5 ** 2) / (2 * problem_size * xichma[4] ** 2)) sw = sum([w1, w2, w3, w4, w5]) result = (w1 * g1 + w2 * g2 + w3 * g3 + w4 * g4 + w5 * g5) / sw return result + f_bias def F29(solution=None, name="Composition Function 7", shift_data_file="shift_data_29.txt", f_bias=2900): num_funcs = 3 problem_size = len(solution) xichma = array([10, 30, 50]) lamda = array([1, 1, 1]) bias = array([0, 100, 200]) if problem_size > 100: print("CEC 2014 not support for problem size > 100") return 1 shift_data = load_matrix_data__(shift_data_file)[:problem_size] shift_data = shift_data[:, :problem_size] def __fi__(solution=None, idx=None): if idx == 0: return F17(solution, bias=0, shuffle=29) elif idx == 1: return F18(solution, bias=0, shuffle=29) else: return F19(solution, bias=0, shuffle=29) weights = ones(num_funcs) fits = ones(num_funcs) for i in range(0, num_funcs): t1 = lamda[i] * __fi__(solution, i) + bias[i] t2 = 1.0 / sqrt(sum((solution - shift_data[i]) ** 2)) w_i = t2 * exp(-sum((solution - shift_data[i]) ** 2) / (2 * problem_size * xichma[i] ** 2)) weights[i] = w_i fits[i] = t1 sw = sum(weights) result = 0.0 for i in range(0, num_funcs): result += (weights[i] / sw) * fits[i] return result + f_bias def F30(solution=None, name="Composition Function 8", shift_data_file="shift_data_30.txt", f_bias=3000): num_funcs = 3 problem_size = len(solution) xichma =
array([10, 30, 50])
numpy.array
import copy import functools import gc from hfutils.constants import TASK_TO_LABELS from seaborn.distributions import histplot import torch import logging import numpy as np from transformers.data.data_collator import ( DataCollatorForSeq2Seq, default_data_collator, ) from transformers.utils.dummy_pt_objects import T5ForConditionalGeneration import seaborn as sns import matplotlib import matplotlib.pyplot as plt from sklearn.mixture import GaussianMixture from scipy.optimize import minimize from sklearn.mixture import GaussianMixture import os import sys from torch.nn.modules.activation import Threshold from datasets import Dataset, concatenate_datasets from datasets import load_dataset, load_metric from tqdm import tqdm from transformers import AutoTokenizer, AutoModel, T5ForConditionalGeneration from torch.utils.data import ( DataLoader, RandomSampler, SequentialSampler, TensorDataset, dataloader, ) from sklearn.model_selection import train_test_split from hfutils.logger import Logger from hfutils.arg_parser import HfArguments from hfutils.loader import ModelLoader, DatasetLoader from hfutils.temperature_scaling import ModelWithTemperature from hfutils.monte_carlo import monte_carlo_bounds from hfutils.calibration import temperature_scale, temperature_scaling args = HfArguments() task_name = args.data_args.task_name tokenizer, _ = ModelLoader(args).load(load_model=False) pos_token = tokenizer("false").input_ids[0] neg_token = tokenizer("true").input_ids[0] label_tokens = [ tokenizer(label, max_length=2).input_ids[0] for label in TASK_TO_LABELS[task_name] if label is not None ] print(label_tokens) # exit() # print(pos_token, neg_token) # print(tokenizer(list(TASK_TO_LABELS[task_name])).input_ids) # exit() home_dir = os.path.expanduser(("~")) # home_dir = "/mnt/raid1nvme1" # base_dir = "/mnt/yavin/checkpoints" base_dir = os.path.join(home_dir, os.path.join("model-finetune", "outputs", "google")) model_keys = [ "S", "M", "L", "XL", ] device_map = [ "cuda:0", "cuda:1", "cuda:2", "cuda:3", ] energy_discount_factor = [ 1 / 40, 3 / 40, 10 / 40, 40 / 40, ] model_paths = [ f"{base_dir}/t5-small-lm-adapt/all/checkpoint-4500", f"{base_dir}/t5-base-lm-adapt/all/checkpoint-2000", f"{base_dir}/t5-large-lm-adapt/all/checkpoint-1500", f"{base_dir}/t5-xl-lm-adapt/all/checkpoint-1500", ] # model_paths = [ # f"{base_dir}/t5-small-lm-adapt/{task_name}/checkpoint-2420", # # f"{base_dir}/google/t5-small-lm-adapt/qqp", # f"{base_dir}/t5-base-lm-adapt/{task_name}/checkpoint-820", # f"{base_dir}/t5-large-lm-adapt/{task_name}/checkpoint-240", # # f"{base_dir}/t5-xl-lm-adapt/{task_name}/checkpoint-260", # ] # model_paths = [ # f"{base_dir}/t5-small-lm-adapt/{task_name}/checkpoint-5540", # # f"{base_dir}/google/t5-small-lm-adapt/qqp", # # f"{base_dir}/t5-base-lm-adapt/{task_name}/checkpoint-1860", # # f"{base_dir}/t5-large-lm-adapt/{task_name}/checkpoint-1780", # # f"{base_dir}/t5-xl-lm-adapt/{task_name}/checkpoint-1380", # ] model_energy = dict(zip(model_keys, energy_discount_factor)) model_paths = dict(zip(model_keys, model_paths)) model_device = dict(zip(model_keys, device_map)) logger = Logger(__file__, "info", 5000000, 5) models = dict() for key in model_paths: logger.debug("key %s, path %s, device %s", key, model_paths[key], model_device[key]) models[key] = T5ForConditionalGeneration.from_pretrained( model_paths[key] ) # if key != "S" else DistilBertForSequenceClassification.from_pretrained(model_paths[key]) models[key] = models[key].to(model_device[key]) models[key].eval() torch.cuda.empty_cache() gc.collect() logger.info("model loaded") # ------------- Dataset Prepare -------------- from hfutils.loader import t5_preprocess_function, load_glue_val from functools import partial preprocess_function = partial( t5_preprocess_function, tokenizer=tokenizer, padding="max_length", max_length=128, ) # dataset_loader = DatasetLoader(args) # # train_dataset = dataset_loader.load(tokenizer, partition="validation", create_dataloader=False) # eval_dataset = dataset_loader.load( # tokenizer, partition="validation", create_dataloader=False # ) # logger.debug("eval_dataset %s", eval_dataset) eval_dataset = load_glue_val(preprocess_function).shuffle() data_args = args.data_args # if data_args.pad_to_max_length: # data_collator = default_data_collator # else: # data_collator = DataCollatorForSeq2Seq(tokenizer) data_collator = DataCollatorForSeq2Seq(tokenizer) train_len = int(len(eval_dataset) * 0.4) train = Dataset.from_dict(eval_dataset[:train_len]) test = eval_dataset # test = Dataset.from_dict(eval_dataset[train_len:]) print(train, test) train_dataloader = DataLoader( train, shuffle=True, collate_fn=data_collator, batch_size=data_args.train_bsz, # drop_last=True, ) test_dataloader = DataLoader( test, shuffle=True, collate_fn=data_collator, batch_size=data_args.eval_bsz, # drop_last=True, ) m = torch.nn.Softmax(dim=1) logger.info("data loaded") # ------------- Train Temperature -------------- # for key in model_keys: # models[key] = ModelWithTemperature(models[key], tokenizer, model_device[key]) # models[key].set_logger(logger) # models[key].set_temperature(train_dataloader) print("temperature loaded") n_models = len(model_keys) num_labels = 0 def model_inference(model, batch, temperature=None, device="cuda:0"): input_ids = batch["input_ids"] attention_mask = batch["attention_mask"] input_ids = input_ids.to(device) attention_mask = attention_mask.to(device) outputs = model.generate( input_ids=input_ids, attention_mask=attention_mask, do_sample=False, # disable sampling to test if batching affects output return_dict_in_generate=True, output_scores=True, ) logits = outputs.scores[0][:, label_tokens] if temperature is not None: logits = temperature_scale(logits, temperature) return logits long_dataset = concatenate_datasets([eval_dataset] * 10) # for batch_size in [1, 2, 4, 8, 16, 32, 64, 128, 256]: # # for batch_size in [32, 64, 128, 256, 512]: # metric = load_metric("accuracy") # key = model_keys[0] # eval_dataloader = DataLoader( # eval_dataset, # shuffle=True, # collate_fn=data_collator, # batch_size=batch_size, # ) # for batch in tqdm(train_dataloader, desc="Test Acc"): # logits = model_inference(models[key], batch, device=model_device[key]) # prediction = np.argmax(logits.detach().cpu().numpy(), axis=-1) # label = batch["labels"][:, 0] == pos_token # metric.add_batch( # predictions=prediction, # references=label # ) # print(batch_size, metric.compute()) model_probs = dict(zip(model_keys, [list() for _ in range(n_models)])) model_outputs = dict(zip(model_keys, [list() for _ in range(n_models)])) labels_list = [] # def agg_logits(hist, curr, pos, device): # if hist is not None: # hist = hist.to(device) # curr_prob, _ = torch.max(torch.float_power(m(curr), 2), dim=-1) # hist_prob, _ = torch.max(torch.float_power(m(hist), 2), dim=-1) # diff = torch.abs(hist_prob-curr_prob) # # print(diff) # for i in range(len(diff)): # if diff[i] > 0.2: # if curr_prob[i] < hist_prob[i]: # curr[i] = hist[i] # else: # curr[i] = (hist[i] * pos + curr[i]) / (pos+1) # return curr def agg_logits(hist, curr, pos, device): # return curr alpha = 0.6 if hist is not None: hist = hist.to(device) # return (hist * pos + curr) / (pos + 1) return hist * (1 - alpha) + curr * alpha return curr with torch.no_grad(): key = model_keys[-1] for batch in tqdm(train_dataloader, desc="Collect Train Data"): logits = model_inference(models[key], batch, device=model_device[key]) with torch.no_grad(): for batch in tqdm(train_dataloader, desc="Collect Train Data"): # input_ids=batch['input_ids'] # attention_mask=batch['attention_mask'] label = batch["labels"][:, 0] == pos_token label = label.to(torch.int64) # label = label.to(model_device[key]) num_labels += len(label) label = label.cpu().detach().flatten() labels_list.append(label) hist_logits = None for i, key in enumerate(model_keys): logits = model_inference(models[key], batch, device=model_device[key]) # hist_logits = agg_logits(hist_logits, logits, i, model_device[key]) model_outputs[key].append(logits) # probabilities = torch.float_power(m(hist_logits).cpu().detach(), 2) # model_ans = torch.argmax(probabilities, dim=-1).flatten() # model_probs[key] += [[p[model_ans[i]], int(model_ans[i] == label[i])] for i, p in enumerate(probabilities)] labels = torch.cat(labels_list) model_temperature = {} for key in model_keys: # model_probs[key] = np.array(model_probs[key]) model_outputs[key] = torch.cat(model_outputs[key]).to(model_device[key]) labels = labels.to(model_device[key]) temperature = ( temperature_scaling(model_outputs[key], labels) .detach() .cpu() .numpy() .tolist()[0] ) # bar = 1.5 # temperature = bar + (temperature - bar) / 2 if temperature > bar else temperature model_temperature[key] = torch.nn.Parameter( torch.ones(1, device=model_device[key]) * temperature ) hist_logits = None for i, key in enumerate(model_keys): model_outputs[key] = temperature_scale(model_outputs[key], model_temperature[key]) hist_logits = agg_logits( hist_logits if key != model_keys[-1] else None, model_outputs[key], i, model_device[key], ) # hist_logits = agg_logits(None, model_outputs[key], i, model_device[key]) probabilities = torch.float_power(m(hist_logits).to(model_device[key]), 2) model_ans = torch.argmax(probabilities, dim=-1).flatten() model_ans = model_ans.detach().cpu().numpy() probabilities = probabilities.detach().cpu().numpy() temp_labels = labels.detach().cpu().numpy() model_probs[key] = np.array( [ [p[model_ans[i]], int(model_ans[i] == temp_labels[i])] for i, p in enumerate(probabilities) ] ) logger.info("model_temperature %s", model_temperature) # mc_threshold = [] # for key in model_keys[:-1]: # gm = GaussianMixture(n_components=2).fit(model_probs[key][:, 0].reshape((-1, 1))) # idx = np.argsort(gm.means_.flatten())[-1] # mean = gm.means_.flatten()[idx] # var = gm.covariances_.flatten()[idx] # mc_threshold.append( # mean # ) # logger.info("%s means_ %s covariances_ %s mean %s var %s", key, gm.means_, gm.covariances_, mean, var) # # mc_threshold.append( # # np.mean(model_probs[key][:, 0]) # - np.std(model_probs[key][:, 0]) # # ) # logger.info("Threshold %s", mc_threshold) def total_reward(threshold, model_keys): reward = 0 energy = 0 mask =
np.array([False] * num_labels)
numpy.array
from __future__ import absolute_import, division, print_function from joblib import delayed, Parallel import numpy as np from sklearn.base import BaseEstimator, ClassifierMixin, RegressorMixin from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor import multiprocessing import threading import warnings warnings.simplefilter('ignore') # Package imports from externals.six.moves import range from feature_selectors import (permutation_test_mc, permutation_test_mi, permutation_test_dcor, permutation_test_pcor, permutation_test_rdc) from feature_selectors import mc_fast, mi, pcor, py_dcor from scorers import gini_index, mse from utils import bayes_boot_probs, logger ################### """SINGLE MODELS""" ################### class Node(object): """Decision node in tree Parameters ---------- col : int Integer indexing the location of feature or column col_pval : float Probability value from permutation test for feature selection threshold : float Best split found in feature impurity : float Impurity measuring quality of split value : 1d array-like or float For classification trees, estimate of each class probability For regression trees, central tendency estimate left_child : tuple For left child node, two element tuple with first element a 2d array of features and second element a 1d array of labels right_child : tuple For right child node, two element tuple with first element a 2d array of features and second element a 1d array of labels """ def __init__(self, col=None, col_pval=None, threshold=None, impurity=None, value=None, left_child=None, right_child=None): self.col = col self.col_pval = col_pval self.threshold = threshold self.impurity = impurity self.value = value self.left_child = left_child self.right_child = right_child class CITreeBase(object): """Base class for conditional inference tree Parameters ---------- min_samples_split : int Minimum samples required for a split alpha : float Threshold value for selecting feature with permutation tests. Smaller values correspond to shallower trees max_depth : int Maximum depth to grow tree max_feats : str or int Maximum feats to select at each split. String arguments include 'sqrt', 'log', and 'all' n_permutations : int Number of permutations during feature selection early_stopping : bool Whether to implement early stopping during feature selection. If True, then as soon as the first permutation test returns a p-value less than alpha, this feature will be chosen as the splitting variable muting : bool Whether to perform variable muting verbose : bool or int Controls verbosity of training and testing n_jobs : int Number of jobs for permutation testing random_state : int Sets seed for random number generator """ def __init__(self, min_samples_split=2, alpha=.05, max_depth=-1, max_feats=-1, n_permutations=100, early_stopping=False, muting=True, verbose=0, n_jobs=-1, random_state=None): # Error checking if alpha <= 0 or alpha > 1: raise ValueError("Alpha (%.2f) should be in (0, 1]" % alpha) if n_permutations < 0: raise ValueError("n_permutations (%d) should be > 0" % \ n_permutations) if not isinstance(max_feats, int) and max_feats not in ['sqrt', 'log', 'all', -1]: raise ValueError("%s not a valid argument for max_feats" % \ str(max_feats)) # Define attributes self.alpha = float(alpha) self.min_samples_split = max(1, int(min_samples_split)) self.n_permutations = int(n_permutations) self.max_feats = max_feats self.early_stopping = early_stopping self.muting = muting self.verbose = verbose self.n_jobs = n_jobs self.root = None self.splitter_counter_ = 0 if max_depth == -1: self.max_depth = np.inf else: self.max_depth = int(max(1, max_depth)) if random_state is None: self.random_state = np.random.randint(1, 9999) else: # TODO: ADD CHECK FOR CRAZY LARGE INTEGER? self.random_state = int(random_state) def _mute_feature(self, col_to_mute): """Removes variable from being selected Parameters ---------- col_to_mute : int Integer index of column to remove """ # Remove feature from protected features array idx = np.where(self.available_features_ == col_to_mute)[0] # Mute feature if not in protected set if idx in self.protected_features_: return else: self.available_features_ = np.delete(self.available_features_, idx) # Recalculate actual number for max_feats before fitting p = self.available_features_.shape[0] if self.max_feats == 'sqrt': self.max_feats = int(np.sqrt(p)) elif self.max_feats == 'log': self.max_feats = int(np.log(p+1)) elif self.max_feats in ['all', -1]: self.max_feats = p else: self.max_feats = int(self.max_feats) # Check to make sure max_feats is not larger than the number of remaining # features if self.max_feats > len(self.available_features_): self.max_feats = len(self.available_features_) def _selector(self, X, y, col_idx): """Find feature most correlated with label""" raise NotImplementedError("_splitter method not callable from base class") def _splitter(self, *args, **kwargs): """Finds best split for feature""" raise NotImplementedError("_splitter method not callable from base class") def _build_tree(self, X, y, depth=0): """Recursively builds tree Parameters ---------- X : 2d array-like Array of features y : 1d array-like Array of labels depth : int Depth of current recursive call Returns ------- Node : object Child node or terminal node in recursive splitting """ n, p = X.shape # Check for stopping criteria if n > self.min_samples_split and \ depth < self.max_depth and \ not np.all(y == y[0]): # Controls randomness of column sampling self.splitter_counter_ += 1 np.random.seed(self.random_state*self.splitter_counter_) # Find column with strongest association with outcome try: col_idx = np.random.choice(self.available_features_, size=self.max_feats, replace=False) except: col_idx = np.random.choice(self.available_features_, size=len(self.available_features_), replace=False) col, col_pval = self._selector(X, y, col_idx) # Add selected feature to protected features if col not in self.protected_features_: self.protected_features_.append(col) if self.verbose > 1: logger("tree", "Added feature %d to protected set, size " "= %d" % (col, len(self.protected_features_))) if col_pval <= self.alpha: # Find best split among selected variable impurity, threshold, left, right = self._splitter(X, y, n, col) if left and right and len(left[0]) > 0 and len(right[0]) > 0: # Build subtrees for the right and left branches if self.verbose: logger("tree", "Building left subtree with " "%d samples at depth %d" % \ (len(left[0]), depth+1)) left_child = self._build_tree(*left, depth=depth+1) if self.verbose: logger("tree", "Building right subtree with " "%d samples at depth %d" % \ (len(right[0]), depth+1)) right_child = self._build_tree(*right, depth=depth+1) # Return all arguments to constructor except value return Node(col=col, col_pval=col_pval, threshold=threshold, left_child=left_child, right_child=right_child, impurity=impurity) # Calculate terminal node value if self.verbose: logger("tree", "Root node reached at depth %d" % depth) value = self.node_estimate(y) # Terminal node, no other values to pass to constructor return Node(value=value) def fit(self, X, y=None): """Trains model Parameters ---------- X : 2d array-like Array of features y : 1d array-like Array of labels Returns ------- self : CITreeBase Instance of CITreeBase class """ if self.verbose: logger("tree", "Building root node with %d samples" % X.shape[0]) # Calculate actual number for max_feats before fitting p = X.shape[1] if self.max_feats == 'sqrt': self.max_feats = int(np.sqrt(p)) elif self.max_feats == 'log': self.max_feats = int(np.log(p+1)) elif self.max_feats in ['all', -1]: self.max_feats = p else: self.max_feats = int(self.max_feats) # Begin recursive build self.protected_features_ = [] self.available_features_ = np.arange(p, dtype=int) self.feature_importances_ = np.zeros(p) self.root = self._build_tree(X, y) sum_fi = np.sum(self.feature_importances_) if sum_fi > 0: self.feature_importances_ /= sum_fi return self def predict_label(self, X, tree=None): """Predicts label Parameters ---------- X : 2d array-like Array of features for single sample tree : CITreeBase Trained tree Returns ------- label : int or float Predicted label """ # If we have a value => return value as the prediction if tree is None: tree = self.root if tree.value is not None: return tree.value # Determine if we will follow left or right branch feature_value = X[tree.col] branch = tree.left_child if feature_value <= tree.threshold \ else tree.right_child # Test subtree return self.predict_label(X, branch) def predict(self, *args, **kwargs): """Predicts labels on test data""" raise NotImplementedError("predict method not callable from base class") def print_tree(self, tree=None, indent=" ", child=None): """Prints tree structure Parameters ---------- tree : CITreeBase Trained tree model indent : str Indent spacing child : Node Left or right child node """ # If we're at leaf => print the label if not tree: tree = self.root if tree.value is not None: print("label:", tree.value) # Go deeper down the tree else: # Print splitting rule print("X[:,%s] %s %s " % (tree.col, '<=' if child in [None, 'left'] else '>', tree.threshold)) # Print the left child print("%sL: " % (indent), end="") self.print_tree(tree.left_child, indent + indent, 'left') # Print the right print("%sR: " % (indent), end="") self.print_tree(tree.right_child, indent + indent, 'right') class CITreeClassifier(CITreeBase, BaseEstimator, ClassifierMixin): """Conditional inference tree classifier Parameters ---------- selector : str Variable selector for finding strongest association between a feature and the label Derived from CITreeBase class; see constructor for parameter definitions """ def __init__(self, min_samples_split=2, alpha=.05, selector='mc', max_depth=-1, max_feats=-1, n_permutations=100, early_stopping=False, muting=True, verbose=0, n_jobs=-1, random_state=None): # Define node estimate self.node_estimate = self._estimate_proba # Define selector if selector not in ['mc', 'mi', 'hybrid']: raise ValueError("%s not a valid selector, valid selectors are " \ "mc, mi, and hybrid") self.selector = selector if self.selector != 'hybrid': # Wrapper correlation selector self._selector = self._cor_selector # Permutation test based on correlation measure if self.selector == 'mc': self._perm_test = permutation_test_mc else: self._perm_test = permutation_test_mi else: self._perm_test = None self._selector = self._hybrid_selector super(CITreeClassifier, self).__init__( min_samples_split=min_samples_split, alpha=alpha, max_depth=max_depth, max_feats=max_feats, n_permutations=n_permutations, early_stopping=early_stopping, muting=muting, verbose=verbose, n_jobs=n_jobs, random_state=random_state) def _hybrid_selector(self, X, y, col_idx): """Selects feature most correlated with y using permutation tests with a hybrid of multiple correlation and mutual information measures Parameters ---------- X : 2d array-like Array of features y : 1d array-like Array of labels col_idx : list Columns of X to examine for feature selection Returns ------- best_col : int Best column from feature selection. Note, if early_stopping is enabled then this may not be the absolute best column best_pval : float Probability value from permutation test """ # Select random column from start and update best_col, best_pval = np.random.choice(col_idx), np.inf # Iterate over columns for col in col_idx: if mc_fast(X[:, col], y, self.n_classes_) >= mi(X[:, col], y): pval = permutation_test_mc(x=X[:, col], y=y, n_classes=self.n_classes_, B=self.n_permutations, random_state=self.random_state) else: pval = permutation_test_mi(x=X[:, col], y=y, B=self.n_permutations, random_state=self.random_state) # If variable muting if self.muting and \ pval == 1.0 and \ self.available_features_.shape[0] > 1: self._mute_feature(col) if self.verbose: logger("tree", "ASL = 1.0, muting feature %d" % col) if pval < best_pval: best_col, best_pval = col, pval # If early stopping if self.early_stopping and best_pval < self.alpha: if self.verbose: logger("tree", "Early stopping") return best_col, best_pval return best_col, best_pval def _splitter(self, X, y, n, col): """Splits data set into two child nodes based on optimized weighted gini index Parameters ---------- X : 2d array-like Array of features y : 1d array-like Array of labels n : int Number of samples col : list Column of X to search for best split Returns ------- best_impurity : float Gini index associated with best split best_threshold : float X value associated with splitting of data set into two child nodes left : tuple Left child node data consisting of two elements: (features, labels) right : tuple Right child node data consisting of two elements: (features labels) """ if self.verbose > 1: logger("splitter", "Testing splits on feature %d" % col) # Initialize variables for splitting impurity, threshold = 0.0, None left, right = None, None # Call sklearn's optimized implementation of decision tree classifiers # to make split using Gini index base = DecisionTreeClassifier( max_depth=1, min_samples_split=self.min_samples_split ).fit(X[:, col].reshape(-1, 1), y).tree_ # Make split based on best threshold threshold = base.threshold[0] idx = np.where(X[:, col] <= threshold, 1, 0) X_left, y_left = X[idx==1], y[idx==1] X_right, y_right = X[idx==0], y[idx==0] n_left, n_right = X_left.shape[0], X_right.shape[0] # Skip small splits if n_left < self.min_samples_split or n_right < self.min_samples_split: return impurity, threshold, left, right # Calculate parent and weighted children impurities if len(base.impurity) == 3: node_impurity = base.impurity[0] left_impurity = base.impurity[1]*(n_left/float(n)) right_impurity = base.impurity[2]*(n_right/float(n)) else: node_impurity = gini_index(y, self.labels_) left_impurity = gini_index(y_left, self.labels_)*(n_left/float(n)) right_impurity = gini_index(y_right, self.labels_)*(n_right/float(n)) # Define groups and calculate impurity decrease left, right = (X_left, y_left), (X_right, y_right) impurity = node_impurity - (left_impurity + right_impurity) # Update feature importance (mean decrease impurity) self.feature_importances_[col] += impurity return impurity, threshold, left, right def _cor_selector(self, X, y, col_idx): """Selects feature most correlated with y using permutation tests with a correlation measure Parameters ---------- X : 2d array-like Array of features y : 1d array-like Array of labels col_idx : list Columns of X to examine for feature selection Returns ------- best_col : int Best column from feature selection. Note, if early_stopping is enabled then this may not be the absolute best column best_pval : float Probability value from permutation test """ # Select random column from start and update best_col, best_pval = np.random.choice(col_idx), np.inf # Iterate over columns for col in col_idx: # Mute feature and continue since constant if np.all(X[:, col] == X[0, col]) and len(self.available_features_) > 1: self._mute_feature(col) if self.verbose: logger("tree", "Constant values, muting feature %d" \ % col) continue pval = self._perm_test(x=X[:, col], y=y, n_classes=self.n_classes_, B=self.n_permutations, random_state=self.random_state) # If variable muting if self.muting and \ pval == 1.0 and \ self.available_features_.shape[0] > 1: self._mute_feature(col) if self.verbose: logger("tree", "ASL = 1.0, muting feature %d" % col) if pval < best_pval: best_col, best_pval = col, pval # If early stopping if self.early_stopping and best_pval < self.alpha: if self.verbose: logger("tree", "Early stopping") return best_col, best_pval return best_col, best_pval def _estimate_proba(self, y): """Estimates class distribution in node Parameters ---------- y : 1d array-like Array of labels Returns ------- class_probs : 1d array-like Array of class probabilities """ return np.array([np.mean(y == label) for label in self.labels_]) def fit(self, X, y, labels=None): """Trains conditional inference tree classifier Parameters ---------- X : 2d array-like Array of features y : 1d array-like Array of labels labels : 1d array-like Array of unique class labels Returns ------- self : CITreeClassifier Instance of CITreeClassifier class """ self.labels_ = labels if labels is not None else np.unique(y) self.n_classes_ = len(self.labels_) super(CITreeClassifier, self).fit(X, y) return self def predict_proba(self, X): """Predicts class probabilities for feature vectors X Parameters ---------- X : 2d array-like Array of features Returns ------- class_probs : 2d array-like Array of predicted class probabilities """ if self.verbose: logger("test", "Predicting labels for %d samples" % X.shape[0]) return np.array([self.predict_label(sample) for sample in X]) def predict(self, X): """Predicts class labels for feature vectors X Parameters ---------- X : 2d array-like Array of features Returns ------- y : 1d array-like Array of predicted classes """ y_proba = self.predict_proba(X) return np.argmax(y_proba, axis=1) class CITreeRegressor(CITreeBase, BaseEstimator, RegressorMixin): """Conditional inference tree regressor Parameters ---------- selector : str Variable selector for finding strongest association between a feature and the label Derived from CITreeBase class; see constructor for rest of parameter definitions """ def __init__(self, min_samples_split=2, alpha=.05, selector='pearson', max_depth=-1, max_feats=-1, n_permutations=100, early_stopping=False, muting=True, verbose=0, n_jobs=-1, random_state=None): # Define node estimate self.node_estimate = self._estimate_mean # Define selector if selector not in ['pearson', 'distance', 'rdc', 'hybrid']: raise ValueError("%s not a valid selector, valid selectors are " \ "pearson, distance, rdc, and hybrid") self.selector = selector if self.selector != 'hybrid': # Wrapper correlation selector self._selector = self._cor_selector # Permutation test based on correlation measure if self.selector == 'pearson': self._perm_test = permutation_test_pcor elif self.selector == 'distance': self._perm_test = permutation_test_dcor else: self._perm_test = permutation_test_rdc else: self._perm_test = None self._selector = self._hybrid_selector super(CITreeRegressor, self).__init__( min_samples_split=min_samples_split, alpha=alpha, max_depth=max_depth, max_feats=max_feats, n_permutations=n_permutations, early_stopping=early_stopping, muting=muting, verbose=verbose, n_jobs=n_jobs, random_state=random_state) def _hybrid_selector(self, X, y, col_idx): """Selects feature most correlated with y using permutation tests with a hybrid of pearson and distance correlation measures Parameters ---------- X : 2d array-like Array of features y : 1d array-like Array of labels col_idx : list Columns of X to examine for feature selection Returns ------- best_col : int Best column from feature selection. Note, if early_stopping is enabled then this may not be the absolute best column best_pval : float Probability value from permutation test """ # Select random column from start and update best_col, best_pval = np.random.choice(col_idx), np.inf # Iterate over columns for col in col_idx: if abs(pcor(X[:, col], y)) >= abs(py_dcor(X[:, col], y)): pval = permutation_test_pcor(x=X[:, col], y=y, B=self.n_permutations, random_state=self.random_state) else: pval = permutation_test_dcor(x=X[:, col], y=y, B=self.n_permutations, random_state=self.random_state) # If variable muting if self.muting and \ pval == 1.0 and \ self.available_features_.shape[0] > 1: self._mute_feature(col) if self.verbose: logger("tree", "ASL = 1.0, muting feature %d" % col) if pval < best_pval: best_col, best_pval = col, pval # If early stopping if self.early_stopping and best_pval < self.alpha: if self.verbose: logger("tree", "Early stopping") return best_col, best_pval return best_col, best_pval def _cor_selector(self, X, y, col_idx): """Selects feature most correlated with y using permutation tests with a correlation measure Parameters ---------- X : 2d array-like Array of features y : 1d array-like Array of labels col_idx : list Columns of X to examine for feature selection Returns ------- best_col : int Best column from feature selection. Note, if early_stopping is enabled then this may not be the absolute best column best_pval : float Probability value from permutation test """ # Select random column from start and update best_col, best_pval = np.random.choice(col_idx), np.inf # Iterate over columns for col in col_idx: # Mute feature and continue since constant if np.all(X[:, col] == X[0, col]) and len(self.available_features_) > 1: self._mute_feature(col) if self.verbose: logger("tree", "Constant values, muting feature %d" \ % col) continue pval = self._perm_test(x=X[:, col], y=y, B=self.n_permutations, random_state=self.random_state) # If variable muting if self.muting and \ pval == 1.0 and \ self.available_features_.shape[0] > 1: self._mute_feature(col) if self.verbose: logger("tree", "ASL = 1.0, muting feature %d" % col) if pval < best_pval: best_col, best_pval = col, pval # If early stopping if self.early_stopping and best_pval < self.alpha: if self.verbose: logger("tree", "Early stopping") return best_col, best_pval return best_col, best_pval def _splitter(self, X, y, n, col): """Splits data set into two child nodes based on optimized weighted mean squared error Parameters ---------- X : 2d array-like Array of features y : 1d array-like Array of labels n : int Number of samples col : list Column of X to search for best split Returns ------- best_impurity : float Mean squared error associated with best split best_threshold : float X value associated with splitting of data set into two child nodes left : tuple Left child node data consisting of two elements: (features, labels) right : tuple Right child node data consisting of two elements: (features labels) """ if self.verbose > 1: logger("splitter", "Testing splits on feature %d" % col) # Initialize variables for splitting impurity, threshold = 0.0, None left, right = None, None # Call sklearn's optimized implementation of decision tree regressors # to make split using mean squared error base = DecisionTreeRegressor( max_depth=1, min_samples_split=self.min_samples_split ).fit(X[:, col].reshape(-1, 1), y).tree_ # Make split based on best threshold threshold = base.threshold[0] idx = np.where(X[:, col] <= threshold, 1, 0) X_left, y_left = X[idx==1], y[idx==1] X_right, y_right = X[idx==0], y[idx==0] n_left, n_right = X_left.shape[0], X_right.shape[0] # Skip small splits if n_left < self.min_samples_split or n_right < self.min_samples_split: return impurity, threshold, left, right # Calculate parent and weighted children impurities if len(base.impurity) == 3: node_impurity = base.impurity[0] left_impurity = base.impurity[1]*(n_left/float(n)) right_impurity = base.impurity[2]*(n_right/float(n)) else: node_impurity = mse(y) left_impurity = mse(y_left)*(n_left/float(n)) right_impurity = mse(y_right)*(n_right/float(n)) # Define groups and calculate impurity decrease left, right = (X_left, y_left), (X_right, y_right) impurity = node_impurity - (left_impurity + right_impurity) # Update feature importance (mean decrease impurity) self.feature_importances_[col] += impurity return impurity, threshold, left, right def _estimate_mean(self, y): """Estimates mean in node Parameters ---------- y : 1d array-like Array of labels Returns ------- mu : float Node mean estimate """ return np.mean(y) def fit(self, X, y): """Trains conditional inference tree regressor Parameters ---------- X : 2d array-like Array of features y : 1d array-like Array of labels Returns ------- self : CITreeRegressor Instance of CITreeRegressor class """ super(CITreeRegressor, self).fit(X, y) return self def predict(self, X): """Predicts labels for feature vectors in X Parameters ---------- X : 2d array-like Array of features Returns ------- y_hat : 1d array-like Array of predicted labels """ if self.verbose: logger("test", "Predicting labels for %d samples" % X.shape[0]) return np.array([self.predict_label(sample) for sample in X]) ##################### """ENSEMBLE MODELS""" ##################### def stratify_sampled_idx(random_state, y, bayes): """Indices for stratified bootstrap sampling in classification Parameters ---------- random_state : int Sets seed for random number generator y : 1d array-like Array of labels bayes : bool If True, performs Bayesian bootstrap sampling Returns ------- idx : list Stratified sampled indices for each class """ np.random.seed(random_state) idx = [] for label in np.unique(y): # Grab indices for class tmp = np.where(y==label)[0] # Bayesian bootstrapping if specified p = bayes_boot_probs(n=len(tmp)) if bayes else None idx.append(np.random.choice(tmp, size=len(tmp), replace=True, p=p)) return idx def stratify_unsampled_idx(random_state, y, bayes): """Unsampled indices for stratified bootstrap sampling in classification Parameters ---------- random_state : int Sets seed for random number generator y : 1d array-like Array of labels bayes : bool If True, performs Bayesian bootstrap sampling Returns ------- idx : list Stratified unsampled indices for each class """ np.random.seed(random_state) sampled = stratify_sampled_idx(random_state, y, bayes) idx = [] for i, label in enumerate(np.unique(y)): idx.append(np.setdiff1d(np.where(y==label)[0], sampled[i])) return idx def balanced_sampled_idx(random_state, y, bayes, min_class_p): """Indices for balanced bootstrap sampling in classification Parameters ---------- random_state : int Sets seed for random number generator y : 1d array-like Array of labels bayes : bool If True, performs Bayesian bootstrap sampling min_class_p : float Minimum proportion of class labels Returns ------- idx : list Balanced sampled indices for each class """ np.random.seed(random_state) idx, n = [], int(np.floor(min_class_p*len(y))) for i, label in enumerate(np.unique(y)): # Grab indices for class tmp = np.where(y==label)[0] # Bayesian bootstrapping if specified p = bayes_boot_probs(n=len(tmp)) if bayes else None idx.append(np.random.choice(tmp, size=n, replace=True, p=p)) return idx def balanced_unsampled_idx(random_state, y, bayes, min_class_p): """Unsampled indices for balanced bootstrap sampling in classification Parameters ---------- random_state : int Sets seed for random number generator y : 1d array-like Array of labels bayes : bool If True, performs Bayesian bootstrap sampling min_class_p : float Minimum proportion of class labels Returns ------- idx : list Balanced unsampled indices for each class """ np.random.seed(random_state) sampled = balanced_sampled_idx(random_state, y, bayes, min_class_p) idx = [] for i, label in enumerate(np.unique(y)): idx.append(np.setdiff1d(np.where(y==label)[0], sampled[i])) return idx def normal_sampled_idx(random_state, n, bayes): """Indices for bootstrap sampling Parameters ---------- random_state : int Sets seed for random number generator n : int Sample size bayes : bool If True, performs Bayesian bootstrap sampling Returns ------- idx : list Sampled indices """ np.random.seed(random_state) # Bayesian bootstrapping if specified p = bayes_boot_probs(n=n) if bayes else None return np.random.choice(np.arange(n, dtype=int), size=n, replace=True, p=p) def normal_unsampled_idx(random_state, n, bayes): """Unsampled indices for bootstrap sampling Parameters ---------- random_state : int Sets seed for random number generator y : 1d array-like Array of labels n : int Sample size bayes : bool If True, performs Bayesian bootstrap sampling Returns ------- idx : list Unsampled indices """ sampled = normal_sampled_idx(random_state, n, bayes) counts = np.bincount(sampled, minlength=n) return np.arange(n, dtype=int)[counts==0] def _parallel_fit_classifier(tree, X, y, n, tree_idx, n_estimators, bootstrap, bayes, verbose, random_state, class_weight=None, min_dist_p=None): """Utility function for building trees in parallel Note: This function can't go locally in a class, because joblib complains that it cannot pickle it when placed there Parameters ---------- tree : CITreeClassifier Instantiated conditional inference tree X : 2d array-like Array of features y : 1d array-like Array of labels n : int Number of samples tree_idx : int Index of tree in forest n_estimators : int Number of total estimators bootstrap : bool Whether to perform bootstrap sampling bayes : bool If True, performs Bayesian bootstrap sampling verbose : bool or int Controls verbosity of training process random_state : int Sets seed for random number generator class_weight : str Type of sampling during bootstrap, None for regular bootstrapping, 'balanced' for balanced bootstrap sampling, and 'stratify' for stratified bootstrap sampling min_class_p : float Minimum proportion of class labels Returns ------- tree : CITreeClassifier Fitted conditional inference tree """ # Print status if conditions met if verbose and n_estimators >= 10: denom = n_estimators if verbose > 1 else 10 if (tree_idx+1) % int(n_estimators/denom) == 0: logger("tree", "Building tree %d/%d" % (tree_idx+1, n_estimators)) # Bootstrap sample if specified if bootstrap: random_state = random_state*(tree_idx+1) if class_weight == 'balanced': idx = np.concatenate( balanced_sampled_idx(random_state, y, bayes, min_dist_p) ) elif class_weight == 'stratify': idx = np.concatenate( stratify_sampled_idx(random_state, y, bayes) ) else: idx = normal_sampled_idx(random_state, n, bayes) # Note: We need to pass the classes in the case of the bootstrap # because not all classes may be sampled and when it comes to prediction, # the tree models learns a different number of classes across different # bootstrap samples tree.fit(X[idx], y[idx], np.unique(y)) else: tree.fit(X, y) return tree def _parallel_fit_regressor(tree, X, y, n, tree_idx, n_estimators, bootstrap, bayes, verbose, random_state): """Utility function for building trees in parallel Note: This function can't go locally in a class, because joblib complains that it cannot pickle it when placed there Parameters ---------- tree : CITreeRegressor Instantiated conditional inference tree X : 2d array-like Array of features y : 1d array-like Array of labels n : int Number of samples tree_idx : int Index of tree in forest n_estimators : int Number of total estimators bootstrap : bool Whether to perform bootstrap sampling bayes : bool If True, performs Bayesian bootstrap sampling verbose : bool or int Controls verbosity of training process random_state : int Sets seed for random number generator Returns ------- tree : CITreeRegressor Fitted conditional inference tree """ # Print status if conditions met if verbose and n_estimators >= 10: denom = n_estimators if verbose > 1 else 10 if (tree_idx+1) % int(n_estimators/denom) == 0: logger("tree", "Building tree %d/%d" % (tree_idx+1, n_estimators)) # Bootstrap sample if specified if bootstrap: random_state = random_state*(tree_idx+1) idx = normal_sampled_idx(random_state, n, bayes) # Train tree.fit(X[idx], y[idx]) else: tree.fit(X, y) return tree def _accumulate_prediction(predict, X, out, lock): """Utility function to aggregate predictions in parallel Parameters ---------- predict : function handle Alias to prediction method of class X : 2d array-like Array of features out : 1d or 2d array-like Array of labels lock : threading lock A lock that controls worker access to data structures for aggregating predictions Returns ------- None """ prediction = predict(X) with lock: if len(out) == 1: out[0] += prediction else: for i in range(len(out)): out[i] += prediction[i] class CIForestClassifier(BaseEstimator, ClassifierMixin): """Conditional forest classifier Parameters ---------- min_samples_split : int Minimum samples required for a split alpha : float Threshold value for selecting feature with permutation tests. Smaller values correspond to shallower trees selector : str Variable selector for finding strongest association between a feature and the label max_depth : int Maximum depth to grow tree max_feats : str or int Maximum feats to select at each split. String arguments include 'sqrt', 'log', and 'all' n_permutations : int Number of permutations during feature selection early_stopping : bool Whether to implement early stopping during feature selection. If True, then as soon as the first permutation test returns a p-value less than alpha, this feature will be chosen as the splitting variable muting : bool Whether to perform variable muting verbose : bool or int Controls verbosity of training and testing bootstrap : bool Whether to perform bootstrap sampling for each tree bayes : bool If True, performs Bayesian bootstrap sampling class_weight : str Type of sampling during bootstrap, None for regular bootstrapping, 'balanced' for balanced bootstrap sampling, and 'stratify' for stratified bootstrap sampling n_jobs : int Number of jobs for permutation testing random_state : int Sets seed for random number generator """ def __init__(self, min_samples_split=2, alpha=.05, selector='mc', max_depth=-1, n_estimators=100, max_feats='sqrt', n_permutations=100, early_stopping=True, muting=True, verbose=0, bootstrap=True, bayes=True, class_weight='balanced', n_jobs=-1, random_state=None): # Error checking if alpha <= 0 or alpha > 1: raise ValueError("Alpha (%.2f) should be in (0, 1]" % alpha) if selector not in ['mc', 'mi', 'hybrid']: raise ValueError("%s not a valid selector, valid selectors are " \ "mc, mi, and hybrid") if n_permutations < 0: raise ValueError("n_permutations (%s) should be > 0" % \ str(n_permutations)) if not isinstance(max_feats, int) and max_feats not in ['sqrt', 'log', 'all', -1]: raise ValueError("%s not a valid argument for max_feats" % \ str(max_feats)) if n_estimators < 0: raise ValueError("n_estimators (%s) must be > 0" % \ str(n_estimators)) # Only for classifier model if class_weight not in [None, 'balanced', 'stratify']: raise ValueError("%s not a valid argument for class_weight" % \ str(class_weight)) # Placeholder variable for regression model (not applicable) if class_weight is None: self.min_class_p = None # Define attributes self.alpha = float(alpha) self.selector = selector self.min_samples_split = max(1, min_samples_split) self.n_permutations = int(n_permutations) if max_depth == -1: self.max_depth = max_depth else: self.max_depth = int(max(1, max_depth)) self.n_estimators = int(max(1, n_estimators)) self.max_feats = max_feats self.bootstrap = bootstrap self.early_stopping = early_stopping self.muting = muting self.n_jobs = n_jobs self.verbose = verbose self.class_weight = class_weight self.bayes = bayes if random_state is None: self.random_state = np.random.randint(1, 9999) else: # TODO: ADD CHECK FOR CRAZY LARGE INTEGER? self.random_state = int(random_state) # Package params for calling CITreeClassifier self.params = { 'alpha' : self.alpha, 'selector' : self.selector, 'min_samples_split' : self.min_samples_split, 'n_permutations' : self.n_permutations, 'max_feats' : self.max_feats, 'early_stopping' : self.early_stopping, 'muting' : self.muting, 'verbose' : 0, 'n_jobs' : 1, 'random_state' : None, } def fit(self, X, y): """Fit conditional forest classifier Parameters ---------- X : 2d array-like Array of features y : 1d array-like Array of labels Returns ------- self : CIForestClassifier Instance of CIForestClassifier """ self.labels_ = np.unique(y) self.n_classes_ = len(self.labels_) if self.verbose: logger("tree", "Training ensemble with %d trees on %d samples" % \ (self.n_estimators, X.shape[0])) # Instantiate base tree models self.estimators_ = [] for i in range(self.n_estimators): self.params['random_state'] = self.random_state*(i+1) self.estimators_.append(CITreeClassifier(**self.params)) # Define class distribution self.class_dist_p = np.array([
np.mean(y==label)
numpy.mean
########################################################################### # # # physical_validation, # # a python package to test the physical validity of MD results # # # # Written by <NAME> <<EMAIL>> # # <NAME> <<EMAIL>> # # # # Copyright (c) 2017-2021 University of Colorado Boulder # # (c) 2012 The University of Virginia # # # ########################################################################### r""" Data structures carrying simulation data. """ from typing import Any, List, Optional, Tuple import numpy as np from ..util import error as pv_error from ..util.util import array_equal_shape_and_close class RectangularBox: def __init__(self, box: np.ndarray): self.__box = None self.__nframes = 0 assert 0 < box.ndim < 3 if box.ndim == 1: assert box.size == 3 self.__box = box self.__nframes = 1 elif box.ndim == 2: assert box.shape[1] == 3 self.__box = box self.__nframes = box.shape[0] @property def box(self): return self.__box def gather( self, positions: np.ndarray, bonds: List[List[int]], molec_idx: List[int] ): bonds = np.array(bonds) if bonds.size == 0: return positions positions = np.array(positions) assert 1 < positions.ndim < 4 if positions.ndim == 2: nframes = 1 positions = np.array([positions]) else: nframes = positions.shape[0] if self.__nframes != 1: assert self.__nframes == nframes for f in range(nframes): p = positions[f] if self.__nframes > 1: box = self.__box[f] else: box = self.__box[0] assert len(bonds) == len(molec_idx) for mbonds, idx in zip(bonds, molec_idx): for b in mbonds: a1 = idx + b[0] a2 = idx + b[1] p[a2] += np.round((p[a1] - p[a2]) / box) * box positions[f] = p return positions class TrajectoryData(object): r"""TrajectoryData: The position and velocity trajectory along the simulation The full trajectory is needed to calculate the equipartition of the kinetic energy. As they are used in connection, the position and velocity trajectories are expected to have the same shape and number of frames. The position and velocity trajectories can be accessed either using the getters of an object, as in * trajectory.position * trajectory.velocity or using the key notation, as in * trajectory['position'] * trajectory['velocity'] """ @staticmethod def trajectories() -> Tuple[str, str]: return "position", "velocity" def __init__(self, position: Optional[Any] = None, velocity: Optional[Any] = None): self.__position = None self.__velocity = None self.__nframes = None self.__natoms = None self.__getters = { "position": TrajectoryData.position.__get__, "velocity": TrajectoryData.velocity.__get__, } self.__setters = { "position": TrajectoryData.position.__set__, "velocity": TrajectoryData.velocity.__set__, } # Consistency check assert set(self.__getters.keys()) == set(self.__setters.keys()) assert set(self.__getters.keys()) == set(TrajectoryData.trajectories()) if position is not None: self.position = position if velocity is not None: self.velocity = velocity def __getitem__(self, key: str) -> Optional[np.ndarray]: if key not in self.trajectories(): raise KeyError return self.__getters[key](self) def __setitem__(self, key: str, value: Any) -> None: if key not in self.trajectories(): raise KeyError self.__setters[key](self, value) def __check_value(self, value: Any, key: str) -> np.ndarray: value = np.array(value) if value.ndim == 2: # create 3-dimensional array value =
np.array([value])
numpy.array
from ast import Return import webbrowser import tkinter as tk from tkinter import BooleanVar, Toplevel, ttk from tkinter.constants import BOTH from PIL import Image, ImageTk from PIL import ImageGrab import CalcFunctions as Calc import json from SideMenu import SideMenu from tkvideo import tkvideo from PlotFunctions import plot, plot_principal_axes import shape_builder from SettingsWindow import settings_window from ErrorWindow import error_window from UpdateWindow import update_window from tkinter.filedialog import asksaveasfile from tkinter import messagebox import datetime as dt from fpdf import FPDF import numpy as np import os from urllib.request import urlopen from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.figure import Figure import matplotlib.patches as patches ## ANIMATION WINDOW ----------------------------------------------------------------------------------------------------------------------------------------------------------- class starting_window(tk.Tk): def __init__(self): super().__init__() self.overrideredirect(1) # Position the window in the center of the page. positionRight = int(self.winfo_screenwidth()/2 - 240) positionDown = int(self.winfo_screenheight()/2 - 120) self.geometry("+{}+{}".format(positionRight, positionDown)) # Play splash screen on tkinter widget self.splash_image = Image.open("AMSZ_splash.png") self.splash_image = self.splash_image.resize((480,240), Image.ANTIALIAS) self.splash_img = ImageTk.PhotoImage(self.splash_image) my_label = tk.Label(self, image = self.splash_img) my_label.pack() self.after(1500, lambda: self.destroy()) ## MAIN WINDOW ----------------------------------------------------------------------------------------------------------------------------------------------------------- class main_window(tk.Tk): # def onExit(self): # self.quit() def __init__(self): super().__init__() # main window opening size self.win_width = 1301 self.win_height = 750 # Current version self.version = 1.1 # screen size self.screen_width = self.winfo_screenwidth() self.screen_height = self.winfo_screenheight() # boolean to decide if the window can fit to the screen self.size_ok = tk.BooleanVar(False) if self.win_width<self.screen_width/4*3 or self.win_height<self.screen_height/4*3: self.size_ok.set(True) # Position the window in the center of the page. positionRight = int(self.winfo_screenwidth()/2 - self.win_width/2) positionDown = int(self.winfo_screenheight()/2 - self.win_height/2) self.geometry("+{}+{}".format(positionRight, positionDown)) # Variables self.coordinate_on = tk.BooleanVar(False) self.dimension_lines_on = tk.BooleanVar(False) self.transformed_coordinate_on = tk.BooleanVar(False) self.thickness_on = tk.BooleanVar(False) self.coordinate_on.set(True) self.dimension_lines_on.set(True) self.plotted = tk.BooleanVar(False) self.shape_builder_mode = False self.window_open = BooleanVar(False) #self.valid_sol = BooleanVar(False) # Default unit, default theme self.unit = settings["default_unit"]#"mm" self.angle_unit = settings["angle_unit"] #! to settings self.theme = settings["theme"]#"dark" self.logo_enabled = settings["logo_enabled"] #shape builder configuration self.show_orig_axis = True self.show_orig_axis_bool = tk.BooleanVar() self.show_orig_axis_bool.set(self.show_orig_axis) self.orig_axis_dissapier = False self.orig_axis_dissapier_bool = tk.BooleanVar() self.orig_axis_dissapier_bool.set(self.orig_axis_dissapier) self.sb_ha_vis = True #visualizing hauptachsen in sb mode self.sb_ha_vis_bool = tk.BooleanVar() self.sb_ha_vis_bool.set(self.sb_ha_vis) self.calc_for_orig_axis = False self.calc_for_orig_axis_bool = tk.BooleanVar() self.calc_for_orig_axis_bool.set(self.calc_for_orig_axis) # Play AMSZ logo on startup self.play_logo = tk.BooleanVar(False) if self.logo_enabled == 'True': self.play_logo.set(True) else: self.play_logo.set(False) # Colors if self.theme == "dark": self.colors = DARK_THEME else: self.colors = LIGHT_THEME ## Window ------------------------------------------------------------------------------------------------------------------------------------------------------------------- self.title(f"Aream {self.version}") if self.size_ok.get() == False: self.state("zoomed") # Fullscreen self.geometry(f"{self.win_width}x{self.win_height}") self.configure(bg=self.colors['main_color']) self.minsize(width=200, height=200) self.tk.call('wm', 'iconphoto', self._w, tk.PhotoImage(file='logo_A.png')) # self.iconbitmap("AMSZ.ico") self.menu_is_on = False self.create_menubar(self.shape_builder_mode, self.menu_is_on) # Canvas for drawing self.canvas = None # Side Menu self.sm = SideMenu(self) self.sm.pack(side=tk.LEFT, padx = (20,10), pady = 20, fill=tk.Y) # self.sm.pack(side=tk.LEFT, fill=tk.Y) # angle_unit on pressing enter self.bind('<Return>', self.calculate) plot(self, None, False, False, False, False, self.colors, self.angle_unit) # Checking for updates url = "https://www.mm.bme.hu/amsz/index.php/python-masodrendu-nyomatek-szamito-felulet/" page = urlopen(url) html_bytes = page.read() html = html_bytes.decode("utf-8") s = str(html) index = s.find("Legújabb verzió: ") index_after = s.find("<br>", index, index+50) index_version = index + 17 latest_version = s[index_version:index_after] latest_version = float(latest_version) if latest_version != self.version: update_window(self) ## USEFUL FUNCTIONS ----------------------------------------------------------------------------------------------------------------------------------------------------------- def feedback(self): webbrowser.open("https://forms.gle/gMP69MTgbtey9T5V8") def help(self): webbrowser.open("https://www.mm.bme.hu/amsz/index.php/python-masodrendu-nyomatek-szamito-felulet/") def create_menubar(self, shape_builder_mode, menu_is_on): if menu_is_on == True: self.menu_canvas.pack_forget() else: self.menu_is_on = True ## custom menubar ----------------------------------------------------------------------------------------------------------------------------------------------------------- self.menu_canvas = tk.Canvas(self, bg=self.colors['secondary_color'], highlightthickness=0, height=26) self.menu_canvas.pack(fill = tk.X) # custom menubar objects self.sol_save_button_img = tk.PhotoImage(file=f"{self.colors['path']}menubar/sol_save.png") self.sol_save_button_hover_img = tk.PhotoImage(file=f"{self.colors['path']}menubar/sol_save_hover.png") self.sol_save_button = self.menu_canvas.create_image(0,0,anchor=tk.NW,image=self.sol_save_button_img) self.menu_canvas.tag_bind(self.sol_save_button, '<Button-1>', lambda e: self.save_file()) self.menu_canvas.tag_bind(self.sol_save_button, '<Enter>', lambda e:self.menu_canvas.itemconfig(self.sol_save_button, image=self.sol_save_button_hover_img)) self.menu_canvas.tag_bind(self.sol_save_button, '<Leave>', lambda e:self.menu_canvas.itemconfig(self.sol_save_button, image=self.sol_save_button_img)) self.setting_button_img = tk.PhotoImage(file=f"{self.colors['path']}menubar/settings.png") self.setting_button_hover_img = tk.PhotoImage(file=f"{self.colors['path']}menubar/settings_hover.png") self.setting_button = self.menu_canvas.create_image(167,0,anchor=tk.NW,image=self.setting_button_img) self.menu_canvas.tag_bind(self.setting_button, '<Button-1>', lambda e: settings_window(self)) self.menu_canvas.tag_bind(self.setting_button, '<Enter>', lambda e:self.menu_canvas.itemconfig(self.setting_button, image=self.setting_button_hover_img)) self.menu_canvas.tag_bind(self.setting_button, '<Leave>', lambda e:self.menu_canvas.itemconfig(self.setting_button, image=self.setting_button_img)) self.basic_button_img = tk.PhotoImage(file=f"{self.colors['path']}/menubar/basic.png") self.basic_button_hover_img = tk.PhotoImage(file=f"{self.colors['path']}/menubar/basic_hover.png") self.change_button_img = tk.PhotoImage(file=f"{self.colors['path']}menubar/change.png") self.change_button_hover_img = tk.PhotoImage(file=f"{self.colors['path']}menubar/change_hover.png") self.change_button = self.menu_canvas.create_image(261,0,anchor=tk.NW,image=self.change_button_img) self.menu_canvas.tag_bind(self.change_button, '<Button-1>', lambda e: self.build_shape()) self.menu_canvas.tag_bind(self.change_button, '<Enter>', lambda e:self.menu_canvas.itemconfig(self.change_button, image=self.change_button_hover_img)) self.menu_canvas.tag_bind(self.change_button, '<Leave>', lambda e:self.menu_canvas.itemconfig(self.change_button, image=self.change_button_img)) if shape_builder_mode == False: forms_posx = 167 + 94 + 104 help_posx = 167 + 94 + 104 + 97 else: forms_posx = 167 + 94 + 118 help_posx = 167 + 94 + 118 + 97 self.forms_button_img = tk.PhotoImage(file=f"{self.colors['path']}menubar/forms.png") self.forms_button_hover_img = tk.PhotoImage(file=f"{self.colors['path']}menubar/forms_hover.png") self.forms_button = self.menu_canvas.create_image(forms_posx,0,anchor=tk.NW,image=self.forms_button_img) self.menu_canvas.tag_bind(self.forms_button, '<Button-1>', lambda e: self.feedback()) self.menu_canvas.tag_bind(self.forms_button, '<Enter>', lambda e:self.menu_canvas.itemconfig(self.forms_button, image=self.forms_button_hover_img)) self.menu_canvas.tag_bind(self.forms_button, '<Leave>', lambda e:self.menu_canvas.itemconfig(self.forms_button, image=self.forms_button_img)) self.help_button_img = tk.PhotoImage(file=f"{self.colors['path']}menubar/help.png") self.help_button_hover_img = tk.PhotoImage(file=f"{self.colors['path']}menubar/help_hover.png") self.help_button = self.menu_canvas.create_image(help_posx,0,anchor=tk.NW,image=self.help_button_img) self.menu_canvas.tag_bind(self.help_button, '<Button-1>', lambda e: self.help()) self.menu_canvas.tag_bind(self.help_button, '<Enter>', lambda e:self.menu_canvas.itemconfig(self.help_button, image=self.help_button_hover_img)) self.menu_canvas.tag_bind(self.help_button, '<Leave>', lambda e:self.menu_canvas.itemconfig(self.help_button, image=self.help_button_img)) def theme_change(self, theme): if self.theme != theme: self.theme=theme if self.theme=="dark": self.colors=DARK_THEME self.sm.change_color(DARK_THEME) # if self.plotted==True: # plot(self, self.sm.shape, self.coordinate_on.get(), self.dimension_lines_on.get(), self.transformed_coordinate_on.get(), self.thickness_on.get(), self.colors) elif self.theme == "light": self.colors=LIGHT_THEME self.sm.change_color(LIGHT_THEME) # if self.plotted==True: # plot(self, self.sm.shape, self.coordinate_on.get(), self.dimension_lines_on.get(), self.transformed_coordinate_on.get(), self.thickness_on.get(), self.colors) else: print("ERROR: Unknown Theme") return -1 self.configure(bg=self.colors['main_color']) settings['theme']=self.theme self.destroy() self.__init__() #TODO: canvas color???? + plot print(f"Theme set to {theme}") def unit_change(self, unit_type, unit): if unit_type == "degree": self.angle_unit = unit else: self.unit = unit for i in self.sm.controls: if i["unit_type"] == unit_type: i["unit"].config(text = unit) try: for i in self.sb.controls: if i["unit_type"] == unit_type: i["unit"].config(text = unit) except: None def build_shape(self): if not self.shape_builder_mode: print("opening sb") self.shape_builder_mode = True self.create_menubar(self.shape_builder_mode, self.menu_is_on) self.sm.pack_forget() self.sb_sm = shape_builder.sb_side_menu(self) self.sb_sm.pack(side=tk.LEFT, fill=tk.Y, padx = (20,10), pady = 20) self.sb = shape_builder.shapeBuilder(self, self.sb_sm) self.change_button_img = tk.PhotoImage(file=f"{self.colors['path']}menubar/basic.png") self.change_button_hover_img = tk.PhotoImage(file=f"{self.colors['path']}menubar/basic_hover.png") self.menu_canvas.itemconfig (self.change_button, image=self.change_button_img) if self.plotted==True: self.canvas._tkcanvas.destroy() self.sb.pack(expand=tk.YES, fill=tk.BOTH, padx = (10,20), pady = 20) else: print("closing sb") self.sb.pack_forget() self.sb_sm.pack_forget() self.shape_builder_mode = False self.create_menubar(self.shape_builder_mode, self.menu_is_on) self.sm.pack(side=tk.LEFT, fill=tk.Y, padx = (20,10), pady = 20) # calling = eval(f'self.sm.{self.sm.shape.lower()}_click') # calling() self.sm.combo_clear() # self.combo_rectangle.grid(row=1, column=0, columnspan=5) self.sm.combo_default_img = tk.PhotoImage(file=f"{self.colors['path']}combobox/combo_default.png") self.sm.combo_default = tk.Label(self.sm.canvas, image=self.sm.combo_default_img, bg=self["background"], activebackground=self["background"]) self.sm.combo_default.bind('<Button-1>', func=lambda e:self.sm.combo_click()) self.sm.combo_default.grid(row=1, column=0, columnspan=5) self.sm.combo_default["border"] = "0" self.sm.clear() # self.sm.combo_clear() # self.sm.combo_rectangle.grid_forget() ## TODO eval func stringet códdá alakít # self.sm.combo_default.grid(row=1, column=0, columnspan=5) # self.sm.calling self.plotted = False self.sm.shape = None plot(self, None, False, False, False, False, self.colors, self.angle_unit) self.change_button_img = tk.PhotoImage(file=f"{self.colors['path']}menubar/change.png") self.change_button_hover_img = tk.PhotoImage(file=f"{self.colors['path']}menubar/change_hover.png") self.menu_canvas.itemconfig (self.change_button, image=self.change_button_img) def choose_object(self, shape = None): self.dimensions = { "a": 2, "b": 1, "d": 1 } if shape == self.sm.shape: return 0 if self.canvas is not None: self.sm.clear() if shape == "Rectangle" and self.sm.shape != "Rectangle": self.sm.shape = "Rectangle" self.sm.change_to_recrangle() elif shape == "Circle" and self.sm.shape != "Circle": self.sm.shape = "Circle" self.sm.change_to_circle() elif shape == "Ellipse" and self.sm.shape != "Ellipse": self.sm.shape = "Ellipse" self.sm.change_to_ellipse() elif shape == "Isosceles_triangle" and self.sm.shape != "Isosceles_triangle": self.sm.shape = "Isosceles_triangle" self.sm.change_to_isosceles_triangle() print(self.sm.shape) elif shape == "Right_triangle" and self.sm.shape != "Right_triangle": self.sm.shape = "Right_triangle" self.sm.change_to_right_triangle() print(self.sm.shape) else: self.sm.shape = None print("Ez az alakzat még nincs definiálva...") plot(self, self.sm.shape, self.coordinate_on.get(), self.dimension_lines_on.get(), self.transformed_coordinate_on.get(), self.thickness_on.get(), self.colors, self.angle_unit) def get_entry(self, number_of_entries): vissza = [] for i in range(number_of_entries): if i >= 1 and self.sm.shape == "Circle": #! Jujj de csúnya... i+=1 if self.sm.controls[i]["entry"].get().replace(',','.') == "": print("Hiba") self.sm.controls[i]["entry"].config({"background": self.colors['error_color']}) for i in self.sm.indicators: i.config(text="") self.sm.result1.config(text="Hiba a bemeneti adatokban!") vissza.append(None) elif float(self.sm.controls[i]["entry"].get().replace(',','.')) > 0: vissza.append(float(self.sm.controls[i]["entry"].get().replace(',','.'))) self.sm.controls[i]["entry"].config({"background": self.colors['entry_color']}) else: print("Hiba") self.sm.controls[i]["entry"].config({"background": self.colors['error_color']}) for i in self.sm.indicators: i.config(text="") self.sm.result1.config(text="Hiba a bemeneti adatokban!") vissza.append(None) if self.transformed_coordinate_on.get(): for i in range(1,4): if self.sm.shape == "Circle": i += 1 if self.sm.controls[i]["entry"].get().replace(',','.') == "": print("Hiba") self.sm.controls[i]["entry"].config({"background": self.colors['error_color']}) for i in self.sm.indicators: i.config(text="") self.sm.result1.config(text="Hiba a bemeneti adatokban!") vissza.append(None) else: vissza.append(float(self.sm.controls[i]["entry"].get().replace(',','.'))) self.sm.controls[i]["entry"].config({"background": self.colors['entry_color']}) if self.sm.shape != "Circle": i += 1 if self.sm.controls[i]["entry"].get().replace(',','.') == "": print("Hiba") self.sm.controls[i]["entry"].config({"background": self.colors['error_color']}) for i in self.sm.indicators: i.config(text="") self.sm.result1.config(text="Hiba a bemeneti adatokban!") vissza.append(None) else: vissza.append(float(self.sm.controls[i]["entry"].get().replace(',','.'))) self.sm.controls[i]["entry"].config({"background": self.colors['entry_color']}) if self.thickness_on.get(): if self.sm.shape == "Circle": print("Kor szamitas") t = float(self.sm.controls[-1]["entry"].get().replace(',','.')) d = float(self.sm.controls[0]["entry"].get().replace(',','.')) if 0 < t < d/2 or t is not None: print("kor lehetseges") t = float(self.sm.controls[-1]["entry"].get().replace(',','.')) self.sm.controls[-1]["entry"].config({"background": self.colors['entry_color']}) else: print("Hiba") self.sm.controls[-1]["entry"].config({"background": self.colors['error_color']}) for i in self.sm.indicators: i.config(text="") self.sm.result2.config(text="Hiba a falvastagságban!") vissza.append(None) t = None elif self.sm.shape == "Right_triangle": print("Derekszogu haromszog szamitas") t = float(self.sm.controls[-1]["entry"].get().replace(',','.')) a = float(self.sm.controls[0]["entry"].get().replace(',','.')) b = float(self.sm.controls[1]["entry"].get().replace(',','.')) phi = np.arctan(b/a) c = np.sqrt(a**2 + b**2) print('phi: ' + str(phi*180/np.pi)) print('c: ' + str(c)) s1 = np.sqrt(b**2 + (a/2)**2) s2 = np.sqrt(a**2 + (c/2)**2 - 2*a*(c/2)*np.cos(phi)) s3 = np.sqrt(a**2 + (b/2)**2) print('s2: ' + str(s2)) print('s3: ' + str(s3)) t1 = a/3 t2 = b/3 beta = np.arccos( ( (s2/3)**2 - (2*s3/3)**2 - (c/2)**2 ) / ( -2 * (2*s3/3) * (c/2) ) ) print('beta: ' + str(beta)) t3 = (2*s3/3)*np.sin(beta) print('t1: ' + str(t1)) print('t2: ' + str(t2)) print('t3: ' + str(t3)) # selecting the smallest t_min = min(t1, t2, t3) print('legkisebb: ' + str(t_min)) if 0 < t: try: t = float(self.sm.controls[-1]["entry"].get().replace(',','.')) self.sm.controls[-1]["entry"].config({"background": self.colors['entry_color']}) except: print("Hiba") self.sm.controls[-1]["entry"].config({"background": self.colors['error_color']}) for i in self.sm.indicators: i.config(text="") self.sm.result1.config(text="Hiba a bemeneti adatokban!") self.sm.result2.config(text="Hiba a falvastagságban!") vissza.append(None) t = None if 0 < t >= t_min: self.sm.controls[0]["entry"].config({"background": self.colors['error_color']}) self.sm.controls[1]["entry"].config({"background": self.colors['error_color']}) self.sm.controls[-1]["entry"].config({"background": self.colors['error_color']}) for i in self.sm.indicators: i.config(text="") self.sm.result1.config(text="Hiba a bemeneti adatokban!") self.sm.result2.config(text="Hiba a falvastagságban!") vissza.append(None) elif self.sm.shape == "Isosceles_triangle": print("<NAME>") t = float(self.sm.controls[-1]["entry"].get().replace(',','.')) a = float(self.sm.controls[0]["entry"].get().replace(',','.')) b = float(self.sm.controls[1]["entry"].get().replace(',','.')) phi = np.arctan(b/ (a/2)) c = np.sqrt((a/2)**2 + b**2) print('phi: ' + str(phi*180/np.pi)) print('c: ' + str(c)) s1 = b s2 = np.sqrt(a**2 + (c/2)**2 - 2*a*(c/2)*np.cos(phi)) s3 = s2 print('s2: ' + str(s2)) print('s3: ' + str(s3)) t1 = a/3 beta = np.arccos( ( (s2/3)**2 - (2*s3/3)**2 - (c/2)**2 ) / ( -2 * (2*s3/3) * (c/2) ) ) print('beta: ' + str(beta)) t2 = (2*s2/3)*
np.sin(beta)
numpy.sin
''' Cross-Validation Data Classes ============================= Scikit-learn compatible classes for performing various types of cross-validation ''' __all__ = ['KFoldSubject','KFoldStratified','LeaveOneSubjectOut','set_cv'] __author__ = ["<NAME>"] __license__ = "MIT" from sklearn.cross_validation import _BaseKFold import numpy as np import random import pandas as pd class KFoldSubject(_BaseKFold): """K-Folds cross validation iterator which holds out same subjects. Provides train/test indices to split data in train test sets. Split dataset into k consecutive folds while ensuring that same subject is held out within each fold Each fold is then used a validation set once while the k - 1 remaining fold form the training set. Extension of KFold from scikit-learn cross_validation model Args: n: int Total number of elements. labels: vector of length Y indicating subject IDs n_folds: int, default=3 Number of folds. Must be at least 2. shuffle: boolean, optional Whether to shuffle the data before splitting into batches. random_state: None, int or RandomState Pseudo-random number generator state used for random sampling. If None, use default numpy RNG for shuffling """ def __init__(self, n, labels, n_folds=3, shuffle=False, random_state=None): super(KFoldSubject, self).__init__(n, n_folds, shuffle, random_state) self.idxs =
np.arange(n)
numpy.arange
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 import math import numbers import typing from functools import singledispatch import numpy as np from .builtin import ( AssociativeOp, add, atanh, exp, log, log1p, max, min, reciprocal, safediv, safesub, sqrt, tanh, ) from .op import ( DISTRIBUTIVE_OPS, UNITS, BinaryOp, FinitaryOp, Op, OpMeta, ReductionOp, TernaryOp, UnaryOp, declare_op_types, ) _builtin_all = all _builtin_any = any # This is used only for pattern matching. array = (np.ndarray, np.generic) arraylist = typing.Tuple[typing.Union[array], ...] sqrt.register(array)(np.sqrt) exp.register(array)(np.exp) log1p.register(array)(np.log1p) tanh.register(array)(np.tanh) atanh.register(array)(np.arctanh) ########################################### # Reduction Ops ########################################### @ReductionOp.make def all(x, axis=None, keepdims=False): return np.all(x, axis, keepdims=keepdims) @ReductionOp.make def any(x, axis=None, keepdims=False): return np.any(x, axis, keepdims=keepdims) @ReductionOp.make def amax(x, axis=None, keepdims=False): return np.amax(x, axis, keepdims=keepdims) @ReductionOp.make def amin(x, axis=None, keepdims=False): return np.amin(x, axis, keepdims=keepdims) @ReductionOp.make def sum(x, axis=None, keepdims=False): return np.sum(x, axis, keepdims=keepdims) @ReductionOp.make def prod(x, axis=None, keepdims=False): return np.prod(x, axis, keepdims=keepdims) @ReductionOp.make def logsumexp(x, axis=None, keepdims=False): amax = np.amax(x, axis=axis, keepdims=True) # treat the case x = -inf amax = np.where(np.isfinite(amax), amax, 0.0) unnormalized_lse = log(np.sum(np.exp(x - amax), axis, keepdims=keepdims)) amax = amax if keepdims else amax.squeeze(axis) return unnormalized_lse + amax @ReductionOp.make def mean(x, axis=None, keepdims=False): return np.mean(x, axis, keepdims=keepdims) @ReductionOp.make def std(x, axis=None, ddof=0, keepdims=False): return np.std(x, axis, ddof=ddof, keepdims=keepdims) @ReductionOp.make def var(x, axis=None, ddof=0, keepdims=False): return np.var(x, axis, ddof=ddof, keepdims=keepdims) ########################################### @UnaryOp.make def argmax(x, axis=None, keepdims=False): if keepdims: return np.expand_dims(np.argmax(x, axis), axis) return np.argmax(x, axis) @UnaryOp.make def argmin(x, axis=None, keepdims=False): if keepdims: return np.expand_dims(np.argmin(x, axis), axis) return np.argmin(x, axis) @UnaryOp.make def isnan(x): return
np.isnan(x)
numpy.isnan
import random import numpy as np from sklearn.model_selection import StratifiedKFold def run_neural_network(prepare_input_data, build_neural_network, evaluate_model): """ Performs cross validation for the clean classifier, using 5 splits. :param prepare_input_data: callback to prepare input data :param build_neural_network: callback to build the neural network :param evaluate_model: callback to prepare and evaluate the model :return: """ input_data = prepare_input_data() random.shuffle(input_data) images = [elem['data'] for elem in input_data] labels = [elem['image_type'] for elem in input_data] images = np.array(images) labels = np.array(labels) kfold = StratifiedKFold(n_splits=5, shuffle=True, random_state=None) cvscores = [] cvlosses = [] i = 0 for train, test in kfold.split(images, labels): i += 1 print("cross validation: ", i) model = build_neural_network() val_loss, val_acc = evaluate_model(model, images[test], labels[test], images[train], labels[train]) print('Loss value ' + str(val_loss)) print('Accuracy ' + str(val_acc)) cvscores.append(val_acc * 100) cvlosses.append(val_loss) print("%.2f%% (+/- %.2f%%)" % (np.mean(cvscores), np.std(cvscores))) print("%.2f (+/- %.2f)" % (np.mean(cvlosses),
np.std(cvlosses)
numpy.std
import tensorflow as tf from tensorflow.contrib import slim from scipy import misc import os, random import numpy as np from glob import glob def prepare_data(dataset_name, size, gray_to_RGB=False): input_list = sorted(glob('./dataset/{}/*.*'.format(dataset_name + '/trainA'))) target_list = sorted(glob('./dataset/{}/*.*'.format(dataset_name + '/trainB'))) trainA = [] trainB = [] if gray_to_RGB : for image in input_list: trainA.append(np.expand_dims(misc.imresize(misc.imread(image, mode='L'), [size, size]), axis=-1)) for image in input_list: trainB.append(misc.imresize(misc.imread(image, mode='RGB'), [size, size])) # trainA = np.repeat(trainA, repeats=3, axis=-1) # trainA = np.array(trainA).astype(np.float32)[:, :, :, None] else : for image in input_list : trainA.append(misc.imresize(misc.imread(image, mode='RGB'), [size, size])) for image in target_list : trainB.append(misc.imresize(misc.imread(image, mode='RGB'), [size, size])) trainA = preprocessing(np.asarray(trainA)) trainB = preprocessing(np.asarray(trainB)) return trainA, trainB def shuffle(x, y) : seed =
np.random.random_integers(low=0, high=1000)
numpy.random.random_integers
import logging from time import sleep, time import numpy as np import pybullet as p from transforms3d import euler log = logging.getLogger(__name__) from igibson.external.pybullet_tools.utils import ( control_joints, get_base_values, get_joint_positions, get_max_limits, get_min_limits, get_sample_fn, is_collision_free, joints_from_names, link_from_name, plan_base_motion_2d, plan_joint_motion, set_base_values_with_z, set_joint_positions, ) from igibson.objects.visual_marker import VisualMarker from igibson.scenes.gibson_indoor_scene import StaticIndoorScene from igibson.scenes.igibson_indoor_scene import InteractiveIndoorScene from igibson.utils.utils import l2_distance, quatToXYZW, restoreState, rotate_vector_2d class MotionPlanningWrapper(object): """ Motion planner wrapper that supports both base and arm motion """ def __init__( self, env=None, base_mp_algo="birrt", arm_mp_algo="birrt", optimize_iter=0, fine_motion_plan=True, full_observability_2d_planning=False, collision_with_pb_2d_planning=False, visualize_2d_planning=False, visualize_2d_result=False, ): """ Get planning related parameters. """ self.env = env assert "occupancy_grid" in self.env.output # get planning related parameters from env body_ids = self.env.robots[0].get_body_ids() assert len(body_ids) == 1, "Only single-body robots are supported." self.robot_id = body_ids[0] # Types of 2D planning # full_observability_2d_planning=TRUE and collision_with_pb_2d_planning=TRUE -> We teleport the robot to locations and check for collisions # full_observability_2d_planning=TRUE and collision_with_pb_2d_planning=FALSE -> We use the global occupancy map from the scene # full_observability_2d_planning=FALSE and collision_with_pb_2d_planning=FALSE -> We use the occupancy_grid from the lidar sensor # full_observability_2d_planning=FALSE and collision_with_pb_2d_planning=TRUE -> [not suported yet] self.full_observability_2d_planning = full_observability_2d_planning self.collision_with_pb_2d_planning = collision_with_pb_2d_planning assert not ((not self.full_observability_2d_planning) and self.collision_with_pb_2d_planning) self.robot_footprint_radius = self.env.sensors["scan_occ"].robot_footprint_radius if self.full_observability_2d_planning: # TODO: it may be better to unify and make that scene.floor_map uses OccupancyGridState values always assert len(self.env.scene.floor_map) == 1 # We assume there is only one floor (not true for Gibson scenes) self.map_2d = np.array(self.env.scene.floor_map[0]) self.map_2d = np.array((self.map_2d == 255)).astype(np.float32) self.per_pixel_resolution = self.env.scene.trav_map_resolution assert np.array(self.map_2d).shape[0] == np.array(self.map_2d).shape[1] self.grid_resolution = self.map_2d.shape[0] self.occupancy_range = self.grid_resolution * self.per_pixel_resolution self.robot_footprint_radius_in_map = int(np.ceil(self.robot_footprint_radius / self.per_pixel_resolution)) else: self.grid_resolution = self.env.grid_resolution self.occupancy_range = self.env.sensors["scan_occ"].occupancy_range self.robot_footprint_radius_in_map = self.env.sensors["scan_occ"].robot_footprint_radius_in_map self.robot = self.env.robots[0] self.base_mp_algo = base_mp_algo self.arm_mp_algo = arm_mp_algo # If we plan in the map, we do not need to check rotations: a location is in collision (or not) independently # of the orientation. If we use pybullet, we may find some cases where the base orientation changes the # collision value for the same location between True/False if not self.collision_with_pb_2d_planning: self.base_mp_resolutions = np.array([0.05, 0.05, 2 * np.pi]) else: self.base_mp_resolutions = np.array([0.05, 0.05, 0.05]) self.optimize_iter = optimize_iter self.mode = self.env.mode self.initial_height = self.env.initial_pos_z_offset self.fine_motion_plan = fine_motion_plan self.robot_type = self.robot.model_name if self.env.simulator.viewer is not None: self.env.simulator.viewer.setup_motion_planner(self) if self.robot_type in ["Fetch"]: self.setup_arm_mp() self.arm_interaction_length = 0.2 self.marker = None self.marker_direction = None if self.mode in ["gui_non_interactive", "gui_interactive"]: self.marker = VisualMarker(radius=0.04, rgba_color=[0, 0, 1, 1]) self.marker_direction = VisualMarker( visual_shape=p.GEOM_CAPSULE, radius=0.01, length=0.2, initial_offset=[0, 0, -0.1], rgba_color=[0, 0, 1, 1], ) self.env.simulator.import_object(self.marker) self.env.simulator.import_object(self.marker_direction) self.visualize_2d_planning = visualize_2d_planning self.visualize_2d_result = visualize_2d_result def set_marker_position(self, pos): """ Set subgoal marker position :param pos: position """ self.marker.set_position(pos) def set_marker_position_yaw(self, pos, yaw): """ Set subgoal marker position and orientation :param pos: position :param yaw: yaw angle """ quat = quatToXYZW(seq="wxyz", orn=euler.euler2quat(0, -np.pi / 2, yaw)) self.marker.set_position(pos) self.marker_direction.set_position_orientation(pos, quat) def set_marker_position_direction(self, pos, direction): """ Set subgoal marker position and orientation :param pos: position :param direction: direction vector """ yaw = np.arctan2(direction[1], direction[0]) self.set_marker_position_yaw(pos, yaw) def setup_arm_mp(self): """ Set up arm motion planner """ if self.robot_type == "Fetch": self.arm_default_joint_positions = ( 0.1, -1.41, 1.517, 0.82, 2.2, 2.96, -1.286, 0.0, ) self.arm_joint_names = [ "torso_lift_joint", "shoulder_pan_joint", "shoulder_lift_joint", "upperarm_roll_joint", "elbow_flex_joint", "forearm_roll_joint", "wrist_flex_joint", "wrist_roll_joint", ] self.robot_joint_names = [ "r_wheel_joint", "l_wheel_joint", "torso_lift_joint", "head_pan_joint", "head_tilt_joint", "shoulder_pan_joint", "shoulder_lift_joint", "upperarm_roll_joint", "elbow_flex_joint", "forearm_roll_joint", "wrist_flex_joint", "wrist_roll_joint", "r_gripper_finger_joint", "l_gripper_finger_joint", ] self.arm_joint_ids = joints_from_names( self.robot_id, self.arm_joint_names, ) self.robot_arm_indices = [ self.robot_joint_names.index(arm_joint_name) for arm_joint_name in self.arm_joint_names ] self.arm_ik_threshold = 0.05 self.mp_obstacles = [] if type(self.env.scene) == StaticIndoorScene: if self.env.scene.mesh_body_id is not None: self.mp_obstacles.append(self.env.scene.mesh_body_id) elif type(self.env.scene) == InteractiveIndoorScene: self.mp_obstacles.extend(self.env.scene.get_body_ids()) # Since the refactoring, the robot is another object in the scene # We need to remove it to not check twice for self collisions self.mp_obstacles.remove(self.robot_id) def plan_base_motion(self, goal): """ Plan base motion given a base subgoal :param goal: base subgoal :return: waypoints or None if no plan can be found """ if self.marker is not None: self.set_marker_position_yaw([goal[0], goal[1], 0.05], goal[2]) log.debug("Motion planning base goal: {}".format(goal)) state = self.env.get_state() x, y, theta = goal map_2d = state["occupancy_grid"] if not self.full_observability_2d_planning else self.map_2d if not self.full_observability_2d_planning: yaw = self.robot.get_rpy()[2] half_occupancy_range = self.occupancy_range / 2.0 robot_position_xy = self.robot.get_position()[:2] corners = [ robot_position_xy + rotate_vector_2d(local_corner, -yaw) for local_corner in [
np.array([half_occupancy_range, half_occupancy_range])
numpy.array
# -*- coding: utf-8 -*- """ Created on Thu Jan 21 15:24:44 2021 @author: thele """ from .mock_device import build_mock_device_with_json from ..main_utils.utils import extract_volume_from_mock_device, extract_volume_from_gpr import matplotlib.pyplot as plt import numpy as np from skimage.measure import marching_cubes_lewiner from ..Investigation.Investigation_factory import Investigation_stage from ..main_utils.utils import Timer def create_mock_device_from_file(configs, pm = 60.0): device = build_mock_device_with_json(configs['playground']) plunger_gates = configs['plunger_gates'] def jump(params,inv=False): if inv: return params else: return device.jump(params) measure = device.measure check = lambda: device.check(plunger_gates) inv_timer = Timer() investigation_stage = Investigation_stage(jump,measure,check,configs['investigation'],inv_timer) def score(vol): inv = investigation_stage.do_extra_measure(vol,0.0,1.0, score_thresh=0.001)['extra_measure'] if len(inv) >1: scorev = inv[1][0] else: scorev = 0.0 uvec = vol/np.linalg.norm(vol) device.jump(vol + (uvec*pm)) device_p_pinch = measure() device.jump(vol - (uvec*pm)) device_m_pinch = measure() device.jump(vol) good = np.logical_xor(device_p_pinch, device_m_pinch) return scorev*good return device, jump, measure, check, score def plot_device_demo(device, configs, cmap = 'winter'): conf_g = configs['general'] dev_vol = extract_volume_from_mock_device(conf_g['lb_box'],conf_g['ub_box'],50,device) verts, faces, points_surf = get_surface(dev_vol,conf_g['lb_box'],conf_g['ub_box'],conf_g['ub_box'], 50) perm=[0,1,2] preds = np.array([0.5]*points_surf.shape[0]) cmap = plt.get_cmap(cmap) c_preds = cmap(preds).squeeze() fig = plt.figure(figsize=(6, 6)) ax = fig.add_subplot(111, projection='3d') surf = ax.plot_trisurf(verts[:, perm[0]], verts[:, perm[1]], faces, verts[:, perm[2]], lw=0.1,edgecolor="black",alpha=0.5,vmin=0,vmax=1.) surf.set_facecolor(c_preds.tolist()) ax.set_xlim([conf_g['ub_box'][0],conf_g['lb_box'][0]]) ax.set_ylim([conf_g['ub_box'][1],conf_g['lb_box'][1]]) ax.set_zlim([conf_g['ub_box'][2],conf_g['lb_box'][2]]) ax.set_ylabel("Gate 1 / mV") ax.set_xlabel("Gate 2 / mV") ax.set_zlabel("Gate 3 / mV") plt.show() def plot_gpr_demo(gpr, configs, origin = [0,0,0], obs = None, cmap = 'winter'): conf_g = configs['general'] dev_vol = extract_volume_from_gpr(conf_g['lb_box'],conf_g['ub_box'],50,gpr) verts, faces, points_surf = get_surface(dev_vol,conf_g['lb_box'],conf_g['ub_box'],conf_g['ub_box'], 50) vol_origin = np.array(origin) vol_origin[[0,1,2]]=vol_origin[[1,0,2]] verts = (verts)+vol_origin perm=[0,1,2] if not isinstance(cmap, str): preds = cmap[1](points_surf) else: preds =
np.array([0.5]*points_surf.shape[0])
numpy.array
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://nvlabs.github.io/stylegan2/license.html """Custom TensorFlow ops for efficient resampling of 2D images.""" import os import numpy as np import tensorflow as tf from models.stylegan2.layers.cuda import custom_ops def _get_plugin(): return custom_ops.get_plugin(os.path.splitext(__file__)[0] + ".cu") # ---------------------------------------------------------------------------- def upfirdn_2d( x, k, upx=1, upy=1, downx=1, downy=1, padx0=0, padx1=0, pady0=0, pady1=0, impl="cuda", ): r"""Pad, upsample, FIR filter, and downsample a batch of 2D images. Accepts a batch of 2D images of the shape `[majorDim, inH, inW, minorDim]` and performs the following operations for each image, batched across `majorDim` and `minorDim`: 1. Pad the image with zeros by the specified number of pixels on each side (`padx0`, `padx1`, `pady0`, `pady1`). Specifying a negative value corresponds to cropping the image. 2. Upsample the image by inserting the zeros after each pixel (`upx`, `upy`). 3. Convolve the image with the specified 2D FIR filter (`k`), shrinking the image so that the footprint of all output pixels lies within the input image. 4. Downsample the image by throwing away pixels (`downx`, `downy`). This sequence of operations bears close resemblance to scipy.signal.upfirdn(). The fused op is considerably more efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary order. Args: x: Input tensor of the shape `[majorDim, inH, inW, minorDim]`. k: 2D FIR filter of the shape `[firH, firW]`. upx: Integer upsampling factor along the X-axis (default: 1). upy: Integer upsampling factor along the Y-axis (default: 1). downx: Integer downsampling factor along the X-axis (default: 1). downy: Integer downsampling factor along the Y-axis (default: 1). padx0: Number of pixels to pad on the left side (default: 0). padx1: Number of pixels to pad on the right side (default: 0). pady0: Number of pixels to pad on the top side (default: 0). pady1: Number of pixels to pad on the bottom side (default: 0). impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default). Returns: Tensor of the shape `[majorDim, outH, outW, minorDim]`, and same datatype as `x`. """ impl_dict = { "ref": _upfirdn_2d_ref, "cuda": _upfirdn_2d_cuda, } return impl_dict[impl]( x=x, k=k, upx=upx, upy=upy, downx=downx, downy=downy, padx0=padx0, padx1=padx1, pady0=pady0, pady1=pady1, ) # ---------------------------------------------------------------------------- def _upfirdn_2d_ref(x, k, upx, upy, downx, downy, padx0, padx1, pady0, pady1): """Slow reference implementation of `upfirdn_2d()` using standard TensorFlow ops.""" x = tf.convert_to_tensor(x) k =
np.asarray(k, dtype=np.float32)
numpy.asarray
# Copyright (c) 2020 <NAME> & <NAME> # FEniCS Project # SPDX-License-Identifier: MIT import libtab import numpy import pytest import sympy from .test_lagrange import sympy_disc_lagrange def sympy_nedelec(celltype, n): x = sympy.Symbol("x") y = sympy.Symbol("y") z = sympy.Symbol("z") from sympy import S topology = libtab.topology(celltype) geometry = S(libtab.geometry(celltype).astype(int)) dummy = [sympy.Symbol("DUMMY1"), sympy.Symbol("DUMMY2"), sympy.Symbol("DUMMY3")] funcs = [] if celltype == libtab.CellType.triangle: tdim = 2 for i in range(n): for j in range(n - i): for d in range(2): funcs += [[x**j * y**i if k == d else 0 for k in range(2)]] for i in range(n): funcs += [[x ** (n - 1 - i) * y ** (i + 1), -x ** (n - i) * y ** i]] mat = numpy.empty((len(funcs), len(funcs)), dtype=object) # edge tangents if n == 1: edge_basis = [sympy.Integer(1)] else: edge_basis = sympy_disc_lagrange(libtab.CellType.interval, n - 1) edge_basis = [a.subs(x, dummy[0]) for a in edge_basis] for i, f in enumerate(funcs): j = 0 for edge in topology[1]: edge_geom = [geometry[t, :] for t in edge] tangent = edge_geom[1] - edge_geom[0] norm = sympy.sqrt(sum(i ** 2 for i in tangent)) tangent = [i / norm for i in tangent] param = [(1 - dummy[0]) * a + dummy[0] * b for a, b in zip(edge_geom[0], edge_geom[1])] for g in edge_basis: integrand = sum((f_i * v_i) for f_i, v_i in zip(f, tangent)) integrand = integrand.subs(x, param[0]).subs(y, param[1]) integrand *= g * norm mat[i, j] = integrand.integrate((dummy[0], 0, 1)) j += 1 # interior dofs if n > 1: if n == 2: face_basis = [sympy.Integer(1)] else: face_basis = sympy_disc_lagrange(libtab.CellType.triangle, n - 2) for i, f in enumerate(funcs): j = n * 3 for g in face_basis: for vec in [(1, 0), (0, 1)]: integrand = sum((f_i * v_i) for f_i, v_i in zip(f, vec)) * g mat[i, j] = integrand.integrate((x, 0, 1 - y)).integrate((y, 0, 1)) j += 1 elif celltype == libtab.CellType.tetrahedron: tdim = 3 for i in range(n): for j in range(n - i): for k in range(n - i - j): for d in range(3): funcs += [[x**k * y**j * z**i if m == d else 0 for m in range(3)]] if n == 1: funcs += [[y, -x, sympy.Integer(0)], [z, sympy.Integer(0), -x], [sympy.Integer(0), z, -y]] elif n == 2: funcs += [ [y ** 2, -x * y, sympy.Integer(0)], [x * y, -x ** 2, sympy.Integer(0)], [z * y, -z * x, sympy.Integer(0)], [sympy.Integer(0), y * z, -y ** 2], [sympy.Integer(0), z ** 2, -z * y], [sympy.Integer(0), x * z, -x * y], [x * z, sympy.Integer(0), -x ** 2], [z ** 2, sympy.Integer(0), -z * x], ] elif n == 3: funcs += [ [x ** 2 * y, -x ** 3, sympy.Integer(0)], [x ** 2 * z, sympy.Integer(0), -x ** 3], [sympy.Integer(0), x ** 2 * z, -x ** 2 * y], [x * y ** 2, -x ** 2 * y, sympy.Integer(0)], [2 * x * y * z, -x ** 2 * z, -x ** 2 * y], [sympy.Integer(0), x * y * z, -x * y ** 2], [x * z ** 2, sympy.Integer(0), -x ** 2 * z], [sympy.Integer(0), x * z ** 2, -x * y * z], [y ** 3, -x * y ** 2, sympy.Integer(0)], [9 * y ** 2 * z, -4 * x * y * z, -5 * x * y ** 2], [sympy.Integer(0), y ** 2 * z, -y ** 3], [9 * y * z ** 2, -5 * x * z ** 2, -4 * x * y * z], [sympy.Integer(0), y * z ** 2, -y ** 2 * z], [z ** 3, sympy.Integer(0), -x * z ** 2], [sympy.Integer(0), z ** 3, -y * z ** 2], ] else: raise NotImplementedError mat = numpy.empty((len(funcs), len(funcs)), dtype=object) # edge tangents if n == 1: edge_basis = [sympy.Integer(1)] else: edge_basis = sympy_disc_lagrange(libtab.CellType.interval, n - 1) edge_basis = [a.subs(x, dummy[0]) for a in edge_basis] for i, f in enumerate(funcs): j = 0 for edge in topology[1]: edge_geom = [geometry[t, :] for t in edge] tangent = edge_geom[1] - edge_geom[0] norm = sympy.sqrt(sum(i ** 2 for i in tangent)) tangent = [i / norm for i in tangent] param = [(1 - dummy[0]) * a + dummy[0] * b for a, b in zip(edge_geom[0], edge_geom[1])] for g in edge_basis: integrand = sum((f_i * v_i) for f_i, v_i in zip(f, tangent)) integrand = integrand.subs(x, param[0]).subs(y, param[1]).subs(z, param[2]) integrand *= g * norm mat[i, j] = integrand.integrate((dummy[0], 0, 1)) j += 1 # face dofs if n > 1: if n == 2: face_basis = [sympy.Integer(1)] else: face_basis = sympy_disc_lagrange(libtab.CellType.triangle, n - 2) face_basis = [a.subs(x, dummy[0]).subs(y, dummy[1]) for a in face_basis] for i, f in enumerate(funcs): j = n * 6 for face in topology[2]: face_geom = [geometry[t, :] for t in face] axes = [face_geom[1] - face_geom[0], face_geom[2] - face_geom[0]] norm = sympy.sqrt(sum(i**2 for i in [axes[0][1] * axes[1][2] - axes[0][2] * axes[1][1], axes[0][2] * axes[1][0] - axes[0][0] * axes[1][2], axes[0][0] * axes[1][1] - axes[0][1] * axes[1][0]])) scaled_axes = [] for a in axes: axisnorm = sympy.sqrt(sum(k**2 for k in a)) scaled_axes.append([k / axisnorm for k in a]) param = [a + dummy[0] * b + dummy[1] * c for a, b, c in zip(face_geom[0], *axes)] for g in face_basis: for vec in scaled_axes: integrand = sum(f_i * v_i for f_i, v_i in zip(f, vec)) integrand = integrand.subs(x, param[0]).subs(y, param[1]).subs(z, param[2]) integrand *= g * norm mat[i, j] = integrand.integrate((dummy[0], 0, 1 - dummy[1])).integrate((dummy[1], 0, 1)) j += 1 # interior dofs if n > 2: if n == 3: interior_basis = [sympy.Integer(1)] else: interior_basis = sympy_disc_lagrange(libtab.CellType.tetrahedron, n - 3) for i, f in enumerate(funcs): j = n * 6 + 4 * n * (n - 1) for g in interior_basis: for vec in [(1, 0, 0), (0, 1, 0), (0, 0, 1)]: integrand = sum(f_i * v_i for f_i, v_i in zip(f, vec)) integrand *= g mat[i, j] = integrand.integrate((x, 0, 1 - y - z)).integrate((y, 0, 1 - z)).integrate((z, 0, 1)) j += 1 mat = sympy.Matrix(mat) mat = mat.inv() g = [] for dim in range(tdim): for r in range(mat.shape[0]): g += [sum([v * funcs[i][dim] for i, v in enumerate(mat.row(r))])] return g @pytest.mark.parametrize("order", [1, 2, 3]) def test_tri(order): celltype = libtab.CellType.triangle g = sympy_nedelec(celltype, order) x = sympy.Symbol("x") y = sympy.Symbol("y") nedelec = libtab.Nedelec("triangle", order) pts = libtab.create_lattice(celltype, 6, libtab.LatticeType.equispaced, True) nderiv = 3 wtab = nedelec.tabulate(nderiv, pts) for kx in range(nderiv): for ky in range(0, nderiv - kx): wsym = numpy.zeros_like(wtab[0]) for i in range(len(g)): wd = sympy.diff(g[i], x, kx, y, ky) for j, p in enumerate(pts): wsym[j, i] = wd.subs([(x, p[0]), (y, p[1])]) assert(numpy.isclose(wtab[libtab.index(kx, ky)], wsym).all()) @pytest.mark.parametrize("order", [1, 2, 3]) def test_tet(order): celltype = libtab.CellType.tetrahedron g = sympy_nedelec(celltype, order) x = sympy.Symbol("x") y = sympy.Symbol("y") z = sympy.Symbol("z") nedelec = libtab.Nedelec("tetrahedron", order) pts = libtab.create_lattice(celltype, 6, libtab.LatticeType.equispaced, True) nderiv = 1 wtab = nedelec.tabulate(nderiv, pts) for k in range(nderiv + 1): for q in range(k + 1): for kx in range(q + 1): ky = q - kx kz = k - q wsym = numpy.zeros_like(wtab[0]) for i in range(len(g)): wd = sympy.diff(g[i], x, kx, y, ky, z, kz) for j, p in enumerate(pts): wsym[j, i] = wd.subs([(x, p[0]), (y, p[1]), (z, p[2])]) assert(numpy.isclose(wtab[libtab.index(kx, ky, kz)], wsym).all()) @pytest.mark.parametrize("order", [1, 2, 3, 4]) def test_dof_permutations_triangle(order): nedelec = libtab.Nedelec("triangle", order) permuted = {} if order == 2: # Reflect 2 DOFs on edges permuted[0] = {0: 1, 1: 0} permuted[1] = {2: 3, 3: 2} permuted[2] = {4: 5, 5: 4} elif order == 3: # Reflect 3 DOFs on edges permuted[0] = {0: 2, 2: 0} permuted[1] = {3: 5, 5: 3} permuted[2] = {6: 8, 8: 6} elif order == 4: # Reflect 4 DOFs on edges permuted[0] = {0: 3, 1: 2, 2: 1, 3: 0} permuted[1] = {4: 7, 5: 6, 6: 5, 7: 4} permuted[2] = {8: 11, 9: 10, 10: 9, 11: 8} base_perms = nedelec.base_permutations assert len(base_perms) == 3 for i, perm in enumerate(base_perms): actual =
numpy.zeros_like(perm)
numpy.zeros_like
# -*- coding: utf-8 -*- # tomolab # <NAME> # Harvard University, Martinos Center for Biomedical Imaging # University of Pisa import numpy as np class ColorLookupTable(): def __init__(self): self._by_index = {} self._by_name = {} def n_entries(self): return len(self._by_index) def load_from_file_freesurfer(self, filename): with open(filename, 'r') as fid: F = fid.read() F = F.split('\r\n') self._by_index = {} self._by_name = {} for line in F: if not line == '': index, name, r, g, b, a = line.split() r =
np.uint8(r)
numpy.uint8
from __future__ import division, print_function, absolute_import import os import numpy as np import logging from dipy.io.image import load_nifti from dipy.workflows.workflow import Workflow class IoInfoFlow(Workflow): @classmethod def get_short_name(cls): return 'io_info' def run(self, input_files, b0_threshold=50, bvecs_tol=0.01, bshell_thr=100): """ Provides useful information about different files used in medical imaging. Any number of input files can be provided. The program identifies the type of file by its extension. Parameters ---------- input_files : variable string Any number of Nifti1, bvals or bvecs files. b0_threshold : float, optional (default 50) bvecs_tol : float, optional Threshold used to check that norm(bvec) = 1 +/- bvecs_tol b-vectors are unit vectors (default 0.01) bshell_thr : float, optional Threshold for distinguishing b-values in different shells (default 100) """ np.set_printoptions(3, suppress=True) io_it = self.get_io_iterator() for input_path in io_it: logging.info('------------------------------------------') logging.info('Looking at {0}'.format(input_path)) logging.info('------------------------------------------') ipath_lower = input_path.lower() if ipath_lower.endswith('.nii') or ipath_lower.endswith('.nii.gz'): data, affine, img, vox_sz, affcodes = load_nifti( input_path, return_img=True, return_voxsize=True, return_coords=True) logging.info('Data size {0}'.format(data.shape)) logging.info('Data type {0}'.format(data.dtype)) logging.info('Data min {0} max {1} avg {2}' .format(data.min(), data.max(), data.mean())) logging.info('2nd percentile {0} 98th percentile {1}' .format(np.percentile(data, 2), np.percentile(data, 98))) logging.info('Native coordinate system {0}' .format(''.join(affcodes))) logging.info('Affine to RAS1mm \n{0}'.format(affine)) logging.info('Voxel size {0}'.format(np.array(vox_sz))) if np.sum(np.abs(np.diff(vox_sz))) > 0.1: msg = \ 'Voxel size is not isotropic. Please reslice.\n' logging.warning(msg) if os.path.basename(input_path).lower().find('bval') > -1: bvals = np.loadtxt(input_path) logging.info('Bvalues \n{0}'.format(bvals)) logging.info('Total number of bvalues {}'.format(len(bvals))) shells = np.sum(np.diff(np.sort(bvals)) > bshell_thr) logging.info('Number of gradient shells {0}'.format(shells)) logging.info('Number of b0s {0} (b0_thr {1})\n' .format(
np.sum(bvals <= b0_threshold)
numpy.sum
#### # # The MIT License (MIT) # # Copyright 2019, 2020 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is furnished # to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # #### import time import unittest import numpy as np from ssvm.kernel_utils import minmax_kernel, tanimoto_kernel from ssvm.feature_utils import CountingFpsBinarizer, RemoveCorrelatedFeatures class TestCorrelatedFeatureRemoval(unittest.TestCase): def test_corner_cases(self): # No feature exceeds the correlation threshold X = np.random.RandomState(13).rand(1010, 29) mask = RemoveCorrelatedFeatures().fit(X).get_support() self.assertTrue(np.all(mask)) # All features are correlated X = np.array([ np.random.RandomState(101).rand(5), np.random.RandomState(101).rand(5), np.random.RandomState(101).rand(5), ]).T mask = RemoveCorrelatedFeatures().fit(X).get_support() self.assertEqual(1, np.sum(mask)) def test_correct_feature_removal(self): X = np.random.RandomState(43).random((3, 4)) # array([[0.11505457, 0.60906654, 0.13339096, 0.24058962], # [0.32713906, 0.85913749, 0.66609021, 0.54116221], # [0.02901382, 0.7337483 , 0.39495002, 0.80204712]]) R = np.corrcoef(X.T) # array([[1., 0.69228233, 0.69857039, -0.24099928], # [0.69228233, 1., 0.99996171, 0.53351747], # [0.69857039, 0.99996171, 1., 0.52609601], # [-0.24099928, 0.53351747, 0.52609601, 1.]]) mask_ref = [True, True, False, True] mask = RemoveCorrelatedFeatures().fit(X).get_support() np.testing.assert_array_equal(mask_ref, mask) class TestCountingFpsBinarizer(unittest.TestCase): def setUp(self) -> None: self.X1 = np.array( [ [1, 0, 0, 3, 4, 1, 0], [0, 0, 0, 0, 0, 0, 0], [12, 12, 12, 12, 12, 12, 12], [0, 1, 2, 4, 0, 12, 5] ] ) self.X2 = np.array( [ [1, 0, 0, 3, 4, 1, 0], [0, 0, 0, 0, 0, 0, 0], [1, 2, 2, 0, 4, 12, 12], [0, 1, 2, 4, 0, 12, 5] ] ) self.X3 = np.random.RandomState(111).randint(0, 12, size=(22, 45)) self.X4 = np.random.RandomState(111).randint(0, 16, size=(300000, 307)) self.X5 = np.array( [ [1, 1, 0, 3, 4, 1, 0], [0, 1, 0, 0, 0, 0, 0], [1, 1, 2, 0, 4, 5, 0], [0, 1, 2, 4, 0, 5, 0] ] ) def test_length(self): trans = CountingFpsBinarizer(bin_centers=np.array([1, 2, 3, 4, 8]), compress=True) trans.fit(self.X2) self.assertEqual(1 + 2 + 2 + 4 + 4 + 5 + 5, len(trans)) def test_conversion(self): trans = CountingFpsBinarizer(bin_centers=np.array([1, 2, 3, 4, 8])) Z = trans.fit_transform(self.X1) self.assertEqual((len(self.X1), self.X1.shape[1] * 5), Z.shape) np.testing.assert_array_equal( np.array( [ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0] ] ), Z ) def test_edge_cases(self): trans = CountingFpsBinarizer(bin_centers=np.array([1])) Z = trans.fit_transform(self.X1) self.assertEqual(self.X1.shape, Z.shape)
np.testing.assert_array_equal(self.X1 > 0, Z)
numpy.testing.assert_array_equal
import matplotlib.pyplot as plt import numpy as np from scipy import signal from numpy.linalg import inv import matplotlib.colors as colors import math from matplotlib import cm from matplotlib import rc from matplotlib import rcParams __author__ = 'ernesto' # if use latex or mathtext rc('text', usetex=True) rcParams['text.latex.preamble']=[r"\usepackage{amsmath}"] ####### Parámetros ####### # número de muestras N = 400 # parámetro a de la ecuación de estado a = 1 # varianza del ruido de excitación var_u = 0.005 # varianza del ruido de observación var_w = 0.05 # media y varianza de f0[-1] mu_f0_i = 0.2 var_f0_i = 0.1 # parámetros del filtro de Kalman # número de parámetros p = 3 # matriz de transcición de estados B = np.array([[0], [0], [1]]) H = np.array([[1, 0, 0]]) # condiciones iniciales del filtro de Kalman # s[-1|-1] s_est_i = np.array([[0.5], [0.5], [mu_f0_i]]) # M[-1|-1] C_s_i = 100 * np.eye(p) q = 0.001 def fun_a(s): a_1 = s[0] * math.cos(s[2]) - s[1] * math.sin(s[2]) a_2 = s[0] * math.sin(s[2]) + s[1] * math.cos(s[2]) a_3 = a * s[2] return np.array([a_1, a_2, a_3]) def fun_A(s): A_1 = [math.cos(s[2]), -math.sin(s[2]), -s[0] * math.sin(s[2]) - s[1] * math.cos(s[2])] A_2 = [math.sin(s[2]), math.cos(s[2]), s[0] * math.cos(s[2]) - s[1] * math.sin(s[2])] A_3 = [0, 0, a] return np.array([A_1, A_2, A_3]) ### Fin de parámetros ### ns = np.arange(N) # generación de la frecuencia instantanea f0d_1 = np.zeros((N,)) N1 = 100 N2 = 300 f01 = 0.1 f02 = 0.3 f0d_1[:N1] = f01 f0d_1[N1:N2] = (f02 - f01) / (N2 - N1) * np.arange(N2 - N1) + f01 f0d_1[N2:] = f02 f01 = 0.1 f02 = 0.3 N1 = 200 f0d_1[:N1] = f01 f0d_1[N1:] = f02 var_u = 0.01 q = 0.005 # generación de las observaciones phi = 2 * np.pi * np.cumsum(f0d_1) y = np.cos(phi) x = y + np.random.normal(0, np.sqrt(var_w), N) # variables para guardar los resultados s_ests =
np.zeros((p, N))
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on %(date)s @author: %(username)s """ import numpy as np from astropy import constants from matplotlib import pyplot as plt from scipy.interpolate import PchipInterpolator, interp1d def sinebell(n=1000, index=0.5): """ sine bell to left & right end of spectra """ return np.sin(np.linspace(0,np.pi,n))**index def sinebell_like(x, index=0.5): return sinebell(len(x), index=index) def test_sinebell(): plt.figure(); plt.plot(sinebell(4000,1)) plt.plot(sinebell(4000,1/2)) plt.plot(sinebell(4000,1/3)) return def test_sinebell2(): """ load data """ wave, flux, flux_err = np.loadtxt('/hydrogen/projects/song/delCep_order20.dat').T # flux_sine = flux - flux.mean() flux_sine = 1-flux flux_sine = flux_sine * sinebell_like(flux, 1.0) plt.figure() plt.plot(wave, (flux-1)) plt.plot(wave, flux_sine) # plot(wave, flux_err) return wave, flux_sine def xcorr_rvgrid(wave_obs, flux_obs, wave_mod, flux_mod, mask_obs=None, rv_grid=
np.arange(-500, 510, 10)
numpy.arange
############################################################################## # get_utils.py # # Description: # Defines functions to get exiting properties from # trajectories in a trajectories object. # # Last Edited: # 2020/12/24 # # Created By: # <NAME> # ############################################################################## # Importing relevant packages. import numpy as np ############################################################################## # Define get_start_time() function. def get_start_time(self): """ Returns times when particles are released (start of trajectory). The start time (ns) is the time elapsed since the begining of the simulation and is returned for all trajectories as a new ndarray. Parameters ---------- self : trajectories object Trajectories object passed from trajectories class method. Returns ------- start_time : ndarray release time (ns) of each particle, with dimension (traj). """ # -------------------------------------------- # Determining indices of starting time values. # -------------------------------------------- # Defining Time variable with NaT values replaced with NaNs. Time = self.data.time.values Time = np.where(np.isnat(Time), np.nan, Time.astype(int)) # Find indices of minimum values in time variable, start_ind. start_ind = np.nanargmin(Time, axis=1) # ---------------------------------------------------------- # Using start_ind to determine start times for trajectories. # ---------------------------------------------------------- # Using start_ind as the indices to determine start_time. # start_time is in timedelta64 format, unlike Time. start_time = np.take_along_axis(self.data.time.values, np.expand_dims(start_ind, axis=-1), axis=-1).squeeze(axis=-1) # Returning release times as ndarray, start_time. return start_time ############################################################################## # Define get_start_loc() function. def get_start_loc(self): """ Returns locations where particles are released (start of trajectory). The start location is divided into start_lon, start_lat and start_z which are returned for all trajectories as new ndarrays. Parameters ---------- self : trajectories object Trajectories object passed from trajectories class method. Returns ------- start_lat: ndarray latitude of each particle at the time of release, with dimension (traj). start_lon: ndarray longitude of each particle at the time of release, with dimension (traj). start_z: ndarray depth of each particle at the time of release, with dimension (traj). """ # -------------------------------------------- # Determining indices of starting time values. # -------------------------------------------- # Defining Time variable with NaT values replaced with NaNs. Time = self.data.time.values Time = np.where(np.isnat(Time), np.nan, Time.astype(int)) # Find indices of minimum values in time variable, start_ind. start_ind = np.nanargmin(Time, axis=1) # ----------------------------------------------------------------- # Using start_ind to determine starting locations for trajectories. # ----------------------------------------------------------------- # Using start_ind as the indices to determine start_lat. start_lat = np.take_along_axis(self.data.lat.values, np.expand_dims(start_ind, axis=-1), axis=-1).squeeze(axis=-1) # Using start_ind as the indices to determine start_lon. start_lon = np.take_along_axis(self.data.lon.values,
np.expand_dims(start_ind, axis=-1)
numpy.expand_dims
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.1.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # s_weak_dominance [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=s_weak_dominance&codeLang=Python) # For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=doc-s_weak_dominance). # + import numpy as np import scipy as sp import matplotlib.pyplot as plt from arpym.statistics import simulate_normal from arpym.tools import add_logo # - # ## [Input parameters](https://www.arpm.co/lab/redirect.php?permalink=s_weak_dominance-parameters) mu_ = np.array([1, 0]) # mean vector of jointly normal variables sigma2_ = np.array([[1, 0], [0, 1]]) # covariance matrix j_ = 5000 # number of simulations # ## [Step 1](https://www.arpm.co/lab/redirect.php?permalink=s_weak_dominance-implementation-step01): Calculate marginal cdfs and pdfs # get pdf and cdf of X_1 and X_2 llim = np.floor( min(mu_[0]-5*np.sqrt(sigma2_[0, 0]), mu_[1]-5*np.sqrt(sigma2_[1, 1])) ) ulim = np.ceil( max(mu_[0]+5*np.sqrt(sigma2_[0, 0]), mu_[1]+5*np.sqrt(sigma2_[1, 1])) ) x_grid = np.linspace(llim, ulim, 100) pdf_1 = sp.stats.norm.pdf(x_grid, mu_[0], np.sqrt(sigma2_[0, 0])) pdf_2 = sp.stats.norm.pdf(x_grid, mu_[1], np.sqrt(sigma2_[1, 1])) cdf_1 = sp.stats.norm.cdf(x_grid, mu_[0],
np.sqrt(sigma2_[0, 0])
numpy.sqrt
"""Filter design. """ from __future__ import division, print_function, absolute_import import warnings import numpy from numpy import (atleast_1d, poly, polyval, roots, real, asarray, allclose, resize, pi, absolute, logspace, r_, sqrt, tan, log10, arctan, arcsinh, sin, exp, cosh, arccosh, ceil, conjugate, zeros, sinh, append, concatenate, prod, ones, array) from numpy import mintypecode import numpy as np from scipy import special, optimize from scipy.special import comb from scipy.misc import factorial from numpy.polynomial.polynomial import polyval as npp_polyval import math __all__ = ['findfreqs', 'freqs', 'freqz', 'tf2zpk', 'zpk2tf', 'normalize', 'lp2lp', 'lp2hp', 'lp2bp', 'lp2bs', 'bilinear', 'iirdesign', 'iirfilter', 'butter', 'cheby1', 'cheby2', 'ellip', 'bessel', 'band_stop_obj', 'buttord', 'cheb1ord', 'cheb2ord', 'ellipord', 'buttap', 'cheb1ap', 'cheb2ap', 'ellipap', 'besselap', 'BadCoefficients', 'tf2sos', 'sos2tf', 'zpk2sos', 'sos2zpk', 'group_delay'] class BadCoefficients(UserWarning): """Warning about badly conditioned filter coefficients""" pass abs = absolute def findfreqs(num, den, N): """ Find array of frequencies for computing the response of an analog filter. Parameters ---------- num, den : array_like, 1-D The polynomial coefficients of the numerator and denominator of the transfer function of the filter or LTI system. The coefficients are ordered from highest to lowest degree. N : int The length of the array to be computed. Returns ------- w : (N,) ndarray A 1-D array of frequencies, logarithmically spaced. Examples -------- Find a set of nine frequencies that span the "interesting part" of the frequency response for the filter with the transfer function H(s) = s / (s^2 + 8s + 25) >>> from scipy import signal >>> signal.findfreqs([1, 0], [1, 8, 25], N=9) array([ 1.00000000e-02, 3.16227766e-02, 1.00000000e-01, 3.16227766e-01, 1.00000000e+00, 3.16227766e+00, 1.00000000e+01, 3.16227766e+01, 1.00000000e+02]) """ ep = atleast_1d(roots(den)) + 0j tz = atleast_1d(roots(num)) + 0j if len(ep) == 0: ep = atleast_1d(-1000) + 0j ez = r_['-1', numpy.compress(ep.imag >= 0, ep, axis=-1), numpy.compress((abs(tz) < 1e5) & (tz.imag >= 0), tz, axis=-1)] integ = abs(ez) < 1e-10 hfreq = numpy.around(numpy.log10(numpy.max(3 * abs(ez.real + integ) + 1.5 * ez.imag)) + 0.5) lfreq = numpy.around(numpy.log10(0.1 * numpy.min(abs(
real(ez + integ)
numpy.real
#!/usr/bin/env python3 # # Author: <NAME> # Copyright 2015-present, NASA-JPL/Caltech # def runCmd(cmd, silent=0): import os if silent == 0: print("{}".format(cmd)) status = os.system(cmd) if status != 0: raise Exception('error when running:\n{}\n'.format(cmd)) def find_vrt_keyword(xmlfile, keyword): from xml.etree.ElementTree import ElementTree value = None xmlx = ElementTree(file=open(xmlfile,'r')).getroot() #try 10 times for i in range(10): path='' for j in range(i): path += '*/' value0 = xmlx.find(path+keyword) if value0 != None: value = value0.text break return value def find_vrt_file(xmlfile, keyword, relative_path=True): ''' find file in vrt in another directory xmlfile: vrt file relative_path: True: return relative (to current directory) path of the file False: return absolute path of the file ''' import os #get absolute directory of xmlfile xmlfile_dir = os.path.dirname(os.path.abspath(xmlfile)) #find source file path file = find_vrt_keyword(xmlfile, keyword) #get absolute path of source file file = os.path.abspath(os.path.join(xmlfile_dir, file)) #get relative path of source file if relative_path: file = os.path.relpath(file, './') return file def create_xml(fileName, width, length, fileType): import isceobj if fileType == 'slc': image = isceobj.createSlcImage() elif fileType == 'int': image = isceobj.createIntImage() elif fileType == 'amp': image = isceobj.createAmpImage() elif fileType == 'cor': image = isceobj.createOffsetImage() elif fileType == 'rmg' or fileType == 'unw': image = isceobj.Image.createUnwImage() elif fileType == 'byte': image = isceobj.createImage() image.setDataType('BYTE') elif fileType == 'float': image = isceobj.createImage() image.setDataType('FLOAT') elif fileType == 'double': image = isceobj.createImage() image.setDataType('DOUBLE') else: raise Exception('format not supported yet!\n') image.setFilename(fileName) image.extraFilename = fileName + '.vrt' image.setWidth(width) image.setLength(length) #image.setAccessMode('read') #image.createImage() image.renderHdr() #image.finalizeImage() def multilook_v1(data, nalks, nrlks, mean=True): ''' doing multiple looking ATTENSION: original array changed after running this function ''' (length, width)=data.shape width2 = int(width/nrlks) length2 = int(length/nalks) for i in range(1, nalks): data[0:length2*nalks:nalks, :] += data[i:length2*nalks:nalks, :] for i in range(1, nrlks): data[0:length2*nalks:nalks, 0:width2*nrlks:nrlks] += data[0:length2*nalks:nalks, i:width2*nrlks:nrlks] if mean: return data[0:length2*nalks:nalks, 0:width2*nrlks:nrlks] / nrlks / nalks else: return data[0:length2*nalks:nalks, 0:width2*nrlks:nrlks] def multilook(data, nalks, nrlks, mean=True): ''' doing multiple looking ''' import numpy as np (length, width)=data.shape width2 = int(width/nrlks) length2 = int(length/nalks) data2=np.zeros((length2, width), dtype=data.dtype) for i in range(0, nalks): data2 += data[i:length2*nalks:nalks, :] for i in range(1, nrlks): data2[:, 0:width2*nrlks:nrlks] += data2[:, i:width2*nrlks:nrlks] if mean: return data2[:, 0:width2*nrlks:nrlks] / nrlks / nalks else: return data2[:, 0:width2*nrlks:nrlks] def cal_coherence_1(inf, win=5): ''' Compute coherence using scipy convolve 2D. Same as "def cal_coherence(inf, win=5):" in funcs.py in insarzd #still use standard coherence estimation equation, but with magnitude removed. #for example, equation (2) in #<NAME> and <NAME>, Accurate Estimation of Correlation in InSAR Observations, #IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 2, NO. 2, APRIL 2005. ''' import numpy as np import scipy.signal as ss filt = np.ones((win,win))/ (1.0*win*win) flag = ss.convolve2d((inf!=0), filt, mode='same') angle = inf / (np.absolute(inf)+(inf==0)) cor = ss.convolve2d(angle, filt, mode='same') cor = np.absolute(cor) #remove incomplete convolution result cor[np.nonzero(flag < 0.999)] = 0.0 #print(np.max(cor), np.min(cor)) #cor.astype(np.float32).tofile(f) return cor def computeOffsetFromOrbit(referenceSwath, referenceTrack, secondarySwath, secondaryTrack, referenceSample, referenceLine): ''' compute range and azimuth offsets using orbit. all range/azimuth indexes start with 0 referenceSample: reference sample where offset is computed, no need to be integer referenceLine: reference line where offset is computed, no need to be integer ''' import datetime pointingDirection = {'right': -1, 'left' :1} #compute a pair of range and azimuth offsets using geometry #using Piyush's code for computing range and azimuth offsets midRange = referenceSwath.startingRange + referenceSwath.rangePixelSize * referenceSample midSensingStart = referenceSwath.sensingStart + datetime.timedelta(seconds = referenceLine / referenceSwath.prf) llh = referenceTrack.orbit.rdr2geo(midSensingStart, midRange, side=pointingDirection[referenceTrack.pointingDirection]) slvaz, slvrng = secondaryTrack.orbit.geo2rdr(llh, side=pointingDirection[referenceTrack.pointingDirection]) ###Translate to offsets #at this point, secondary range pixel size and prf should be the same as those of reference rgoff = ((slvrng - secondarySwath.startingRange) / referenceSwath.rangePixelSize) - referenceSample azoff = ((slvaz - secondarySwath.sensingStart).total_seconds() * referenceSwath.prf) - referenceLine return (rgoff, azoff) def overlapFrequency(centerfreq1, bandwidth1, centerfreq2, bandwidth2): startfreq1 = centerfreq1 - bandwidth1 / 2.0 endingfreq1 = centerfreq1 + bandwidth1 / 2.0 startfreq2 = centerfreq2 - bandwidth2 / 2.0 endingfreq2 = centerfreq2 + bandwidth2 / 2.0 overlapfreq = [] if startfreq2 <= startfreq1 <= endingfreq2: overlapfreq.append(startfreq1) if startfreq2 <= endingfreq1 <= endingfreq2: overlapfreq.append(endingfreq1) if startfreq1 < startfreq2 < endingfreq1: overlapfreq.append(startfreq2) if startfreq1 < endingfreq2 < endingfreq1: overlapfreq.append(endingfreq2) if len(overlapfreq) != 2: #no overlap bandwidth return None else: startfreq = min(overlapfreq) endingfreq = max(overlapfreq) return [startfreq, endingfreq] def readOffset(filename): from isceobj.Location.Offset import OffsetField,Offset with open(filename, 'r') as f: lines = f.readlines() # 0 1 2 3 4 5 6 7 #retstr = "%s %s %s %s %s %s %s %s" % (self.x,self.dx,self.y,self.dy,self.snr, self.sigmax, self.sigmay, self.sigmaxy) offsets = OffsetField() for linex in lines: #linexl = re.split('\s+', linex) #detect blank lines with only spaces and tabs, lines with invalid numbers if (linex.strip() == '') or ('*' in linex): continue linexl = linex.split() offset = Offset() #offset.setCoordinate(int(linexl[0]),int(linexl[2])) offset.setCoordinate(float(linexl[0]),float(linexl[2])) offset.setOffset(float(linexl[1]),float(linexl[3])) offset.setSignalToNoise(float(linexl[4])) offset.setCovariance(float(linexl[5]),float(linexl[6]),float(linexl[7])) offsets.addOffset(offset) return offsets def writeOffset(offset, fileName): offsetsPlain = '' for offsetx in offset: offsetsPlainx = "{}".format(offsetx) offsetsPlainx = offsetsPlainx.split() offsetsPlain = offsetsPlain + "{:8d} {:10.3f} {:8d} {:12.3f} {:11.5f} {:11.6f} {:11.6f} {:11.6f}\n".format( int(float(offsetsPlainx[0])), float(offsetsPlainx[1]), int(float(offsetsPlainx[2])), float(offsetsPlainx[3]), float(offsetsPlainx[4]), float(offsetsPlainx[5]), float(offsetsPlainx[6]), float(offsetsPlainx[7]) ) offsetFile = fileName with open(offsetFile, 'w') as f: f.write(offsetsPlain) def reformatGeometricalOffset(rangeOffsetFile, azimuthOffsetFile, reformatedOffsetFile, rangeStep=1, azimuthStep=1, maximumNumberOfOffsets=10000): ''' reformat geometrical offset as ampcor output format ''' import numpy as np import isceobj img = isceobj.createImage() img.load(rangeOffsetFile+'.xml') width = img.width length = img.length step = int(np.sqrt(width*length/maximumNumberOfOffsets) + 0.5) if step == 0: step = 1 rgoff = np.fromfile(rangeOffsetFile, dtype=np.float32).reshape(length, width) azoff = np.fromfile(azimuthOffsetFile, dtype=np.float32).reshape(length, width) offsetsPlain = '' for i in range(0, length, step): for j in range(0, width, step): if (rgoff[i][j] == -999999.0) or (azoff[i][j] == -999999.0): continue offsetsPlain = offsetsPlain + "{:8d} {:10.3f} {:8d} {:12.3f} {:11.5f} {:11.6f} {:11.6f} {:11.6f}\n".format( int(j*rangeStep+1), float(rgoff[i][j])*rangeStep, int(i*azimuthStep+1), float(azoff[i][j])*azimuthStep, float(22.00015), float(0.000273), float(0.002126), float(0.000013) ) with open(reformatedOffsetFile, 'w') as f: f.write(offsetsPlain) return def cullOffsets(offsets): import isceobj from iscesys.StdOEL.StdOELPy import create_writer distances = (10,5,3,3,3,3,3,3) #numCullOffsetsLimits = (100, 75, 50, 50, 50, 50, 50, 50) numCullOffsetsLimits = (50, 40, 30, 30, 30, 30, 30, 30) refinedOffsets = offsets for i, (distance, numCullOffsetsLimit) in enumerate(zip(distances, numCullOffsetsLimits)): cullOff = isceobj.createOffoutliers() cullOff.wireInputPort(name='offsets', object=refinedOffsets) cullOff.setSNRThreshold(2.0) cullOff.setDistance(distance) #set the tag used in the outfile. each message is precided by this tag #is the writer is not of "file" type the call has no effect stdWriter = create_writer("log", "", True, filename="offoutliers.log") stdWriter.setFileTag("offoutliers", "log") stdWriter.setFileTag("offoutliers", "err") stdWriter.setFileTag("offoutliers", "out") cullOff.setStdWriter(stdWriter) #run it cullOff.offoutliers() refinedOffsets = cullOff.getRefinedOffsetField() numLeft = len(refinedOffsets._offsets) print('Number of offsets left after %2dth culling: %5d'%(i, numLeft)) if numLeft < numCullOffsetsLimit: refinedOffsets = None stdWriter.finalize() return refinedOffsets def cullOffsetsRoipac(offsets, numThreshold=50): ''' cull offsets using fortran program from ROI_PAC numThreshold: minmum number of offsets left ''' import os from contrib.alos2proc_f.alos2proc_f import fitoff from isceobj.Alos2Proc.Alos2ProcPublic import readOffset from isceobj.Alos2Proc.Alos2ProcPublic import writeOffset offsetFile = 'offset.off' cullOffsetFile = 'cull.off' writeOffset(offsets, offsetFile) #try different parameters to cull offsets breakFlag = 0 for maxrms in [0.08, 0.16, 0.24]: for nsig in [1.5, 1.4, 1.3, 1.2, 1.1, 1.0, 0.9]: fitoff(offsetFile, cullOffsetFile, nsig, maxrms, numThreshold) #check number of matching points left with open(cullOffsetFile, 'r') as ff: numCullOffsets = sum(1 for linex in ff) if numCullOffsets < numThreshold: print('offsets culling with nsig {} maxrms {}: {} left after culling, too few points'.format(nsig, maxrms, numCullOffsets)) else: print('offsets culling with nsig {} maxrms {}: {} left after culling, success'.format(nsig, maxrms, numCullOffsets)) breakFlag = 1 break if breakFlag == 1: break if numCullOffsets < numThreshold: refinedOffsets = None else: refinedOffsets = readOffset(cullOffsetFile) os.remove(offsetFile) os.remove(cullOffsetFile) return refinedOffsets def meanOffset(offsets): rangeOffset = 0.0 azimuthOffset = 0.0 i = 0 for offsetx in offsets: i += 1 rangeOffset += offsetx.dx azimuthOffset += offsetx.dy rangeOffset /= i azimuthOffset /= i return (rangeOffset, azimuthOffset) def fitOffset(inputOffset, order=1, axis='range'): '''fit a polynomial to the offset order=0 also works, output is mean offset ''' import numpy as np index = [] offset = [] for a in inputOffset: if axis=='range': index.append(a.x) offset.append(a.dx) else: index.append(a.y) offset.append(a.dy) p = np.polyfit(index, offset, order) return list(p[::-1]) def topo(swath, track, demFile, latFile, lonFile, hgtFile, losFile=None, incFile=None, mskFile=None, numberRangeLooks=1, numberAzimuthLooks=1, multilookTimeOffset=True): import datetime import isceobj from zerodop.topozero import createTopozero from isceobj.Planet.Planet import Planet pointingDirection = {'right': -1, 'left' :1} demImage = isceobj.createDemImage() demImage.load(demFile + '.xml') demImage.setAccessMode('read') #####Run Topo planet = Planet(pname='Earth') topo = createTopozero() topo.slantRangePixelSpacing = numberRangeLooks * swath.rangePixelSize topo.prf = 1.0 / (numberAzimuthLooks * swath.azimuthLineInterval) topo.radarWavelength = track.radarWavelength topo.orbit = track.orbit topo.width = int(swath.numberOfSamples/numberRangeLooks) topo.length = int(swath.numberOfLines/numberAzimuthLooks) topo.wireInputPort(name='dem', object=demImage) topo.wireInputPort(name='planet', object=planet) topo.numberRangeLooks = 1 #must be set as 1 topo.numberAzimuthLooks = 1 #must be set as 1 Cunren topo.lookSide = pointingDirection[track.pointingDirection] if multilookTimeOffset == True: topo.sensingStart = swath.sensingStart + datetime.timedelta(seconds=(numberAzimuthLooks-1.0)/2.0/swath.prf) topo.rangeFirstSample = swath.startingRange + (numberRangeLooks-1.0)/2.0 * swath.rangePixelSize else: topo.sensingStart = swath.sensingStart topo.rangeFirstSample = swath.startingRange topo.demInterpolationMethod='BIQUINTIC' topo.latFilename = latFile topo.lonFilename = lonFile topo.heightFilename = hgtFile if losFile != None: topo.losFilename = losFile if incFile != None: topo.incFilename = incFile if mskFile != None: topo.maskFilename = mskFile topo.topo() return list(topo.snwe) def geo2rdr(swath, track, latFile, lonFile, hgtFile, rangeOffsetFile, azimuthOffsetFile, numberRangeLooks=1, numberAzimuthLooks=1, multilookTimeOffset=True): import datetime import isceobj from zerodop.geo2rdr import createGeo2rdr from isceobj.Planet.Planet import Planet pointingDirection = {'right': -1, 'left' :1} latImage = isceobj.createImage() latImage.load(latFile + '.xml') latImage.setAccessMode('read') lonImage = isceobj.createImage() lonImage.load(lonFile + '.xml') lonImage.setAccessMode('read') hgtImage = isceobj.createDemImage() hgtImage.load(hgtFile + '.xml') hgtImage.setAccessMode('read') planet = Planet(pname='Earth') topo = createGeo2rdr() topo.configure() topo.slantRangePixelSpacing = numberRangeLooks * swath.rangePixelSize topo.prf = 1.0 / (numberAzimuthLooks * swath.azimuthLineInterval) topo.radarWavelength = track.radarWavelength topo.orbit = track.orbit topo.width = int(swath.numberOfSamples/numberRangeLooks) topo.length = int(swath.numberOfLines/numberAzimuthLooks) topo.demLength = hgtImage.length topo.demWidth = hgtImage.width topo.wireInputPort(name='planet', object=planet) topo.numberRangeLooks = 1 topo.numberAzimuthLooks = 1 #must be set to be 1 topo.lookSide = pointingDirection[track.pointingDirection] if multilookTimeOffset == True: topo.sensingStart = swath.sensingStart + datetime.timedelta(seconds=(numberAzimuthLooks-1.0)/2.0*swath.azimuthLineInterval) topo.rangeFirstSample = swath.startingRange + (numberRangeLooks-1.0)/2.0*swath.rangePixelSize else: topo.setSensingStart(swath.sensingStart) topo.rangeFirstSample = swath.startingRange topo.dopplerCentroidCoeffs = [0.] #we are using zero doppler geometry topo.demImage = hgtImage topo.latImage = latImage topo.lonImage = lonImage topo.rangeOffsetImageName = rangeOffsetFile topo.azimuthOffsetImageName = azimuthOffsetFile topo.geo2rdr() return def waterBodyRadar(latFile, lonFile, wbdFile, wbdOutFile): ''' create water boday in radar coordinates ''' import numpy as np import isceobj from isceobj.Alos2Proc.Alos2ProcPublic import create_xml demImage = isceobj.createDemImage() demImage.load(wbdFile + '.xml') #demImage.setAccessMode('read') wbd=np.memmap(wbdFile, dtype='byte', mode='r', shape=(demImage.length, demImage.width)) image = isceobj.createImage() image.load(latFile+'.xml') width = image.width length = image.length latFp = open(latFile, 'rb') lonFp = open(lonFile, 'rb') wbdOutFp = open(wbdOutFile, 'wb') wbdOutIndex = np.arange(width, dtype=np.int32) print("create water body in radar coordinates...") for i in range(length): if (((i+1)%200) == 0): print("processing line %6d of %6d" % (i+1, length), end='\r', flush=True) wbdOut = np.zeros(width, dtype='byte')-2 lat = np.fromfile(latFp, dtype=np.float64, count=width) lon = np.fromfile(lonFp, dtype=np.float64, count=width) #indexes start with zero lineIndex = np.int32((lat - demImage.firstLatitude) / demImage.deltaLatitude + 0.5) sampleIndex = np.int32((lon - demImage.firstLongitude) / demImage.deltaLongitude + 0.5) inboundIndex = np.logical_and( np.logical_and(lineIndex>=0, lineIndex<=demImage.length-1), np.logical_and(sampleIndex>=0, sampleIndex<=demImage.width-1) ) #keep SRTM convention. water body. (0) --- land; (-1) --- water; (-2 or other value) --- no data. wbdOut[(wbdOutIndex[inboundIndex],)] = wbd[(lineIndex[inboundIndex], sampleIndex[inboundIndex])] wbdOut.astype(np.int8).tofile(wbdOutFp) print("processing line %6d of %6d" % (length, length)) #create_xml(wbdOutFile, width, length, 'byte') image = isceobj.createImage() image.setDataType('BYTE') image.addDescription('water body. (0) --- land; (-1) --- water; (-2) --- no data.') image.setFilename(wbdOutFile) image.extraFilename = wbdOutFile + '.vrt' image.setWidth(width) image.setLength(length) image.renderHdr() del wbd, demImage, image latFp.close() lonFp.close() wbdOutFp.close() def renameFile(oldname, newname): import os import isceobj img = isceobj.createImage() img.load(oldname + '.xml') img.setFilename(newname) img.extraFilename = newname+'.vrt' img.renderHdr() os.rename(oldname, newname) os.remove(oldname + '.xml') os.remove(oldname + '.vrt') def cal_coherence(inf, win=5, edge=0): ''' compute coherence uisng only interferogram (phase). This routine still follows the regular equation for computing coherence, but assumes the amplitudes of reference and secondary are one, so that coherence can be computed using phase only. inf: interferogram win: window size edge: 0: remove all non-full convolution samples 1: remove samples computed from less than half convolution (win=5 used to illustration below) * * * * * * * * * * * * * * * 2: remove samples computed from less than quater convolution (win=5 used to illustration below) * * * * * * * * * 3: remove non-full convolution samples on image edges 4: keep all samples ''' import numpy as np import scipy.signal as ss if win % 2 != 1: raise Exception('window size must be odd!') hwin = np.int(np.around((win - 1) / 2)) filt = np.ones((win, win)) amp = np.absolute(inf) cnt = ss.convolve2d((amp!=0), filt, mode='same') cor = ss.convolve2d(inf/(amp + (amp==0)), filt, mode='same') cor = (amp!=0) * np.absolute(cor) / (cnt + (cnt==0)) #trim edges if edge == 0: num = win * win cor[np.nonzero(cnt < num)] = 0.0 elif edge == 1: num = win * (hwin+1) cor[np.nonzero(cnt < num)] = 0.0 elif edge == 2: num = (hwin+1) * (hwin+1) cor[np.nonzero(cnt < num)] = 0.0 elif edge == 3: cor[0:hwin, :] = 0.0 cor[-hwin:, :] = 0.0 cor[:, 0:hwin] = 0.0 cor[:, -hwin:] = 0.0 else: pass #print("coherence, max: {} min: {}".format(np.max(cor[np.nonzero(cor!=0)]), np.min(cor[np.nonzero(cor!=0)]))) return cor def snaphuUnwrap(track, t, wrapName, corName, unwrapName, nrlks, nalks, costMode = 'DEFO',initMethod = 'MST', defomax = 4.0, initOnly = False): #runUnwrap(self, costMode = 'SMOOTH',initMethod = 'MCF', defomax = 2, initOnly = True) ''' track: track object t: time for computing earth radius and altitude, normally mid azimuth time wrapName: input interferogram corName: input coherence file unwrapName: output unwrapped interferogram nrlks: number of range looks of the interferogram nalks: number of azimuth looks of the interferogram ''' import datetime import numpy as np import isceobj from contrib.Snaphu.Snaphu import Snaphu from isceobj.Planet.Planet import Planet corImg = isceobj.createImage() corImg.load(corName + '.xml') width = corImg.width length = corImg.length #get altitude orbit = track.orbit peg = orbit.interpolateOrbit(t, method='hermite') refElp = Planet(pname='Earth').ellipsoid llh = refElp.xyz_to_llh(peg.getPosition()) hdg = orbit.getENUHeading(t) refElp.setSCH(llh[0], llh[1], hdg) earthRadius = refElp.pegRadCur altitude = llh[2] rangeLooks = nrlks azimuthLooks = nalks azfact = 0.8 rngfact = 0.8 corrLooks = rangeLooks * azimuthLooks/(azfact*rngfact) maxComponents = 20 snp = Snaphu() snp.setInitOnly(initOnly) snp.setInput(wrapName) snp.setOutput(unwrapName) snp.setWidth(width) snp.setCostMode(costMode) snp.setEarthRadius(earthRadius) snp.setWavelength(track.radarWavelength) snp.setAltitude(altitude) snp.setCorrfile(corName) snp.setInitMethod(initMethod) snp.setCorrLooks(corrLooks) snp.setMaxComponents(maxComponents) snp.setDefoMaxCycles(defomax) snp.setRangeLooks(rangeLooks) snp.setAzimuthLooks(azimuthLooks) if corImg.bands == 1: snp.setCorFileFormat('FLOAT_DATA') snp.prepare() snp.unwrap() ######Render XML outImage = isceobj.Image.createUnwImage() outImage.setFilename(unwrapName) outImage.setWidth(width) outImage.setAccessMode('read') outImage.renderVRT() outImage.createImage() outImage.finalizeImage() outImage.renderHdr() #####Check if connected components was created if snp.dumpConnectedComponents: connImage = isceobj.Image.createImage() connImage.setFilename(unwrapName+'.conncomp') connImage.setWidth(width) connImage.setAccessMode('read') connImage.setDataType('BYTE') connImage.renderVRT() connImage.createImage() connImage.finalizeImage() connImage.renderHdr() del connImage del corImg del snp del outImage #remove wired things in no-data area amp=np.memmap(unwrapName, dtype='float32', mode='r+', shape=(length*2, width)) wrap = np.fromfile(wrapName, dtype=np.complex64).reshape(length, width) (amp[0:length*2:2, :])[np.nonzero(wrap==0)]=0 (amp[1:length*2:2, :])[np.nonzero(wrap==0)]=0 del amp del wrap return def snaphuUnwrapOriginal(wrapName, corName, ampName, unwrapName, costMode = 's', initMethod = 'mcf', snaphuConfFile = 'snaphu.conf'): ''' unwrap interferogram using original snaphu program ''' import numpy as np import isceobj corImg = isceobj.createImage() corImg.load(corName + '.xml') width = corImg.width length = corImg.length #specify coherence file format in configure file #snaphuConfFile = 'snaphu.conf' if corImg.bands == 1: snaphuConf = '''CORRFILEFORMAT FLOAT_DATA CONNCOMPFILE {} MAXNCOMPS 20'''.format(unwrapName+'.conncomp') else: snaphuConf = '''CORRFILEFORMAT ALT_LINE_DATA CONNCOMPFILE {} MAXNCOMPS 20'''.format(unwrapName+'.conncomp') with open(snaphuConfFile, 'w') as f: f.write(snaphuConf) cmd = 'snaphu {} {} -f {} -{} -o {} -a {} -c {} -v --{}'.format( wrapName, width, snaphuConfFile, costMode, unwrapName, ampName, corName, initMethod ) runCmd(cmd) create_xml(unwrapName, width, length, 'unw') connImage = isceobj.Image.createImage() connImage.setFilename(unwrapName+'.conncomp') connImage.setWidth(width) connImage.setAccessMode('read') connImage.setDataType('BYTE') connImage.renderVRT() connImage.createImage() connImage.finalizeImage() connImage.renderHdr() del connImage #remove wired things in no-data area amp=np.memmap(unwrapName, dtype='float32', mode='r+', shape=(length*2, width)) wrap = np.fromfile(wrapName, dtype=np.complex64).reshape(length, width) (amp[0:length*2:2, :])[np.nonzero(wrap==0)]=0 (amp[1:length*2:2, :])[np.nonzero(wrap==0)]=0 del amp del wrap return def getBboxGeo(track, useTrackOnly=False, numberOfSamples=1, numberOfLines=1, numberRangeLooks=1, numberAzimuthLooks=1): ''' get bounding box in geo-coordinate ''' import numpy as np pointingDirection = {'right': -1, 'left' :1} if useTrackOnly: import datetime rangeMin = track.startingRange + (numberRangeLooks-1.0)/2.0*track.rangePixelSize rangeMax = rangeMin + (numberOfSamples-1) * numberRangeLooks * track.rangePixelSize azimuthTimeMin = track.sensingStart + datetime.timedelta(seconds=(numberAzimuthLooks-1.0)/2.0*track.azimuthLineInterval) azimuthTimeMax = azimuthTimeMin + datetime.timedelta(seconds=(numberOfLines-1) * numberAzimuthLooks * track.azimuthLineInterval) bboxRdr = [rangeMin, rangeMax, azimuthTimeMin, azimuthTimeMax] else: bboxRdr = getBboxRdr(track) rangeMin = bboxRdr[0] rangeMax = bboxRdr[1] azimuthTimeMin = bboxRdr[2] azimuthTimeMax = bboxRdr[3] #get bounding box using Piyush's code hgtrange=[-500,9000] ts = [azimuthTimeMin, azimuthTimeMax] rngs = [rangeMin, rangeMax] pos = [] for ht in hgtrange: for tim in ts: for rng in rngs: llh = track.orbit.rdr2geo(tim, rng, height=ht, side=pointingDirection[track.pointingDirection]) pos.append(llh) pos = np.array(pos) # S N W E bbox = [np.min(pos[:,0]), np.max(pos[:,0]), np.min(pos[:,1]), np.max(pos[:,1])] return bbox def getBboxRdr(track): ''' get bounding box in radar-coordinate ''' import datetime numberOfFrames = len(track.frames) numberOfSwaths = len(track.frames[0].swaths) sensingStartList = [] sensingEndList = [] startingRangeList = [] endingRangeList = [] for i in range(numberOfFrames): for j in range(numberOfSwaths): swath = track.frames[i].swaths[j] sensingStartList.append(swath.sensingStart) sensingEndList.append(swath.sensingStart + datetime.timedelta(seconds=(swath.numberOfLines-1) * swath.azimuthLineInterval)) startingRangeList.append(swath.startingRange) endingRangeList.append(swath.startingRange + (swath.numberOfSamples - 1) * swath.rangePixelSize) azimuthTimeMin = min(sensingStartList) azimuthTimeMax = max(sensingEndList) azimuthTimeMid = azimuthTimeMin+datetime.timedelta(seconds=(azimuthTimeMax-azimuthTimeMin).total_seconds()/2.0) rangeMin = min(startingRangeList) rangeMax = max(endingRangeList) rangeMid = (rangeMin + rangeMax) / 2.0 bbox = [rangeMin, rangeMax, azimuthTimeMin, azimuthTimeMax] return bbox def filterInterferogram(data, alpha, windowSize, stepSize): ''' a filter wrapper ''' import os import numpy as np from contrib.alos2filter.alos2filter import psfilt1 (length, width)=data.shape data.astype(np.complex64).tofile('tmp1234.int') psfilt1('tmp1234.int', 'filt_tmp1234.int', width, alpha, windowSize, stepSize) data2 = np.fromfile('filt_tmp1234.int', dtype=np.complex64).reshape(length, width) os.remove('tmp1234.int') os.remove('filt_tmp1234.int') return data2 ################################################################### # these are routines for burst-by-burst ScanSAR interferometry ################################################################### def mosaicBurstInterferogram(swath, burstPrefix, outputFile, numberOfLooksThreshold=1): ''' take a burst sequence and output mosaicked file ''' import numpy as np interferogram = np.zeros((swath.numberOfLines, swath.numberOfSamples), dtype=np.complex64) cnt = np.zeros((swath.numberOfLines, swath.numberOfSamples), dtype=np.int8) for i in range(swath.numberOfBursts): burstFile = burstPrefix + '_%02d.int'%(i+1) burstInterferogram = np.fromfile(burstFile, dtype=np.complex64).reshape(swath.burstSlcNumberOfLines, swath.burstSlcNumberOfSamples) interferogram[0+swath.burstSlcFirstLineOffsets[i]:swath.burstSlcNumberOfLines+swath.burstSlcFirstLineOffsets[i], :] += burstInterferogram cnt[0+swath.burstSlcFirstLineOffsets[i]:swath.burstSlcNumberOfLines+swath.burstSlcFirstLineOffsets[i], :] += (burstInterferogram!=0) #trim upper and lower edges with less number of looks ############################################################################# firstLine = 0 for i in range(swath.numberOfLines): if np.sum(cnt[i,:]>=numberOfLooksThreshold) > swath.numberOfSamples/2: firstLine = i break lastLine = swath.numberOfLines - 1 for i in range(swath.numberOfLines): if np.sum(cnt[swath.numberOfLines-1-i,:]>=numberOfLooksThreshold) > swath.numberOfSamples/2: lastLine = swath.numberOfLines-1-i break interferogram[:firstLine,:]=0 interferogram[lastLine+1:,:]=0 # if numberOfLooksThreshold!= None: # interferogram[np.nonzero(cnt<numberOfLooksThreshold)] = 0 ############################################################################# interferogram.astype(np.complex64).tofile(outputFile) create_xml(outputFile, swath.numberOfSamples, swath.numberOfLines, 'int') def mosaicBurstAmplitude(swath, burstPrefix, outputFile, numberOfLooksThreshold=1): ''' take a burst sequence and output the magnitude ''' import numpy as np amp = np.zeros((swath.numberOfLines, swath.numberOfSamples), dtype=np.float32) cnt = np.zeros((swath.numberOfLines, swath.numberOfSamples), dtype=np.int8) for i in range(swath.numberOfBursts): burstFile = burstPrefix + '_%02d.slc'%(i+1) #azLineOffset = round((swath.burstSlcStartTimes[i] - swath.burstSlcStartTimes[0]).total_seconds() / swath.azimuthLineInterval) burstMag = np.absolute(np.fromfile(burstFile, dtype=np.complex64).reshape(swath.burstSlcNumberOfLines, swath.burstSlcNumberOfSamples)) burstPwr = burstMag * burstMag amp[0+swath.burstSlcFirstLineOffsets[i]:swath.burstSlcNumberOfLines+swath.burstSlcFirstLineOffsets[i], :] += burstPwr cnt[0+swath.burstSlcFirstLineOffsets[i]:swath.burstSlcNumberOfLines+swath.burstSlcFirstLineOffsets[i], :] += (burstPwr!=0) #trim upper and lower edges with less number of looks ############################################################################# firstLine = 0 for i in range(swath.numberOfLines): if np.sum(cnt[i,:]>=numberOfLooksThreshold) > swath.numberOfSamples/2: firstLine = i break lastLine = swath.numberOfLines - 1 for i in range(swath.numberOfLines): if np.sum(cnt[swath.numberOfLines-1-i,:]>=numberOfLooksThreshold) > swath.numberOfSamples/2: lastLine = swath.numberOfLines-1-i break amp[:firstLine,:]=0 amp[lastLine+1:,:]=0 # if numberOfLooksThreshold!= None: # amp[np.nonzero(cnt<numberOfLooksThreshold)] = 0 ############################################################################# np.sqrt(amp).astype(np.float32).tofile(outputFile) create_xml(outputFile, swath.numberOfSamples, swath.numberOfLines, 'float') def resampleBursts(referenceSwath, secondarySwath, referenceBurstDir, secondaryBurstDir, secondaryBurstResampledDir, interferogramDir, referenceBurstPrefix, secondaryBurstPrefix, secondaryBurstResampledPrefix, interferogramPrefix, rangeOffset, azimuthOffset, rangeOffsetResidual=0, azimuthOffsetResidual=0): import os import datetime import numpy as np import numpy.matlib from contrib.alos2proc.alos2proc import resamp os.makedirs(secondaryBurstResampledDir, exist_ok=True) os.makedirs(interferogramDir, exist_ok=True) #get burst file names referenceBurstSlc = [referenceBurstPrefix+'_%02d.slc'%(i+1) for i in range(referenceSwath.numberOfBursts)] secondaryBurstSlc = [secondaryBurstPrefix+'_%02d.slc'%(i+1) for i in range(secondarySwath.numberOfBursts)] secondaryBurstSlcResampled = [secondaryBurstPrefix+'_%02d.slc'%(i+1) for i in range(referenceSwath.numberOfBursts)] interferogram = [interferogramPrefix+'_%02d.int'%(i+1) for i in range(referenceSwath.numberOfBursts)] length = referenceSwath.burstSlcNumberOfLines width = referenceSwath.burstSlcNumberOfSamples lengthSecondary = secondarySwath.burstSlcNumberOfLines widthSecondary = secondarySwath.burstSlcNumberOfSamples #secondary burst slc start times secondaryBurstStartTimesSlc = [secondarySwath.firstBurstSlcStartTime + \ datetime.timedelta(seconds=secondarySwath.burstSlcFirstLineOffsets[i]*secondarySwath.azimuthLineInterval) \ for i in range(secondarySwath.numberOfBursts)] #secondary burst raw start times secondaryBurstStartTimesRaw = [secondarySwath.firstBurstRawStartTime + \ datetime.timedelta(seconds=i*secondarySwath.burstCycleLength/secondarySwath.prf) \ for i in range(secondarySwath.numberOfBursts)] for i in range(referenceSwath.numberOfBursts): ########################################################################## # 1. get offsets and corresponding secondary burst ########################################################################## #range offset with open(rangeOffset, 'rb') as f: f.seek(referenceSwath.burstSlcFirstLineOffsets[i] * width * np.dtype(np.float32).itemsize, 0) rgoffBurst = np.fromfile(f, dtype=np.float32, count=length*width).reshape(length,width) if type(rangeOffsetResidual) == np.ndarray: residual = rangeOffsetResidual[0+referenceSwath.burstSlcFirstLineOffsets[i]:length+referenceSwath.burstSlcFirstLineOffsets[i],:] rgoffBurst[
np.nonzero(rgoffBurst!=-999999.0)
numpy.nonzero
# coding: utf8 """ Sample class ============ Wrapper around a :class:`pandas.DataFrame` for storing point samples. A sample is given by the data associated to a point, and the point coordinates in the space of parameters. The main benefit of this class is to carry feature labels and to handle I/Os. The internal dataframe is publicly available. Class attributes are configured to return array-like objects (:class:`numpy.ndarray` or :py:class:`list`) """ from copy import copy from numbers import Number import os import logging import numpy as np import pandas as pd from ..input_output import formater class Sample(object): """Container class for samples.""" logger = logging.getLogger(__name__) def __init__(self, space=None, data=None, plabels=None, flabels=None, psizes=None, fsizes=None, pformat='json', fformat='json'): """Initialize the container and build the column index. This index carries feature names. Features can be scalars or vectors. Vector features do not need to be of the same size. Samples are stored as a 2D row-major array: 1 sample per row. :param array-like space: parameter space (1 point per sample) :param array-like data: data associated to points :param list(str) plabels: parameter names (for space) :param list(str) flabels: feature names (for data) :param list(int) psizes: lengths of parameters (for space) :param list(int) fsizes: lengths of features (for data) :param str pformat: file format name for space :param str fformat: file format name for data """ # space dataframe df_space = None if space is not None: df_space = create_dataframe(space, clabel='space', flabels=plabels, fsizes=psizes) elif ((plabels is not None and list(plabels)) or (psizes is not None and list(psizes))): index = create_index(clabel='space', flabels=plabels, fsizes=psizes) df_space = pd.DataFrame(columns=index) # data dataframe df_data = None if data is not None: df_data = create_dataframe(data, clabel='data', flabels=flabels, fsizes=fsizes) elif ((flabels is not None and list(flabels)) or (fsizes is not None and list(fsizes))): index = create_index(clabel='data', flabels=flabels, fsizes=fsizes) df_data = pd.DataFrame(columns=index) # concatenate try: self._dataframe = pd.concat([df_space, df_data], axis=1) except ValueError: self._dataframe = pd.DataFrame() # I/O formaters self._pformater = formater(pformat) self._fformater = formater(fformat) self.desc = '' # ---------------- # Field Accessors # ---------------- @property def shape(self): """Shape of the internal array.""" return self._dataframe.shape @property def plabels(self): """List of space feature labels. :returns: a list of column labels, ordered the same as the underlying array. :rtype: list(str) """ try: index = self._dataframe['space'].columns except KeyError: return [] else: uniq, pos = np.unique(index.codes[0], return_index=True) uniq = uniq[np.argsort(pos)] return list(index.levels[0][uniq]) @property def flabels(self): """List of data feature labels. :returns: a list of column labels, ordered the same as the underlying array. :rtype: list(str) """ try: index = self._dataframe['data'].columns except KeyError: return [] else: uniq, pos = np.unique(index.codes[0], return_index=True) uniq = uniq[np.argsort(pos)] return list(index.levels[0][uniq]) @property def psizes(self): """Sizes of space features. :returns: the number of components of each feature. :rtype: list(int) """ try: index = self._dataframe['space'].columns except KeyError: return [] else: _, sizes = np.unique(index.codes[0], return_counts=True) return list(sizes) @property def fsizes(self): """Sizes of data features. :returns: the number of components of each feature. :rtype: list(int) """ try: index = self._dataframe['data'].columns except KeyError: return [] else: _, sizes =
np.unique(index.codes[0], return_counts=True)
numpy.unique
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ matrix operator """ from copy import deepcopy from functools import reduce import logging import numpy as np from scipy import sparse as scisparse from scipy import linalg as scila from qiskit import QuantumCircuit # pylint: disable=unused-import from qiskit.aqua import AquaError from .base_operator import BaseOperator logger = logging.getLogger(__name__) class MatrixOperator(BaseOperator): """ Operators relevant for quantum applications Note: For grouped paulis representation, all operations will always convert it to paulis and then convert it back. (It might be a performance issue.) """ def __init__(self, matrix, basis=None, z2_symmetries=None, atol=1e-12, name=None): """ Args: matrix (numpy.ndarray or scipy.sparse.csr_matrix): a 2-D sparse matrix represents operator (using CSR format internally) basis (list[tuple(object, [int])], optional): the grouping basis, each element is a tuple composed of the basis and the indices to paulis which are belonged to that group. e.g., if tpb basis is used, the object will be a pauli. by default, the group is equal to non-grouping, each pauli is its own basis. z2_symmetries (Z2Symmetries): represent the Z2 symmetries atol (float): atol name (str): name """ super().__init__(basis, z2_symmetries, name) if matrix is not None: matrix = matrix if scisparse.issparse(matrix) else scisparse.csr_matrix(matrix) matrix = matrix if scisparse.isspmatrix_csr(matrix) else matrix.to_csr(copy=True) self._matrix = matrix self._atol = atol @property def atol(self): """ return atol """ return self._atol @atol.setter def atol(self, new_value): """ sets atol """ self._atol = new_value def add(self, other, copy=False): """ add """ out = self.copy() if copy else self out._matrix += other._matrix return out def sub(self, other, copy=False): """ sub """ out = self.copy() if copy else self out._matrix -= other._matrix return out def __add__(self, other): """Overload + operation""" return self.add(other, copy=True) def __iadd__(self, other): """Overload += operation""" return self.add(other, copy=False) def __sub__(self, other): """Overload - operation""" return self.sub(other, copy=True) def __isub__(self, other): """Overload -= operation""" return self.sub(other, copy=False) def __neg__(self): """Overload unary - """ out = self.copy() out._matrix *= -1.0 return out def __eq__(self, other): """Overload == operation""" return np.all(self._matrix == other.matrix) def __str__(self): """Overload str()""" curr_repr = 'matrix' length = "{}x{}".format(2 ** self.num_qubits, 2 ** self.num_qubits) ret = "Representation: {}, qubits: {}, size: {}".format(curr_repr, self.num_qubits, length) return ret def copy(self): """Get a copy of self.""" return deepcopy(self) def chop(self, threshold=None, copy=False): """ Eliminate the real and imagine part of coeff in each pauli by `threshold`. If pauli's coeff is less then `threshold` in both real and imagine parts, the pauli is removed. To align the internal representations, all available representations are chopped. The chopped result is stored back to original property. Note: if coeff is real-only, the imag part is skipped. Args: threshold (float): threshold chops the paulis copy (bool): copy or self Returns: MatrixOperator: self or copy """ threshold = self._atol if threshold is None else threshold def chop_real_imag(coeff): temp_real = coeff.real if np.absolute(coeff.real) >= threshold else 0.0 temp_imag = coeff.imag if
np.absolute(coeff.imag)
numpy.absolute
""" Classes to perform actions on simulation trajectories """ from __future__ import division, print_function, absolute_import import os from collections import namedtuple import MDAnalysis as md import MDAnalysis.core.AtomGroup as AtomGroup import MDAnalysis.analysis.align as align import MDAnalysis.lib.util as mdutil import MDAnalysis.lib.mdamath as mdmath import numpy as np try : import pyvoro except: pass from scipy.spatial.distance import cdist import sklearn.mixture as mixture from simanalysis.pbc import make_whole_xyz, unwrap_vector from simanalysis.groups import read_groups from simanalysis.utils import resanallib, AnalysisGrid MDRecord = namedtuple("MDRecord",["time","value"]) ResidueAtoms = namedtuple("ResidueAtoms",["first","last"]) class TrajectoryAction(object): """ Base class for actions that are called by a TrajectoryProcessor object. Classes that wants to implement a particular action should inherit from this. """ def __init__(self, processor): self.processor = processor self.dosubsample = False processor.append_action(self) @staticmethod def descr() : return "This is generic description" @classmethod def command_name(cls) : name = cls.__name__.lower() if name.endswith("analysis") : name = name[:-8] return name def add_arguments(self, parser): """ Function that is called to add action-specific arguments Arguments --------- parser : argparse.ArgumentParser the parser to add command-line arguments to """ pass def setup(self, args): """ Function that is called after the processor has parsed the command-line arguments. Arguments --------- args : argparse.Namespace the parsed arguments """ def process(self): """ Main processing function called at each trajectory timestep """ pass def subsample(self): """ Function called occasionally if subsampling is turned on """ pass def finalize(self): """ Function that is called after all timesteps has been processed """ pass def _write_records(self, postfix='', headers=None): """ Helper routine to write out a list of MDRecord to disc """ if self.records : with open(self.out+postfix,'w') as f : if headers is not None : f.write("#"+"\t".join(headers)+"\n") for entry in self.records: if isinstance(entry.value,float) or isinstance(entry.value,np.float32): f.write("%.0f\t%.3f\n"%(entry.time,entry.value)) elif isinstance(entry.value,int) or isinstance(entry.value,np.int32): f.write("%.0f\t%d\n"%(entry.time,entry.value)) else: f.write("%.0f\t%s\n"%(entry.time,"\t".join("%.3f"%v for v in entry.value))) class CenterWholeAlign(TrajectoryAction): """ Class to make MD snapshots whole over periodic boxes and to centre and align proteins. Attributes ---------- protsel : MDAnalysis.AtomGroup the protein selection refuni : MDAnalyis.Universe the reference universe used for alignment residue_atoms : list of integer tuples the atom numbers of all residues excluding proteins residues : list of MDAnalysis.AtomGroup the residues in the universe excluding proteins records : list of MDRecords the RMSD record at each processes snapshot writer : MDAnalysis.Writer the output trajectory writer """ @staticmethod def descr() : return "Make snapshots whole and centre and align proteins" def add_arguments(self, parser): parser.add_argument('--bbmask',help="the selectiom mask for backbone",default="name CA") parser.add_argument('--pmask',help="the selectiom mask for protein",default="protein") parser.add_argument('-o','--out',help="the output",default="centerwhole") parser.add_argument('--noalign',action="store_true",help="turns off alignment",default=False) parser.add_argument('--nocenter',action="store_true",help="turns off centering",default=False) parser.add_argument('--nowhole',action="store_true",help="turns off making whole",default=False) def setup(self, args): self.refuni = md.Universe(self.processor.args.struct) self.protsel = self.processor.universe.select_atoms(args.pmask) if len(self.protsel) == 0 : self.nocenter = True self.noalign = True else: self.nocenter = args.nocenter self.noalign = args.noalign self.nowhole = args.nowhole self.residues = [] self.residue_atoms = [] for res in self.processor.universe.select_atoms("not "+args.pmask).residues: if len(res.atoms) > 1 : self.residues.append(res) self.residue_atoms.append(ResidueAtoms(res.atoms[0].index,res.atoms[-1].index)) self.records = [] self.writer = md.Writer(args.out, self.processor.universe.trajectory.n_atoms) self.out = args.out self.bbmask = args.bbmask def process(self): if not self.nowhole : if len(self.protsel) > 0: xyz = pbc.make_whole_xyz(self.protsel.positions,self.processor.currbox) self.protsel.positions = xyz for res in self.residues : xyz = pbc.make_whole_xyz(res.atoms.positions,self.processor.currbox) res.atoms.positions = xyz if not self.nocenter : self._center() if not self.noalign : rmsd = align.alignto(self.processor.universe, self.refuni, select=self.bbmask)[1] self.records.append(MDRecord(self.processor.currtime,rmsd)) self.writer.write(self.processor.currsnap) def finalize(self): """ Write out the RMSDs to disc and close the output trajectory """ self._write_records(postfix="_rmsd.txt") try : self.writer.close_trajectory() except : pass def _center(self) : xyz = self.processor.currsnap._pos #com1 = xyz[self.protsel[0].number:self.protsel[-1].number+1].mean(axis=0) com1 = self.protsel.center_of_geometry() for residue in self.residue_atoms : com2 = xyz[residue.first:residue.last+1].mean(axis=0) dr = pbc.unwrap_vector(com1 - com2, self.processor.currbox) xyz[residue.first:residue.last+1] = xyz[residue.first:residue.last+1] + dr delta = com1 - self.processor.currbox/2.0 self.processor.currsnap._pos = xyz - delta MDGroupSelection = namedtuple("MDGroupSelection",["atomgroup", "indices", "transmat"]) class ChainOrderAnalysis(TrajectoryAction): """ Class to analyse chain order parameters during a trajectory Attributes: ----------- normal : numpy ndarray the normal of the membrane, assumed to be z-axis out : string the output filename selections : list of MDAnalysis.AtomGroup the selections records : list of MDRecord the chain orders at each timestep """ @staticmethod def descr() : return "Analyze chain order parameters" def add_arguments(self, parser): parser.add_argument('--selections',nargs="+", help="the chains") parser.add_argument('--analysis',choices=["CC","CH"], help="the type of analysis C-C or C-H", default="CC") parser.add_argument('--groups', help="group definitions for pseudo-atom calculation") parser.add_argument('--gridout', help="the prefix for the filename of a 2D grid") parser.add_argument('--protmask',help="the selectiom mask for lipid residues") parser.add_argument('--pmask',help="the selectiom mask for phosphor atoms",default="name P") parser.add_argument('-o', '--out', help="the output prefix", default="order") def setup(self, args): def _get_h(atomgrp): for atom2 in atomgrp[0].bonded_atoms : if atom2.mass < 5.0 : return self.processor.universe.select_atoms("resname %s and name %s"%(atomgrp[0].resname,atom2.name)) raise Exception("Could not find any H atom bonded to %s in %s"%(atomgrp[0].name,atomgrp[0].resname)) def _enumerateatoms(resname, atomstr) : lipid = self.processor.universe.select_atoms("resname %s"%resname)[0].residue base = atomstr[:-1] atomi = int(atomstr[-1]) lst = [] while True : try : name = "%s%d"%(base,atomi) dummy = lipid[name] lst.append(name) atomi += 1 except : break return lst def _expandlist(liststr): l, r = liststr.split("..") i = l.find("(") start = int(l[i+1:]) l = l[:i] i = r.find(")") end = int(r[:i]) r = r[i+1:] return ["%s%d%s"%(l,i,r) for i in range(start,end+1)] self.headers = ["Time"] self.selheaders = [] self.selections = [] self.analtype = args.analysis if self.analtype == "CH" : self.hselections = [] self.resgroups = None if args.groups is not None: if self.analtype == "CH" : raise Exception("Cannot perform C-H analysis on pseudo-atoms") self.resgroups = read_groups(args.groups) for selin in args.selections: resname, chainlist = selin.split(":") if self.resgroups is not None: if resname not in self.resgroups: raise Exception("Cannot find %s in groups spec."%resname) pseudoatoms = [group.name for group in self.resgroups[resname].groups] if chainlist.find("-") > -1: atomlist = chainlist.split("-") elif chainlist.find("..") > -1: atomlist = _expandlist(chainlist) elif chainlist.startswith("@") : atomlist = _enumerateatoms(resname, chainlist[1:]) else: raise Exception("Atom list need be specified with '-' or with expansion '(..)'") if self.resgroups is None: atomsels = [self.processor.universe.select_atoms("resname %s and name %s"%(resname,atom)) for atom in atomlist] print("%s (%s) - %d atoms and %d atoms in first selection"% \ (resname, ",".join(atomlist), len(atomlist), len(atomsels[0]))) for atomgrp, atom in zip(atomsels[1:], atomlist[1:]): if len(atomgrp) != len(atomsels[0]): raise Exception("Selection for %s is different in length than the first selection"%atom) self.selections.append(atomsels) else: for atom in atomlist: if atom not in pseudoatoms : raise Exception("Could not find selected atom %s in the group spec."%atom) # Select all atoms for the selected residue, the coordinates # will be transformed to pseudo-atoms atomsel = self.processor.universe.select_atoms("resname %s"%resname) atomnames = [atom.name for atom in atomsel.residues[0].atoms] ngroups = len(self.resgroups[resname].groups) natoms = len(atomnames) nres = len(atomsel.residues) # Create the pseudo atom indices indices0 = [self.resgroups[resname].indices(atom) for atom in atomlist] indices = [[i0[0]+ngroups*i for i in range(nres)] for i0 in indices0] # Create the transformation matrix by replacting the one for the first residue transmat0 = self.resgroups[resname].transmat(atomnames) transmat = np.zeros([ngroups*nres,natoms*nres]) for i in range(nres): transmat[i*ngroups:(i+1)*ngroups,i*natoms:(i+1)*natoms] = transmat0 self.selections.append(MDGroupSelection(atomsel, indices, transmat)) print("%s (%s) - %d atoms and %d atoms in first selection"% \ (resname, ",".join(atomlist), len(atomlist), len(indices[0]))) self.headers.extend(["%s/%s"%(resname, atom) for atom in atomlist]) self.selheaders.append(["%s/%s"%(resname, atom) for atom in atomlist]) if self.analtype == "CH": hatomsels = [_get_h(atomgrp) for atomgrp in atomsels] self.hselections.append(hatomsels) for atomgrp, atom in zip(hatomsels[1:], atomlist[1:]): if len(atomgrp) != len(hatomsels[0]): raise Exception("H-selection for %s is different in length than the first selection"%atom) self.out = args.out # Assumes that the normal is along the z-axis self.normal = np.array([0.0,0.0,1.0]) self.records = [] self.gridout = args.gridout self.phosphorsel = None if self.gridout is not None : bounds = np.asarray([[0.0, 0.0, 0.0],self.processor.universe.dimensions[:3]]) self.grid_low = AnalysisGrid(bounds) self.grid_upp = AnalysisGrid(bounds) self.phosphorsel = self.processor.universe.select_atoms(args.pmask) if args.protmask is not None : self.protsel = self.processor.universe.select_atoms(args.protmask) self.grid_prot = AnalysisGrid(bounds) self.protone = np.ones(len(self.protsel)) else : self.protsel = None def process(self): mid = None if self.gridout is not None : mid = self.phosphorsel.center_of_geometry() if self.protsel is not None : self.grid_prot.accumulate(self.protsel.positions-mid, self.protone) orders = [] if self.analtype == "CC": if self.resgroups is None: for selection in self.selections : for a1, a2 in zip(selection[:-1],selection[1:]): orders.append(self._calc_order(a1.positions, a2.positions, self.normal, mid)) else: if self.processor.nprocessed == 1: f = open(self.out+"_first_pseudo.xyz", "w") for selection in self.selections : xyz = np.dot(selection.transmat, selection.atomgroup.positions) if self.processor.nprocessed == 1: for pos in xyz: f.write("c %.3f %.3f %.3f\n"%(pos[0], pos[1], pos[2])) for i1, i2 in zip(selection.indices[:-1], selection.indices[1:]): orders.append(self._calc_order(xyz[i1,:], xyz[i2,:], self.normal, mid)) if self.processor.nprocessed == 1: f.close() elif self.analtype == "CH": for cselection, hselection in zip(self.selections, self.hselections): for a1, a2 in zip(cselection, hselection): orders.append(self._calc_order(a1.positions, a2.positions, self.normal, mid)) self.records.append(MDRecord(self.processor.currtime, orders)) def _calc_order(self, a1, a2, norm, mid): # Atom2 - Atom1 vec = a2 - a1 # Projection with normal proj = np.multiply(vec,norm).sum(axis=1)**2 / np.sum(vec**2,axis=1) # Discretize on a grid if self.gridout is not None : sel_low = self.phosphorsel.positions[:,2] < mid[2] sel_upp = np.logical_not(sel_low) coords_upp = self.phosphorsel.positions[sel_upp,:] coords_low = self.phosphorsel.positions[sel_low,:] self.grid_low.accumulate(coords_low-mid, proj[sel_low]) self.grid_upp.accumulate(coords_upp-mid, proj[sel_upp]) # return order parameter return np.abs(0.5*(3.0*proj.mean()-1)) def finalize(self): self._write_records(postfix="_dt.txt", headers=self.headers) data = np.asarray([r.value for r in self.records]) av = data.mean(axis=0) std = data.std(axis=0) offset = 0 selavs = [] selstds = [] fac = -1 if self.analtype == "CC" else 0 for heads in self.selheaders: selavs.append(av[offset:offset+len(heads)+fac]) selstds.append(std[offset:offset+len(heads)+fac]) offset += len(heads)+fac maxatm = max([len(heads) for heads in self.selheaders])+fac with open(self.out+".txt", "w") as f : f.write("".join(["\t%s\t\t"%heads[0].split("/")[0] for heads in self.selheaders])+"\n") for i in range(maxatm): for j in range(len(self.selheaders)): if i < len(self.selheaders[j]) : f.write("%s\t%.3f\t%.3f\t"%(self.selheaders[j][i].split("/")[1], selavs[j][i],selstds[j][i])) else: f.write(" \t \t \t") f.write("\n") for avs in selavs: f.write("Av\t%.3f\t%.3f\t"%(avs.mean(),avs.std()/np.sqrt(avs.shape[0]))) f.write("\n") if self.gridout is not None : def order(mat) : return np.abs(0.5*(3.0*mat-1)) self.grid_low.average(func=order) self.grid_low.write(self.gridout+"_low.dat") self.grid_upp.average(func=order) self.grid_upp.write(self.gridout+"_upp.dat") if self.protsel is not None : self.grid_prot.average() self.grid_prot.write(self.gridout+"_prot.dat") class IredAnalysis(TrajectoryAction): """ Analysis class for iRED Attributes ---------- atm1 : MDAnalysis.AtomSelection the first atom making up the iRED vector atm2 : MDAnalysis.AtomSelection the second atom making up the iRED vector mat : numpy.ndarray the built-up of the correlation matrix s2list : list the S2 order parameter for each vector at each subsample point outname : string the name of the output file processor : TrajectoryProcessor object the trajectory processor calling this analysis """ @staticmethod def descr() : return "iRED analysis of proteins" def add_arguments(self, parser): parser.add_argument('--atoms',nargs=2,help="the atom names making the vectors",default=["N","H"]) parser.add_argument('--pmask',help="the selectiom mask for protein",default="protein") parser.add_argument('-o','--out',help="the output name",default="s2.txt") parser.add_argument('--resoffset',type=int,help="the residue offset",default=0) parser.add_argument('--uselib',choices=["no","dict","me"],help="if to use library vectors",default="no") def setup(self,args): protsel = self.processor.universe.select_atoms(args.pmask) self.uselib = args.uselib if self.uselib == "no": self.atm2 = protsel.select_atoms("name "+args.atoms[1]) self.atm1 = protsel.select_atoms("name "+args.atoms[0]+ " and byres name "+args.atoms[1]) elif self.uselib in resanallib : lib = resanallib[self.uselib] atm1 = [] atm2 = [] for res in self.processor.universe.select_atoms("protein").residues: if res.name not in lib : continue for atompairs in lib[res.name]: atm1.append(res[atompairs[0]]) atm2.append(res[atompairs[1]]) self.atm2 = AtomGroup.AtomGroup(atm2) self.atm1 = AtomGroup.AtomGroup(atm1) self.mat = np.zeros([len(self.atm1),len(self.atm1)]) self.s2list = [] self.outname = args.out self.dosubsample = True self.resoffset = args.resoffset def process(self): """ Building up the correlation matrix, called at each MD snapshot """ v1 = self.atm2.positions-self.atm1.positions vlen = 1.0 / np.sqrt((v1*v1).sum(axis=1)) """mat2 = np.zeros(mat.shape) for i in range(nvec): for j in range(nvec): mat2[j,i] = np.sum(v1[i]*v1[j])*(vlen[i]*vlen[j]) """ xx1,xx2 = np.meshgrid(v1[:,0],v1[:,0]) yy1,yy2 = np.meshgrid(v1[:,1],v1[:,1]) zz1,zz2 = np.meshgrid(v1[:,2],v1[:,2]) ll1,ll2 = np.meshgrid(vlen,vlen) mat0 = (xx1*xx2+yy1*yy2+zz1*zz2)*(ll1*ll2) self.mat += 3.0*mat0*mat0-1 def subsample(self): """ Calculating the S2 order parameters and then zero the correlation matrix """ self.mat = 0.5*(self.mat / float(self.processor.subsamples)) # Calculating and sorting the eigenvalues and eigenvectors eval,evec = np.linalg.eig(self.mat) idx = eval.argsort()[::-1] eval = eval[idx] evec = evec[:,idx] prod = evec*evec s2 = np.array([1.0-np.sum(eval[5:]*prod[i,5:]) for i in range(prod.shape[0])]) self.s2list.append(s2) self.mat = np.zeros(self.mat.shape) def finalize(self): """ Write out the order parameters to disc """ with open(self.outname,"w") as f : self.s2list = np.asarray(self.s2list) frmstr = "%.5f "*self.s2list.shape[0] # ///frmstr%tuple(rs2) prevres = None prevatom = None reslist = [] for i,(atm,rs2) in enumerate(zip(self.atm1,self.s2list.T)): if self.uselib != "dict": f.write("%s %d %.5f\n"%(atm.resname,atm.resnum+self.resoffset,rs2.mean())) #f.write("%s %d %s\n"%(atm.resname,atm.resnum+self.resoffset," ".join("%.5f"%v for v in rs2))) else : if reslist and atm.resnum != prevres: av = np.asarray(reslist).mean() f.write("%s %d %.5f\n"%(prevatom.resname,prevatom.resnum+self.resoffset,av)) reslist = [] reslist.append(rs2.mean()) prevres = atm.resnum prevatom = atm if self.uselib == "dict": av = np.asarray(reslist).mean() f.write("%s %d %.5f\n"%(atm.resname,atm.resnum+self.resoffset,av)) class MemBulkAnalysis(TrajectoryAction) : @staticmethod def descr() : return "Analyze the bulk of membrane simulations" def add_arguments(self, parser): parser.add_argument('--pmask',help="the selectiom mask for phosphor atoms",default="name P") parser.add_argument('--wmask',help="the selectiom mask for water atoms",default="name OH2") parser.add_argument('--smask',help="the selectiom mask for solute atoms") parser.add_argument('--sconc',type=float, help="the target solute concentration",default=1.0) parser.add_argument('--svol',type=float, help="the solute number volume",default=1.0) parser.add_argument('--wvol',type=float, help="the water number volume",default=0.0181) def setup(self, args): self.phosphorsel = self.processor.universe.select_atoms(args.pmask) self.watersel = self.processor.universe.select_atoms(args.wmask) self.allsel = self.processor.universe.select_atoms("all") print("Number of phosphor (%d) and water (%d) atoms"%( len(self.phosphorsel), len(self.watersel))) if args.smask is not None : self.solute = self.processor.universe.select_atoms(args.smask) print("Number of solute atoms = %d"%len(self.solute)) else : self.solute = None self.nphosphor = 1.0 / float(len(self.phosphorsel)) self.nwater = 1.0 / float(len(self.watersel)) # Setup edges to cover the entire simulation box zpos = self.processor.universe.coord._pos[:,2] - self.allsel.positions[:,2].mean() self.resolution = 0.25 self.edges = np.arange(zpos.min(),zpos.max()+self.resolution,self.resolution) self.zvals = 0.5 * (self.edges[:-1] + self.edges[1:]) * 0.1 self.pdensity = np.zeros(self.edges.shape[0]-1) self.wdensity = np.zeros(self.edges.shape[0]-1) self.wdensity_now = np.zeros(self.edges.shape[0]-1) if self.solute is not None : self.sdensity_now = np.zeros(self.edges.shape[0]-1) self.sconc = args.sconc self.svol = args.svol self.wvol = args.wvol def process(self) : zpos = self.phosphorsel.positions[:,2] - self.allsel.positions[:,2].mean() hist, b = np.histogram(zpos, bins=self.edges) self.pdensity += hist zpos = self.watersel.positions[:,2] - self.allsel.positions[:,2].mean() hist, b = np.histogram(zpos, bins=self.edges) self.wdensity += hist self.wdensity_now = hist if self.solute is not None : zpos = self.solute.positions[:,2] - self.allsel.positions[:,2].mean() hist, b = np.histogram(zpos, bins=self.edges) self.sdensity_curr = hist def finalize(self): # Calculate how many water molecules in the bulk firsti, lasti = self.density_intercept(self.wdensity, self.pdensity) nbulkwat = int(np.round(self.wdensity_now[:firsti].sum() +self.wdensity_now[lasti+1:].sum())) print("Nwat\t%d"%nbulkwat) # Calculate how many solutes there are outside the membrane if self.solute is not None : nbulksol = int(np.round(self.sdensity_now[:firsti].sum() +self.sdensity_now[lasti+1:].sum())) else : nbulksol = 0 print("Nsol\t%d"%nbulksol) ntot = nbulkwat + nbulksol ntarget = np.round(ntot*self.wvol/(1.0/self.sconc+self.wvol-self.svol)) nadd = ntarget-nbulksol if nadd % 2 == 0 : nadd = (0.5*nadd , 0.5*nadd) else : nadd = (np.ceil(0.5*nadd) , np.floor(0.5*nadd)) print("Nadd\t%d\t%d"%nadd) def density_intercept(self, dens1, dens2) : """ """ n1 = np.sum(dens1) n2 = np.sum(dens2) fi = 0 while dens1[fi] / n1 == 0.0 or dens2[fi] / n2 < dens1[fi] / n1 : fi += 1 li = len(dens1) - 1 while dens1[li] / n1 == 0.0 or dens2[li] / n2 < dens1[li] / n1 : li -= 1 return fi, li class MemDensAnalysis(TrajectoryAction) : @staticmethod def descr() : return "Analyze properties based on the membrane density" def add_arguments(self, parser): parser.add_argument('--pmask',help="the selectiom mask for phosphor atoms",default="name P") parser.add_argument('--wmask',help="the selectiom mask for water atoms",default="name OH2") parser.add_argument('--smask',help="the selectiom mask for solute atoms") parser.add_argument('-o','--out',help="the output prefix",default="memdens") def setup(self, args): self.dosubsample = True self.out = args.out self.phosphorsel = self.processor.universe.select_atoms(args.pmask) self.watersel = self.processor.universe.select_atoms(args.wmask) self.allsel = self.processor.universe.select_atoms("all") print("Number of phosphor (%d) and water (%d) atoms"%( len(self.phosphorsel), len(self.watersel))) if args.smask is not None : self.solute = self.processor.universe.select_atoms(args.smask) print("Number of solute atoms = %d"%len(self.solute)) else : self.solute = None self.nphosphor = 1.0 / float(len(self.phosphorsel)) self.nwater = 1.0 / float(len(self.watersel)) # Setup edges to cover the entire simulation box zpos = self.processor.universe.coord._pos[:,2] - self.allsel.positions[:,2].mean() self.resolution = 0.25 self.edges = np.arange(zpos.min(),zpos.max()+self.resolution,self.resolution) self.zvals = 0.5 * (self.edges[:-1] + self.edges[1:]) * 0.1 self.ppos_curr = [] self.pdensity_curr = np.zeros(self.edges.shape[0]-1) self.wdensity_curr = np.zeros(self.edges.shape[0]-1) self.pdensity = [] self.wdensity = [] if self.solute is not None : self.sdensity_curr = np.zeros(self.edges.shape[0]-1) self.solute_snapshots = 0 self.sdensity = [] self.records = [] def process(self) : zpos = self.phosphorsel.positions[:,2] - self.allsel.positions[:,2].mean() hist, b = np.histogram(zpos, bins=self.edges) self.pdensity_curr += hist self.ppos_curr.extend(zpos) zpos = self.watersel.positions[:,2] - self.allsel.positions[:,2].mean() hist, b = np.histogram(zpos, bins=self.edges) self.wdensity_curr += hist if self.solute is not None : zpos = self.solute.positions[:,2] - self.allsel.positions[:,2].mean() hist, b = np.histogram(zpos, bins=self.edges) self.sdensity_curr += hist self.solute_snapshots += 1 def subsample(self) : # Calculate D_hh model = mixture.GaussianMixture(n_components=2) model.fit(np.asarray(self.ppos_curr).reshape(-1,1)) dhh = np.abs(model.means_[1][0]-model.means_[0][0]) * 0.1 self.ppos_curr = [] # Calculate intercept of water and phosphor density, # and from that the membrane volume firsti, lasti = self.density_intercept(self.wdensity_curr, self.pdensity_curr) firstz = self.zvals[firsti] lastz = self.zvals[lasti] memfrac = (lastz - firstz) / (self.processor.currbox[2] * 0.1) # Calculate how many solutes there are inside the membrane if self.solute is not None : nfreq = 1 / float(self.processor.freq) solute_dens = self.sdensity_curr / float(self.solute_snapshots) ninside = int(np.round(solute_dens[firsti:lasti+1].sum())) self.records.append(MDRecord(self.processor.currtime, [dhh, lastz - firstz, self.processor.currbox[2] * 0.1, memfrac, ninside])) else : self.records.append(MDRecord(self.processor.currtime, [dhh, lastz - firstz, self.processor.currbox[2] * 0.1, memfrac])) # Store away the accumulayed densities and zero them self.pdensity.append(self.pdensity_curr) self.wdensity.append(self.wdensity_curr) self.pdensity_curr = np.zeros(self.edges.shape[0]-1) self.wdensity_curr = np.zeros(self.edges.shape[0]-1) if self.solute is not None : self.sdensity.append(self.sdensity_curr) self.sdensity_curr = np.zeros(self.edges.shape[0]-1) self.solute_snapshots = 0 def finalize(self): def _write_density(density, scaling, postfix) : density = np.asarray(density) * scaling with open(self.out+postfix, "w") as f : for z, av, err in zip(self.zvals, density.mean(axis=0), density.std(axis=0)/np.sqrt(density.shape[0])) : f.write("%.3f %.3f %.3f\n"%(z, av, err)) _write_density(self.pdensity, self.nphosphor, "_pdens.dat") _write_density(self.wdensity, self.nwater, "_wdens.dat") if self.solute is not None : _write_density(self.sdensity, 1.0 / len(self.solute), "_sdens.dat") self._write_records(postfix="_dt.txt") vals = np.asarray([entry.value for entry in self.records]) with open(self.out+".txt", "w") as f : f.write(" ".join("%.3f %.3f"%(av, err) for av, err in zip(vals.mean(axis=0), vals.std(axis=0)/np.sqrt(vals.shape[0])))+"\n") class MempropAnalysis(TrajectoryAction): @staticmethod def descr() : return "Analyze common membrane properties" def add_arguments(self, parser): parser.add_argument('--pmask',help="the selectiom mask for phosphor atoms",default="name P") parser.add_argument('--lipidmask',help="the selectiom mask for lipid residues",default="resname POPC") parser.add_argument('--watmask',help="the selectiom mask for water residues",default="resname SOL") parser.add_argument('--watvol',type=float,help="the volume of a water molecule in nm3",default=0.0306) parser.add_argument('--gridout', help="the prefix for the filename of a 2D grid") parser.add_argument('--protmask',help="the selectiom mask for protein residues") parser.add_argument('-o','--out',help="the output prefix",default="memprop") def setup(self,args): self.out = args.out self.phosphorsel = self.processor.universe.select_atoms(args.pmask) self.lipidsel = self.processor.universe.select_atoms(args.lipidmask) watsel = self.processor.universe.select_atoms(args.watmask) self.nlipid = len(self.lipidsel.residues) self.nwat = len(watsel.residues) nphosph = len(self.phosphorsel.residues) print("Number of lipids (%d), waters (%d) and phosphor atoms (%d)"%(self.nlipid,self.nwat,nphosph)) self.watvol = args.watvol if self.nlipid == 0 or self.nwat == 0 or nphosph == 0 : raise Exception("Either number of lipids (%d), water (%d) or phosphor atoms (%d) is zero"%(self.nlipid,self.nwat,nphosph)) self.apllist = [] self.vpllist = [] # Setup edges to cover the entire simulation box zpos = self.processor.universe.coord._pos[:,2] - self.lipidsel.positions[:,2].mean() self.resolution = 0.25 self.edges = np.arange(zpos.min(),zpos.max()+self.resolution,self.resolution) self.density = np.zeros(self.edges.shape[0]+1) # Setup arrays for RMSF calculations self.sumcoords2 = np.zeros([nphosph,2]) self.sumcoords = np.zeros([nphosph,2]) self.records = [] self.gridout = args.gridout if self.gridout is not None : bounds = np.asarray([[0.0, 0.0, 0.0],self.processor.universe.dimensions[:3]]) self.grid_low = AnalysisGrid(bounds) self.grid_upp = AnalysisGrid(bounds) if args.protmask is not None : self.protsel = self.processor.universe.select_atoms(args.protmask) self.grid_prot = AnalysisGrid(bounds) self.protone = np.ones(len(self.protsel)) else : self.protsel = None def process(self): """ Calculate APL, VPL and accumulate density of phosphor selection """ boxnm = self.processor.currbox / 10.0 self.apllist.append(boxnm[0]*boxnm[1]/float(self.nlipid/2)) self.vpllist.append((boxnm[0]*boxnm[1]*boxnm[2] - self.watvol*self.nwat)/float(self.nlipid)) zpos = self.phosphorsel.positions[:,2] - self.lipidsel.positions[:,2].mean() for lipdig in np.digitize(zpos,self.edges) : self.density[lipdig] += 1 self.sumcoords += self.phosphorsel.positions[:,:2] self.sumcoords2 += self.phosphorsel.positions[:,:2]*self.phosphorsel.positions[:,:2] self.records.append(MDRecord(self.processor.currtime,[self.apllist[-1],self.vpllist[-1],self._calc_dhh(),self._calc_rmsf()])) if self.gridout is not None : mid = self.phosphorsel.center_of_geometry() sel_low = self.phosphorsel.positions[:,2] < mid[2] sel_upp = np.logical_not(sel_low) coords_upp = self.phosphorsel.positions[sel_upp,:] coords_low = self.phosphorsel.positions[sel_low,:] self.grid_low.accumulate(coords_low-mid, self._calc_zdist(coords_low, coords_upp)) self.grid_upp.accumulate(coords_upp-mid, self._calc_zdist(coords_upp, coords_low)) if self.protsel is not None : self.grid_prot.accumulate(self.protsel.positions-mid, self.protone) def finalize(self): """ Calculate average APL and VPL as well as distance between peaks in the phosphor density """ dhh = self._calc_dhh() apl = np.asarray(self.apllist).mean() vpl = np.asarray(self.vpllist).mean() rmsf = self._calc_rmsf() with open(self.out+".txt","w") as f : f.write("%.3f\t%.3f\t%.3f\t%.3f\n"%(apl, vpl, dhh, rmsf)) self._write_records(postfix="_dt.txt") if self.gridout is not None: self.grid_low.average() self.grid_low.write(self.gridout+"_low.dat") self.grid_upp.average() self.grid_upp.write(self.gridout+"_upp.dat") if self.protsel is not None : self.grid_prot.average() self.grid_prot.write(self.gridout+"_prot.dat") def _calc_dhh(self) : mid = int(self.density.shape[0]/2) dens_first = self.density[:mid] dens_last = self.density[mid:] max_first = np.argmax(dens_first) max_last = np.argmax(dens_last) return (max_last + mid - max_first) / 10.0 * self.resolution def _calc_rmsf(self): sumcoords = self.sumcoords / float(self.processor.nprocessed) sumcoords2 = self.sumcoords2 / float(self.processor.nprocessed) var = sumcoords2 - (sumcoords * sumcoords) return var.sum(axis=1).mean()*0.01 def _calc_zdist(self, coords1, coords2) : """ Calculate the z-distance between all lipids in one leaflet and the closest lipid in the other leaflet """ dist = cdist(coords1[:,:2],coords2[:,:2],'sqeuclidean') j = np.argmin(dist,axis=1) return np.sqrt((coords2[j,2]-coords1[:,2])**2)*0.1 class MemVoronoiAnalysis(TrajectoryAction) : @staticmethod def descr() : return "Voronoi analysis of a membrane patch" def add_arguments(self, parser): parser.add_argument('--mask',nargs="+",help="the selectiom mask for the atoms to do analysis on") parser.add_argument('--head',help="the name of the atom to determine leaflets",default="PO4") parser.add_argument('-o','--out',help="the output",default="memvoro") def setup(self, args): self.atoms = self.processor.universe.select_atoms( " or ".join("(%s)"%m for m in args.mask)) self.head = self.processor.universe.select_atoms("name %s"%args.head) self.out = args.out self.aplrecords = [] self.neighrecords = [] self.resnames = list(set([atom.resname for atom in self.atoms])) self.respairs = [] for i, resname1 in enumerate(self.resnames): for resname2 in self.resnames[i:]: self.respairs.append(resname1+"-"+resname2) def process(self): midz = self.head.positions[:,2].mean() lowsel = self.atoms.positions[:,2] < midz uppsel = np.logical_not(lowsel) celldim = [[0.0, self.processor.currbox[0]], [0.0, self.processor.currbox[1]]] try : lareas, lneighbours = self._process_leaflet(self.atoms[lowsel], celldim) uareas, uneighbours = self._process_leaflet(self.atoms[uppsel], celldim) except: pass else: areas = 0.01 * 0.5 * (lareas + uareas) neighbours = 0.5 * (lneighbours + uneighbours) self.aplrecords.append(MDRecord(self.processor.currtime,areas)) self.neighrecords.append(MDRecord(self.processor.currtime,neighbours)) def _process_leaflet(self, atoms, celldim): cells = pyvoro.compute_2d_voronoi(atoms.positions[:,:2], celldim, 2.0, periodic=[True,True]) # Calculate the area per each residue type areas = {resname : 0 for resname in self.resnames} nres = {resname : 0.0 for resname in self.resnames} for atom, cell in zip(atoms, cells): areas[atom.resname] += cell["volume"] nres[atom.resname] += 1.0 areaout = np.asarray([areas[resname] / nres[resname] for resname in self.resnames]) # Calculate the neighbors vsets = [set((np.round(v[0],3),np.round(v[1])) for v in cell["vertices"]) for cell in cells] emptyset = set([]) neighbors = {respair : 0 for respair in self.respairs} npairs = {respair : 0 for respair in self.respairs} for i, ivertices in enumerate(vsets): counts = {respair : 0 for respair in self.respairs} for j, jvertices in enumerate(vsets[i+1:],i+1): if ivertices & jvertices != emptyset : iresname = atoms[i].resname jresname = atoms[j].resname if iresname+"-"+jresname in neighbors: counts[iresname+"-"+jresname] += 1 else: counts[jresname+"-"+iresname] += 1 for respair in self.respairs: if counts[respair] > 0 : npairs[respair] += 1.0 neighbors[respair] += counts[respair] neighout = np.asarray([neighbors[respair] / npairs[respair] for respair in self.respairs]) return areaout, neighout def finalize(self): headers = ["Time"] headers.extend(self.resnames) self.records = self.aplrecords self._write_records(postfix="_apl.txt", headers=headers) headers = ["Time"] headers.extend(self.respairs) self.records = self.neighrecords self._write_records(postfix="_neigh.txt", headers=headers) class PrincipalAxisAnalysis(TrajectoryAction): """ Class to analyse the principcal axis and its angle Attributes ---------- masses : list of float the masses of the selected atoms normal : numpy.ndarray the normal to which the angle is calculate against records : list of MDRecord the recorded alpha (angle) values selection : MDAnalysis.AtomGroup the selection to make the analysis of """ @staticmethod def descr() : return "Analyze the principcal axis and its angle" def add_arguments(self, parser): parser.add_argument('-m','--mask',help="the selectiom mask",default="name CA") parser.add_argument('-n','--normal',type=float,nargs=3,help="the normal vector",default=[0.0,0.0,1.0]) parser.add_argument('-o','--out',help="the output filename",default="alpha.txt") def setup(self,args): self.selection = self.processor.universe.select_atoms(args.mask) self.masses = np.asarray([atom.mass for atom in self.selection]) self.normal = np.asarray(args.normal) self.records = [] self.out = args.out def process(self): #xyz = pbc.make_whole_xyz(self.selection.positions, # self.processor.currbox) #moi = geo.moment_of_inertia(xyz-xyz.mean(axis=0),self.masses) #princip = geo.principal_axes(moi) princip = self.selection.principal_axes(pbc=True) #alpha = geo.angle(princip[0,:],self.normal) alpha = mdmath.angle(princip[0,:], self.normal) dalpha = pbc.unwrap_vector(alpha,np.pi) alpha =
np.abs(alpha-dalpha)
numpy.abs
""" Implements custom ufunc dispatch mechanism for non-CPU devices. """ from __future__ import print_function, absolute_import import operator import warnings from functools import reduce import numpy as np from numba.utils import longint, OrderedDict from numba.utils import IS_PY3 from numba.npyufunc.ufuncbuilder import _BaseUFuncBuilder, parse_identity from numba import sigutils, types from numba.typing import signature from numba.npyufunc.sigparse import parse_signature if IS_PY3: def _exec(codestr, glbls): exec(codestr, glbls) else: eval(compile(""" def _exec(codestr, glbls): exec codestr in glbls """, "<_exec>", "exec")) def _broadcast_axis(a, b): """ Raises ------ ValueError if broadcast fails """ if a == b: return a elif a == 1: return b elif b == 1: return a else: raise ValueError("failed to broadcast {0} and {1}".format(a, b)) def _pairwise_broadcast(shape1, shape2): """ Raises ------ ValueError if broadcast fails """ shape1, shape2 = map(tuple, [shape1, shape2]) while len(shape1) < len(shape2): shape1 = (1,) + shape1 while len(shape1) > len(shape2): shape2 = (1,) + shape2 return tuple(_broadcast_axis(a, b) for a, b in zip(shape1, shape2)) def _multi_broadcast(*shapelist): """ Raises ------ ValueError if broadcast fails """ assert shapelist result = shapelist[0] others = shapelist[1:] try: for i, each in enumerate(others, start=1): result = _pairwise_broadcast(result, each) except ValueError: raise ValueError("failed to broadcast argument #{0}".format(i)) else: return result class UFuncMechanism(object): """ Prepare ufunc arguments for vectorize. """ DEFAULT_STREAM = None SUPPORT_DEVICE_SLICING = False def __init__(self, typemap, args): """Never used directly by user. Invoke by UFuncMechanism.call(). """ self.typemap = typemap self.args = args nargs = len(self.args) self.argtypes = [None] * nargs self.scalarpos = [] self.signature = None self.arrays = [None] * nargs def _fill_arrays(self): """ Get all arguments in array form """ for i, arg in enumerate(self.args): if isinstance(arg, np.ndarray): self.arrays[i] = arg elif self.is_device_array(arg): self.arrays[i] = arg elif isinstance(arg, (int, longint, float, complex, np.number)): # Is scalar self.scalarpos.append(i) else: raise TypeError("argument #%d has invalid type" % (i + 1,)) def _fill_argtypes(self): """ Get dtypes """ for i, ary in enumerate(self.arrays): if ary is not None: self.argtypes[i] = ary.dtype def _resolve_signature(self): """Resolve signature. May have ambiguous case. """ matches = [] # Resolve scalar args exact match first if self.scalarpos: # Try resolve scalar arguments for formaltys in self.typemap: match_map = [] for i, (formal, actual) in enumerate(zip(formaltys, self.argtypes)): if actual is None: actual = np.asarray(self.args[i]).dtype match_map.append(actual == formal) if all(match_map): matches.append(formaltys) # No matching with exact match; try coercing the scalar arguments if not matches: matches = [] for formaltys in self.typemap: all_matches = all(actual is None or formal == actual for formal, actual in zip(formaltys, self.argtypes)) if all_matches: matches.append(formaltys) if not matches: raise TypeError("No matching version. GPU ufunc requires array " "arguments to have the exact types. This behaves " "like regular ufunc with casting='no'.") if len(matches) > 1: raise TypeError("Failed to resolve ufunc due to ambiguous " "signature. Too many untyped scalars. " "Use numpy dtype object to type tag.") # Try scalar arguments self.argtypes = matches[0] def _get_actual_args(self): """Return the actual arguments Casts scalar arguments to numpy.array. """ for i in self.scalarpos: self.arrays[i] = np.array([self.args[i]], dtype=self.argtypes[i]) return self.arrays def _broadcast(self, arys): """Perform numpy ufunc broadcasting """ shapelist = [a.shape for a in arys] shape = _multi_broadcast(*shapelist) for i, ary in enumerate(arys): if ary.shape == shape: pass else: if self.is_device_array(ary): arys[i] = self.broadcast_device(ary, shape) else: ax_differs = [ax for ax in range(len(shape)) if ax >= ary.ndim or ary.shape[ax] != shape[ax]] missingdim = len(shape) - len(ary.shape) strides = [0] * missingdim + list(ary.strides) for ax in ax_differs: strides[ax] = 0 strided = np.lib.stride_tricks.as_strided(ary, shape=shape, strides=strides) arys[i] = self.force_array_layout(strided) return arys def get_arguments(self): """Prepare and return the arguments for the ufunc. Does not call to_device(). """ self._fill_arrays() self._fill_argtypes() self._resolve_signature() arys = self._get_actual_args() return self._broadcast(arys) def get_function(self): """Returns (result_dtype, function) """ return self.typemap[self.argtypes] def is_device_array(self, obj): """Is the `obj` a device array? Override in subclass """ return False def broadcast_device(self, ary, shape): """Handles ondevice broadcasting Override in subclass to add support. """ raise NotImplementedError("broadcasting on device is not supported") def force_array_layout(self, ary): """Ensures array layout met device requirement. Override in sublcass """ return ary @classmethod def call(cls, typemap, args, kws): """Perform the entire ufunc call mechanism. """ # Handle keywords stream = kws.pop('stream', cls.DEFAULT_STREAM) out = kws.pop('out', None) if kws: warnings.warn("unrecognized keywords: %s" % ', '.join(kws)) # Begin call resolution cr = cls(typemap, args) args = cr.get_arguments() resty, func = cr.get_function() outshape = args[0].shape def attempt_ravel(a): if cr.SUPPORT_DEVICE_SLICING: raise NotImplementedError try: # Call the `.ravel()` method return a.ravel() except NotImplementedError: # If it is not a device array if not cr.is_device_array(a): raise # For device array, retry ravel on the host by first # copying it back. else: hostary = cr.to_host(a, stream).ravel() return cr.to_device(hostary, stream) if args[0].ndim > 1: args = [attempt_ravel(a) for a in args] # Prepare argument on the device devarys = [] any_device = False for a in args: if cr.is_device_array(a): devarys.append(a) any_device = True else: dev_a = cr.to_device(a, stream=stream) devarys.append(dev_a) # Launch shape = args[0].shape if out is None: # No output is provided devout = cr.device_array(shape, resty, stream=stream) devarys.extend([devout]) cr.launch(func, shape[0], stream, devarys) if any_device: # If any of the arguments are on device, # Keep output on the device return devout.reshape(outshape) else: # Otherwise, transfer output back to host return devout.copy_to_host().reshape(outshape) elif cr.is_device_array(out): # If output is provided and it is a device array, # Return device array if out.ndim > 1: out = attempt_ravel(out) devout = out devarys.extend([devout]) cr.launch(func, shape[0], stream, devarys) return devout.reshape(outshape) else: # If output is provided and it is a host array, # Return host array assert out.shape == shape assert out.dtype == resty devout = cr.device_array(shape, resty, stream=stream) devarys.extend([devout]) cr.launch(func, shape[0], stream, devarys) return devout.copy_to_host(out, stream=stream).reshape(outshape) def to_device(self, hostary, stream): """Implement to device transfer Override in subclass """ raise NotImplementedError def to_host(self, devary, stream): """Implement to host transfer Override in subclass """ raise NotImplementedError def device_array(self, shape, dtype, stream): """Implements device allocation Override in subclass """ raise NotImplementedError def launch(self, func, count, stream, args): """Implements device function invocation Override in subclass """ raise NotImplementedError def to_dtype(ty): return np.dtype(str(ty)) class DeviceVectorize(_BaseUFuncBuilder): def __init__(self, func, identity=None, targetoptions={}): assert not targetoptions self.py_func = func self.identity = parse_identity(identity) # { arg_dtype: (return_dtype), cudakernel } self.kernelmap = OrderedDict() @property def pyfunc(self): return self.py_func def add(self, sig=None, argtypes=None, restype=None): # Handle argtypes if argtypes is not None: warnings.warn("Keyword argument argtypes is deprecated", DeprecationWarning) assert sig is None if restype is None: sig = tuple(argtypes) else: sig = restype(*argtypes) del argtypes del restype # compile core as device function args, return_type = sigutils.normalize_signature(sig) devfnsig = signature(return_type, *args) funcname = self.pyfunc.__name__ kernelsource = self._get_kernel_source(self._kernel_template, devfnsig, funcname) corefn, return_type = self._compile_core(devfnsig) glbl = self._get_globals(corefn) sig = signature(types.void, *([a[:] for a in args] + [return_type[:]])) _exec(kernelsource, glbl) stager = glbl['__vectorized_%s' % funcname] kernel = self._compile_kernel(stager, sig) argdtypes = tuple(to_dtype(t) for t in devfnsig.args) resdtype = to_dtype(return_type) self.kernelmap[tuple(argdtypes)] = resdtype, kernel def build_ufunc(self): raise NotImplementedError def _get_kernel_source(self, template, sig, funcname): args = ['a%d' % i for i in range(len(sig.args))] fmts = dict(name=funcname, args=', '.join(args), argitems=', '.join('%s[__tid__]' % i for i in args)) return template.format(**fmts) def _compile_core(self, sig): raise NotImplementedError def _get_globals(self, corefn): raise NotImplementedError def _compile_kernel(self, fnobj, sig): raise NotImplementedError class DeviceGUFuncVectorize(_BaseUFuncBuilder): def __init__(self, func, sig, identity=None, targetoptions={}): # Allow nopython flag to be set. if not targetoptions.pop('nopython', True): raise TypeError("nopython flag must be True") # Are there any more target options? if targetoptions: opts = ', '.join([repr(k) for k in targetoptions.keys()]) fmt = "The following target options are not supported: {0}" raise TypeError(fmt.format(opts)) self.py_func = func self.identity = parse_identity(identity) self.signature = sig self.inputsig, self.outputsig = parse_signature(self.signature) assert len(self.outputsig) == 1, "only support 1 output" # { arg_dtype: (return_dtype), cudakernel } self.kernelmap = OrderedDict() @property def pyfunc(self): return self.py_func def add(self, sig=None, argtypes=None, restype=None): # Handle argtypes if argtypes is not None: warnings.warn("Keyword argument argtypes is deprecated", DeprecationWarning) assert sig is None if restype is None: sig = tuple(argtypes) else: sig = restype(*argtypes) del argtypes del restype indims = [len(x) for x in self.inputsig] outdims = [len(x) for x in self.outputsig] funcname = self.py_func.__name__ src = expand_gufunc_template(self._kernel_template, indims, outdims, funcname) glbls = self._get_globals(sig) _exec(src, glbls) fnobj = glbls['__gufunc_{name}'.format(name=funcname)] args, return_type = sigutils.normalize_signature(sig) outertys = list(_determine_gufunc_outer_types(args, indims + outdims)) kernel = self._compile_kernel(fnobj, sig=tuple(outertys)) dtypes = tuple(np.dtype(str(t.dtype)) for t in outertys) self.kernelmap[tuple(dtypes[:-1])] = dtypes[-1], kernel def _compile_kernel(self, fnobj, sig): raise NotImplementedError def _get_globals(self, sig): raise NotImplementedError def _determine_gufunc_outer_types(argtys, dims): for at, nd in zip(argtys, dims): if isinstance(at, types.Array): yield at.copy(ndim=nd + 1) else: if nd > 0: raise ValueError("gufunc signature mismatch: ndim>0 for scalar") yield types.Array(dtype=at, ndim=1, layout='A') def expand_gufunc_template(template, indims, outdims, funcname): """Expand gufunc source template """ argdims = indims + outdims argnames = ["arg{0}".format(i) for i in range(len(argdims))] checkedarg = "min({0})".format(', '.join(["{0}.shape[0]".format(a) for a in argnames])) inputs = [_gen_src_for_indexing(aref, adims, _gen_src_for_input_indexing) for aref, adims in zip(argnames, indims)] outputs = [_gen_src_for_indexing(aref, adims, _gen_src_for_output_indexing) for aref, adims in zip(argnames[len(indims):], outdims)] argitems = inputs + outputs src = template.format(name=funcname, args=', '.join(argnames), checkedarg=checkedarg, argitems=', '.join(argitems)) return src def _gen_src_for_indexing(aref, adims, gen_sliced): return "{aref}[{sliced}]".format(aref=aref, sliced=gen_sliced(adims)) def _gen_src_for_input_indexing(adims): if adims > 0: return _gen_src_for_array_indexing(adims) else: return '__tid__' def _gen_src_for_output_indexing(adims): if adims > 0: return _gen_src_for_array_indexing(adims) else: return '__tid__:(__tid__ + 1)' def _gen_src_for_array_indexing(adims): return ','.join(['__tid__'] + [':'] * adims) class GUFuncEngine(object): '''Determine how to broadcast and execute a gufunc base on input shape and signature ''' @classmethod def from_signature(cls, signature): return cls(*parse_signature(signature)) def __init__(self, inputsig, outputsig): # signatures self.sin = inputsig self.sout = outputsig # argument count self.nin = len(self.sin) self.nout = len(self.sout) def schedule(self, ishapes): if len(ishapes) != self.nin: raise TypeError('invalid number of input argument') # associate symbol values for input signature symbolmap = {} outer_shapes = [] inner_shapes = [] for argn, (shape, symbols) in enumerate(zip(ishapes, self.sin)): argn += 1 # start from 1 for human inner_ndim = len(symbols) if len(shape) < inner_ndim: fmt = "arg #%d: insufficient inner dimension" raise ValueError(fmt % (argn,)) if inner_ndim: inner_shape = shape[-inner_ndim:] outer_shape = shape[:-inner_ndim] else: inner_shape = () outer_shape = shape for axis, (dim, sym) in enumerate(zip(inner_shape, symbols)): axis += len(outer_shape) if sym in symbolmap: if symbolmap[sym] != dim: fmt = "arg #%d: shape[%d] mismatch argument" raise ValueError(fmt % (argn, axis)) symbolmap[sym] = dim outer_shapes.append(outer_shape) inner_shapes.append(inner_shape) # solve output shape oshapes = [] for outsig in self.sout: oshape = [] for sym in outsig: oshape.append(symbolmap[sym]) oshapes.append(tuple(oshape)) # find the biggest outershape as looping dimension sizes = [reduce(operator.mul, s, 1) for s in outer_shapes] largest_i = np.argmax(sizes) loopdims = outer_shapes[largest_i] pinned = [False] * self.nin # same argument for each iteration for i, d in enumerate(outer_shapes): if d != loopdims: if d == (1,) or d == (): pinned[i] = True else: fmt = "arg #%d: outer dimension mismatch" raise ValueError(fmt % (i + 1,)) return GUFuncSchedule(self, inner_shapes, oshapes, loopdims, pinned) class GUFuncSchedule(object): def __init__(self, parent, ishapes, oshapes, loopdims, pinned): self.parent = parent # core shapes self.ishapes = ishapes self.oshapes = oshapes # looping dimension self.loopdims = loopdims self.loopn = reduce(operator.mul, loopdims, 1) # flags self.pinned = pinned self.output_shapes = [loopdims + s for s in oshapes] def __str__(self): import pprint attrs = 'ishapes', 'oshapes', 'loopdims', 'loopn', 'pinned' values = [(k, getattr(self, k)) for k in attrs] return pprint.pformat(dict(values)) class GenerializedUFunc(object): def __init__(self, kernelmap, engine): self.kernelmap = kernelmap self.engine = engine self.max_blocksize = 2 ** 30 assert self.engine.nout == 1, "only support single output" def __call__(self, *args, **kws): callsteps = self._call_steps(args, kws) callsteps.prepare_inputs() indtypes, schedule, outdtype, kernel = self._schedule( callsteps.norm_inputs, callsteps.output) callsteps.adjust_input_types(indtypes) callsteps.allocate_outputs(schedule, outdtype) callsteps.prepare_kernel_parameters() newparams, newretval = self._broadcast(schedule, callsteps.kernel_parameters, callsteps.kernel_returnvalue) callsteps.launch_kernel(kernel, schedule.loopn, newparams + [newretval]) return callsteps.post_process_result() def _schedule(self, inputs, out): input_shapes = [a.shape for a in inputs] schedule = self.engine.schedule(input_shapes) # find kernel idtypes = tuple(i.dtype for i in inputs) try: outdtype, kernel = self.kernelmap[idtypes] except KeyError: # No exact match, then use the first compatbile. # This does not match the numpy dispatching exactly. # Later, we may just jit a new version for the missing signature. idtypes = self._search_matching_signature(idtypes) # Select kernel outdtype, kernel = self.kernelmap[idtypes] # check output if out is not None and schedule.output_shapes[0] != out.shape: raise ValueError('output shape mismatch') return idtypes, schedule, outdtype, kernel def _search_matching_signature(self, idtypes): """ Given the input types in `idtypes`, return a compatible sequence of types that is defined in `kernelmap`. Note: Ordering is guaranteed by `kernelmap` being a OrderedDict """ for sig in self.kernelmap.keys(): if all(np.can_cast(actual, desired) for actual, desired in zip(sig, idtypes)): return sig else: raise TypeError("no matching signature") def _broadcast(self, schedule, params, retval): assert schedule.loopn > 0, "zero looping dimension" odim = 1 if not schedule.loopdims else schedule.loopn newparams = [] for p, cs in zip(params, schedule.ishapes): if not cs and p.size == 1: # Broadcast scalar input devary = self._broadcast_scalar_input(p, odim) newparams.append(devary) else: # Broadcast vector input newparams.append(self._broadcast_array(p, odim, cs)) newretval = retval.reshape(odim, *schedule.oshapes[0]) return newparams, newretval def _broadcast_array(self, ary, newdim, innerdim): newshape = (newdim,) + innerdim # No change in shape if ary.shape == newshape: return ary # Creating new dimension elif len(ary.shape) < len(newshape): assert newshape[-len(ary.shape):] == ary.shape, \ "cannot add dim and reshape at the same time" return self._broadcast_add_axis(ary, newshape) # Collapsing dimension else: return ary.reshape(*newshape) def _broadcast_add_axis(self, ary, newshape): raise NotImplementedError("cannot add new axis") def _broadcast_scalar_input(self, ary, shape): raise NotImplementedError class GUFuncCallSteps(object): __slots__ = [ 'args', 'kwargs', 'output', 'norm_inputs', 'kernel_returnvalue', 'kernel_parameters', '_is_device_array', '_need_device_conversion', ] def __init__(self, args, kwargs): self.args = args self.kwargs = kwargs self.output = self.kwargs.get('out') self._is_device_array = [self.is_device_array(a) for a in self.args] self._need_device_conversion = not any(self._is_device_array) # Normalize inputs inputs = [] for a, isdev in zip(self.args, self._is_device_array): if isdev: inputs.append(a) else: inputs.append(
np.array(a)
numpy.array
import gym from gym import error, spaces, utils from gym.utils import seeding import numpy as np import pybullet as p import pybullet_data import time import math from sklearn.preprocessing import normalize ## Hyper Params MAX_EPISODE_LEN = 150 # Number of steps for one training episode REWARD_FACTOR = 10 BOUND_ANGLE = 45 STEP_ANGLE = 15 # Maximum angle delta per step JOINT_LENGTH = 0.05 def leg_IK(angle, length, offset, sign=1): """ Returns each angle in the joint of the leg, to match the desired swing angle and leg extension (length). """ length = max(length, JOINT_LENGTH * 0.2) # Inner angle alpha cosAngle0 = (length**2) / (2 * JOINT_LENGTH * length) alpha = np.arccos(cosAngle0) * sign + angle #if alpha < 0: # sign = -sign # Inner angle beta cosAngle1 = (-(length**2) + JOINT_LENGTH**2 + JOINT_LENGTH**2) / (2 * JOINT_LENGTH * JOINT_LENGTH) beta = -sign * (np.pi - np.arccos(cosAngle1)) + offset if math.isnan(alpha): print("alpha is nan") alpha = 0 if math.isnan(beta): print("beta is nan") beta = 0 return alpha, beta def joint_extension(x): return 2 - ( -( (x-1)/2 ))**2 class OpenCatGymEnv(gym.Env): """ Gym environment (stable baselines 3) for OpenCat robots. """ metadata = {'render.modes': ['human']} def __init__(self, render=False): self.step_counter = 0 # Store robot state and joint history self.state_robot_history = np.array([]) self.jointAngles_history = np.array([]) # Max joint angles self.boundAngles = np.deg2rad(BOUND_ANGLE) # Create the simulation, p.GUI for GUI, p.DIRECT for only training # Use options="--opengl2" if it decides to not work? if render: p.connect(p.GUI)#, options="--opengl2") #, options="--width=960 --height=540 --mp4=\"training.mp4\" --mp4fps=60") # uncomment to create a video else: p.connect(p.DIRECT) p.setPhysicsEngineParameter(fixedTimeStep=1.0/60) # Stop rendering p.configureDebugVisualizer(p.COV_ENABLE_GUI, 0) # Move camera p.resetDebugVisualizerCamera(cameraDistance=0.5, cameraYaw=-10, cameraPitch=-40, cameraTargetPosition=[0.4,0,0]) # The action space contains the 11 joint angles self.action_space = spaces.Box(np.array([-1]*11), np.array([1]*11)) # The observation space are the torso roll, pitch and the joint angles and a history of the last 20 joint angles # 11 * 20 + 6 = 226 self.observation_space = spaces.Box(np.array([-1]*226), np.array([1]*226)) def get_desired_joint_angles(self, jointAngles, action): """"Adds the action vector to the revolute joints. Joint angles are clipped. `jointAngles` is changed to have the updated angles of the entire robot. The vector returned contains the only the revolute joints of the robot.""" # Below is the mapping from the old 3D model to the new 3D model. # ----------------------------------------------------------- # | PREVIOUS | NEW | NEW INDEX | # |=========================================================| # | hip_right | R_Rear_Hip_Servo_Thigh | i = 1 | # | knee_right | R_Rear_Knee_Servo | i = 3 | # |---------------------------------------------------------| # | shoulder_right | R_Front_Hip_Servo_Thigh | i = 7 | # | elbow_right | R_Front_Knee_Servo | i = 9 | # |---------------------------------------------------------| # | ############# | Body_Neck_Servo | i = 13 | # | ############# | Neck_Head_Servo | i = 14 | # | --------------------------------------------------------| # | ############# | Tail_Servo_Tail | i = 19 | # |---------------------------------------------------------| # | hip_left | L_Rear_Hip_Servo_Thigh | i = 21 | # | knee_left | L_Rear_Knee_Servo | i = 23 | # |---------------------------------------------------------| # | shoulder_left | L_Front_Hip_Servo_Thigh | i = 27 | # | elbow_left | L_Front_Knee_Servo | i = 29 | # ----------------------------------------------------------- desiredJointAngles = jointAngles ds = np.deg2rad(STEP_ANGLE) # Maximum joint angle derivative (maximum change per step), should be implemented in setJointMotorControlArray # Use IK to compute the new angles of each joint desired_left_front_angle = np.deg2rad(BOUND_ANGLE * action[0]) desired_left_front_length = JOINT_LENGTH * joint_extension(action[1]) desired_right_front_angle = np.deg2rad(BOUND_ANGLE * action[2]) desired_right_front_length = JOINT_LENGTH * joint_extension(action[3]) desired_left_rear_angle = np.deg2rad(BOUND_ANGLE * action[4]) desired_left_rear_length = JOINT_LENGTH * joint_extension(action[5]) desired_right_rear_angle =
np.deg2rad(BOUND_ANGLE * action[6])
numpy.deg2rad
# Based on https://github.com/kuangliu/pytorch-cifar import torch.optim as optim import torch.backends.cudnn as cudnn import os from models import * from utils import (train_for_an_epoch, test_after_epoch, prepare_dataloaders, random_index_generation, loss_and_probs_over_unlabeled, label_additional_data) import copy import torch import random import matplotlib.pyplot as plt import time import numpy as np torch.manual_seed(119) random.seed(119)
np.random.seed(119)
numpy.random.seed
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.patches as patches # TODO: import only necessary tensorflow functions import tensorflow as tf import tensorflow_datasets as tfds from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay,\ roc_curve, roc_auc_score, classification_report, accuracy_score, precision_score, recall_score # TODO: Add docstrings # Loads the Patch Camelyon dataset def load_pcam(data_dir=None): pcam, pcam_info = tfds.load("patch_camelyon", with_info=True, data_dir=data_dir) print(pcam_info) return pcam, pcam_info # Converts images to prepare them for modelling def convert_sample(sample): # Credit: <NAME> image, label = sample['image'], sample['label'] image = tf.image.convert_image_dtype(image, tf.float32) label = tf.one_hot(label, 2, dtype=tf.float32) return image, label # Alternative to convert_sample which also converts images to grayscale def convert_sample_grayscale(sample): image, label = sample['image'], sample['label'] image = tf.image.rgb_to_grayscale(image, name=None) image = tf.image.convert_image_dtype(image, tf.float32) label = tf.one_hot(label, 2, dtype=tf.float32) return image, label # Substitute for ImageDataGenerator which gets along with the TensorFlow Dataset object def build_pipelines(pcam, grayscale=False): # Uses the grayscale version of convert_sample if grayscale: train_pipeline = pcam['train'].map(convert_sample_grayscale, num_parallel_calls=8).shuffle(1024).repeat().batch(64).prefetch(2) valid_pipeline = pcam['validation'].map(convert_sample_grayscale, num_parallel_calls=8).repeat().batch(128).prefetch(2) test_pipeline = pcam['test'].map(convert_sample_grayscale, num_parallel_calls=8).batch(128).prefetch(2) # Uses the normal version of convert_sample else: # Credit: <NAME> train_pipeline = pcam['train'].map(convert_sample, num_parallel_calls=8).shuffle(1024).repeat().batch(64).prefetch(2) valid_pipeline = pcam['validation'].map(convert_sample, num_parallel_calls=8).repeat().batch(128).prefetch(2) test_pipeline = pcam['test'].map(convert_sample, num_parallel_calls=8).batch(128).prefetch(2) return train_pipeline, valid_pipeline, test_pipeline # Export the training history to a .csv file def save_history(hist_df, filepath): # Sample filepath: 'data/models/history/cnn1_history.csv' hist_csv_file = filepath with open(hist_csv_file, mode='w') as f: hist_df.to_csv(f) # Loads model training history .csv into a pandas dataframe def load_history(filepath): # Sample filepath: 'data/models/history/cnn1_history.csv' hist_df = pd.read_csv(filepath, index_col=0) return hist_df # Plot the training accuracy and loss from training history def plot_history(hist_df, figsize=(10,4), title=None, save=False, filepath=None): # Create subplots plt.subplots(1, 2, figsize=figsize) # Creates a title for the whole plot plt.suptitle(title, fontsize=24) # Plot accuracies for train and validation sets plt.subplot(1, 2, 1) plt.plot(hist_df['accuracy'], label='Train', marker='o') plt.plot(hist_df['val_accuracy'], label='Validation', marker='o') plt.title('Training and Validation Accuracy', size=20) plt.xlabel('Epoch', size=16) plt.ylabel('Accuracy', size=16) plt.legend() # Plot losses plt.subplot(1, 2, 2) plt.plot(hist_df['loss'], label='Train', marker='o') plt.plot(hist_df['val_loss'], label='Validation', marker='o') plt.title('Training and Validation Loss', size=20) plt.xlabel('Epoch', size=16) plt.ylabel('Loss', size=16) plt.legend() # This ensures the subplots do not overlap plt.tight_layout() if save: # Sample filepath: 'data/plots/cnn1_acc_loss_plot.png' plt.savefig(filepath) # Show the subplots plt.show() # Plot the confusion matrix for a model def plot_cf_matrix(y_true, y_pred, normalize=True, save=False, filepath=None): cf_matrix = confusion_matrix(y_true, y_pred) # Turns the values in the confusion matrix into percentages if normalize: cf_matrix = cf_matrix / cf_matrix.sum(axis=1) ConfusionMatrixDisplay(cf_matrix, display_labels=['Healthy (0)', 'Cancer (1)']).plot() if save: # Sample filepath: 'data/plots/cnn1_cf_matrix.png' plt.savefig(filepath) plt.show() # Plot the ROC curve and calculate AUC def plot_roc_curve(y_true, y_proba, save=False, filepath=None): if y_proba.shape[1] == 2: # y_proba is still one-hot encoded, so grab only the class 1 probabilities y_proba = np.array([i[1] for i in y_proba]) fprs, tprs, thresholds = roc_curve(y_true, y_proba) roc_auc = roc_auc_score(y_true, y_proba) plt.figure(figsize=(8, 6)) plt.plot(fprs, tprs, color='darkorange', lw=2, label='AUC = %0.2f' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') plt.xlabel('False Positive Rate (FPR)', size=16) plt.ylabel('True Positive Rate (TPR)', size=16) plt.title('ROC Curve for Cancer Detection', size=20) plt.legend(loc="best") if save: # Sample filepath: 'data/plots/cnn1_roc.png' plt.savefig(filepath) plt.show() print(f'Area under curve (AUC):{roc_auc}') # Create a list of ground truth labels from a specified data split def generate_y_true(pcam, split='test'): # Initialize iterator so it starts from the beginning iterator = pcam[split].__iter__() # Create an empty list to store the labels y_true = [] if split == 'train': # There are 262144 images in the training set for i in range(262144): y_true.append(int(iterator.get_next()['label'])) else: # There are 32768 images in the validation and test sets for i in range(32768): y_true.append(int(iterator.get_next()['label'])) return np.array(y_true) # Get predictions as probabilities from a trained model def generate_y_proba(model, test_pipeline, class_1=False, save=False, filepath=None): y_proba = model.predict(test_pipeline) if class_1: # Return just the class_1 predictions rather than one-hot encoded predictions y_proba =
np.array([i[1] for i in y_proba])
numpy.array
import numpy as np import scipy def SEIR(x, M_g, M_f, pop, ts, pop0, sd=[]): #the Adaptive metapopulation SEIR model dt = 1. tmstep = 1 #integrate forward for one day num_loc = pop.shape[0] (_, num_ens) = x.shape #S,E,Id,Iu,obs,beta,mu,theta_g,theta_f,Z,alpha,D Sidx = np.arange(1, 5*num_loc, 5).T Eidx = np.arange(2, 5*num_loc, 5).T Ididx = np.arange(3, 5*num_loc, 5).T Iuidx = np.arange(4, 5*num_loc, 5).T obsidx = np.arange(5, 5*num_loc+5, 5).T betaidx = 5*num_loc+1 muidx = 5*num_loc+2 thetagidx = 5*num_loc+3 thetafidx = 5*num_loc+4 Zidx = 5*num_loc+5 gammaidx = 5*num_loc+6 Didx = 5*num_loc+7 S = np.zeros((num_loc, num_ens, tmstep+1)) E = np.zeros((num_loc, num_ens, tmstep+1)) Id = np.zeros((num_loc, num_ens, tmstep+1)) Iu = np.zeros((num_loc, num_ens, tmstep+1)) Incidence = np.zeros((num_loc, num_ens, tmstep+1)) Incidence_u =
np.zeros((num_loc, num_ens, tmstep+1))
numpy.zeros
# 2D dataset loaders import data.data_hcp as data_hcp import data.data_abide as data_abide import data.data_nci as data_nci import data.data_promise as data_promise import data.data_pirad_erc as data_pirad_erc import data.data_mnms as data_mnms import data.data_wmh as data_wmh import data.data_scgm as data_scgm # other imports import logging import config.system_paths as sys_config import numpy as np # ================================================================== # TRAINING DATA LOADER # ================================================================== def load_test_data(dataset, image_size, target_resolution, cv_fold_num = 1): # ================================================================ # NCI # ================================================================ if dataset in ['RUNMC', 'BMC']: logging.info('Reading NCI - ' + dataset + ' images...') logging.info('Data root directory: ' + sys_config.orig_data_root_nci) data_pros = data_nci.load_and_maybe_process_data(input_folder = sys_config.orig_data_root_nci, preprocessing_folder = sys_config.preproc_folder_nci, size = image_size, target_resolution = target_resolution, force_overwrite = False, sub_dataset = dataset, cv_fold_num = cv_fold_num) imtr = data_pros['images_train'] gttr = data_pros['labels_train'] orig_data_res_x = data_pros['px_train'][:] orig_data_res_y = data_pros['py_train'][:] orig_data_res_z = data_pros['pz_train'][:] orig_data_siz_x = data_pros['nx_train'][:] orig_data_siz_y = data_pros['ny_train'][:] orig_data_siz_z = data_pros['nz_train'][:] num_train_subjects = orig_data_siz_z.shape[0] imvl = data_pros['images_validation'] gtvl = data_pros['labels_validation'] orig_data_siz_z_val = data_pros['nz_validation'][:] num_val_subjects = orig_data_siz_z_val.shape[0] elif dataset in ['UCL', 'BIDMC', 'HK']: logging.info('Reading' + dataset + ' images...') logging.info('Data root directory: ' + sys_config.orig_data_root_promise) data_pros = data_promise.load_and_maybe_process_data(input_folder = sys_config.orig_data_root_promise, preprocessing_folder = sys_config.preproc_folder_promise, size = image_size, target_resolution = target_resolution, force_overwrite = False, sub_dataset = dataset, cv_fold_num = cv_fold_num) imtr = data_pros['images_train'] gttr = data_pros['labels_train'] orig_data_res_x = data_pros['px_train'][:] orig_data_res_y = data_pros['py_train'][:] orig_data_res_z = data_pros['pz_train'][:] orig_data_siz_x = data_pros['nx_train'][:] orig_data_siz_y = data_pros['ny_train'][:] orig_data_siz_z = data_pros['nz_train'][:] num_train_subjects = orig_data_siz_z.shape[0] imvl = data_pros['images_validation'] gtvl = data_pros['labels_validation'] orig_data_siz_z_val = data_pros['nz_validation'][:] num_val_subjects = orig_data_siz_z_val.shape[0] elif dataset in ['USZ']: logging.info('Reading PIRAD_ERC images...') logging.info('Data root directory: ' + sys_config.orig_data_root_pirad_erc) data_pros_train = data_pirad_erc.load_data(input_folder = sys_config.orig_data_root_pirad_erc, preproc_folder = sys_config.preproc_folder_pirad_erc, idx_start = 40, idx_end = 68, size = image_size, target_resolution = target_resolution, labeller = 'ek', force_overwrite = False) imtr = data_pros_train['images'] gttr = data_pros_train['labels'] orig_data_res_x = data_pros_train['px'][:] orig_data_res_y = data_pros_train['py'][:] orig_data_res_z = data_pros_train['pz'][:] orig_data_siz_x = data_pros_train['nx'][:] orig_data_siz_y = data_pros_train['ny'][:] orig_data_siz_z = data_pros_train['nz'][:] num_train_subjects = orig_data_siz_z.shape[0] data_pros_val = data_pirad_erc.load_data(input_folder = sys_config.orig_data_root_pirad_erc, preproc_folder = sys_config.preproc_folder_pirad_erc, idx_start = 20, idx_end = 40, size = image_size, target_resolution = target_resolution, labeller = 'ek', force_overwrite = False) imvl = data_pros_val['images'] gtvl = data_pros_val['labels'] orig_data_siz_z_val = data_pros_val['nz'][:] num_val_subjects = orig_data_siz_z_val.shape[0] # ================================================================ # CARDIAC (MNMS) # ================================================================ elif dataset in ['HVHD', 'CSF', 'UHE']: logging.info('Reading MNMS - ' + dataset + ' images...') logging.info('Data root directory: ' + sys_config.orig_data_root_mnms) data_cardiac = data_mnms.load_and_maybe_process_data(input_folder = sys_config.orig_data_root_mnms, preprocessing_folder = sys_config.preproc_folder_mnms, size = image_size, target_resolution = target_resolution, force_overwrite = False, sub_dataset = dataset) imtr = data_cardiac['images_train'] gttr = data_cardiac['labels_train'] orig_data_res_x = data_cardiac['px_train'][:] orig_data_res_y = data_cardiac['py_train'][:] orig_data_res_z = data_cardiac['pz_train'][:] orig_data_siz_x = data_cardiac['nx_train'][:] orig_data_siz_y = data_cardiac['ny_train'][:] orig_data_siz_z = data_cardiac['nz_train'][:] num_train_subjects = orig_data_siz_z.shape[0] imvl = data_cardiac['images_validation'] gtvl = data_cardiac['labels_validation'] orig_data_siz_z_val = data_cardiac['nz_validation'][:] num_val_subjects = orig_data_siz_z_val.shape[0] # ================================================================ # Brain lesions (WMH) # ================================================================ elif dataset in ['UMC', 'NUHS']: data_brain_lesions = data_wmh.load_and_maybe_process_data(sys_config.orig_data_root_wmh, sys_config.preproc_folder_wmh, image_size, target_resolution, force_overwrite=False, sub_dataset = dataset, cv_fold_number = cv_fold_num, protocol = 'FLAIR') imtr = data_brain_lesions['images_train'] gttr = data_brain_lesions['labels_train'] orig_data_res_x = data_brain_lesions['px_train'][:] orig_data_res_y = data_brain_lesions['py_train'][:] orig_data_res_z = data_brain_lesions['pz_train'][:] orig_data_siz_x = data_brain_lesions['nx_train'][:] orig_data_siz_y = data_brain_lesions['ny_train'][:] orig_data_siz_z = data_brain_lesions['nz_train'][:] num_train_subjects = orig_data_siz_z.shape[0] imvl = data_brain_lesions['images_validation'] gtvl = data_brain_lesions['labels_validation'] orig_data_siz_z_val = data_brain_lesions['nz_validation'][:] num_val_subjects = orig_data_siz_z_val.shape[0] elif dataset in ['site1', 'site2', 'site3', 'site4']: data_gm = data_scgm.load_and_maybe_process_data(sys_config.orig_data_root_scgm, sys_config.preproc_folder_scgm, image_size, target_resolution, force_overwrite=False, sub_dataset = dataset, cv_fold_number = cv_fold_num) imtr = data_gm['images_train'] gttr = data_gm['labels_train'] orig_data_res_x = data_gm['px_train'][:] orig_data_res_y = data_gm['py_train'][:] orig_data_res_z = data_gm['pz_train'][:] orig_data_siz_x = data_gm['nx_train'][:] orig_data_siz_y = data_gm['ny_train'][:] orig_data_siz_z = data_gm['nz_train'][:] num_train_subjects = orig_data_siz_z.shape[0] imvl = data_gm['images_validation'] gtvl = data_gm['labels_validation'] orig_data_siz_z_val = data_gm['nz_validation'][:] num_val_subjects = orig_data_siz_z_val.shape[0] # ================================================================ # HCP T1 / T2 # ================================================================ elif dataset in ['HCPT1', 'HCPT2']: logging.info('Reading ' + str(dataset) + ' images...') logging.info('Data root directory: ' + sys_config.orig_data_root_hcp) data_brain_train = data_hcp.load_and_maybe_process_data(input_folder = sys_config.orig_data_root_hcp, preprocessing_folder = sys_config.preproc_folder_hcp, idx_start = 0, idx_end = 20, protocol = dataset[-2:], size = image_size, depth = 256, target_resolution = target_resolution) imtr = data_brain_train['images'] gttr = data_brain_train['labels'] orig_data_res_x = data_brain_train['px'][:] orig_data_res_y = data_brain_train['py'][:] orig_data_res_z = data_brain_train['pz'][:] orig_data_siz_x = data_brain_train['nx'][:] orig_data_siz_y = data_brain_train['ny'][:] orig_data_siz_z = data_brain_train['nz'][:] num_train_subjects = orig_data_siz_z.shape[0] data_brain_val = data_hcp.load_and_maybe_process_data(input_folder = sys_config.orig_data_root_hcp, preprocessing_folder = sys_config.preproc_folder_hcp, idx_start = 20, idx_end = 25, protocol = dataset[-2:], size = image_size, depth = 256, target_resolution = target_resolution) imvl = data_brain_val['images'] gtvl = data_brain_val['labels'] orig_data_siz_z_val = data_brain_val['nz'][:] num_val_subjects = orig_data_siz_z_val.shape[0] elif dataset in ['CALTECH']: logging.info('Reading CALTECH images...') logging.info('Data root directory: ' + sys_config.orig_data_root_abide + 'CALTECH/') data_brain_train = data_abide.load_and_maybe_process_data(input_folder = sys_config.orig_data_root_abide, preprocessing_folder = sys_config.preproc_folder_abide, site_name = 'CALTECH', idx_start = 0, idx_end = 10, protocol = 'T1', size = image_size, depth = 256, target_resolution = target_resolution) imtr = data_brain_train['images'] gttr = data_brain_train['labels'] orig_data_res_x = data_brain_train['px'][:] orig_data_res_y = data_brain_train['py'][:] orig_data_res_z = data_brain_train['pz'][:] orig_data_siz_x = data_brain_train['nx'][:] orig_data_siz_y = data_brain_train['ny'][:] orig_data_siz_z = data_brain_train['nz'][:] num_train_subjects = orig_data_siz_z.shape[0] data_brain_val = data_abide.load_and_maybe_process_data(input_folder = sys_config.orig_data_root_abide, preprocessing_folder = sys_config.preproc_folder_abide, site_name = 'CALTECH', idx_start = 10, idx_end = 15, protocol = 'T1', size = image_size, depth = 256, target_resolution = target_resolution) imvl = data_brain_val['images'] gtvl = data_brain_val['labels'] orig_data_siz_z_val = data_brain_val['nz'][:] num_val_subjects = orig_data_siz_z_val.shape[0] return (imtr, # 0 gttr, # 1 orig_data_res_x, # 2 orig_data_res_y, # 3 orig_data_res_z, # 4 orig_data_siz_x, # 5 orig_data_siz_y, # 6 orig_data_siz_z, # 7 num_train_subjects, # 8 imvl, # 9 gtvl, # 10 orig_data_siz_z_val, # 11 num_val_subjects) # 12 # ================================================================== # TEST DATA LOADER # ================================================================== def load_testing_data(test_dataset, cv_fold_num, image_size, target_resolution, image_depth): # ================================================================ # PROMISE # ================================================================ if test_dataset in ['UCL', 'BIDMC', 'HK']: data_pros = data_promise.load_and_maybe_process_data(input_folder = sys_config.orig_data_root_promise, preprocessing_folder = sys_config.preproc_folder_promise, size = image_size, target_resolution = target_resolution, force_overwrite = False, sub_dataset = test_dataset, cv_fold_num = cv_fold_num) imts = data_pros['images_test'] gtts = data_pros['labels_test'] orig_data_res_x = data_pros['px_test'][:] orig_data_res_y = data_pros['py_test'][:] orig_data_res_z = data_pros['pz_test'][:] orig_data_siz_x = data_pros['nx_test'][:] orig_data_siz_y = data_pros['ny_test'][:] orig_data_siz_z = data_pros['nz_test'][:] name_test_subjects = data_pros['patnames_test'] num_test_subjects = orig_data_siz_z.shape[0] ids = np.arange(num_test_subjects) # ================================================================ # USZ # ================================================================ elif test_dataset == 'USZ': image_depth = 32 z_resolution = 2.5 idx_start = 0 idx_end = 20 data_pros = data_pirad_erc.load_data(input_folder = sys_config.orig_data_root_pirad_erc, preproc_folder = sys_config.preproc_folder_pirad_erc, idx_start = idx_start, idx_end = idx_end, size = image_size, target_resolution = target_resolution, labeller = 'ek') imts = data_pros['images'] gtts = data_pros['labels'] orig_data_res_x = data_pros['px'][:] orig_data_res_y = data_pros['py'][:] orig_data_res_z = data_pros['pz'][:] orig_data_siz_x = data_pros['nx'][:] orig_data_siz_y = data_pros['ny'][:] orig_data_siz_z = data_pros['nz'][:] name_test_subjects = data_pros['patnames'] num_test_subjects = 10 # orig_data_siz_z.shape[0] ids = np.arange(idx_start, idx_end) # ================================================================ # NCI # ================================================================ elif test_dataset in ['BMC', 'RUNMC']: logging.info('Reading ' + test_dataset + ' images...') logging.info('Data root directory: ' + sys_config.orig_data_root_nci) data_pros = data_nci.load_and_maybe_process_data(input_folder = sys_config.orig_data_root_nci, preprocessing_folder = sys_config.preproc_folder_nci, size = image_size, target_resolution = target_resolution, force_overwrite = False, sub_dataset = test_dataset, cv_fold_num = cv_fold_num) imts = data_pros['images_test'] gtts = data_pros['labels_test'] orig_data_res_x = data_pros['px_test'][:] orig_data_res_y = data_pros['py_test'][:] orig_data_res_z = data_pros['pz_test'][:] orig_data_siz_x = data_pros['nx_test'][:] orig_data_siz_y = data_pros['ny_test'][:] orig_data_siz_z = data_pros['nz_test'][:] name_test_subjects = data_pros['patnames_test'] num_test_subjects = orig_data_siz_z.shape[0] ids = np.arange(num_test_subjects) # ================================================================ # CARDIAC (MNMS) # ================================================================ elif test_dataset == 'HVHD' or test_dataset == 'CSF' or test_dataset == 'UHE': logging.info('Reading MNMS - ' + test_dataset + ' images...') logging.info('Data root directory: ' + sys_config.orig_data_root_mnms) data_cardiac = data_mnms.load_and_maybe_process_data(input_folder = sys_config.orig_data_root_mnms, preprocessing_folder = sys_config.preproc_folder_mnms, size = image_size, target_resolution = target_resolution, force_overwrite = False, sub_dataset = test_dataset) imts = data_cardiac['images_test'] gtts = data_cardiac['labels_test'] orig_data_res_x = data_cardiac['px_test'][:] orig_data_res_y = data_cardiac['py_test'][:] orig_data_res_z = data_cardiac['pz_test'][:] orig_data_siz_x = data_cardiac['nx_test'][:] orig_data_siz_y = data_cardiac['ny_test'][:] orig_data_siz_z = data_cardiac['nz_test'][:] name_test_subjects = data_cardiac['patnames_test'] num_test_subjects = orig_data_siz_z.shape[0] ids = np.arange(num_test_subjects) # ================================================================ # Brain lesions (WMH) # ================================================================ elif test_dataset == 'UMC' or test_dataset == 'NUHS': data_brain_lesions = data_wmh.load_and_maybe_process_data(sys_config.orig_data_root_wmh, sys_config.preproc_folder_wmh, image_size, target_resolution, force_overwrite=False, sub_dataset = test_dataset, cv_fold_number = cv_fold_num, protocol = 'FLAIR') imts = data_brain_lesions['images_test'] gtts = data_brain_lesions['labels_test'] orig_data_res_x = data_brain_lesions['px_test'][:] orig_data_res_y = data_brain_lesions['py_test'][:] orig_data_res_z = data_brain_lesions['pz_test'][:] orig_data_siz_x = data_brain_lesions['nx_test'][:] orig_data_siz_y = data_brain_lesions['ny_test'][:] orig_data_siz_z = data_brain_lesions['nz_test'][:] name_test_subjects = data_brain_lesions['patnames_test'] num_test_subjects = orig_data_siz_z.shape[0] ids =
np.arange(num_test_subjects)
numpy.arange
import os import copy import zeus import emcee import snowline import contextlib import numpy as np from scipy.special import loggamma from scipy.optimize import differential_evolution class LinFit(object): """The LinFit class. Implements methods to fit straight lines or planes, including taking data and a covariance matrix and fitting either to just find the best fit, or run an MCMC. Has four main attributes, that are useful for accessing other information after running 'optimize', 'emcee' or 'zeus'. Attributes ---------- coords: ndarray N dimensional array holding the best-fitting HyperFit parameters in the data coordinates after a call to 'optimize' or one of the MCMC routines. Otherwise zeros. normal: ndarray N dimensional array holding the best-fitting HyperFit parameters in the normal unit vectors after a call to 'optimize' or one of the MCMC routines. Otherwise zeros. vert_scat: float Holds the best-fitting scatter in the vertical axis of the data coordinates, after a call to 'optimize' or one of the MCMC routines. Otherwise zero. norm_scat: float Holds the best-fitting scatter normal to the plane, after a call to 'optimize' or one of the MCMC routines. Otherwise zero. normal_bounds: sequence Holds the prior bounds in the normal unit vectors, after bounds in the data coordinates have been passed to a call to 'optimize' or one of the MCMC routines. Otherwise None. Args ---- data: ndarray The N x D dimensional data vector cov: ndarray The N x N x D dimensional set of covariance matrices. weights: ndarray, optional D dimensional array of weights for each data. Default is None, in which can unit weights are assumed for each data point. vertaxis: float, optional Specifies which of the coordinate axis is to be treated as the 'vertical' axis (i.e,. 'y' for 2D data). Default is -1, in which case the last axis will be treated as vertical. """ # Initialise the necessary parameters and perform checks def __init__(self, data, cov, weights=None, vertaxis=-1): self.ndims = np.shape(data)[0] self.ndata = np.shape(data)[1] self.data = data self.cov = cov self.weights = np.ones(self.ndata) if weights is None else weights self.vertaxis = vertaxis # Some variables to store the two sets of fitting coordinates and scatter parameters self.coords = np.zeros(self.ndims) self.normal = np.zeros(self.ndims) self.vert_scat = 0.0 self.norm_scat = 0.0 self.normal_bounds = None # Code to compute normal vectors from cartesian coordinates def compute_normal(self, coords=None, vert_scat=None): """Converts from data coordinates to the normal vector. Args ---- coords : ndarray, optional N x M dimensional array of coordinates. Default is None, which means use the values stored in the self.coords attribute. vert_scat : ndarray, optional M dimensional array of scatter values. Default is None, which means use the values stored in the self.vert_scat attribute. Returns ------- normal : ndarray N x M dimensional array of normal unit vectors. norm_scat : ndarray M dimensional array of scatters normal to the N-1 dimensional plane. """ if coords is None: coords = self.coords.reshape(self.ndims, -1) if vert_scat is None: vert_scat = self.vert_scat alpha = copy.copy(coords) alpha[self.vertaxis] = -1 beta = coords[self.vertaxis] normalpha = np.sum(alpha ** 2, axis=0) unitalpha = alpha / normalpha normal = -unitalpha * beta norm_scat = np.fabs(vert_scat / np.sqrt(normalpha)) # print(coords, vert_scat, normal, norm_scat) return normal, norm_scat # Code to compute cartesian coordinates from normal vectors def compute_cartesian(self, normal=None, norm_scat=None): """Converts from the normal vector to the data coordinates. Args ---- normal : ndarray, optional N x M dimensional array of unit vectors. Default is None, which means use the values stored in the self.normal attribute. norm_scat : ndarray, optional M dimensional array of scatter values normal to the plane. Default is None, which means use the values stored in the self.norm_scat attribute. Returns ------- coords : float N x M dimensional array of points in the data coordinates. vert_scat: float M dimensional array of scatters along the vertical axis of the data. """ if normal is None: normal = self.normal if norm_scat is None: norm_scat = self.norm_scat nTn = np.sum(normal ** 2, axis=0) coords = -normal / normal[self.vertaxis] coords[self.vertaxis] = nTn / normal[self.vertaxis] vert_scat = np.fabs(norm_scat * np.sqrt(nTn) / np.fabs(normal[self.vertaxis])) return coords, vert_scat def bessel_cochran(self, sigma): """Corrects the sample scatter to the population scatter using the Bessel and Cochran corrections. The intrinsic scatter fit from the likelihood is generally not equal to the underlying population scatter This is 1) because the standard deviation is estimated from a finite number of data samples, and 2) because the maximum likelihood value of the variance is not the maximum likelihood value of the standard deviation. These are corrected by the so-called Bessel and Cochran corrections respectively. This function applies these corrections based on the number of data points and dimensionality of the fitted plane. Args ---- sigma : ndarray M dimensional array of scatter values. Return ------ sigma_corr : ndarray M dimensional array of corrected scatter values. """ sigma_corr = ( np.sqrt(0.5 * self.ndata) * np.exp(loggamma(0.5 * (self.ndata - self.ndims)) - loggamma(0.5 * (self.ndata - self.ndims + 1.0))) ) * sigma return sigma_corr # The posterior function def _lnpost(self, params): if params.ndim == 1: params = params.reshape(-1, len(params)) lnpost = np.sum(self.weights * self._lnlike(params), axis=-1) + self._lnprior(params) return lnpost # The flat prior for the fit def _lnprior(self, params): lnprior = np.zeros(len(params)) for i, (param, bounds) in enumerate(zip(params.T, self.normal_bounds)): lnprior += np.where(np.logical_or(param < bounds[0], param > bounds[1]), -np.inf, 0.0) return lnprior # The log-likelihood function for each data point def _lnlike(self, params): if params.ndim == 1: params = params.reshape(-1, len(params)) nTn = np.sum(params[:, :-1] ** 2, axis=1) nTcn = np.einsum("ki,ijd,kj->dk", params[:, :-1], self.cov, params[:, :-1]) orthvariance = params[:, -1] ** 2 + np.where(nTn > 0, nTcn / nTn, 0) originoffset = np.where( nTn > 0, np.einsum("ki,id->dk", params[:, :-1], self.data) / np.sqrt(nTn) - np.sqrt(nTn), 0.0 ) lnlike = -0.5 * (np.log(orthvariance) + (originoffset ** 2) / orthvariance) return lnlike.T # Convert a sequence of bounds in data coordinates to bounds on the normal vector by optimizing for the maximum # and minimum values of each normal vector coordinate across the original parameter space. def _convert_bounds(self, bounds): normal_bounds = [] for i in range(len(bounds) - 1): new_min = differential_evolution( lambda x: self.compute_normal(coords=x[:-1], vert_scat=x[-1])[0][i], bounds, tol=1.0e-6 )["fun"] new_max = -differential_evolution( lambda x: -self.compute_normal(coords=x[:-1], vert_scat=x[-1])[0][i], bounds, tol=1.0e-6 )["fun"] normal_bounds.append((new_min, new_max)) new_min = differential_evolution( lambda x: self.compute_normal(coords=x[:-1], vert_scat=x[-1])[1], bounds, tol=1.0e-6 )["fun"] new_max = -differential_evolution( lambda x: -self.compute_normal(coords=x[:-1], vert_scat=x[-1])[1], bounds, tol=1.0e-6 )["fun"] normal_bounds.append((new_min, new_max)) normal_bounds = tuple(normal_bounds) return normal_bounds def get_sigmas(self, normal=None, norm_scat=None): """Calculates the offset between each data point and a plane in units of the standard deviation, i.e., in terms of x-sigma. Args ---- normal : ndarray, optional N x M dimensional array of unit vectors. Default is None, which means use the values stored in the self.normal attribute. norm_scat : ndarray, optional M dimensional array of scatter values normal to the plane. Default is None, which means use the values stored in the self.norm_scat attribute. Returns ------- sigmas: ndarray D x M dimensional array containing the offsets of the D data points, in units of the standard deviation from the M models. """ if normal is None: normal = self.normal.reshape(self.ndims, -1) if norm_scat is None: norm_scat = self.norm_scat nTn = np.sum(normal ** 2, axis=0) nTcn = np.einsum("ik,ijd,jk->dk", normal, self.cov, normal) orthvariance = norm_scat ** 2 + np.where(nTn > 0, nTcn / nTn, 0) originoffset = np.where(nTn > 0, np.einsum("ik,id->dk", normal, self.data) / np.sqrt(nTn) - np.sqrt(nTn), 0.0) return np.sqrt((originoffset ** 2) / orthvariance) def optimize(self, bounds, tol=1.0e-6, verbose=False): """Find the best-fitting line/plane/hyperplane. Fits the N x D dimensional self.data using scipy.optimise's basinhopping + Nelder-Mead algorithm. Pretty robust. Args ---- bounds : sequence Bounds for variables. Must be a set of N + 1 (min, max) pairs, one for each free parameter, defining the finite lower and upper bounds. Passed straight through to scipy.differential_evolution tol: float, optional The optimisation tolerance. verbose : bool, optional If True prints out the full dictionary returned by scipy.optimize.basinhopping. Return ------ coords : ndarray N dimensional array containing the best-fitting parameters. vert_scat: float The scatter in the vertical axis, corrected using the Bessel-Cochran correction. log_posterior: float The log posterior at the best-fitting parameters. Raises ------ ValueError: If the number of pairs in 'bounds' is not equal to N + 1. Note ---- If you want to access the best-fitting parameters in the normal coordinates and the scatter normal to the plane, these are stored in the self.normal and self.norm_scat class attributes respectively following a call to optimize. """ if len(bounds) != self.ndims + 1: raise ValueError("Number of bounds (min, max) pairs not equal to N dimensions + 1") self.normal_bounds = self._convert_bounds(bounds) result = differential_evolution(lambda *args: -self._lnpost(*args), self.normal_bounds, tol=tol) if verbose: print(result) self.normal = result["x"][:-1] self.norm_scat = np.fabs(result["x"][-1]) self.norm_scat = self.bessel_cochran(self.norm_scat) self.coords, self.vert_scat = self.compute_cartesian() return self.coords, self.vert_scat, -np.atleast_1d(result["fun"])[0] # A routine run a zeus MCMC on the model given the data def zeus(self, bounds, max_iter=100000, batchsize=1000, ntau=10.0, tautol=0.05, verbose=False): """Run an MCMC on the data using the zeus sampler (Karamanis and Beutler 2020). The MCMC runs in batches, checking convergence at the end of each batch until either the chain is well converged or the maximum number of iterations has been reached. Convergence is defined as the point when the chain is longer than ntau autocorrelation lengths, and the estimate of the autocorrelation length varies less than tautol between batches. Burn-in is then removed from the samples, before they are flattened and returned. Args ---- bounds : sequence Bounds for variables. Must be a set of N + 1 (min, max) pairs, one for each free parameter, defining the finite lower and upper bounds. Passed straight through to scipy.differential_evolution, and used to set the prior for the MCMC sampler. max_iter: int, optional The maximum number of MCMC iterations. batchsize : int, optional The size of each batch, between which we check convergence. ntau: float, optional The minimum number of autocorrelation lengths to require before convergence. tautol: float, optional The maximum fractional deviation between successive values of the autocorrelation length required for convergence. verbose: bool, optional Whether or not to print out convergence statistics and progress. Return ------ mcmc_samples : ndarray (N + 1) x Nsamples dimensional array containing the flattened, burnt-in MCMC samples. First N dimensions are the parameters of the plane. Last dimension is intrinsic scatter in the vertical axis. mcmc_lnlike : ndarray Nsamples dimensional array containing the log-likelihood for each MCMC sample. Raises ------ ValueError: If the number of values in 'begin' is not equal to N + 1. Note ---- Also calls 'optimize' and stores the results in the relevant class attributes if you want to access the best-fit. """ if len(bounds) != self.ndims + 1: raise ValueError("Number of bounds (min, max) pairs not equal to N dimensions + 1") # Set up Zeus. Start the walkers in a small 1 percent ball around the best fit self.optimize(bounds) nwalkers = 4 * (self.ndims + 1) begin = [ [(0.01 * np.random.rand() + 0.995) * j for j in np.concatenate([self.normal, [self.norm_scat]])] for _ in range(nwalkers) ] sampler = zeus.EnsembleSampler(nwalkers, self.ndims + 1, self._lnpost, vectorize=True, verbose=False) old_tau = np.inf niter = 0 converged = 0 while ~converged: sampler.run_mcmc(begin, nsteps=batchsize) tau = zeus.AutoCorrTime(sampler.get_chain(discard=0.5)) converged = np.all(ntau * tau < niter) converged &= np.all(np.abs(old_tau - tau) / tau < tautol) old_tau = tau begin = None niter += 1000 if verbose: print("Niterations/Max Iterations: ", niter, "/", max_iter) print("Integrated ACT/Min Convergence Iterations: ", tau, "/", np.amax(ntau * tau)) if niter >= max_iter: break # Remove burn-in and and save the samples tau = zeus.AutoCorrTime(sampler.get_chain(discard=0.5)) burnin = int(2 * np.max(tau)) samples = sampler.get_chain(discard=burnin, flat=True).T mcmc_samples = np.vstack(self.compute_cartesian(normal=samples[:-1, :], norm_scat=samples[-1, :])) mcmc_lnlike = sampler.get_log_prob(discard=burnin, flat=True) return mcmc_samples, mcmc_lnlike # A routine run a emcee MCMC on the model given the data def emcee(self, bounds, max_iter=100000, batchsize=1000, ntau=50.0, tautol=0.05, verbose=False): """Run an MCMC on the data using the emcee sampler (Foreman-Mackay et. al., 2013). The MCMC runs in batches, checking convergence at the end of each batch until either the chain is well converged or the maximum number of iterations has been reached. Convergence is defined as the point when the chain is longer than ntau autocorrelation lengths, and the estimate of the autocorrelation length varies less than tautol between batches. Burn-in is then removed from the samples, before they are flattened and returned. Args ---- bounds : sequence Bounds for variables. Must be a set of N + 1 (min, max) pairs, one for each free parameter, defining the finite lower and upper bounds. Passed straight through to scipy.differential_evolution, and used to set the prior for the MCMC sampler. max_iter: int, optional The maximum number of MCMC iterations. batchsize : int, optional The size of each batch, between which we check convergence. ntau: float, optional The minimum number of autocorrelation lengths to require before convergence. tautol: float, optional The maximum fractional deviation between successive values of the autocorrelation length required for convergence. verbose: bool, optional Whether or not to print out convergence statistics and progress. Return ------ mcmc_samples : ndarray (N + 1) x Nsamples dimensional array containing the flattened, burnt-in MCMC samples. First N dimensions are the parameters of the plane. Last dimension is intrinsic scatter in the vertical axis. mcmc_lnlike : ndarray Nsamples dimensional array containing the log-likelihood for each MCMC sample. Raises ------ ValueError: If the number of values in 'begin' is not equal to N + 1. Note ---- Also calls 'optimize' and stores the results in the relevant class attributes if you want to access the best-fit. """ if len(bounds) != self.ndims + 1: raise ValueError("Number of bounds (min, max) pairs not equal to N dimensions + 1") # Set up emcee. Start the walkers in a small 1 percent ball around the best fit self.optimize(bounds, verbose=verbose) nwalkers = 4 * (self.ndims + 1) begin = [ [(0.01 * np.random.rand() + 0.995) * j for j in np.concatenate([self.normal, [self.norm_scat]])] for _ in range(nwalkers) ] sampler = emcee.EnsembleSampler(nwalkers, self.ndims + 1, self._lnpost, vectorize=True) old_tau = np.inf niter = 0 converged = 0 while ~converged: sampler.run_mcmc(begin, nsteps=batchsize, progress=verbose) tau = sampler.get_autocorr_time(discard=int(0.5 * niter), tol=0) converged = np.all(ntau * tau < niter) converged &= np.all(np.abs(old_tau - tau) / tau < tautol) old_tau = tau begin = None niter += 1000 if verbose: print("Niterations/Max Iterations: ", niter, "/", max_iter) print("Integrated ACT/Min Convergence Iterations: ", tau, "/", np.amax(ntau * tau)) if niter >= max_iter: break # Remove burn-in and and save the samples tau = sampler.get_autocorr_time(discard=int(0.5 * niter), tol=0) burnin = int(2 * np.max(tau)) samples = sampler.get_chain(discard=burnin, flat=True).T mcmc_samples = np.vstack(self.compute_cartesian(normal=samples[:-1], norm_scat=samples[-1])) mcmc_lnlike = sampler.get_log_prob(discard=burnin, flat=True) return mcmc_samples, mcmc_lnlike # A routine to run snowline on the model given the data def snowline( self, bounds, num_global_samples=400, num_gauss_samples=400, max_ncalls=100000, min_ess=400, max_improvement_loops=4, heavytail_laplaceapprox=True, verbose=False, ): """Get posterior samples and Bayesian evidence using the snowline package (https://johannesbuchner.github.io/snowline/). Input kwargs are passed directly to snowline and are named the same, so see the snowline documentation for more details on these. self.optimize is also called even though snowline runs it's own optimisation to ensure some useful attributes are stored, and for consistency with the emcee and zeus functions. Args ---- bounds : sequence Bounds for variables. Must be a set of N + 1 (min, max) pairs, one for each free parameter, defining the finite lower and upper bounds. Passed straight through to scipy.differential_evolution, and used to set the prior for the MCMC sampler. num_global_samples: int, optional Number of samples to draw from the prior. num_gauss_samples: int, optional Number of samples to draw from initial Gaussian likelihood approximation before improving the approximation. max_ncalls: int, optional Maximum number of likelihood function evaluations. min_ess: int, optional Number of effective samples to draw. max_improvement_loops: float, optional Number of times the proposal should be improved. heavytail_laplaceapprox: bool, optional If False, use laplace approximation as initial gaussian proposal. If True, use a gaussian mixture, including the laplace approximation but also wider gaussians. Return ------ mcmc_samples : ndarray (N + 1) x Nsamples dimensional array containing the flattened, burnt-in MCMC samples. First N dimensions are the parameters of the plane. Last dimension is intrinsic scatter in the vertical axis. mcmc_lnlike : ndarray Nsamples dimensional array containing the log-likelihood for each MCMC sample. logz : float The Bayesian evidence. logzerr: float Error on the Bayesian evidence. Raises ------ ValueError: If the number of values in 'begin' is not equal to N + 1. Note ---- Also calls 'optimize' and stores the results in the relevant class attributes if you want to access the best-fit. """ if len(bounds) != self.ndims + 1: raise ValueError("Number of bounds (min, max) pairs not equal to N dimensions + 1") # Run the optimizer. Redundant as snowline also does an optimization, but helps set other things up too and store # some useful attributes, so done for consistency with other routines. self.optimize(bounds) paramnames = [f"$\\alpha_{{{i}}}$" for i in range(self.ndims)] + [f"$\\sigma_{{\\perp}}$"] # Run Snowline sampler = snowline.ReactiveImportanceSampler( paramnames, lambda x: self._lnpost(x)[0], transform=self.snowline_transform ) sampler.run( num_global_samples=num_global_samples, num_gauss_samples=num_gauss_samples, max_ncalls=max_ncalls, min_ess=min_ess, max_improvement_loops=max_improvement_loops, heavytail_laplaceapprox=heavytail_laplaceapprox, verbose=verbose, ) samples = sampler.results["samples"].T mcmc_samples = np.vstack(self.compute_cartesian(normal=samples[:-1], norm_scat=samples[-1])) mcmc_lnlike = self._lnpost(sampler.results["samples"]) return mcmc_samples, mcmc_lnlike, sampler.results["logz"], sampler.results["logzerr"] def snowline_transform(self, x): newx = [ (self.normal_bounds[i][1] - self.normal_bounds[i][0]) * x[i] + self.normal_bounds[i][0] for i in range(len(x)) ] return
np.array(newx)
numpy.array
import numpy as np import xarray as xr from xrspatial import a_star_search from xrspatial.tests._crs import _add_EPSG4326_crs_to_da def test_a_star_search(): agg = xr.DataArray(np.array([[0, 1, 0, 0], [1, 1, 0, 0], [0, 1, 2, 2], [1, 0, 2, 0], [0, 2, 2, 2]]), dims=['lat', 'lon']) # add crs for tests agg = _add_EPSG4326_crs_to_da(agg) height, width = agg.shape _lon = np.linspace(0, width - 1, width) _lat = np.linspace(0, height - 1, height) agg['lon'] = _lon agg['lat'] = _lat barriers = [] # no barriers, there always path from a start location to a goal location for x0 in _lon: for y0 in _lat: start = (x0, y0) for x1 in _lon: for y1 in _lat: goal = (x1, y1) path_agg = a_star_search(agg, start, goal, barriers, 'lon', 'lat') assert isinstance(path_agg, xr.DataArray) assert type(path_agg.values[0][0]) == np.float64 assert path_agg.shape == agg.shape assert path_agg.dims == agg.dims assert path_agg.attrs == agg.attrs for c in path_agg.coords: assert (path_agg[c] == agg.coords[c]).all() if start == goal: assert np.nanmax(path_agg) == 0 and \ np.nanmin(path_agg) == 0 else: assert np.nanmax(path_agg) > 0 and \ np.nanmin(path_agg) == 0 barriers = [1] # set pixels with value 1 as barriers, # cannot go from (0, 0) to anywhere since it is surrounded by 1s start = (0, 0) for x1 in _lon: for y1 in _lat: goal = (x1, y1) if goal != start: path_agg = a_star_search(agg, start, goal, barriers, 'lon', 'lat') assert isinstance(path_agg, xr.DataArray) assert type(path_agg.values[0][0]) == np.float64 assert path_agg.shape == agg.shape assert path_agg.dims == agg.dims assert path_agg.attrs == agg.attrs for c in path_agg.coords: assert (path_agg[c] == agg.coords[c]).all() # no path, all cells in path_agg are nans assert np.isnan(path_agg).all() # test with nans agg = xr.DataArray(np.array([[0, 1, 0, 0], [1, 1, np.nan, 0], [0, 1, 2, 2], [1, 0, 2, 0], [0, np.nan, 2, 2]]), dims=['lat', 'lon']) height, width = agg.shape _lon = np.linspace(0, width - 1, width) _lat = np.linspace(0, height - 1, height) agg['lon'] = _lon agg['lat'] = _lat # start and end at a nan pixel, coordinate in (lon, lat) format # in this example, each pixel is a unit of lon and lat, # start = (2, 1) corresponds to pixel at (1, 2), # goal = (1, 4) corresponds to pixel at (4, 1) start = (2, 1) goal = (1, 4) # no barriers barriers = [] # no snap no_snap_path_agg = a_star_search(agg, start, goal, barriers, 'lon', 'lat') # no path, all cells in path_agg are nans assert np.isnan(no_snap_path_agg).all() # set snap_start = True, snap_goal = False snap_start_path_agg = a_star_search(agg, start, goal, barriers, 'lon', 'lat', snap_start=True) # no path, all cells in path_agg are nans assert np.isnan(snap_start_path_agg).all() # set snap_start = False, snap_goal = True snap_goal_path_agg = a_star_search(agg, start, goal, barriers, 'lon', 'lat', snap_goal=True) # no path, all cells in path_agg are nans assert
np.isnan(snap_goal_path_agg)
numpy.isnan
import os import math import cv2 as cv import scipy import numpy as np import matplotlib import matplotlib.pyplot as plt from scipy.stats import describe, linregress from scipy.signal import detrend from matplotlib.animation import FuncAnimation #~~~~~~~~~~~~~~~HELPER FUNCTIONS FOR IDENTIFYING SURFACE LINE~~~~~~~~~~~~~~~~~~ # these functions help identify the surface line in PLIF images def _get_frame(cap: cv.VideoCapture, N: int) -> np.ndarray : """ Get the Nth frame from the video capture in grayscale Return the nth frame from an opencv video capture object as greyscale or None if it fails. Raises TypeError for some inputs. Raises IndexError if N is out of bounds. Raises AssertionError is video capture is not open. """ if not isinstance(cap,cv.VideoCapture): raise TypeError("cap must be an opencv video capture object") elif not cap.isOpened(): raise AssertionError("cap must be open") elif not isinstance(N,int): raise TypeError("N must be an int") frame_count = cap.get(cv.CAP_PROP_FRAME_COUNT) # Apparently, frameCount == -2147483648 or -1 for single image sequence if frame_count < 0: frame_count = 1 if not 0<=N<frame_count: raise IndexError("N must be positive and <= frame count of cap") # cap.set is expensive, only use if needed if cap.get(cv.CAP_PROP_POS_FRAMES) != N: cap.set(cv.CAP_PROP_POS_FRAMES, N) ret_frame, frame = cap.read() if ret_frame: if len(frame.shape) == 2: pass # already greyscale elif frame.shape[2] == 3: frame = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) elif frame.shape[2] == 4: frame = cv.cvtColor(frame, cv.COLOR_BGRA2GRAY) else: raise TypeError("video source not supported") return frame else: return None def _get_grad_phase(src: np.ndarray) -> "tuple of np.ndarray" : """ Return the gradient and phase of the grayscale image Return the gradient and phase of a grayscale image or None if it fails. Uses Scharr gradient estimation. Normalizes quantites to use the entire dynamic range of the src image data type. Raises TypeError for some inputs. """ if not isinstance(src,np.ndarray): raise TypeError("src must be a numpy array") if not (src.dtype == np.uint8 or src.dtype == np.uint16): raise TypeError("src must have type np.uint8 or np.uint16") gradx = cv.Scharr(src, cv.CV_32F, 1, 0, 3) grady = cv.Scharr(src, cv.CV_32F, 0, 1, 3) grad = cv.magnitude(gradx, grady) phase = cv.phase(gradx, grady) if src.dtype == np.uint8: kwargs = {'alpha':0,'beta':255,'norm_type':cv.NORM_MINMAX, 'dtype':cv.CV_8UC1} else: # otherwise np.uint16 kwargs = {'alpha':0,'beta':65535,'norm_type':cv.NORM_MINMAX, 'dtype':cv.CV_16UC1} grad = cv.normalize(grad , grad , **kwargs) phase = cv.normalize(phase, phase, **kwargs) return grad, phase def _get_mask_from_gradient(src: np.ndarray, k: int) -> np.ndarray : """ Identifies large values of an image gradient with a binary mask. Return a binary mask isolating the values of src that are sufficiently large. Sufficiently large is determined by clustering the image in to k parts, then defining the background as the cluster with the largest number of elements. All other clusters are considered sufficently large and their locations in the image are marked 1 in the binary mask. The background is marked 0 in the binary mask. Raises TypeError for some inputs. """ if not isinstance(src,np.ndarray): raise TypeError("src must be a numpy array") if not (src.dtype == np.uint8 or src.dtype == np.uint16): raise TypeError("src must have type np.uint8 or np.uint16") # Prepare the src for clustering clusterable = np.array(src.ravel(), dtype=np.float32) # kmeans requires some initial guess to iteratively improve # Using this inital label seems to be more reliable than using PP or random labels = np.zeros(clusterable.shape, dtype=np.int32) labels[ np.argwhere(clusterable == clusterable.max()) ] = k-1 # generate and shape label array criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 20, 1.0) _, labels, centers = cv.kmeans(clusterable, k, labels, criteria, 1, cv.KMEANS_USE_INITIAL_LABELS) labels = labels.reshape(-1, src.shape[0]) # exclude the background label from a binary mask where the background label # has the smallest gradient value among the cluster centers, all other labels # are included. The background label can be identified by noting that the # center values are organized like: center[label] = gradient_value dst = np.ones(src.shape, dtype=src.dtype) dst[ labels == np.argmin(centers) ] = 0 return dst def _get_mask_from_phase(src: np.ndarray, mask: np.ndarray, direction: "'low' or 'high'") -> np.ndarray : """ Identifies the low or high phase of an image gradient with a binary mask. Return a binary mask identifying a low valued cluster or the high valued cluster as indicated by the directio input. The background cluster is assumed to be the cluster with the largest count and is ignored. Raises a TypeError or a ValueError for some inputs. """ if not isinstance(src,np.ndarray): raise TypeError("src must be a numpy array") elif not isinstance(mask,np.ndarray): raise TypeError("mask must be a numpy array") elif not (src.dtype == np.uint8 or src.dtype == np.uint16): raise TypeError("src must have type np.uint8 or np.uint16") elif not (mask.dtype == np.uint8 or mask.dtype == np.uint16): raise TypeError("mask must have type np.uint8 or np.uint16") elif not len(src.shape) == len(mask.shape) == 2: raise ValueError("src and mask must have two dimensions (grayscale)") elif not (direction == 'low' or direction == 'high'): raise ValueError("direction must be 'low' or 'high'") # make them the same dtype but preserve the dynamic range of src if src.dtype != mask.dtype: mask = np.array(mask,dtype=mask.dtype) # identify the foreground cluster with the correct directionality clusterable = np.array(np.multiply(src,mask).ravel(), dtype=np.float32) labels = np.zeros(clusterable.shape,dtype=np.int32) criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 20, 1.0) # phase is normalized to take up the entire dynamic range, so choose to # split the mask down the middle into an 'low' and 'high' phase mid = 255//2 if (src.dtype == np.uint8) else 65535//2 # low phase is in the lower half and nonzero labels[ np.argwhere(np.logical_and(clusterable > 0, clusterable < mid)) ] = 1 # high phase is in the upper half labels[ np.argwhere(clusterable > mid) ] = 2 # TODO: determine if this clustering actually improves results # compared to a simple binary threshold _, labels, centers = cv.kmeans(clusterable, 3, labels, criteria, 1, cv.KMEANS_USE_INITIAL_LABELS ) labels = np.array(labels.reshape(-1, src.shape[0]), dtype=src.dtype) # To identify the low and high labels, must also identify the background # label which is assumed to be the largest group by count # recall phase data is clustered like: centers[label] = phase_val label_by_count = np.argsort(np.bincount(labels.ravel())) label_by_phase = np.argsort(centers.ravel()) background_label = label_by_count[-1] label_by_phase_excluding_background = np.delete( label_by_phase, np.where(label_by_phase == background_label)) low_label = label_by_phase_excluding_background[ 0] high_label = label_by_phase_excluding_background[-1] choose_label = int(low_label) if direction=='low' else int(high_label) return cv.compare(labels,(choose_label,0,0,0),cv.CMP_EQ) def _get_widest_connected_group(mask: np.ndarray) -> np.ndarray: ''' Identifes the widest group (uppermost in case of ties) in the binary image. Find the widest connected group in the binary mask. If there are multiple, choose the uppermost among them. Requires an uint8 type image but assumes that the input image is a binary mask (no check). Raises a TypeError for some inputs. ''' if not isinstance(mask,np.ndarray): raise TypeError("mask must be a numpy array") elif not (mask.dtype == np.uint8): raise TypeError("mask must have type np.uint8") num_groups, labels, stats, centroids = \ cv.connectedComponentsWithStats(mask,connectivity=8) # identify candidates of connected components by area idx_candidates = np.argsort(stats[:,cv.CC_STAT_AREA])[:-1] # among the valid candidates, sort by width of connected components stats_width = stats[idx_candidates,cv.CC_STAT_WIDTH] widest_groups = np.argwhere(stats_width == np.amax(stats_width)) # among the widest groups, choose the one closes to top of image # recall that the y axis for images is flipped top_group = np.argmin(stats[idx_candidates,cv.CC_STAT_TOP][widest_groups]) # create a new mask from the label of the widest & highest cluster mask_new = np.zeros(labels.shape, dtype=bool) label = idx_candidates[widest_groups[top_group]] mask_new[labels == label] = 1 return np.multiply(mask,mask_new) def _get_mask_maxima(grad: np.ndarray, mask: np.ndarray) -> np.ndarray: """ Finds the local maxima of an image gradeint where the mask is 1. Returns a binary mask where the values are local maxima or a plateau edge of grad. Applies the input mask before finding the local maxima. Assumes (no check) that the mask is binary. Raises a TypeError for some inputs. """ if not isinstance(grad,np.ndarray): raise TypeError("grad must be a numpy array") elif not isinstance(mask,np.ndarray): raise TypeError("mask must be a numpy array") elif not (mask.dtype == np.uint8 or mask.dtype == np.uint16): raise TypeError("mask must have type np.uint8 or np.uint16") se = np.array([1,0,1],dtype=np.uint8).reshape(-1,1) grad_masked = np.multiply(grad,mask) local_max = cv.dilate(grad_masked, se) local_max = cv.compare(grad_masked,local_max,cv.CMP_GE) return np.multiply(local_max,mask) def _get_surfaceline(mask: np.ndarray, side: "'lower' or 'upper'") \ -> np.ndarray: """ Identifes the surface line from a binary mask. Returns a 1 dimensional numpy array with the pixel values of the uppermost or lowermost values in mask. Raises a TypeError or ValueError for some inputs. """ if not isinstance(mask,np.ndarray): raise TypeError("mask must be a numpy array") elif not (mask.dtype == np.uint8 or mask.dtype == np.uint16): raise TypeError("mask must have type np.uint8 or np.uint16") elif not (side=='upper' or side=='lower'): raise ValueError("direction must be 'low' or 'high'") # TODO: why convert uint8 or uint16 into binary mask? # just require a binary array in the first place? # accept any non-zero value of the mask, mask must be converted to binary mask = mask>0 n,m = mask.shape if side=='upper': args = (0,n,n) else: # side=='lower' args = (n,0,n) weight_y = np.linspace(*args,dtype=int).reshape(-1,1).repeat(m,axis=1) line = np.argmax(weight_y*mask,axis=0) # TODO: replace this with numpy functions # when columns are all 0, line returns an invalid point, replace with -1 for i, j in enumerate(line): if mask[j,i]==0: line[i] = -1 return line.ravel() def _get_supersample(line: np.ndarray, grad: np.ndarray) -> np.ndarray: """ Identifes the supersample interpolation along the surface line of grad. Returns a tuple of 1 dimensional numpy arrays. The first returns line with values replaced to be negative if the supersample is invalid. The second returns the supersample of the gradient or 0 if the supersample is invalid. Negative values in the first array correspond to the following meanings: -1 : no identified maxima in column -2 : identified maxima is not a local maxima (all equal) -3 : identified maxima is not a local maxima (on a line) Raises a TypeError or ValueError for some inputs. """ if not isinstance(line,np.ndarray): raise TypeError("line must be a numpy array") elif not isinstance(grad,np.ndarray): raise TypeError("grad must be a numpy array") elif not len(line.shape) == 1: raise ValueError("line must have one dimension") elif not len(grad.shape) == 2: raise ValueError("grad must have two dimensions") supersample = np.zeros(line.shape) # TODO: replace loop with array operations for i,j in enumerate(line): try: upper = int(grad[j-1,i]) center = int(grad[j ,i]) lower = int(grad[j+1,i]) except IndexError: line[i] = -1 continue numerator = upper - lower denominator = 2*upper + 2*lower - 4*center if j == -1: pass elif upper==center and lower==center and upper==lower: line[i] = -2 elif numerator!=0 and denominator==0: line[i] = -3 else: supersample[i] = numerator/denominator # useful for debugging #if not np.isfinite(supersample).all(): # print(f"non-finite value at {i}, {j}") # print(f"numerator: {numerator}") # print(f"denominator: {denominator}") # raise ValueError return line, supersample # The following functions each handle different combinations of the input # values to lif(), this is explicit but perhaps too verbose. def _loop_phase_mask_connected(cap: cv.VideoCapture, num_frames: int, k: int, direction: "'low' or 'high'", side: "'lower' or 'upper'") -> np.ndarray: ''' Performs LIF for a specific case in the lif function. Assumes valid input. Considers the the case: use_column_max = False use_phase_mask = True connected = True calibration_params = None ''' width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) surface = np.empty((num_frames,width)) for num in range(num_frames): frame = _get_frame(cap,num) grad, phase = _get_grad_phase(frame) mask = _get_mask_from_gradient(grad, k) mask_phase = _get_mask_from_phase(phase,mask,direction) mask_connected = _get_widest_connected_group(mask_phase) mask_maxima = _get_mask_maxima(grad,mask)*mask_connected line = _get_surfaceline(mask_maxima,side) line , supersample = _get_supersample(line, grad) surface[num,:] = line + supersample return surface def _loop_phase_mask_connected_calibrate(cap: cv.VideoCapture, num_frames: int, k: int, direction: "'low' or 'high'", side: "'lower' or 'upper'", calibration_params: tuple,) \ -> np.ndarray: ''' Performs LIF for a specific case in the lif function. Assumes valid input. Considers the the case: use_column_max = False use_phase_mask = True connected = True calibration_params = Tuple ''' width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) surface = np.empty((num_frames,width)) for num in range(num_frames): frame = _get_frame(cap,num) frame = cv.undistort(frame, calibration_params[0], calibration_params[1]) grad, phase = _get_grad_phase(frame) mask = _get_mask_from_gradient(grad, k) mask_phase = _get_mask_from_phase(phase,mask,direction) mask_connected = _get_widest_connected_group(mask_phase) mask_maxima = _get_mask_maxima(grad,mask)*mask_connected line = _get_surfaceline(mask_maxima,side) line , supersample = _get_supersample(line, grad) surface[num,:] = line + supersample return surface def _loop_phase_mask(cap: cv.VideoCapture, num_frames: int, k: int, direction: "'low' or 'high'", side: "'lower' or 'upper'") -> np.ndarray: ''' Performs LIF for a specific case in the lif function. Assumes valid input. Considers the the case: use_column_max = False use_phase_mask = True connected = False calibration_params = None ''' width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) surface = np.empty((num_frames,width)) for num in range(num_frames): frame = _get_frame(cap,num) grad, phase = _get_grad_phase(frame) mask = _get_mask_from_gradient(grad, k) mask_phase = _get_mask_from_phase(phase,mask,direction) mask_maxima = _get_mask_maxima(grad,mask)*mask_phase line = _get_surfaceline(mask_maxima,side) line , supersample = _get_supersample(line, grad) surface[num,:] = line + supersample return surface def _loop_phase_mask_calibrate(cap: cv.VideoCapture, num_frames: int, k: int, direction: "'low' or 'high'", side: "'lower' or 'upper'", calibration_params: tuple) -> np.ndarray: ''' Performs LIF for a specific case in the lif function. Assumes valid input. Considers the the case: use_column_max = False use_phase_mask = True connected = False calibration_params = None ''' width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) surface = np.empty((num_frames,width)) for num in range(num_frames): frame = _get_frame(cap,num) frame = cv.undistort(frame, calibration_params[0], calibration_params[1]) grad, phase = _get_grad_phase(frame) mask = _get_mask_from_gradient(grad, k) mask_phase = _get_mask_from_phase(phase,mask,direction) mask_maxima = _get_mask_maxima(grad,mask)*mask_phase line = _get_surfaceline(mask_maxima,side) line , supersample = _get_supersample(line, grad) surface[num,:] = line + supersample return surface def _loop_local_maxima(cap: cv.VideoCapture, num_frames: int, k: int, direction: "'low' or 'high'", side: "'lower' or 'upper'") -> np.ndarray: ''' Performs LIF for a specific case in the lif function. Assumes valid input. Considers the the case: use_column_max = False use_phase_mask = False connected = False calibration_params = None ''' width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) surface = np.empty((num_frames,width)) for num in range(num_frames): frame = _get_frame(cap,num) grad, phase = _get_grad_phase(frame) mask = _get_mask_from_gradient(grad, k) mask_maxima = _get_mask_maxima(grad,mask) line = _get_surfaceline(mask_maxima,side) line , supersample = _get_supersample(line, grad) surface[num,:] = line + supersample return surface def _loop_local_maxima_calibrate(cap: cv.VideoCapture, num_frames: int, k: int, direction: "'low' or 'high'", side: "'lower' or 'upper'", calibration_params: tuple) -> np.ndarray: ''' Performs LIF for a specific case in the lif function. Assumes valid input. Considers the the case: use_column_max = False use_phase_mask = False connected = False calibration_params = None ''' width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) surface = np.empty((num_frames,width)) for num in range(num_frames): frame = _get_frame(cap,num) frame = cv.undistort(frame, calibration_params[0], calibration_params[1]) grad, phase = _get_grad_phase(frame) mask = _get_mask_from_gradient(grad, k) mask_maxima = _get_mask_maxima(grad,mask) line = _get_surfaceline(mask_maxima,side) line , supersample = _get_supersample(line, grad) surface[num,:] = line + supersample return surface def _loop_maxima(cap: cv.VideoCapture, num_frames: int, k: int, direction: "'low' or 'high'", side: "'lower' or 'upper'") -> np.ndarray: ''' Performs LIF for a specific case in the lif function. Assumes valid input. Considers the the case: use_column_max = True use_phase_mask = False connected = False calibration_params = None ''' width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) surface = np.empty((num_frames,width)) for num in range(num_frames): frame = _get_frame(cap,num) grad, _ = _get_grad_phase(frame) mask_maxima = np.zeros(grad.shape, dtype=np.uint8) mask_maxima[np.argmax(grad,axis=0),np.arange(width)] = 1 line = _get_surfaceline(mask_maxima,side) line , supersample = _get_supersample(line, grad) surface[num,:] = line + supersample return surface def _loop_maxima_calibrate(cap: cv.VideoCapture, num_frames: int, k: int, direction: "'low' or 'high'", side: "'lower' or 'upper'", calibration_params: tuple) -> np.ndarray: ''' Performs LIF for a specific case in the lif function. Assumes valid input. Considers the the case: use_column_max = True use_phase_mask = False connected = False calibration_params = tuple ''' width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) surface = np.empty((num_frames,width)) for num in range(num_frames): frame = _get_frame(cap,num) frame = cv.undistort(frame, calibration_params[0], calibration_params[1]) grad, _ = _get_grad_phase(frame) mask_maxima = np.zeros(grad.shape, dtype=np.uint8) mask_maxima[np.argmax(grad,axis=0),np.arange(width)] = 1 line = _get_surfaceline(mask_maxima,side) line , supersample = _get_supersample(line, grad) surface[num,:] = line + supersample return surface def lif(cap: cv.VideoCapture, direction: "'low' or 'high'", side: "'lower' or 'upper'", N: "int or None" = None, calibration_params: "tuple or None" = None, k: int = 3, use_phase_mask : bool = True, connected : bool = True, use_column_max : bool = False) -> np.ma.array: ''' Performs lif analysis on an opencv video capture. Imports each frame from cap as a grayscale image and performs LIF analysis on each frame. Returns identified elevation of the surface line as a numpy array with shape (N,M) where N is as specified or the number of frames in cap (if unspecified) and M is the width of the images in cap. The argument 'direction' refers to the direction of the gradient where 'low' roughly corresponds with pi radians, and 'high' roughly corresponds to 3 pi radians. The argument 'side' refers to which side of masked regions it will attempt to identify, where 'lower' is the lowermost index value, and 'upper' is the uppermost index value within the mask. The argument 'k' allows for adjusting the sensitivity when identifying large gradients, higher values of k mean more compute time but allows for smaller local gradient maxima. The argument calibration_params should be a tuple with two values where the first value in the tuple is the camera matrix and the second value is the distortion coefficients as in OpenCV's undistort. The argument use_phase_mask is a boolean to specify if the phase of the gradient should be used to identify the surface. The argument connected is a boolean to specify if the identify surface should be connected (will only return a connected surface). The agrument use_column_max is used to determine if a global maximum should be used to identify surface. If use_column_max is True then use_phase_mask and connected arguments are ignored. Raises a TypeError or ValueError for some inputs. ''' if not isinstance(cap,cv.VideoCapture): raise TypeError("cap must be an opencv video capture object") elif not (direction == 'low' or direction == 'high'): raise ValueError("direction must be 'low' or 'high'") elif not (side == 'lower' or side == 'upper'): raise ValueError("side must be 'lower' or 'upper'") elif not (isinstance(N,int) or N is None): raise ValueError("N must be an int or None") elif not (isinstance(k,int) and k>1): raise ValueError("k must be an int greater than 1") elif not isinstance(use_phase_mask,bool): raise ValueError("use_phase_mask must be a bool") elif not (isinstance(calibration_params,tuple) \ or calibration_params is None): raise TypeError("calibration_params must be tuple or None") elif not ( calibration_params is None or (type(calibration_params) is tuple and len(calibration_params) == 2)): raise ValueError("calibration_params must be tuple with two values") elif not isinstance(use_column_max,bool): raise ValueError("use_column_max must be a bool") num_frames = int(cap.get(cv.CAP_PROP_FRAME_COUNT)) if N is None else N if calibration_params is None: args = (cap,num_frames,k,direction,side) if use_column_max: surface = _loop_maxima(*args) elif use_phase_mask and connected: surface = _loop_phase_mask_connected(*args) elif use_phase_mask and not connected: surface = _loop_phase_mask(*args) else: surface = _loop_local_maxima(*args) else: args = (cap,num_frames,k,direction,side,calibration_params) if use_column_max: surface = _loop_maxima_calibrate(*args) elif use_phase_mask and connected: surface = _loop_phase_mask_connected_calibrate(*args) elif use_phase_mask and not connected: surface = _loop_phase_mask_calibrate(*args) else: surface = _loop_local_maxima_calibrate(*args) return np.ma.masked_less(surface,0) #~~~~~~~~~~~~~~~~~~HELPER FUNCTIONS FOR PLOTTING~~~~~~~~~~~~~~~~~~ def list_sequence_animation(xdata: list, ydata: list, name: str ='anim', fig: "None or matplotlib figure" = None, ax: "None or matplotlib axis" = None, xlims: "None or tuple" = None, ylims: "None or tuple" = None ) -> "matplotlib FuncAnimation" : """ Write an animation of the provided data. Writes out an H264 encoded animation of the data by default. Each data in the lists is animated with a different color, so that overlapping measurements may be inspected manually. """ if not isinstance(xdata, list): raise TypeError("xdata must be a list") elif not isinstance(ydata, list): raise TypeError("ydata must be a list") elif not isinstance(name, str): raise TypeError("name must be a string") elif not (fig is None or isinstance(fig, matplotlib.figure.Figure)): raise TypeError("fig must be a matplotlib figure") elif not (ax is None or isinstance(ax, matplotlib.axes.Axes)): raise TypeError("ax must be a matplotlib axis") elif not (xlims is None or isinstance(xlims,tuple)): raise TypeError("xlims must be None or tuple") elif not (ylims is None or isinstance(ylims,tuple)): raise TypeError("ylims must be None or tuple") elif isinstance(xlims,tuple) and not len(xlims)==2: raise ValueError("xlims must have length 2") elif isinstance(ylims,tuple) and not len(ylims)==2: raise ValueError("ylims must have length 2") prop_cycle = plt.rcParams['axes.prop_cycle'] colors = prop_cycle.by_key()['color'] if fig is None and ax is None: fig, ax = plt.subplots() elif fig is not None and ax is not None: pass else: return None if xlims is not None: ax.set_xlim(xlims) if ylims is not None: ax.set_ylim(ylims) lines = [] for i in range(len(xdata)): lobj = ax.plot([], [], lw=2, color=colors[i])[0] lines.append(lobj) def init(): for line in lines: line.set_data([],[]) return lines def animate(t): for lnum,line in enumerate(lines): line.set_data(xdata[lnum], ydata[lnum][t,:]) return line, num_frames = sorted([y.shape[0]-1 for y in ydata])[0] anim = FuncAnimation(fig, animate, init_func=init, frames=num_frames, interval=20, blit=True) anim.save(name+'.mp4', fps=30, writer='ffmpeg') return anim #~~~~~~~~~~~~~~~~~~HELPER FUNCTIONS FOR FINDING HOMOGRAPHY~~~~~~~~~~~~~~~~~~ # These functions are designed to help process calibration board images into a # homography matrix. def _find_chessboard_points(img: np.ndarray, board_size: tuple, write_dir: "string or None" = None) -> np.ndarray : """ Identify points on a chessboard image Identifies the chessboard point in a greyscale image, returning None if it is not able to find one of the specified size. Will write a sequence of images with the identified chessboard points to write_dir if a chessboard is found and write_dir is specified. Raises a TypeError or ValueError for some inputs. """ if not isinstance(img,np.ndarray): raise TypeError("img must be a numpy array") elif not (len(img.shape)==2): raise ValueError("img must have two dimensions") elif not isinstance(board_size,tuple): raise TypeError("board_size must be a tuple") elif not (len(board_size)==2): raise ValueError("board_size must have two items") elif not (isinstance(write_dir,str) or write_dir is None): raise TypeError("write_dir must be a str or None") if isinstance(write_dir,str): if not os.path.isdir(write_dir): raise ValueError("write_dir must be a valid directory") flag, corners = cv.findChessboardCorners(img,board_size) if flag: criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_COUNT, 30, 0.1) image_points = cv.cornerSubPix(img,corners,(11,11),(-1,-1),criteria) if write_dir is not None: # in this case it must be a valid directory print_chessboard_corners(img,image_points,board_size,point_dir) elif not flag: return None return image_points def _create_worldpoints_grid(board_size: tuple, square_size: 'int or float') \ -> np.ndarray: """ makes world points for the specified grid """ if not (len(board_size)==2): raise ValueError("board_size must have two items") elif not isinstance(board_size[0],(int,float)): raise TypeError("board_size[0] must be an int or float") elif not isinstance(board_size[1],(int,float)): raise TypeError("board_size[1] must be an int or float") elif not isinstance(square_size,(int,float)): raise TypeError("square_size must be an int or float") x = np.arange(0,board_size[0],1,np.float32) * square_size y = np.arange(0,board_size[1],1,np.float32) * square_size X, Y = np.meshgrid(x,y) return np.stack((X.ravel(),Y.ravel()),axis=1) def find_homography(img: np.ndarray, board_size: tuple, square_size: 'positive int or float', ret_points: bool = False) -> tuple : """ Attempts to find a homogaphy from a calibration board image. Finds a homography from a calibration board with board size equal to or less than the provided size, and greater than or equal to (3,3) Raises a TypeError or ValueError for some inputs. Raises an AssertionError if no checkerboard is found in the image. """ if not isinstance(img,np.ndarray): raise TypeError("img must be a numpy array") elif not (len(img.shape) == 2): raise ValueError("img must have two dimensions") elif not isinstance(board_size,tuple): raise TypeError("board_size must be a tuple") elif not (len(board_size) == 2): raise ValueError("board_size must have two items") elif not isinstance(square_size,(int,float)): raise TypeError("square_size but be an int or float") elif not (square_size > 0): raise ValueError("square_size non-zero and positive") # generate a list of possible grid sizes sizes = [] rng = range(board_size[1],3-1,-1) for width in range(board_size[0],3-1,-1): sizes.append(zip((width,)*len(rng),rng)) sizes = [item for subzip in sizes for item in subzip] # increment through sizes until a valid board is found counter, image_points = 0, None while image_points is None and counter < len(sizes): board_size = sizes[counter] image_points = _find_chessboard_points(img,board_size) counter += 1 # if a board is not found, raise an error assert image_points is not None, "unable to find a checkerboard in image" world_points = _create_worldpoints_grid(board_size,square_size) H, _ = cv.findHomography(image_points, world_points) if ret_points: return H, board_size, image_points, world_points return H, board_size #~~~~~~~~~~~~~~~~~~HELPER FUNCTIONS FOR PIXEL TO PHYSICAL~~~~~~~~~~~~~~~~~~ # These functions are designed to help convert pixel location data into # physical location data. def _find_lineartrend(xdata: np.ma.MaskedArray, ydata: np.ma.MaskedArray) \ -> np.ndarray : """ Identify a linear trend in the data. Identify the slope of the linear trend for the given xdata and ydata where outliers are removed. xdata and ydata must be one dimensional arrays. Inliers are determined by lying 3 standard deviations out after detrending. The return matrix, R, is a rotation matrix with rotation taken about the z axis, or the optical axis in the case of pixel data. """ if not isinstance(xdata,np.ma.MaskedArray): raise TypeError("xdata must be a numpy masked array") elif not (len(xdata.shape)==1): raise ValueError("xdata must have one dimensions") elif not isinstance(ydata,np.ma.MaskedArray): raise TypeError("ydata must be a numpy masked array") elif not (len(ydata.shape)==1): raise ValueError("ydata must have one dimensions") elif not (xdata.shape==ydata.shape): raise ValueError("xdata and ydata must have the same shape") data = np.ma.column_stack((xdata,ydata)) valid_data = np.ma.compress_rows(data) y_detrend = detrend(valid_data[:,1]) _, _, mean, var, _, _ = describe(y_detrend) std = math.sqrt(var) valid_data[:,1] = np.ma.masked_where(np.abs(y_detrend - mean) > 4*std, valid_data[:,1]) valid_data = np.ma.compress_rows(valid_data) slope = linregress(valid_data[:,0],valid_data[:,1])[0] theta = -np.arctan(slope) # construct a rotation matrix from the angle R = np.array([ [np.cos(theta),-np.sin(theta),0], [np.sin(theta), np.cos(theta),0], [0 , 0 ,1] ]) return R def _apply_homography(H: np.ndarray, vdata: np.ndarray) -> tuple : """ Apply a homography, H, to pixel data where only v of (u,v,1) is needed. Apply a homography to pixel data where only v of the (u,v,1) vector is given. It is assumed that the u coordinate begins at 0. The resulting vector (x,y,z) is normalized by z to find (x,y,1) """ if not isinstance(H,np.ndarray): raise TypeError("H must be a numpy array") elif not (H.shape==(3,3)): raise ValueError("H must have shape (3,3)") elif not isinstance(vdata,np.ma.MaskedArray): raise TypeError("vdata must be a numpy masked array") elif not (len(vdata.shape)==2): raise ValueError("vdata must have two dimensions") # build stack of (u,v,1) vectors N,M = vdata.shape u, v = np.arange(0,M,1), np.arange(0,N,1) udata = np.ma.array(np.meshgrid(u,v)[0] ,mask=vdata.mask) wdata = np.ma.array(np.ones(vdata.shape),mask=vdata.mask) data = np.ma.stack((udata.ravel(),vdata.ravel(),wdata.ravel()),axis=-1).T # apply H but ignore columns which have any masked values valid_data = np.matmul(H,np.ma.compress_cols(data)) # normalize by the second index for i in range(3): valid_data[i,:] = np.divide(valid_data[i,:],valid_data[2,:]) # extract valid values into array with original shape idx = np.ma.array(np.arange(data.shape[1]),mask=vdata.ravel().mask) valid_idx = np.ma.compressed(idx) data = np.zeros((2,data.shape[1])) data[0,valid_idx] = valid_data[0,:] data[1,valid_idx] = valid_data[1,:] data = data.reshape(2,N,M) return np.ma.array(data[0,:,:],mask=vdata.mask), \ np.ma.array(data[1,:,:],mask=vdata.mask) def _is_rotationmatrix(R: np.ndarray, tol: float = 1e-6) -> bool: """ returns True if R is a rotation matrix and False otherwise """ if not isinstance(R,np.ndarray): raise TypeError("R must be a numpy array") elif not (isinstance(tol,float) and tol > 0): raise TypeError("tol must be a positive float") if not (len(R.shape)==2 and R.shape[0]==R.shape[1]): return False Rt = np.transpose(R) Rt_dot_R = np.dot(Rt, R) I = np.identity(R.shape[0], dtype = R.dtype) n = np.linalg.norm(I - Rt_dot_R) return n < tol def _apply_rotationmatrix(R: "rotation matrix", xdata: np.ndarray, ydata: np.ndarray) -> tuple : """ applies the rotation matrix R to the vector (x,y,1) for each item in xdata and ydata """ if not isinstance(R,np.ndarray): raise TypeError("R must be a numpy array") elif not (R.shape==(3,3)): raise ValueError("R must have shape (3,3)") elif not _is_rotationmatrix(R): raise ValueError("R must be a rotation matrix") elif not isinstance(xdata,np.ma.MaskedArray): raise TypeError("xdata must be a numpy masked array") elif not isinstance(ydata,np.ma.MaskedArray): raise TypeError("ydata must be a numpy masked array") elif not (xdata.shape==ydata.shape): raise ValueError("xdata and ydata must have the same shape") N,M = ydata.shape mask = ydata.mask zdata = np.ma.ones((N,M)) data = np.matmul(R,np.stack((xdata.data,ydata.data,zdata.data),axis=0) .reshape(3,-1)).reshape(3,N,M) return np.ma.array(data[0,:,:],mask=mask), \ np.ma.array(data[1,:,:],mask=mask) def find_physical(H: np.ndarray, vdata: np.ma.MaskedArray, R: 'np.ndarray or None' = None, zero: bool = True) -> tuple : """ Finds the physical values associated with the surface line of lif data. Apply a homography, H, to pixel data then remove linear trends either by utilizing the specified value of R, or finding a trend when R is None. The first index, assumed to be the spatial index, is forced to increase in increase in value with indices with a 180 degree (pi radian) rotation about the z axis if needed. If the pixel data is taken with positive downward, as is typical, the y axis will point downward, and the z axis will point 'into the paper.' The median value of the y data is set to zero by default, as indicated with zero=True. Returns TypeError or ValueError for some inputs. """ if not isinstance(H,np.ndarray): raise TypeError("H must be a numpy array") elif not (H.shape==(3,3)): raise ValueError("H must have shape (3,3)") elif not isinstance(vdata,np.ma.MaskedArray): raise TypeError("vdata must be a numpy masked array") elif not (len(vdata.shape)==2 and vdata.shape[0]>1): raise ValueError("vdata must have two dimensions and dimension 0 must \ be greater than 1") elif not (isinstance(R,np.ndarray) or R is None): raise TypeError("R must be numpy ndarray or None") elif not isinstance(zero,bool): raise TypeError("zero must be bool") xdata, ydata = _apply_homography(H,vdata) if R is None: R = _find_lineartrend(xdata[0,:],ydata[0,:]) xdata, ydata = _apply_rotationmatrix(R,xdata,ydata) idx_sort = sorted([xdata.argmin(),xdata.argmax()]) xleft = xdata.ravel()[idx_sort[0]] xright = xdata.ravel()[idx_sort[1]] if zero: isfine = np.isfinite(ydata[~ydata.mask]) ydata = ydata - np.ma.median(ydata[~ydata.mask][isfine]) return xdata, ydata, R #~~~~~~~~~~~~~~~~~~HELPER FUNCTIONS FOR CONFORMING DATA~~~~~~~~~~~~~~~~~~ # These functions are designed to help confrom the unstructured data output by # find_physical onto structed data arrays by using scipy's implementation # of Qhull (Delaunay triangulation) def _find_integermultiple(x: float, dx: float, tol: float = 1e-6) -> int: """ Find integer multiple of dx close to x within the interval (0,x). Returns an integer, q, where q*dx is the largest value within (0,x), give or take floating point tolerance. if x is positive, returns a less positive number i.e. smaller number. if x is negative, returns a less negative number i.e. greater number. """ if not isinstance(x,float): raise TypeError("x must be a float") elif math.isnan(x): return float('nan') elif not isinstance(dx,float): raise TypeError("dx must be a float") elif not isinstance(tol,float): raise TypeError("tol must be a float") q, r = divmod(abs(x),dx) if abs(r-dx)<tol: q += 1 if x<0: q = -q return int(q) def find_interpolation(xdata: np.ndarray, ydata: np.ndarray, dx: float, tol: float = 1e-6) -> tuple : """ Interpolates xdata and ydata onto a structured grid with triangulation. Given xdata and ydata are 2D arrays where the first index is uniformly sampled, and the second index in non-uniformly sampled (as generally output by find_physical), return uniformly sampled data based on linear interpolation by Delaunay triangulation. Raises a TypeError or ValueError for some inputs. Raises AssertionError if the interpolation fails. """ if not isinstance(xdata,np.ndarray): raise TypeError("xdata must a numpy array") elif not (len(xdata.shape)==2): raise ValueError("xdata must have two dimensions") elif not isinstance(ydata,np.ndarray): raise TypeError("ydata must be a numpy array") elif not (len(ydata.shape)==2): raise ValueError("ydata must have two dimensions") elif not (xdata.shape==ydata.shape): raise ValueError("xdata and ydata must be the same shape") elif not isinstance(dx,float): raise TypeError("dx must be a float") elif not (dx > 0): raise ValueError("dx must be a positive float") elif not isinstance(tol,float): raise TypeError("tol must be a float") elif not (tol > 0): raise ValueError("tol must be a positive float") from scipy.interpolate import griddata t = np.repeat( np.arange(ydata.shape[0])[:,None],ydata.shape[1],axis=-1).ravel() x = xdata.ravel() y = ydata.ravel() for a in [t,x,y]: assert np.isfinite(a).any(), "invalid data" ti = np.arange(ydata.shape[0]) P = _find_integermultiple(np.nanmin(xdata),dx) Q = _find_integermultiple(np.nanmax(xdata),dx) xi = np.arange(P,Q+1,1) locs = (ti[:,None],dx*xi[None,:]) # t, x, and y must all be finite for valid index mask = np.isfinite(np.stack((t,x,y),axis=-1)).all(axis=-1) points = (t[mask], x[mask]) values = y[mask] assert mask.any(), "something has gone wrong..." ynew = griddata(points,values,locs,method='linear',rescale=True) # ynew lies on a convex hull from griddata # at the sides of the images there may be columns with # some nan values, however there will be some interior square # of the convex hull with no nan values # there is probably a better way to find this square, but # here we assume that cropping on just the x axis is enough mask = np.isfinite(ynew).all(axis=0) xi_start, xi_stop = xi[mask].min(), xi[mask].max() xi = np.arange(xi_start,xi_stop+1,1) ynew = ynew[:,mask] assert np.isfinite(ynew).all(), "still some nan values..." return xi.ravel(), ynew, dx #~~~~~~~~~~~~~~~~~~HELPER FUNCTIONS FOR COMBINING DATA~~~~~~~~~~~~~~~~~~ # These functions are designed to help merge LIF measurements from two # or more overlapping locations into a single data set. def find_adjustment(tdata : tuple, xdata : tuple, ydata : tuple, numstept=10,numstepx=10,tol=1e-6) -> tuple: """ Find best fit of data with temporal and spatial offset in range. Returns the tuple err, dt, dx. Finds a temporal and spatial offset to apply to the temporal and spatial locations of the lif data such that the corresponding elevation data has minimal absolute difference. find_adjustment takes a brute force approach, and will compare the difference in ydata at overlapping tdata and xdata locations for all offsets within plus or minus numstept and numstepx. By default 400 possible offsets are evaluated. tdata and xdata must be integer types in order to find the overlapping tdata and xdata locations. Raises a TypeError for some inputs. Raises a ValueError if there is no intersection in tdata & xdata, """ if not (isinstance(tdata,tuple) and len(tdata)==2): raise TypeError("tdata must be a tuple with length 2") elif not (tdata[0].dtype==int and tdata[1].dtype==int): raise TypeError(f"t in tdata must have dtype int but has dtypes " \ f"{tdata[0].dtype} and {tdata[1].dtype}") elif not (isinstance(xdata,tuple) and len(xdata)==2): raise TypeError("xdata must be a tuple with length 2") elif not (xdata[0].dtype==int and xdata[1].dtype==int): raise TypeError(f"x in xdata must have dtype int but has dtypes " \ f"{xdata[0].dtype} and {xdata[1].dtype}") elif not (isinstance(ydata,tuple) and len(ydata)==2): raise TypeError("ydata must be a tuple with length 2") # create all possibile pairs of offsets in the range if numstept == 0: dt = np.asarray([0],dtype=int) else: dt = np.arange(-numstept,numstept+1) if numstepx == 0: dx = np.asarray([0],dtype=int) else: dx = np.arange(-numstepx,numstepx+1) DT, DX = tuple(np.meshgrid(dt,dx)) pos = np.transpose(np.stack([DT.ravel(),DX.ravel()])) # for each possible offset in space and time, estimate the error err = np.empty(DT.ravel().shape) err[:] = np.nan # invalid by default for idx, p in enumerate(pos): dt, dx = p _, tidx0, tidx1 = np.intersect1d(tdata[0],tdata[1]+dt,return_indices=True) _, xidx0, xidx1 = np.intersect1d(xdata[0],xdata[1]+dx,return_indices=True) # it is possible that dt and dx will push them out of overlapping # skip in that case (err[idx] = np.nan by default) if not ( tidx0.size==0 or xidx0.size==0 or tidx1.size==0 or xidx1.size==0 ): yidx0 = tuple(np.meshgrid(tidx0,xidx0,indexing = 'ij')) yidx1 = tuple(np.meshgrid(tidx1,xidx1,indexing = 'ij')) #err[idx] = np.mean(np.abs(ydata[0][yidx0] - ydata[1][yidx1])) err[idx] = np.mean((ydata[0][yidx0] - ydata[1][yidx1])**2) # error out if there is no intersection of the data for any offset if np.isnan(err).all(): raise ValueError("xdata and tdata have no intersection") idx_min = np.nanargmin(err) dt, dx = pos[idx_min] return err[idx_min], dt, dx def find_weightedoverlap(tdata : tuple,xdata : tuple,ydata : tuple) -> tuple: """ Finds a weighted average of elevation data where there is overlap. Returns the tuple yidx0, yidx1, ylap. Finds a weighted average of elevation data where the temporal and spatial data overlap. The weights vary linearly on the spatial axis from each end of the intersection. Requires temporal and spatial data are provided in integer format (e.g. the integer n where the assocaited time is n*dt). """ if not isinstance(tdata,tuple): raise TypeError("tdata must be a tuple") elif not isinstance(xdata,tuple): raise TypeError("xdata must be a tuple") elif not isinstance(ydata,tuple): raise TypeError("ydata must be a tuple") elif not (len(tdata) == len(xdata) == len(ydata) == 2): raise ValueError("tdata, xdata, and ydata must have len of two") elif not (len(tdata[0].shape) == 1 and len(tdata[1].shape) == 1): raise ValueError("each item in tdata must have one axis") elif not (len(xdata[0].shape) == 1 and len(xdata[1].shape) == 1): raise ValueError("each item in xdata must have one axis") elif not (len(ydata[0].shape) == 2 and len(ydata[1].shape) == 2): raise ValueError("each item in ydata must have two axes") elif not np.all(np.diff(tdata[0]) > 0) and np.all(np.diff(tdata[1]) > 0): raise ValueError("each item in tdata must be monotonically increasing") elif not np.all(np.diff(xdata[0]) > 0) and np.all(np.diff(xdata[1]) > 0): raise ValueError("each item in xdata must be monotonically increasing") elif not (xdata[0].min() < xdata[1].min() and xdata[0].max() < xdata[1].max()): raise ValueError("xdata[0] must start and end lower in value than xdata[1]") # Assume uniformly sampled in both time and space # Assume tdata and xdata are integer type arrays for both items in tuple _, tidx0, tidx1 = np.intersect1d(tdata[0],tdata[1],return_indices=True) _, xidx0, xidx1 = np.intersect1d(xdata[0],xdata[1],return_indices=True) yidx0 = tuple(np.meshgrid(tidx0,xidx0,indexing = 'ij')) yidx1 = tuple(np.meshgrid(tidx1,xidx1,indexing = 'ij')) P, Q = len(xdata[0][xidx0]), len(tdata[0][tidx0]) w0 = np.repeat(np.linspace(1,0,P).reshape(1,P),Q,axis=0) w1 = np.repeat(np.linspace(0,1,P).reshape(1,P),Q,axis=0) ylap = w0*(ydata[0][yidx0]) + w1*(ydata[1][yidx1]) return yidx0, yidx1, ylap def list_adjust_data(tdata: list, xdata: list, ydata: list, copy: bool = True, numstept: int = 10, numstepx: int = 10) -> tuple: """ Returns the recommended adjustments for tdata and xdata as (adjust_t, adjust_x). By default creates a copy of the data to modify, otherwise the input data will be modified in place. """ # Input checking TBD # create a copy of each numpy array if copy: tdata = [t.copy() for t in tdata] xdata = [x.copy() for x in xdata] ydata = [y.copy() for y in ydata] adjust_t = np.zeros((len(ydata)-1,),dtype=int) adjust_x = np.zeros((len(ydata)-1,),dtype=int) for idx, t1, t2, x1, x2, y1, y2 in zip(range(len(tdata)-1), tdata[:-1],tdata[1:], xdata[:-1],xdata[1:], ydata[:-1],ydata[1:]): _, dt, dx = find_adjustment((t1,t2),(x1,x2),(y1,y2), numstept=numstept, numstepx=numstepx) adjust_t[idx] = dt adjust_x[idx] = dx t2 += dt dx += dx return adjust_t, adjust_x def list_merge_data(tdata: list, xdata: list, ydata: list, adjust: bool = False) -> tuple: """ Returns the tuple t, x, y where each is a single np.ndarray merged from the data provided as a list. If adjust=True, applies an adjustment offset to tdata and xdata based on the output of find_adjustment Raises a TypeError or ValueError for some inputs. """ if not isinstance(tdata,list): raise TypeError("tdata must be a list") elif not isinstance(xdata,list): raise TypeError("xdata must be a list") elif not isinstance(ydata,list): raise TypeError("ydata must be a list") elif not (len(tdata) == len(xdata) == len(ydata)): raise ValueError("tdata, xdata, and ydata must have the same length") elif not isinstance(adjust,bool): raise TypeError("adjust must be a bool") # each element should be a numpy array tdata_type = [ isinstance(t,np.ndarray) for t in tdata ] xdata_type = [ isinstance(x,np.ndarray) for x in xdata ] ydata_type = [ isinstance(y,np.ndarray) for y in ydata ] if not all(tdata_type): raise TypeError("all elements in tdata must be np.ndarray") elif not all(xdata_type): raise TypeError("all elements in xdata must be np.ndarray") elif not all(ydata_type): raise TypeError("all elements in ydata must be np.ndarray") # make sure all y are (N,M), t is (N,) and x is (M,) shape_compare = [ y.shape == t.shape + x.shape for t,x,y in zip(tdata,xdata,ydata) ] tdata_shape_len = [ len(t.shape)==1 for t in tdata ] xdata_shape_len = [ len(x.shape)==1 for x in xdata ] ydata_shape_len = [ len(y.shape)==2 for y in ydata ] # make sure location data is monotonically increasing with index tdata_monotonic = [ np.all(np.diff(t)>0) for t in tdata ] xdata_monotonic = [ np.all(np.diff(x)>0) for x in xdata ] if not all(shape_compare): raise ValueError("shape must match all data") elif not all(tdata_shape_len): raise ValueError("each item in tdata must have 1 axis") elif not all(xdata_shape_len): raise ValueError("each item in xdata must have 1 axis") elif not all(ydata_shape_len): raise ValueError("each item in ydata must have 2 axes") elif not all(tdata_monotonic): raise ValueError("each item in tdata must be monotonically increasing") elif not all(xdata_monotonic): raise ValueError("each item in xdata must be monotonically increasing") xdata_min = np.array([ x.min() for x in xdata ],dtype=int) xdata_max = np.array([ x.max() for x in xdata ],dtype=int) # each item in tdata should overlap but not lie within its neighbors # we have already checked that tdata is mononotically increasing for each # item in the list, now we must sort the list by min and max # if they are the same sort, then they are increasing but do not lie # within each other (they might not overlap at this point) xdata_min_sortidx = np.argsort(xdata_min) xdata_max_sortidx = np.argsort(xdata_max) if not (xdata_min_sortidx == xdata_max_sortidx).all(): raise ValueError("some xdata lies entirely within another, all xdata" \ "must have some unique measurements") # sort all by increasing xdata sortidx = xdata_min_sortidx tdata = [ tdata[idx] for idx in sortidx ] xdata = [ xdata[idx] for idx in sortidx ] ydata = [ ydata[idx] for idx in sortidx ] # now that they are sorted in increasing order, ensure that each # overlaps with the next xdata_overlapping = np.greater(xdata_max[sortidx][:-1],xdata_min[sortidx][1:]).all() if not xdata_overlapping: raise ValueError("not all xdata are overlapping when sorted") # this may not be enough checks for data that is not uniformly sampled # these checks appear to be enought for data with a step size of 1, i.e. # all([ np.all(np.diff(t)==1) for t in tdata ]) = True # all([ np.all(np.diff(x)==1) for x in xdata ]) = True # so there may be some edge cases that are not tested for if the above # conditions are not true if adjust: for t1, t2, x1, x2, y1, y2 in zip(tdata[:-1],tdata[1:],xdata[:-1],xdata[1:], ydata[:-1],ydata[1:]): _, dt, dx = find_adjustment((t1,t2),(x1,x2),(y1,y2)) # assumes that t2 and x2 are references to the arrays so that they may be # modified in place without fancy footwork in the zip t2 += dt x2 += dx # now find a time array that intersects with all tdata time = np.intersect1d(tdata[0],tdata[1]) for t in tdata[2:]: time = np.intersect1d(t,time) if time.size == 0: raise ValueError("there is no overlap in tdata") # reduce data in lists to intersect time exclusively for idx,t,y in zip(range(len(tdata)),tdata,ydata): _, tidx, _ = np.intersect1d(t,time,return_indices=True) tdata[idx] = t[tidx] ydata[idx] = y[tidx,:] # replace ydata in overlapping regions for idx in range(len(tdata)-1): yidx1, yidx2, ylap = find_weightedoverlap((tdata[idx],tdata[idx+1]), (xdata[idx],xdata[idx+1]), (ydata[idx],ydata[idx+1])) ydata[idx ][yidx1] = ylap ydata[idx+1][yidx2] = ylap # combine xdata and ydata into a single array by appending non-overlapping # data. Here is is assumed that the overlapping data was included in the # perviously appended data and that all data is on the same time for axis 0 space = xdata[0] elevation = ydata[0] for x1, x2, _, y2 in zip(xdata[:-1],xdata[1:],ydata[:-1],ydata[1:]): _, _, xidx2 = np.intersect1d(x1,x2,return_indices=True) xmask2 = np.ones(x2.shape,dtype=bool) xmask2[xidx2] = False space = np.append(space,x2[xmask2]) elevation = np.append(elevation,y2[:,xmask2],axis=1) return time, space, elevation #~~~~~~~~~~~~~~~~~~HELPER FUNCTIONS FOR ESTIMATING DEPTH~~~~~~~~~~~~~~~~~~ # these funtions are not complete or well tested def __find_camerapose(img,board_size,square_size,camera_matrix, dist_coefs): """ estimate camera pose in the opencv sense""" image_points = find_chessboard_points(img,board_size) world_points = np.zeros((board_size[0]*board_size[1],3), np.float32) world_points[:,:2] = np.mgrid[0:board_size[0],0:board_size[1]].T.reshape(-1,2) _, rvecs, t = cv.solvePnP(world_points, image_points, camera_matrix, dist_coefs) R, _ = cv.Rodrigues(rvecs) if R[0][0] < 0: theta = 3.14 Rtemp = np.array([ [np.cos(theta),-np.sin(theta),0], [np.sin(theta),np.cos(theta),0], [0,0,1] ]) R = Rtemp.dot(R) return R,t def __find_pixelunitvector(u,v,camera_matrix): """ estimate unit vector in pixel space """ fx = camera_matrix[0,0] cx = camera_matrix[0,2] fy = camera_matrix[1,1] cy = camera_matrix[1,2] uvec = np.array([(u-cx)/fx,(v-cy)/fy,1]) return uvec/np.linalg.norm(uvec) def __apply_snellslaw(ivec,nvec,n1,n2): """ estimate refraction from snells law """ assert type(ivec) is np.ndarray and ivec.shape == (3,) \ and np.isfinite(ivec).all() \ and type(nvec) is np.ndarray and nvec.shape == (3,) \ and np.isfinite(nvec).all() \ and type(n1) is float and type(n2) is float, 'invalid input' mu = n1/n2 n_dot_i = nvec.dot(ivec) tvec = np.sqrt(1-((mu**2)*(1 - n_dot_i**2)))*nvec \ + mu*(ivec-(n_dot_i*nvec)) assert check_snellslaw(ivec,tvec,nvec,n1,n2), f"invalid input with i: {ivec[0]}, j: {ivec[1]}, k:{ivec[2]}" return tvec def __check_snellslaw(ivec,tvec,nvec,n1,n2,tol=1e-6): """ check if vector is estimate of snells law""" assert type(ivec) is np.ndarray and ivec.shape == (3,) \ and np.isfinite(ivec).all() \ and type(tvec) is np.ndarray and tvec.shape == (3,) \ and np.isfinite(tvec).all() \ and type(nvec) is np.ndarray and nvec.shape == (3,) \ and np.isfinite(nvec).all() \ and type(n1) is float and type(n2) is float and type(tol) is float, 'invalid input' return (np.cross(nvec,tvec) - (n1/n2)*
np.cross(nvec,ivec)
numpy.cross
#!flask/bin/python import os import numpy as np from scipy import signal from scipy.stats import describe from tensorflow.keras.models import load_model from tensorflow.keras.metrics import mean_squared_error #import tflite_runtime.interpreter as tflite import tensorflow as tf # import tensorflow.keras as keras # from Custom_Layers import Dropout_Live from joblib import dump, load cwd = os.path.dirname(os.path.abspath(__file__)) class RunModels(object): def __init__(self,preload_models,basePath,desktop=False): self.basePath = basePath self.preload_models = preload_models if preload_models == True: self.pca_gmm_model = load(basePath + "Models/GMM/PCA-GMM.joblib") #self.cnn_ae_model = load_model(basePath + "Models/Autoencoder/Full/CNN-AE.h5") #self.ae_model = load_model(basePath + "Models/Autoencoder/Full/AE.h5") self.cnn_ae_lite_model = tf.lite.Interpreter(model_path=self.basePath + "Models/Autoencoder/Lite/CNN-AE-Lite.tflite") self.pca_gnb_model = load(basePath + "Models/GNB/PCA-GNB.joblib") #self.mlp_model = load_model(basePath + "Models/MLP-Classifier/Full/MLP.h5") #self.cnn_mlp_model = load_model(basePath + "Models/MLP-Classifier/Full/CNN-MLP.h5") self.cnn_mlp_lite_model = tf.lite.Interpreter(model_path=self.basePath + "Models/MLP-Classifier/Lite/CNN-MLP-Lite.tflite") def classifier_inference_full(self,values,modelId): xInference = np.atleast_2d(np.array(values).astype(np.float32)) if self.preload_models: if 'cnn' in modelId.lower(): model = self.cnn_mlp_model else: model = self.mlp_model else: if 'cnn' in modelId.lower(): model = load_model(self.basePath + "Models/MLP-Classifier/Full/CNN-MLP.h5") else: model = load_model(self.basePath + "Models/MLP-Classifier/Full/MLP.h5") X_predict = np.atleast_2d(xInference) if 'cnn' in modelId.lower(): X_predict = X_predict[...,np.newaxis] predict = model.predict(X_predict) classification = predict[0,0].astype(float) return classification def model_inference_full(self,values,modelId): xInference = np.atleast_2d(
np.array(values)
numpy.array
import numpy as np import matplotlib.pyplot as plt # be careful with deep and shallow copies class Quat(object): def __init__(self, *args, **kwargs): self.quatCoef = np.zeros(4, dtype=float) # construt with Bunge euler angles (radians, ZXZ) if len(args) == 3: ph1 = args[0] phi = args[1] ph2 = args[2] self.quatCoef[0] = np.cos(phi / 2.0) * np.cos((ph1 + ph2) / 2.0) self.quatCoef[1] = -np.sin(phi / 2.0) * np.cos((ph1 - ph2) / 2.0) self.quatCoef[2] = -np.sin(phi / 2.0) * np.sin((ph1 - ph2) / 2.0) self.quatCoef[3] = -np.cos(phi / 2.0) * np.sin((ph1 + ph2) / 2.0) # construt with array of quat coefficients elif len(args) == 1: self.quatCoef = args[0] # construt with quat coefficients elif len(args) == 4: self.quatCoef[0] = args[0] self.quatCoef[1] = args[1] self.quatCoef[2] = args[2] self.quatCoef[3] = args[3] if (self.quatCoef[0] < 0): self.quatCoef = self.quatCoef * -1 # overload static method with instance method of same name in object self.plotIPF = self._plotIPF @classmethod def fromAxisAngle(cls, axis, angle): """Create a quat object from an axis angle pair Args: axis (np.array size 3): Axis of rotation angle (float): Rotation arround axis (radians) Returns: Quat: Initialised Quat object """ # normalise the axis vector axis = axis / np.sqrt(np.dot(axis, axis)) # calculate quat coefficients quatCoef = np.zeros(4, dtype=float) quatCoef[0] = np.cos(angle / 2) quatCoef[1:4] = np.sin(angle / 2) * axis # call constructor return cls(quatCoef) def eulerAngles(self): # See Melcher, <NAME>, <NAME>, <NAME>, B. Conversion of EBSD data by a # quaternion based algorithm to be used for grain structure simulations # or # Rowenhorst, D et al. Consistent representations of and conversions between 3D rotations # P = +1 eulers = np.empty(3, dtype=float) q = self.quatCoef q03 = q[0]**2 + q[3]**2 q12 = q[1]**2 + q[2]**2 chi = np.sqrt(q03 * q12) if (chi == 0 and q12 == 0): eulers[0] = np.arctan2(-2 * q[0] * q[3], q[0]**2 - q[3]**2) eulers[1] = 0 eulers[2] = 0 elif (chi == 0 and q03 == 0): eulers[0] = np.arctan2(2 * q[1] * q[2], q[1]**2 - q[2]**2) eulers[1] = np.pi eulers[2] = 0 else: cosPh1 = (-q[0] * q[1] - q[2] * q[3]) / chi sinPh1 = (-q[0] * q[2] + q[1] * q[3]) / chi cosPhi = q[0]**2 + q[3]**2 - q[1]**2 - q[2]**2 sinPhi = 2 * chi cosPh2 = (-q[0] * q[1] + q[2] * q[3]) / chi sinPh2 = (q[1] * q[3] + q[0] * q[2]) / chi eulers[0] = np.arctan2(sinPh1, cosPh1) eulers[1] = np.arctan2(sinPhi, cosPhi) eulers[2] = np.arctan2(sinPh2, cosPh2) if eulers[0] < 0: eulers[0] += 2 * np.pi if eulers[2] < 0: eulers[2] += 2 * np.pi return eulers def rotMatrix(self): rotMatrix = np.empty((3, 3), dtype=float) q = self.quatCoef qbar = q[0]**2 - q[1]**2 - q[2]**2 - q[3]**2 rotMatrix[0, 0] = qbar + 2 * q[1]**2 rotMatrix[0, 1] = 2 * (q[1] * q[2] - q[0] * q[3]) rotMatrix[0, 2] = 2 * (q[1] * q[3] + q[0] * q[2]) rotMatrix[1, 0] = 2 * (q[1] * q[2] + q[0] * q[3]) rotMatrix[1, 1] = qbar + 2 * q[2]**2 rotMatrix[1, 2] = 2 * (q[2] * q[3] - q[0] * q[1]) rotMatrix[2, 0] = 2 * (q[1] * q[3] - q[0] * q[2]) rotMatrix[2, 1] = 2 * (q[2] * q[3] + q[0] * q[1]) rotMatrix[2, 2] = qbar + 2 * q[3]**2 return rotMatrix # show components when the quat is printed def __repr__(self): return "[%.4f, %.4f, %.4f, %.4f]" % (self.quatCoef[0], self.quatCoef[1], self.quatCoef[2], self.quatCoef[3]) def __str__(self): return "[%.4f, %.4f, %.4f, %.4f]" % (self.quatCoef[0], self.quatCoef[1], self.quatCoef[2], self.quatCoef[3]) def _plotIPF(self, direction, symGroup, **kwargs): Quat.plotIPF([self], direction, symGroup, **kwargs) # overload * operator for quaterion product and vector product def __mul__(self, right): if isinstance(right, type(self)): # another quat newQuatCoef = np.zeros(4, dtype=float) newQuatCoef[0] = (self.quatCoef[0] * right.quatCoef[0] - np.dot(self.quatCoef[1:4], right.quatCoef[1:4])) newQuatCoef[1:4] = (self.quatCoef[0] * right.quatCoef[1:4] + right.quatCoef[0] * self.quatCoef[1:4] + np.cross(self.quatCoef[1:4], right.quatCoef[1:4])) return Quat(newQuatCoef) raise TypeError() # # overload % operator for dot product # def __mod__(self, right): def dot(self, right): if isinstance(right, type(self)): return np.dot(self.quatCoef, right.quatCoef) raise TypeError() # overload + operator def __add__(self, right): if isinstance(right, type(self)): return Quat(self.quatCoef + right.quatCoef) raise TypeError() # overload += operator def __iadd__(self, right): if isinstance(right, type(self)): self.quatCoef += right.quatCoef return self raise TypeError() # allow array like setting/getting of components def __getitem__(self, key): return self.quatCoef[key] def __setitem__(self, key, value): self.quatCoef[key] = value return def norm(self): return np.sqrt(np.dot(self.quatCoef[0:4], self.quatCoef[0:4])) def normalise(self): self.quatCoef /= self.norm() return # also the inverse if this is a unit quaterion @property def conjugate(self): return Quat(self.quatCoef[0], -self.quatCoef[1], -self.quatCoef[2], -self.quatCoef[3]) def transformVector(self, vector): """Transforms vector by the quaternion. For EBSD quaterions this is a transformation from sample space to crystal space. Perform on conjugate of quaternion for crystal to sample. Args: vector (numpy.ndarray): Vector to transform Returns: numpy.ndarray: Transformed vector """ if isinstance(vector, np.ndarray) and vector.shape == (3,): vectorQuat = Quat(0, vector[0], vector[1], vector[2]) vectorQuatTransformed = (self * vectorQuat) * self.conjugate vectorTransformed = vectorQuatTransformed.quatCoef[1:4] return vectorTransformed raise TypeError("Vector must be a size 3 numpy array.") def misOri(self, right, symGroup, returnQuat=0): """Calculate misorientation angle between 2 orientations taking into account the symmetries of the crystal structure. Angle is 2*arccos(output). Args: rigth (quat): Orientation to find misorientation to symGroup (str): Crystal type (cubic, hexagonal) returnQuat (int): What to return Returns: various: returnQuat = 0 - misorientation returnQuat = 1 - symmetric equivalent with min misorientation returnQuat = 2 - both """ if isinstance(right, type(self)): minMisOri = 0 # actually looking for max of this as it is cos of misoriention angle for sym in Quat.symEqv(symGroup): # loop over symmetrically equivelent orienations quatSym = sym * right currentMisOri = abs(self.dot(quatSym)) if currentMisOri > minMisOri: # keep if misorientation lower minMisOri = currentMisOri minQuatSym = quatSym if returnQuat == 1: return minQuatSym elif returnQuat == 2: return minMisOri, minQuatSym else: return minMisOri raise TypeError("Input must be a quaternion.") def misOriAxis(self, right): """Calculate misorientation axis between 2 orientations. This does not consider symmetries of the crystal structure. Args: rigth (quat): Orientation to find misorientation axis to Returns: numpy.ndarray: axis of misorientation """ if isinstance(right, type(self)): Dq = right * self.conjugate Dq = Dq.quatCoef misOriAxis = (2 * Dq[1:4] * np.arccos(Dq[0])) / np.sqrt(1 - np.power(Dq[0], 2)) return misOriAxis raise TypeError("Input must be a quaternion.") # Static methods @staticmethod def createManyQuats(eulerArray): """Create a an array of quats from an array of Euler angles Args: eulerArray (array): Size 3 x n x ... x m """ ph1 = eulerArray[0] phi = eulerArray[1] ph2 = eulerArray[2] oriShape = eulerArray.shape[1:] quatComps = np.zeros((4,) + oriShape, dtype=float) quatComps[0] = np.cos(phi / 2.0) * np.cos((ph1 + ph2) / 2.0) quatComps[1] = -np.sin(phi / 2.0) * np.cos((ph1 - ph2) / 2.0) quatComps[2] = -np.sin(phi / 2.0) * np.sin((ph1 - ph2) / 2.0) quatComps[3] = -np.cos(phi / 2.0) * np.sin((ph1 + ph2) / 2.0) quats = np.empty(oriShape, dtype=Quat) for idx in np.ndindex(oriShape): quats[idx] = Quat(quatComps[(slice(None),) + idx]) # quatComps[(slice(None),) + idx] is equivalent to quatComps[:, idx[0], ..., idx[n]] return quats @staticmethod def calcSymEqvs(quats, symGroup): syms = Quat.symEqv(symGroup) quatComps = np.empty((len(syms), 4, len(quats))) # store quat components in array for i, quat in enumerate(quats): quatComps[0, :, i] = quat.quatCoef # calculate symmetrical equivalents for i, sym in enumerate(syms[1:], start=1): # sym[i] * quat for all points (* is quaternion product) quatComps[i, 0, :] = (quatComps[0, 0, :] * sym[0] - quatComps[0, 1, :] * sym[1] - quatComps[0, 2, :] * sym[2] - quatComps[0, 3, :] * sym[3]) quatComps[i, 1, :] = (quatComps[0, 0, :] * sym[1] + quatComps[0, 1, :] * sym[0] - quatComps[0, 2, :] * sym[3] + quatComps[0, 3, :] * sym[2]) quatComps[i, 2, :] = (quatComps[0, 0, :] * sym[2] + quatComps[0, 2, :] * sym[0] - quatComps[0, 3, :] * sym[1] + quatComps[0, 1, :] * sym[3]) quatComps[i, 3, :] = (quatComps[0, 0, :] * sym[3] + quatComps[0, 3, :] * sym[0] - quatComps[0, 1, :] * sym[2] + quatComps[0, 2, :] * sym[1]) # swap into positve hemisphere if required quatComps[i, :, quatComps[i, 0, :] < 0] = -quatComps[i, :, quatComps[i, 0, :] < 0] return quatComps @staticmethod def calcAverageOri(quatComps): avOri = np.copy(quatComps[0, :, 0]) currMisOris = np.empty(quatComps.shape[0]) for i in range(1, quatComps.shape[2]): # calculate misorientation between current average and all symmetrical equivalents # Dot product of each symm quat in quatComps with refOri for point i currMisOris[:] = abs(np.einsum("ij,j->i", quatComps[:, :, i], avOri)) # find min misorientation with current average then add to it maxIdx = np.argmax(currMisOris[:]) avOri += quatComps[maxIdx, :, i] # Convert components back to a quat and normalise avOri = Quat(avOri) avOri.normalise() return avOri @staticmethod def calcMisOri(quatComps, refOri): misOris = np.empty((quatComps.shape[0], quatComps.shape[2])) # Dot product of each quat in quatComps with refOri misOris[:, :] = abs(np.einsum("ijk,j->ik", quatComps, refOri.quatCoef)) maxIdxs0 = np.argmax(misOris, axis=0) maxIdxs1 = np.arange(misOris.shape[1]) minMisOris = misOris[maxIdxs0, maxIdxs1] minQuatComps = quatComps[maxIdxs0, :, maxIdxs1].transpose() minMisOris[minMisOris > 1] = 1 return minMisOris, minQuatComps @staticmethod def polarAngles(x, y, z): mod = np.sqrt(x**2 + y**2 + z**2) x = x / mod y = y / mod z = z / mod # alpha - angle with z axis alpha = np.arccos(z) # beta - angle around z axis beta = np.arctan2(y, x) return alpha, beta @staticmethod def stereoProject(*args): if len(args) == 3: alpha, beta = Quat.polarAngles(args[0], args[1], args[2]) elif len(args) == 2: alpha, beta = args else: raise Exception("3 arguments for pole directions and 2 for polar angles.") alphaComp = np.tan(alpha / 2) xp = alphaComp * np.cos(beta) yp = alphaComp * np.sin(beta) return xp, yp @staticmethod def plotLine(startPoint, endPoint, plotSymmetries=False, symGroup=None, res=100, projection=None, ax=None, **kwargs): if projection is None: projection = Quat.stereoProject if ax is None: ax = plt.gca() lines = [] lines.append((startPoint, endPoint)) if plotSymmetries: if symGroup is None: raise Exception("Please provide a symGroup") for symm in Quat.symEqv(symGroup)[1:]: startPointSymm = symm.transformVector(startPoint).astype(int) endPointSymm = symm.transformVector(endPoint).astype(int) if startPointSymm[2] < 0: startPointSymm *= -1 if endPointSymm[2] < 0: endPointSymm *= -1 lines.append((startPointSymm, endPointSymm)) linePoints = np.zeros((3, res), dtype=float) for line in lines: for i in range(3): if line[0][i] == line[1][i]: linePoints[i] = np.full(res, line[0][i]) else: linePoints[i] =
np.linspace(line[0][i], line[1][i], res)
numpy.linspace
""" Skeleton example of a Ginga local plugin called 'MyLocalPlugin' To enable it, run ginga with the command $ ginga --plugins=MyLocalPlugin it will then be available from the "Operations" button. """ from ginga import GingaPlugin from ginga.gw import Widgets # import any other modules you want here--it's a python world! import os from datetime import datetime as dt import numpy as np from ginga import GingaPlugin, RGBImage, colors from ginga.gw import Widgets from ginga.misc import ParamSet, Bunch from ginga.util import dp from ginga.gw.GwHelp import FileSelection from astropy.io import fits from astropy.modeling import models, fitting from scipy import ndimage import socket class CSU_initializer(GingaPlugin.LocalPlugin): def __init__(self, fv, fitsimage): """ This method is called when the plugin is loaded for the first time. ``fv`` is a reference to the Ginga (reference viewer) shell and ``fitsimage`` is a reference to the specific ImageViewCanvas object associated with the channel on which the plugin is being invoked. You need to call the superclass initializer and then do any local initialization. """ super(CSU_initializer, self).__init__(fv, fitsimage) # Load plugin preferences prefs = self.fv.get_preferences() self.settings = prefs.createCategory('plugin_CSU_initializer') self.settings.setDefaults(ibar_num=1, mbar_num=1, ebar_num=1, move_to_open=False, bar_dest=0.0, bar_pos=137.0, ) self.settings.load(onError='silent') self.instrument_hosts = ['vm-mosfire', 'nuu', 'vm-mosfirebld'] self.hostname = socket.gethostname().split('.')[0].lower() self.bars_analysis = None self.state_analysis = None self.bars_file = None self.state_file = None self.bars_header = None self.state_header = None self.layertag = 'bars-canvas' self.dc = fv.get_draw_classes() canvas = self.dc.DrawingCanvas() canvas.enable_draw(False) canvas.set_surface(self.fitsimage) self.canvas = canvas self.colornames = colors.get_colors() self.canvas_img = None self.mfilesel = FileSelection(self.fv.w.root.get_widget()) ## Fit relationship between bar position and pixels tick = dt.now() pixels, physical = self.get_data() self.fit_transforms(pixels, physical) tock = dt.now() elapsed = (tock-tick).total_seconds() # print('Completed fit of transforms in {:.3f} s'.format(elapsed)) ## Determine slit angle and bar center to center distance in pixels ## from the transformation and the known longslit positions ## in longslit, bar 02 is at 145.472 ## in longslit, bar 92 is at 129.480 physical = [ [145.472, self.bar_to_slit(2)], [129.480, self.bar_to_slit(92)] ] pixels = self.physical_to_pixel(physical) dx = pixels[1][0] - pixels[0][0] dy = pixels[0][1] - pixels[1][1] self.slit_angle_pix = np.arctan(dx/dy) # print("Slit Angle on CCD = {:.3f} deg".format(self.slit_angle_pix * 180./np.pi)) self.slit_height_pix = dy / (self.bar_to_slit(92) - self.bar_to_slit(2)) # print("Slit Height on CCD = {:.3f} pix".format(self.slit_height_pix)) def build_gui(self, container): """ This method is called when the plugin is invoked. It builds the GUI used by the plugin into the widget layout passed as ``container``. This method may be called many times as the plugin is opened and closed for modal operations. The method may be omitted if there is no GUI for the plugin. This specific example uses the GUI widget set agnostic wrappers to build the GUI, but you can also just as easily use explicit toolkit calls here if you only want to support one widget set. """ top = Widgets.VBox() top.set_border_width(4) # this is a little trick for making plugins that work either in # a vertical or horizontal orientation. It returns a box container, # a scroll widget and an orientation ('vertical', 'horizontal') vbox, sw, orientation = Widgets.get_oriented_box(container) vbox.set_border_width(4) vbox.set_spacing(2) self.msg_font = self.fv.get_font("sansFont", 12) ## ----------------------------------------------------- ## Acquire or Load Image ## ----------------------------------------------------- fr = Widgets.Frame("Image the CSU Mask") vbox.add_widget(fr, stretch=0) btns1 = Widgets.HBox() btns1.set_spacing(1) btn_acq_im = Widgets.Button("Acquire Mask Image") btn_acq_im.add_callback('activated', lambda w: self.acq_mask_image()) btns1.add_widget(btn_acq_im, stretch=0) btns1.add_widget(Widgets.Label(''), stretch=1) vbox.add_widget(btns1, stretch=0) ## ----------------------------------------------------- ## Analyze Image ## ----------------------------------------------------- fr = Widgets.Frame("Analyze CSU Mask Image") vbox.add_widget(fr, stretch=0) btns2 = Widgets.HBox() btns2.set_spacing(3) btn_analyze = Widgets.Button("Analyze Mask Image") btn_analyze.add_callback('activated', lambda w: self.analyze_mask_image()) btns2.add_widget(btn_analyze, stretch=0) btns2.add_widget(Widgets.Label(''), stretch=1) btn_overlay = Widgets.Button("Overlay Analysis Results") btn_overlay.add_callback('activated', lambda w: self.overlay_analysis_results()) btns2.add_widget(btn_overlay, stretch=0) btns2.add_widget(Widgets.Label(''), stretch=1) vbox.add_widget(btns2, stretch=0) ## ----------------------------------------------------- ## Edit Analysis Results ## ----------------------------------------------------- fr = Widgets.Frame("Edit Analysis Results") captions = [ ("Set Bar Number", 'label',\ 'set_ebar_num', 'entry',),\ ("Set Position", 'label',\ 'set_bar_pos', 'entry'),\ ("Edit Bar #", 'label',\ 'ebar_num', 'llabel', 'to', 'label', 'bar_pos', 'llabel', "mm", 'label',\ "Edit Bar", 'button'), ] w, b = Widgets.build_info(captions, orientation=orientation) self.w.update(b) ebar_num = int(self.settings.get('ebar_num', 1)) b.ebar_num.set_text('{:2d}'.format(ebar_num)) b.set_ebar_num.set_text('{:2d}'.format(ebar_num)) b.set_ebar_num.add_callback('activated', self.set_ebar_num_cb) b.set_ebar_num.set_tooltip("Set bar number to move") bar_pos = float(self.settings.get('bar_pos', 0.0)) b.bar_pos.set_text('{:+.1f}'.format(bar_pos)) b.set_bar_pos.set_text('{:+.1f}'.format(bar_pos)) b.set_bar_pos.add_callback('activated', self.set_bar_pos_cb) b.set_bar_pos.set_tooltip("Set distance to move bar") b.edit_bar.add_callback('activated', lambda w: self.edit_bar()) fr.set_widget(w) vbox.add_widget(fr, stretch=0) ## ----------------------------------------------------- ## Bar Overlay ## ----------------------------------------------------- fr = Widgets.Frame("Bar Positions Overlay") vbox.add_widget(fr, stretch=0) btns1 = Widgets.HBox() btns1.set_spacing(1) btn_csu_bar_state = Widgets.Button("From csu_bar_state") btn_csu_bar_state.add_callback('activated', lambda w: self.overlaybars_from_file()) btns1.add_widget(btn_csu_bar_state, stretch=0) btns1.add_widget(Widgets.Label(''), stretch=1) btn_fits_header = Widgets.Button("From FITS Header") btn_fits_header.add_callback('activated', lambda w: self.overlaybars_from_header()) btns1.add_widget(btn_fits_header, stretch=0) btns1.add_widget(Widgets.Label(''), stretch=1) vbox.add_widget(btns1, stretch=0) btns2 = Widgets.HBox() btns2.set_spacing(1) btn_clear = Widgets.Button("Clear Overlays") btn_clear.add_callback('activated', lambda w: self.clear_canvas()) btns2.add_widget(btn_clear, stretch=0) btns2.add_widget(Widgets.Label(''), stretch=1) vbox.add_widget(btns2, stretch=0) ## ----------------------------------------------------- ## Initialize Bar ## ----------------------------------------------------- fr = Widgets.Frame("Individual Bar Initialization") captions = [ ("Set Bar Number", 'label',\ 'set_ibar_num', 'entry',),\ ("Initialize Bar #", 'label',\ 'ibar_num', 'llabel',\ "Initialize Bar", 'button',\ "Open Before Init", 'checkbutton'), ] w, b = Widgets.build_info(captions, orientation=orientation) self.w.update(b) ibar_num = int(self.settings.get('ibar_num', 1)) b.ibar_num.set_text('{:2d}'.format(ibar_num)) b.set_ibar_num.set_text('{:2d}'.format(ibar_num)) b.set_ibar_num.add_callback('activated', self.set_ibar_num_cb) b.set_ibar_num.set_tooltip("Set bar number to initialize") b.open_before_init.set_tooltip("Move bar to open position before initialization") open_before_init = self.settings.get('move_to_open', False) b.open_before_init.set_state(open_before_init) b.open_before_init.add_callback('activated', self.open_before_init_cb) b.initialize_bar.add_callback('activated', lambda w: self.initialize_bar()) fr.set_widget(w) vbox.add_widget(fr, stretch=0) ## ----------------------------------------------------- ## Move Bar ## ----------------------------------------------------- # Frame for instructions and add the text widget with another # blank widget to stretch as needed to fill emp fr = Widgets.Frame("Individual Bar Control") captions = [ ("Set Bar Number", 'label',\ 'set_mbar_num', 'entry',),\ ("Set Destination", 'label',\ 'set_bar_dest', 'entry'),\ ("Move Bar #", 'label',\ 'mbar_num', 'llabel', 'to', 'label', 'bar_dest', 'llabel', "mm", 'label',\ "Move Bar", 'button'), ] w, b = Widgets.build_info(captions, orientation=orientation) self.w.update(b) mbar_num = int(self.settings.get('mbar_num', 1)) b.mbar_num.set_text('{:2d}'.format(mbar_num)) b.set_mbar_num.set_text('{:2d}'.format(mbar_num)) b.set_mbar_num.add_callback('activated', self.set_mbar_num_cb) b.set_mbar_num.set_tooltip("Set bar number to move") bar_dest = float(self.settings.get('bar_dest', 0.0)) b.bar_dest.set_text('{:+.1f}'.format(bar_dest)) b.set_bar_dest.set_text('{:+.1f}'.format(bar_dest)) b.set_bar_dest.add_callback('activated', self.set_bar_dest_cb) b.set_bar_dest.set_tooltip("Set distance to move bar") b.move_bar.add_callback('activated', lambda w: self.move_bar()) fr.set_widget(w) vbox.add_widget(fr, stretch=0) ## ----------------------------------------------------- ## Spacer ## ----------------------------------------------------- # Add a spacer to stretch the rest of the way to the end of the # plugin space spacer = Widgets.Label('') vbox.add_widget(spacer, stretch=1) # scroll bars will allow lots of content to be accessed top.add_widget(sw, stretch=1) ## ----------------------------------------------------- ## Bottom ## ----------------------------------------------------- # A button box that is always visible at the bottom btns_close = Widgets.HBox() btns_close.set_spacing(3) # Add a close button for the convenience of the user btn = Widgets.Button("Close") btn.add_callback('activated', lambda w: self.close()) btns_close.add_widget(btn, stretch=0) btns_close.add_widget(Widgets.Label(''), stretch=1) top.add_widget(btns_close, stretch=0) # Add our GUI to the container container.add_widget(top, stretch=1) # NOTE: if you are building a GUI using a specific widget toolkit # (e.g. Qt) GUI calls, you need to extract the widget or layout # from the non-toolkit specific container wrapper and call on that # to pack your widget, e.g.: #cw = container.get_widget() #cw.addWidget(widget, stretch=1) def close(self): """ Example close method. You can use this method and attach it as a callback to a button that you place in your GUI to close the plugin as a convenience to the user. """ self.fv.stop_local_plugin(self.chname, str(self)) return True def start(self): """ This method is called just after ``build_gui()`` when the plugin is invoked. This method may be called many times as the plugin is opened and closed for modal operations. This method may be omitted in many cases. """ # start ruler drawing operation p_canvas = self.fitsimage.get_canvas() try: obj = p_canvas.get_object_by_tag(self.layertag) except KeyError: # Add ruler layer p_canvas.add(self.canvas, tag=self.layertag) self.resume() def pause(self): """ This method is called when the plugin loses focus. It should take any actions necessary to stop handling user interaction events that were initiated in ``start()`` or ``resume()``. This method may be called many times as the plugin is focused or defocused. It may be omitted if there is no user event handling to disable. """ pass def resume(self): """ This method is called when the plugin gets focus. It should take any actions necessary to start handling user interaction events for the operations that it does. This method may be called many times as the plugin is focused or defocused. The method may be omitted if there is no user event handling to enable. """ pass def stop(self): """ This method is called when the plugin is stopped. It should perform any special clean up necessary to terminate the operation. The GUI will be destroyed by the plugin manager so there is no need for the stop method to do that. This method may be called many times as the plugin is opened and closed for modal operations, and may be omitted if there is no special cleanup required when stopping. """ pass def redo(self): """ This method is called when the plugin is active and a new image is loaded into the associated channel. It can optionally redo the current operation on the new image. This method may be called many times as new images are loaded while the plugin is active. This method may be omitted. """ pass def __str__(self): """ This method should be provided and should return the lower case name of the plugin. """ return 'CSU Initializer Plugin' ## ------------------------------------------------------------------ ## Coordinate Transformation Utilities ## ------------------------------------------------------------------ def slit_to_bars(self, slit): '''Given a slit number (1-46), return the two bar numbers associated with that slit. ''' return (slit*2-1, slit*2) def bar_to_slit(self, bar): '''Given a bar number, retun the slit associated with that bar. ''' return int((bar+1)/2) def pad(self, x): '''Pad array for affine transformation. ''' return np.hstack([x, np.ones((x.shape[0], 1))]) def unpad(self, x): '''Unpad array for affine transformation. ''' return x[:,:-1] def fit_transforms(self, pixels, physical): '''Given a set of pixel coordinates (X, Y) and a set of physical coordinates (mm, slit), fit the affine transformations (forward and backward) to convert between the two coordinate systems. ''' assert pixels.shape[1] == 2 assert physical.shape[1] == 2 assert pixels.shape[0] == physical.shape[0] # Pad the data with ones, so that our transformation can do translations too n = pixels.shape[0] pad = lambda x: np.hstack([x, np.ones((x.shape[0], 1))]) unpad = lambda x: x[:,:-1] X = pad(pixels) Y = pad(physical) # Solve the least squares problem X * A = Y # to find our transformation matrix A A, res, rank, s = np.linalg.lstsq(X, Y) Ainv, res, rank, s = np.linalg.lstsq(Y, X) A[np.abs(A) < 1e-10] = 0 Ainv[np.abs(A) < 1e-10] = 0 self.Apixel_to_physical = A self.Aphysical_to_pixel = Ainv def pixel_to_physical(self, x): '''Using the affine transformation determined by `fit_transforms`, convert a set of pixel coordinates (X, Y) to physical coordinates (mm, slit). ''' x = np.array(x) result = self.unpad(np.dot(self.pad(x), self.Apixel_to_physical)) return result def physical_to_pixel(self, x): '''Using the affine transformation determined by `fit_transforms`, convert a set of physical coordinates (mm, slit) to pixel coordinates (X, Y). ''' x =
np.array(x)
numpy.array
# -*- coding: utf-8 -*- # from __future__ import division from mpmath import mp import numpy import sympy from .helpers import cartesian_to_spherical_sympy from ..helpers import untangle, pm_array0, fsd, pm_array, pm class McLaren(object): """ <NAME>, Optimal Numerical Integration on a Sphere, Mathematics of Computation, Vol. 17, No. 84. (Oct., 1963), pp. 361-383, <https://doi.org/10.1090/S0025-5718-1963-0159418-2>. """ def __init__(self, index, symbolic=False): frac = sympy.Rational if symbolic else lambda x, y: x / y sqrt = sympy.sqrt if symbolic else numpy.sqrt roots = mp.polyroots if symbolic else numpy.roots if index == 1: self.degree = 3 data = [(frac(1, 12), fsd(3, (sqrt(frac(1, 2)), 2)))] elif index == 2: self.degree = 5 # Stroud doesn't mention u=1, but it's implied. (After all, this is # integration on a sphere.) u = 1 r = frac(1, 2) s, t = [(sqrt(5) + pm_) / 4 for pm_ in [+1, -1]] data = [ (frac(1, 30), fsd(3, (u, 1))), (frac(1, 30), pm_array([r, s, t])), (frac(1, 30), pm_array([t, r, s])), (frac(1, 30), pm_array([s, t, r])), ] elif index == 3: self.degree = 7 # the positive roots of # z^6 - z^4 + 0.2*z^2 - 1/105 = 0, # i.e., the square roots of the roots of # z^3 - z^2 + 0.2*z^1 - 1/105 = 0, r2, s2, t2 = roots([1, -1, frac(1, 5), -frac(1, 105)]) r = sqrt(r2) s = sqrt(s2) t = sqrt(t2) u = numpy.array([+r, -r, +s, -s, +t, -t]) v = numpy.array([+s, +t, +t, +r, +r, +s]) w = numpy.array([+t, +s, +r, +t, +s, +r]) data = [ (frac(1, 24), numpy.column_stack([+u, +v, +w])), (frac(1, 24), numpy.column_stack([+u, -v, -w])), (frac(1, 24),
numpy.column_stack([+u, +w, -v])
numpy.column_stack
''' Author: <NAME> E-mail: <EMAIL> Here is a implementation of an autoencoder with 4 encoder and decoder layers, based on the Restricted Boltzmann Machine (RBM) in TensorFlow according to Hinton's: [1] <NAME>* and <NAME>. "Reducing the Dimensionality of Data with Neural Networks" Science 28 Jul 2006: Vol. 313, Issue 5786, pp. 504-507. ''' from RBM import RBM import numpy as np import tensorflow as tf from numpy import genfromtxt class RBM_Weights: def __init__(self, weights, visBias, hidBias): self.weights = weights self.visBias = visBias self.hidBias = hidBias def getWeights(self): return self.weights def getVisBias(self): return self.visBias def getHidBias(self): return self.hidBias class AE_RBM: nEncoderLayers = 4 # number of encoder layers of the autoencoder sEncoderLayers = None # size of the encoder layers def __init__ (self, sEncoderLayers): if(self.nEncoderLayers != sEncoderLayers.shape[0]): print('Invalid number of size layers') raise Exception('Autoencoder constructor ERROR !!!') self.sEncoderLayers = sEncoderLayers def train(self, trainingData): rbmList = [] # list RBM's weights tempData = trainingData # start RBM's training and get the respective weights for n in range(self.nEncoderLayers): if(n==0 or n==(self.nEncoderLayers-1)): rbm = RBM(tempData, self.sEncoderLayers[n], rbmType='GBRBM') else: rbm = RBM(tempData, self.sEncoderLayers[n], rbmType='BBRBM') print('Start %d RBM training' % (n+1) ) rbm.train(batchSize=100) [weights, visBias, hidBias] = rbm.getWeights() rbmList.append(RBM_Weights(weights, visBias, hidBias)) data = tf.convert_to_tensor( tempData, dtype=tf.float32, name='data') probHid = tf.sigmoid( tf.matmul( data, weights) + hidBias) hid = tf.cast( tf.greater( probHid, tf.random_uniform( tf.shape(probHid), minval=0, maxval=1, dtype=tf.float32)), dtype=tf.float32) with tf.Session() as sess: if((self.nEncoderLayers-1) == n): tempData = sess.run(probHid) else: tempData = sess.run(hid) # start the fine tuning process return self.fineTuning( rbmList, trainingData) def fineTuning(self, rbmList, trainingData): # create the weight variables layer_01_Weights = tf.Variable(rbmList[0].getWeights(), dtype=tf.float32, name='layer_01_Weights') layer_01_VisBias = tf.Variable(rbmList[0].getVisBias(), dtype=tf.float32, name='layer_01_VisBias') layer_01_HidBias = tf.Variable(rbmList[0].getHidBias(), dtype=tf.float32, name='layer_01_HidBias') layer_02_Weights = tf.Variable(rbmList[1].getWeights(), dtype=tf.float32, name='layer_02_Weights') layer_02_VisBias = tf.Variable(rbmList[1].getVisBias(), dtype=tf.float32, name='layer_02_VisBias') layer_02_HidBias = tf.Variable(rbmList[1].getHidBias(), dtype=tf.float32, name='layer_02_HidBias') layer_03_Weights = tf.Variable(rbmList[2].getWeights(), dtype=tf.float32, name='layer_03_Weights') layer_03_VisBias = tf.Variable(rbmList[2].getVisBias(), dtype=tf.float32, name='layer_03_VisBias') layer_03_HidBias = tf.Variable(rbmList[2].getHidBias(), dtype=tf.float32, name='layer_03_HidBias') layer_04_Weights = tf.Variable(rbmList[3].getWeights(), dtype=tf.float32, name='layer_04_Weights') layer_04_VisBias = tf.Variable(rbmList[3].getVisBias(), dtype=tf.float32, name='layer_04_VisBias') layer_04_HidBias = tf.Variable(rbmList[3].getHidBias(), dtype=tf.float32, name='layer_04_HidBias') # create some placeholders for the model probHid_01 = tf.placeholder(dtype=tf.float32, name='probHid_01') hid_01 = tf.placeholder(dtype=tf.float32, name='hid_01') probHid_02 = tf.placeholder(dtype=tf.float32, name='probHid_02') hid_02 = tf.placeholder(dtype=tf.float32, name='hid_02') probHid_03 = tf.placeholder(dtype=tf.float32, name='probHid_03') probHid_04 = tf.placeholder(dtype=tf.float32, name='probHid_04') hid_04 = tf.placeholder(dtype=tf.float32, name='hid_04') recons_04 = tf.placeholder(dtype=tf.float32, name='recons_04') recons_03 = tf.placeholder(dtype=tf.float32, name='recons_03') recons_02 = tf.placeholder(dtype=tf.float32, name='recons_02') recons_01 = tf.placeholder(dtype=tf.float32, name='recons_01') data = tf.convert_to_tensor( trainingData, dtype=tf.float32, name='visRecs_01') # W1_Encoder probHid_01 = tf.sigmoid( tf.matmul( data, layer_01_Weights) + layer_01_HidBias) hid_01 = tf.cast( tf.greater( probHid_01, tf.random_uniform( tf.shape(probHid_01), minval=0, maxval=1, dtype=tf.float32)), dtype=tf.float32) # W2_Encoder probHid_02 = tf.sigmoid( tf.matmul( hid_01, layer_02_Weights) + layer_02_HidBias) hid_02 = tf.cast( tf.greater( probHid_02, tf.random_uniform( tf.shape(probHid_02), minval=0, maxval=1, dtype=tf.float32)), dtype=tf.float32) # W3_Encoder probHid_03 = tf.sigmoid( tf.matmul( hid_02, layer_03_Weights) + layer_03_HidBias) # W4_Encoder probHid_04 = tf.sigmoid( tf.matmul( probHid_03, layer_04_Weights) + layer_04_HidBias) hid_04 = tf.cast( tf.greater( probHid_04, tf.random_uniform( tf.shape(probHid_04), minval=0, maxval=1, dtype=tf.float32)), dtype=tf.float32) # W4_Decoder recons_04 = tf.sigmoid( tf.matmul(hid_04, layer_04_Weights, False, True) + layer_04_VisBias) # W3_Decoder recons_03 = tf.sigmoid( tf.matmul(recons_04, layer_03_Weights, False, True) + layer_03_VisBias) # W2_Decoder recons_02 = tf.sigmoid( tf.matmul(recons_03, layer_02_Weights, False, True) + layer_02_VisBias) # W1_Decoder recons_01 = tf.matmul( recons_02, layer_01_Weights, False, True) + layer_01_VisBias # cost function error = tf.losses.mean_squared_error(trainingData, recons_01) # some tensorflow optimizers #train_op = tf.train.AdagradOptimizer(0.1).minimize(error) train_op = tf.train.AdadeltaOptimizer(1).minimize(error) #train_op = tf.train.GradientDescentOptimizer(0.1).minimize(error) errorArray = np.array([]) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(1000): _, auxError = sess.run([train_op, error]) errorArray = np.append(errorArray, auxError) print('IT: %lf Error: %lf'%(i,auxError)) if(i > 200 and auxError < 0.1): break self.layer_01_Weights, self.layer_01_VisBias, self.layer_01_HidBias = sess.run( [layer_01_Weights, layer_01_VisBias, layer_01_HidBias]) self.layer_02_Weights, self.layer_02_VisBias, self.layer_02_HidBias = sess.run( [layer_02_Weights, layer_02_VisBias, layer_02_HidBias]) self.layer_03_Weights, self.layer_03_VisBias, self.layer_03_HidBias = sess.run( [layer_03_Weights, layer_03_VisBias, layer_03_HidBias]) self.layer_04_Weights, self.layer_04_VisBias, self.layer_04_HidBias = sess.run( [layer_04_Weights, layer_04_VisBias, layer_04_HidBias]) self.saveTrainedWeights() return errorArray def recon(self, trainingData): # create some placeholders for the model probHid_01 = tf.placeholder(dtype=tf.float32, name='probHid_01') hid_01 = tf.placeholder(dtype=tf.float32, name='hid_01') probHid_02 = tf.placeholder(dtype=tf.float32, name='probHid_02') hid_02 = tf.placeholder(dtype=tf.float32, name='hid_02') probHid_03 = tf.placeholder(dtype=tf.float32, name='probHid_03') probHid_04 = tf.placeholder(dtype=tf.float32, name='probHid_04') hid_04 = tf.placeholder(dtype=tf.float32, name='hid_04') # create the weight variables layer_01_Weights = tf.Variable(self.layer_01_Weights, dtype=tf.float32, name='layer_01_Weights') layer_01_VisBias = tf.Variable(self.layer_01_VisBias, dtype=tf.float32, name='layer_01_VisBias') layer_01_HidBias = tf.Variable(self.layer_01_HidBias, dtype=tf.float32, name='layer_01_HidBias') layer_02_Weights = tf.Variable(self.layer_02_Weights, dtype=tf.float32, name='layer_02_Weights') layer_02_VisBias = tf.Variable(self.layer_02_VisBias, dtype=tf.float32, name='layer_02_VisBias') layer_02_HidBias = tf.Variable(self.layer_02_HidBias, dtype=tf.float32, name='layer_02_HidBias') layer_03_Weights = tf.Variable(self.layer_03_Weights, dtype=tf.float32, name='layer_03_Weights') layer_03_VisBias = tf.Variable(self.layer_03_VisBias, dtype=tf.float32, name='layer_03_VisBias') layer_03_HidBias = tf.Variable(self.layer_03_HidBias, dtype=tf.float32, name='layer_03_HidBias') layer_04_Weights = tf.Variable(self.layer_04_Weights, dtype=tf.float32, name='layer_04_Weights') layer_04_VisBias = tf.Variable(self.layer_04_VisBias, dtype=tf.float32, name='layer_04_VisBias') layer_04_HidBias = tf.Variable(self.layer_04_HidBias, dtype=tf.float32, name='layer_04_HidBias') data = tf.convert_to_tensor( trainingData, dtype=tf.float32, name='visRecs_01') # W1_Encoder probHid_01 = tf.sigmoid( tf.matmul( data, layer_01_Weights) + layer_01_HidBias) hid_01 = tf.cast( tf.greater( probHid_01, tf.random_uniform( tf.shape(probHid_01), minval=0, maxval=1, dtype=tf.float32)), dtype=tf.float32) # W2_Encoder probHid_02 = tf.sigmoid( tf.matmul( hid_01, layer_02_Weights) + layer_02_HidBias) hid_02 = tf.cast( tf.greater( probHid_02, tf.random_uniform( tf.shape(probHid_02), minval=0, maxval=1, dtype=tf.float32)), dtype=tf.float32) # W3_Encoder probHid_03 = tf.sigmoid( tf.matmul( hid_02, layer_03_Weights) + layer_03_HidBias) # W4_Encoder probHid_04 = tf.sigmoid( tf.matmul( probHid_03, layer_04_Weights) + layer_04_HidBias) hid_04 = tf.cast( tf.greater( probHid_04, tf.random_uniform( tf.shape(probHid_04), minval=0, maxval=1, dtype=tf.float32)), dtype=tf.float32) # W4_Decoder recons_04 = tf.sigmoid( tf.matmul(hid_04, layer_04_Weights, False, True) + layer_04_VisBias) # W3_Decoder recons_03 = tf.sigmoid( tf.matmul(recons_04, layer_03_Weights, False, True) + layer_03_VisBias) # W2_Decoder recons_02 = tf.sigmoid( tf.matmul(recons_03, layer_02_Weights, False, True) + layer_02_VisBias) # W1_Decoder recons_01 = tf.matmul( recons_02, layer_01_Weights, False, True) + layer_01_VisBias with tf.Session() as sess: # run model and return the reconstruction matrix sess.run(tf.global_variables_initializer()) recons = sess.run(recons_01) return recons def loadTrainedWeights(self): self.layer_01_Weights = genfromtxt('layer_01_Weights.csv', delimiter=' ') self.layer_01_VisBias = genfromtxt('layer_01_VisBias.csv', delimiter=' ') self.layer_01_HidBias = genfromtxt('layer_01_HidBias.csv', delimiter=' ') self.layer_02_Weights = genfromtxt('layer_02_Weights.csv', delimiter=' ') self.layer_02_VisBias = genfromtxt('layer_02_VisBias.csv', delimiter=' ') self.layer_02_HidBias = genfromtxt('layer_02_HidBias.csv', delimiter=' ') self.layer_03_Weights = genfromtxt('layer_03_Weights.csv', delimiter=' ') self.layer_03_VisBias =
genfromtxt('layer_03_VisBias.csv', delimiter=' ')
numpy.genfromtxt
#!/usr/bin/env python from __future__ import print_function import numpy as np import matplotlib.pyplot as plt def run_old_oqe(fname, key1, key2, freqrange): """ Run old OQE algorithm using capo. """ # Legacy functions to load data and estimate power spectrum import capo legacy_read_files = capo.miriad.read_files legacy_group_redundant_bls = capo.red.group_redundant_bls legacy_oqe = capo.oqe # (1) Read data from file s,d,f = legacy_read_files([fname], antstr='all', polstr='xx') bls = d.keys() #print("Baseline keys:", bls) # (1a) Legacy setting to specify whether data are conjugated or not # PB: Replace this with made up conj array (all set to False) """ aa = aipy.cal.get_aa('psa6240_v003', np.array([.15])) _, conj = legacy_group_redundant_bls(aa.ant_layout) # conj is a dictionary containing whether bl's are conjugated or not """ conj = {bl:False for bl in bls} # (1b) Build data and flagging dictionaries data_dict = {}; flg_dict = {} fmin, fmax = freqrange for key in bls: # Use only a restricted band of frequencies (e.g. to avoid RFI) data_dict[key] = d[key]['xx'][:,fmin:fmax] flg_dict[key] = np.logical_not(f[key]['xx'][:,fmin:fmax]) # (2) Make dataset object ds = legacy_oqe.DataSet() ds.set_data(dsets=data_dict, conj=conj, wgts=flg_dict) # (3) Calculate unweighted power spectrum q_I = ds.q_hat(key1, key2, use_cov=False, cov_flagging=False) # unweighted F_I = ds.get_F(key1, key2, use_cov=False, cov_flagging=False) M_I, W_I = ds.get_MW(F_I, mode='I') p_I = ds.p_hat(M_I, q_I) # (4) Calculate inverse covariance-weighted power spectrum q = ds.q_hat(key1, key2, use_cov=True, cov_flagging=False) # weighted F = ds.get_F(key1, key2, use_cov=True, cov_flagging=False) M, W = ds.get_MW(F, mode='I') p = ds.p_hat(M, q) return p_I, p def run_new_oqe(fname, key1, key2, freqrange): """ Run new OQE algorithm using hera_pspec. """ from pyuvdata import UVData import hera_pspec as pspec # (1) Read data from file d1 = UVData() d1.read_miriad(fname) # (1a) Use only a restricted band of frequencies (e.g. to avoid RFI) fmin, fmax = freqrange d1.select(freq_chans=np.arange(fmin, fmax)) # (1b) Build data and flagging lists d = [d1,] w = [None for _d in d] # Set weights (None => flags from UVData will be used) #print("Baseline keys:", d[0].get_antpairs()) # (2) Make PSpecData object ds = pspec.PSpecData(dsets=d, wgts=w) # (3) Calculate unweighted power spectrum ds.set_R('identity') q_I = ds.q_hat(key1, key2) F_I = ds.get_G(key1, key2) M_I, W_I = ds.get_MW(F_I, mode='I') p_I = ds.p_hat(M_I, q_I) # (4) Calculate inverse covariance-weighted power spectrum ds.set_R('iC') q = ds.q_hat(key1, key2) F = ds.get_G(key1, key2) M, W = ds.get_MW(F, mode='I') p = ds.p_hat(M, q) #pspec, pairs = ds.pspec(bls, input_data_weight='I', norm='I', verbose=True) return p_I, p if __name__ == '__main__': # Path to datafile fname = '../data/zen.2458042.12552.xx.HH.uvXAA' # Baselines to use key1 = (24, 25) key2 = (24, 38) # Frequency channels to include freqrange = (28, 52) # Run old OQE pI_old, p_old = run_old_oqe(fname, key1, key2, freqrange) print("Old:", p_old.shape) # Run new OQE _key1 = (0,) + key1 _key2 = (0,) + key2 pI_new, p_new = run_new_oqe(fname, _key1, _key2, freqrange) print("New:", p_new.shape) # Calculate fractional difference of means (averaged over LST) frac_I = np.mean(pI_new, axis=1).real / np.mean(pI_old, axis=1).real - 1. frac_iC = np.mean(p_new, axis=1).real /
np.mean(p_old, axis=1)
numpy.mean
# %% [markdown] # ## The goal of this notebook: # investigate regularization approaches, for now, just on the full graph # these include # - truncate high degree # - truncate low degree # - plus c # - levina paper on row normalization # - others? # %% [markdown] # ## import os import time import warnings from itertools import chain import colorcet as cc import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.transforms as transforms import networkx as nx import numpy as np import pandas as pd import seaborn as sns from anytree import LevelOrderGroupIter, NodeMixin from joblib import Parallel, delayed from mpl_toolkits.mplot3d import Axes3D from scipy.cluster.hierarchy import dendrogram, linkage from scipy.linalg import orthogonal_procrustes from scipy.optimize import linear_sum_assignment from scipy.spatial.distance import squareform from sklearn.cluster import AgglomerativeClustering from sklearn.exceptions import ConvergenceWarning from sklearn.manifold import MDS, TSNE, Isomap from sklearn.metrics import adjusted_rand_score, pairwise_distances from sklearn.utils.testing import ignore_warnings from tqdm.autonotebook import tqdm from graspy.cluster import AutoGMMCluster, GaussianCluster from graspy.embed import ( AdjacencySpectralEmbed, ClassicalMDS, LaplacianSpectralEmbed, select_dimension, selectSVD, ) from graspy.models import DCSBMEstimator, RDPGEstimator, SBMEstimator from graspy.plot import heatmap, pairplot from graspy.simulations import rdpg from graspy.utils import augment_diagonal, binarize, pass_to_ranks from src.align import Procrustes from src.cluster import get_paired_inds from src.data import load_metagraph from src.graph import preprocess from src.hierarchy import signal_flow from src.io import savecsv, savefig from src.traverse import ( Cascade, RandomWalk, TraverseDispatcher, to_markov_matrix, to_path_graph, to_transmission_matrix, ) from src.visualization import ( CLASS_COLOR_DICT, add_connections, adjplot, barplot_text, draw_networkx_nice, gridmap, matrixplot, palplot, screeplot, set_axes_equal, stacked_barplot, ) from graspy.embed import OmnibusEmbed from umap import UMAP warnings.filterwarnings(action="ignore", category=ConvergenceWarning) FNAME = os.path.basename(__file__)[:-3] print(FNAME) rc_dict = { "axes.spines.right": False, "axes.spines.top": False, "axes.formatter.limits": (-3, 3), "figure.figsize": (6, 3), "figure.dpi": 100, } for key, val in rc_dict.items(): mpl.rcParams[key] = val context = sns.plotting_context(context="talk", font_scale=1, rc=rc_dict) sns.set_context(context) np.random.seed(8888) def stashfig(name, **kws): savefig(name, foldername=FNAME, save_on=True, **kws) def stashcsv(df, name, **kws): savecsv(df, name) graph_type = "G" def plot_pairs( X, labels, model=None, left_pair_inds=None, right_pair_inds=None, equal=False ): n_dims = X.shape[1] fig, axs = plt.subplots( n_dims, n_dims, sharex=False, sharey=False, figsize=(20, 20) ) data = pd.DataFrame(data=X) data["label"] = labels for i in range(n_dims): for j in range(n_dims): ax = axs[i, j] ax.axis("off") if i < j: sns.scatterplot( data=data, x=j, y=i, ax=ax, alpha=0.7, linewidth=0, s=8, legend=False, hue="label", palette=CLASS_COLOR_DICT, ) if left_pair_inds is not None and right_pair_inds is not None: add_connections( data.iloc[left_pair_inds, j], data.iloc[right_pair_inds, j], data.iloc[left_pair_inds, i], data.iloc[right_pair_inds, i], ax=ax, ) plt.tight_layout() return fig, axs def lateral_omni(adj, lp_inds, rp_inds, n_components=4): left_left_adj = pass_to_ranks(adj[np.ix_(lp_inds, lp_inds)]) right_right_adj = pass_to_ranks(adj[np.ix_(rp_inds, rp_inds)]) omni = OmnibusEmbed( n_components=n_components, n_elbows=2, check_lcc=False, n_iter=10 ) ipsi_embed = omni.fit_transform([left_left_adj, right_right_adj]) ipsi_embed = np.concatenate(ipsi_embed, axis=-1) ipsi_embed = np.concatenate(ipsi_embed, axis=0) left_right_adj = pass_to_ranks(adj[np.ix_(lp_inds, rp_inds)]) right_left_adj = pass_to_ranks(adj[np.ix_(rp_inds, lp_inds)]) omni = OmnibusEmbed( n_components=n_components, n_elbows=2, check_lcc=False, n_iter=10 ) contra_embed = omni.fit_transform([left_right_adj, right_left_adj]) contra_embed = np.concatenate(contra_embed, axis=-1) contra_embed = np.concatenate(contra_embed, axis=0) embed = np.concatenate((ipsi_embed, contra_embed), axis=1) return embed # %% [markdown] # ## graph_type = "G" master_mg = load_metagraph(graph_type, version="2020-04-01") mg = preprocess( master_mg, threshold=0, sym_threshold=False, remove_pdiff=True, binarize=False, weight="weight", ) meta = mg.meta degrees = mg.calculate_degrees() quant_val = np.quantile(degrees["Total edgesum"], 0.05) # remove low degree neurons idx = meta[degrees["Total edgesum"] > quant_val].index print(quant_val) mg = mg.reindex(idx, use_ids=True) # remove center neurons # FIXME idx = mg.meta[mg.meta["hemisphere"].isin(["L", "R"])].index mg = mg.reindex(idx, use_ids=True) idx = mg.meta[mg.meta["Pair"].isin(mg.meta.index)].index mg = mg.reindex(idx, use_ids=True) mg = mg.make_lcc() mg.calculate_degrees(inplace=True) meta = mg.meta meta["pair_td"] = meta["Pair ID"].map(meta.groupby("Pair ID")["Total degree"].mean()) mg = mg.sort_values(["pair_td", "Pair ID"], ascending=False) meta["inds"] = range(len(meta)) adj = mg.adj.copy() lp_inds, rp_inds = get_paired_inds(meta) left_inds = meta[meta["left"]]["inds"] print(len(mg)) # %% [markdown] # ## Plot the ipsilateral connectomes if meta["pair_td"].max() > 0: meta["pair_td"] = -meta["pair_td"] ll_adj = adj[np.ix_(lp_inds, lp_inds)] rr_adj = adj[np.ix_(rp_inds, rp_inds)] left_meta = meta.iloc[lp_inds] right_meta = meta.iloc[rp_inds] plot_kws = dict( plot_type="scattermap", sort_class="merge_class", item_order=["pair_td", "Pair ID"], colors="merge_class", palette=CLASS_COLOR_DICT, ticks=False, class_order="pair_td", sizes=(1, 1), gridline_kws=dict(linewidth=0.2, color="grey", linestyle="--"), ) fig, axs = plt.subplots(1, 2, figsize=(20, 10)) _, _, top, _ = adjplot(ll_adj, ax=axs[0], meta=left_meta, **plot_kws) top.set_title(r"L $\to$ L") _, _, top, _ = adjplot(rr_adj, ax=axs[1], meta=right_meta, **plot_kws) top.set_title(r"R $\to$ R") plt.tight_layout() stashfig("ipsilateral-adj") lr_adj = adj[np.ix_(lp_inds, rp_inds)] rl_adj = adj[
np.ix_(rp_inds, lp_inds)
numpy.ix_
# -*- coding: utf-8 -*- """ Created on Mon Nov 5 10:00:16 2018 @author: DaniJ This module is supossed to contain the algorithms and information of Chemical speciation plus sorption. It is a daughter of Database_SC but it can be used without a database. [If feasible (question of time), I will keep it apart] """ from Database_SC import Database_SC import numpy as np from scipy import linalg import scipy.integrate as integrate from scipy import optimize #import scipy as sp class ChemSys_Surf (Database_SC): ''' ChemSys is a daughter class from Database_SC which is a daughter class of Database. Hence, they depend on these parameters. #Note for myself and other contributors, if you add or delete properties or methods of the class, documeted it here. Otherwise, it is a little caos (regarding my own experience) properties: Faraday_constant temperature dielectric_constant permittivity_free_space A_activitypar B_activitypar universal_gas_constant ionic_strength_constant fix_ionic_strength S S_electro names_elec_sorpt length_names_elec_sorpt U A_Borkovec B_Borkovec A_Borkovec_columns A_Borkovec_rows aq_u_vector waterdensity index_related_sorpt_pri methods: set_S set_vector_aqueous_component_value set_names_electrostatic_variables set_electro_sorption_stoichiometric_M set_universal_gas_constant set_Faraday_constant set_temperature set_dielectric_constant set_constant_ionic_strength set_permittivity_free_space calculate_dielectric_constant calculate_A_activitypar calculate_B_activitypar calculate_ionic_strength calculate_waterdensity calculate_u_electro define_system_from_input_and_database create_S create_U remove_electro_mass_from_U separte_S_into_S1_and_S2 create_electro_sorption_stoichiometric_M create_stoichiometric_surfacepotential search_index_list_classlist search_index_list_listdictionaryreactions instantiation_step speciation_Westall1980_CCM # NOTE --> probably speciation_Westall1980_CCM, speciation_Westall1980_TLM can be unified in one algorithm, so far it is kept separated. speciation_Westall1980_TLM # create_sorpt_vec Boltzman_factor_2_psi Jacobian_Speciation_Westall1980 print_speciation speciation_Borkovec_1983_DLM get_z_vector calculate_log_activity_coefficient_aq_pri_species calculate_log_activity_coefficient_aq_sec_species NOTE: Remark that ChemSys_Surf is a daughter class from Database_SC. Therefore, in order to create the pseudo S matrix (The stoichiometric matrix that does not contain the surface potential as unknown). Methods like ... ... set_names_aq_primary_species (names_aq_pri_sp), set_names_aq_secondary_species (names_aq_sec_sp), set_names_sorpt_primary_species (names_sorpt_pri_sp), set_names_sorpt_secondary_species (names_sorpt_sec_sp), set_aq_list_pri_class (list_aq_pri_sp), ... ... set_aq_list_sec_class (list_aq_sec_sp) can be used and must be used. However, it has to be check that the input given is in accordance with the own system, that can be done by ??????????? ''' # Constructor def __init__(self): self.Faraday_constant = 96485.3328959 # C/mol self.temperature = (273.15+25) # It assumed that initially we are at T=25°C and we assume atmospheric pressure for dielectric and other constants self.universal_gas_constant = 8.314472 # J/(K*mol) self.permittivity_free_space = 8.854187871e-12## Farrads = F --> F/m = C^2/(J*m) ALSO called vacuum permittivity, electri constant or distributed capacitance of the vacuum self.calculate_dielectric_constant() self.calculate_waterdensity() self.calculate_A_activitypar() self.calculate_B_activitypar() self.ionic_strength_constant = False pass # Instantiation of main attributes def define_system_from_input_and_database (self, database, n_aq_prim, list_aq_val, name_sorpt_pri, List_pri_sorpt_class = None): ''' Given a database, the list of aqueous primary species, the list of aqueous values for the components associated to the primary species, the list of sorption of primary species The system is defined. As extra List_pri_sorpt_class is given to update some species. list_sorpt_pri == list_pri_sorpt_class[i].name for i in length. ''' # check that list_sorpt_pri is coherent with List_pri_sorpt_class assert len(n_aq_prim) == len(list_aq_val), \ "The length of the aqueous primary species and the aqueous component values is not equal." if List_pri_sorpt_class is not None: assert len(name_sorpt_pri) == len(List_pri_sorpt_class), \ "The length of the sorption primary species and the sorption list classes is not equal." for i in range(0, len(name_sorpt_pri)): assert i == name_sorpt_pri.index(List_pri_sorpt_class[i].name), 'The name or order of the list of names of sorption primary species and the list of classes of sorption primary species is not coherent.' # Instantiation of main attributes (Although not necessary, it is useful to keep sense) names_aq_pri_sp = n_aq_prim names_aq_sec_sp = [] list_aq_pri_sp = [] list_aq_sec_sp = [] list_aq_reactions = [] names_sorpt_pri_sp = name_sorpt_pri names_sorpt_sec_sp = [] if List_pri_sorpt_class is not None: list_sorpt_pri_sp = List_pri_sorpt_class else: list_sorpt_pri_sp = [] list_sorpt_sec_sp = [] list_sorpt_reactions = [] # Drawn the list_aq_pri_sp & list_sorpt_pri_sp(if necessary) from Database index_list_pri_aq = self.search_index_list_classlist (names_aq_pri_sp, database.names_aq_pri_sp) for i in index_list_pri_aq: list_aq_pri_sp.append(database.list_aq_pri_sp[i]) if List_pri_sorpt_class is None: index_list_sorpt = self.search_index_classlist_list (names_sorpt_pri_sp, database.names_sorpt_pri_sp) for i in index_list_sorpt: list_sorpt_pri_sp.append(database.list_sorpt_pri_sp[i]) # Obtain list_aq_reactions, list_aq_sec_sp and names_aq_sec_sp from names_aq_pri_sp index_aq_reactions, names_aq_sec_sp = self.search_index_list_listdictionaryreactions (names_aq_pri_sp, database.list_aq_reactions) index_list_sec_aq = self.search_index_list_classlist (names_aq_sec_sp, database.names_aq_sec_sp) for i in index_list_sec_aq: list_aq_sec_sp.append(database.list_aq_sec_sp[i]) for i in index_aq_reactions: list_aq_reactions.append(database.list_aq_reactions[i]) # Obtain list_sorpt_reactions, list_sorpt_sec_sp and names_sorpt_sec_sp from names_aq_pri_sp + names_aq_sec_sp + names_sorpt_pri_sp index_sorpt_reactions, names_sorpt_sec_sp = self.search_index_list_listdictionaryreactions (names_aq_pri_sp + names_aq_sec_sp + names_sorpt_pri_sp, database.list_sorpt_reactions) index_list_sec_sorpt = self.search_index_list_classlist (names_sorpt_sec_sp, database.names_sorpt_sec_sp) for i in index_list_sec_sorpt: list_sorpt_sec_sp.append(database.list_sorpt_sec_sp[i]) for i in index_sorpt_reactions: list_sorpt_reactions.append(database.list_sorpt_reactions[i]) # Instantiation of main variables, hence definition of system to study self.set_names_aq_primary_species (names_aq_pri_sp) self.set_names_aq_secondary_species (names_aq_sec_sp) self.set_names_sorpt_primary_species ( names_sorpt_pri_sp) self.set_names_sorpt_secondary_species (names_sorpt_sec_sp) self.set_aq_list_pri_class (list_aq_pri_sp) self.set_aq_list_sec_class (list_aq_sec_sp) self.set_sorpt_list_pri_class (list_sorpt_pri_sp) self.set_sorpt_list_sec_class (list_sorpt_sec_sp) self.set_aq_reactions_list (list_aq_reactions) self.set_sorpt_reactions_list (list_sorpt_reactions) self.set_vector_aqueous_component_value(list_aq_val) def set_constant_ionic_strength (self, givenvalue): ''' set the ionic_strength to a given value ''' self.ionic_strength_constant = True self.fix_ionic_strength = givenvalue # Matrix_Creation_From_Database def create_S (self): # First we create the pseudoS matrix (if it does not exist) which has the following structure: # Number_aqueous_primary_sp Number_sorption_primary_sp Number_aqueous_secondary_sp Number_sorption_secondary_sp # n_aqueousR1 | | # pseudoS = nRn | | # n_sorptionR1 | Stoichiometric values | # nRm | | # # # Remark: pseudoS is a matrix that is almost the sorption stoichiometric matrix. # The order of the columns is given by the Number_aqueous_primary_sp + Number_sorption_primary_sp + Number_aqueous_secondary_sp + Number_sorption_secondary_sp # The order of the rows is first number of aqueous reactions followed by the number of the sorption reactions. if not hasattr(self, 'pseudoS'): self.create_pseudo_S() # Now the electrostatic variables must be added. These variables are treated as chemical species. They will be introduced between Number_sorption_primary_sp and Number_aqueous_secondary_sp. # # Each primary sorption class should have an attribute called type_sorption. The attribute will determine the number of surface potential variables that must be added to the stoichiometric matrix. # -CCM will add only one. # # # for the number of rows. Reactions that are aqueous have 0 has stoichiometric value. The stoichiometric values for the added surface potential species is obtained by the type of sorption and b the stoichiometric_value and the charge. if not hasattr(self, 'S_electro') or not hasattr(self, 'pseudoS_length_rows'): self.create_electro_sorption_stoichiometric_M () # defining length and names of columns self.S_names_columns = self.names_aq_pri_sp + self.names_sorpt_pri_sp + self.names_elec_sorpt + self.names_aq_sec_sp + self.names_sorpt_sec_sp self.S_length_columns = len(self.pseudoS_names_columns) + len(self.names_elec_sorpt) # defining length of rows self.S_length_rows = len(self.list_aq_reactions) + len(self.list_sorpt_reactions) pseudo_S = self.pseudoS.copy() S_electro = self.S_electro.copy() pos_1 = self.length_aq_pri_sp + self.length_sorpt_pri_sp S = np.concatenate((np.concatenate ((pseudo_S[:,:pos_1], S_electro), axis = 1), pseudo_S[:,pos_1:]), axis = 1) assert self.S_length_rows == S.shape[0] assert self.S_length_columns == S.shape[1] self.S = S # Creation of the Component matrix, [Westall does not really make a difference between stoichiometric matrix and U matrix, since somehow they are related] def create_U (self): if not hasattr(self, 'S'): self.create_S () S1, S2 = self.separte_S_into_S1_and_S2() npri = self.length_aq_pri_sp +self.length_sorpt_pri_sp + self.length_names_elec_sorpt I = np.identity(npri) Stop=-np.matmul(S1.transpose(), linalg.inv(S2.transpose())) U = np.concatenate((I, Stop), axis=1) U = self.remove_electro_mass_from_U (U) self.U = U # remove_electro_mass_from_U () def remove_electro_mass_from_U (self, U): ''' This methods should be used only in create_U not outside it. ''' npri = self.length_aq_pri_sp +self.length_sorpt_pri_sp for i in range(0, self.length_names_elec_sorpt): U[npri, npri] = 0 npri += 1 return U # Separate matrix from Primary and Secondary species def separte_S_into_S1_and_S2 (self): ''' Separates primary and Secondary species matrices. e.g.: Sp1 Sp1 Sp2 R1 || x11 x12 x13 || || x11 x12 || || x11 || S = R2 || x21 x22 x23 || in to S1 = || x21 x22 || and S2= || x21 || R3 || x31 x32 x33 || || x31 x32 || || x32 || ''' np = self.length_aq_pri_sp +self.length_sorpt_pri_sp + len(self.names_elec_sorpt) S1 = self.S[:, 0:np].copy() S2 = self.S[:, np:].copy() return S1, S2 # The stoichiometric matrix derived from sorption species. def create_electro_sorption_stoichiometric_M (self): ''' The function assumes that some variables are already defined ''' # create list of new boltzman surface potential variables from sorption species self.names_elec_sorpt = [] self.index_related_sorpt_pri = [] for i in range(0,self.length_sorpt_pri_sp): if hasattr(self.list_sorpt_pri_sp[i], 'type_relation'): # related species should be defined in the list_sorpt_pri_sp after the leading species. self.index_related_sorpt_pri.append(self.names_sorpt_pri_sp.index(self.list_sorpt_pri_sp[i].type_relation)) elif isinstance(self.list_sorpt_pri_sp[i].names_Boltz_psi, str): self.names_elec_sorpt.append(self.list_sorpt_pri_sp[i].names_Boltz_psi) elif isinstance(self.list_sorpt_pri_sp[i].names_Boltz_psi, list): for j in range(0, len(self.list_sorpt_pri_sp[i].names_Boltz_psi)): self.names_elec_sorpt.append(self.list_sorpt_pri_sp[i].names_Boltz_psi[j]) self.length_names_elec_sorpt = len(self.names_elec_sorpt) # Block if not hasattr(self, 'pseudoS_length_rows'): # self.pseudoS_length_rows = len(self.list_aq_reactions) + len(self.list_sorpt_reactions) self.pseudoS_length_rows = self.length_aq_sec_sp + self.length_sorpt_sec_sp S_electro = np.zeros((self.pseudoS_length_rows, self.length_names_elec_sorpt)) col_position = 0 track_dict = {} counter = 0 for i in range(0, self.length_sorpt_pri_sp): if hasattr(self.list_sorpt_pri_sp[i], 'type_relation'): # related species should be defined in the list_sorpt_pri_sp after the leading species. sub_B = self.create_stoichiometric_surfacepotential (self.names_sorpt_pri_sp[i], self.list_sorpt_pri_sp[self.index_related_sorpt_pri[counter]].type_sorption) ind_start = track_dict['start_'+ self.names_sorpt_pri_sp[self.index_related_sorpt_pri[counter]]] ind_end =track_dict['end_'+ self.names_sorpt_pri_sp[self.index_related_sorpt_pri[counter]]] if len(sub_B.shape) == 1: S_electro[:, ind_start:ind_end] = S_electro[:, ind_start:ind_end] + sub_B.reshape(sub_B.shape[0],1) else: S_electro[:, ind_start:ind_end] = S_electro[:, ind_start:ind_end] + sub_B counter += 1 else: sub_B = self.create_stoichiometric_surfacepotential (self.names_sorpt_pri_sp[i], self.list_sorpt_pri_sp[i].type_sorption) if len(sub_B.shape) == 1: S_electro[:, col_position] = sub_B track_dict['start_'+self.names_sorpt_pri_sp[i]] = col_position col_position += 1 track_dict['end_'+self.names_sorpt_pri_sp[i]] = col_position elif len(sub_B.shape) == 2: old_col_position = col_position col_position = col_position + sub_B.shape[1] S_electro[:, old_col_position:col_position] = sub_B track_dict['start_'+self.names_sorpt_pri_sp[i]] = old_col_position track_dict['end_'+self.names_sorpt_pri_sp[i]] = col_position self.S_electro = S_electro # creates stoichiometric blocks def create_stoichiometric_surfacepotential (self, name_pri_sp, type_sorpt): ''' ''' if type_sorpt == 'CCM' or type_sorpt == 'DLM': d = np.zeros((self.length_aq_sec_sp + self.length_sorpt_sec_sp)) for i in range(0, self.length_sorpt_sec_sp): if self.list_sorpt_reactions[i].is_species_in_reaction (name_pri_sp): names_species_in_reaction = [*self.list_sorpt_reactions[i].reaction] summ_charges_times_stoichiometric = 0 for j in names_species_in_reaction: if j in self.names_aq_pri_sp: z = self.list_aq_pri_sp[self.names_aq_pri_sp.index(j)].charge n = self.list_sorpt_reactions[i].reaction[j] summ_charges_times_stoichiometric = summ_charges_times_stoichiometric + (n*z) elif j in self.names_aq_sec_sp: z = self.list_aq_sec_sp[self.names_aq_sec_sp.index(j)].charge n = self.list_sorpt_reactions[i].reaction[j] summ_charges_times_stoichiometric = summ_charges_times_stoichiometric + (n*z) d[self.length_aq_sec_sp + i] = summ_charges_times_stoichiometric elif type_sorpt == 'TLM': d = np.zeros(((self.length_aq_sec_sp + self.length_sorpt_sec_sp), 3)) for i in range(0, self.length_sorpt_sec_sp): if self.list_sorpt_reactions[i].is_species_in_reaction (name_pri_sp): names_species_in_reaction = [*self.list_sorpt_reactions[i].reaction] summ_charges_times_stoichiometric_o = 0 summ_charges_times_stoichiometric_b = 0 for j in names_species_in_reaction: if j in self.names_aq_pri_sp: z = self.list_aq_pri_sp[self.names_aq_pri_sp.index(j)].charge n = self.list_sorpt_reactions[i].reaction[j] if j =='H+' or j == 'OH-': summ_charges_times_stoichiometric_o = summ_charges_times_stoichiometric_o + (n*z) else: summ_charges_times_stoichiometric_b = summ_charges_times_stoichiometric_b + (n*z) elif j in self.names_aq_sec_sp: z = self.list_aq_sec_sp[self.names_aq_sec_sp.index(j)].charge n = self.list_sorpt_reactions[i].reaction[j] if j =='H+' or j == 'OH-': summ_charges_times_stoichiometric_o = summ_charges_times_stoichiometric_o + (n*z) else: summ_charges_times_stoichiometric_b = summ_charges_times_stoichiometric_b + (n*z) d[self.length_aq_sec_sp + i, 0] = summ_charges_times_stoichiometric_o d[self.length_aq_sec_sp + i, 1] = summ_charges_times_stoichiometric_b return d def get_z_vector(self): z =[] for i in range(0, self.length_aq_pri_sp): # if type(self.list_aq_pri_sp[i]) == Aq_Species: z.append(self.list_aq_pri_sp[i].charge) for i in range(0, self.length_aq_sec_sp): z.append(self.list_aq_sec_sp[i].charge) return z def search_index_list_classlist (self, list1, list2): ''' The function returns a list of indices of the position of list1 in list2. --> E.g. list1 =[a c], list2 = [a b c d] function returns listindices = [1,3] Precondition1: list1 <= list2 Precondition2: list1 is completely include in list2. Otherwise an error occurs ''' assert len(list1) <= len(list2), "List of species in the chemical system must be equal or smaller than the list os primary species on the database" list_indices = [] for i in list1: # appends the index of the list2 that coincide with list1. list_indices.append(list2.index(i)) return list_indices def search_index_list_listdictionaryreactions (self, list1, list_dictionaries): ''' The function returns two list. One with the indices of the reactions that occur in the ChemSys_Surf according to the inputed dictionary, and the other the secondary species in each reaction. Both, list are in agremment. e.g. l_ind_reaction = [0, 4, 6, 9], l_secondary_species = ['A' 'B' 'C' 'F'] From reaction 0 of the database the secondary species obtained is A, from 6 is C, and so on. ''' index_reactions = [] name_aq_sec_sp = [] for i in range(0, len(list_dictionaries)): temp_dict = list_dictionaries[i] temp_dict_list_keys = list(temp_dict.reaction.keys()) n_s = 0 for j in temp_dict_list_keys: count = list1.count(j) if count != 1 and count != 0: raise ValueError('[ChemSys class, method Index_ReactionsinDatabase] It seems that the name_primary_species property is wrong.') elif count == 0: n_s += 1 n_s_name = j if n_s == 1: index_reactions.append(i) name_aq_sec_sp.append(n_s_name) return index_reactions, name_aq_sec_sp # Creating first pseudoS #Setters # set stoichiometric Matrix def set_S (self, S, names_species_columns): self.S = S self.S_length_rows = S.shape[0] self.S_length_columns = S.shape[1] self.S_names_columns = names_species_columns assert len(names_species_columns) == self.S_length_columns, 'The columns must have the same size that the list of strings containing the name of the species.' # aqueous component vector def set_vector_aqueous_component_value(self, list_aq_val): ''' The value of vector ''' self.aq_u_vector = list_aq_val # set names_electrostatic_variables def set_names_electrostatic_variables (self, names_elsctrostatic_var): ''' The name of the electrostatic potentials that must be taken into account. Preferible define them using create_electro_sorption_stoichiometric_M Since the names_elsctrotatic_var and the amount in general should be related to a surface ''' self.names_elec_sorpt = names_elsctrostatic_var self.length_names_elec_sorpt = len(self.names_elec_sorpt) # set the stoichiometric matrix given by def set_electro_sorption_stoichiometric_M (self, S_electro): ''' The S matrix defined having as columns the surface variable potentials and as rows the reactions. Preferible define them using create_electro_sorption_stoichiometric_M ''' self.S_electro = S_electro # Faraday constant def set_Faraday_constant (self, new_value): ''' The Faraday constant is instantiated with the class. The Faraday constant has the value 96485.33289(59) C mol−1 [Obtained from WIKI: https://en.wikipedia.org/wiki/Faraday_constant] The constant is the relationship between the elementary charge or the magnitude of the charge of an electron ['e'] and the Avogrado constant (The number of particles in a mol) [NA] F = e * NA e ≈ 1.60217662×10−19 C NA ≈ 6.02214086×1023 mol−1 Note of one of the authors: I do not think that it should be modified but maybe someone what to play with the value ''' self.Faraday_constant = new_value # Temperature def set_temperature(self, new_T): ''' Temperature is supposed to be given in kelvins. ''' self.temperature = new_T # Universal gas constant def set_universal_gas_constant (self, r_value): ''' Set the universal gas constant ''' self.universal_gas_constant = r_value # dielectric constant def set_dielectric_constant (self, e_c): ''' Set the dielectric constant of water ''' self.dielectric_constant = e_c def set_permittivity_free_space (self, eo): ''' Set permittivity of the free space, or distributed capacitance of the vacuum or vacuum permittivity etc Not recommended to be used. Unless sure of what are you doing ''' self.permittivity_free_space = eo # Calculations # Dielectric constant of water def calculate_dielectric_constant(self): ''' Calculates the dielectric constant The extra-calculations are baased on the book section 1.1.2.6 Calculation of activity coefficient -- Groundwater Geochemistry --- <NAME>, <NAME> ''' self.dielectric_constant = 2727.586 + 0.6224107*self.temperature - 466.9151*np.log(self.temperature) - (52000.87/self.temperature) def calculate_A_activitypar (self): ''' Calculates the parameter A of the Debye Hueckel equation The units are supossed to be kg^(1/2)/mol^(1/2) Actually if you want the L/mol is possible to divide by the square of the density to obtain such value The extra-calculations are baased on the book section 1.1.2.6 Calculation of activity coefficient -- Groundwater Geochemistry --- <NAME>, <NAME> ''' A = 1.82483e6*np.sqrt(self.waterdensity) B = (self.temperature*self.dielectric_constant)**(3/2) self.A_activitypar = A/B def calculate_B_activitypar (self): ''' Calculates the parameter A of the Debye Hueckel equation The units are supossed to be kg^(1/2)/mol^(1/2)*cm Actually if you want the L/mol is possible to divide by the square of the density to obtain such value The extra-calculations are baased on the book section 1.1.2.6 Calculation of activity coefficient -- Groundwater Geochemistry --- <NAME>, <NAME> Here the equation is a bit different than that given in the book. The book takes the equation from Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures; II, Debye Huckel parameters for activity coefficients and relative partial molal properties The differences is 10-8 and is related to the fact that they uses angstroms instead of cm ''' A = 50.29158649e8*np.sqrt(self.waterdensity) B = np.sqrt(self.temperature*self.dielectric_constant) self.B_activitypar = A/B def calculate_waterdensity (self): ''' Calculates the density of the water The extra-calculations are baased on the book section 1.1.2.6 Calculation of activity coefficient -- Groundwater Geochemistry --- <NAME>, <NAME> ''' Tc = self.temperature - 273.15 A = (Tc-3.9863)**2 B = Tc + 288.9414 C = Tc + 68.12963 D = (A*B)/(508929.2*C) E = 0.011445*np.exp(-374.3/Tc) self.waterdensity = 1 - D + E ############################################################################ ##### instantiation_step () ##### ############################################################################# def instantiation_step (self, type_I=1): ''' ''' if type_I == 1: c_ini = np.ones(self.S_length_columns)*1e-3 return c_ini ############################################################################################################################################################ ################# Speciation and related algorithms ######################################################################################################## ############################################################################################################################################################ # def speciation_Westall1980_CCM (self, tolerance = 1e-6, max_iterations = 100, c_guess = None): ''' Implementation of the algorithm given in "Chemical Equilibrium Including Adsorption on Charged Surfaces" Westall, 1980 ages 37-to-39 ''' # instantiation of unknowns if np.any(c_guess == None): c_guess = self.instantiation_step (type_I = 1) c_n =c_guess pos_start_elec = self.length_aq_pri_sp + self.length_sorpt_pri_sp pos_end_elec = self.length_aq_pri_sp + self.length_sorpt_pri_sp + self.length_names_elec_sorpt S1, S2 = self.separte_S_into_S1_and_S2() sorpt_u_vector = self.create_sorpt_vec() T_chem = np.concatenate ((self.aq_u_vector, sorpt_u_vector)) # instantiation variables for loop counter_iterations = 0 err = tolerance + 1 while err>tolerance and counter_iterations < max_iterations: # Calculate U vector [If I am not wrong T_sigma must be calculated at every step, since it depends somehow in the surface potential, and it is unknown] u_electro = self.calculate_u_electro(c_n[pos_start_elec:pos_end_elec], c_n) T = np.concatenate ((T_chem, u_electro)) # Calculate f or better said in this specific case Y Y = self.U.dot(c_n) - T # Calculate Z Z = self.Jacobian_Speciation_Westall1980(c_n, pos_start_elec, pos_end_elec) # Calculating the diff, Delta_X # In the paper Delta_X is X_old - X_new or as they called X_original - X_improved. # I am writing X_new- X-old, hence I use -Y instead of Y. delta_X = linalg.solve(Z,-Y) # The error will be equal to the maximum increment err = max(abs(delta_X)) # Relaxation factor borrow from <NAME> to avoid negative values max_1 = 1 max_2 =np.amax(-2*np.multiply(delta_X, 1/c_n[0:pos_end_elec])) Max_f = np.amax([max_1, max_2]) Del_mul = 1/Max_f # Update c_n[0:pos_end_elec] = c_n[0:pos_end_elec] + Del_mul*delta_X # Update primary species log_c2 = np.matmul(linalg.inv(S2), self.log_k_vector - np.matmul(S1, np.log10(c_n[0:pos_end_elec]))) # Update secondary c_n[pos_end_elec:] =10**log_c2 counter_iterations += 1 if counter_iterations >= max_iterations: raise ValueError('Max number of iterations surpassed.') self.c = c_n return c_n def speciation_Westall1980_CCM_v2 (self, tolerance = 1e-6, max_iterations = 100, x = None): ''' Implementation of the algorithm given in "Chemical Equilibrium Including Adsorption on Charged Surfaces" Westall, 1980 ages 37-to-39 ''' # scipy.optimize.newton(func, x0, fprime=None, args=(), tol=1.48e-08, maxiter=50, fprime2=None, x1=None, rtol=0.0, full_output=False, disp=True)[source] S1, S2 = self.separte_S_into_S1_and_S2() pos_start_elec = self.length_aq_pri_sp + self.length_sorpt_pri_sp pos_end_elec = self.length_aq_pri_sp + self.length_sorpt_pri_sp + self.length_names_elec_sorpt sorpt_u_vector = self.create_sorpt_vec() T_chem = np.concatenate ((self.aq_u_vector, sorpt_u_vector)) #c_pri = optimize.newton(self.func_newton, x, args = (T_chem, pos_start_elec, pos_end_elec, S1, S2), fprime = self.Jacobian_Speciation_Westall1980_func) c_pri = optimize.fsolve(self.func_newton, x, args = (T_chem, pos_start_elec, pos_end_elec, S1, S2), fprime = self.Jacobian_Speciation_Westall1980_func) log_c2 = np.matmul(linalg.inv(S2), self.log_k_vector - np.matmul(S1, np.log10(c_pri))) # Update secondary c2 =10**log_c2 c_n = np.concatenate ((c_pri, c2)) self.c = c_n return c_n def func_newton (self, x, T_chem, pos_start_elec, pos_end_elec, S1, S2): ''' x is the vector of primary species ''' log_c2 = np.matmul(linalg.inv(S2), self.log_k_vector - np.matmul(S1, np.log10(x))) # Update secondary c2 =10**log_c2 c_n = np.concatenate ((x, c2)) u_electro = self.calculate_u_electro(x[pos_start_elec:pos_end_elec], c_n) T = np.concatenate ((T_chem, u_electro)) Y = self.U.dot(c_n) - T return Y def Jacobian_Speciation_Westall1980_func (self, x, T_chem, pos_start_elec, pos_end_elec, S1, S2): log_c2 = np.matmul(linalg.inv(S2), self.log_k_vector - np.matmul(S1, np.log10(x))) # Update secondary c2 =10**log_c2 c_n = np.concatenate ((x, c2)) return self.Jacobian_Speciation_Westall1980(c_n, pos_start_elec, pos_end_elec) def speciation_Westall1980_v3 (self, tolerance = 1e-6, max_iterations = 100, Ln_x = None, activity_b = False): ''' Implementation of the algorithm given in "Chemical Equilibrium Including Adsorption on Charged Surfaces" Westall, 1980 ages 37-to-39. That is the third version, here we will try to work with ln(X) as primary species instead of X. Such thing have an effect in the formulation. Specifically, the Newton-Rapshon jacobian of the system should become symetric (I am not taking into account activity, not sure if using activity and its derivatives the matrix is still symetric) The activity_b is just a boolean that if true, the speciaiton of the secondary species in is done by substitution of ''' # scipy.optimize.newton(func, x0, fprime=None, args=(), tol=1.48e-08, maxiter=50, fprime2=None, x1=None, rtol=0.0, full_output=False, disp=True)[source] S1, S2 = self.separte_S_into_S1_and_S2() pos_start_elec = self.length_aq_pri_sp + self.length_sorpt_pri_sp pos_end_elec = self.length_aq_pri_sp + self.length_sorpt_pri_sp + self.length_names_elec_sorpt sorpt_u_vector = self.create_sorpt_vec() T_chem = np.concatenate ((self.aq_u_vector, sorpt_u_vector)) lnK = self.log_k_vector/np.log10(np.e) # Changing the base from log_10 to ln (log_e) #c_pri = optimize.newton(self.func_newton, x, args = (T_chem, pos_start_elec, pos_end_elec, S1, S2), fprime = self.Jacobian_Speciation_Westall1980_func) ln_c_pri = optimize.fsolve(self.residual_fun_v3, Ln_x, args = (lnK, T_chem, pos_start_elec, pos_end_elec, S1, S2, activity_b), fprime = self.Jacobian_Residual_fun_v3) ln_c2 = np.matmul(linalg.inv(S2), lnK - np.matmul(S1, ln_c_pri)) c1 = np.exp(ln_c_pri) c2 = np.exp(ln_c2) c_n = np.concatenate ((c1, c2)) self.c = c_n return c_n def residual_fun_v3 (self, x, lnK, T_chem, pos_start_elec, pos_end_elec, S1, S2, activity_b): ''' This functions is not the 3rd version of an old function but it is related to the speciation_Westall1980_v3. The main algorithm uses the algorithms and formulas that can be found on the Westall paper but for the unknown variables it relies on ln X variables instead of just X variables. The function that I must bild is still Y = U*c -T what changes is how the c parameters are obtained. Before we assumed that our indepent variable was a sort of concentration, now the variable is exactly the lnX of the sort of concentration Hence the ecuation for c is translated into: c = exp(lnKi+sum(aik*lnX)) but since we are using the stoichiometric matrix the relationship will be lnC2 = inv(S2)*lnk - inv(S2)*S1*lnX and c is the concatenation of c = exp(lnX) and exp(lnC2) ''' if activity_b == False: c_n = self.speciation_no_activity_v3 (lnK, S1, S2, x) elif activity_b == True: c_n = self.speciation_activity_v3 (lnK, S1, S2, x) c1 = np.exp(x) u_electro = self.calculate_u_electro(c1[pos_start_elec:pos_end_elec], c_n) T = np.concatenate ((T_chem, u_electro)) Y = self.U.dot(c_n) - T return Y def Jacobian_Residual_fun_v3 (self, x, lnK, T_chem, pos_start_elec, pos_end_elec, S1, S2, activity_b): ''' This functions is not the 3rd version of an old function but it is related to the speciation_Westall1980_v3. ''' if activity_b == False: c_n = self.speciation_no_activity_v3 (lnK, S1, S2, x) elif activity_b == True: c_n = self.speciation_activity_v3 (lnK, S1, S2, x) return self.Jacobian_Speciation_Westall1980_modification_lnX (c_n, pos_start_elec, pos_end_elec) def speciation_no_activity_v3 (self, lnK, S1, S2, x): ln_c2 = np.matmul(linalg.inv(S2), lnK - np.matmul(S1, x)) c1 = np.exp(x) c2 = np.exp(ln_c2) c_n = np.concatenate ((c1, c2)) return c_n def speciation_activity_v3 (self, lnK, S1, S2, x): c_1 = np.exp(x) c_2 = np.zeros(S2.shape[1]) c_2 = self.subfunction_of_speciation_activity_v3 (c_2, c_1, lnK, S1, S2) c_2 = optimize.fixed_point(self.subfunction_of_speciation_activity_v3, c_2, args = (c_1, lnK, S1, S2)) # # tolerance = 1e-8 # n_max_iterations = 100 #error = 1 # I need to implement some sort of Picard method #c_1 = np.exp(x) #c_2 = np.zeros(S2.shape[1]) # c_k = self.subfunction_of_speciation_activity_v3 (c_2, c_1, lnK, S1, S2) #counter = 0 #while error > tolerance and counter < n_max_iterations: # c_k1 = self.subfunction_of_speciation_activity_v3 (c_k, c_1, lnK, S1, S2) # error = max(abs(c_k1-c_k)) # print(error) #c_k = c_k1.copy() #counter += 1 #if counter >= n_max_iterations: # raise ValueError('Max number of iterations surpassed in speciation_activity_v3 (self, lnK, S1, S2, x.') c_n =
np.concatenate((c_1, c_2))
numpy.concatenate
""" state, observation and action spaces """ from collections import namedtuple, OrderedDict from io import BytesIO from itertools import product from os.path import join import pkg_resources import numpy as np import pandas as pd import energypy as ep from energypy.common.spaces import DiscreteSpace, ContinuousSpace # used in envs PrimitiveConfig = namedtuple( 'primitive', ['name', 'low', 'high', 'type', 'data'] ) primitive_register = { 'discrete': DiscreteSpace, 'continuous': ContinuousSpace } class Space(OrderedDict): def __init__(self, name): super().__init__() self.name = name self._shape = None def __repr__(self): return('<{} space {}>'.format(self.name, self.shape)) @property def shape(self): return self._shape @shape.getter def shape(self): return (len(self.keys()), ) @property def low(self): return self._low @low.getter def low(self): return np.array([spc.low for spc in self.values()]).reshape(*self.shape) @property def high(self): return self._high @high.getter def high(self): return np.array([spc.high for spc in self.values()]).reshape(*self.shape) def sample(self): return np.array([spc.sample() for spc in self.values()]).reshape(1, *self.shape) def contains(self, x): return all(spc.contains(part) for (spc, part) in zip(self.values(), x[0])) def from_primitives(self, *primitives): for p in primitives: self[p.name] = primitive_register[p.type](p.name, p.low, p.high, data=p.data) self.num_samples = self.set_num_samples() return self def append(self, primitive): p = primitive self[p.name] = primitive_register[p.type](p.name, p.low, p.high, data=p.data) self.num_samples = self.set_num_samples() return self def set_num_samples(self): num_samples = [] for name, space in self.items(): if isinstance(space.data, str): assert space.data == 'append' else: num_samples.append(np.array(space.data).shape[0]) if num_samples: assert max(num_samples) == min(num_samples) return max(num_samples) else: return None class StateSpace(Space): def __init__(self, name='state'): super().__init__(name=name) def __call__(self, steps, offset, append=None): """ steps = num steps through episode start = offset for start of episode end = offset for end of episode append = {name: data}, data from env appended to state / obs """ data = [] for name, space in self.items(): if space.data == 'append': # if isinstance(space.data, str): assert space.data == 'append' data.append(append[name]) elif space.data is not None: data.append(space(steps, offset)) else: raise ValueError return
np.array(data)
numpy.array
''' ############################################################################### "MajoranaNanowire" Python3 Module v 1.0 (2020) Created by <NAME> (2018) ############################################################################### "Function" submodule This sub-package contains some functions required for the "Hamiltonian" sub-package. ############################################################################### ''' #%%############################################################################ ######################## Required Packages ############################ ############################################################################### import numpy as np import scipy.sparse import scipy.sparse.linalg import scipy.linalg from scipy import constants from MajoranaNanowires.third_functions import pfaffian as pf #%% ############################# Functions #%% def FermiDirac(E,kT,mu=0): """ Computes the Fermi-Dirac distribution. Parameters ---------- E: scalar or arr Energies. kT: scalar Temperature (in units of energy). mu: scalar or arr Fermi energy. Returns ------- result: scalar or arr Fermi-Dirac distribution for the given energies. """ np.seterr(over='ignore') np.seterr(divide='ignore') return (1/(1+np.exp((E-mu)/kT))) #%% def density_TF(phi,kT=0,E_F=0,material='InAs',band='conduction',Vz=0): """ Computes the charge density of a 3D (free) electron gas in the Thomas-Fermi approximation. Parameters ---------- phi: scalar or arr Electrostatic energy. kT: scalar Temperature (in units of energy). E_F: scalar or arr Fermi energy. material: str or dic Material for which is evaluated. For a general material, 'material' is a dictionary with arguments m_eff (conduction effective mass), m_eff_hh (heavy hole effective mass), m_eff_lh (light hole effective mass), and E_gap (semiconductor gap). These parameters are already saved in this function for InAs and InSb, which can be chosen by choosing material='InAs' or 'InSb', resprectively. band: str Whether to include 'conduction', 'valence' or 'both' bands in the calculations. Vz: scalar Zeeman splitting. Returns ------- den: scalar or arr Charge density in the Thomas-Fermi approximation for the given electrostatic energies. """ np.seterr(invalid='ignore') if material=='InAs': m_eff=0.023 m_eff_hh=0.41 m_eff_lh=0.026 E_gap=418 elif material=='InSb': m_eff=0.015 m_eff_hh=0.43 m_eff_lh=0.015 E_gap=170 else: if 'E_gap' in material: material['m_eff'], material['m_eff_hh'], material['m_eff_lh'], material['E_gap'] = m_eff, m_eff_hh, m_eff_lh, E_gap else: material['m_eff'] = m_eff if band=='conduction': if Vz==0: den_e=-1.0/(3*constants.pi**2)*(np.sqrt(2*m_eff*constants.m_e*np.abs(phi+E_F)*1e-3*constants.e*FermiDirac(-phi-E_F,kT))/constants.hbar)**3*1e-27 den=np.nan_to_num(den_e,0) else: den_e=-1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff*constants.m_e*np.abs(phi+E_F+Vz)*1e-3*constants.e*FermiDirac(-phi-E_F-Vz,kT))/constants.hbar)**3*1e-27 den_e=den_e-1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff*constants.m_e*np.abs(phi+E_F-Vz)*1e-3*constants.e*FermiDirac(-phi-E_F+Vz,kT))/constants.hbar)**3*1e-27 den=np.nan_to_num(den_e,0) elif band=='valence': if Vz==0: den_hh=1.0/(3*constants.pi**2)*(np.sqrt(2*m_eff_hh*constants.m_e*np.abs(-phi-E_gap-E_F)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap,kT))/constants.hbar)**3*1e-27 den_lh=1.0/(3*constants.pi**2)*(np.sqrt(2*m_eff_lh*constants.m_e*np.abs(-phi-E_gap-E_F)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap,kT))/constants.hbar)**3*1e-27 den=np.nan_to_num(den_hh+den_lh,0) else: den_hh=1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff_hh*constants.m_e*np.abs(-phi-E_gap-E_F-Vz)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap+Vz,kT))/constants.hbar)**3*1e-27 den_hh=den_hh+1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff_hh*constants.m_e*np.abs(-phi-E_gap-E_F+Vz)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap-Vz,kT))/constants.hbar)**3*1e-27 den_lh=1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff_lh*constants.m_e*np.abs(-phi-E_gap-E_F-Vz)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap+Vz,kT))/constants.hbar)**3*1e-27 den_lh=den_lh+1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff_lh*constants.m_e*np.abs(-phi-E_gap-E_F+Vz)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap-Vz,kT))/constants.hbar)**3*1e-27 den=np.nan_to_num(den_hh+den_lh,0) elif band=='both': if Vz==0: den_e=-1.0/(3*constants.pi**2)*(np.sqrt(2*m_eff*constants.m_e*np.abs(phi+E_F)*1e-3*constants.e*FermiDirac(-phi-E_F,kT))/constants.hbar)**3*1e-27 den_e=np.nan_to_num(den_e,0) den_hh=1.0/(3*constants.pi**2)*(np.sqrt(2*m_eff_hh*constants.m_e*np.abs(-phi-E_gap-E_F)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap,kT))/constants.hbar)**3*1e-27 den_lh=1.0/(3*constants.pi**2)*(np.sqrt(2*m_eff_lh*constants.m_e*np.abs(-phi-E_gap-E_F)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap,kT))/constants.hbar)**3*1e-27 den_h=np.nan_to_num(den_hh+den_lh,0) den=den_e+den_h else: den_e=-1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff*constants.m_e*np.abs(phi+E_F+Vz)*1e-3*constants.e*FermiDirac(-phi-E_F-Vz,kT))/constants.hbar)**3*1e-27 den_e=den_e-1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff*constants.m_e*np.abs(phi+E_F-Vz)*1e-3*constants.e*FermiDirac(-phi-E_F+Vz,kT))/constants.hbar)**3*1e-27 den_e=np.nan_to_num(den_e,0) den_hh=1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff_hh*constants.m_e*np.abs(-phi-E_gap-E_F-Vz)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap+Vz,kT))/constants.hbar)**3*1e-27 den_hh=den_hh+1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff_hh*constants.m_e*np.abs(-phi-E_gap-E_F+Vz)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap-Vz,kT))/constants.hbar)**3*1e-27 den_lh=1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff_lh*constants.m_e*np.abs(-phi-E_gap-E_F-Vz)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap+Vz,kT))/constants.hbar)**3*1e-27 den_lh=den_lh+1.0/(6*constants.pi**2)*(np.sqrt(2*m_eff_lh*constants.m_e*np.abs(-phi-E_gap-E_F+Vz)*1e-3*constants.e*FermiDirac(phi+E_F+E_gap-Vz,kT))/constants.hbar)**3*1e-27 den_h=np.nan_to_num(den_hh+den_lh,0) den=den_e+den_h return (den) #%% ############################# Array manipulation #%% def order_eig(E,U=0,sparse='yes',BdG='yes'): """ Order the eigenfunctions from smaller to larger. If BdG==yes and sparse==yes, it also ensures that there are the same number of positive eigenvalues than negative. Parameters ---------- E: arr Eigenvalues. U: arr Eigenvectors. sparse: {'yes','no'} Whether the eigenspectrum has been computed from a sparse matrix. BdG: {'yes','no'} Whether the eigenspectrum must have BdG symmetry or not. Returns ------- E, U: arrs Eigenspectrum ordered from smaller to larger eigenvalues. """ n_eig=len(E) if np.isscalar(U): if BdG=='yes': if sparse=='yes': idx = np.argsort(E) E = E[idx] if (np.abs(E[0]+E[n_eig-1])>0.00001)and(np.sign(E[0]+E[n_eig-1])==1): E[n_eig-1]=-E[n_eig-2] elif (np.abs(E[0]+E[n_eig-1])>0.00001)and(np.sign(E[0]+E[n_eig-1])==-1): E[0]=-E[1] idx = np.argsort(E) return (idx) else: if BdG=='yes': if sparse=='yes': idx = np.argsort(E) E = E[idx] U = U[:,idx] if (np.abs(E[0]+E[n_eig-1])>0.00001)and(np.sign(E[0]+E[n_eig-1])==1): E[n_eig-1]=-E[n_eig-2] elif (np.abs(E[0]+E[n_eig-1])>0.00001)and(np.sign(E[0]+E[n_eig-1])==-1): E[0]=-E[1] idx = np.argsort(E) E = E[idx] U = U[:,idx] return (E),(U) #%% def length(vec): """ Length of a given vector. If vec is an scalar, its length is 1. Parameters ---------- vec: scalar or arr Input vector Returns ------- length: int Length of vec. If vec is an scalar, its length is 1. """ if np.ndim(vec)==0: length=1 else: length=len(vec) return length #%% def diagonal(N,k=0,init=0,step=1): """ Indices of some diagonal of a given marix. It is more efficient than its numpy counterpart. Parameters ---------- N: int Length of the diagonal (number of elements). k: int Offset of the off-diagonal. k=0 is the main diagonal, k>0 is a diagonal in the upper-part of the Hamiltonian, and k<0 in the lower one. init: int The starting element of the diagonal. step: int The step between elements in the diagonal. Returns ------- indices: tuple of arr Indices of the diagonal. The first element of the tuple are the row elements, and the second one are the column ones. """ assert np.isscalar(k), 'The offset k must be a scalar' if k==0: indices=(np.arange(init,N,step=step),np.arange(init,N,step=step)) elif k>0: indices=(np.arange(init,N-k,step=step),np.arange(init,N-k,step=step)+k) elif k<0: indices=(np.arange(init,N+k,step=step)-k,np.arange(init,N+k,step=step)) return(indices) #%% def concatenate(arg): """ Concatenate a list of arrays. Parameters ---------- arg: tuple or list of arr List of arrays to be concatenated. Returns ------- con: arr or list Array or list of the concatenated list. """ if isinstance(arg[0],tuple) and len(arg[0])==2: index_1, index_2 = np.array([]), np.array([]) for i in range(len(arg)): index_1 = np.append(index_1,arg[i][0]) index_2 = np.append(index_2,arg[i][1]) indices=(index_1,index_2) else: indices=np.concatenate(arg) return(indices) #%% def between(arg, interval): """ Computes whether a given number is between a given interval or not. Parameters ---------- arg: scalar Number to be evaluated. interval: tuple Interval in which perform the evaluation. Returns ------- result: bool If arg is between interval, result=True, and result=False in other case. """ if arg>=interval[0] and arg<=interval[1]: result=True else: result=False return(result) #%% def arg_isclose(vec,val): """ Find the index of a given vector that corresponds to the element of the array "vec" which is closest to to an specific value "val". Parameters ---------- vec: arr Array in which it is desired to find the closest element. val: scalar Closest value. Returns ------- result: int Index of the element of vec closest to val. """ arg=np.argmin(np.abs(vec-val)) return(arg) #%% ############################# Constructors or extractors #%% def build_mesh(N,L,mesh_type='regular',fact=0.5,asym=1): """ Build a 2D inhomogeneous rectangular mesh. Parameters ---------- N: arr Number of sites in each direction. L: arr Length en each direction. mesh_type: str Whether to build a 'regular' mesh, or an inhomogeneous one with a discretization given by a 'geometric' distribution, an 'exponential' separation, or a 'random' one. fact: scalar Factor which regulates the separations between sites. asym: scalar The asymmetry between the factors applied for the x and y direction. Returns ------- x, y: mesh Mesh in the x and y directions. dis: mesh Mesh with the discretization in each point. """ if mesh_type=='regular': x, y = np.linspace(-L[1]/2,L[1]/2,N[0]), np.linspace(-L[0]/2,L[0]/2,N[1]) dis=np.array([np.abs(x[1]-x[0]),np.abs(y[1]-y[0])]) x,y=np.meshgrid(x,y,indexing='ij') return (x,y,dis) elif mesh_type=='geometric': xm,ym=np.zeros(N), np.zeros(N) dis_m=np.array([np.zeros(N),np.zeros(N)]) for i in range(N[0]): for j in range(N[1]): xm[i,j]=(L[0]/2*fact**np.abs(i-int((N[0]-1)/2))-L[0]/2)*np.sign(i-int((N[0]-1)/2))*(L[0]/(L[0]/2*fact**np.abs(0-int((N[0]-1)/2))-L[0]/2)/2) ym[i,j]=(L[1]/2*fact**np.abs(j-int((N[1]-1)/2))-L[1]/2)*np.sign(j-int((N[1]-1)/2))*(L[1]/(L[1]/2*fact**np.abs(0-int((N[1]-1)/2))-L[1]/2)/2) for i in range(N[0]): for j in range(N[1]): if not(j==0 or j==N[1]-1): dis_m[1,i,j]=np.abs(ym[i,j+1]-ym[i,j])/2+np.abs(ym[i,j-1]-ym[i,j])/2 if not(i==0 or i==N[0]-1): dis_m[0,i,j]=np.abs(xm[i,j]-xm[i-1,j])/2+np.abs(xm[i,j]-xm[i+1,j])/2 if i==0: dis_m[0,i,j]=np.abs(xm[i,j]-xm[i+1,j]) elif i==N[0]-1: dis_m[0,i,j]=np.abs(xm[i,j]-xm[i-1,j]) if j==0: dis_m[1,i,j]=np.abs(ym[i,j]-ym[i,j+1]) elif j==N[1]-1: dis_m[1,i,j]=
np.abs(ym[i,j]-ym[i,j-1])
numpy.abs
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #CSPP Data below elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data =
np.array([])
numpy.array
""" Test the quality of inference, measured by num edges + num mutations, and (if using simulated data) the KC distance """ import os.path import argparse import collections import itertools import multiprocessing import re import time import logging import json import msprime import tskit import numpy as np import stdpopsim import tsinfer from error_generation import add_errors import intervals logging.basicConfig() logger = logging.getLogger(__name__) def make_switch_errors(sample_data, switch_error_rate=0, random_seed=None, **kwargs): raise NotImplementedError def rnd_kc(params): ts, random_seed = params s = tskit.Tree.generate_star( ts.num_samples, span=ts.sequence_length, sample_lists=True) kc = 0 for tree in ts.trees(sample_lists = True): kc += tree.span * tree.kc_distance(s.split_polytomies( random_seed=random_seed + tree.index, sample_lists=True)) return kc / ts.sequence_length def simulate_stdpopsim( species, model, contig, num_samples, mutation_file=None, seed=123, skip_existing=False, num_procs=1, ): base_fn = f"{model}_{contig}_n{num_samples}" tree_fn = f"{base_fn}_seed{seed}" logger.info(f"Using {species}:{contig} from stdpopsim using the {model} model") if skip_existing and os.path.exists(tree_fn + ".trees"): logger.info( f"Simulation file {tree_fn}.trees already exists, returning that.") return base_fn, tree_fn sample_data = None species = stdpopsim.get_species(species) model = species.get_demographic_model(model) num_pops = model.num_sampling_populations if num_samples < num_pops or num_samples % num_pops != 0: raise ValueError( f"num_samples must be an integer multiple of {num_pops} " f"(or 2 x {num_pops} if diploid sequencing error is injected)" ) pop_n = num_samples // num_pops logger.info( f"Simulating {num_pops}x{pop_n} samples, seed {seed}, file prefix '{tree_fn}'." ) contig = species.get_contig(contig) l = contig.recombination_map.get_sequence_length() if mutation_file is not None: logger.debug(f"Loading {mutation_file}") sample_data = tsinfer.load(mutation_file) if sample_data.sequence_length != l: raise ValueError( f"Mismatching sequence_length between simulation and {mutation_file}") # Reduce mutation rate to 0, as we will insert mutations later contig = stdpopsim.Contig( mutation_rate=0, recombination_map=contig.recombination_map, genetic_map=contig.genetic_map, ) r_map = contig.recombination_map assert len(r_map.get_rates()) == 2 # Ensure a single rate over chr samples = model.get_samples(*([pop_n] * num_pops)) engine = stdpopsim.get_engine('msprime') ts = engine.simulate(model, contig, samples, seed=seed) tables = ts.dump_tables() if sample_data is not None: pos = sample_data.sites_position[:] logger.info( f"Inserting {len(pos)} mutations at variable sites from {mutation_file}") for tree in ts.trees(): positions = pos[np.logical_and(pos>=tree.interval[0], pos<tree.interval[1])] if len(positions) == 0: continue muts = list(zip( np.random.uniform(0, tree.total_branch_length, size=len(positions)), positions)) muts.sort() tot = 0 # place a mutation on a random branch, proportional to branch length try: for n in tree.nodes(): tot += tree.branch_length(n) while muts[0][0] < tot: _, position = muts.pop(0) s = tables.sites.add_row(position=position, ancestral_state="0") tables.mutations.add_row(node=n, site=s, derived_state="1") except IndexError: # No more mutations - go to next tree continue tables.sort() logger.debug( f"Inserted mutations at density {ts.num_mutations/ts.sequence_length}") interval = [int(l * 2/20), int(l * 2/20)+1e7] # 10Mb near the start, not centromeric tables.keep_intervals([interval]) tables.trim() logger.debug( f"Cut down tree seq to {interval} ({tables.sites.num_rows} sites) for speed") # Add info to the top-level metadata user_data = {} logger.info("Calculating the kc distance of the simulation against a flat tree") star_tree = tskit.Tree.generate_star( ts.num_samples, span=tables.sequence_length, record_provenance=False) user_data['kc_max'] = tables.tree_sequence().kc_distance(star_tree.tree_sequence) kc_array = [] max_reps = 100 ts = tables.tree_sequence() logger.info( f"Calculating KC distance of the sim against at most {max_reps} * {ts.num_trees}" f" random trees using {num_procs} parallel threads. This could take a while." ) seeds = range(seed, seed + max_reps) with multiprocessing.Pool(num_procs) as pool: for i, kc in enumerate(pool.imap_unordered( rnd_kc, zip(itertools.repeat(ts), seeds)) ): kc_array.append(kc) if i > 10: se_mean = np.std(kc_array, ddof=1)/np.sqrt(i) # break if SEM < 1/100th of mean KC. This can take along time if se_mean/np.average(kc_array) < 0.01: logger.info( f"Stopped after {i} replicates as kc_max_split deemed accurate.") break user_data['kc_max_split'] = np.average(kc_array) if tables.metadata_schema != tskit.MetadataSchema({"codec":"json"}): if tables.metadata: raise RuntimeError("Metadata already exists, and is not JSON") tables.metadata_schema = tskit.MetadataSchema({"codec":"json"}) tables.metadata = {} tables.metadata = { **tables.metadata, "user_data": user_data} tables.tree_sequence().dump(tree_fn + ".trees") return base_fn, tree_fn def test_sim(seed): ts = msprime.simulate( 10, length=1000, mutation_rate=1e-2, recombination_rate=1e-2, random_seed=seed) return ts, f"test_sim{seed}" def setup_sampledata_from_simulation( prefix, random_seed, err=0, num_threads=1, cheat_breakpoints=False, use_sites_time=False, skip_existing=False): """ Take the results of a simulation and return a sample data file, some reconstructed ancestors, a recombination rate array, a suffix to append to the file prefix, and the original tree sequence. If 'err' is 0, we do not inject any errors into the haplotypes. Otherwise we add empirical sequencing error and ancestral allele polarity error If "cheat_recombination" is True, multiply the recombination_rate for known recombination locations from the simulation by 20 If "use_sites_time" is True, use the times If "skip_existing" is True, and the sample_data file and ancestors_file that were going to be generated already exist, then skip the actual simulation and just return those files and their data. """ suffix = "" ts = tskit.load(prefix + ".trees") plain_samples = tsinfer.SampleData.from_tree_sequence( ts, use_sites_time=use_sites_time) if cheat_breakpoints: suffix += "cheat_breakpoints" logger.info("Cheating by using known breakpoints") if use_sites_time: suffix += "use_times" logger.info("Cheating by using known times") if err == 0: sd_path = prefix + suffix + ".samples" if skip_existing and os.path.exists(sd_path): logger.info(f"Simulation file {sd_path} already exists, loading that.") sd = tsinfer.load(sd_path) else: sd = plain_samples.copy(path=sd_path) # Save the samples file sd.finalise() else: logger.info("Adding error") suffix += f"_ae{err}" sd_path = prefix + suffix + ".samples" if skip_existing and os.path.exists(sd_path): logger.info(f"Sample file {sd_path} already exists, loading that.") sd = tsinfer.load(sd_path) else: error_file = add_errors( plain_samples, err, random_seed=random_seed) sd = error_file.copy(path=prefix + suffix + ".samples") if use_sites_time: # Sites that were originally singletons have time 0, but could have been # converted to inference sites when adding error. Give these a nonzero time sites_time = sd.sites_time sites_time[sites_time == 0] = np.min(sites_time[sites_time > 0])/1000.0 sd.sites_time[:] = sites_time sd.finalise() for attribute in ('sequence_length', 'num_samples', 'num_sites'): if getattr(sd, attribute) != getattr(ts, attribute): raise ValueError( f"{attribute} differs between original ts and sample_data: " f"{getattr(sd, attribute)} vs {getattr(ts, attribute)}") anc_path = prefix + suffix + ".ancestors" if skip_existing and os.path.exists(anc_path): logger.info(f"Ancestors file {anc_path} already exists, loading that.") anc = tsinfer.load(anc_path) else: anc = tsinfer.generate_ancestors( sd, num_threads=num_threads, path=anc_path, ) logger.info("GA done") inference_pos = anc.sites_position[:] rho = 1e-8 # shouldn't matter what this is - it it relative to mismatch if cheat_breakpoints: raise NotImplementedError("Need to make a RateMap with higher r at breakpoints") breakpoint_positions = np.array(list(ts.breakpoints())) inference_positions = anc.sites_position[:] breakpoints = np.searchsorted(inference_positions, breakpoint_positions) # Any after the last inference position must be junked # (those before the first inference position make no difference) breakpoints = breakpoints[breakpoints != len(rho)] rho[breakpoints] *= 20 return sd.path, anc.path, rho, suffix, ts def setup_sample_file(base_filename, args, num_threads=1): """ Return a sample data file, the ancestors file, a corresponding recombination rate (a single number or a RateMap), a prefix to use for files, and None """ gmap = args.genetic_map sd = tsinfer.load(base_filename + ".samples") anc = tsinfer.generate_ancestors( sd, num_threads=num_threads, path=base_filename + ".ancestors", ) logger.info("GA done") inference_pos = anc.sites_position[:] match = re.search(r'(chr\d+)', base_filename) if match or gmap is not None: if gmap is not None: try: rho=float(gmap) logger.info(f"Using rate {gmap} for the recombination rate") except ValueError: rho = intervals.read_hapmap(gmap) logger.info(f"Using file from {gmap} for the recombination map") else: chr = match.group(1) logger.info(f"Using {chr} from HapMapII_GRCh37 for the recombination map") gmap = stdpopsim.get_species("HomSap").get_genetic_map(id="HapMapII_GRCh37") if not gmap.is_cached(): gmap.download() filename = os.path.join(gmap.map_cache_dir, gmap.file_pattern.format(id=chr)) rho = intervals.read_hapmap(filename) else: rho = 1e-8 # shouldn't matter what this is - it it relative to mismatch #if np.any(d==0): # w = np.where(d==0) # raise ValueError("Zero recombination rates at", w, inference_pos[w]) return sd.path, anc.path, rho, "", None # Parameters passed to each subprocess Params = collections.namedtuple( "Params", "ts_file, sample_file, anc_file, rec_rate, ma_mis_ratio, ms_mis_ratio, precision, " "num_threads, kc_max, kc_max_split, seed, error, source, skip_existing" ) Results = collections.namedtuple( "Results", "arity_mean, arity_var, edges, error, kc_max_split, kc_max, kc_poly, kc_split, " "muts, n, num_sites, min_num_muts, revised_num_muts, num_trees, precision, " "proc_time, ma_mis_ratio, ms_mis_ratio, seed, sim_ts_min_bytes, sim_ts_bytes, " "source, ts_bytes, ts_path" ) def run(params): """ Run a single inference, with the specified rates """ precision = params.precision logger.info( f"Starting {params.ma_mis_ratio} {params.ms_mis_ratio}. Precision {precision}" ) prefix = None assert params.sample_file.endswith(".samples") assert params.anc_file.endswith(".ancestors") samples = tsinfer.load(params.sample_file) ancestors = tsinfer.load(params.anc_file) start_time = time.process_time() prefix = params.sample_file[0:-len(".samples")] inf_prefix = "{}_rma{:g}_rms{:g}_p{}".format( prefix, params.ma_mis_ratio, params.ms_mis_ratio, precision) ats_path = inf_prefix + ".atrees" if params.skip_existing and os.path.exists(ats_path): logger.info(f"Ancestors ts file {ats_path} already exists, loading that.") inferred_anc_ts = tskit.load(ats_path) prov = json.loads(inferred_anc_ts.provenances()[-1].record.encode()) if ancestors.uuid != prov['parameters']['source']['uuid']: logger.warning( "The loaded ancestors ts does not match the ancestors file. " "Checking the site positions, and will abort if they don't match!") # We might be re-running this, but the simulation file is the same # So double-check that the positions in the ancestors ts are a subset of # those in the used sample data file assert np.all(np.isin( inferred_anc_ts.tables.sites.position, samples.sites_position[:])) else: logger.info(f"MA running: will save to {ats_path}") inferred_anc_ts = tsinfer.match_ancestors( samples, ancestors, num_threads=params.num_threads, precision=precision, recombination_rate=params.rec_rate, mismatch_ratio=params.ma_mis_ratio, ) inferred_anc_ts.dump(ats_path) logger.info(f"MA done: mismatch ratio = {params.ma_mis_ratio}") ts_path = inf_prefix + ".trees" if params.skip_existing and os.path.exists(ts_path): logger.info(f"Inferred ts file {ts_path} already exists, loading that.") inferred_ts = tskit.load(ts_path) try: user_data = inferred_ts.metadata['user_data'] process_time = user_data.get("proc_time", None) # Check we have all the required user data if set(inferred_ts.metadata['user_data'].keys()) != set(Results._fields): raise ValueError("Non-matching fields") try: assert np.allclose(params.kc_max, user_data['kc_max']) except (KeyError, TypeError): pass # could be NaN e.g. if this is real data return user_data except (TypeError, KeyError): logging.warning(f"No metadata in {ts_path}: recalculating") except ValueError: logging.warning(f"Unexpected metadata in {ts_path}: recalculating") else: # Otherwise finish off the inference logger.info(f"MS running with {params.num_threads} threads: will save to {ts_path}") inferred_ts = tsinfer.match_samples( samples, inferred_anc_ts, num_threads=params.num_threads, precision=precision, recombination_rate=params.rec_rate, mismatch_ratio=params.ms_mis_ratio) process_time = time.process_time() - start_time logger.info(f"MS done: mismatch ratio = {params.ms_mis_ratio}") simplified_inferred_ts = inferred_ts.simplify() # Remove unary nodes # Calculate mean num children (polytomy-measure) for internal nodes nc_sum = 0 nc_sum_sq = 0 nc_tot = 0 # Number of mutations after removing muts above samples for multi-mutation sites revised_num_muts = 0 smp_set = set(simplified_inferred_ts.samples()) root_lengths = collections.defaultdict(float) for tree in simplified_inferred_ts.trees(): for site in tree.sites(): if len(site.mutations) == 1: revised_num_muts += 1 else: revised_num_muts += len([m for m in site.mutations if m.node in smp_set]) for n in tree.nodes(): n_children = tree.num_children(n) if n_children > 0: # exclude leaves/samples nc_sum += n_children * tree.span nc_sum_sq += (n_children ** 2) * tree.span nc_tot += tree.span arity_mean = nc_sum/nc_tot arity_var = nc_sum_sq / nc_tot - (arity_mean ** 2) # can't be bothered to adjust for n sim_ts_bytes = sim_ts_min_bytes = None kc_poly = kc_split = None min_num_muts = None # Calculate measures against the known (simulated) ts, if it exists if params.ts_file is not None: try: simulated_ts = tskit.load(params.ts_file + ".trees") logger.info( f"Calculating minimum req. mutations against {ts_path} using parsimony") min_num_muts = 0 tree_iter = simulated_ts.trees() tree = next(tree_iter) for v in samples.variants(): while v.site.position >= tree.interval.right: tree = next(tree_iter) anc_state, mutations = tree.map_mutations( genotypes=v.genotypes, alleles=v.alleles, ancestral_state=v.site.ancestral_state, ) min_num_muts += len(mutations) logger.info(f"Calculating KC distances for {ts_path}") sim_ts_bytes = simulated_ts.nbytes sim_ts_min_bytes = simulated_ts.simplify( keep_unary=True, reduce_to_site_topology=True, filter_sites=False).nbytes kc_poly = simplified_inferred_ts.kc_distance(simulated_ts) logger.debug("KC poly calculated") kc_split = 0 for interval, orig_tree, new_tree in simulated_ts.coiterate( simplified_inferred_ts, sample_lists=True ): kc_split += interval.span * orig_tree.kc_distance( new_tree.split_polytomies( random_seed=int(interval.left), sample_lists=True)) kc_split /= simulated_ts.sequence_length logger.debug("KC split calculated") except FileNotFoundError: pass results = Results( arity_mean=arity_mean, arity_var=arity_var, edges=inferred_ts.num_edges, error=params.error, kc_max_split=params.kc_max_split, kc_max=params.kc_max, kc_poly=kc_poly, kc_split=kc_split, muts=inferred_ts.num_mutations, n=inferred_ts.num_samples, num_sites=inferred_ts.num_sites, min_num_muts=min_num_muts, revised_num_muts=revised_num_muts, num_trees=inferred_ts.num_trees, precision=precision, proc_time=process_time, ma_mis_ratio=params.ma_mis_ratio, ms_mis_ratio=params.ms_mis_ratio, seed=params.seed, sim_ts_min_bytes=sim_ts_min_bytes, sim_ts_bytes=sim_ts_bytes, source=params.source, ts_bytes=inferred_ts.nbytes, ts_path=ts_path, ) # Save the results into the ts metadata - this should allow us to reconstruct the # results table should anything go awry, or if we need to add more tables = inferred_ts.dump_tables() if tables.metadata_schema != tskit.MetadataSchema({"codec":"json"}): if tables.metadata: raise RuntimeError("Metadata already exists in the ts, and is not JSON") tables.metadata_schema = tskit.MetadataSchema({"codec":"json"}) tables.metadata = {} tables.metadata = {**tables.metadata, "user_data": results._asdict()} tables.tree_sequence().dump(ts_path) return results._asdict() def run_replicate(rep, args): """ The main function that runs a parameter set """ params = {} # The info to be passed though to each inference run params['num_threads'] = args.num_threads params['error'] = args.error params['source'] = args.source params['skip_existing'] = args.skip_existing_params params['seed'] = rep+args.random_seed precision = [None] if len(args.precision) == 0 else args.precision if args.source.count(":") >= 3: logger.debug("Simulating") details = args.source.split(":") base_name, ts_name = simulate_stdpopsim( species=details[0], contig=details[1], model=details[2], num_samples=int(details[3]), mutation_file=details[4] if len(details)>4 else None, seed=params['seed'], skip_existing=params['skip_existing'], num_procs=args.num_processes, ) sample_file, anc_file, rho, suffix, ts = setup_sampledata_from_simulation( ts_name, random_seed=params['seed'], err=params['error'], num_threads=params['num_threads'], cheat_breakpoints=args.cheat_breakpoints, use_sites_time=args.use_sites_time, skip_existing=params['skip_existing'], ) prefix = ts_name + suffix base_name += suffix else: logger.debug(f"Using provided sample data file {params['source']}") if not params['source'].endswith(".samples"): raise ValueError("Sample data file must end with '.samples'") prefix = params['source'][:-len(".samples")] sample_file, anc_file, rho, suffix, ts = setup_sample_file( prefix, args, params['num_threads']) ts_name = None base_name = prefix + suffix params['kc_max'], params['kc_max_split'] = None, None try: params['kc_max'] = ts.metadata['user_data']['kc_max'] params['kc_max_split'] = ts.metadata['user_data']['kc_max_split'] except (TypeError, KeyError, AttributeError): pass param_iter = [ Params(ts_name, sample_file, anc_file, rho, ma_mr, ms_mr, p, **params) for ms_mr in args.match_samples_mismatch_ratio for ma_mr in args.match_ancestors_mismatch_ratio for p in precision] treefiles = [] results_filename = prefix + "_results.csv" with open(results_filename, "wt") as file: headers = [] if args.num_processes < 2: for p in param_iter: result = run(p) if len(headers) == 0: headers = list(result.keys()) print(",".join(headers), file=file) else: if set(headers) != set(result.keys()): logging.warning("Some differences in headers") result_str = [str(result.get(h, "")) for h in headers] print(",".join(result_str), file=file, flush=True) treefiles.append(result['ts_path']) else: num_procs = min(len(param_iter), args.num_processes) logger.info( f"Parallelising {len(param_iter)} parameter combinations " f"over {num_procs} processes") with multiprocessing.Pool(num_procs) as pool: for result in pool.imap_unordered(run, param_iter): # Save to a results file. if len(headers) == 0: headers = list(result.keys()) print(",".join(headers), file=file) else: if set(headers) != set(result.keys()): logging.warning("Some differences in headers") result_str = [str(result.get(h, "")) for h in headers] print(",".join(result_str), file=file, flush=True) treefiles.append(result['ts_path']) logger.info(f"Results saved to {results_filename}") return base_name, treefiles if __name__ == "__main__": # Set up the range of params for multiprocessing default_match_samples_mismatch_ratio = np.array( [1e4, 1e3, 1e2, 10, 5, 2, 1, 0.5, 0.1, 5e-2, 1e-2, 5e-3, 1e-3, 1e-4, 1e-5]) default_match_ancestors_mismatch_ratio =
np.array( [1e4, 1e3, 1e2, 10, 5, 2, 1, 0.5, 0.1, 5e-2, 1e-2, 5e-3, 1e-3, 1e-4, 1e-5])
numpy.array
import numpy as np from scipy import sparse from mm2d import util import qpoases import IPython # mpc parameters NUM_WSR = 100 # number of working set recalculations NUM_ITER = 3 # number of linearizations/iterations # TODO experimental MPC controller that uses the SQP controller under the hood # - is there is a significant penalty or wrapping things up as Python functions # rather than directly as arrays? # - ideally, we'd make a library of objectives, bounds, and constraints that # could be put together for different behaviours class TrackingMPC: def __init__(self, model, dt, Q, R, num_horizon): self.model = model self.dt = dt self.Q = Q self.R = R self.num_horizon = num_horizon ni = self.model.ni nv = num_horizon * ni # setup SQP values bounds = sqp.Bounds(-model.vel_lim*np.ones(nv), model.vel_lim*np.ones(nv)) def obj_val(x0, xd, var): q = x0 J = 0 for k in range(num_horizon): u = var[k*ni:(k+1)*ni] # TODO would be nicer if var was 2D q = q + dt * u p = model.forward(q) J += 0.5 * (p @ Q @ p + u @ R @ u) return J class MPC(object): ''' Model predictive controller. ''' def __init__(self, model, dt, Q, R, vel_lim, acc_lim): self.model = model self.dt = dt self.Q = Q self.R = R self.vel_lim = vel_lim self.acc_lim = acc_lim def _lookahead(self, q0, pr, u, N): ''' Generate lifted matrices proprogating the state N timesteps into the future. ''' ni = self.model.ni # number of joints no = self.model.no # number of Cartesian outputs fbar = np.zeros(no*N) # Lifted forward kinematics Jbar = np.zeros((no*N, ni*N)) # Lifted Jacobian Qbar = np.kron(np.eye(N), self.Q) Rbar = np.kron(np.eye(N), self.R) # lower triangular matrix of ni*ni identity matrices Ebar = np.kron(np.tril(np.ones((N, N))), np.eye(ni)) # Integrate joint positions from the last iteration qbar = np.tile(q0, N+1) qbar[ni:] = qbar[ni:] + self.dt * Ebar.dot(u) for k in range(N): q = qbar[(k+1)*ni:(k+2)*ni] p = self.model.forward(q) J = self.model.jacobian(q) fbar[k*no:(k+1)*no] = p Jbar[k*no:(k+1)*no, k*ni:(k+1)*ni] = J dbar = fbar - pr H = Rbar + self.dt**2*Ebar.T.dot(Jbar.T).dot(Qbar).dot(Jbar).dot(Ebar) g = u.T.dot(Rbar) + self.dt*dbar.T.dot(Qbar).dot(Jbar).dot(Ebar) return H, g def _calc_vel_limits(self, u, ni, N): L = np.ones(ni * N) * self.vel_lim lb = -L - u ub = L - u return lb, ub def _calc_acc_limits(self, u, dq0, ni, N): # u_prev consists of [dq0, u_0, u_1, ..., u_{N-2}] # u is [u_0, ..., u_{N-1}] u_prev = np.zeros(ni * N) u_prev[:ni] = dq0 u_prev[ni:] = u[:-ni] L = self.dt * np.ones(ni * N) * self.acc_lim lbA = -L - u + u_prev ubA = L - u + u_prev d1 = np.ones(N) d2 = -np.ones(N - 1) # A0 is NxN A0 = sparse.diags((d1, d2), [0, -1]).toarray() # kron to make it work for n-dimensional inputs A = np.kron(A0, np.eye(ni)) return A, lbA, ubA def _iterate(self, q0, dq0, pr, u, N): ni = self.model.ni # Create the QP, which we'll solve sequentially. # num vars, num constraints (note that constraints only refer to matrix # constraints rather than bounds) # num constraints = ni*N joint acceleration constraints num_var = ni * N num_constraints = ni * N qp = qpoases.PySQProblem(num_var, num_constraints) options = qpoases.PyOptions() options.printLevel = qpoases.PyPrintLevel.NONE qp.setOptions(options) # Initial opt problem. H, g = self._lookahead(q0, pr, u, N) lb, ub = self._calc_vel_limits(u, ni, N) A, lbA, ubA = self._calc_acc_limits(u, dq0, ni, N) ret = qp.init(H, g, A, lb, ub, lbA, ubA, np.array([NUM_WSR])) delta = np.zeros(ni * N) qp.getPrimalSolution(delta) u = u + delta # Remaining sequence is hotstarted from the first. for i in range(NUM_ITER - 1): H, g = self._lookahead(q0, pr, u, N) lb, ub = self._calc_vel_limits(u, ni, N) A, lbA, ubA = self._calc_acc_limits(u, dq0, ni, N) qp.hotstart(H, g, A, lb, ub, lbA, ubA, np.array([NUM_WSR])) qp.getPrimalSolution(delta) u = u + delta return u def solve(self, q0, dq0, pr, N): ''' Solve the MPC problem at current state x0 given desired output trajectory Yd. ''' # initialize optimal inputs u = np.zeros(self.model.ni * N) # iterate to final solution u = self._iterate(q0, dq0, pr, u, N) # return first optimal input return u[:self.model.ni] class ObstacleAvoidingMPC(object): ''' Model predictive controller with obstacle avoidance. ''' def __init__(self, model, dt, Q, R, vel_lim, acc_lim): self.model = model self.dt = dt self.Q = Q self.R = R self.vel_lim = vel_lim self.acc_lim = acc_lim def _lookahead(self, q0, pr, u, N, pc): ''' Generate lifted matrices proprogating the state N timesteps into the future. ''' ni = self.model.ni # number of joints no = self.model.no # number of Cartesian outputs fbar = np.zeros(no*N) # Lifted forward kinematics Jbar = np.zeros((no*N, ni*N)) # Lifted Jacobian Qbar = np.kron(np.eye(N), self.Q) Rbar = np.kron(np.eye(N), self.R) # lower triangular matrix of ni*ni identity matrices Ebar = np.kron(np.tril(np.ones((N, N))), np.eye(ni)) # Integrate joint positions from the last iteration qbar = np.tile(q0, N+1) qbar[ni:] = qbar[ni:] + self.dt * Ebar.dot(u) num_body_pts = 2 Abar = np.zeros((N*num_body_pts, ni*N)) lbA = np.zeros(N*num_body_pts) for k in range(N): q = qbar[(k+1)*ni:(k+2)*ni] p = self.model.forward(q) J = self.model.jacobian(q) fbar[k*no:(k+1)*no] = p Jbar[k*no:(k+1)*no, k*ni:(k+1)*ni] = J # TODO hardcoded radius # EE and obstacle obs_radius = 0.6 d_ee_obs = np.linalg.norm(p - pc) - obs_radius Abar[k*num_body_pts, k*ni:(k+1)*ni] = (p - pc).T.dot(J) / np.linalg.norm(p - pc) lbA[k*num_body_pts] = -d_ee_obs # base and obstacle pb = q[:2] Jb = np.array([[1, 0, 0, 0, 0], [0, 1, 0, 0, 0]]) d_base_obs = np.linalg.norm(pb - pc) - obs_radius - 0.56 Abar[k*num_body_pts+1, k*ni:(k+1)*ni] = (pb - pc).T.dot(Jb) / np.linalg.norm(pb - pc) lbA[k*num_body_pts+1] = -d_base_obs dbar = fbar - pr H = Rbar + self.dt**2*Ebar.T.dot(Jbar.T).dot(Qbar).dot(Jbar).dot(Ebar) g = u.T.dot(Rbar) + self.dt*dbar.T.dot(Qbar).dot(Jbar).dot(Ebar) A = self.dt*Abar.dot(Ebar) return H, g, A, lbA def _calc_vel_limits(self, u, ni, N): L = np.ones(ni * N) * self.vel_lim lb = -L - u ub = L - u return lb, ub def _calc_acc_limits(self, u, dq0, ni, N): # u_prev consists of [dq0, u_0, u_1, ..., u_{N-2}] # u is [u_0, ..., u_{N-1}] u_prev = np.zeros(ni * N) u_prev[:ni] = dq0 u_prev[ni:] = u[:-ni] L = self.dt * np.ones(ni * N) * self.acc_lim lbA = -L - u + u_prev ubA = L - u + u_prev d1 = np.ones(N) d2 = -np.ones(N - 1) # A0 is NxN A0 = sparse.diags((d1, d2), [0, -1]).toarray() # kron to make it work for n-dimensional inputs A = np.kron(A0, np.eye(ni)) return A, lbA, ubA def _iterate(self, q0, dq0, pr, u, N, pc): ni = self.model.ni # Create the QP, which we'll solve sequentially. # num vars, num constraints (note that constraints only refer to matrix # constraints rather than bounds) # num constraints = N obstacle constraints and ni*N joint acceleration # constraints num_var = ni * N num_constraints = 2*N + ni * N qp = qpoases.PySQProblem(num_var, num_constraints) options = qpoases.PyOptions() options.printLevel = qpoases.PyPrintLevel.NONE qp.setOptions(options) # Initial opt problem. H, g, A_obs, lbA_obs = self._lookahead(q0, pr, u, N, pc) ubA_obs = np.infty * np.ones_like(lbA_obs) lb, ub = self._calc_vel_limits(u, ni, N) A_acc, lbA_acc, ubA_acc = self._calc_acc_limits(u, dq0, ni, N) A = np.vstack((A_obs, A_acc)) lbA = np.concatenate((lbA_obs, lbA_acc)) ubA = np.concatenate((ubA_obs, ubA_acc)) ret = qp.init(H, g, A, lb, ub, lbA, ubA, np.array([NUM_WSR])) delta = np.zeros(ni * N) qp.getPrimalSolution(delta) u = u + delta # Remaining sequence is hotstarted from the first. for i in range(NUM_ITER - 1): H, g, A_obs, lbA_obs = self._lookahead(q0, pr, u, N, pc) lb, ub = self._calc_vel_limits(u, ni, N) A_acc, lbA_acc, ubA_acc = self._calc_acc_limits(u, dq0, ni, N) A = np.vstack((A_obs, A_acc)) lbA = np.concatenate((lbA_obs, lbA_acc)) ubA = np.concatenate((ubA_obs, ubA_acc)) qp.hotstart(H, g, A, lb, ub, lbA, ubA, np.array([NUM_WSR])) qp.getPrimalSolution(delta) u = u + delta return u def solve(self, q0, dq0, pr, N, pc): ''' Solve the MPC problem at current state x0 given desired output trajectory Yd. ''' # initialize optimal inputs u = np.zeros(self.model.ni * N) # iterate to final solution u = self._iterate(q0, dq0, pr, u, N, pc) # return first optimal input return u[:self.model.ni] class ObstacleAvoidingMPC2(object): ''' Model predictive controller. ''' def __init__(self, model, dt, Q, R, vel_lim, acc_lim): self.model = model self.dt = dt self.Q = Q self.R = R self.vel_lim = vel_lim self.acc_lim = acc_lim def _lookahead(self, q0, pr, u, N, pc): ''' Generate lifted matrices proprogating the state N timesteps into the future. ''' ni = self.model.ni # number of joints no = self.model.no # number of Cartesian outputs fbar = np.zeros(no*N) # Lifted forward kinematics Jbar = np.zeros((no*N, ni*N)) # Lifted Jacobian Qbar = np.kron(np.eye(N), self.Q) Rbar = np.kron(np.eye(N), self.R) # lower triangular matrix of ni*ni identity matrices Ebar = np.kron(np.tril(np.ones((N, N))), np.eye(ni)) # Integrate joint positions from the last iteration qbar = np.tile(q0, N+1) qbar[ni:] = qbar[ni:] + self.dt * Ebar.dot(u) num_body_pts = 2+1 Abar = np.zeros((N*num_body_pts, ni*N)) lbA = np.zeros(N*num_body_pts) for k in range(N): q = qbar[(k+1)*ni:(k+2)*ni] p = self.model.forward(q) J = self.model.jacobian(q) pm = self.model.forward_m(q) Jm = self.model.jacobian_m(q) fbar[k*no:(k+1)*no] = pm Jbar[k*no:(k+1)*no, k*ni:(k+1)*ni] = Jm # TODO hardcoded radius # EE and obstacle d_ee_obs = np.linalg.norm(p - pc) - 0.5 Abar[k*num_body_pts, k*ni:(k+1)*ni] = (p - pc).T.dot(J) / np.linalg.norm(p - pc) lbA[k*num_body_pts] = -d_ee_obs # base and obstacle pb = q[:2] Jb = np.array([[1, 0, 0, 0, 0], [0, 1, 0, 0, 0]]) d_base_obs = np.linalg.norm(pb - pc) - 0.5 - 0.56 Abar[k*num_body_pts+1, k*ni:(k+1)*ni] = (pb - pc).T.dot(Jb) / np.linalg.norm(pb - pc) lbA[k*num_body_pts+1] = -d_base_obs # pf and ee: these need to stay close together pf = self.model.forward_f(q) Jf = self.model.jacobian_f(q) d_pf_ee = np.linalg.norm(p - pf) A_pf_ee = -(pf - p).T.dot(Jf - J) / d_pf_ee lbA_pf_ee = d_pf_ee - 0.75 Abar[k*num_body_pts+2, k*ni:(k+1)*ni] = A_pf_ee lbA[k*num_body_pts+2] = lbA_pf_ee dbar = fbar - pr H = Rbar + self.dt**2*Ebar.T.dot(Jbar.T).dot(Qbar).dot(Jbar).dot(Ebar) g = u.T.dot(Rbar) + self.dt*dbar.T.dot(Qbar).dot(Jbar).dot(Ebar) A = self.dt*Abar.dot(Ebar) return H, g, A, lbA def _calc_vel_limits(self, u, ni, N): L = np.ones(ni * N) * self.vel_lim lb = -L - u ub = L - u return lb, ub def _calc_acc_limits(self, u, dq0, ni, N): # u_prev consists of [dq0, u_0, u_1, ..., u_{N-2}] # u is [u_0, ..., u_{N-1}] u_prev = np.zeros(ni * N) u_prev[:ni] = dq0 u_prev[ni:] = u[:-ni] L = self.dt * np.ones(ni * N) * self.acc_lim lbA = -L - u + u_prev ubA = L - u + u_prev d1 = np.ones(N) d2 = -np.ones(N - 1) # A0 is NxN A0 = sparse.diags((d1, d2), [0, -1]).toarray() # kron to make it work for n-dimensional inputs A = np.kron(A0, np.eye(ni)) return A, lbA, ubA def _iterate(self, q0, dq0, pr, u, N, pc): ni = self.model.ni # Create the QP, which we'll solve sequentially. # num vars, num constraints (note that constraints only refer to matrix # constraints rather than bounds) # num constraints = N obstacle constraints and ni*N joint acceleration # constraints num_var = ni * N num_constraints = 3*N + ni * N qp = qpoases.PySQProblem(num_var, num_constraints) options = qpoases.PyOptions() options.printLevel = qpoases.PyPrintLevel.NONE qp.setOptions(options) # Initial opt problem. H, g, A_obs, lbA_obs = self._lookahead(q0, pr, u, N, pc) ubA_obs = np.infty * np.ones_like(lbA_obs) lb, ub = self._calc_vel_limits(u, ni, N) A_acc, lbA_acc, ubA_acc = self._calc_acc_limits(u, dq0, ni, N) A = np.vstack((A_obs, A_acc)) lbA = np.concatenate((lbA_obs, lbA_acc)) ubA = np.concatenate((ubA_obs, ubA_acc)) ret = qp.init(H, g, A, lb, ub, lbA, ubA, np.array([NUM_WSR])) delta = np.zeros(ni * N) qp.getPrimalSolution(delta) u = u + delta # Remaining sequence is hotstarted from the first. for i in range(NUM_ITER - 1): H, g, A_obs, lbA_obs = self._lookahead(q0, pr, u, N, pc) lb, ub = self._calc_vel_limits(u, ni, N) A_acc, lbA_acc, ubA_acc = self._calc_acc_limits(u, dq0, ni, N) A = np.vstack((A_obs, A_acc)) lbA = np.concatenate((lbA_obs, lbA_acc)) ubA = np.concatenate((ubA_obs, ubA_acc)) qp.hotstart(H, g, A, lb, ub, lbA, ubA, np.array([NUM_WSR])) qp.getPrimalSolution(delta) u = u + delta return u def solve(self, q0, dq0, pr, N, pc): ''' Solve the MPC problem at current state x0 given desired output trajectory Yd. ''' # initialize optimal inputs u = np.zeros(self.model.ni * N) # iterate to final solution u = self._iterate(q0, dq0, pr, u, N, pc) # return first optimal input return u[:self.model.ni] # class MPC2(object): # ''' Model predictive controller. ''' # def __init__(self, model, dt, Q, R, vel_lim, acc_lim): # self.model = model # self.dt = dt # self.Q = Q # self.R = R # self.vel_lim = vel_lim # self.acc_lim = acc_lim # # def _lookahead(self, q0, pr, u, N): # ''' Generate lifted matrices proprogating the state N timesteps into the # future. ''' # ni = self.model.ni # number of joints # no = self.model.no # number of Cartesian outputs # # fbar = np.zeros(no*N) # Lifted forward kinematics # Jbar = np.zeros((no*N, ni*N)) # Lifted Jacobian # Qbar = np.kron(np.eye(N), self.Q) # Rbar = np.kron(np.eye(N), self.R) # # # lower triangular matrix of ni*ni identity matrices # Ebar = np.kron(np.tril(np.ones((N, N))), np.eye(ni)) # # # Integrate joint positions from the last iteration # qbar = np.tile(q0, N+1) # qbar[ni:] = qbar[ni:] + self.dt * Ebar.dot(u) # # num_body_pts = 1 # Abar = np.zeros((N*num_body_pts, ni*N)) # lbA = np.zeros(N*num_body_pts) # # for k in range(N): # q = qbar[(k+1)*ni:(k+2)*ni] # p = self.model.forward(q) # J = self.model.jacobian(q) # # pm = self.model.forward_m(q) # Jm = self.model.jacobian_m(q) # # fbar[k*no:(k+1)*no] = pm # Jbar[k*no:(k+1)*no, k*ni:(k+1)*ni] = Jm # # # pf and ee # pf = self.model.forward_f(q) # Jf = self.model.jacobian_f(q) # d_pf_ee = np.linalg.norm(p - pf) # A_pf_ee = -(pf - p).T.dot(Jf - J) / d_pf_ee # lbA_pf_ee = d_pf_ee - 0.75 # Abar[k*num_body_pts, k*ni:(k+1)*ni] = A_pf_ee # lbA[k*num_body_pts] = lbA_pf_ee # # dbar = fbar - pr # # H = Rbar + self.dt**2*Ebar.T.dot(Jbar.T).dot(Qbar).dot(Jbar).dot(Ebar) # g = u.T.dot(Rbar) + self.dt*dbar.T.dot(Qbar).dot(Jbar).dot(Ebar) # A = self.dt*Abar.dot(Ebar) # # return H, g, A, lbA # # def _calc_vel_limits(self, u, ni, N): # L = np.ones(ni * N) * self.vel_lim # lb = -L - u # ub = L - u # return lb, ub # # def _calc_acc_limits(self, u, dq0, ni, N): # # u_prev consists of [dq0, u_0, u_1, ..., u_{N-2}] # # u is [u_0, ..., u_{N-1}] # u_prev = np.zeros(ni * N) # u_prev[:ni] = dq0 # u_prev[ni:] = u[:-ni] # # L = self.dt * np.ones(ni * N) * self.acc_lim # lbA = -L - u + u_prev # ubA = L - u + u_prev # # d1 = np.ones(N) # d2 = -np.ones(N - 1) # # # A0 is NxN # A0 = sparse.diags((d1, d2), [0, -1]).toarray() # # # kron to make it work for n-dimensional inputs # A = np.kron(A0, np.eye(ni)) # # return A, lbA, ubA # # def _iterate(self, q0, dq0, pr, u, N): # ni = self.model.ni # # # Create the QP, which we'll solve sequentially. # # num vars, num constraints (note that constraints only refer to matrix # # constraints rather than bounds) # # num constraints = N obstacle constraints and ni*N joint acceleration # # constraints # num_var = ni * N # num_constraints = N + ni * N # qp = qpoases.PySQProblem(num_var, num_constraints) # options = qpoases.PyOptions() # options.printLevel = qpoases.PyPrintLevel.NONE # qp.setOptions(options) # # # Initial opt problem. # H, g, A_obs, lbA_obs = self._lookahead(q0, pr, u, N) # ubA_obs = np.infty * np.ones_like(lbA_obs) # # lb, ub = self._calc_vel_limits(u, ni, N) # A_acc, lbA_acc, ubA_acc = self._calc_acc_limits(u, dq0, ni, N) # # A = np.vstack((A_obs, A_acc)) # lbA = np.concatenate((lbA_obs, lbA_acc)) # ubA = np.concatenate((ubA_obs, ubA_acc)) # # ret = qp.init(H, g, A, lb, ub, lbA, ubA, np.array([NUM_WSR])) # delta = np.zeros(ni * N) # qp.getPrimalSolution(delta) # u = u + delta # # # Remaining sequence is hotstarted from the first. # for i in range(NUM_ITER - 1): # H, g, A_obs, lbA_obs = self._lookahead(q0, pr, u, N) # lb, ub = self._calc_vel_limits(u, ni, N) # A_acc, lbA_acc, ubA_acc = self._calc_acc_limits(u, dq0, ni, N) # A = np.vstack((A_obs, A_acc)) # lbA = np.concatenate((lbA_obs, lbA_acc)) # ubA = np.concatenate((ubA_obs, ubA_acc)) # # qp.hotstart(H, g, A, lb, ub, lbA, ubA, np.array([NUM_WSR])) # qp.getPrimalSolution(delta) # # u = u + delta # # return u # # def solve(self, q0, dq0, pr, N): # ''' Solve the MPC problem at current state x0 given desired output # trajectory Yd. ''' # # initialize optimal inputs # u = np.zeros(self.model.ni * N) # # # iterate to final solution # u = self._iterate(q0, dq0, pr, u, N) # # # return first optimal input # return u[:self.model.ni] class MPC2(object): ''' Model predictive controller. ''' def __init__(self, model, dt, Q, R, vel_lim, acc_lim): self.model = model self.dt = dt self.Q = Q self.R = R self.vel_lim = vel_lim self.acc_lim = acc_lim def _lookahead(self, q0, pr, u, N, pc): ''' Generate lifted matrices proprogating the state N timesteps into the future. ''' ni = self.model.ni # number of joints no = self.model.no # number of Cartesian outputs fbar = np.zeros(no*N) # Lifted forward kinematics Jbar = np.zeros((no*N, ni*N)) # Lifted Jacobian Qbar = np.kron(np.eye(N), self.Q) Rbar = np.kron(np.eye(N), self.R) # lower triangular matrix of ni*ni identity matrices Ebar = np.kron(np.tril(np.ones((N, N))), np.eye(ni)) # Integrate joint positions from the last iteration qbar = np.tile(q0, N+1) qbar[ni:] = qbar[ni:] + self.dt * Ebar.dot(u) num_body_pts = 2+1 Abar = np.zeros((N*num_body_pts, ni*N)) lbA = np.zeros(N*num_body_pts) for k in range(N): q = qbar[(k+1)*ni:(k+2)*ni] p = self.model.forward(q) J = self.model.jacobian(q) pm = self.model.forward_m(q) Jm = self.model.jacobian_m(q) fbar[k*no:(k+1)*no] = pm Jbar[k*no:(k+1)*no, k*ni:(k+1)*ni] = Jm # TODO hardcoded radius # EE and obstacle d_ee_obs = np.linalg.norm(p - pc) - 0.45 Abar[k*num_body_pts, k*ni:(k+1)*ni] = (p - pc).T.dot(J) / np.linalg.norm(p - pc) lbA[k*num_body_pts] = -d_ee_obs # base and obstacle pb = q[:2] Jb = np.array([[1, 0, 0, 0, 0], [0, 1, 0, 0, 0]]) d_base_obs = np.linalg.norm(pb - pc) - 0.45 - 0.56 Abar[k*num_body_pts+1, k*ni:(k+1)*ni] = (pb - pc).T.dot(Jb) / np.linalg.norm(pb - pc) lbA[k*num_body_pts+1] = -d_base_obs # pf and ee: these need to stay close together pf = self.model.forward_f(q) Jf = self.model.jacobian_f(q) d_pf_ee = np.linalg.norm(p - pf) A_pf_ee = -(pf - p).T.dot(Jf - J) / d_pf_ee lbA_pf_ee = d_pf_ee - 0.75 Abar[k*num_body_pts+2, k*ni:(k+1)*ni] = A_pf_ee lbA[k*num_body_pts+2] = lbA_pf_ee dbar = fbar - pr H = Rbar + self.dt**2*Ebar.T.dot(Jbar.T).dot(Qbar).dot(Jbar).dot(Ebar) g = u.T.dot(Rbar) + self.dt*dbar.T.dot(Qbar).dot(Jbar).dot(Ebar) A = self.dt*Abar.dot(Ebar) return H, g, A, lbA def _calc_vel_limits(self, u, ni, N): L = np.ones(ni * N) * self.vel_lim lb = -L - u ub = L - u return lb, ub def _calc_acc_limits(self, u, dq0, ni, N): # u_prev consists of [dq0, u_0, u_1, ..., u_{N-2}] # u is [u_0, ..., u_{N-1}] u_prev = np.zeros(ni * N) u_prev[:ni] = dq0 u_prev[ni:] = u[:-ni] L = self.dt * np.ones(ni * N) * self.acc_lim lbA = -L - u + u_prev ubA = L - u + u_prev d1 = np.ones(N) d2 = -np.ones(N - 1) # A0 is NxN A0 = sparse.diags((d1, d2), [0, -1]).toarray() # kron to make it work for n-dimensional inputs A = np.kron(A0, np.eye(ni)) return A, lbA, ubA def _iterate(self, q0, dq0, pr, u, N, pc): ni = self.model.ni # Create the QP, which we'll solve sequentially. # num vars, num constraints (note that constraints only refer to matrix # constraints rather than bounds) # num constraints = N obstacle constraints and ni*N joint acceleration # constraints num_var = ni * N num_constraints = 3*N + ni * N qp = qpoases.PySQProblem(num_var, num_constraints) options = qpoases.PyOptions() options.printLevel = qpoases.PyPrintLevel.NONE qp.setOptions(options) # Initial opt problem. H, g, A_obs, lbA_obs = self._lookahead(q0, pr, u, N, pc) ubA_obs = np.infty * np.ones_like(lbA_obs) lb, ub = self._calc_vel_limits(u, ni, N) A_acc, lbA_acc, ubA_acc = self._calc_acc_limits(u, dq0, ni, N) A = np.vstack((A_obs, A_acc)) lbA = np.concatenate((lbA_obs, lbA_acc)) ubA = np.concatenate((ubA_obs, ubA_acc)) ret = qp.init(H, g, A, lb, ub, lbA, ubA, np.array([NUM_WSR])) delta = np.zeros(ni * N) qp.getPrimalSolution(delta) u = u + delta # Remaining sequence is hotstarted from the first. for i in range(NUM_ITER - 1): H, g, A_obs, lbA_obs = self._lookahead(q0, pr, u, N, pc) lb, ub = self._calc_vel_limits(u, ni, N) A_acc, lbA_acc, ubA_acc = self._calc_acc_limits(u, dq0, ni, N) A = np.vstack((A_obs, A_acc)) lbA = np.concatenate((lbA_obs, lbA_acc)) ubA = np.concatenate((ubA_obs, ubA_acc)) qp.hotstart(H, g, A, lb, ub, lbA, ubA, np.array([NUM_WSR])) qp.getPrimalSolution(delta) u = u + delta return u def solve(self, q0, dq0, pr, N, pc): ''' Solve the MPC problem at current state x0 given desired output trajectory Yd. ''' # initialize optimal inputs u = np.zeros(self.model.ni * N) # iterate to final solution u = self._iterate(q0, dq0, pr, u, N, pc) # return first optimal input return u[:self.model.ni] class EmbraceMPC(object): ''' Model predictive controller. ''' def __init__(self, model, dt, Q, R, vel_lim, acc_lim): self.model = model self.dt = dt self.Q = Q self.R = R self.vel_lim = vel_lim self.acc_lim = acc_lim def _lookahead(self, q0, pr, u, N, pc): ''' Generate lifted matrices proprogating the state N timesteps into the future. ''' ni = self.model.ni # number of joints no = self.model.no # number of Cartesian outputs fbar = np.zeros(no*N) # Lifted forward kinematics Jbar = np.zeros((no*N, ni*N)) # Lifted Jacobian Qbar = np.kron(np.eye(N), self.Q) Rbar = np.kron(np.eye(N), self.R) # lower triangular matrix of ni*ni identity matrices Ebar = np.kron(np.tril(np.ones((N, N))), np.eye(ni)) # Integrate joint positions from the last iteration qbar = np.tile(q0, N+1) qbar[ni:] = qbar[ni:] + self.dt * Ebar.dot(u) # TODO: need to integrate pc as well: this takes the place of fbar num_body_pts = 2+1 Abar = np.zeros((N*num_body_pts, ni*N)) lbA = np.zeros(N*num_body_pts) for k in range(N): q = qbar[(k+1)*ni:(k+2)*ni] # calculate points defining front of base pb = q[:2] θb = q[2] R = util.rotation_matrix(θb) rx = 0.5 ry = 0.25 p1 = R.dot(np.array([rx, ry])) p2 = R.dot(np.array([rx, -ry])) # pf is the closest point to the line segment pf, _ = util.dist_to_line_segment(pc, p1, p2) # transform into body frame b_pf = R.T.dot(pf - pb) JR = util.rotation_jacobian(θb) Jf = np.hstack((R, JR.dot(pb + b_pf)[:, None], np.zeros((2, 2)))) pe = self.model.forward(q) Je = self.model.jacobian(q) re = (pc - pe) / np.linalg.norm(pc - pe) rf = (pc - pf) / np.linalg.norm(pc - pf) # propagate center of object forward pc = pc + self.dt*(Jf + Je).dot(u) # fbar[k*no:(k+1)*no] = pm # Jbar[k*no:(k+1)*no, k*ni:(k+1)*ni] = Jm # # TODO hardcoded radius # # EE and obstacle # d_ee_obs = np.linalg.norm(p - pc) - 0.45 # Abar[k*num_body_pts, k*ni:(k+1)*ni] = (p - pc).T.dot(J) / np.linalg.norm(p - pc) # lbA[k*num_body_pts] = -d_ee_obs # # # base and obstacle # pb = q[:2] # Jb = np.array([[1, 0, 0, 0, 0], # [0, 1, 0, 0, 0]]) # d_base_obs = np.linalg.norm(pb - pc) - 0.45 - 0.56 # Abar[k*num_body_pts+1, k*ni:(k+1)*ni] = (pb - pc).T.dot(Jb) / np.linalg.norm(pb - pc) # lbA[k*num_body_pts+1] = -d_base_obs # # # pf and ee: these need to stay close together # pf = self.model.forward_f(q) # Jf = self.model.jacobian_f(q) # d_pf_ee = np.linalg.norm(p - pf) # A_pf_ee = -(pf - p).T.dot(Jf - J) / d_pf_ee # lbA_pf_ee = d_pf_ee - 0.75 # Abar[k*num_body_pts+2, k*ni:(k+1)*ni] = A_pf_ee # lbA[k*num_body_pts+2] = lbA_pf_ee dbar = fbar - pr H = Rbar + self.dt**2*Ebar.T.dot(Jbar.T).dot(Qbar).dot(Jbar).dot(Ebar) g = u.T.dot(Rbar) + self.dt*dbar.T.dot(Qbar).dot(Jbar).dot(Ebar) A = self.dt*Abar.dot(Ebar) return H, g, A, lbA def _calc_vel_limits(self, u, ni, N): L = np.ones(ni * N) * self.vel_lim lb = -L - u ub = L - u return lb, ub def _calc_acc_limits(self, u, dq0, ni, N): # u_prev consists of [dq0, u_0, u_1, ..., u_{N-2}] # u is [u_0, ..., u_{N-1}] u_prev = np.zeros(ni * N) u_prev[:ni] = dq0 u_prev[ni:] = u[:-ni] L = self.dt * np.ones(ni * N) * self.acc_lim lbA = -L - u + u_prev ubA = L - u + u_prev d1 = np.ones(N) d2 = -np.ones(N - 1) # A0 is NxN A0 = sparse.diags((d1, d2), [0, -1]).toarray() # kron to make it work for n-dimensional inputs A = np.kron(A0, np.eye(ni)) return A, lbA, ubA def _iterate(self, q0, dq0, pr, u, N, pc): ni = self.model.ni # Create the QP, which we'll solve sequentially. # num vars, num constraints (note that constraints only refer to matrix # constraints rather than bounds) # num constraints = N obstacle constraints and ni*N joint acceleration # constraints num_var = ni * N num_constraints = 3*N + ni * N qp = qpoases.PySQProblem(num_var, num_constraints) options = qpoases.PyOptions() options.printLevel = qpoases.PyPrintLevel.NONE qp.setOptions(options) # Initial opt problem. H, g, A_obs, lbA_obs = self._lookahead(q0, pr, u, N, pc) ubA_obs = np.infty * np.ones_like(lbA_obs) lb, ub = self._calc_vel_limits(u, ni, N) A_acc, lbA_acc, ubA_acc = self._calc_acc_limits(u, dq0, ni, N) A = np.vstack((A_obs, A_acc)) lbA = np.concatenate((lbA_obs, lbA_acc)) ubA = np.concatenate((ubA_obs, ubA_acc)) ret = qp.init(H, g, A, lb, ub, lbA, ubA,
np.array([NUM_WSR])
numpy.array
import csv import math import matplotlib.pyplot as plt import matplotlib.animation as animation import time import numpy as np # read the data csvfile=open("weightedX.csv", 'r') x = list(csv.reader(csvfile)) csvfile=open("weightedY.csv", 'r') y = list(csv.reader(csvfile)) m=len(x) n=1 x3=[] y2=[] for i in range(m): x3.append(float(x[i][0])) y2.append(float(y[i][0])) # normalise the data meanx=sum(x3)/m v=0 # variance for i in range(m): t=x3[i]-meanx v+=t*t v/=m v=math.sqrt(v) for i in range(m): x3[i]=(x3[i]-meanx)/v x2=[] for i in range(m): x2.append(np.array([1,x3[i]])) X=np.array(x2) Y=
np.array(y2)
numpy.array
""" Test of budget table parsing """ import os import pytest import numpy as np try: import pymake except: msg = "Error. Pymake package is not available.\n" msg += "Try installing using the following command:\n" msg += " pip install https://github.com/modflowpy/pymake/zipball/master" raise Exception(msg) try: import flopy except: msg = "Error. FloPy package is not available.\n" msg += "Try installing using the following command:\n" msg += " pip install flopy" raise Exception(msg) from framework import testing_framework from simulation import Simulation ex = ["gwf_utl05"] laytyp = [1] ss = [1.0e-10] sy = [0.1] exdirs = [] for s in ex: exdirs.append(os.path.join("temp", s)) ddir = "data" nlay, nrow, ncol = 1, 1, 1 def build_model(idx, dir): nper = 2 perlen = [2.0, 2.0] nstp = [14, 14] tsmult = [1.0, 1.0] delr = 10.0 delc = 10.0 top = 10.0 botm = [0.0] strt = top hk = 1.0 nouter, ninner = 100, 300 hclose, rclose, relax = 1e-6, 1e-6, 0.97 tdis_rc = [] for id in range(nper): tdis_rc.append((perlen[id], nstp[id], tsmult[id])) name = ex[idx] # build MODFLOW 6 files ws = dir sim = flopy.mf6.MFSimulation( sim_name=name, version="mf6", exe_name="mf6", sim_ws=ws ) # create tdis package tdis = flopy.mf6.ModflowTdis(sim, time_units="DAYS", nper=nper, perioddata=tdis_rc) # create gwf model gwfname = "gwf_" + name newtonoptions = "NEWTON UNDER_RELAXATION" gwf = flopy.mf6.ModflowGwf( sim, modelname=gwfname, newtonoptions=newtonoptions, ) # create iterative model solution and register the gwf model with it imsgwf = flopy.mf6.ModflowIms( sim, print_option="SUMMARY", outer_dvclose=hclose, outer_maximum=nouter, under_relaxation="DBD", under_relaxation_theta=0.7, inner_maximum=ninner, inner_dvclose=hclose, rcloserecord=rclose, linear_acceleration="BICGSTAB", scaling_method="NONE", reordering_method="NONE", relaxation_factor=relax, filename="{}.ims".format(gwfname), ) sim.register_ims_package(imsgwf, [gwf.name]) dis = flopy.mf6.ModflowGwfdis( gwf, nlay=nlay, nrow=nrow, ncol=ncol, delr=delr, delc=delc, top=top, botm=botm, idomain=np.ones((nlay, nrow, ncol), dtype=int), ) # initial conditions ic = flopy.mf6.ModflowGwfic(gwf, strt=strt) # node property flow npf = flopy.mf6.ModflowGwfnpf( gwf, save_flows=False, icelltype=laytyp[idx], k=hk, k33=hk ) # storage sto = flopy.mf6.ModflowGwfsto( gwf, save_flows=False, iconvert=laytyp[idx], ss=ss[idx], sy=sy[idx], steady_state={0: False}, transient={0: True}, ) # wel files # include very small well rates to ensure that budget table correctly # prints small numbers with 3-digit exponents welspdict = { 0: [[(0, 0, 0), -1.0e-200, 0.0]], 1: [[(0, 0, 0), 1.0e-200, 0.0]], } wel = flopy.mf6.ModflowGwfwel( gwf, print_input=True, print_flows=True, stress_period_data=welspdict, save_flows=False, auxiliary="CONCENTRATION", pname="WEL-1", ) # output control oc = flopy.mf6.ModflowGwfoc( gwf, budget_filerecord="{}.cbc".format(gwfname), head_filerecord="{}.hds".format(gwfname), headprintrecord=[("COLUMNS", 10, "WIDTH", 15, "DIGITS", 6, "GENERAL")], saverecord=[("HEAD", "ALL")], printrecord=[("HEAD", "ALL"), ("BUDGET", "ALL")], ) # write MODFLOW 6 files sim.write_simulation() return sim, None def eval_flow(sim): print("evaluating flow...") name = ex[sim.idxsim] gwfname = "gwf_" + name # This will fail if budget numbers cannot be read fpth = os.path.join(sim.simpath, "{}.lst".format(gwfname)) mflist = flopy.utils.Mf6ListBudget(fpth) names = mflist.get_record_names() print(names) inc = mflist.get_incremental() print(inc) assert np.allclose(inc["WEL_IN"], 0.0) assert
np.allclose(inc["WEL_OUT"], 0.0)
numpy.allclose
import unittest import numpy as np from polynomials_on_simplices.calculus.error_measures import relative_error from polynomials_on_simplices.geometry.mesh.basic_meshes.triangle_meshes import equilateral_triangle_vertices from polynomials_on_simplices.geometry.primitives.simplex import ( affine_transformation_from_unit, cartesian_to_barycentric_unit, unit) import polynomials_on_simplices.geometry.primitives.triangle as triangle from polynomials_on_simplices.linalg.rigid_motion import move, random_rigid_motion from polynomials_on_simplices.linalg.vector_space_projection import vector_projection from polynomials_on_simplices.probability_theory.uniform_sampling import nsimplex_sampling class TestEdges(unittest.TestCase): def test_2d(self): vertices = unit(2) edges = triangle.edges(vertices) expected_edges = np.array([ [-1.0, 1.0], [0.0, -1.0], [1.0, 0.0] ]) self.assertTrue(np.allclose(expected_edges, edges)) def test_3d(self): vertices = unit(2, 3) edges = triangle.edges(vertices) expected_edges = np.array([ [-1.0, 1.0, 0.0], [0.0, -1.0, 0.0], [1.0, 0.0, 0.0] ]) self.assertTrue(np.allclose(expected_edges, edges)) def test_diameter(self): vertices = unit(2) d = triangle.diameter(vertices) self.assertEqual(d, np.sqrt(2)) def test_dual_edges_2d(self): vertices = np.random.rand(3, 2) edges = triangle.edges(vertices) dual_edges = triangle.dual_edges(vertices) # Test that dual edges are orthogonal to edges for i in range(3): self.assertTrue(abs(np.dot(edges[i], dual_edges[i])) < 1e-10) # Test that dual edges point out of the triangle by comparing with the vector from the edge midpoint to the # triangle centroid c = triangle.centroid(vertices) for i in range(3): edge_midpoint = 0.5 * (vertices[(i + 1) % 3] + vertices[(i + 2) % 3]) self.assertTrue(np.dot(dual_edges[i], c - edge_midpoint) < 0.0) def test_dual_edges_3d(self): vertices = np.random.rand(3, 3) edges = triangle.edges(vertices) dual_edges = triangle.dual_edges(vertices) # Test that dual edges are orthogonal to edges for i in range(3): self.assertTrue(abs(np.dot(edges[i], dual_edges[i])) < 1e-10) # Test that dual edges point out of the triangle by comparing with the vector from the edge midpoint to the # triangle centroid c = triangle.centroid(vertices) for i in range(3): edge_midpoint = 0.5 * (vertices[(i + 1) % 3] + vertices[(i + 2) % 3]) self.assertTrue(np.dot(dual_edges[i], c - edge_midpoint) < 0.0) class TestBasis(unittest.TestCase): def test_2d(self): p = np.random.rand(3, 2) b = triangle.basis(p) self.assertTrue(abs(np.dot(b[0], b[1])) < 1e-10) self.assertTrue(abs(np.linalg.norm(b[0]) - 1) < 1e-10) self.assertTrue(abs(np.linalg.norm(b[1]) - 1) < 1e-10) def test_3d(self): p = np.random.rand(3, 3) b = triangle.basis(p) self.assertTrue(abs(np.dot(b[0], b[1])) < 1e-10) self.assertTrue(abs(np.linalg.norm(b[0]) - 1) < 1e-10) self.assertTrue(abs(np.linalg.norm(b[1]) - 1) < 1e-10) n1 = np.cross(b[0], b[1]) n2 = triangle.normal(p) self.assertTrue(
np.allclose(n1, n2)
numpy.allclose
"""Simulations of neural population 2. Simulations of linear- and non-linear, calcium-based, spike-timing-dependent synaptic plasticity of a homogeneous presynaptic population of 1000 neurons wired onto a single postsynaptic neuron. Postsynaptic firing underlies the MAT or AEIF model. Methods for abstracting the STDP to rate-based plasticity for large parameter spaces. Simple usage example: cbsp.set_simulation_time(2.0) cbsp.set_timstep(0.001) cbsp.population_2.linear_calcium_mat(u=10, w0=0.5, seed=10) """ import os import multiprocessing from itertools import product from tqdm.auto import tqdm import numpy as np import numba as nb import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.colors import Normalize import cbsp from cbsp import utils from cbsp.utils import feature_matrix_p2 as feature_matrix # ---------------- STDP @nb.jit(nopython=True) def linear_calcium_mat(u, w0, seed): """Integrates the spike-timing dependent synaptic strength. Args: u (float): presynaptic firing rate. w0 (float): initial synapse strength. seed (int): random state. Returns: tuple: (w, t, (u, v, I, c)) with array: w, change of synapse strengths. Shape (#synapses, #timesteps). array: t, time. array: u, presynaptic spike trains. Shape (#synapses, #timesteps). array: v, postsynaptic spike train. Shape (#timesteps). array: I, postsynaptic current. Shape (#timesteps). array: c, calcium traces. Shape (#synapses, #timesteps). """ # Calcium tau_Ca = 0.02227212 Cpre = 0.84410 Cpost = 1.62138 # Plasticity thetaD = 1 thetaP = 2.009289 drate = 137.7586 prate = 597.08922 sigma = 2.8284 tau = 520.76129 sqrttau = np.sqrt(tau) # MAT model tau_m, tau_1, tau_2 = 5.e-3, 10.e-3, 200.e-3 trefr = 2.e-3 c_N = 0.4 R = 50e6 alpha1, alpha2, w_mat = 30.e-3, 2.e-3, 20.e-3 Iconst = c_N * tau_m / R time = np.linspace(0., cbsp.SIMULATION_TIME, int(cbsp.SIMULATION_TIME / cbsp.TIMESTEP) + 1) N = 1000 V = 0. theta1, theta2 = 0., 0. Theta = 0. trest = 0. I = 0. v_sp = 0. np.random.seed(seed) c = np.zeros(N) w = np.zeros(N) w[:] = w0 # np.random.normal(w0, w0_std, N) w_rec_pop = np.zeros((N, len(time))) u_rec_pop = np.zeros((N, len(time))) v_rec = np.zeros_like(time) I_rec = np.zeros_like(time) c_rec_pop = np.zeros((N, len(time))) for i, t in enumerate(time): u_sp = utils.spike_train(N, u, cbsp.TIMESTEP) n = utils.standard_normal(N, cbsp.TIMESTEP) Hp = utils.heaviside(c - thetaP) Hd = utils.heaviside(c - thetaD) c = c - cbsp.TIMESTEP * c / tau_Ca + Cpre * u_sp + Cpost * v_sp w = w + cbsp.TIMESTEP / tau * (prate * (1 - w) * Hp - drate * w * Hd + np.sqrt(Hp + Hd) * sigma * sqrttau * n) I = Iconst * np.dot(w, u_sp) V = V + cbsp.TIMESTEP * (-V / tau_m + R / tau_m * I) theta1 = theta1 + cbsp.TIMESTEP * (-theta1 / tau_1) + alpha1 * v_sp theta2 = theta2 + cbsp.TIMESTEP * (-theta2 / tau_2) + alpha2 * v_sp Theta = theta1 + theta2 + w_mat if V > Theta and t > trest: v_sp = 1. trest = t + trefr else: v_sp = 0. w_rec_pop[:, i] = w u_rec_pop[:, i] = u_sp v_rec[i] = v_sp I_rec[i] = I c_rec_pop[:, i] = c return w_rec_pop, time, (u_rec_pop, v_rec, I_rec, c_rec_pop) @nb.jit(nopython=True) def non_linear_calcium_mat(u, w0, seed): """ Same as ~cbsp.population_2.linear_calcium_mat(u, w0, seed) for the non linear calcium model. """ # Calcium tau_Ca = 0.01893044 Cpre = 0.86467 Cpost = 2.30815 xi = (2 * (Cpost + Cpre) - Cpost) / Cpre - 1 # Plasticity thetaD = 1 thetaP = 4.99780 drate = 111.82515 prate = 894.23695 sigma = 2.8284 tau = 707.02258 sqrttau = np.sqrt(tau) # MAT model tau_m, tau_1, tau_2 = 5.e-3, 10.e-3, 200.e-3 trefr = 2.e-3 c_N = 0.4 R = 50e6 alpha1, alpha2, w_mat = 30.e-3, 2.e-3, 20.e-3 Iconst = c_N * tau_m / R time = np.linspace(0., cbsp.SIMULATION_TIME, int(cbsp.SIMULATION_TIME / cbsp.TIMESTEP) + 1) N = 1000 V = 0. theta1, theta2 = 0., 0. Theta = 0. trest = 0. I = 0. v_sp = 0. np.random.seed(seed) cpre = np.zeros(N) cpost = np.zeros(N) c = np.zeros(N) w = np.zeros(N) w[:] = w0 # np.random.normal(w0, w0_std, N) w_rec_pop = np.zeros((N, len(time))) u_rec_pop = np.zeros((N, len(time))) v_rec = np.zeros_like(time) I_rec = np.zeros_like(time) c_rec_pop = np.zeros((N, len(time))) for i, t in enumerate(time): u_sp = utils.spike_train(N, u, cbsp.TIMESTEP) n = utils.standard_normal(N, cbsp.TIMESTEP) Hp = utils.heaviside(c - thetaP) Hd = utils.heaviside(c - thetaD) cpre = cpre - cbsp.TIMESTEP * cpre / tau_Ca + Cpre * u_sp cpost = cpost - cbsp.TIMESTEP * cpost / tau_Ca + Cpost * v_sp + xi * v_sp * cpre c = cpre + cpost w = w + cbsp.TIMESTEP / tau * (prate * (1 - w) * Hp - drate * w * Hd + np.sqrt(Hp + Hd) * sigma * sqrttau * n) I = Iconst * np.dot(w, u_sp) V = V + cbsp.TIMESTEP * (-V / tau_m + R / tau_m * I) theta1 = theta1 + cbsp.TIMESTEP * (-theta1 / tau_1) + alpha1 * v_sp theta2 = theta2 + cbsp.TIMESTEP * (-theta2 / tau_2) + alpha2 * v_sp Theta = theta1 + theta2 + w_mat if V > Theta and t > trest: v_sp = 1. trest = t + trefr else: v_sp = 0. w_rec_pop[:, i] = w u_rec_pop[:, i] = u_sp v_rec[i] = v_sp I_rec[i] = I c_rec_pop[:, i] = c return w_rec_pop, time, (u_rec_pop, v_rec, I_rec, c_rec_pop) @nb.jit(nopython=True) def linear_calcium_aeif(u, w0, seed): """ Same as ~cbsp.population_2.linear_calcium_mat(u, w0, seed) for the aeif model. """ # Calcium tau_Ca = 0.02227212 Cpre = 0.84410 Cpost = 1.62138 # Plasticity thetaD = 1 thetaP = 2.009289 drate = 137.7586 prate = 597.08922 sigma = 2.8284 tau = 520.76129 sqrttau = np.sqrt(tau) # AEIF model (ranamed w->z) C = 2.81e-10 # 2.81e-9 # pF g_L = 30e-9 # nS E_L = -70.6e-3 # mV V_T = -50.4e-3 # mV D_T = 2e-3 # mV tau_z = 0.144 # s a = 4e-9 # nS b = 0.0805e-9 # nA R = 1 / g_L tau_v = R * C c_N = 0.17 # 0.075 Iconst = c_N * tau_v / R time = np.linspace(0., cbsp.SIMULATION_TIME, int(cbsp.SIMULATION_TIME / cbsp.TIMESTEP) + 1) N = 1000 V = E_L z = 0. I = 0. v_sp = 0. np.random.seed(seed) c = np.zeros(N) w = np.zeros(N) w[:] = w0 # np.random.normal(w0, w0_std, N) w_rec = np.zeros_like(time) v_rec = np.zeros_like(time) w_rec_pop = np.zeros((N, len(time))) u_rec_pop = np.zeros((N, len(time))) v_rec = np.zeros_like(time) I_rec = np.zeros_like(time) c_rec_pop = np.zeros((N, len(time))) for i, t in enumerate(time): # import pdb; pdb.set_trace() u_sp = utils.spike_train(N, u, cbsp.TIMESTEP) n = utils.standard_normal(N, cbsp.TIMESTEP) Hp = utils.heaviside(c - thetaP) Hd = utils.heaviside(c - thetaD) c = c - cbsp.TIMESTEP * c / tau_Ca + Cpre * u_sp + Cpost * v_sp w = w + cbsp.TIMESTEP / tau * (prate * (1 - w) * Hp - drate * w * Hd + np.sqrt(Hp + Hd) * sigma * sqrttau * n) I = Iconst * np.dot(w, u_sp) V = V + cbsp.TIMESTEP / tau_v * (- V + E_L + D_T * np.exp((V - V_T) / D_T) - R * z + R * I) z = z + cbsp.TIMESTEP / tau_z * (a * (V - E_L) - z) if V > V_T: v_sp = 1. V = V - (V_T - E_L) z = z + b else: v_sp = 0. w_rec_pop[:, i] = w u_rec_pop[:, i] = u_sp v_rec[i] = v_sp I_rec[i] = I c_rec_pop[:, i] = c return w_rec_pop, time, (u_rec_pop, v_rec, I_rec, c_rec_pop) # ---------------- RBP def stdp2rbp_linear_calcium_mat(*args, **kwargs): """Rate-based plasticity from STDP using the linear calcium and MAT model. Args: - same as cbsp.population_2.linear_calcium_mat(u, v, w0, seed) Returns: tuple: (w, v) with float: w, the population average change of synapse strength at time point 0 float: v, the postsynaptic firing rate within the first 500ms. """ w_rec, t, (_, v_rec, _, _) = linear_calcium_mat(*args, **kwargs) return utils.derivative(w_rec.mean(axis=0), t), v_rec[0:int(0.5 / cbsp.TIMESTEP)].sum() * 2 def stdp2rbp_non_linear_calcium_mat(*args, **kwargs): """Rate-based plasticity from STDP using the non linear calcium and MAT model. Args: - same as cbsp.population_2.non_linear_calcium_mat(u, v, w0, seed) Returns: tuple: (w, v) with float: w, the population average change of synapse strength at time point 0 float: v, the postsynaptic firing rate within the first 500ms. """ w_rec, t, (_, v_rec, _, _) = non_linear_calcium_mat(*args, **kwargs) return utils.derivative(w_rec.mean(axis=0), t), v_rec[0:int(0.5 / cbsp.TIMESTEP)].sum() * 2 def stdp2rbp_linear_calcium_aeif(*args, **kwargs): """Rate-based plasticity from STDP using the linear calcium and AEIF model. Args: - same as cbsp.population_2.linear_calcium_aeif(u, v, w0, seed) Returns: tuple: (w, v) with float: w, the population average change of synapse strength at time point 0 float: v, the postsynaptic firing rate within the first 500ms. """ w_rec, t, (_, v_rec, _, _) = linear_calcium_aeif(*args, **kwargs) return utils.derivative(w_rec.mean(axis=0), t), v_rec[0:int(0.5 / cbsp.TIMESTEP)].sum() * 2 def main_linear_calcium_mat(u=np.arange(0, 101), w=np.arange(0, 1.05, 0.05), seed=np.arange(0, 100), nproc=2): """RBP from STDP for the whole parameter space using the linear calcium and MAT model. Args: u (array, optional): presynaptic firing rates. Defaults to np.arange(0, 101). w (array, optional): initial synaptic strengths. Defaults to np.arange(0, 1.05, 0.05). seed (array, optional): random states. Defaults to np.arange(0, 100). nproc (int, optional): number of processes to use. Defaults to 8. Returns: array: rate-based plasticity and postsynaptic firing for all possible combinations of u, and w. Has shape (#random_states, u.size * w.size, 2). """ pool = multiprocessing.Pool(processes=nproc) results = np.zeros([seed.size, u.size*w.size, 2]) for i, s in enumerate(tqdm(seed, desc='Seed')): results[i] = np.array(pool.starmap(stdp2rbp_linear_calcium_mat, product(u, w, np.array([s])))) return results def main_non_linear_calcium_mat(u=np.arange(0, 101), w=np.arange(0, 1.05, 0.05), seed=np.arange(0, 100), nproc=2): """ Same as ~cbsp.population_2.main_linear_calcium_mat(u, w, seed, nproc) for the non linear calcium model. """ pool = multiprocessing.Pool(processes=nproc) results = np.zeros([seed.size, u.size*w.size, 2]) for i, s in enumerate(tqdm(seed, desc='Seed')): results[i] = np.array(pool.starmap(stdp2rbp_non_linear_calcium_mat, product(u, w, np.array([s])))) return results def main_linear_calcium_aeif(u=
np.arange(0, 101)
numpy.arange
import numpy as np import matplotlib.animation import matplotlib.pyplot as plt import mpl_toolkits.axes_grid1 import scipy.interpolate pi = np.pi def rebin_1D(a, shape): sh = shape[0],a.shape[0]//shape[0] return a.reshape(sh).mean(-1) def rebin_2D(a, shape): sh = shape[0],a.shape[0]//shape[0],shape[1],a.shape[1]//shape[1] return a.reshape(sh).mean(-1).mean(1) def log_bin(array, x, x_min, x_max, n_bin): bin_edges = np.logspace(np.log10(x_min), np.log10(x_max), n_bin+1, endpoint=True) binned_array = np.zeros(n_bin, dtype=array.dtype) mean_x = np.zeros(n_bin, dtype=array.dtype) for i in range(n_bin): M = np.logical_and(bin_edges[i] <= x, x < bin_edges[i+1]) binned_array[i] = np.mean(array[M]) mean_x[i] = np.mean(x[M]) return binned_array, mean_x def create_Gaussian_field_1d(P, n_grid, box_size, mean=0, output_FT=False, precision=np.float32): # k_min = 2.0*pi/box_size # k = np.fft.rfftfreq(n_grid, d=1.0/n_grid)*k_min # P_grid = P(k) # if np.any(P_grid <= 0): # m_ft = np.zeros(k.shape, dtype=np.complex64) # m_ft[P_grid>0] = np.random.normal(scale=np.sqrt((n_grid/box_size)*n_grid*P_grid[P_grid>0]))*np.exp(2j*pi*np.random.random(k.shape)[P_grid>0]) # else: # m_ft = np.random.normal(scale=np.sqrt((n_grid/box_size)*n_grid*P_grid))*np.exp(2j*pi*np.random.random(k.shape)) # m_ft[k == 0] = mean # m = np.fft.irfft(m_ft) # return m k_grid = np.fft.rfftfreq(n_grid).astype(precision) k_min = 2*pi/(box_size/n_grid) V = box_size/(n_grid)**2 P_grid = np.atleast_1d(P(k_grid*k_min)) m_ft = np.random.normal(scale=np.sqrt(1/V*P_grid))*np.exp(2j*pi*np.random.random(k_grid.shape)) if mean != 0: m_ft[k_grid == 0] = mean else: m_ft[k_grid == 0] = np.random.normal(scale=np.sqrt(1/V*P_grid[k_grid==0])) m = np.fft.irfft(m_ft) if output_FT: return m, m_ft, k_grid*k_min else: return m def calculate_pseudo_P_k_1d(m1, m2, box_size, n_k_bin=None, k_min=None, k_max=None, logspaced=False): if m1.shape != m2.shape: raise ValueError("Map dimensions don't match: {}x{} vs {}x{}".format(*(m1.shape + m2.shape))) m1m2 = np.fft.rfft(m1)*np.conj(np.fft.rfft(m2)) k_grid = np.fft.rfftfreq(m1.shape[0]) k_min_box = 2*pi/(box_size/m1.shape[0]) if n_k_bin == None: bin_edges = k_grid + k_min_box/2 Pk_real = m1m2[1:].real Pk_imag = m1m2[1:].imag Pk_err = np.zeros_like(Pk_real) k_mean = k_grid[1:] n_mode = np.ones(Pk_real.size, dtype=int) else: if logspaced: bin_edges = np.logspace(np.log10(k_min/k_min_box), np.log10(k_max/k_min_box), n_k_bin+1, endpoint=True) else: bin_edges = np.linspace(k_min/k_min_box, k_max/k_min_box, n_k_bin+1, endpoint=True) n_bin = n_k_bin Pk_real = np.zeros(n_bin) Pk_err = np.zeros(n_bin) Pk_imag = np.zeros(n_bin) k_mean = np.zeros(n_bin) n_mode = np.zeros(n_bin) bin_idx =
np.searchsorted(k_grid, bin_edges)
numpy.searchsorted
''' python functions to do various useful date processing/manipulation ''' import numpy as np from scipy.special import erf import fitsio import glob import os import astropy.io.fits as fits from astropy.table import Table,join,unique,vstack from matplotlib import pyplot as plt import desimodel.footprint import desimodel.focalplane from random import random from desitarget.io import read_targets_in_tiles from desitarget.sv3 import sv3_targetmask from LSS.Cosmo import distance def tile2rosette(tile): if tile < 433: return (tile-1)//27 else: if tile >= 433 and tile < 436: return 13 if tile >= 436 and tile < 439: return 14 if tile >= 439 and tile < 442: return 15 if tile >= 442 and tile <=480: return (tile-442)//3 if tile > 480: return tile//30 return 999999 #shouldn't be any more? def calc_rosr(rosn,ra,dec): #given rosetter number and ra,dec, calculate distance from center roscen = {0:(150.100,2.182),1:(179.6,0),2:(183.1,0),3:(189.9,61.8),4:(194.75,28.2)\ ,5:(210.0,5.0),6:(215.5,52.5),7:(217.8,34.4),8:(216.3,-0.6),9:(219.8,-0.6)\ ,10:(218.05,2.43),11:(242.75,54.98),12:(241.05,43.45),13:(245.88,43.45),14:(252.5,34.5)\ ,15:(269.73,66.02),16:(194.75,24.7),17:(212.8,-0.6),18:(269.73,62.52),19:(236.1,43.45)} ra = ra*np.pi/180. dec = dec*np.pi/180. rac,decc = roscen[rosn] rac = rac*np.pi/180. decc = decc*np.pi/180. cd = np.sin(dec)*
np.sin(decc)
numpy.sin
# -*- coding: utf-8 -*- """ name: demo_ncnn.py date: 2020-12-16 11:21:07 Env.: Python 3.7.3, WIN 10 """ import argparse from abc import ABCMeta, abstractmethod from pathlib import Path import cv2 import matplotlib.pyplot as plt import numpy as np from scipy.special import softmax from tqdm import tqdm # Copy from nanodet/util/visualization.py _COLORS = ( np.array( [ 0.000, 0.447, 0.741, 0.850, 0.325, 0.098, 0.929, 0.694, 0.125, 0.494, 0.184, 0.556, 0.466, 0.674, 0.188, 0.301, 0.745, 0.933, 0.635, 0.078, 0.184, 0.300, 0.300, 0.300, 0.600, 0.600, 0.600, 1.000, 0.000, 0.000, 1.000, 0.500, 0.000, 0.749, 0.749, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 1.000, 0.667, 0.000, 1.000, 0.333, 0.333, 0.000, 0.333, 0.667, 0.000, 0.333, 1.000, 0.000, 0.667, 0.333, 0.000, 0.667, 0.667, 0.000, 0.667, 1.000, 0.000, 1.000, 0.333, 0.000, 1.000, 0.667, 0.000, 1.000, 1.000, 0.000, 0.000, 0.333, 0.500, 0.000, 0.667, 0.500, 0.000, 1.000, 0.500, 0.333, 0.000, 0.500, 0.333, 0.333, 0.500, 0.333, 0.667, 0.500, 0.333, 1.000, 0.500, 0.667, 0.000, 0.500, 0.667, 0.333, 0.500, 0.667, 0.667, 0.500, 0.667, 1.000, 0.500, 1.000, 0.000, 0.500, 1.000, 0.333, 0.500, 1.000, 0.667, 0.500, 1.000, 1.000, 0.500, 0.000, 0.333, 1.000, 0.000, 0.667, 1.000, 0.000, 1.000, 1.000, 0.333, 0.000, 1.000, 0.333, 0.333, 1.000, 0.333, 0.667, 1.000, 0.333, 1.000, 1.000, 0.667, 0.000, 1.000, 0.667, 0.333, 1.000, 0.667, 0.667, 1.000, 0.667, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 0.333, 1.000, 1.000, 0.667, 1.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.167, 0.000, 0.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.167, 0.000, 0.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.143, 0.143, 0.143, 0.286, 0.286, 0.286, 0.429, 0.429, 0.429, 0.571, 0.571, 0.571, 0.714, 0.714, 0.714, 0.857, 0.857, 0.857, 0.000, 0.447, 0.741, 0.314, 0.717, 0.741, 0.50, 0.5, 0, ] ) .astype(np.float32) .reshape(-1, 3) ) def get_resize_matrix(raw_shape, dst_shape, keep_ratio): """ Get resize matrix for resizing raw img to input size :param raw_shape: (width, height) of raw image :param dst_shape: (width, height) of input image :param keep_ratio: whether keep original ratio :return: 3x3 Matrix """ r_w, r_h = raw_shape d_w, d_h = dst_shape Rs = np.eye(3) if keep_ratio: C = np.eye(3) C[0, 2] = -r_w / 2 C[1, 2] = -r_h / 2 if r_w / r_h < d_w / d_h: ratio = d_h / r_h else: ratio = d_w / r_w Rs[0, 0] *= ratio Rs[1, 1] *= ratio T = np.eye(3) T[0, 2] = 0.5 * d_w T[1, 2] = 0.5 * d_h return T @ Rs @ C else: Rs[0, 0] *= d_w / r_w Rs[1, 1] *= d_h / r_h return Rs def warp_boxes(boxes, M, width, height): """Apply transform to boxes Copy from nanodet/data/transform/warp.py """ n = len(boxes) if n: # warp points xy = np.ones((n * 4, 3)) xy[:, :2] = boxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape( n * 4, 2 ) # x1y1, x2y2, x1y2, x2y1 xy = xy @ M.T # transform xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale # create new boxes x = xy[:, [0, 2, 4, 6]] y = xy[:, [1, 3, 5, 7]] xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T # clip boxes xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width) xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height) return xy.astype(np.float32) else: return boxes def overlay_bbox_cv(img, all_box, class_names): """Draw result boxes Copy from nanodet/util/visualization.py """ # all_box array of [label, x0, y0, x1, y1, score] all_box.sort(key=lambda v: v[5]) for box in all_box: label, x0, y0, x1, y1, score = box # color = self.cmap(i)[:3] color = (_COLORS[label] * 255).astype(np.uint8).tolist() text = "{}:{:.1f}%".format(class_names[label], score * 100) txt_color = (0, 0, 0) if np.mean(_COLORS[label]) > 0.5 else (255, 255, 255) font = cv2.FONT_HERSHEY_SIMPLEX txt_size = cv2.getTextSize(text, font, 0.5, 2)[0] cv2.rectangle(img, (x0, y0), (x1, y1), color, 2) cv2.rectangle( img, (x0, y0 - txt_size[1] - 1), (x0 + txt_size[0] + txt_size[1], y0 - 1), color, -1, ) cv2.putText(img, text, (x0, y0 - 1), font, 0.5, txt_color, thickness=1) return img def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200): """ Args: box_scores (N, 5): boxes in corner-form and probabilities. iou_threshold: intersection over union threshold. top_k: keep top_k results. If k <= 0, keep all the results. candidate_size: only consider the candidates with the highest scores. Returns: picked: a list of indexes of the kept boxes """ scores = box_scores[:, -1] boxes = box_scores[:, :-1] picked = [] # _, indexes = scores.sort(descending=True) indexes = np.argsort(scores) # indexes = indexes[:candidate_size] indexes = indexes[-candidate_size:] while len(indexes) > 0: # current = indexes[0] current = indexes[-1] picked.append(current) if 0 < top_k == len(picked) or len(indexes) == 1: break current_box = boxes[current, :] # indexes = indexes[1:] indexes = indexes[:-1] rest_boxes = boxes[indexes, :] iou = iou_of( rest_boxes, np.expand_dims(current_box, axis=0), ) indexes = indexes[iou <= iou_threshold] return box_scores[picked, :] def iou_of(boxes0, boxes1, eps=1e-5): """Return intersection-over-union (Jaccard index) of boxes. Args: boxes0 (N, 4): ground truth boxes. boxes1 (N or 1, 4): predicted boxes. eps: a small number to avoid 0 as denominator. Returns: iou (N): IoU values. """ overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2]) overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:]) overlap_area = area_of(overlap_left_top, overlap_right_bottom) area0 = area_of(boxes0[..., :2], boxes0[..., 2:]) area1 = area_of(boxes1[..., :2], boxes1[..., 2:]) return overlap_area / (area0 + area1 - overlap_area + eps) def area_of(left_top, right_bottom): """Compute the areas of rectangles given two corners. Args: left_top (N, 2): left top corner. right_bottom (N, 2): right bottom corner. Returns: area (N): return the area. """ hw = np.clip(right_bottom - left_top, 0.0, None) return hw[..., 0] * hw[..., 1] class NanoDetABC(metaclass=ABCMeta): def __init__( self, input_shape=[320, 320], reg_max=7, strides=[8, 16, 32], prob_threshold=0.4, iou_threshold=0.3, num_candidate=1000, top_k=-1, ): self.strides = strides self.input_shape = input_shape self.reg_max = reg_max self.prob_threshold = prob_threshold self.iou_threshold = iou_threshold self.num_candidate = num_candidate self.top_k = top_k self.img_mean = [103.53, 116.28, 123.675] self.img_std = [57.375, 57.12, 58.395] self.input_size = (self.input_shape[1], self.input_shape[0]) self.class_names = [ "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic_light", "fire_hydrant", "stop_sign", "parking_meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports_ball", "kite", "baseball_bat", "baseball_glove", "skateboard", "surfboard", "tennis_racket", "bottle", "wine_glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot_dog", "pizza", "donut", "cake", "chair", "couch", "potted_plant", "bed", "dining_table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell_phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy_bear", "hair_drier", "toothbrush", ] def preprocess(self, img): # resize image ResizeM = get_resize_matrix((img.shape[1], img.shape[0]), self.input_size, True) img_resize = cv2.warpPerspective(img, ResizeM, dsize=self.input_size) # normalize image img_input = img_resize.astype(np.float32) / 255 img_mean = np.array(self.img_mean, dtype=np.float32).reshape(1, 1, 3) / 255 img_std = np.array(self.img_std, dtype=np.float32).reshape(1, 1, 3) / 255 img_input = (img_input - img_mean) / img_std # expand dims img_input = np.transpose(img_input, [2, 0, 1]) img_input =
np.expand_dims(img_input, axis=0)
numpy.expand_dims
# from data_utils import get_stock_data import os import time import numpy as np import pandas as pd import tushare as ts from config import Arg args = Arg() # 该系列代码所要求的股票文件名称必须是股票代码+csv的格式,如000001.csv # --------------------------训练集数据的处理--------------------- # def get_train_data(batch_size=args.batch_size, time_step=args.time_step): ratio = args.ratio stock_len = args.stock_len len_index = [] batch_index = [] val_index = [] train_dir = args.train_dir df = open(train_dir) data_otrain = pd.read_csv(df) data_train = data_otrain.iloc[:, 1:].values print(len(data_train)) label_train = data_otrain.iloc[:, -1].values normalized_train_data = (data_train - np.mean(data_train, axis=0)) /
np.std(data_train, axis=0)
numpy.std
import numpy as np from envs.focal_point_task_us_env import FocalPointTaskUsEnv from envs.plane_task_us_env import PlaneTaskUsEnv from envs.phantom import ( ScatterersPhantom, Ball, Teddy ) from envs.imaging import ImagingSystem, Probe from envs.generator import ( ConstPhantomGenerator, ConstProbeGenerator, RandomProbeGenerator) import envs.logger import sys N_STEPS_PER_EPISODE = 32 N_WORKERS = 4 IMAGING_SYSTEM = ImagingSystem( c=1540, fs=100e6, image_width=40 / 1000, image_height=90 / 1000, image_resolution=(40, 90), # [pixels] median_filter_size=5, dr_threshold=-200, dec=1, no_lines=64 ) DEFAULT_PHANTOM = ScatterersPhantom( objects=[ Teddy( belly_pos=np.array([0 / 1000, 0, 50 / 1000]), # X, Y, Z scale=12 / 1000, head_offset=.9 ) ], x_border=(-40 / 1000, 40 / 1000), y_border=(-40 / 1000, 40 / 1000), z_border=(0, 90 / 1000), n_scatterers=int(1e4), n_bck_scatterers=int(1e3), seed=42, ) DEFAULT_PHANTOM_GENERATOR = ConstPhantomGenerator(DEFAULT_PHANTOM) def focal_point_env_fn(trajectory_logger, probe_generator, phantom_generator=None, probe_dislocation_prob=None, dislocation_seed=None, max_probe_dislocation=None, step_size=10/1000): if not phantom_generator: phantom_generator = DEFAULT_PHANTOM_GENERATOR imaging = IMAGING_SYSTEM env = FocalPointTaskUsEnv( dx_reward_coeff=2, dz_reward_coeff=1, imaging=imaging, phantom_generator=phantom_generator, probe_generator=probe_generator, max_steps=N_STEPS_PER_EPISODE, no_workers=N_WORKERS, use_cache=True, trajectory_logger=trajectory_logger, probe_dislocation_prob=probe_dislocation_prob, dislocation_seed=dislocation_seed, max_probe_dislocation=max_probe_dislocation, step_size=step_size ) return env def plane_task_env_fn(trajectory_logger, probe_generator, phantom_generator=None, probe_dislocation_prob=None, dislocation_seed=None, max_probe_disloc=None, max_probe_disrot=None, step_size=5/1000, rot_deg=20): if not phantom_generator: phantom_generator = DEFAULT_PHANTOM_GENERATOR imaging = IMAGING_SYSTEM return PlaneTaskUsEnv( dx_reward_coeff=1, angle_reward_coeff=1, imaging=imaging, phantom_generator=phantom_generator, probe_generator=probe_generator, max_steps=N_STEPS_PER_EPISODE, no_workers=N_WORKERS, use_cache=True, trajectory_logger=trajectory_logger, step_size=step_size, rot_deg=rot_deg, probe_dislocation_prob=probe_dislocation_prob, max_probe_disloc=max_probe_disloc, max_probe_disrot=max_probe_disrot, dislocation_seed=dislocation_seed ) def test_reset(): """Test created to check a single observation/env state visualization.""" trajactory_logger = envs.logger.TrajectoryLogger( log_dir=sys.argv[1], log_action_csv_freq=10, log_state_csv_freq=10, log_state_render_freq=10 ) probe = Probe( pos=np.array([0 / 1000, 0, 0]), # only X and Y angle=0, width=40 / 1000, height=10 / 1000, focal_depth=30 / 1000 ) probe_generator = ConstProbeGenerator(probe) env = focal_point_env_fn(trajactory_logger, probe_generator=probe_generator) env.reset() def test_moving_probe_works(): trajactory_logger = envs.logger.TrajectoryLogger( log_dir=sys.argv[1], log_action_csv_freq=10, log_state_csv_freq=10, log_state_render_freq=10 ) probe = Probe( pos=np.array([0 / 1000, 0, 0]), # only X and Y angle=0, width=40 / 1000, height=10 / 1000, focal_depth=30 / 1000 ) probe_generator = ConstProbeGenerator(probe) env = focal_point_env_fn(trajactory_logger, probe_generator=probe_generator) env.reset() env.step(1) # left env.step(1) # left env.step(2) # right (should come from cache) env.step(2) # right (should come from cache) env.step(2) # right env.step(4) # down env.step(3) # up (cached) env.step(3) # up def test_rewards(): trajactory_logger = envs.logger.TrajectoryLogger( log_dir=sys.argv[1], log_action_csv_freq=10, log_state_csv_freq=10, log_state_render_freq=10 ) probe = Probe( pos=np.array([0 / 1000, 0, 0]), # only X and Y angle=0, width=40 / 1000, height=10 / 1000, focal_depth=30 / 1000 ) probe_generator = ConstProbeGenerator(probe) env = focal_point_env_fn(trajactory_logger, probe_generator=probe_generator) env.reset() env.step(1) # left env.step(2) # right env.step(4) # down env.step(3) # up def test_nop(): trajactory_logger = envs.logger.TrajectoryLogger( log_dir=sys.argv[1], log_action_csv_freq=10, log_state_csv_freq=10, log_state_render_freq=10 ) probe = Probe( pos=np.array([0 / 1000, 0, 0]), # only X and Y angle=0, width=40 / 1000, height=10 / 1000, focal_depth=30 / 1000 ) probe_generator = ConstProbeGenerator(probe) env = focal_point_env_fn(trajactory_logger, probe_generator=probe_generator) env.reset() env.step(0) # NOP env.step(2) # right env.step(0) # NOP def test_cannot_move_probe_outside_phantom_area(): trajactory_logger = envs.logger.TrajectoryLogger( log_dir=sys.argv[1], log_action_csv_freq=10, log_state_csv_freq=10, log_state_render_freq=10 ) probe = Probe( pos=np.array([-20 / 1000, 0, 0]), # only X and Y angle=0, width=40 / 1000, height=10 / 1000, focal_depth=10 / 1000 ) probe_generator = ConstProbeGenerator(probe) env = focal_point_env_fn(trajactory_logger, probe_generator=probe_generator) env.reset() env.step(1) # left - BUMP env.step(2) # right # -10 env.step(2) # right # 0 env.step(2) # right # 10 env.step(2) # right # 20 env.step(2) # right # 20 - BUMP env.step(3) # up # 0 env.step(3) # up # 0 - BUMP env.step(4) # down # 10 env.step(4) # down # 20 env.step(4) # down # 30 env.step(4) # down # 40 env.step(4) # down # 50 env.step(4) # down # 60 env.step(4) # down # 70 env.step(4) # down # 80 env.step(4) # down # 90 env.step(4) # down # 90 - BUMP def test_caching_works(): trajactory_logger = envs.logger.TrajectoryLogger( log_dir=sys.argv[1], log_action_csv_freq=10, log_state_csv_freq=10, log_state_render_freq=10 ) probe = Probe( pos=np.array([0 / 1000, 0, 0]), # only X and Y angle=0, width=40 / 1000, height=10 / 1000, focal_depth=30 / 1000 ) probe_generator = ConstProbeGenerator(probe) env = focal_point_env_fn(trajactory_logger, probe_generator=probe_generator) env.reset() env.step(1) # left env.step(2) # right (should come from cache) def test_random_probe_generator(): trajactory_logger = envs.logger.TrajectoryLogger( log_dir=sys.argv[1], log_action_csv_freq=1, log_state_csv_freq=1, log_state_render_freq=1 ) probe = Probe( pos=np.array([0 / 1000, 0, 0]), # only X and Y angle=0, width=40 / 1000, height=10 / 1000, focal_depth=30 / 1000 ) teddy = Teddy( belly_pos=np.array([0 / 1000, 0, 50 / 1000]), # X, Y, Z scale=12 / 1000, head_offset=.9 ) phantom = ScatterersPhantom( objects=[teddy], x_border=(-40 / 1000, 40 / 1000), y_border=(-40 / 1000, 40 / 1000), z_border=(0, 90 / 1000), n_scatterers=int(1e4), n_bck_scatterers=int(1e3), seed=42, ) phantom_generator = ConstPhantomGenerator(phantom) probe_generator = RandomProbeGenerator( ref_probe=probe, object_to_align=teddy, seed=42, # x_pos default # focal_pos default ) env = focal_point_env_fn(trajactory_logger, probe_generator=probe_generator, phantom_generator=phantom_generator) env.reset() env.step(1) # left env.reset() env.step(2) env.reset() env.step(3) env.reset() env.step(3) env.reset() env.step(1) env.reset() env.step(1) def test_deep_focus(): trajactory_logger = envs.logger.TrajectoryLogger( log_dir=sys.argv[1], log_action_csv_freq=1, log_state_csv_freq=1, log_state_render_freq=1 ) probe = Probe( pos=np.array([0 / 1000, 0, 0]), # only X and Y angle=0, width=40 / 1000, height=10 / 1000, focal_depth=0 / 1000 ) probe_generator = ConstProbeGenerator(probe) env = focal_point_env_fn(trajactory_logger, probe_generator=probe_generator) env.reset() env.step(4) # down - 10 env.step(4) # 20 env.step(4) # 30 env.step(4) # 40 env.step(4) # 50 env.step(4) # 60 env.step(4) # 70 env.step(4) # 80 env.step(4) # 90 # probe random dislocations (focal point env) def test_random_dislocation_1(): """ Just check if dislocation are drawn for this env. """ trajactory_logger = envs.logger.TrajectoryLogger( log_dir=sys.argv[1], log_action_csv_freq=1, log_state_csv_freq=1, log_state_render_freq=1 ) probe = Probe( pos=np.array([0 / 1000, 0, 0]), # only X and Y angle=0, width=40 / 1000, height=10 / 1000, focal_depth=50 / 1000 ) probe_generator = ConstProbeGenerator(probe) env = focal_point_env_fn( trajactory_logger, probe_generator=probe_generator, probe_dislocation_prob=.5, dislocation_seed=42, max_probe_dislocation=2 ) env.reset() env.step(0) env.step(0) env.step(0) env.step(0) env.step(0) env.step(0) env.step(0) env.step(0) env.step(0) def test_random_dislocation_2(): """ Check if dislocations are drawn, and are properly applicated ( should not impact the last reward, should be observable in next state). """ trajactory_logger = envs.logger.TrajectoryLogger( log_dir=sys.argv[1], log_action_csv_freq=1, log_state_csv_freq=1, log_state_render_freq=1 ) probe = Probe( pos=np.array([0 / 1000, 0, 0]), # only X and Y angle=0, width=40 / 1000, height=10 / 1000, focal_depth=50 / 1000 ) probe_generator = ConstProbeGenerator(probe) env = focal_point_env_fn( trajactory_logger, probe_generator=probe_generator, probe_dislocation_prob=.5, dislocation_seed=42, max_probe_dislocation=2, step_size=5/1000 ) env.reset() env.step(1) env.step(1) env.step(2) env.step(2) env.step(1) env.step(1) env.step(2) env.step(2) def test_random_no_dislocation_2(): """ Check if dislocations are drawn, and are properly applicated ( should not impact the last reward, should be observable in next state). """ trajactory_logger = envs.logger.TrajectoryLogger( log_dir=sys.argv[1], log_action_csv_freq=1, log_state_csv_freq=1, log_state_render_freq=1 ) probe = Probe( pos=np.array([0 / 1000, 0, 0]), # only X and Y angle=0, width=40 / 1000, height=10 / 1000, focal_depth=50 / 1000 ) probe_generator = ConstProbeGenerator(probe) env = focal_point_env_fn( trajactory_logger, probe_generator=probe_generator, probe_dislocation_prob=.5, dislocation_seed=None, max_probe_dislocation=2, step_size=5/1000 ) env.reset() env.step(1) env.step(1) env.step(2) env.step(2) env.step(1) env.step(1) env.step(2) env.step(2) def test_rotate_1(): """ rotate in the center of the object 540 degree, in one direction, in the other direction """ trajactory_logger = envs.logger.TrajectoryLogger( log_dir=sys.argv[1], log_action_csv_freq=1, log_state_csv_freq=1, log_state_render_freq=1 ) probe = Probe( pos=np.array([0 / 1000, 0, 0]), # only X and Y angle=0, width=40 / 1000, height=10 / 1000, focal_depth=50 / 1000 ) probe_generator = ConstProbeGenerator(probe) env = plane_task_env_fn(trajactory_logger, probe_generator=probe_generator, rot_deg=45) env.reset() env.step(3) # 45 env.step(3) # 90 env.step(3) # 135 env.step(3) # 180 env.step(3) # 225 env.step(3) # 270 env.step(3) # 315 env.step(3) # 360 env.step(3) # 45 env.step(4) # should use cache env.step(4) env.step(4) env.step(4) env.step(4) env.step(4) def test_rotate_2(): """ left, left, rotate, rotate, right, right, right, rotate, rotate """ trajactory_logger = envs.logger.TrajectoryLogger( log_dir=sys.argv[1], log_action_csv_freq=1, log_state_csv_freq=1, log_state_render_freq=1 ) probe = Probe( pos=
np.array([0 / 1000, 0, 0])
numpy.array
#!/usr/bin/env python """ @package npt Runs a simulation to compute condensed phase properties (for example, the density or the enthalpy of vaporization) and compute the derivative with respect to changing the force field parameters. This script is a part of ForceBalance. All code in this repository is released under the BSD 3-Clause License (aka BSD 2.0). Please see github.com/leeping/forcebalance for more details. """ from __future__ import division #==================# #| Global Imports |# #==================# from builtins import zip from builtins import range import os import sys import glob import shutil import argparse import traceback import numpy as np from copy import deepcopy from collections import namedtuple, OrderedDict from forcebalance.forcefield import FF from forcebalance.nifty import col, flat, lp_dump, lp_load, printcool, printcool_dictionary, statisticalInefficiency, which, _exec, isint, wopen, click from forcebalance.finite_difference import fdwrap, f1d2p, f12d3p, f1d7p, in_fd from forcebalance.molecule import Molecule from forcebalance.output import getLogger logger = getLogger(__name__) #========================================================# #| Global, user-tunable variables (simulation settings) |# #========================================================# parser = argparse.ArgumentParser() parser.add_argument('engine', help='MD program that we are using; choose "openmm", "tinker", "amber" or "gromacs"') parser.add_argument('temperature',type=float, help='Temperature (K)') parser.add_argument('pressure',type=float, help='Pressure (Atm)') args = parser.parse_args() faststep = 0.25 # "fast" timestep (for MTS integrator, if used) temperature = args.temperature # temperature in kelvin pressure = args.pressure # pressure in atmospheres engname = args.engine.lower() # Name of the engine if engname == "openmm": try: try: from openmm.unit import * from openmm import * from openmm.app import * except ImportError: from simtk.unit import * from simtk.openmm import * from simtk.openmm.app import * except: traceback.print_exc() raise Exception("Cannot import OpenMM modules") from forcebalance.openmmio import * Engine = OpenMM elif engname == "gromacs" or engname == "gmx": from forcebalance.gmxio import * Engine = GMX elif engname == "tinker": from forcebalance.tinkerio import * Engine = TINKER elif engname == "amber": from forcebalance.amberio import * Engine = AMBER elif engname == "smirnoff": from forcebalance.smirnoffio import * Engine = SMIRNOFF else: raise Exception('OpenMM, SMIRNOFF/OpenMM, GROMACS, TINKER, and AMBER are supported at this time.') #==================# #| Subroutines |# #==================# def mean_stderr(ts): """ Get mean and standard deviation of a time series. """ return np.mean(ts), np.std(ts)*np.sqrt(statisticalInefficiency(ts, warn=False)/len(ts)) def bzavg(obs,boltz): """ Get the Boltzmann average of an observable. """ if obs.ndim == 2: if obs.shape[0] == len(boltz) and obs.shape[1] == len(boltz): raise Exception('Error - both dimensions have length equal to number of snapshots, now confused!') elif obs.shape[0] == len(boltz): return np.sum(obs*boltz.reshape(-1,1),axis=0)/np.sum(boltz) elif obs.shape[1] == len(boltz): return np.sum(obs*boltz,axis=1)/np.sum(boltz) else: raise Exception('The dimensions are wrong!') elif obs.ndim == 1: return np.dot(obs,boltz)/sum(boltz) else: raise Exception('The number of dimensions can only be 1 or 2!') def PrintEDA(EDA, N): # Get energy decomposition statistics. PrintDict = OrderedDict() for key, val in EDA.items(): val_avg, val_err = mean_stderr(val) if val_avg == 0.0: continue if val_err == 0.0: continue PrintDict[key] = "% 12.4f +- %10.4f [ % 9.4f +- %7.4f ]" % (val_avg, val_err, val_avg/N, val_err/N) printcool_dictionary(PrintDict, "Energy Component Analysis, Mean +- Stderr [Per Molecule] (kJ/mol)") #=============================================# #| Functions for differentiating energy |# #| and properties |# #=============================================# def energy_derivatives(engine, FF, mvals, h, pgrad, length, AGrad=True, dipole=False): """ Compute the first and second derivatives of a set of snapshot energies with respect to the force field parameters. This basically calls the finite difference subroutine on the energy_driver subroutine also in this script. @param[in] mvals Mathematical parameter values @param[in] h Finite difference step size @param[in] phase The phase (liquid, gas) to perform the calculation on @param[in] AGrad Switch to turn derivatives on or off; if off, return all zeros @param[in] dipole Switch for dipole derivatives. @return G First derivative of the energies in a N_param x N_coord array @return GDx First derivative of the box dipole moment x-component in a N_param x N_coord array @return GDy First derivative of the box dipole moment y-component in a N_param x N_coord array @return GDz First derivative of the box dipole moment z-component in a N_param x N_coord array """ G = np.zeros((FF.np,length)) GDx = np.zeros((FF.np,length)) GDy = np.zeros((FF.np,length)) GDz = np.zeros((FF.np,length)) if not AGrad: return G, GDx, GDy, GDz def energy_driver(mvals_): FF.make(mvals_) if dipole: return engine.energy_dipole() else: return engine.energy() ED0 = energy_driver(mvals) for i in pgrad: logger.info("%i %s\r" % (i, (FF.plist[i] + " "*30))) EDG, _ = f12d3p(fdwrap(energy_driver,mvals,i),h,f0=ED0) if dipole: G[i,:] = EDG[:,0] GDx[i,:] = EDG[:,1] GDy[i,:] = EDG[:,2] GDz[i,:] = EDG[:,3] else: G[i,:] = EDG[:] return G, GDx, GDy, GDz def property_derivatives(engine, FF, mvals, h, pgrad, kT, property_driver, property_kwargs, AGrad=True): """ Function for double-checking property derivatives. This function is called to perform a more explicit numerical derivative of the property, rather than going through the fluctuation formula. It takes longer and is potentially less precise, which means it's here mainly as a sanity check. @param[in] mvals Mathematical parameter values @param[in] h Finite difference step size @param[in] phase The phase (liquid, gas) to perform the calculation on @param[in] property_driver The function that calculates the property @param[in] property_driver A dictionary of arguments that goes into calculating the property @param[in] AGrad Switch to turn derivatives on or off; if off, return all zeros @return G First derivative of the property """ G = np.zeros(FF.np) if not AGrad: return G def energy_driver(mvals_): FF.make(mvals_) return engine.energy_dipole() ED0 = energy_driver(mvals) E0 = ED0[:,0] D0 = ED0[:,1:] P0 = property_driver(None, **property_kwargs) if 'h_' in property_kwargs: H0 = property_kwargs['h_'].copy() for i in pgrad: logger.info("%s\n" % (FF.plist[i] + " "*30)) ED1 = fdwrap(energy_driver,mvals,i)(h) E1 = ED1[:,0] D1 = ED1[:,1:] b = np.exp(-(E1-E0)/kT) b /= np.sum(b) if 'h_' in property_kwargs: property_kwargs['h_'] = H0.copy() + (E1-E0) if 'd_' in property_kwargs: property_kwargs['d_'] = D1.copy() S = -1*np.dot(b,np.log(b)) InfoContent = np.exp(S) if InfoContent / len(E0) < 0.1: logger.warn("Warning: Effective number of snapshots: % .1f (out of %i)\n" % (InfoContent, len(E0))) P1 = property_driver(b=b,**property_kwargs) EDM1 = fdwrap(energy_driver,mvals,i)(-h) EM1 = EDM1[:,0] DM1 = EDM1[:,1:] b = np.exp(-(EM1-E0)/kT) b /= np.sum(b) if 'h_' in property_kwargs: property_kwargs['h_'] = H0.copy() + (EM1-E0) if 'd_' in property_kwargs: property_kwargs['d_'] = DM1.copy() S = -1*np.dot(b,np.log(b)) InfoContent = np.exp(S) if InfoContent / len(E0) < 0.1: logger.warn("Warning: Effective number of snapshots: % .1f (out of %i)\n" % (InfoContent, len(E0))) PM1 = property_driver(b=b,**property_kwargs) G[i] = (P1-PM1)/(2*h) if 'h_' in property_kwargs: property_kwargs['h_'] = H0.copy() if 'd_' in property_kwargs: property_kwargs['d_'] = D0.copy() return G def main(): """ Usage: (runcuda.sh) npt.py <openmm|gromacs|tinker|amber> <liquid_nsteps> <liquid_timestep (fs)> <liquid_intvl (ps> <temperature> <pressure> This program is meant to be called automatically by ForceBalance on a GPU cluster (specifically, subroutines in openmmio.py). It is not easy to use manually. This is because the force field is read in from a ForceBalance 'FF' class. I wrote this program because automatic fitting of the density (or other equilibrium properties) is computationally intensive, and the calculations need to be distributed to the queue. The main instance of ForceBalance (running on my workstation) queues up a bunch of these jobs (using Work Queue). Then, I submit a bunch of workers to GPU clusters (e.g. Certainty, Keeneland). The worker scripts connect to. the main instance and receives one of these jobs. This script can also be executed locally, if you want to (e.g. for debugging). Just make sure you have the pickled 'forcebalance.p' file. """ printcool("ForceBalance condensed phase simulation using engine: %s" % engname.upper(), color=4, bold=True) #---- # Load the ForceBalance pickle file which contains: #---- # - Force field object # - Optimization parameters # - Options from the Target object that launched this simulation # - Switch for whether to evaluate analytic derivatives. FF,mvals,TgtOptions,AGrad = lp_load('forcebalance.p') FF.ffdir = '.' # Write the force field file. FF.make(mvals) #---- # Load the options that are set in the ForceBalance input file. #---- # Finite difference step size h = TgtOptions['h'] pgrad = TgtOptions['pgrad'] # MD options; time step (fs), production steps, equilibration steps, interval for saving data (ps) liquid_timestep = TgtOptions['liquid_timestep'] liquid_nsteps = TgtOptions['liquid_md_steps'] liquid_nequil = TgtOptions['liquid_eq_steps'] liquid_intvl = TgtOptions['liquid_interval'] liquid_fnm = TgtOptions['liquid_coords'] liquid_nbeads = TgtOptions ['liquid_nbeads'] gas_timestep = TgtOptions['gas_timestep'] gas_nsteps = TgtOptions['gas_md_steps'] gas_nequil = TgtOptions['gas_eq_steps'] gas_intvl = TgtOptions['gas_interval'] gas_fnm = TgtOptions['gas_coords'] gas_nbeads = TgtOptions ['gas_nbeads'] # Number of threads, multiple timestep integrator, anisotropic box etc. threads = TgtOptions.get('md_threads', 1) mts = TgtOptions.get('mts_integrator', 0) rpmd_beads = TgtOptions.get('rpmd_beads', 0) force_cuda = TgtOptions.get('force_cuda', 0) nbarostat = TgtOptions.get('n_mcbarostat', 25) anisotropic = TgtOptions.get('anisotropic_box', 0) minimize = TgtOptions.get('minimize_energy', 1) pimd = TgtOptions.get ('pimd',0) # Print all options. printcool_dictionary(TgtOptions, title="Options from ForceBalance") liquid_snapshots = int((liquid_nsteps * liquid_timestep / 1000) / liquid_intvl) liquid_iframes = int(1000 * liquid_intvl / liquid_timestep) gas_snapshots = int((gas_nsteps * gas_timestep / 1000) / gas_intvl) gas_iframes = int(1000 * gas_intvl / gas_timestep) logger.info("For the condensed phase system, I will collect %i snapshots spaced apart by %i x %.3f fs time steps\n" \ % (liquid_snapshots, liquid_iframes, liquid_timestep)) if liquid_snapshots < 2: raise Exception('Please set the number of liquid time steps so that you collect at least two snapshots (minimum %i)' \ % (2000 * int(liquid_intvl/liquid_timestep))) logger.info("For the gas phase system, I will collect %i snapshots spaced apart by %i x %.3f fs time steps\n" \ % (gas_snapshots, gas_iframes, gas_timestep)) if gas_snapshots < 2: raise Exception('Please set the number of gas time steps so that you collect at least two snapshots (minimum %i)' \ % (2000 * int(gas_intvl/gas_timestep))) #---- # Loading coordinates #---- ML = Molecule(liquid_fnm, toppbc=True) MG = Molecule(gas_fnm) # Determine the number of molecules in the condensed phase coordinate file. NMol = TgtOptions['n_molecules'] logger.info("There are %i molecules in the liquid\n" % (NMol)) #---- # Setting up MD simulations #---- EngOpts = OrderedDict() EngOpts["liquid"] = OrderedDict([("coords", liquid_fnm), ("mol", ML), ("pbc", True)]) if "nonbonded_cutoff" in TgtOptions: EngOpts["liquid"]["nonbonded_cutoff"] = TgtOptions["nonbonded_cutoff"] if "vdw_cutoff" in TgtOptions: EngOpts["liquid"]["vdw_cutoff"] = TgtOptions["vdw_cutoff"] EngOpts["gas"] = OrderedDict([("coords", gas_fnm), ("mol", MG), ("pbc", False)]) GenOpts = OrderedDict([('FF', FF)]) if engname in ["openmm", "smirnoff"]: # OpenMM-specific options EngOpts["liquid"]["platname"] = TgtOptions.get("platname", 'CUDA') # For now, always run gas phase calculations on the reference platform EngOpts["gas"]["platname"] = 'Reference' if force_cuda: try: Platform.getPlatformByName('CUDA') except: raise RuntimeError('Forcing failure because CUDA platform unavailable') EngOpts["liquid"]["platname"] = 'CUDA' if threads > 1: logger.warn("Setting the number of threads will have no effect on OpenMM engine.\n") if engname == "smirnoff": if not TgtOptions['liquid_coords'].endswith('.pdb'): logger.error("With SMIRNOFF engine, please pass a .pdb file to liquid_coords.") raise RuntimeError EngOpts["liquid"]["pdb"] = TgtOptions['liquid_coords'] EngOpts["liquid"]["mol2"] = TgtOptions["mol2"] if not TgtOptions['gas_coords'].endswith('.pdb'): logger.error("With SMIRNOFF engine, please pass a .pdb file to gas_coords.") raise RuntimeError EngOpts["gas"]["pdb"] = TgtOptions['gas_coords'] EngOpts["gas"]["mol2"] = TgtOptions["mol2"] elif engname == "gromacs": # Gromacs-specific options GenOpts["gmxpath"] = TgtOptions["gmxpath"] GenOpts["gmxsuffix"] = TgtOptions["gmxsuffix"] EngOpts["liquid"]["gmx_top"] = os.path.splitext(liquid_fnm)[0] + ".top" EngOpts["liquid"]["gmx_mdp"] = os.path.splitext(liquid_fnm)[0] + ".mdp" EngOpts["liquid"]["gmx_eq_barostat"] = TgtOptions["gmx_eq_barostat"] EngOpts["gas"]["gmx_top"] = os.path.splitext(gas_fnm)[0] + ".top" EngOpts["gas"]["gmx_mdp"] = os.path.splitext(gas_fnm)[0] + ".mdp" if force_cuda: logger.warn("force_cuda option has no effect on Gromacs engine.") if rpmd_beads > 0: raise RuntimeError("Gromacs cannot handle RPMD.") if mts: logger.warn("Gromacs not configured for multiple timestep integrator.") if anisotropic: logger.warn("Gromacs not configured for anisotropic box scaling.") elif engname == "tinker": # Tinker-specific options GenOpts["tinkerpath"] = TgtOptions["tinkerpath"] EngOpts["liquid"]["tinker_key"] = os.path.splitext(liquid_fnm)[0] + ".key" EngOpts["gas"]["tinker_key"] = os.path.splitext(gas_fnm)[0] + ".key" if force_cuda: logger.warn("force_cuda option has no effect on Tinker engine.") if rpmd_beads > 0: raise RuntimeError("TINKER cannot handle RPMD.") if mts: logger.warn("Tinker not configured for multiple timestep integrator.") elif engname == "amber": # AMBER-specific options GenOpts["amberhome"] = TgtOptions["amberhome"] if os.path.exists(os.path.splitext(liquid_fnm)[0] + ".mdin"): EngOpts["liquid"]["mdin"] = os.path.splitext(liquid_fnm)[0] + ".mdin" if os.path.exists(os.path.splitext(gas_fnm)[0] + ".mdin"): EngOpts["gas"]["mdin"] = os.path.splitext(gas_fnm)[0] + ".mdin" EngOpts["liquid"]["leapcmd"] = os.path.splitext(liquid_fnm)[0] + ".leap" EngOpts["gas"]["leapcmd"] = os.path.splitext(gas_fnm)[0] + ".leap" EngOpts["liquid"]["pdb"] = liquid_fnm EngOpts["gas"]["pdb"] = gas_fnm if force_cuda: logger.warn("force_cuda option has no effect on Amber engine.") if rpmd_beads > 0: raise RuntimeError("AMBER cannot handle RPMD.") if mts: logger.warn("Amber not configured for multiple timestep integrator.") EngOpts["liquid"].update(GenOpts) EngOpts["gas"].update(GenOpts) for i in EngOpts: printcool_dictionary(EngOpts[i], "Engine options for %s" % i) # Set up MD options MDOpts = OrderedDict() MDOpts["liquid"] = OrderedDict([("nsteps", liquid_nsteps), ("timestep", liquid_timestep), ("temperature", temperature), ("pressure", pressure), ("nequil", liquid_nequil), ("minimize", minimize), ("nsave", int(1000 * liquid_intvl / liquid_timestep)), ("verbose", True), ('save_traj', TgtOptions['save_traj']), ("threads", threads), ("anisotropic", anisotropic), ("nbarostat", nbarostat), ("mts", mts), ("rpmd_beads", rpmd_beads), ("faststep", faststep), ("pimd", pimd), ("nbeads", liquid_nbeads) ]) MDOpts["gas"] = OrderedDict([("nsteps", gas_nsteps), ("timestep", gas_timestep), ("temperature", temperature), ("nsave", int(1000 * gas_intvl / gas_timestep)), ("nequil", gas_nequil), ("minimize", minimize), ("threads", 1), ("mts", mts), ("rpmd_beads", rpmd_beads), ("faststep", faststep), ("pimd", pimd), ("nbeads", gas_nbeads)]) # Energy components analysis disabled for OpenMM MTS because it uses force groups if (engname == "openmm" and mts): logger.warn("OpenMM with MTS integrator; energy components analysis will be disabled.\n") # Create instances of the MD Engine objects. Liquid = Engine(name="liquid", **EngOpts["liquid"]) Gas = Engine(name="gas", **EngOpts["gas"]) #=================================================================# # Run the simulation for the full system and analyze the results. # #=================================================================# printcool("Condensed phase molecular dynamics", color=4, bold=True) # This line runs the condensed phase simulation. click() prop_return = Liquid.molecular_dynamics(**MDOpts["liquid"]) if hasattr(Liquid, 'freeze_atoms'): logger.info("Warning: freeze_atoms may result in incorrect system mass and incorrect density calculation\n") logger.info("Liquid phase MD simulation took %.3f seconds\n" % click()) Rhos = prop_return['Rhos'] Potentials = prop_return['Potentials'] Kinetics = prop_return['Kinetics'] Volumes = prop_return['Volumes'] Dips = prop_return['Dips'] EDA = prop_return['Ecomps'] # Create a bunch of physical constants. # Energies are in kJ/mol # Lengths are in nanometers. L = len(Rhos) kB = 0.008314472471220214 T = temperature kT = kB * T mBeta = -1.0 / kT Beta = 1.0 / kT atm_unit = 0.061019351687175 bar_unit = 0.060221417930000 # This is how I calculated the prefactor for the dielectric constant. # eps0 = 8.854187817620e-12 * coulomb**2 / newton / meter**2 # epsunit = 1.0*(debye**2) / nanometer**3 / BOLTZMANN_CONSTANT_kB / kelvin # prefactor = epsunit/eps0/3 prefactor = 30.348705333964077 # Gather some physical variables. Energies = Potentials + Kinetics Ene_avg, Ene_err = mean_stderr(Energies) pV = atm_unit * pressure * Volumes pV_avg, pV_err = mean_stderr(pV) Rho_avg, Rho_err = mean_stderr(Rhos) PrintEDA(EDA, NMol) #==============================================# # Now run the simulation for just the monomer. # #==============================================# # Run the OpenMM simulation, gather information. printcool("Gas phase molecular dynamics", color=4, bold=True) click() mprop_return = Gas.molecular_dynamics(**MDOpts["gas"]) logger.info("Gas phase MD simulation took %.3f seconds\n" % click()) mPotentials = mprop_return['Potentials'] mKinetics = mprop_return['Kinetics'] mEDA = mprop_return['Ecomps'] mEnergies = mPotentials + mKinetics mEne_avg, mEne_err = mean_stderr(mEnergies) PrintEDA(mEDA, 1) #============================================# # Compute the potential energy derivatives. # #============================================# logger.info("Calculating potential energy derivatives with finite difference step size: %f\n" % h) # Switch for whether to compute the derivatives two different ways for consistency. FDCheck = False # Create a double-precision simulation object if desired (seems unnecessary). DoublePrecisionDerivatives = False if engname == "openmm" and DoublePrecisionDerivatives and AGrad: logger.info("Creating Double Precision Simulation for parameter derivatives\n") Liquid = Engine(name="liquid", openmm_precision="double", **EngOpts["liquid"]) Gas = Engine(name="gas", openmm_precision="double", **EngOpts["gas"]) # Compute the energy and dipole derivatives. printcool("Condensed phase energy and dipole derivatives\nInitializing array to length %i" % len(Energies), color=4, bold=True) click() G, GDx, GDy, GDz = energy_derivatives(Liquid, FF, mvals, h, pgrad, len(Energies), AGrad, dipole=True) logger.info("Condensed phase energy derivatives took %.3f seconds\n" % click()) click() printcool("Gas phase energy derivatives", color=4, bold=True) mG, _, __, ___ = energy_derivatives(Gas, FF, mvals, h, pgrad, len(mEnergies), AGrad, dipole=False) logger.info("Gas phase energy derivatives took %.3f seconds\n" % click()) #==============================================# # Condensed phase properties and derivatives. # #==============================================# #---- # Density #---- # Build the first density derivative. GRho = mBeta * (flat(np.dot(G, col(Rhos))) / L - np.mean(Rhos) * np.mean(G, axis=1)) # Print out the density and its derivative. Sep = printcool("Density: % .4f +- % .4f kg/m^3\nAnalytic Derivative:" % (Rho_avg, Rho_err)) FF.print_map(vals=GRho) logger.info(Sep) def calc_rho(b = None, **kwargs): if b is None: b = np.ones(L,dtype=float) if 'r_' in kwargs: r_ = kwargs['r_'] return bzavg(r_,b) # No need to calculate error using bootstrap, but here it is anyway # Rhoboot = [] # for i in range(numboots): # boot = np.random.randint(N,size=N) # Rhoboot.append(calc_rho(None,**{'r_':Rhos[boot]})) # Rhoboot = np.array(Rhoboot) # Rho_err = np.std(Rhoboot) if FDCheck: Sep = printcool("Numerical Derivative:") GRho1 = property_derivatives(Liquid, FF, mvals, h, pgrad, kT, calc_rho, {'r_':Rhos}) FF.print_map(vals=GRho1) Sep = printcool("Difference (Absolute, Fractional):") absfrac = ["% .4e % .4e" % (i-j, (i-j)/j) for i,j in zip(GRho, GRho1)] FF.print_map(vals=absfrac) #---- # Enthalpy of vaporization #---- H = Energies + pV V = np.array(Volumes) # Print out the liquid enthalpy. logger.info("Liquid enthalpy: % .4f kJ/mol, stdev % .4f ; (% .4f from energy, % .4f from pV)\n" % (np.mean(H), np.std(H), np.mean(Energies), np.mean(pV))) numboots = 1000 # The enthalpy of vaporization in kJ/mol. Hvap_avg = mEne_avg - Ene_avg / NMol + kT - np.mean(pV) / NMol Hvap_err = np.sqrt(Ene_err**2 / NMol**2 + mEne_err**2 + pV_err**2/NMol**2) # Build the first Hvap derivative. GHvap = np.mean(G,axis=1) GHvap += mBeta * (flat(np.dot(G, col(Energies))) / L - Ene_avg * np.mean(G, axis=1)) GHvap /= NMol GHvap -= np.mean(mG,axis=1) GHvap -= mBeta * (flat(np.dot(mG, col(mEnergies))) / L - mEne_avg * np.mean(mG, axis=1)) GHvap *= -1 GHvap -= mBeta * (flat(np.dot(G, col(pV))) / L - np.mean(pV) * np.mean(G, axis=1)) / NMol Sep = printcool("Enthalpy of Vaporization: % .4f +- %.4f kJ/mol\nAnalytic Derivative:" % (Hvap_avg, Hvap_err)) FF.print_map(vals=GHvap) # Define some things to make the analytic derivatives easier. Gbar = np.mean(G,axis=1) def deprod(vec): return flat(np.dot(G,col(vec)))/L def covde(vec): return flat(np.dot(G,col(vec)))/L - Gbar*np.mean(vec) def avg(vec): return np.mean(vec) #---- # Thermal expansion coefficient #---- def calc_alpha(b = None, **kwargs): if b is None: b = np.ones(L,dtype=float) if 'h_' in kwargs: h_ = kwargs['h_'] if 'v_' in kwargs: v_ = kwargs['v_'] return 1/(kT*T) * (bzavg(h_*v_,b)-bzavg(h_,b)*bzavg(v_,b))/bzavg(v_,b) Alpha = calc_alpha(None, **{'h_':H, 'v_':V}) Alphaboot = [] for i in range(numboots): boot = np.random.randint(L,size=L) Alphaboot.append(calc_alpha(None, **{'h_':H[boot], 'v_':V[boot]})) Alphaboot = np.array(Alphaboot) Alpha_err =
np.std(Alphaboot)
numpy.std
import base64 import io import dash import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc from dash.dependencies import Input, Output import numpy as np import tensorflow as tf from PIL import Image from constants import CLASSES import yaml with open('app.yaml') as yaml_data : params = yaml.safe_load(yaml_data) IMAGE_WIDTH = params['IMAGE_WIDTH'] IMAGE_HEIGHT = params['IMAGE_HEIGHT'] PATH_MODEL = params['PATH_MODEL'] # Load DNN model classifier = tf.keras.models.load_model(PATH_MODEL) def classify_image(image, model, image_box=None): """Classify image by model Parameters ---------- content: image content model: tf/keras classifier Returns ------- class id returned by model classifier """ images_list = [] image = image.resize((IMAGE_WIDTH, IMAGE_HEIGHT), box=image_box) # box argument clips image to (x1, y1, x2, y2) image = np.array(image) images_list.append(image) return model.predict_classes(
np.array(images_list)
numpy.array
# Copyright (c) <NAME>. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory. # Test for fcmaes coordinated retry applied to https://www.esa.int/gsp/ACT/projects/gtop/ # using https://github.com/esa/pygmo2 / pagmo2 optimization algorithms. # # Please install pygmo before executing this test: # pip install pygmo import math from fcmaes.advretry import minimize from fcmaes.astro import Messenger, Cassini2, Rosetta, Gtoc1, Cassini1, Sagas, Tandem, MessFull from fcmaes.optimizer import logger, dtime, Optimizer, Sequence, De_cpp, Cma_cpp from numpy.random import MT19937, Generator from scipy.optimize import OptimizeResult import multiprocessing as mp import numpy as np import pygmo as pg import time class pygmo_udp(object): """Wraps a fcmaes fitness function as pygmo udp.""" def __init__(self, fun, bounds): self.fun = fun self.bounds = bounds def fitness(self, x): return [self.fun(x)] def get_bounds(self): return (self.bounds.lb, self.bounds.ub) def de_cma_pyg(max_evaluations = 50000, popsize=31, stop_fitness = -math.inf, de_max_evals = None, cma_max_evals = None): """Sequence de1220 -> cmaes pagmo.""" deEvals = np.random.uniform(0.1, 0.3) if de_max_evals is None: de_max_evals = int(deEvals*max_evaluations) if cma_max_evals is None: cma_max_evals = int((1.0-deEvals)*max_evaluations) opt1 = De_pyg(popsize=popsize, max_evaluations = de_max_evals, stop_fitness = stop_fitness) opt2 = Cma_pyg(popsize=popsize, max_evaluations = cma_max_evals, stop_fitness = stop_fitness) return Sequence([opt1, opt2]) def pyg_de_cma(max_evaluations = 50000, popsize=31, stop_fitness = -math.inf, de_max_evals = None, cma_max_evals = None): """Sequence de1220 -> cmaes c++.""" deEvals = np.random.uniform(0.1, 0.3) if de_max_evals is None: de_max_evals = int(deEvals*max_evaluations) if cma_max_evals is None: cma_max_evals = int((1.0-deEvals)*max_evaluations) opt1 = De_cpp(popsize=popsize, max_evaluations = de_max_evals, stop_fitness = stop_fitness) opt2 = Cma_pyg(popsize=popsize, max_evaluations = cma_max_evals, stop_fitness = stop_fitness) return Sequence([opt1, opt2]) def de_pyg_cma(max_evaluations = 50000, popsize=31, stop_fitness = -math.inf, de_max_evals = None, cma_max_evals = None): """Sequence de c++ -> cmaes pagmo.""" deEvals = np.random.uniform(0.1, 0.3) if de_max_evals is None: de_max_evals = int(deEvals*max_evaluations) if cma_max_evals is None: cma_max_evals = int((1.0-deEvals)*max_evaluations) opt1 = De_pyg(popsize=popsize, max_evaluations = de_max_evals, stop_fitness = stop_fitness) opt2 = Cma_cpp(popsize=popsize, max_evaluations = cma_max_evals, stop_fitness = stop_fitness) return Sequence([opt1, opt2]) class Cma_pyg(Optimizer): """CMA_ES pagmo implementation.""" def __init__(self, max_evaluations=50000, popsize = 31, guess=None, stop_fitness = -math.inf): Optimizer.__init__(self, max_evaluations, 'cma pagmo') self.popsize = popsize self.guess = guess self.stop_fitness = stop_fitness def minimize(self, fun, bounds, guess=None, sdevs=0.3, rg=Generator(MT19937()), store=None): gen = int(self.max_eval_num(store) / self.popsize + 1) algo = pg.algorithm(pg.cmaes(gen=gen, force_bounds = True, sigma0 = np.mean(sdevs), seed = int(rg.uniform(0, 2**32 - 1)))) udp = pygmo_udp(fun, bounds) prob = pg.problem(udp) pop = pg.population(prob, self.popsize) if not guess is None: scale = np.multiply(0.5 * (bounds.ub - bounds.lb), sdevs) for i in range(self.popsize): xi =
np.random.normal(guess, scale)
numpy.random.normal
import numpy from src.ppopt.utils.constraint_utilities import * from src.ppopt.utils.general_utils import make_row import pytest def test_constraint_norm_1(): A = numpy.random.random((10, 10)) b = numpy.random.random((10, 1)) [As, bs] = scale_constraint(A, b) results = numpy.linalg.norm(As, axis=1) assert numpy.allclose(numpy.ones(10), results) def test_constraint_norm_2(): A = -numpy.random.random((10, 10)) b = numpy.random.random((10, 1)) [As, bs] = scale_constraint(A, b) # print(A) # # print(A[0] / As[0]) # print(b[0] / bs[0]) def test_scale_constraint(): A = 2 * numpy.eye(3) b = numpy.ones(3) A, b = scale_constraint(A, b) assert numpy.allclose(A, numpy.eye(3)) assert numpy.allclose(b, .5 * numpy.ones(3)) def test_remove_zero_rows(): A = numpy.random.random((10, 10)) b = numpy.random.random((10, 1)) A[3] = 0 A[7] = 0 index = [0, 1, 2, 4, 5, 6, 8, 9] [A_, b_] = remove_zero_rows(A, b) assert numpy.allclose(A_, A[index]) assert numpy.allclose(b_, b[index]) assert A_.shape == A[index].shape assert b_.shape == b[index].shape def test_row_equality_1(): a = numpy.array([1, 2, 4]) b = numpy.array([1, 2, 3]) assert not row_equality(a, b) def test_row_equality_2(): a = numpy.array([1, 2, 3]) b = numpy.array([1, 2, 3]) assert row_equality(a, b) def test_remove_duplicate_rows(): A = numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 1, 1]]) b = numpy.array([[1], [2], [1], [1]]) [A, b] = remove_duplicate_rows(A, b) assert A.shape == (3, 3) assert b.shape == (3, 1) def test_is_full_rank_1(): A = numpy.eye(5) assert is_full_rank(A) def test_is_full_rank_2(): A = numpy.array([[1, 2, 3], [1, 0, 3]]) assert is_full_rank(A) def test_is_full_rank_3(): A = numpy.eye(10) A[-1, -1] = 0 assert not is_full_rank(A) def test_is_full_rank_4(): A = numpy.eye(4) assert is_full_rank(A, [1, 2, 3]) def test_is_full_rank_5(): A = numpy.array([[1, 0], [1, 0], [0, 1]]) assert not is_full_rank(A) assert not is_full_rank(A, [0, 1]) assert is_full_rank(A, [1, 2]) def test_is_full_rank_6(): A = numpy.eye(2) assert is_full_rank(A, []) def test_remove_redundant_constraints(): A = numpy.array([[-1, 0], [0, -1], [-1, 1], [-1, 1]]) b = numpy.array([[0], [0], [1], [20]]) # [As, bs] = process_region_constraints(A, b) As, bs = cheap_remove_redundant_constraints(A, b) As, bs = remove_strongly_redundant_constraints(As, bs) # As, bs = facet_ball_elimination(As, bs) A_ss, b_ss = scale_constraint(A, b) assert numpy.allclose(As, A_ss[[0, 1, 2]]) assert numpy.allclose(bs, b_ss[[0, 1, 2]]) def test_process_region_constraints(): A = numpy.block([[numpy.eye(3)], [-numpy.eye(3)], [make_row([1, 1, 1])]]) b = numpy.block([[numpy.ones((3, 1))], [numpy.zeros((3, 1))], [numpy.array([[1]])]]) [A, b] = process_region_constraints(A, b) assert A.shape == (4, 3) assert b.shape == (4, 1) @pytest.mark.skip(reason="I am scaling the matrix array, expected output has changed") def test_facet_ball_elimination(): A = numpy.block([[numpy.eye(2)], [-numpy.eye(2)]]) b = numpy.array([[1], [1], [0], [0]]) A_t = numpy.block([[numpy.eye(2)], [-numpy.eye(2)], [numpy.array([[1, 1]])]]) b_t = numpy.array([[2], [2], [0], [0], [1]]) A_r =
numpy.block([[A], [A_t]])
numpy.block
import numpy as np import collections as coll import pytest import numpy.testing as npt from matplotlib.patches import Circle from skimage.measure import label, regionprops from pulse2percept.implants import (PointSource, ElectrodeArray, ElectrodeGrid, ProsthesisSystem) from pulse2percept.stimuli import Stimulus, ImageStimulus, VideoStimulus from pulse2percept.models import ScoreboardModel def test_ProsthesisSystem(): # Invalid instantiations: with pytest.raises(ValueError): ProsthesisSystem(ElectrodeArray(PointSource(0, 0, 0)), eye='both') with pytest.raises(TypeError): ProsthesisSystem(Stimulus) # Iterating over the electrode array: implant = ProsthesisSystem(PointSource(0, 0, 0)) npt.assert_equal(implant.n_electrodes, 1) npt.assert_equal(implant[0], implant.earray[0]) npt.assert_equal(implant.electrode_names, implant.earray.electrode_names) for i, e in zip(implant, implant.earray): npt.assert_equal(i, e) # Set a stimulus after the constructor: npt.assert_equal(implant.stim, None) implant.stim = 3 npt.assert_equal(isinstance(implant.stim, Stimulus), True) npt.assert_equal(implant.stim.shape, (1, 1))
npt.assert_equal(implant.stim.time, None)
numpy.testing.assert_equal
from datetime import datetime import numpy as np import pandas as pd from course_lib.Base.Evaluation.Evaluator import EvaluatorHoldout from src.data_management.New_DataSplitter_leave_k_out import New_DataSplitter_leave_k_out from src.data_management.RecSys2019Reader import RecSys2019Reader from src.data_management.data_reader import get_ICM_train, get_UCM_train, get_ignore_users, get_ICM_train_new from src.model.Ensemble.Boosting.boosting_preprocessing import get_label_array, preprocess_dataframe_after_reading from src.tuning.holdout_validation.run_xgboost_tuning import run_xgb_tuning from src.utils.general_utility_functions import get_split_seed if __name__ == '__main__': # Data loading root_data_path = "../../data/" data_reader = RecSys2019Reader(root_data_path) data_reader = New_DataSplitter_leave_k_out(data_reader, k_out_value=3, use_validation_set=False, force_new_split=True, seed=get_split_seed()) data_reader.load_data() URM_train, URM_test = data_reader.get_holdout_split() # Reading the dataframe dataframe_path = "../../resources/boosting_dataframe/" train_df = pd.read_csv(dataframe_path + "train_df_100_advanced_lt_20.csv") valid_df = pd.read_csv(dataframe_path + "valid_df_30_advanced_lt_20.csv") train_df = preprocess_dataframe_after_reading(train_df) y_train = train_df['label'].values + 1 train_df = train_df.drop(columns=["label"], inplace=False) valid_df = preprocess_dataframe_after_reading(valid_df) print("Retrieving training labels...", end="") _, non_zero_count, total = get_label_array(data_frame=train_df, URM_train=URM_train) print("Done") # Setting evaluator mapper = data_reader.get_original_user_id_to_index_mapper() ignore_users = get_ignore_users(URM_train, mapper, lower_threshold=20, upper_threshold=2 ** 16 - 1, ignore_non_target_users=True) evaluator = EvaluatorHoldout(URM_test, cutoff_list=[10], ignore_users=ignore_users) total_users = np.arange(URM_train.shape[0]) mask =
np.in1d(total_users, ignore_users, invert=True)
numpy.in1d
#!/usr/bin/python ''' Code for interacting with the positioner microcontroller ''' import serial import time import struct import numpy as np import re from riglib.experiment import Experiment, Sequence, FSMTable, StateTransitions import random import socket import select dir_lut = dict(x={0:0, -1:0, 1:1}, y={0:0, -1:0, 1:1}, z={0:1, -1:1, 1:0}, # convention flipped for z-stage ) class Positioner(object): def __init__(self, dev='/dev/arduino_positioner'): self.port = serial.Serial(dev, baudrate=115200) self.port.flushInput() def _parse_resp(self, resp): resp = resp.rstrip() limits = list(map(int, resp[-6:])) return limits def poll_limit_switches(self, N=100): while 1: time.sleep(0.1) self.port.write('\n') raw_resp = self.port.readline() print("limit switches", self._parse_resp(raw_resp)) def read_limit_switches(self): self.port.write('\n') raw_resp = self.port.readline() return self._parse_resp(raw_resp) def wake_motors(self): self.port.write('w\n') # self.port.readline() def sleep_motors(self): print("sleep motors") self.port.write('s\n') # self.port.readline() def step_motors(self, step_x, step_y, step_z, dir_x, dir_y, dir_z): cmd_data = 0 cmd_step_data = step_x | (step_y << 1) | (step_z << 2) cmd_dir_data = dir_x | (dir_y << 1) | (dir_z << 2) cmd_data = cmd_step_data | (cmd_dir_data << 4) cmd = 'm' + struct.pack('B', cmd_data) + '\n' #print cmd_data, cmd self.port.write(cmd) def move(self, n_steps_x, n_steps_y, n_steps_z): self.wake_motors() limits = self._parse_resp(self.port.readline()) time.sleep(1) dir_x = dir_lut['x'][np.sign(n_steps_x)] dir_y = dir_lut['y'][np.sign(n_steps_y)] dir_z = dir_lut['z'][np.sign(n_steps_z)] n_steps_sent_x = 0 n_steps_sent_y = 0 n_steps_sent_z = 0 k = 0 while (abs(n_steps_x) > n_steps_sent_x) or (abs(n_steps_y) > n_steps_sent_y) or (abs(n_steps_z) > n_steps_sent_z): if k % 10 == 0: print(k) step_x = int(n_steps_sent_x < abs(n_steps_x)) step_y = int(n_steps_sent_y < abs(n_steps_y)) step_z = int(n_steps_sent_z < abs(n_steps_z)) #print step_x, step_y, step_z, dir_x, dir_y, dir_z self.step_motors(step_x, step_y, step_z, dir_x, dir_y, dir_z) limits = self._parse_resp(self.port.readline()) k += 1 n_steps_sent_x += step_x n_steps_sent_y += step_y n_steps_sent_z += step_z self.sleep_motors() def old_move(self, n_steps_x, n_steps_y, n_steps_z): self.wake_motors() try: time.sleep(1) dir_x = dir_lut['x'][np.sign(n_steps_x)] dir_y = dir_lut['y'][np.sign(n_steps_y)] dir_z = dir_lut['z'][np.sign(n_steps_z)] n_steps_sent_x = 0 n_steps_sent_y = 0 n_steps_sent_z = 0 k = 0 while (abs(n_steps_x) > n_steps_sent_x) or (abs(n_steps_y) > n_steps_sent_y) or (abs(n_steps_z) > n_steps_sent_z): if k % 10 == 0: print(k) step_x = int(n_steps_sent_x < abs(n_steps_x)) step_y = int(n_steps_sent_y < abs(n_steps_y)) step_z = int(n_steps_sent_z < abs(n_steps_z)) #print step_x, step_y, step_z, dir_x, dir_y, dir_z self.step_motors(step_x, step_y, step_z, dir_x, dir_y, dir_z) limits = self._parse_resp(self.port.readline()) k += 1 n_steps_sent_x += step_x n_steps_sent_y += step_y n_steps_sent_z += step_z except: import traceback traceback.print_exc() finally: self.sleep_motors() def move2(self): self.wake_motors() for k in range(200): self.step_motors(1,0,0,0,0,0) limits = self._parse_resp(self.port.readline()) self.sleep_motors() def go_to_min(self, verbose=False): can_move = self.read_limit_switches() x_can_decrease = can_move[0] y_can_decrease = can_move[2] z_can_decrease = can_move[4] dir_x = dir_lut['x'][-1] dir_y = dir_lut['y'][-1] dir_z = dir_lut['z'][-1] n_steps_sent_x = 0 n_steps_sent_y = 0 n_steps_sent_z = 0 if x_can_decrease or y_can_decrease or z_can_decrease: self.wake_motors() try: k = 0 while x_can_decrease or y_can_decrease or z_can_decrease: step_x = int(x_can_decrease) step_y = int(y_can_decrease) step_z = int(z_can_decrease) if verbose: print(step_x, step_y, step_z) self.step_motors(step_x, step_y, step_z, dir_x, dir_y, dir_z) can_move = self._parse_resp(self.port.readline()) x_can_decrease = can_move[0] y_can_decrease = can_move[2] z_can_decrease = can_move[4] n_steps_sent_x += step_x n_steps_sent_y += step_y n_steps_sent_z += step_z k += 1 finally: self.sleep_motors() return n_steps_sent_x, n_steps_sent_y, n_steps_sent_z def go_to_max(self, verbose=False): can_move = self.read_limit_switches() x_can_increase = can_move[1] y_can_increase = can_move[3] z_can_increase = can_move[5] dir_x = dir_lut['x'][1] dir_y = dir_lut['y'][1] dir_z = dir_lut['z'][1] n_steps_sent_x = 0 n_steps_sent_y = 0 n_steps_sent_z = 0 if x_can_increase or y_can_increase or z_can_increase: self.wake_motors() try: k = 0 while x_can_increase or y_can_increase or z_can_increase: step_x = int(x_can_increase) step_y = int(y_can_increase) step_z = int(z_can_increase) if verbose: print(step_x, step_y, step_z) self.step_motors(step_x, step_y, step_z, dir_x, dir_y, dir_z) can_move = self._parse_resp(self.port.readline()) x_can_increase = can_move[1] y_can_increase = can_move[3] z_can_increase = can_move[5] n_steps_sent_x += step_x n_steps_sent_y += step_y n_steps_sent_z += step_z k += 1 finally: self.sleep_motors() return n_steps_sent_x, n_steps_sent_y, n_steps_sent_z def continuous_move(self, n_steps_x, n_steps_y, n_steps_z): self.start_continuous_move(n_steps_x, n_steps_y, n_steps_z) return self.end_continuous_move() def start_continuous_move(self, n_steps_x, n_steps_y, n_steps_z): ''' Same as 'continuous_move', but without blocking for a response/movement to finish before the function returns ''' self.wake_motors() msg = 'c' + struct.pack('>hhh', n_steps_x, n_steps_y, n_steps_z) + '\n' self.port.write(msg) self.motor_dir = np.array([np.sign(n_steps_x), np.sign(n_steps_y), np.sign(n_steps_z)]) def end_continuous_move(self, stiff=False): ''' Cleanup part of 'continuous_move' after 'start_continuous_move' has been called ''' movement_data = self.port.readline() try: m = re.match(".*?: (\d+), (\d+), (\d+)", movement_data) n_steps_actuated = list(map(int, [m.group(x) for x in [1,2,3]])) except: import traceback traceback.print_exc() print(movement_data) if not stiff: self.sleep_motors() return n_steps_actuated def calibrate(self, n_runs): ''' Repeatedly go from min to max and back so the number of steps can be counted ''' n_steps_min_to_max = [None]*n_runs n_steps_max_to_min = [None]*n_runs self.go_to_min() time.sleep(1) for k in range(n_runs): n_steps_min_to_max[k] = self.go_to_max() time.sleep(2) n_steps_max_to_min[k] = self.go_to_min() print("min to max") print(n_steps_min_to_max) print("max to min") print(n_steps_max_to_min) time.sleep(2) return n_steps_min_to_max, n_steps_max_to_min def data_available(self): return self.port.inWaiting() # from features.generator_features import Autostart class PositionerTaskController(Sequence): ''' Interface between the positioner and the task interface. The positioner should run asynchronously so that the task event loop does not have to wait for a serial port response from the microcontroller. ''' status = FSMTable( go_to_origin = StateTransitions(microcontroller_done='wait'), wait = StateTransitions(start_trial='move_target'), move_target = StateTransitions(microcontroller_done='reach', stoppable=False), reach = StateTransitions(time_expired='reward', new_target_set_remotely='move_target'), reward = StateTransitions(time_expired='wait'), ) # status = dict( # go_to_origin = dict(microcontroller_done='wait', stop=None), # wait = dict(start_trial='move_target', stop=None), # move_target = dict(microcontroller_done='reach'), # reach = dict(time_expired='reward', stop=None), # reward = dict(time_expired='wait'), # ) state = 'go_to_origin' sequence_generators = ['random_target_calibration', 'xy_sweep'] reward_time = 1 reach_time = 1 @staticmethod def random_target_calibration(n_blocks=10): # # constants selected approximately from one subject's ROM # targets = [ # (x_min, y_min, z_min), # (x_max, y_min, z_min), # (x_min, y_max, z_min), # (x_min, y_min, z_max), # (x_max, y_max, z_min), # (x_max, y_min, z_max), # (x_min, y_max, z_max), # (x_max, y_max, z_max), # ] # trial_target_ls = [] # for k in range(n_blocks): # random.shuffle(targets) # for targ in targets: # trial_target_ls.append(dict(int_target_pos=targ)) # # set the last target to be the origin since the purpose of this generator is to measure the drift in # of steps # trial_target_ls.append(dict(int_target_pos=np.zeros(3))) # return trial_target_ls # @staticmethod # def calibration_targets(nblocks=1): targets = [ (45, 34, 0), (50, 38, -25), (40, 35, 0), (40, 35, -25), (30, 29, 0), (30, 29, -25), (20, 35, 0), (20, 35, -25), # (10, 38, 0), # reachable? # (10, 38, -25), # reachable? ] trial_target_ls = [] for k in range(n_blocks): random.shuffle(targets) for targ in targets: trial_target_ls.append(dict(int_target_pos=targ)) # set the last target to be the origin since the purpose of this generator is to measure the drift in # of steps trial_target_ls.append(dict(int_target_pos=np.zeros(3))) return trial_target_ls @staticmethod def xy_sweep(z_min=-25, z_max=0, zpts=6): xy_target_locs = np.vstack([ [8.20564516129, 37.6302083333], [9.61693548387, 34.1145833333], [15.1209677419, 31.1848958333], [15.5443548387, 34.5703125], [18.2258064516, 36.5234375], [23.4475806452, 34.7005208333], [22.8830645161, 32.3567708333], [23.0241935484, 29.1666666667], [28.9516129032, 34.8307291667], [28.9516129032, 32.2265625], [29.2338709677, 30.1432291667], [33.3266129032, 35.4166666667], [33.8911290323, 33.1380208333], [30.5040322581, 30.078125], [20.4838709677, 28.1901041667], [35.5846774194, 36.5885416667], [39.2540322581, 33.5286458333], [41.5120967742, 38.5416666667], [47.439516129, 37.6953125], ]) trial_target_ls = [] z_range = np.linspace(z_min, z_max, zpts) for zpt in z_range: for xy_targ in xy_target_locs: trial_target_ls.append(dict(int_target_pos=np.hstack([xy_targ, zpt]))) return trial_target_ls def __init__(self, *args, **kwargs): ''' Constructor for PositionerTaskController Parameters ---------- # x_len : float # measured distance the positioner can travel in the x-dimension # y_len : float # measured distance the positioner can travel in the y-dimension # z_len : float # measured distance the positioner can travel in the z-dimension dev : str, optional, default=/dev/ttyACM1 Serial port to use to communicate with Arduino controller x_cm_per_rev : int, optional, default=12 Number of cm traveled for one full revolution of the stepper motors in the x-dimension y_cm_per_rev : int, optional, default=12 Number of cm traveled for one full revolution of the stepper motors in the y-dimension z_cm_per_rev : float, optional, default=7.6 Number of cm traveled for one full revolution of the stepper motors in the z-dimension x_step_size : float, optional, default=0.25 Microstepping mode in the x-dimension y_step_size : float, optional, default=0.25 Microstepping mode in the y-dimension z_step_size : float, optional, default=0.25 Microstepping mode in the z-dimension Returns ------- PositionerTaskController instance ''' # TODO make these input arguments positioner_dev = '/dev/arduino_positioner' # cm/rev based on measured data x_cm_per_rev = 12.4 y_cm_per_rev = 12.4 z_cm_per_rev = 8.0 x_step_size = 1./4 y_step_size = 1./4 z_step_size = 1./4 self.loc =
np.ones(3)
numpy.ones
import argparse from distutils.util import strtobool import json import os import pickle import numpy as np import tensorflow as tf import pdb from softlearning.environments.utils import get_environment_from_params from softlearning.policies.utils import get_policy_from_variant # from softlearning.samplers import rollouts from softlearning import replay_pools from softlearning.samplers import ( dummy_sampler, extra_policy_info_sampler, remote_sampler, base_sampler, simple_sampler) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('checkpoint_path', type=str, help='Path to the checkpoint.') parser.add_argument('--max-path-length', '-l', type=int, default=1000) parser.add_argument('--num-rollouts', '-n', type=int, default=10) parser.add_argument('--render-mode', '-r', type=str, default=None, choices=('human', 'rgb_array', None), help="Mode to render the rollouts in.") parser.add_argument('--deterministic', '-d', type=lambda x: bool(strtobool(x)), nargs='?', const=True, default=True, help="Evaluate policy deterministically.") args = parser.parse_args() return args def rollout(env, policy, path_length, callback=None, render_mode=None, break_on_terminal=True): observation_space = env.observation_space action_space = env.action_space pool = replay_pools.SimpleReplayPool( observation_space, action_space, max_size=path_length) sampler = simple_sampler.SimpleSampler( max_path_length=path_length, min_pool_size=None, batch_size=None) sampler.initialize(env, policy, pool) images = [] infos = [] state_vectors = [] t = 0 for t in range(path_length): observation, reward, terminal, info = sampler.sample() state_vector = sampler.env.unwrapped.state_vector() infos.append(info) state_vectors.append(state_vector) if callback is not None: callback(observation) if render_mode is not None: if render_mode == 'rgb_array': image = env.render(mode=render_mode) images.append(image) else: env.render() if terminal: policy.reset() if break_on_terminal: break assert pool._size == t + 1 path = pool.batch_by_indices( np.arange(pool._size), observation_keys=getattr(env, 'observation_keys', None)) path['infos'] = infos path['state_vectors'] =
np.array([sampler._reset_state_vector] + state_vectors[:-1])
numpy.array
from __future__ import print_function, division, absolute_import import copy as copylib import sys # unittest only added in 3.4 self.subTest() if sys.version_info[0] < 3 or sys.version_info[1] < 4: import unittest2 as unittest else: import unittest # unittest.mock is not available in 2.7 (though unittest2 might contain it?) try: import unittest.mock as mock except ImportError: import mock import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import numpy as np import imgaug as ia import imgaug.augmenters as iaa from imgaug.testutils import reseed import imgaug.random as iarandom NP_VERSION = np.__version__ IS_NP_117_OR_HIGHER = ( NP_VERSION.startswith("2.") or NP_VERSION.startswith("1.25") or NP_VERSION.startswith("1.24") or NP_VERSION.startswith("1.23") or NP_VERSION.startswith("1.22") or NP_VERSION.startswith("1.21") or NP_VERSION.startswith("1.20") or NP_VERSION.startswith("1.19") or NP_VERSION.startswith("1.18") or NP_VERSION.startswith("1.17") ) class _Base(unittest.TestCase): def setUp(self): reseed() class TestConstants(_Base): def test_supports_new_np_rng_style_is_true(self): assert iarandom.SUPPORTS_NEW_NP_RNG_STYLE is IS_NP_117_OR_HIGHER def test_global_rng(self): iarandom.get_global_rng() # creates global RNG upon first call assert iarandom.GLOBAL_RNG is not None class TestRNG(_Base): @mock.patch("imgaug.random.normalize_generator_") def test___init___calls_normalize_mocked(self, mock_norm): _ = iarandom.RNG(0) mock_norm.assert_called_once_with(0) def test___init___with_rng(self): rng1 = iarandom.RNG(0) rng2 = iarandom.RNG(rng1) assert rng2.generator is rng1.generator @mock.patch("imgaug.random.get_generator_state") def test_state_getter_mocked(self, mock_get): mock_get.return_value = "mock" rng = iarandom.RNG(0) result = rng.state assert result == "mock" mock_get.assert_called_once_with(rng.generator) @mock.patch("imgaug.random.RNG.set_state_") def test_state_setter_mocked(self, mock_set): rng = iarandom.RNG(0) state = {"foo"} rng.state = state mock_set.assert_called_once_with(state) @mock.patch("imgaug.random.set_generator_state_") def test_set_state__mocked(self, mock_set): rng = iarandom.RNG(0) state = {"foo"} result = rng.set_state_(state) assert result is rng mock_set.assert_called_once_with(rng.generator, state) @mock.patch("imgaug.random.set_generator_state_") def test_use_state_of__mocked(self, mock_set): rng1 = iarandom.RNG(0) rng2 = mock.MagicMock() state = {"foo"} rng2.state = state result = rng1.use_state_of_(rng2) assert result == rng1 mock_set.assert_called_once_with(rng1.generator, state) @mock.patch("imgaug.random.get_global_rng") def test_is_global__is_global__rng_mocked(self, mock_get): rng1 = iarandom.RNG(0) rng2 = iarandom.RNG(rng1.generator) mock_get.return_value = rng2 assert rng1.is_global_rng() is True @mock.patch("imgaug.random.get_global_rng") def test_is_global_rng__is_not_global__mocked(self, mock_get): rng1 = iarandom.RNG(0) # different instance with same state/seed should still be viewed as # different by the method rng2 = iarandom.RNG(0) mock_get.return_value = rng2 assert rng1.is_global_rng() is False @mock.patch("imgaug.random.get_global_rng") def test_equals_global_rng__is_global__mocked(self, mock_get): rng1 = iarandom.RNG(0) rng2 = iarandom.RNG(0) mock_get.return_value = rng2 assert rng1.equals_global_rng() is True @mock.patch("imgaug.random.get_global_rng") def test_equals_global_rng__is_not_global__mocked(self, mock_get): rng1 = iarandom.RNG(0) rng2 = iarandom.RNG(1) mock_get.return_value = rng2 assert rng1.equals_global_rng() is False @mock.patch("imgaug.random.generate_seed_") def test_generate_seed__mocked(self, mock_gen): rng = iarandom.RNG(0) mock_gen.return_value = -1 seed = rng.generate_seed_() assert seed == -1 mock_gen.assert_called_once_with(rng.generator) @mock.patch("imgaug.random.generate_seeds_") def test_generate_seeds__mocked(self, mock_gen): rng = iarandom.RNG(0) mock_gen.return_value = [-1, -2] seeds = rng.generate_seeds_(2) assert seeds == [-1, -2] mock_gen.assert_called_once_with(rng.generator, 2) @mock.patch("imgaug.random.reset_generator_cache_") def test_reset_cache__mocked(self, mock_reset): rng = iarandom.RNG(0) result = rng.reset_cache_() assert result is rng mock_reset.assert_called_once_with(rng.generator) @mock.patch("imgaug.random.derive_generators_") def test_derive_rng__mocked(self, mock_derive): gen = iarandom.convert_seed_to_generator(0) mock_derive.return_value = [gen] rng = iarandom.RNG(0) result = rng.derive_rng_() assert result.generator is gen mock_derive.assert_called_once_with(rng.generator, 1) @mock.patch("imgaug.random.derive_generators_") def test_derive_rngs__mocked(self, mock_derive): gen1 = iarandom.convert_seed_to_generator(0) gen2 = iarandom.convert_seed_to_generator(1) mock_derive.return_value = [gen1, gen2] rng = iarandom.RNG(0) result = rng.derive_rngs_(2) assert result[0].generator is gen1 assert result[1].generator is gen2 mock_derive.assert_called_once_with(rng.generator, 2) @mock.patch("imgaug.random.is_generator_equal_to") def test_equals_mocked(self, mock_equal): mock_equal.return_value = "foo" rng1 = iarandom.RNG(0) rng2 = iarandom.RNG(1) result = rng1.equals(rng2) assert result == "foo" mock_equal.assert_called_once_with(rng1.generator, rng2.generator) def test_equals_identical_generators(self): rng1 = iarandom.RNG(0) rng2 = iarandom.RNG(rng1) assert rng1.equals(rng2) def test_equals_with_similar_generators(self): rng1 = iarandom.RNG(0) rng2 = iarandom.RNG(0) assert rng1.equals(rng2) def test_equals_with_different_generators(self): rng1 = iarandom.RNG(0) rng2 = iarandom.RNG(1) assert not rng1.equals(rng2) def test_equals_with_advanced_generator(self): rng1 = iarandom.RNG(0) rng2 = iarandom.RNG(0) rng2.advance_() assert not rng1.equals(rng2) @mock.patch("imgaug.random.advance_generator_") def test_advance__mocked(self, mock_advance): rng = iarandom.RNG(0) result = rng.advance_() assert result is rng mock_advance.assert_called_once_with(rng.generator) @mock.patch("imgaug.random.copy_generator") def test_copy_mocked(self, mock_copy): rng1 = iarandom.RNG(0) rng2 = iarandom.RNG(1) mock_copy.return_value = rng2.generator result = rng1.copy() assert result.generator is rng2.generator mock_copy.assert_called_once_with(rng1.generator) @mock.patch("imgaug.random.RNG.copy") @mock.patch("imgaug.random.RNG.is_global_rng") def test_copy_unless_global_rng__is_global__mocked(self, mock_is_global, mock_copy): rng = iarandom.RNG(0) mock_is_global.return_value = True mock_copy.return_value = "foo" result = rng.copy_unless_global_rng() assert result is rng mock_is_global.assert_called_once_with() assert mock_copy.call_count == 0 @mock.patch("imgaug.random.RNG.copy") @mock.patch("imgaug.random.RNG.is_global_rng") def test_copy_unless_global_rng__is_not_global__mocked(self, mock_is_global, mock_copy): rng = iarandom.RNG(0) mock_is_global.return_value = False mock_copy.return_value = "foo" result = rng.copy_unless_global_rng() assert result is "foo" mock_is_global.assert_called_once_with() mock_copy.assert_called_once_with() def test_duplicate(self): rng = iarandom.RNG(0) rngs = rng.duplicate(1) assert rngs == [rng] def test_duplicate_two_entries(self): rng = iarandom.RNG(0) rngs = rng.duplicate(2) assert rngs == [rng, rng] @mock.patch("imgaug.random.create_fully_random_generator") def test_create_fully_random_mocked(self, mock_create): gen = iarandom.convert_seed_to_generator(0) mock_create.return_value = gen rng = iarandom.RNG.create_fully_random() mock_create.assert_called_once_with() assert rng.generator is gen @mock.patch("imgaug.random.derive_generators_") def test_create_pseudo_random__mocked(self, mock_get): rng_glob = iarandom.get_global_rng() rng = iarandom.RNG(0) mock_get.return_value = [rng.generator] result = iarandom.RNG.create_pseudo_random_() assert result.generator is rng.generator mock_get.assert_called_once_with(rng_glob.generator, 1) @mock.patch("imgaug.random.polyfill_integers") def test_integers_mocked(self, mock_func): mock_func.return_value = "foo" rng = iarandom.RNG(0) result = rng.integers(low=0, high=1, size=(1,), dtype="int64", endpoint=True) assert result == "foo" mock_func.assert_called_once_with( rng.generator, low=0, high=1, size=(1,), dtype="int64", endpoint=True) @mock.patch("imgaug.random.polyfill_random") def test_random_mocked(self, mock_func): mock_func.return_value = "foo" rng = iarandom.RNG(0) out = np.zeros((1,), dtype="float64") result = rng.random(size=(1,), dtype="float64", out=out) assert result == "foo" mock_func.assert_called_once_with( rng.generator, size=(1,), dtype="float64", out=out) # TODO below test for generator methods are all just mock-based, add # non-mocked versions def test_choice_mocked(self): self._test_sampling_func("choice", a=[1, 2, 3], size=(1,), replace=False, p=[0.1, 0.2, 0.7]) def test_bytes_mocked(self): self._test_sampling_func("bytes", length=[10]) def test_shuffle_mocked(self): mock_gen = mock.MagicMock() rng = iarandom.RNG(0) rng.generator = mock_gen rng.shuffle([1, 2, 3]) mock_gen.shuffle.assert_called_once_with([1, 2, 3]) def test_permutation_mocked(self): mock_gen = mock.MagicMock() rng = iarandom.RNG(0) rng.generator = mock_gen mock_gen.permutation.return_value = "foo" result = rng.permutation([1, 2, 3]) assert result == "foo" mock_gen.permutation.assert_called_once_with([1, 2, 3]) def test_beta_mocked(self): self._test_sampling_func("beta", a=1.0, b=2.0, size=(1,)) def test_binomial_mocked(self): self._test_sampling_func("binomial", n=10, p=0.1, size=(1,)) def test_chisquare_mocked(self): self._test_sampling_func("chisquare", df=2, size=(1,)) def test_dirichlet_mocked(self): self._test_sampling_func("dirichlet", alpha=0.1, size=(1,)) def test_exponential_mocked(self): self._test_sampling_func("exponential", scale=1.1, size=(1,)) def test_f_mocked(self): self._test_sampling_func("f", dfnum=1, dfden=2, size=(1,)) def test_gamma_mocked(self): self._test_sampling_func("gamma", shape=1, scale=1.2, size=(1,)) def test_geometric_mocked(self): self._test_sampling_func("geometric", p=0.5, size=(1,)) def test_gumbel_mocked(self): self._test_sampling_func("gumbel", loc=0.1, scale=1.1, size=(1,)) def test_hypergeometric_mocked(self): self._test_sampling_func("hypergeometric", ngood=2, nbad=4, nsample=6, size=(1,)) def test_laplace_mocked(self): self._test_sampling_func("laplace", loc=0.5, scale=1.5, size=(1,)) def test_logistic_mocked(self): self._test_sampling_func("logistic", loc=0.5, scale=1.5, size=(1,)) def test_lognormal_mocked(self): self._test_sampling_func("lognormal", mean=0.5, sigma=1.5, size=(1,)) def test_logseries_mocked(self): self._test_sampling_func("logseries", p=0.5, size=(1,)) def test_multinomial_mocked(self): self._test_sampling_func("multinomial", n=5, pvals=0.5, size=(1,)) def test_multivariate_normal_mocked(self): self._test_sampling_func("multivariate_normal", mean=0.5, cov=1.0, size=(1,), check_valid="foo", tol=1e-2) def test_negative_binomial_mocked(self): self._test_sampling_func("negative_binomial", n=10, p=0.5, size=(1,)) def test_noncentral_chisquare_mocked(self): self._test_sampling_func("noncentral_chisquare", df=0.5, nonc=1.0, size=(1,)) def test_noncentral_f_mocked(self): self._test_sampling_func("noncentral_f", dfnum=0.5, dfden=1.5, nonc=2.0, size=(1,)) def test_normal_mocked(self): self._test_sampling_func("normal", loc=0.5, scale=1.0, size=(1,)) def test_pareto_mocked(self): self._test_sampling_func("pareto", a=0.5, size=(1,)) def test_poisson_mocked(self): self._test_sampling_func("poisson", lam=1.5, size=(1,)) def test_power_mocked(self): self._test_sampling_func("power", a=0.5, size=(1,)) def test_rayleigh_mocked(self): self._test_sampling_func("rayleigh", scale=1.5, size=(1,)) def test_standard_cauchy_mocked(self): self._test_sampling_func("standard_cauchy", size=(1,)) def test_standard_exponential_np117_mocked(self): fname = "standard_exponential" arr = np.zeros((1,), dtype="float16") args = [] kwargs = {"size": (1,), "dtype": "float16", "method": "foo", "out": arr} mock_gen = mock.MagicMock() getattr(mock_gen, fname).return_value = "foo" rng = iarandom.RNG(0) rng.generator = mock_gen rng._is_new_rng_style = True result = getattr(rng, fname)(*args, **kwargs) assert result == "foo" getattr(mock_gen, fname).assert_called_once_with(*args, **kwargs) def test_standard_exponential_np116_mocked(self): fname = "standard_exponential" arr_out = np.zeros((1,), dtype="float16") arr_result = np.ones((1,), dtype="float16") def _side_effect(x): return arr_result args = [] kwargs = {"size": (1,), "dtype": "float16", "method": "foo", "out": arr_out} kwargs_subcall = {"size": (1,)} mock_gen = mock.MagicMock() mock_gen.astype.side_effect = _side_effect getattr(mock_gen, fname).return_value = mock_gen rng = iarandom.RNG(0) rng.generator = mock_gen rng._is_new_rng_style = False result = getattr(rng, fname)(*args, **kwargs) getattr(mock_gen, fname).assert_called_once_with(*args, **kwargs_subcall) mock_gen.astype.assert_called_once_with("float16") assert np.allclose(result, arr_result) assert np.allclose(arr_out, arr_result) def test_standard_gamma_np117_mocked(self): fname = "standard_gamma" arr = np.zeros((1,), dtype="float16") args = [] kwargs = {"shape": 1.0, "size": (1,), "dtype": "float16", "out": arr} mock_gen = mock.MagicMock() getattr(mock_gen, fname).return_value = "foo" rng = iarandom.RNG(0) rng.generator = mock_gen rng._is_new_rng_style = True result = getattr(rng, fname)(*args, **kwargs) assert result == "foo" getattr(mock_gen, fname).assert_called_once_with(*args, **kwargs) def test_standard_gamma_np116_mocked(self): fname = "standard_gamma" arr_out = np.zeros((1,), dtype="float16") arr_result = np.ones((1,), dtype="float16") def _side_effect(x): return arr_result args = [] kwargs = {"shape": 1.0, "size": (1,), "dtype": "float16", "out": arr_out} kwargs_subcall = {"shape": 1.0, "size": (1,)} mock_gen = mock.MagicMock() mock_gen.astype.side_effect = _side_effect getattr(mock_gen, fname).return_value = mock_gen rng = iarandom.RNG(0) rng.generator = mock_gen rng._is_new_rng_style = False result = getattr(rng, fname)(*args, **kwargs) getattr(mock_gen, fname).assert_called_once_with(*args, **kwargs_subcall) mock_gen.astype.assert_called_once_with("float16") assert np.allclose(result, arr_result) assert np.allclose(arr_out, arr_result) def test_standard_normal_np117_mocked(self): fname = "standard_normal" arr = np.zeros((1,), dtype="float16") args = [] kwargs = {"size": (1,), "dtype": "float16", "out": arr} mock_gen = mock.MagicMock() getattr(mock_gen, fname).return_value = "foo" rng = iarandom.RNG(0) rng.generator = mock_gen rng._is_new_rng_style = True result = getattr(rng, fname)(*args, **kwargs) assert result == "foo" getattr(mock_gen, fname).assert_called_once_with(*args, **kwargs) def test_standard_normal_np116_mocked(self): fname = "standard_normal" arr_out = np.zeros((1,), dtype="float16") arr_result = np.ones((1,), dtype="float16") def _side_effect(x): return arr_result args = [] kwargs = {"size": (1,), "dtype": "float16", "out": arr_out} kwargs_subcall = {"size": (1,)} mock_gen = mock.MagicMock() mock_gen.astype.side_effect = _side_effect getattr(mock_gen, fname).return_value = mock_gen rng = iarandom.RNG(0) rng.generator = mock_gen rng._is_new_rng_style = False result = getattr(rng, fname)(*args, **kwargs) getattr(mock_gen, fname).assert_called_once_with(*args, **kwargs_subcall) mock_gen.astype.assert_called_once_with("float16") assert np.allclose(result, arr_result) assert np.allclose(arr_out, arr_result) def test_standard_t_mocked(self): self._test_sampling_func("standard_t", df=1.5, size=(1,)) def test_triangular_mocked(self): self._test_sampling_func("triangular", left=1.0, mode=1.5, right=2.0, size=(1,)) def test_uniform_mocked(self): self._test_sampling_func("uniform", low=0.5, high=1.5, size=(1,)) def test_vonmises_mocked(self): self._test_sampling_func("vonmises", mu=1.0, kappa=1.5, size=(1,)) def test_wald_mocked(self): self._test_sampling_func("wald", mean=0.5, scale=1.0, size=(1,)) def test_weibull_mocked(self): self._test_sampling_func("weibull", a=1.0, size=(1,)) def test_zipf_mocked(self): self._test_sampling_func("zipf", a=1.0, size=(1,)) @classmethod def _test_sampling_func(cls, fname, *args, **kwargs): mock_gen = mock.MagicMock() getattr(mock_gen, fname).return_value = "foo" rng = iarandom.RNG(0) rng.generator = mock_gen result = getattr(rng, fname)(*args, **kwargs) assert result == "foo" getattr(mock_gen, fname).assert_called_once_with(*args, **kwargs) # # outdated methods from RandomState # def test_rand_mocked(self): self._test_sampling_func_alias("rand", "random", 1, 2, 3) def test_randint_mocked(self): self._test_sampling_func_alias("randint", "integers", 0, 100) def randn(self): self._test_sampling_func_alias("randn", "standard_normal", 1, 2, 3) def random_integers(self): self._test_sampling_func_alias("random_integers", "integers", 1, 2) def random_sample(self): self._test_sampling_func_alias("random_sample", "uniform", (1, 2, 3)) def tomaxint(self): self._test_sampling_func_alias("tomaxint", "integers", (1, 2, 3)) def test_rand(self): result = iarandom.RNG(0).rand(10, 20, 3) assert result.dtype.name == "float32" assert result.shape == (10, 20, 3) assert np.all(result >= 0.0) assert np.all(result <= 1.0) assert np.any(result > 0.0) assert np.any(result < 1.0) def test_randint(self): result = iarandom.RNG(0).randint(10, 100, size=(10, 20, 3)) assert result.dtype.name == "int32" assert result.shape == (10, 20, 3) assert np.all(result >= 10) assert np.all(result <= 99) assert np.any(result > 10) assert np.any(result < 99) def test_randn(self): result = iarandom.RNG(0).randn(10, 50, 3) assert result.dtype.name == "float32" assert result.shape == (10, 50, 3) assert np.any(result > 0.5) assert np.any(result < -0.5) assert np.average(np.logical_or(result < 2.0, result > -2.0)) > 0.5 def test_random_integers(self): result = iarandom.RNG(0).random_integers(10, 100, size=(10, 20, 3)) assert result.dtype.name == "int32" assert result.shape == (10, 20, 3) assert np.all(result >= 10) assert np.all(result <= 100) assert np.any(result > 10) assert np.any(result < 100) def test_random_integers__no_high(self): result = iarandom.RNG(0).random_integers(100, size=(10, 20, 3)) assert result.dtype.name == "int32" assert result.shape == (10, 20, 3) assert np.all(result >= 1) assert np.all(result <= 100) assert np.any(result > 1) assert np.any(result < 100) def test_random_sample(self): result = iarandom.RNG(0).random_sample((10, 20, 3)) assert result.dtype.name == "float64" assert result.shape == (10, 20, 3) assert np.all(result >= 0.0) assert np.all(result <= 1.0) assert np.any(result > 0.0) assert np.any(result < 1.0) def test_tomaxint(self): result = iarandom.RNG(0).tomaxint((10, 200, 3)) assert result.dtype.name == "int32" assert result.shape == (10, 200, 3) assert np.all(result >= 0) assert np.any(result > 10000) @classmethod def _test_sampling_func_alias(cls, fname_alias, fname_subcall, *args, **kwargs): rng = iarandom.RNG(0) mock_func = mock.Mock() mock_func.return_value = "foo" setattr(rng, fname_subcall, mock_func) result = getattr(rng, fname_alias)(*args, **kwargs) assert result == "foo" assert mock_func.call_count == 1 class Test_supports_new_numpy_rng_style(_Base): def test_call(self): assert iarandom.supports_new_numpy_rng_style() is IS_NP_117_OR_HIGHER class Test_get_global_rng(_Base): def test_call(self): iarandom.seed(0) rng = iarandom.get_global_rng() expected = iarandom.RNG(0) assert rng is not None assert rng.equals(expected) class Test_seed(_Base): @mock.patch("imgaug.random._seed_np117_") @mock.patch("imgaug.random._seed_np116_") def test_mocked_call(self, mock_np116, mock_np117): iarandom.seed(1) if IS_NP_117_OR_HIGHER: mock_np117.assert_called_once_with(1) assert mock_np116.call_count == 0 else: mock_np116.assert_called_once_with(1) assert mock_np117.call_count == 0 def test_integrationtest(self): iarandom.seed(1) assert iarandom.GLOBAL_RNG.equals(iarandom.RNG(1)) def test_seed_affects_augmenters_created_after_its_call(self): image = np.full((50, 50, 3), 128, dtype=np.uint8) images_aug = [] for _ in np.arange(5): iarandom.seed(100) aug = iaa.AdditiveGaussianNoise(scale=50, per_channel=True) images_aug.append(aug(image=image)) # assert all images identical for other_image_aug in images_aug[1:]: assert np.array_equal(images_aug[0], other_image_aug) # but different seed must lead to different image iarandom.seed(101) aug = iaa.AdditiveGaussianNoise(scale=50, per_channel=True) image_aug = aug(image=image) assert not np.array_equal(images_aug[0], image_aug) def test_seed_affects_augmenters_created_before_its_call(self): image = np.full((50, 50, 3), 128, dtype=np.uint8) images_aug = [] for _ in np.arange(5): aug = iaa.AdditiveGaussianNoise(scale=50, per_channel=True) iarandom.seed(100) images_aug.append(aug(image=image)) # assert all images identical for other_image_aug in images_aug[1:]: assert np.array_equal(images_aug[0], other_image_aug) # but different seed must lead to different image aug = iaa.AdditiveGaussianNoise(scale=50, per_channel=True) iarandom.seed(101) image_aug = aug(image=image) assert not np.array_equal(images_aug[0], image_aug) class Test_normalize_generator(_Base): @mock.patch("imgaug.random.normalize_generator_") def test_mocked_call(self, mock_subfunc): mock_subfunc.return_value = "foo" inputs = ["bar"] result = iarandom.normalize_generator(inputs) assert mock_subfunc.call_count == 1 assert mock_subfunc.call_args[0][0] is not inputs assert mock_subfunc.call_args[0][0] == inputs assert result == "foo" class Test_normalize_generator_(_Base): @mock.patch("imgaug.random._normalize_generator_np117_") @mock.patch("imgaug.random._normalize_generator_np116_") def test_mocked_call(self, mock_np116, mock_np117): mock_np116.return_value = "np116" mock_np117.return_value = "np117" result = iarandom.normalize_generator_(None) if IS_NP_117_OR_HIGHER: assert result == "np117" mock_np117.assert_called_once_with(None) assert mock_np116.call_count == 0 else: assert result == "np116" mock_np116.assert_called_once_with(None) assert mock_np117.call_count == 0 def test_called_with_none(self): result = iarandom.normalize_generator_(None) assert result is iarandom.get_global_rng().generator @unittest.skipIf(not IS_NP_117_OR_HIGHER, "SeedSequence does not exist in numpy <=1.16") def test_called_with_seed_sequence(self): seedseq = np.random.SeedSequence(0) result = iarandom.normalize_generator_(seedseq) expected = np.random.Generator( iarandom.BIT_GENERATOR(np.random.SeedSequence(0))) assert iarandom.is_generator_equal_to(result, expected) @unittest.skipIf(not IS_NP_117_OR_HIGHER, "BitGenerator does not exist in numpy <=1.16") def test_called_with_bit_generator(self): bgen = iarandom.BIT_GENERATOR(np.random.SeedSequence(0)) result = iarandom.normalize_generator_(bgen) assert result.bit_generator is bgen @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Generator does not exist in numpy <=1.16") def test_called_with_generator(self): gen = np.random.Generator( iarandom.BIT_GENERATOR(np.random.SeedSequence(0)) ) result = iarandom.normalize_generator_(gen) assert result is gen def test_called_with_random_state(self): rs = np.random.RandomState(0) result = iarandom.normalize_generator_(rs) if IS_NP_117_OR_HIGHER: seed = iarandom.generate_seed_(np.random.RandomState(0)) expected = iarandom.convert_seed_to_generator(seed) assert iarandom.is_generator_equal_to(result, expected) else: assert result is rs def test_called_int(self): seed = 0 result = iarandom.normalize_generator_(seed) expected = iarandom.convert_seed_to_generator(seed) assert iarandom.is_generator_equal_to(result, expected) class Test_convert_seed_to_generator(_Base): @mock.patch("imgaug.random._convert_seed_to_generator_np117") @mock.patch("imgaug.random._convert_seed_to_generator_np116") def test_mocked_call(self, mock_np116, mock_np117): mock_np116.return_value = "np116" mock_np117.return_value = "np117" result = iarandom.convert_seed_to_generator(1) if IS_NP_117_OR_HIGHER: assert result == "np117" mock_np117.assert_called_once_with(1) assert mock_np116.call_count == 0 else: assert result == "np116" mock_np116.assert_called_once_with(1) assert mock_np117.call_count == 0 def test_call(self): gen = iarandom.convert_seed_to_generator(1) if IS_NP_117_OR_HIGHER: expected = np.random.Generator( iarandom.BIT_GENERATOR(np.random.SeedSequence(1))) assert iarandom.is_generator_equal_to(gen, expected) else: expected = np.random.RandomState(1) assert iarandom.is_generator_equal_to(gen, expected) class Test_convert_seed_sequence_to_generator(_Base): @unittest.skipIf(not IS_NP_117_OR_HIGHER, "SeedSequence does not exist in numpy <=1.16") def test_call(self): seedseq = np.random.SeedSequence(1) gen = iarandom.convert_seed_sequence_to_generator(seedseq) expected = np.random.Generator( iarandom.BIT_GENERATOR(np.random.SeedSequence(1))) assert iarandom.is_generator_equal_to(gen, expected) class Test_create_pseudo_random_generator_(_Base): def test_call(self): global_gen = copylib.deepcopy(iarandom.get_global_rng().generator) gen = iarandom.create_pseudo_random_generator_() expected = iarandom.convert_seed_to_generator( iarandom.generate_seed_(global_gen)) assert iarandom.is_generator_equal_to(gen, expected) class Test_create_fully_random_generator(_Base): @mock.patch("imgaug.random._create_fully_random_generator_np117") @mock.patch("imgaug.random._create_fully_random_generator_np116") def test_mocked_call(self, mock_np116, mock_np117): mock_np116.return_value = "np116" mock_np117.return_value = "np117" result = iarandom.create_fully_random_generator() if IS_NP_117_OR_HIGHER: assert result == "np117" mock_np117.assert_called_once_with() assert mock_np116.call_count == 0 else: assert result == "np116" mock_np116.assert_called_once_with() assert mock_np117.call_count == 0 @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Function uses classes from numpy 1.17+") def test_np117_mocked(self): dummy_bitgen = np.random.SFC64(1) with mock.patch("numpy.random.SFC64") as mock_bitgen: mock_bitgen.return_value = dummy_bitgen result = iarandom._create_fully_random_generator_np117() assert mock_bitgen.call_count == 1 assert iarandom.is_generator_equal_to( result, np.random.Generator(dummy_bitgen)) def test_np116_mocked(self): dummy_rs = np.random.RandomState(1) with mock.patch("numpy.random.RandomState") as mock_rs: mock_rs.return_value = dummy_rs result = iarandom._create_fully_random_generator_np116() assert mock_rs.call_count == 1 assert iarandom.is_generator_equal_to(result, np.random.RandomState(1)) class Test_generate_seed_(_Base): @mock.patch("imgaug.random.generate_seeds_") def test_mocked_call(self, mock_seeds): gen = iarandom.convert_seed_to_generator(0) _ = iarandom.generate_seed_(gen) mock_seeds.assert_called_once_with(gen, 1) class Test_generate_seeds_(_Base): @mock.patch("imgaug.random.polyfill_integers") def test_mocked_call(self, mock_integers): gen = iarandom.convert_seed_to_generator(0) _ = iarandom.generate_seeds_(gen, 10) mock_integers.assert_called_once_with( gen, iarandom.SEED_MIN_VALUE, iarandom.SEED_MAX_VALUE, size=(10,)) def test_call(self): gen = iarandom.convert_seed_to_generator(0) seeds = iarandom.generate_seeds_(gen, 2) assert len(seeds) == 2 assert ia.is_np_array(seeds) assert seeds.dtype.name == "int32" class Test_copy_generator(_Base): @mock.patch("imgaug.random._copy_generator_np116") def test_mocked_call_with_random_state(self, mock_np116): mock_np116.return_value = "np116" gen = np.random.RandomState(1) gen_copy = iarandom.copy_generator(gen) assert gen_copy == "np116" mock_np116.assert_called_once_with(gen) @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Function uses classes from numpy 1.17+") @mock.patch("imgaug.random._copy_generator_np117") def test_mocked_call_with_generator(self, mock_np117): mock_np117.return_value = "np117" gen = np.random.Generator(iarandom.BIT_GENERATOR(1)) gen_copy = iarandom.copy_generator(gen) assert gen_copy == "np117" mock_np117.assert_called_once_with(gen) def test_call_with_random_state(self): gen = np.random.RandomState(1) gen_copy = iarandom._copy_generator_np116(gen) assert gen is not gen_copy assert iarandom.is_generator_equal_to(gen, gen_copy) @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Function uses classes from numpy 1.17+") def test_call_with_generator(self): gen = np.random.Generator(iarandom.BIT_GENERATOR(1)) gen_copy = iarandom._copy_generator_np117(gen) assert gen is not gen_copy assert iarandom.is_generator_equal_to(gen, gen_copy) class Test_copy_generator_unless_global_generator(_Base): @mock.patch("imgaug.random.get_global_rng") @mock.patch("imgaug.random.copy_generator") def test_mocked_gen_is_global(self, mock_copy, mock_get_global_rng): gen = iarandom.convert_seed_to_generator(1) mock_copy.return_value = "foo" mock_get_global_rng.return_value = iarandom.RNG(gen) result = iarandom.copy_generator_unless_global_generator(gen) assert mock_get_global_rng.call_count == 1 assert mock_copy.call_count == 0 assert result is gen @mock.patch("imgaug.random.get_global_rng") @mock.patch("imgaug.random.copy_generator") def test_mocked_gen_is_not_global(self, mock_copy, mock_get_global_rng): gen1 = iarandom.convert_seed_to_generator(1) gen2 = iarandom.convert_seed_to_generator(2) mock_copy.return_value = "foo" mock_get_global_rng.return_value = iarandom.RNG(gen2) result = iarandom.copy_generator_unless_global_generator(gen1) assert mock_get_global_rng.call_count == 1 mock_copy.assert_called_once_with(gen1) assert result == "foo" class Test_reset_generator_cache_(_Base): @mock.patch("imgaug.random._reset_generator_cache_np117_") @mock.patch("imgaug.random._reset_generator_cache_np116_") def test_mocked_call(self, mock_np116, mock_np117): mock_np116.return_value = "np116" mock_np117.return_value = "np117" gen = iarandom.convert_seed_to_generator(1) result = iarandom.reset_generator_cache_(gen) if IS_NP_117_OR_HIGHER: assert result == "np117" mock_np117.assert_called_once_with(gen) assert mock_np116.call_count == 0 else: assert result == "np116" mock_np116.assert_called_once_with(gen) assert mock_np117.call_count == 0 @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Function uses classes from numpy 1.17+") def test_call_np117(self): gen = iarandom.convert_seed_to_generator(1) gen_without_cache_copy = copylib.deepcopy(gen) state = iarandom._get_generator_state_np117(gen) state["has_uint32"] = 1 gen_with_cache = copylib.deepcopy(gen) iarandom.set_generator_state_(gen_with_cache, state) gen_with_cache_copy = copylib.deepcopy(gen_with_cache) gen_cache_reset = iarandom.reset_generator_cache_(gen_with_cache) assert iarandom.is_generator_equal_to(gen_cache_reset, gen_without_cache_copy) assert not iarandom.is_generator_equal_to(gen_cache_reset, gen_with_cache_copy) def test_call_np116(self): gen = np.random.RandomState(1) gen_without_cache_copy = copylib.deepcopy(gen) state = iarandom._get_generator_state_np116(gen) state = list(state) state[-2] = 1 gen_with_cache = copylib.deepcopy(gen) iarandom.set_generator_state_(gen_with_cache, tuple(state)) gen_with_cache_copy = copylib.deepcopy(gen_with_cache) gen_cache_reset = iarandom.reset_generator_cache_(gen_with_cache) assert iarandom.is_generator_equal_to(gen_cache_reset, gen_without_cache_copy) assert not iarandom.is_generator_equal_to(gen_cache_reset, gen_with_cache_copy) class Test_derive_generator_(_Base): @mock.patch("imgaug.random.derive_generators_") def test_mocked_call(self, mock_derive_gens): mock_derive_gens.return_value = ["foo"] gen = iarandom.convert_seed_to_generator(1) gen_derived = iarandom.derive_generator_(gen) mock_derive_gens.assert_called_once_with(gen, n=1) assert gen_derived == "foo" def test_integration(self): gen = iarandom.convert_seed_to_generator(1) gen_copy = copylib.deepcopy(gen) gen_derived = iarandom.derive_generator_(gen) assert not iarandom.is_generator_equal_to(gen_derived, gen_copy) # should have advanced the state assert not iarandom.is_generator_equal_to(gen_copy, gen) class Test_derive_generators_(_Base): @mock.patch("imgaug.random._derive_generators_np117_") @mock.patch("imgaug.random._derive_generators_np116_") def test_mocked_call(self, mock_np116, mock_np117): mock_np116.return_value = "np116" mock_np117.return_value = "np117" gen = iarandom.convert_seed_to_generator(1) result = iarandom.derive_generators_(gen, 1) if isinstance(gen, np.random.RandomState): assert result == "np116" mock_np116.assert_called_once_with(gen, n=1) assert mock_np117.call_count == 0 else: assert result == "np117" mock_np117.assert_called_once_with(gen, n=1) assert mock_np116.call_count == 0 @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Function uses classes from numpy 1.17+") def test_call_np117(self): gen = iarandom.convert_seed_to_generator(1) gen_copy = copylib.deepcopy(gen) result = iarandom.derive_generators_(gen, 2) assert len(result) == 2 assert np.all([isinstance(gen, np.random.Generator) for gen in result]) assert not iarandom.is_generator_equal_to(result[0], gen_copy) assert not iarandom.is_generator_equal_to(result[1], gen_copy) assert not iarandom.is_generator_equal_to(result[0], result[1]) # derive should advance state assert not iarandom.is_generator_equal_to(gen, gen_copy) def test_call_np116(self): gen = np.random.RandomState(1) gen_copy = copylib.deepcopy(gen) result = iarandom.derive_generators_(gen, 2) assert len(result) == 2 assert np.all([isinstance(gen, np.random.RandomState) for gen in result]) assert not iarandom.is_generator_equal_to(result[0], gen_copy) assert not iarandom.is_generator_equal_to(result[1], gen_copy) assert not iarandom.is_generator_equal_to(result[0], result[1]) # derive should advance state assert not iarandom.is_generator_equal_to(gen, gen_copy) class Test_get_generator_state(_Base): @mock.patch("imgaug.random._get_generator_state_np117") @mock.patch("imgaug.random._get_generator_state_np116") def test_mocked_call(self, mock_np116, mock_np117): mock_np116.return_value = "np116" mock_np117.return_value = "np117" gen = iarandom.convert_seed_to_generator(1) result = iarandom.get_generator_state(gen) if isinstance(gen, np.random.RandomState): assert result == "np116" mock_np116.assert_called_once_with(gen) assert mock_np117.call_count == 0 else: assert result == "np117" mock_np117.assert_called_once_with(gen) assert mock_np116.call_count == 0 @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Function uses classes from numpy 1.17+") def test_call_np117(self): gen = iarandom.convert_seed_to_generator(1) state = iarandom.get_generator_state(gen) assert str(state) == str(gen.bit_generator.state) def test_call_np116(self): gen = np.random.RandomState(1) state = iarandom.get_generator_state(gen) assert str(state) == str(gen.get_state()) class Test_set_generator_state_(_Base): @mock.patch("imgaug.random._set_generator_state_np117_") @mock.patch("imgaug.random._set_generator_state_np116_") def test_mocked_call(self, mock_np116, mock_np117): gen = iarandom.convert_seed_to_generator(1) state = {"state": 0} iarandom.set_generator_state_(gen, state) if isinstance(gen, np.random.RandomState): mock_np116.assert_called_once_with(gen, state) assert mock_np117.call_count == 0 else: mock_np117.assert_called_once_with(gen, state) assert mock_np116.call_count == 0 @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Function uses classes from numpy 1.17+") def test_call_np117(self): gen1 = np.random.Generator(iarandom.BIT_GENERATOR(1)) gen2 = np.random.Generator(iarandom.BIT_GENERATOR(2)) gen1_copy = copylib.deepcopy(gen1) gen2_copy = copylib.deepcopy(gen2) iarandom._set_generator_state_np117_( gen2, iarandom.get_generator_state(gen1)) assert iarandom.is_generator_equal_to(gen2, gen1) assert iarandom.is_generator_equal_to(gen1, gen1_copy) assert not iarandom.is_generator_equal_to(gen2, gen2_copy) @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Function uses classes from numpy 1.17+") def test_call_np117_via_samples(self): gen1 = np.random.Generator(iarandom.BIT_GENERATOR(1)) gen2 = np.random.Generator(iarandom.BIT_GENERATOR(2)) gen1_copy = copylib.deepcopy(gen1) gen2_copy = copylib.deepcopy(gen2) iarandom._set_generator_state_np117_( gen2, iarandom.get_generator_state(gen1)) samples1 = gen1.random(size=(100,)) samples2 = gen2.random(size=(100,)) samples1_copy = gen1_copy.random(size=(100,)) samples2_copy = gen2_copy.random(size=(100,)) assert np.allclose(samples1, samples2) assert np.allclose(samples1, samples1_copy) assert not np.allclose(samples2, samples2_copy) def test_call_np116(self): gen1 = np.random.RandomState(1) gen2 = np.random.RandomState(2) gen1_copy = copylib.deepcopy(gen1) gen2_copy = copylib.deepcopy(gen2) iarandom._set_generator_state_np116_( gen2, iarandom.get_generator_state(gen1)) assert iarandom.is_generator_equal_to(gen2, gen1) assert iarandom.is_generator_equal_to(gen1, gen1_copy) assert not iarandom.is_generator_equal_to(gen2, gen2_copy) def test_call_np116_via_samples(self): gen1 = np.random.RandomState(1) gen2 = np.random.RandomState(2) gen1_copy = copylib.deepcopy(gen1) gen2_copy = copylib.deepcopy(gen2) iarandom._set_generator_state_np116_( gen2, iarandom.get_generator_state(gen1)) samples1 = gen1.uniform(0.0, 1.0, size=(100,)) samples2 = gen2.uniform(0.0, 1.0, size=(100,)) samples1_copy = gen1_copy.uniform(0.0, 1.0, size=(100,)) samples2_copy = gen2_copy.uniform(0.0, 1.0, size=(100,)) assert np.allclose(samples1, samples2) assert np.allclose(samples1, samples1_copy) assert not np.allclose(samples2, samples2_copy) class Test_is_generator_equal_to(_Base): @mock.patch("imgaug.random._is_generator_equal_to_np117") @mock.patch("imgaug.random._is_generator_equal_to_np116") def test_mocked_call(self, mock_np116, mock_np117): mock_np116.return_value = "np116" mock_np117.return_value = "np117" gen = iarandom.convert_seed_to_generator(1) result = iarandom.is_generator_equal_to(gen, gen) if isinstance(gen, np.random.RandomState): assert result == "np116" mock_np116.assert_called_once_with(gen, gen) assert mock_np117.call_count == 0 else: assert result == "np117" mock_np117.assert_called_once_with(gen, gen) assert mock_np116.call_count == 0 @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Function uses classes from numpy 1.17+") def test_generator_is_identical_np117(self): gen = np.random.Generator(iarandom.BIT_GENERATOR(1)) result = iarandom._is_generator_equal_to_np117(gen, gen) assert result is True def test_generator_is_identical_np116(self): gen = np.random.RandomState(1) result = iarandom._is_generator_equal_to_np116(gen, gen) assert result is True @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Function uses classes from numpy 1.17+") def test_generator_created_with_same_seed_np117(self): gen1 = np.random.Generator(iarandom.BIT_GENERATOR(1)) gen2 = np.random.Generator(iarandom.BIT_GENERATOR(1)) result = iarandom._is_generator_equal_to_np117(gen1, gen2) assert result is True def test_generator_created_with_same_seed_np116(self): gen1 = np.random.RandomState(1) gen2 = np.random.RandomState(1) result = iarandom._is_generator_equal_to_np116(gen1, gen2) assert result is True @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Function uses classes from numpy 1.17+") def test_generator_is_copy_of_itself_np117(self): gen1 = np.random.Generator(iarandom.BIT_GENERATOR(1)) result = iarandom._is_generator_equal_to_np117(gen1, copylib.deepcopy(gen1)) assert result is True def test_generator_is_copy_of_itself_np116(self): gen1 = np.random.RandomState(1) result = iarandom._is_generator_equal_to_np116(gen1, copylib.deepcopy(gen1)) assert result is True @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Function uses classes from numpy 1.17+") def test_generator_created_with_different_seed_np117(self): gen1 = np.random.Generator(iarandom.BIT_GENERATOR(1)) gen2 = np.random.Generator(iarandom.BIT_GENERATOR(2)) result = iarandom._is_generator_equal_to_np117(gen1, gen2) assert result is False def test_generator_created_with_different_seed_np116(self): gen1 = np.random.RandomState(1) gen2 = np.random.RandomState(2) result = iarandom._is_generator_equal_to_np116(gen1, gen2) assert result is False @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Function uses classes from numpy 1.17+") def test_generator_modified_to_have_same_state_np117(self): gen1 = np.random.Generator(iarandom.BIT_GENERATOR(1)) gen2 = np.random.Generator(iarandom.BIT_GENERATOR(2)) iarandom.set_generator_state_(gen2, iarandom.get_generator_state(gen1)) result = iarandom._is_generator_equal_to_np117(gen1, gen2) assert result is True def test_generator_modified_to_have_same_state_np116(self): gen1 = np.random.RandomState(1) gen2 = np.random.RandomState(2) iarandom.set_generator_state_(gen2, iarandom.get_generator_state(gen1)) result = iarandom._is_generator_equal_to_np116(gen1, gen2) assert result is True class Test_advance_generator_(_Base): @mock.patch("imgaug.random._advance_generator_np117_") @mock.patch("imgaug.random._advance_generator_np116_") def test_mocked_call(self, mock_np116, mock_np117): gen = iarandom.convert_seed_to_generator(1) iarandom.advance_generator_(gen) if isinstance(gen, np.random.RandomState): mock_np116.assert_called_once_with(gen) assert mock_np117.call_count == 0 else: mock_np117.assert_called_once_with(gen) assert mock_np116.call_count == 0 @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Function uses classes from numpy 1.17+") def test_call_np117(self): gen = np.random.Generator(iarandom.BIT_GENERATOR(1)) gen_copy1 = copylib.deepcopy(gen) iarandom._advance_generator_np117_(gen) gen_copy2 = copylib.deepcopy(gen) iarandom._advance_generator_np117_(gen) assert iarandom.is_generator_equal_to(gen, copylib.deepcopy(gen)) assert not iarandom.is_generator_equal_to(gen_copy1, gen_copy2) assert not iarandom.is_generator_equal_to(gen_copy2, gen) assert not iarandom.is_generator_equal_to(gen_copy1, gen) def test_call_np116(self): gen = np.random.RandomState(1) gen_copy1 = copylib.deepcopy(gen) iarandom._advance_generator_np116_(gen) gen_copy2 = copylib.deepcopy(gen) iarandom._advance_generator_np116_(gen) assert iarandom.is_generator_equal_to(gen, copylib.deepcopy(gen)) assert not iarandom.is_generator_equal_to(gen_copy1, gen_copy2) assert not iarandom.is_generator_equal_to(gen_copy2, gen) assert not iarandom.is_generator_equal_to(gen_copy1, gen) @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Function uses classes from numpy 1.17+") def test_samples_different_after_advance_np117(self): gen = np.random.Generator(iarandom.BIT_GENERATOR(1)) gen_copy1 = copylib.deepcopy(gen) # first advance iarandom._advance_generator_np117_(gen) gen_copy2 = copylib.deepcopy(gen) # second advance iarandom._advance_generator_np117_(gen) sample_before = gen_copy1.uniform(0.0, 1.0) sample_after = gen_copy2.uniform(0.0, 1.0) sample_after_after = gen.uniform(0.0, 1.0) assert not np.isclose(sample_after, sample_before, rtol=0) assert not np.isclose(sample_after_after, sample_after, rtol=0) assert not np.isclose(sample_after_after, sample_before, rtol=0) def test_samples_different_after_advance_np116(self): gen = np.random.RandomState(1) gen_copy1 = copylib.deepcopy(gen) # first advance iarandom._advance_generator_np116_(gen) gen_copy2 = copylib.deepcopy(gen) # second advance iarandom._advance_generator_np116_(gen) sample_before = gen_copy1.uniform(0.0, 1.0) sample_after = gen_copy2.uniform(0.0, 1.0) sample_after_after = gen.uniform(0.0, 1.0) assert not np.isclose(sample_after, sample_before, rtol=0) assert not np.isclose(sample_after_after, sample_after, rtol=0) assert not np.isclose(sample_after_after, sample_before, rtol=0) class Test_polyfill_integers(_Base): def test_mocked_standard_call_np116(self): def side_effect(low, high=None, size=None, dtype='l'): return "np116" gen = mock.MagicMock() gen.randint.side_effect = side_effect result = iarandom.polyfill_integers(gen, 2, 2000, size=(10,), dtype="int8") assert result == "np116" gen.randint.assert_called_once_with(low=2, high=2000, size=(10,), dtype="int8") @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Function uses classes from numpy 1.17+") def test_mocked_standard_call_np117(self): def side_effect(low, high=None, size=None, dtype='int64', endpoint=False): return "np117" gen = mock.MagicMock() gen.integers.side_effect = side_effect del gen.randint result = iarandom.polyfill_integers(gen, 2, 2000, size=(10,), dtype="int8", endpoint=True) assert result == "np117" gen.integers.assert_called_once_with(low=2, high=2000, size=(10,), dtype="int8", endpoint=True) def test_mocked_call_with_default_values_np116(self): def side_effect(low, high=None, size=None, dtype='l'): return "np116" gen = mock.MagicMock() gen.randint.side_effect = side_effect result = iarandom.polyfill_integers(gen, 2) assert result == "np116" gen.randint.assert_called_once_with(low=2, high=None, size=None, dtype="int32") @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Function uses classes from numpy 1.17+") def test_mocked_call_with_default_values_np117(self): def side_effect(low, high=None, size=None, dtype='int64', endpoint=False): return "np117" gen = mock.MagicMock() gen.integers.side_effect = side_effect del gen.randint result = iarandom.polyfill_integers(gen, 2) assert result == "np117" gen.integers.assert_called_once_with(low=2, high=None, size=None, dtype="int32", endpoint=False) def test_mocked_call_with_default_values_and_endpoint_np116(self): def side_effect(low, high=None, size=None, dtype='l'): return "np116" gen = mock.MagicMock() gen.randint.side_effect = side_effect result = iarandom.polyfill_integers(gen, 2, endpoint=True) assert result == "np116" gen.randint.assert_called_once_with(low=0, high=3, size=None, dtype="int32") def test_mocked_call_with_low_high_and_endpoint_np116(self): def side_effect(low, high=None, size=None, dtype='l'): return "np116" gen = mock.MagicMock() gen.randint.side_effect = side_effect result = iarandom.polyfill_integers(gen, 2, 5, endpoint=True) assert result == "np116" gen.randint.assert_called_once_with(low=2, high=6, size=None, dtype="int32") @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Function uses classes from numpy 1.17+") def test_sampled_values_np117(self): gen = np.random.Generator(iarandom.BIT_GENERATOR(1)) result = iarandom.polyfill_integers(gen, 1, 10, size=(1000,), endpoint=False) assert result.dtype.name == "int32" assert np.all(result >= 1) assert np.all(result < 10) @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Function uses classes from numpy 1.17+") def test_sampled_values_with_endpoint_np117(self): gen = np.random.Generator(iarandom.BIT_GENERATOR(1)) result = iarandom.polyfill_integers(gen, 1, 10, size=(1000,), endpoint=True) assert result.dtype.name == "int32" assert np.all(result >= 1) assert np.all(result <= 10) def test_sampled_values_np116(self): gen = np.random.RandomState(1) result = iarandom.polyfill_integers(gen, 1, 10, size=(1000,), endpoint=False) assert result.dtype.name == "int32" assert np.all(result >= 1) assert np.all(result < 10) def test_sampled_values_with_endpoint_np116(self): gen = np.random.RandomState(1) result = iarandom.polyfill_integers(gen, 1, 10, size=(1000,), endpoint=True) assert result.dtype.name == "int32" assert np.all(result >= 1) assert np.all(result <= 10) class Test_polyfill_random(_Base): def test_mocked_standard_call_np116(self): def side_effect(size=None): return np.zeros((1,), dtype="float64") gen = mock.MagicMock() gen.random_sample.side_effect = side_effect result = iarandom.polyfill_random(gen, size=(10,), dtype="float16") assert result.dtype.name == "float16" gen.random_sample.assert_called_once_with( size=(10,)) def test_mocked_standard_call_np117(self): def side_effect(size=None, dtype='d', out=None): return "np117" gen = mock.MagicMock() gen.random.side_effect = side_effect del gen.random_sample result = iarandom.polyfill_random(gen, size=(10,), dtype="float16") assert result == "np117" gen.random.assert_called_once_with( size=(10,), dtype="float16", out=None) def test_mocked_call_with_out_arg_np116(self): def side_effect(size=None): return np.zeros((1,), dtype="float64") gen = mock.MagicMock() gen.random_sample.side_effect = side_effect out = np.empty((10,), dtype="float16") result = iarandom.polyfill_random(gen, size=(10,), dtype="float16", out=out) assert result.dtype.name == "float16" # np1.16 does not support an out arg, hence it is not part of the # expected call gen.random_sample.assert_called_once_with(size=(10,)) def test_mocked_call_with_out_arg_np117(self): def side_effect(size=None, dtype='d', out=None): return "np117" gen = mock.MagicMock() gen.random.side_effect = side_effect del gen.random_sample out = np.empty((10,), dtype="float16") result = iarandom.polyfill_random(gen, size=(10,), dtype="float16", out=out) assert result == "np117" gen.random.assert_called_once_with(size=(10,), dtype="float16", out=out) def test_sampled_values_np116(self): gen = np.random.RandomState(1) result = iarandom.polyfill_random(gen, size=(1000,)) assert result.dtype.name == "float32" assert np.all(result >= 0) assert np.all(result < 1.0) @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Function uses classes from numpy 1.17+") def test_sampled_values_np117(self): gen = np.random.Generator(iarandom.BIT_GENERATOR(1)) result = iarandom.polyfill_random(gen, size=(1000,)) assert result.dtype.name == "float32" assert np.all(result >= 0) assert np.all(result < 1.0) def test_sampled_values_with_out_arg_np116(self): gen = np.random.RandomState(1) out = np.zeros((1000,), dtype="float32") result = iarandom.polyfill_random(gen, size=(1000,), out=out) assert result.dtype.name == "float32" assert np.all(result >= 0) assert
np.all(result < 1.0)
numpy.all
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Keras backend.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np import scipy.sparse from tensorflow.core.protobuf import config_pb2 from tensorflow.python import keras from tensorflow.python.eager import context from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors_impl from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import nn from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.util import tf_inspect def compare_single_input_op_to_numpy(keras_op, np_op, input_shape, dtype='float32', negative_values=True, keras_args=None, keras_kwargs=None, np_args=None, np_kwargs=None): keras_args = keras_args or [] keras_kwargs = keras_kwargs or {} np_args = np_args or [] np_kwargs = np_kwargs or {} inputs = 2. * np.random.random(input_shape) if negative_values: inputs -= 1. keras_output = keras_op(keras.backend.variable(inputs, dtype=dtype), *keras_args, **keras_kwargs) keras_output = keras.backend.eval(keras_output) np_output = np_op(inputs.astype(dtype), *np_args, **np_kwargs) try: np.testing.assert_allclose(keras_output, np_output, atol=1e-4) except AssertionError: raise AssertionError('Test for op `' + str(keras_op.__name__) + '` failed; ' 'Expected ' + str(np_output) + ' but got ' + str(keras_output)) def compare_two_inputs_op_to_numpy(keras_op, np_op, input_shape_a, input_shape_b, dtype='float32', keras_args=None, keras_kwargs=None, np_args=None, np_kwargs=None): keras_args = keras_args or [] keras_kwargs = keras_kwargs or {} np_args = np_args or [] np_kwargs = np_kwargs or {} input_a = np.random.random(input_shape_a) input_b = np.random.random(input_shape_b) keras_output = keras_op(keras.backend.variable(input_a, dtype=dtype), keras.backend.variable(input_b, dtype=dtype), *keras_args, **keras_kwargs) keras_output = keras.backend.eval(keras_output) np_output = np_op(input_a.astype(dtype), input_b.astype(dtype), *np_args, **np_kwargs) try: np.testing.assert_allclose(keras_output, np_output, atol=1e-4) except AssertionError: raise AssertionError('Test for op `' + str(keras_op.__name__) + '` failed; ' 'Expected ' + str(np_output) + ' but got ' + str(keras_output)) @test_util.run_all_in_graph_and_eager_modes class BackendUtilsTest(test.TestCase): def test_backend(self): self.assertEqual(keras.backend.backend(), 'tensorflow') def test_espilon(self): epsilon = 1e-2 keras.backend.set_epsilon(epsilon) self.assertEqual(keras.backend.epsilon(), epsilon) keras.backend.set_epsilon(1e-7) def test_floatx(self): floatx = 'float64' keras.backend.set_floatx(floatx) self.assertEqual(keras.backend.floatx(), floatx) keras.backend.set_floatx('float32') def test_image_data_format(self): image_data_format = 'channels_first' keras.backend.set_image_data_format(image_data_format) self.assertEqual(keras.backend.image_data_format(), image_data_format) keras.backend.set_image_data_format('channels_last') def test_get_reset_uids(self): self.assertEqual(keras.backend.get_uid('foo'), 1) self.assertEqual(keras.backend.get_uid('foo'), 2) keras.backend.reset_uids() self.assertEqual(keras.backend.get_uid('foo'), 1) def test_learning_phase(self): with self.cached_session() as sess: keras.backend.set_learning_phase(1) self.assertEqual(keras.backend.learning_phase(), 1) with self.assertRaises(ValueError): keras.backend.set_learning_phase(2) # Test running with a learning-phase-consuming layer keras.backend.set_learning_phase(0) x = keras.Input((3,)) y = keras.layers.BatchNormalization()(x) if not context.executing_eagerly(): self.evaluate(variables.global_variables_initializer()) sess.run(y, feed_dict={x: np.random.random((2, 3))}) def test_learning_phase_scope(self): with self.cached_session(): initial_learning_phase = keras.backend.learning_phase() with keras.backend.learning_phase_scope(1) as lp: self.assertEqual(lp, 1) self.assertEqual(keras.backend.learning_phase(), 1) self.assertEqual(keras.backend.learning_phase(), initial_learning_phase) with keras.backend.learning_phase_scope(0) as lp: self.assertEqual(lp, 0) self.assertEqual(keras.backend.learning_phase(), 0) self.assertEqual(keras.backend.learning_phase(), initial_learning_phase) with self.assertRaises(ValueError): with keras.backend.learning_phase_scope(None): pass self.assertEqual(keras.backend.learning_phase(), initial_learning_phase) def test_int_shape(self): x = keras.backend.ones(shape=(3, 4)) self.assertEqual(keras.backend.int_shape(x), (3, 4)) if not context.executing_eagerly(): x = keras.backend.placeholder(shape=(None, 4)) self.assertEqual(keras.backend.int_shape(x), (None, 4)) def test_in_train_phase(self): with self.cached_session(): y1 = keras.backend.variable(1) y2 = keras.backend.variable(2) if context.executing_eagerly(): with keras.backend.learning_phase_scope(0): y_val_test = keras.backend.in_train_phase(y1, y2).numpy() with keras.backend.learning_phase_scope(1): y_val_train = keras.backend.in_train_phase(y1, y2).numpy() else: y = keras.backend.in_train_phase(y1, y2) f = keras.backend.function([keras.backend.learning_phase()], [y]) y_val_test = f([0])[0] y_val_train = f([1])[0] self.assertAllClose(y_val_test, 2) self.assertAllClose(y_val_train, 1) def test_is_keras_tensor(self): x = keras.backend.variable(1) self.assertEqual(keras.backend.is_keras_tensor(x), False) x = keras.Input(shape=(1,)) self.assertEqual(keras.backend.is_keras_tensor(x), True) with self.assertRaises(ValueError): keras.backend.is_keras_tensor(0) def test_stop_gradient(self): x = keras.backend.variable(1) y = keras.backend.stop_gradient(x) if not context.executing_eagerly(): self.assertEqual(y.op.name[:12], 'StopGradient') xs = [keras.backend.variable(1) for _ in range(3)] ys = keras.backend.stop_gradient(xs) if not context.executing_eagerly(): for y in ys: self.assertEqual(y.op.name[:12], 'StopGradient') @test_util.run_all_in_graph_and_eager_modes class BackendVariableTest(test.TestCase): def test_zeros(self): with self.cached_session(): x = keras.backend.zeros((3, 4)) val = keras.backend.eval(x) self.assertAllClose(val, np.zeros((3, 4))) def test_ones(self): with self.cached_session(): x = keras.backend.ones((3, 4)) val = keras.backend.eval(x) self.assertAllClose(val, np.ones((3, 4))) def test_eye(self): with self.cached_session(): x = keras.backend.eye(4) val = keras.backend.eval(x) self.assertAllClose(val, np.eye(4)) def test_zeros_like(self): with self.cached_session(): x = keras.backend.zeros((3, 4)) y = keras.backend.zeros_like(x) val = keras.backend.eval(y) self.assertAllClose(val, np.zeros((3, 4))) def test_ones_like(self): with self.cached_session(): x = keras.backend.zeros((3, 4)) y = keras.backend.ones_like(x) val = keras.backend.eval(y) self.assertAllClose(val, np.ones((3, 4))) def test_random_uniform_variable(self): with self.cached_session(): x = keras.backend.random_uniform_variable((30, 20), low=1, high=2, seed=0) val = keras.backend.eval(x) self.assertAllClose(val.mean(), 1.5, atol=1e-1) self.assertAllClose(val.max(), 2., atol=1e-1) self.assertAllClose(val.min(), 1., atol=1e-1) def test_random_normal_variable(self): with self.cached_session(): x = keras.backend.random_normal_variable((30, 20), 1., 0.5, seed=0) val = keras.backend.eval(x) self.assertAllClose(val.mean(), 1., atol=1e-1) self.assertAllClose(val.std(), 0.5, atol=1e-1) def test_count_params(self): with self.cached_session(): x = keras.backend.zeros((4, 5)) val = keras.backend.count_params(x) self.assertAllClose(val, 20) def test_constant(self): with self.cached_session(): ref_val = np.random.random((3, 4)).astype('float32') x = keras.backend.constant(ref_val) val = keras.backend.eval(x) self.assertAllClose(val, ref_val) def test_sparse_variable(self): with self.cached_session(): val = scipy.sparse.eye(10) x = keras.backend.variable(val) self.assertTrue(isinstance(x, sparse_tensor.SparseTensor)) y = keras.backend.to_dense(x) self.assertFalse(keras.backend.is_sparse(y)) @test_util.run_all_in_graph_and_eager_modes class BackendLinearAlgebraTest(test.TestCase): def test_dot(self): x = keras.backend.ones(shape=(2, 3)) y = keras.backend.ones(shape=(3, 4)) xy = keras.backend.dot(x, y) self.assertEqual(xy.get_shape().as_list(), [2, 4]) x = keras.backend.ones(shape=(32, 28, 3)) y = keras.backend.ones(shape=(3, 4)) xy = keras.backend.dot(x, y) self.assertEqual(xy.get_shape().as_list(), [32, 28, 4]) def test_batch_dot(self): x = keras.backend.ones(shape=(32, 20, 1)) y = keras.backend.ones(shape=(32, 30, 20)) xy = keras.backend.batch_dot(x, y, axes=[1, 2]) self.assertEqual(xy.get_shape().as_list(), [32, 1, 30]) # TODO(fchollet): insufficiently tested. def test_reduction_ops(self): ops_to_test = [ (keras.backend.max, np.max), (keras.backend.min, np.min), (keras.backend.sum, np.sum), (keras.backend.prod, np.prod), (keras.backend.var, np.var), (keras.backend.std, np.std), (keras.backend.mean, np.mean), (keras.backend.argmin, np.argmin), (keras.backend.argmax, np.argmax), ] for keras_op, np_op in ops_to_test: with self.cached_session(): compare_single_input_op_to_numpy(keras_op, np_op, input_shape=(4, 7, 5), keras_kwargs={'axis': 1}, np_kwargs={'axis': 1}) compare_single_input_op_to_numpy(keras_op, np_op, input_shape=(4, 7, 5), keras_kwargs={'axis': -1}, np_kwargs={'axis': -1}) if 'keepdims' in tf_inspect.getargspec(keras_op).args: compare_single_input_op_to_numpy(keras_op, np_op, input_shape=(4, 7, 5), keras_kwargs={'axis': 1, 'keepdims': True}, np_kwargs={'axis': 1, 'keepdims': True}) def test_elementwise_ops(self): ops_to_test = [ (keras.backend.square, np.square), (keras.backend.abs, np.abs), (keras.backend.round, np.round), (keras.backend.sign, np.sign), (keras.backend.sin, np.sin), (keras.backend.cos, np.cos), (keras.backend.exp, np.exp), ] for keras_op, np_op in ops_to_test: with self.cached_session(): compare_single_input_op_to_numpy(keras_op, np_op, input_shape=(4, 7)) ops_to_test = [ (keras.backend.sqrt, np.sqrt), (keras.backend.log, np.log), ] for keras_op, np_op in ops_to_test: with self.cached_session(): compare_single_input_op_to_numpy(keras_op, np_op, input_shape=(4, 7), negative_values=False) with self.cached_session(): compare_single_input_op_to_numpy( keras.backend.clip, np.clip, input_shape=(6, 4), keras_kwargs={'min_value': 0.1, 'max_value': 2.4}, np_kwargs={'a_min': 0.1, 'a_max': 1.4}) with self.cached_session(): compare_single_input_op_to_numpy( keras.backend.pow, np.power, input_shape=(6, 4), keras_args=[3], np_args=[3]) def test_two_tensor_ops(self): ops_to_test = [ (keras.backend.equal, np.equal), (keras.backend.not_equal, np.not_equal), (keras.backend.greater, np.greater), (keras.backend.greater_equal, np.greater_equal), (keras.backend.less, np.less), (keras.backend.less_equal, np.less_equal), (keras.backend.maximum, np.maximum), (keras.backend.minimum, np.minimum), ] for keras_op, np_op in ops_to_test: with self.cached_session(): compare_two_inputs_op_to_numpy(keras_op, np_op, input_shape_a=(4, 7), input_shape_b=(4, 7)) def test_relu(self): x = ops.convert_to_tensor([[-4, 0], [2, 7]], 'float32') with self.cached_session(): # standard relu relu_op = keras.backend.relu(x) self.assertAllClose(keras.backend.eval(relu_op), [[0, 0], [2, 7]]) # alpha (leaky relu used) relu_op = keras.backend.relu(x, alpha=0.5) if not context.executing_eagerly(): self.assertTrue('LeakyRelu' in relu_op.name) self.assertAllClose(keras.backend.eval(relu_op), [[-2, 0], [2, 7]]) # max_value < some elements relu_op = keras.backend.relu(x, max_value=5) self.assertAllClose(keras.backend.eval(relu_op), [[0, 0], [2, 5]]) # nn.relu6 used relu_op = keras.backend.relu(x, max_value=6) if not context.executing_eagerly(): self.assertTrue('Relu6' in relu_op.name) # uses tf.nn.relu6 self.assertAllClose(keras.backend.eval(relu_op), [[0, 0], [2, 6]]) # max value > 6 relu_op = keras.backend.relu(x, max_value=10) self.assertAllClose(keras.backend.eval(relu_op), [[0, 0], [2, 7]]) # max value is float relu_op = keras.backend.relu(x, max_value=4.3) self.assertAllClose(keras.backend.eval(relu_op), [[0, 0], [2, 4.3]]) # max value == 0 relu_op = keras.backend.relu(x, max_value=0) self.assertAllClose(keras.backend.eval(relu_op), [[0, 0], [0, 0]]) # alpha and max_value relu_op = keras.backend.relu(x, alpha=0.25, max_value=3) self.assertAllClose(keras.backend.eval(relu_op), [[-1, 0], [2, 3]]) # threshold relu_op = keras.backend.relu(x, threshold=3) self.assertAllClose(keras.backend.eval(relu_op), [[0, 0], [0, 7]]) # threshold is float relu_op = keras.backend.relu(x, threshold=1.5) self.assertAllClose(keras.backend.eval(relu_op), [[0, 0], [2, 7]]) # threshold is negative relu_op = keras.backend.relu(x, threshold=-5) self.assertAllClose(keras.backend.eval(relu_op), [[-4, 0], [2, 7]]) # threshold and max_value relu_op = keras.backend.relu(x, threshold=3, max_value=5) self.assertAllClose(keras.backend.eval(relu_op), [[0, 0], [0, 5]]) # threshold and alpha relu_op = keras.backend.relu(x, alpha=0.25, threshold=4) self.assertAllClose(keras.backend.eval(relu_op), [[-2, -1], [-0.5, 7]]) # threshold, alpha, and max_value relu_op = keras.backend.relu(x, alpha=0.25, threshold=4, max_value=5) self.assertAllClose(keras.backend.eval(relu_op), [[-2, -1], [-0.5, 5]]) @test_util.run_all_in_graph_and_eager_modes class BackendShapeOpsTest(test.TestCase): def test_reshape(self): with self.cached_session(): compare_single_input_op_to_numpy(keras.backend.reshape, np.reshape, input_shape=(4, 7), keras_args=[(2, 14)], np_args=[(2, 14)]) def test_concatenate(self): a = keras.backend.variable(np.ones((1, 2, 3))) b = keras.backend.variable(np.ones((1, 2, 2))) y = keras.backend.concatenate([a, b], axis=-1) self.assertEqual(y.get_shape().as_list(), [1, 2, 5]) def test_permute_dimensions(self): with self.cached_session(): compare_single_input_op_to_numpy(keras.backend.permute_dimensions, np.transpose, input_shape=(4, 7), keras_args=[(1, 0)], np_args=[(1, 0)]) def test_resize_images(self): height_factor = 2 width_factor = 2 data_format = 'channels_last' x = keras.backend.variable(np.ones((1, 2, 2, 3))) y = keras.backend.resize_images(x, height_factor, width_factor, data_format) self.assertEqual(y.get_shape().as_list(), [1, 4, 4, 3]) data_format = 'channels_first' x = keras.backend.variable(np.ones((1, 3, 2, 2))) y = keras.backend.resize_images(x, height_factor, width_factor, data_format) self.assertEqual(y.get_shape().as_list(), [1, 3, 4, 4]) # Invalid use: with self.assertRaises(ValueError): keras.backend.resize_images(x, height_factor, width_factor, data_format='unknown') def test_resize_volumes(self): height_factor = 2 width_factor = 2 depth_factor = 2 data_format = 'channels_last' x = keras.backend.variable(np.ones((1, 2, 2, 2, 3))) y = keras.backend.resize_volumes(x, depth_factor, height_factor, width_factor, data_format) self.assertEqual(y.get_shape().as_list(), [1, 4, 4, 4, 3]) data_format = 'channels_first' x = keras.backend.variable(np.ones((1, 3, 2, 2, 2))) y = keras.backend.resize_volumes(x, depth_factor, height_factor, width_factor, data_format) self.assertEqual(y.get_shape().as_list(), [1, 3, 4, 4, 4]) # Invalid use: with self.assertRaises(ValueError): keras.backend.resize_volumes(x, depth_factor, height_factor, width_factor, data_format='unknown') def test_repeat_elements(self): x = keras.backend.variable(np.ones((1, 3, 2))) y = keras.backend.repeat_elements(x, 3, axis=1) self.assertEqual(y.get_shape().as_list(), [1, 9, 2]) # Use with a dynamic axis: if not context.executing_eagerly(): x = keras.backend.placeholder(shape=(2, None, 2)) y = keras.backend.repeat_elements(x, 3, axis=1) self.assertEqual(y.get_shape().as_list(), [2, None, 2]) def test_repeat(self): x = keras.backend.variable(np.ones((1, 3))) y = keras.backend.repeat(x, 2) self.assertEqual(y.get_shape().as_list(), [1, 2, 3]) def test_flatten(self): with self.cached_session(): compare_single_input_op_to_numpy(keras.backend.flatten, np.reshape, input_shape=(4, 7, 6), np_args=[(4 * 7 * 6,)]) def test_batch_flatten(self): with self.cached_session(): compare_single_input_op_to_numpy(keras.backend.batch_flatten, np.reshape, input_shape=(4, 7, 6), np_args=[(4, 7 * 6)]) def test_temporal_padding(self): def ref_op(x, padding): shape = list(x.shape) shape[1] += padding[0] + padding[1] y = np.zeros(tuple(shape)) y[:, padding[0]:-padding[1], :] = x return y with self.cached_session(): compare_single_input_op_to_numpy(keras.backend.temporal_padding, ref_op, input_shape=(4, 7, 6), keras_args=[(2, 3)], np_args=[(2, 3)]) def test_spatial_2d_padding(self): def ref_op(x, padding, data_format='channels_last'): shape = list(x.shape) if data_format == 'channels_last': shape[1] += padding[0][0] + padding[0][1] shape[2] += padding[1][0] + padding[1][1] y = np.zeros(tuple(shape)) y[:, padding[0][0]:-padding[0][1], padding[1][0]:-padding[1][1], :] = x else: shape[2] += padding[0][0] + padding[0][1] shape[3] += padding[1][0] + padding[1][1] y = np.zeros(tuple(shape)) y[:, :, padding[0][0]:-padding[0][1], padding[1][0]:-padding[1][1]] = x return y with self.cached_session(): compare_single_input_op_to_numpy( keras.backend.spatial_2d_padding, ref_op, input_shape=(2, 3, 2, 3), keras_args=[((2, 3), (1, 2))], keras_kwargs={'data_format': 'channels_last'}, np_args=[((2, 3), (1, 2))], np_kwargs={'data_format': 'channels_last'}) compare_single_input_op_to_numpy( keras.backend.spatial_2d_padding, ref_op, input_shape=(2, 3, 2, 3), keras_args=[((2, 3), (1, 2))], keras_kwargs={'data_format': 'channels_first'}, np_args=[((2, 3), (1, 2))], np_kwargs={'data_format': 'channels_first'}) def test_spatial_3d_padding(self): def ref_op(x, padding, data_format='channels_last'): shape = list(x.shape) if data_format == 'channels_last': shape[1] += padding[0][0] + padding[0][1] shape[2] += padding[1][0] + padding[1][1] shape[3] += padding[2][0] + padding[2][1] y = np.zeros(tuple(shape)) y[:, padding[0][0]:-padding[0][1], padding[1][0]:-padding[1][1], padding[2][0]:-padding[2][1], :] = x else: shape[2] += padding[0][0] + padding[0][1] shape[3] += padding[1][0] + padding[1][1] shape[4] += padding[2][0] + padding[2][1] y = np.zeros(tuple(shape)) y[:, :, padding[0][0]:-padding[0][1], padding[1][0]:-padding[1][1], padding[2][0]:-padding[2][1]] = x return y with self.cached_session(): compare_single_input_op_to_numpy( keras.backend.spatial_3d_padding, ref_op, input_shape=(2, 3, 2, 3, 2), keras_args=[((2, 3), (1, 2), (2, 3))], keras_kwargs={'data_format': 'channels_last'}, np_args=[((2, 3), (1, 2), (2, 3))], np_kwargs={'data_format': 'channels_last'}) compare_single_input_op_to_numpy( keras.backend.spatial_3d_padding, ref_op, input_shape=(2, 3, 2, 3, 2), keras_args=[((2, 3), (1, 2), (2, 3))], keras_kwargs={'data_format': 'channels_first'}, np_args=[((2, 3), (1, 2), (2, 3))], np_kwargs={'data_format': 'channels_first'}) @test_util.run_all_in_graph_and_eager_modes class BackendNNOpsTest(test.TestCase, parameterized.TestCase): def test_bias_add(self): with self.cached_session(): keras_op = keras.backend.bias_add np_op = np.add compare_two_inputs_op_to_numpy(keras_op, np_op, input_shape_a=(4, 7), input_shape_b=(7,)) compare_two_inputs_op_to_numpy(keras_op, np_op, input_shape_a=(4, 3, 7), input_shape_b=(7,)) compare_two_inputs_op_to_numpy(keras_op, np_op, input_shape_a=(4, 3, 5, 7), input_shape_b=(7,)) compare_two_inputs_op_to_numpy(keras_op, np_op, input_shape_a=(4, 3, 5, 2, 7), input_shape_b=(7,)) with self.assertRaises((ValueError, errors_impl.InvalidArgumentError)): x = keras.backend.variable((3, 4)) b = keras.backend.variable((3, 4)) keras.backend.bias_add(x, b) with self.assertRaises(ValueError): x = keras.backend.variable((3, 4)) b = keras.backend.variable((4,)) keras.backend.bias_add(x, b, data_format='unknown') def test_bias_add_channels_first(self): with self.cached_session(): def keras_op(x, b): return keras.backend.bias_add(x, b, data_format='channels_first') def np_op(x, b): if x.ndim == 3: b = b.reshape((1, b.shape[0], 1)) if x.ndim == 4: b = b.reshape((1, b.shape[0], 1, 1)) return x + b compare_two_inputs_op_to_numpy(keras_op, np_op, input_shape_a=(4, 3, 7), input_shape_b=(3,)) compare_two_inputs_op_to_numpy(keras_op, np_op, input_shape_a=(4, 3, 5, 7), input_shape_b=(3,)) def test_pool2d(self): val = np.random.random((10, 3, 10, 10)) x = keras.backend.variable(val) y = keras.backend.pool2d(x, (2, 2), strides=(1, 1), padding='valid', data_format='channels_first', pool_mode='max') self.assertEqual(y.get_shape().as_list(), [10, 3, 9, 9]) y = keras.backend.pool2d(x, (2, 2), strides=(1, 1), padding='valid', data_format='channels_first', pool_mode='avg') self.assertEqual(y.get_shape().as_list(), [10, 3, 9, 9]) val = np.random.random((10, 10, 10, 3)) x = keras.backend.variable(val) y = keras.backend.pool2d(x, (2, 2), strides=(1, 1), padding='valid', data_format='channels_last') self.assertEqual(y.get_shape().as_list(), [10, 9, 9, 3]) val = np.random.random((10, 10, 10, 3)) x = keras.backend.variable(val) y = keras.backend.pool2d(x, (2, 2), strides=(1, 1), padding='same', data_format='channels_last') self.assertEqual(y.get_shape().as_list(), [10, 10, 10, 3]) val = np.random.random((10, 10, 10, 3)) x = keras.backend.variable(val) y = keras.backend.pool2d(x, (2, 2), strides=(2, 2), padding='same', data_format='channels_last') self.assertEqual(y.get_shape().as_list(), [10, 5, 5, 3]) with self.assertRaises(ValueError): y = keras.backend.pool2d(x, (2, 2), strides=(2, 2), padding='other', data_format='channels_last') with self.assertRaises(ValueError): y = keras.backend.pool2d(x, (2, 2), strides=(2, 2), data_format='other') with self.assertRaises(ValueError): y = keras.backend.pool2d(x, (2, 2, 2), strides=(2, 2)) with self.assertRaises(ValueError): y = keras.backend.pool2d(x, (2, 2), strides=(2, 2, 2)) with self.assertRaises(ValueError): y = keras.backend.pool2d(x, (2, 2), strides=(2, 2), pool_mode='other') def test_pool3d(self): val = np.random.random((10, 3, 10, 10, 10)) x = keras.backend.variable(val) y = keras.backend.pool3d(x, (2, 2, 2), strides=(1, 1, 1), padding='valid', data_format='channels_first', pool_mode='max') self.assertEqual(y.get_shape().as_list(), [10, 3, 9, 9, 9]) y = keras.backend.pool3d(x, (2, 2, 2), strides=(1, 1, 1), padding='valid', data_format='channels_first', pool_mode='avg') self.assertEqual(y.get_shape().as_list(), [10, 3, 9, 9, 9]) val = np.random.random((10, 10, 10, 10, 3)) x = keras.backend.variable(val) y = keras.backend.pool3d(x, (2, 2, 2), strides=(1, 1, 1), padding='valid', data_format='channels_last') self.assertEqual(y.get_shape().as_list(), [10, 9, 9, 9, 3]) val = np.random.random((10, 10, 10, 10, 3)) x = keras.backend.variable(val) y = keras.backend.pool3d(x, (2, 2, 2), strides=(1, 1, 1), padding='same', data_format='channels_last') self.assertEqual(y.get_shape().as_list(), [10, 10, 10, 10, 3]) val = np.random.random((10, 10, 10, 10, 3)) x = keras.backend.variable(val) y = keras.backend.pool3d(x, (2, 2, 2), strides=(2, 2, 2), padding='same', data_format='channels_last') self.assertEqual(y.get_shape().as_list(), [10, 5, 5, 5, 3]) def test_conv1d(self): val = np.random.random((10, 4, 10)) x = keras.backend.variable(val) kernel_val = np.random.random((3, 4, 5)) k = keras.backend.variable(kernel_val) y = keras.backend.conv1d(x, k, strides=(1,), padding='valid', data_format='channels_first') self.assertEqual(y.get_shape().as_list(), [10, 5, 8]) val = np.random.random((10, 10, 4)) x = keras.backend.variable(val) y = keras.backend.conv1d(x, k, strides=(1,), padding='valid', data_format='channels_last') self.assertEqual(y.get_shape().as_list(), [10, 8, 5]) val = np.random.random((10, 10, 4)) x = keras.backend.variable(val) y = keras.backend.conv1d(x, k, strides=(1,), padding='same', data_format='channels_last') self.assertEqual(y.get_shape().as_list(), [10, 10, 5]) val = np.random.random((10, 10, 4)) x = keras.backend.variable(val) y = keras.backend.conv1d(x, k, strides=(2,), padding='same', data_format='channels_last') self.assertEqual(y.get_shape().as_list(), [10, 5, 5]) def test_local_conv_channels_dim(self): filters = 3 batch_size = 2 for input_shape in [(3, 5), (2, 3, 5), (2, 5, 3, 4)]: channels_in = input_shape[0] input_spatial_shape = input_shape[1:] dim = len(input_spatial_shape) inputs = np.random.normal(0, 1, (batch_size,) + input_shape) inputs_cf = keras.backend.variable(inputs) for kernel_size in [1, 2]: for stride in [1, 2]: kernel_sizes = (kernel_size,) * dim strides = (stride,) * dim output_shape = tuple([(i - kernel_size + stride) // stride for i in input_spatial_shape]) kernel_shape = (np.prod(output_shape), np.prod(kernel_sizes) * channels_in, filters) kernel = np.random.normal( 0, 1, output_shape + (channels_in, np.prod(kernel_sizes), filters) ) kernel_cf = np.reshape(kernel, kernel_shape) kernel_cf = keras.backend.variable(kernel_cf) conv_cf = keras.backend.local_conv(inputs_cf, kernel_cf, kernel_sizes, strides, output_shape, 'channels_first') inputs_cl = np.transpose(inputs, [0, 2] + list(range(3, dim + 2)) + [1]) inputs_cl = keras.backend.variable(inputs_cl) kernel_cl = np.reshape( np.transpose(kernel, list(range(dim)) + [dim + 1, dim, dim + 2]), kernel_shape ) kernel_cl = keras.backend.variable(kernel_cl) conv_cl = keras.backend.local_conv(inputs_cl, kernel_cl, kernel_sizes, strides, output_shape, 'channels_last') with self.cached_session(): conv_cf = keras.backend.eval(conv_cf) conv_cl = keras.backend.eval(conv_cl) self.assertAllCloseAccordingToType( conv_cf, np.transpose(conv_cl, [0, dim + 1] + list(range(1, dim + 1))), atol=1e-5 ) @parameterized.named_parameters( ('local_conv1d', (5, 6), (3,), (1,), (3,)), ('local_conv2d', (4, 5, 6), (3, 3), (1, 1), (2, 3))) def test_local_conv_1d_and_2d(self, input_shape, kernel_sizes, strides, output_shape): filters = 3 batch_size = 2 inputs = np.random.normal(0, 1, (batch_size,) + input_shape) inputs = keras.backend.variable(inputs) kernel = np.random.normal(0, 1, (np.prod(output_shape), np.prod(kernel_sizes) * input_shape[-1], filters)) kernel = keras.backend.variable(kernel) local_conv = keras.backend.local_conv(inputs, kernel, kernel_sizes, strides, output_shape, 'channels_last') if len(output_shape) == 1: local_conv_dim = keras.backend.local_conv1d(inputs, kernel, kernel_sizes, strides, 'channels_last') else: local_conv_dim = keras.backend.local_conv2d(inputs, kernel, kernel_sizes, strides, output_shape, 'channels_last') with self.cached_session(): local_conv = keras.backend.eval(local_conv) local_conv_dim = keras.backend.eval(local_conv_dim) self.assertAllCloseAccordingToType(local_conv, local_conv_dim) def test_conv2d(self): val = np.random.random((10, 4, 10, 10)) x = keras.backend.variable(val) kernel_val = np.random.random((3, 3, 4, 5)) k = keras.backend.variable(kernel_val) y = keras.backend.conv2d(x, k, padding='valid', data_format='channels_first') self.assertEqual(y.get_shape().as_list(), [10, 5, 8, 8]) val = np.random.random((10, 10, 10, 4)) x = keras.backend.variable(val) y = keras.backend.conv2d(x, k, strides=(1, 1), padding='valid', data_format='channels_last') self.assertEqual(y.get_shape().as_list(), [10, 8, 8, 5]) val = np.random.random((10, 10, 10, 4)) x = keras.backend.variable(val) y = keras.backend.conv2d(x, k, strides=(1, 1), padding='same', data_format='channels_last') self.assertEqual(y.get_shape().as_list(), [10, 10, 10, 5]) val = np.random.random((10, 10, 10, 4)) x = keras.backend.variable(val) y = keras.backend.conv2d(x, k, strides=(2, 2), padding='same', data_format='channels_last') self.assertEqual(y.get_shape().as_list(), [10, 5, 5, 5]) with self.assertRaises(ValueError): y = keras.backend.conv2d(x, k, (2, 2), padding='other', data_format='channels_last') with self.assertRaises(ValueError): y = keras.backend.conv2d(x, k, (2, 2), data_format='other') with self.assertRaises(ValueError): y = keras.backend.conv2d(x, k, (2, 2, 2)) def test_separable_conv2d(self): val = np.random.random((10, 4, 10, 10)) x = keras.backend.variable(val) depthwise_kernel_val = np.random.random((3, 3, 4, 1)) pointwise_kernel_val = np.random.random((1, 1, 4, 5)) dk = keras.backend.variable(depthwise_kernel_val) pk = keras.backend.variable(pointwise_kernel_val) y = keras.backend.separable_conv2d( x, dk, pk, padding='valid', data_format='channels_first') self.assertEqual(y.get_shape().as_list(), [10, 5, 8, 8]) val = np.random.random((10, 10, 10, 4)) x = keras.backend.variable(val) y = keras.backend.separable_conv2d( x, dk, pk, strides=(1, 1), padding='valid', data_format='channels_last') self.assertEqual(y.get_shape().as_list(), [10, 8, 8, 5]) val = np.random.random((10, 10, 10, 4)) x = keras.backend.variable(val) y = keras.backend.separable_conv2d( x, dk, pk, strides=(1, 1), padding='same', data_format='channels_last') self.assertEqual(y.get_shape().as_list(), [10, 10, 10, 5]) val = np.random.random((10, 10, 10, 4)) x = keras.backend.variable(val) y = keras.backend.separable_conv2d( x, dk, pk, strides=(2, 2), padding='same', data_format='channels_last') self.assertEqual(y.get_shape().as_list(), [10, 5, 5, 5]) with self.assertRaises(ValueError): y = keras.backend.separable_conv2d( x, dk, pk, (2, 2), padding='other', data_format='channels_last') with self.assertRaises(ValueError): y = keras.backend.separable_conv2d( x, dk, pk, (2, 2), data_format='other') with self.assertRaises(ValueError): y = keras.backend.separable_conv2d(x, dk, pk, (2, 2, 2)) def test_conv3d(self): val = np.random.random((10, 4, 10, 10, 10)) x = keras.backend.variable(val) kernel_val = np.random.random((3, 3, 3, 4, 5)) k = keras.backend.variable(kernel_val) y = keras.backend.conv3d(x, k, padding='valid', data_format='channels_first') self.assertEqual(y.get_shape().as_list(), [10, 5, 8, 8, 8]) val = np.random.random((10, 10, 10, 10, 4)) x = keras.backend.variable(val) y = keras.backend.conv3d(x, k, strides=(1, 1, 1), padding='valid', data_format='channels_last') self.assertEqual(y.get_shape().as_list(), [10, 8, 8, 8, 5]) val = np.random.random((10, 10, 10, 10, 4)) x = keras.backend.variable(val) y = keras.backend.conv3d(x, k, strides=(1, 1, 1), padding='same', data_format='channels_last') self.assertEqual(y.get_shape().as_list(), [10, 10, 10, 10, 5]) val = np.random.random((10, 10, 10, 10, 4)) x = keras.backend.variable(val) y = keras.backend.conv3d(x, k, strides=(2, 2, 2), padding='same', data_format='channels_last') self.assertEqual(y.get_shape().as_list(), [10, 5, 5, 5, 5]) with self.assertRaises(ValueError): y = keras.backend.conv3d(x, k, (2, 2, 2), padding='other', data_format='channels_last') with self.assertRaises(ValueError): y = keras.backend.conv3d(x, k, (2, 2, 2), data_format='other') with self.assertRaises(ValueError): y = keras.backend.conv3d(x, k, (2, 2)) def test_rnn(self): # implement a simple RNN num_samples = 4 input_dim = 5 output_dim = 3 timesteps = 6 input_val = np.random.random( (num_samples, timesteps, input_dim)).astype(np.float32) init_state_val = np.random.random( (num_samples, output_dim)).astype(np.float32) w_i_val = np.random.random((input_dim, output_dim)).astype(np.float32) w_o_val = np.random.random((output_dim, output_dim)).astype(np.float32) np_mask = np.random.randint(2, size=(num_samples, timesteps)) def rnn_step_fn(): w_i = keras.backend.variable(w_i_val) w_o = keras.backend.variable(w_o_val) def step_function(x, states): assert len(states) == 1 prev_output = states[0] output = keras.backend.dot(x, w_i) + keras.backend.dot(prev_output, w_o) return output, [output] return step_function # test default setup last_output_list = [[], [], [], [], [], []] outputs_list = [[], [], [], [], [], []] state_list = [[], [], [], [], [], []] rnn_fn = rnn_step_fn() inputs = keras.backend.variable(input_val) initial_states = [keras.backend.variable(init_state_val)] mask = keras.backend.variable(np_mask) kwargs_list = [ {'go_backwards': False, 'mask': None}, {'go_backwards': False, 'mask': None, 'unroll': True}, {'go_backwards': True, 'mask': None}, {'go_backwards': True, 'mask': None, 'unroll': True}, {'go_backwards': False, 'mask': mask}, {'go_backwards': False, 'mask': mask, 'unroll': True}, ] with self.cached_session(): for i, kwargs in enumerate(kwargs_list): last_output, outputs, new_states = keras.backend.rnn(rnn_fn, inputs, initial_states, **kwargs) # check static shape inference self.assertEquals(last_output.get_shape().as_list(), [num_samples, output_dim]) self.assertEquals(outputs.get_shape().as_list(), [num_samples, timesteps, output_dim]) for state in new_states: self.assertEquals(state.get_shape().as_list(), [num_samples, output_dim]) last_output_list[i].append(keras.backend.eval(last_output)) outputs_list[i].append(keras.backend.eval(outputs)) self.assertEqual(len(new_states), 1) state_list[i].append(keras.backend.eval(new_states[0])) def assert_list_pairwise(z_list, atol=1e-05): for (z1, z2) in zip(z_list[1:], z_list[:-1]): self.assertAllClose(z1, z2, atol=atol) assert_list_pairwise(last_output_list[0], atol=1e-04) assert_list_pairwise(outputs_list[0], atol=1e-04) assert_list_pairwise(state_list[0], atol=1e-04) assert_list_pairwise(last_output_list[2], atol=1e-04) assert_list_pairwise(outputs_list[2], atol=1e-04) assert_list_pairwise(state_list[2], atol=1e-04) for l, u_l in zip(last_output_list[0], last_output_list[1]): self.assertAllClose(l, u_l, atol=1e-04) for o, u_o in zip(outputs_list[0], outputs_list[1]): self.assertAllClose(o, u_o, atol=1e-04) for s, u_s in zip(state_list[0], state_list[1]): self.assertAllClose(s, u_s, atol=1e-04) for b_l, b_u_l in zip(last_output_list[2], last_output_list[3]): self.assertAllClose(b_l, b_u_l, atol=1e-04) for b_o, b_u_o in zip(outputs_list[2], outputs_list[3]): self.assertAllClose(b_o, b_u_o, atol=1e-04) for b_s, b_u_s in zip(state_list[2], state_list[3]): self.assertAllClose(b_s, b_u_s, atol=1e-04) def test_rnn_additional_states(self): # implement a simple RNN num_samples = 4 input_dim = 5 output_dim = 3 timesteps = 6 input_val = np.random.random( (num_samples, timesteps, input_dim)).astype(np.float32) init_state_val = np.random.random( (num_samples, output_dim)).astype(np.float32) w_i_val = np.random.random((input_dim, output_dim)).astype(np.float32) w_o_val = np.random.random((output_dim, output_dim)).astype(np.float32) np_mask = np.random.randint(2, size=(num_samples, timesteps)) def rnn_step_fn(): w_i = keras.backend.variable(w_i_val) w_o = keras.backend.variable(w_o_val) def step_function(x, states): assert len(states) == 2 prev_output = states[0] output = keras.backend.dot(x, w_i) + keras.backend.dot(prev_output, w_o) return output, [output, keras.backend.concatenate([output, output], axis=-1)] return step_function # test default setup last_output_list = [[], [], [], [], [], []] outputs_list = [[], [], [], [], [], []] state_list = [[], [], [], [], [], []] additional_state_list = [[], [], [], [], [], []] rnn_fn = rnn_step_fn() inputs = keras.backend.variable(input_val) initial_states = [ keras.backend.variable(init_state_val), ops.convert_to_tensor( np.concatenate([init_state_val, init_state_val], axis=-1)) ] mask = keras.backend.variable(np_mask) kwargs_list = [ {'go_backwards': False, 'mask': None}, {'go_backwards': False, 'mask': None, 'unroll': True}, {'go_backwards': True, 'mask': None}, {'go_backwards': True, 'mask': None, 'unroll': True}, {'go_backwards': False, 'mask': mask}, {'go_backwards': False, 'mask': mask, 'unroll': True}, ] with self.cached_session(): for i, kwargs in enumerate(kwargs_list): last_output, outputs, new_states = keras.backend.rnn(rnn_fn, inputs, initial_states, **kwargs) # check static shape inference self.assertEqual(last_output.get_shape().as_list(), [num_samples, output_dim]) self.assertEqual(outputs.get_shape().as_list(), [num_samples, timesteps, output_dim]) # for state in new_states: # self.assertEquals(state.get_shape().as_list(), # [num_samples, output_dim]) self.assertEqual(new_states[0].get_shape().as_list(), [num_samples, output_dim]) self.assertEqual(new_states[1].get_shape().as_list(), [num_samples, 2 * output_dim]) last_output_list[i].append(keras.backend.eval(last_output)) outputs_list[i].append(keras.backend.eval(outputs)) self.assertEqual(len(new_states), 2) state_list[i].append(keras.backend.eval(new_states[0])) additional_state_list[i].append(keras.backend.eval(new_states[1])) def assert_list_pairwise(z_list, atol=1e-05): for (z1, z2) in zip(z_list[1:], z_list[:-1]): self.assertAllClose(z1, z2, atol=atol) assert_list_pairwise(last_output_list[0], atol=1e-04) assert_list_pairwise(outputs_list[0], atol=1e-04) assert_list_pairwise(state_list[0], atol=1e-04) assert_list_pairwise(additional_state_list[0], atol=1e-04) assert_list_pairwise(last_output_list[2], atol=1e-04) assert_list_pairwise(outputs_list[2], atol=1e-04) assert_list_pairwise(state_list[2], atol=1e-04) assert_list_pairwise(additional_state_list[2], atol=1e-04) for l, u_l in zip(last_output_list[0], last_output_list[1]): self.assertAllClose(l, u_l, atol=1e-04) for o, u_o in zip(outputs_list[0], outputs_list[1]): self.assertAllClose(o, u_o, atol=1e-04) for s, u_s in zip(state_list[0], state_list[1]): self.assertAllClose(s, u_s, atol=1e-04) for s, u_s in zip(additional_state_list[0], additional_state_list[1]): self.assertAllClose(s, u_s, atol=1e-04) for b_l, b_u_l in zip(last_output_list[2], last_output_list[3]): self.assertAllClose(b_l, b_u_l, atol=1e-04) for b_o, b_u_o in zip(outputs_list[2], outputs_list[3]): self.assertAllClose(b_o, b_u_o, atol=1e-04) for b_s, b_u_s in zip(state_list[2], state_list[3]): self.assertAllClose(b_s, b_u_s, atol=1e-04) for s, u_s in zip(additional_state_list[2], additional_state_list[3]): self.assertAllClose(s, u_s, atol=1e-04) def test_normalize_batch_in_training(self): val = np.random.random((10, 3, 10, 10)) x = keras.backend.variable(val) reduction_axes = (0, 2, 3) g_val = np.random.random((3,)) b_val =
np.random.random((3,))
numpy.random.random
"""Mapping functions that get values on a prescribed Cartesian coordinates grids from GTS output data files which are in flux coordinates. """ import Map_Mod_C as mmc import numpy as np from sdp.geometry import grid import scipy.io.netcdf as nc from scipy.interpolate import NearestNDInterpolator from time import clock class GTS_loader_Error(Exception): """Exception class for handling GTS loading errors """ def __init__(self,value): self.value = value def __str__(self): return repr(self.value) class GTS_Loader: """GTS Loading class For each GTS run case, setup all the loading parameters, read out necessary data, and output to suited format. """ def __init__(self, grid, t0,dt,nt, fluc_file_path,eq_fname,prof_fname,gts_file_path, n_cross_section = 1, phi_fname_head = 'PHI.', den_fname_head = 'DEN.', n_boundary = 1001, amplification = 1): """Initialize Loading Parameters: grid: sdp.geometry.Grid.Cartesian2D or Cartesian3D object, contains the output grid information. t0: int; Starting time of the sampling series, in simulation record step counts. dt: int; The interval between two sample points, in unit of simulation record step counts. nt: int; The total number of time_steps. n_cross_section: int; total cross-sections used for enlarging the ensemble n_boundary: int; The total number of grid points resolving the plasma last closed flux surface. Normally not important. fluc_file_path: string; directory where to store the output fluctuation files eq_fname: string; filename of the equalibrium file, either absolute or relative path. phi_fname_head: string; The header letters of the phi record file before the toroidal plane number, usually "PHI." den_fname_head: string; The header letters of the density record file before the toroidal plane number, usually "DEN." gts_file_path: string; the directory where the PHI data files are stored. """ self.grid = grid if(isinstance(grid, grid.Cartesian2D)): self.dimension = 2 self.xmin,self.xmax,self.nx = grid.Rmin,grid.Rmax,grid.NR self.ymin,self.ymax,self.ny = grid.Zmin,grid.Zmax,grid.NZ self.zmin,self.zmax,self.nz = 0,0,1 elif(isinstance(grid, grid.Cartesian3D)): self.dimension = 3 self.xmin,self.xmax,self.nx = grid.Xmin,grid.Xmax,grid.NX self.ymin,self.ymax,self.ny = grid.Ymin,grid.Ymax,grid.NY self.zmin,self.zmax,self.nz = grid.Zmin,grid.Zmax,grid.NZ else: raise GTS_loader_Error('grid not valid. Right now GTS loader only support Cartesian2D or Cartesian3D grid.') self.t0,self.dt,self.nt = t0,dt,nt self.time_steps = self.t0 + np.arange(self.nt) *self.dt self.n_cross_section = n_cross_section self.fluc_file_path = fluc_file_path self.eq_fname = eq_fname self.prof_fname = prof_fname self.phi_fname_head = phi_fname_head self.den_fname_head = den_fname_head self.gts_file_path = gts_file_path self.n_boundary = n_boundary self.amplification = 1 mmc.set_para_(Xmin=self.xmin,Xmax=self.xmax,NX=self.nx, Ymin=self.ymin,Ymax=self.ymax,NY=self.ny, Zmin=self.zmin,Zmax=self.zmax,NZ=self.nz, NBOUNDARY=self.n_boundary, TStart=self.t0,TStep=self.dt,NT=self.nt, Fluc_Amplification=self.amplification, FlucFilePath=self.fluc_file_path, EqFileName=self.eq_fname, NTFileName=self.prof_fname, PHIFileNameStart=self.phi_fname_head, DENFileNameStart = self.den_fname_head, GTSDataDir=self.gts_file_path) mmc.show_para_() self.get_fluctuations_from_GTS() if (self.dimension == 3): self.dne_on_grid = self.ne0_on_grid[np.newaxis,np.newaxis,:,:,:] * (self.dne_ad_on_grid + self.nane_on_grid) self.B_2d = self.Btol_2d elif (self.dimension == 2): self.ne_on_grid = self.ne0_on_grid * (1 + self.dne_ad_on_grid + self.nane_on_grid) self.B_on_grid = self.Bt_on_grid def show_para(self): mmc.show_para_() def get_fluctuations_from_GTS(self): """load fluctuations on grid using C_function Create variables: equilibrium quantities: ne0_on_grid: double ndarray (1,ny,nx), equilibrium electron density. Te0_on_grid: double ndarray (1,ny,nx), equilibrium electron temperature. Bt_on_grid,Bp_on_grid,BR_on_grid,BZ_on_grid: double ndarray (1,ny,nx), equilibrium toroidal and poloidal magnetic field, and R,Z component of Bpol. fluctuations: dne_ad_on_grid: double ndarray (nt,nz,ny,nx), adiabatic electron density, calculated from fluctuating potential phi: dne_ad_on_grid/ne0_on_grid = e*phi/Te0_on_grid nane_on_grid : double ndarray (nt,nz,ny,nx), non-adiabatic electron density normalized to local equilibrium density, read from file. nate_on_grid : double ndarray (nt,nz,ny,nx), non-adiabatic electron temperature normalized to equilibrium temperature at a reference radius, read from file. """ t0 = clock() if(self.dimension == 3): x1d = self.grid.X1D y1d = self.grid.Y1D self.x2d = np.zeros((1,self.ny,self.nx))+ x1d[np.newaxis,np.newaxis,:] self.y2d = np.zeros((1,self.ny,self.nx))+ y1d[np.newaxis,:,np.newaxis] z2d = np.zeros((1,self.ny,self.nx)) x3d = self.grid.X3D y3d = self.grid.Y3D z3d = self.grid.Z3D self.dne_ad_on_grid = np.zeros((self.n_cross_section,self.nt,self.nz,self.ny,self.nx)) self.nane_on_grid = np.zeros((self.n_cross_section,self.nt,self.nz,self.ny,self.nx)) self.nate_on_grid = np.zeros_like(self.nane_on_grid) #Note that new equilibrium loading convention needs only 2D equilibrium data. self.ne0_2d = np.zeros((1,self.ny,self.nx)) self.Te0_2d = np.zeros((1,self.ny,self.nx)) self.Btol_2d = np.zeros((1,self.ny,self.nx)) self.Bp_2d = np.zeros((1,self.ny,self.nx)) self.BR_2d = np.zeros((1,self.ny,self.nx)) self.BZ_2d = np.zeros((1,self.ny,self.nx)) mismatched_eq = np.zeros_like(self.x2d,dtype = 'int32') fluc_2d = np.zeros((self.nt,1,self.ny,self.nx)) mmc.set_para_(Xmin=self.xmin,Xmax=self.xmax,NX=self.nx, Ymin=self.ymin,Ymax=self.ymax,NY=self.ny, Zmin=0,Zmax=0,NZ=1, NBOUNDARY=self.n_boundary, TStart=1,TStep=1,NT=1, Fluc_Amplification=self.amplification, FlucFilePath=self.fluc_file_path, EqFileName=self.eq_fname, NTFileName=self.prof_fname, PHIFileNameStart=self.phi_fname_head, DENFileNameStart = self.den_fname_head, GTSDataDir=self.gts_file_path) #one seperate 2D run to get all the equilibrium quantities mmc.get_GTS_profiles_(self.x2d,self.y2d,z2d,self.ne0_2d,self.Te0_2d,self.Btol_2d,self.Bp_2d, self.BR_2d, self.BZ_2d, fluc_2d,fluc_2d,fluc_2d,mismatched_eq,0) self._fill_mismatched_eq(mismatched_eq) #calculate B_toroidal based on B_total and B_poloidal self.BPhi_2d = np.sqrt(self.Btol_2d**2 - self.Bp_2d**2) mmc.set_para_(Xmin=self.xmin,Xmax=self.xmax,NX=self.nx, Ymin=self.ymin,Ymax=self.ymax,NY=self.ny, Zmin=self.zmin,Zmax=self.zmax,NZ=self.nz, NBOUNDARY=self.n_boundary, TStart=self.t0,TStep=self.dt,NT=self.nt, Fluc_Amplification=self.amplification, FlucFilePath=self.fluc_file_path, EqFileName=self.eq_fname, NTFileName=self.prof_fname, PHIFileNameStart=self.phi_fname_head, DENFileNameStart = self.den_fname_head, GTSDataDir=self.gts_file_path) #temporary arrays to hold 3D equilibrium quantities. self.ne0_on_grid = np.zeros_like(x3d) self.Te0_on_grid = np.zeros_like(x3d) self.Btol_on_grid = np.zeros_like(x3d) self.Bp_on_grid = np.zeros_like(x3d) self.BR_on_grid = np.zeros_like(x3d) self.BZ_on_grid = np.zeros_like(x3d) self.mismatch = np.zeros_like(x3d,dtype = 'int32') self.total_cross_section = mmc.get_GTS_profiles_(x3d,y3d,z3d,self.ne0_on_grid,self.Te0_on_grid,self.Btol_on_grid,self.Bp_on_grid,self.BR_on_grid,self.BZ_on_grid, self.dne_ad_on_grid[0,...],self.nane_on_grid[0,...],self.nate_on_grid[0,...],self.mismatch, 0) dcross = int(np.floor(self.total_cross_section / self.n_cross_section)) self.center_cross_sections = np.arange(self.n_cross_section) * dcross for i in range(1,len(self.center_cross_sections)): mmc.get_GTS_profiles_(x3d,y3d,z3d,self.ne0_on_grid,self.Te0_on_grid,self.Btol_on_grid,self.Bp_on_grid,self.BR_on_grid,self.BZ_on_grid, self.dne_ad_on_grid[i,...],self.nane_on_grid[i,...],self.nate_on_grid[i,...],self.mismatch,self.center_cross_sections[i]) self._fill_mismatched(self.mismatch) elif(self.dimension == 2): x1d = self.grid.R1D y1d = self.grid.Z1D x2d = np.zeros((1,self.ny,self.nx))+ x1d[np.newaxis,np.newaxis,:] y2d = np.zeros((1,self.ny,self.nx))+ y1d[np.newaxis,:,np.newaxis] z2d = np.zeros((1,self.ny,self.nx)) self.dne_ad_on_grid = np.zeros((self.n_cross_section,self.nt,1,self.ny,self.nx)) self.nane_on_grid = np.zeros((self.n_cross_section,self.nt,1,self.ny,self.nx)) self.nate_on_grid = np.zeros_like(self.nane_on_grid) #Note that new equilibrium loading convention needs only 2D equilibrium data. self.ne0_on_grid = np.zeros((1,self.ny,self.nx)) self.Te0_on_grid = np.zeros((1,self.ny,self.nx)) self.Bt_on_grid = np.zeros((1,self.ny,self.nx)) self.Bp_on_grid = np.zeros((1,self.ny,self.nx)) self.BR_on_grid = np.zeros((1,self.ny,self.nx)) self.BZ_on_grid = np.zeros((1,self.ny,self.nx)) self.mismatch = np.zeros_like(self.ne0_on_grid,dtype = 'int32') self.total_cross_section = mmc.get_GTS_profiles_(x2d,y2d,z2d,self.ne0_on_grid,self.Te0_on_grid,self.Bt_on_grid,self.Bp_on_grid,self.BR_on_grid,self.BZ_on_grid, self.dne_ad_on_grid[0,...],self.nane_on_grid[0,...],self.nate_on_grid[0,...],self.mismatch, 0) dcross = int(np.floor(self.total_cross_section / self.n_cross_section)) self.center_cross_sections = np.arange(self.n_cross_section) * dcross for i in range(1,len(self.center_cross_sections)): mmc.get_GTS_profiles_(x2d,y2d,z2d,self.ne0_on_grid,self.Te0_on_grid,self.Bt_on_grid,self.Bp_on_grid,self.BR_on_grid,self.BZ_on_grid, self.dne_ad_on_grid[i,...],self.nane_on_grid[i,...],self.nate_on_grid[i,...],self.mismatch,self.center_cross_sections[i]) t1 = clock() self._fill_mismatched(self.mismatch) t2 = clock() print('Time used for interpolating mismatched points: {0}\nTotal time used:{1}'.format(t2-t1,t2-t0)) def _fill_mismatched(self,mismatch): """interpolate upon correctly matched values, to get values on mismatched points """ print('Start correcting mismatched points.') correct_idx = (mismatch == 0) mismatch_idx = (mismatch == 1) if self.dimension == 3: x_correct = self.grid.X3D[correct_idx] y_correct = self.grid.Y3D[correct_idx] z_correct = self.grid.Z3D[correct_idx] xwant = self.grid.X3D[mismatch_idx] ywant = self.grid.Y3D[mismatch_idx] zwant = self.grid.Z3D[mismatch_idx] points = np.array([z_correct,y_correct,x_correct]).T points_want = np.array([zwant,ywant,xwant]).T self.ne0_on_grid[mismatch_idx] = NearestNDInterpolator(points,self.ne0_on_grid[correct_idx])(points_want) self.Te0_on_grid[mismatch_idx] = NearestNDInterpolator(points,self.Te0_on_grid[correct_idx])(points_want) self.Btol_on_grid[mismatch_idx] = NearestNDInterpolator(points,self.Btol_on_grid[correct_idx])(points_want) self.Bp_on_grid[mismatch_idx] = NearestNDInterpolator(points,self.Bp_on_grid[correct_idx])(points_want) self.BR_on_grid[mismatch_idx] = NearestNDInterpolator(points,self.BR_on_grid[correct_idx])(points_want) self.BZ_on_grid[mismatch_idx] = NearestNDInterpolator(points,self.BZ_on_grid[correct_idx])(points_want) for i in range(self.n_cross_section): for j in range(self.nt): self.dne_ad_on_grid[i,j][mismatch_idx] = NearestNDInterpolator(points,self.dne_ad_on_grid[i,j][correct_idx])(points_want) self.nane_on_grid[i,j][mismatch_idx] = NearestNDInterpolator(points,self.nane_on_grid[i,j][correct_idx])(points_want) self.nate_on_grid[i,j][mismatch_idx] = NearestNDInterpolator(points,self.nate_on_grid[i,j][correct_idx])(points_want) print('Cross-section {0} finished.'.format(i)) else: r_correct = self.grid.R2D[correct_idx[0,:,:]] z_correct = self.grid.Z2D[correct_idx[0,:,:]] rwant = self.grid.R2D[mismatch_idx[0,:,:]] zwant = self.grid.Z2D[mismatch_idx[0,:,:]] points =
np.array([z_correct,r_correct])
numpy.array
""" tests.test_utilities unit test for psola.utilities module Author: jreinhold Created on: Aug 10, 2017 """ import unittest import numpy as np from psola.errors import PsolaError from psola.utilities.low_pass_filter import lpf from psola.utilities.center_clipping import center_clipping from psola.utilities.find import find class TestLowPassFilter(unittest.TestCase): def setUp(self): self.fs = 2000 t =
np.linspace(0, 1.0, 2**11)
numpy.linspace
""" Map CEMS CC generators to EIA CC units """ import logging import numpy as np import pandas as pd logger = logging.getLogger(__name__) def method_1(boilers, eia_plants): """ Method 1 to map boilers to eia plants """ # Create boiler-specific unit (Method 1) no_eia_plant = boilers.loc[~
np.in1d(boilers["Plant Code"], eia_plants)
numpy.in1d
import numpy as np import sys import os os.stat('pylib') sys.path.append("pylib") sys.path.append("pylib/utils") import argparse import tables from pulp.utils.parallel import pprint from pulp.utils.barstest import generate_bars_dict from sklearn.neural_network.multilayer_perceptron import MLPClassifier #%% -- General params -- seed = 0 #%% -- BSC parameters -- # datatype... possible values: 'MNIST', 'BARSTEST' or 'BARS' datatype = 'BARS' neg_bars = False # function of the model mod_fun = 'BSC_ET' # max iterations Iters = 50 # Scale of the bars SCALE = 10 # normalized gen. sigma from gaussian sigma = .35 # pi number of causes pi = .2 # Number of datapoints to generate N = int(2000) Nc_lo = (0.0,0.0) Nc_hi = (.9,1.0) # Dimensionality of the model size = 5 # D = size*size H = 2*size # number of latents D = size**2 # dimensionality of observed data force_H = 0 # if H is fixed given by input or default # Approximation parameters for Expectation Truncation Hprime = 5 gamma = 3 # annealing params Tmax = 1.2 T_iter = .8 priT = True #%% -- memory heavy options -- # if (try) doing an impainting test impaint = 0 # if doing a prediction of the binary latents (s) from the MLP predict = 0; #%% -- (ML)P-params -- # enabling co-training K_mlp = False # data set size Ntr = 10000 Nte = 7500 Nva = 4500 # after training max consecutive iterations mlp_max_iter = 50 # generative max iteration fraction mlp_gen_iter = 1 # generative max/min training data fraction mlp_gen_data = 1 mlp_min_data = 1/Ntr # if the validation fraction in training shall be noiseless noiseless_valid = False # no. batches for the gen. mlp data batches = 1 mlp_lrate = .001 mlp_lmomm = 'constant' early_stopping = True warm_start = True nesterovs_momentum = True # hidden layer sizes n_hidden=np.array([]) # here no hidden layers validation_fraction=.1 batch_size=200 eta = .001 # experimental ... # if modifying sklearn/neural_network/MLP.py # and adding max option # for maximum combination instead of linear mlp_maxpool = False gen_datas = False gen_train = False mlp_ratio = .0 #%% top-layer variables top_train = .5 #when does the training start top_iters = (.8,50) #when does how many iterations happen per step top_mulIt = 0 #should there even be more top-layer iterations each step #%% -- imput parsing 2.0 xD -- n = 2 while n < len(sys.argv): n2 = 1 try: a = float(sys.argv[n+1]) try: exec('%s = %f' % (sys.argv[n],a)) pprint('%s = %f' % (sys.argv[n],a)) except: pprint('Error: Bad argument name!') except: if sys.argv[n] == 'outpath' or sys.argv[n] == 'h5path' or sys.argv[n] == 'h5_path': try: exec('h5path = "%s"' % (sys.argv[n+1].strip())) pprint('h5-path = "%s"' % sys.argv[n+1].strip()) except: pprint('Error: Bad h5-path name!') n2 = 1 elif sys.argv[n] == 'mlppath' or sys.argv[n] == 'h5_mlp': try: exec('mlppath = "%s"' % (sys.argv[n+1].strip())) pprint('mlp-path = "%s"' % sys.argv[n+1].strip()) except: pprint('Error: Bad mlp path string: %s' %sys.argv[n]) n2 = 1 elif sys.argv[n] == 'batch_size' or sys.argv[n] == 'mlp_lmomm' \ or sys.argv[n] == 'txt_nm' or sys.argv[n] == 'h5f_nm' \ or sys.argv[n] == 'actfun' or sys.argv[n] == 'mod_fun'\ or sys.argv[n] == 'txt_scr': try: exec('%s = "%s"' % (sys.argv[n], sys.argv[n+1].strip())) pprint('%s: "%s"' % (sys.argv[n], sys.argv[n+1].strip())) exec('print(type(%s))' %sys.argv[n]) except: pprint('Error: Bad strg arg: %s' %sys.argv[n]) n2 = 1 elif sys.argv[n] == 'top_iters' or sys.argv[n] == 'Nc_lo' or sys.argv[n] == 'Nc_hi' or sys.argv[n] == 'Nc_lo': try: exec('%s = %s' % (sys.argv[n], sys.argv[n+1].strip())) pprint('%s: %s' % (sys.argv[n], sys.argv[n+1].strip())) exec('print(type(%s))' %sys.argv[n]) except: pprint('Error: Bad strg arg: %s' %sys.argv[n]) n2 = 1 else: try: exec('%s = %s' % ( sys.argv[n], sys.argv[n+1].strip() )) pprint('%s = %s' %( sys.argv[n], sys.argv[n+1].strip() )) n2 = 1 except: try: exec('%s = 1' % sys.argv[n].strip()) pprint('%s: 1' % sys.argv[n].strip()) except: pprint('Error: Bad argument name!') n2 = 0 n += 1 + n2 # -- integers -- #size = int(size) D = int(D) # things that cannot be changed size = int(size) H = int(H) Hprime = int(Hprime) gamma = int(gamma) N = int(N) Ntr = int(Ntr) Nte = int(Nte) Nva = int(Nva) Iters = int(Iters) # -- flags -- mlp_gen_iter = int(mlp_gen_iter) #or 100*int(mlp_gen_iter<1) mlp_gen_data = int(mlp_gen_data) # no. data points else Ntr or N_bsc # -- params -- if 'piH' in locals(): pi = piH/H # fit truncation params to barstest if 'truncfit' in locals(): if truncfit: if not force_H: H = int(np.sqrt(D)) * 2 gamma = int(pi*H+1) Hprime = gamma + 2 # -- n_hidden -- n_hidden = np.round(
np.array(n_hidden)
numpy.array
# -*- coding: utf-8 -*- """ ============================== 1D Wasserstein barycenter demo ============================== @author: rflamary """ import numpy as np import matplotlib.pylab as pl import ot from mpl_toolkits.mplot3d import Axes3D #necessary for 3d plot even if not used import scipy as sp import scipy.signal as sps #%% parameters n=10 # nb bins # bin positions x=np.arange(n,dtype=np.float64) xx,yy=np.meshgrid(x,x) xpos=np.hstack((xx.reshape(-1,1),yy.reshape(-1,1))) M=ot.dist(xpos) I0=((xx-5)**2+(yy-5)**2<3**2)*1.0 I1=((xx-7)**2+(yy-7)**2<3**2)*1.0 I0/=I0.sum() I1/=I1.sum() i0=I0.ravel() i1=I1.ravel() M=M[i0>0,:][:,i1>0].copy() i0=i0[i0>0] i1=i1[i1>0] Itot=np.concatenate((I0[:,:,np.newaxis],I1[:,:,np.newaxis]),2) #%% plot the distributions pl.figure(1) pl.subplot(2,2,1) pl.imshow(I0) pl.subplot(2,2,2) pl.imshow(I1) #%% barycenter computation alpha=0.5 # 0<=alpha<=1 weights=np.array([1-alpha,alpha]) def conv2(I,k): return sp.ndimage.convolve1d(sp.ndimage.convolve1d(I,k,axis=1),k,axis=0) def conv2n(I,k): res=np.zeros_like(I) for i in range(I.shape[2]): res[:,:,i]=conv2(I[:,:,i],k) return res def get_1Dkernel(reg,thr=1e-16,wmax=1024): w=max(min(wmax,2*int((-np.log(thr)*reg)**(.5))),3) x=
np.arange(w,dtype=np.float64)
numpy.arange
# MIT license # <EMAIL> '''rigid-body kinematics''' from __future__ import absolute_import import numpy as np import math import sys from contextlib import contextmanager from numpy.linalg import norm # a few helpers def vec(*coords): return np.array(coords, dtype=float) deg = math.pi / 180.0 ex = vec(1, 0, 0) ey = vec(0, 1, 0) ez = vec(0, 0, 1) # slices for quaternion/rigid/deriv imag_slice = slice(1, None) real_index = 0 angular_slice = slice(None, 3) linear_slice = slice(3, None) orient_slice = slice(None, 4) center_slice = slice(4, None) def norm2(x): return x.dot(x) class Rigid3(np.ndarray): '''SE(3) group''' dim = 6 __slots__ = () class Deriv(np.ndarray): '''SE(3) lie algebra as (translation, rotation)''' __slots__ = () def __new__(cls, *args, **kwargs): return np.ndarray.__new__(cls, 6) def __init__(self, value=None): if value is None: self[:] = 0 else: self[:] = value @property def linear(self): return self[linear_slice].view(np.ndarray) @linear.setter def linear(self, value): self[linear_slice] = value @property def angular(self): return self[angular_slice].view(np.ndarray) @angular.setter def angular(self, value): self[angular_slice] = value @staticmethod def exp(x): '''group exponential''' res = Rigid3() res.orient = Quaternion.exp(x.angular) res.center = res.orient(Quaternion.dexp(x.angular).dot(x.linear)) return res @property def center(self): return self[center_slice].view(np.ndarray) @center.setter def center(self, value): self[center_slice] = value @property def orient(self): return self[orient_slice].view(Quaternion) @orient.setter def orient(self, value): self[orient_slice] = value def __new__(cls, *args, **kwargs): return np.ndarray.__new__(cls, 7) def __init__(self, value=None, **kwargs): '''construct a rigid transform from given value, identity if none''' if value is None: self[:] = 0 self.orient.real = 1 else: self[:] = value for k, v in kwargs.items(): setattr(self, k, v) def inv(self): '''SE(3) inverse''' res = Rigid3() res.orient = self.orient.inv() res.center = -res.orient(self.center) return res def __mul__(self, other): '''SE(3) product''' res = Rigid3() res.orient = self.orient * other.orient res.center = self.center + self.orient(other.center) return res def __call__(self, x): '''applies rigid transform to vector x''' return self.center + self.orient(x) def Ad(self): '''SE(3) group adjoint matrix in lie algebra coordinates''' res = np.zeros((6, 6)) R = self.orient.matrix() t = Quaternion.hat(self.center) res[angular_slice, angular_slice] = R res[linear_slice, linear_slice] = R res[linear_slice, angular_slice] = t.dot(R) return res def matrix(self): '''homogeneous matrix for rigid transformation''' res = np.zeros((4, 4)) res[:3, :3] = self.orient.matrix() res[:3, 3] = self.center res[3, 3] = 1 return res def log(self): '''SE(3) logarithm''' res = Rigid3.Deriv() res.angular = self.orient.log() res.linear = self.orient.dlog().dot(self.orient.conj()(self.center)) return res @staticmethod def rotation(q): res = Rigid3() res.orient = q return res @staticmethod def translation(v): res = Rigid3() res.center = v return res class Quaternion(np.ndarray): __slots__ = () dim = 3 epsilon = sys.float_info.epsilon def __new__(cls, *args): return np.ndarray.__new__(cls, 4) def __init__(self, value=None): '''construct a quaternion with given values, identity by default''' if value is None: self.real = 1 self.imag = 0 else: self[:] = value @staticmethod def half_turn(axis): '''construct a quaternion for a half-turn of given axis. :param axis: must be normalized ''' res = Quaternion() res.real = 0 res.imag = axis return res def inv(self): '''quaternion inverse. use conj for unit quaternions instead''' return self.conj() / self.dot(self) def conj(self): '''quaternion conjugate''' res = Quaternion() res.real = self.real res.imag = -self.imag return res @property def real(self): '''quaternion real part''' return self[real_index] @real.setter def real(self, value): self[real_index] = value @property def imag(self): '''quaternion imaginary part''' return self[imag_slice].view(np.ndarray) @imag.setter def imag(self, value): self[imag_slice] = value @property def coeffs(self): return self.view(np.ndarray) @coeffs.setter def coeffs(self, value): self.coeffs[:] = value def normalize(self): '''normalize quaternion''' result = norm(self) self /= result return result def flip(self): '''flip quaternion in the real positive halfplane, if needed''' if self.real < 0: self = -self def __mul__(self, other): '''quaternion product''' res = Quaternion() # TODO there might be a more efficient way res.real = self.real * other.real - self.imag.dot(other.imag) res.imag = self.real * other.imag + other.real * self.imag + np.cross(self.imag, other.imag) return res def __call__(self, x): '''rotate a vector. self should be normalized''' # euler-rodrigues formula x = np.array(x) cross = np.cross(self.imag, 2 * x) return x + self.real * cross + np.cross(self.imag, cross) def matrix(self): '''rotation matrix conversion''' K = Quaternion.hat(self.imag) return np.identity(3) + (2.0 * self.real) * K + 2.0 * K.dot(K) @staticmethod def from_matrix(R): # extract skew-symmetric part v = Quaternion.hat_inv((R - R.T) / 2.0) n = norm(v) if n < Quaternion.epsilon: # R is either I or 2 vv^T - I x = np.random.rand(3) v = (R.dot(x) - x) / 2.0 n = norm(v) if n < Quaternion.epsilon: return Quaternion() else: return Quaternion.half_turn((x + v) / norm(x + v)) # note: we can't simply get theta from asin(n) since we'd miss half the # values tmp = (np.trace(R) - 1.0) / 2.0 tmp = max(-1.0, min(1.0, tmp)) # paranoid clamping theta = math.acos(tmp) res = Quaternion() res.real = math.cos(theta / 2) res.imag = math.sin(theta / 2) * (v / n) return res @staticmethod def from_euler(xyz, order='zyx', degrees=False): '''q = qz qy qx, xyz in radians''' if degrees: xyz = np.array(xyz) / deg qs = [Quaternion.exp(xyz * ex), Quaternion.exp(xyz * ey), Quaternion.exp(xyz * ez)] q = Quaternion() for a in order: index = ord(a) - ord('x') q = q * qs[index] return q @staticmethod def exp(x): '''quaternion exponential, halved to match SO(3)''' x = np.array(x) theta = np.linalg.norm(x) res = Quaternion() if math.fabs(theta) < Quaternion.epsilon: # fallback to gnomonic projection: (1 + x) / || 1 + x || res.imag = x / 2.0 res.normalize() return res half_theta = theta / 2.0 s = math.sin(half_theta) c = math.cos(half_theta) res.real = c res.imag = x * (s / theta) return res @staticmethod def dexp(x): '''exponential derivative SO(3) in body-fixed coordinates''' theta = norm(x) if theta < Quaternion.epsilon: return np.identity(3) n = x / theta P = np.outer(n, n) H = Quaternion.hat(n) # we want SO(3) exponential theta = theta / 2.0 s = math.sin(theta) c = math.cos(theta) I = np.identity(3) return P + (s / theta) * (c * I - s * H).dot(I - P) def dlog(self): '''logarithm derivative SO(3) in body-fixed coordinates''' n, theta = self.axis_angle() if n is None: return np.identity(3) half_theta = theta / 2 res = np.zeros((3, 3)) P = np.outer(n, n) log = n * theta return (P + (half_theta / math.tan(half_theta)) * (np.identity(3) - P) + Quaternion.hat(log / 2)) def log(self): '''quaternion logarithm, doubled to match SO(3)''' axis, angle = self.axis_angle() if axis is None: return np.zeros(3) return angle * axis def axis_angle(self): '''rotation axis/angle''' q = self if self.real >= 0 else -self assert q.real >= 0 half_angle = math.acos(min(q.real, 1.0)) if half_angle > Quaternion.epsilon: return q.imag / math.sin(half_angle), 2.0 * half_angle n = norm(q.imag) if n > Quaternion.epsilon: sign = 1.0 if half_angle > 0 else -1.0 return q.imag * (sign / n), 2 * half_angle return None, 2 * half_angle def angle(self): '''rotation angle''' return self.axis_angle()[1] def axis(self): '''rotation axis''' return self.axis_angle()[0] @staticmethod def from_vectors(x, y): '''rotation sending x to y''' # compute -yx yx = Quaternion() dot = x.dot(y) yx.real = y.dot(x) yx.imag =
np.cross(x, y)
numpy.cross
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from abc import ABCMeta, abstractmethod import numpy as np import unittest CARDINAL_DIRECTIONS = ("N", "E", "S", "W") FNAME = "input.txt" TEST_FNAME = "test_input.txt" def main(): """Main function.""" data = load_input(FNAME) part1(data) part2(data) print("\nUnittests") unittest.main() def part1(data): """Solution to day 12, part 1.""" ship = Ship() for instruction in data: ship.action(instruction) distance = ship.manhattan_distance() print(f"The Manhattan distance is {distance}.") return distance def part2(data): """Solution to day 12, part 2.""" ship = ShipWithWaypoint() for instruction in data: ship.action(instruction) distance = ship.manhattan_distance() print(f"The Manhattan distance is {distance}.") return distance def load_input(fname): """Read in the data, return as a list.""" with open(fname, "r") as f: data = f.readlines() return data class FloatingObject(metaclass=ABCMeta): """An object in a two-dimensional space. The following convention for position is used: north (N) and east (E) are assigned to positive values, south (S) and west (W) to negative values. Following typical conventions, we formulate the coordinates as a (latitude, longitude) pair. Example ------- Initial position: (0, 0) Moving N10 results in a new position (10, 0). Following this, moving S20 results in a new position (-10, 0). """ def __init__(self, initial_position): """Create an object with an initial position.""" # Call np.asarray twice to create two deepcopys. self.initial_position = np.asarray(initial_position) self.current_position = np.asarray(initial_position) def update_position(self, direction, value): """Update the object's position.""" if direction == "N": self.current_position[0] += value return if direction == "S": self.current_position[0] -= value return if direction == "E": self.current_position[1] += value return if direction == "W": self.current_position[1] -= value return msg = "No valid direction indicated!" raise ValueError(msg) class Ship(FloatingObject): """A ship moving in a two-dimensional space.""" def __init__(self, initial_direction="E", initial_position=[0,0]): super().__init__(initial_position) self.current_direction_idx = CARDINAL_DIRECTIONS.index(initial_direction) def action(self, instruction): """Perform an action, which can either be a movement or a rotation.""" direction = instruction[0] value = int(instruction[1:]) if direction in ("L", "R"): self.update_direction(direction, value) else: self.update_position(direction, value) def update_position(self, direction, value): """Update the position of the ship.""" if direction == "F": direction = CARDINAL_DIRECTIONS[self.current_direction_idx] super().update_position(direction, value) def update_direction(self, direction, degrees): """Update the direction by rotating X degrees to the left or right. Note that currently, 'degrees' must be a multiple of 90. """ if abs(degrees) % 90 != 0: msg = f"'degrees' is not a multiple of 90. degrees is: {degrees}" raise ValueError(msg) if direction not in ("L", "R"): msg = "'direction' must be 'L' or 'R'." raise ValueError(msg) degrees = -1 * degrees if direction == "L" else degrees self.current_direction_idx += degrees // 90 self.current_direction_idx %= len(CARDINAL_DIRECTIONS) def manhattan_distance(self): """Return the sum of the absolute values of E/W and N/S position.""" distance =
np.abs(self.current_position - self.initial_position)
numpy.abs
""" Copyright (c) 2021, <NAME> All rights reserved. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. """ import traceback as tb from dataclasses import dataclass import re as re import numpy as np it_function_dict = {} class Accumulator: def __init__(self, accumulation_seed): self.accumulation_seed = accumulation_seed def append(self, element_or_substring): if isinstance(self.accumulation_seed, str): self.accumulation_seed += element_or_substring elif isinstance(self.accumulation_seed, list): self.accumulation_seed.append(element_or_substring) return Accumulator(self.accumulation_seed) class StringBuilder: def __init__(self): self.string = '' def __new__(cls): return Accumulator('') class PyKot: def __init__(self, variable, recall=False): self.variable = variable self.recall = recall self.var = variable def __repr__(self): return str(self.variable) def last_index(self): # lastIndex() raise_type_error_if_merited("last_index()", self.variable, str, list, tuple, type(np.array([]))) return PyKot(len(self.variable) - 1) def drop(self, drop_from_front: int): # drop(n) raise_type_error_if_merited("drop(Int)", self.variable, str, list, tuple, type(np.array([]))) self.variable, original_type = pre_type_work(self.variable) result = self.variable[drop_from_front:] result = post_type_work(result, original_type) return PyKot(result, True) def drop_last(self, drop_from_back: int): # dropLast(n) raise_type_error_if_merited("drop_last(Int)", self.variable, str, list, tuple, type(np.array([]))) self.variable, original_type = pre_type_work(self.variable) result = self.variable[:(len(self.variable) - drop_from_back)] result = post_type_work(result, original_type) return PyKot(result, True) def drop_while(self, it_expression): # dropWhile(it expression) raise_type_error_if_merited("drop_while(it expression)", self.variable, str, list, tuple, type(np.array([]))) self.variable, original_type = pre_type_work(self.variable) while it_expression.in_line_function(self.variable[0]): self.variable = self.variable[1:] result = post_type_work(self.variable, original_type) return PyKot(result, True) def drop_last_while(self, it_expression): # dropLastWhile(it expression) raise_type_error_if_merited("drop_last_while(it expression)", self.variable, str, list, tuple, type(np.array([]))) self.variable, original_type = pre_type_work(self.variable) while it_expression.in_line_function(self.variable[-1]): self.variable = self.variable[:-1] result = post_type_work(self.variable, original_type) return PyKot(result, True) def take(self, take_from_front: int): # take(n) raise_type_error_if_merited("take(Int)", self.variable, str, list, tuple, type(np.array([]))) self.variable, original_type = pre_type_work(self.variable) result = self.variable[:take_from_front] result = post_type_work(result, original_type) return PyKot(result, True) def take_last(self, take_from_back: int): # take_last(n) raise_type_error_if_merited("take_last(Int)", self.variable, str, list, tuple, type(np.array([]))) self.variable, original_type = pre_type_work(self.variable) result = self.variable[len(self.variable) - take_from_back:] result = post_type_work(result, original_type) return PyKot(result, True) def take_while(self, it_expression): # take_while(it expression) raise_type_error_if_merited("take_while(it expression)", self.variable, str, list, tuple, type(np.array([]))) self.variable, original_type = pre_type_work(self.variable) if type_compliance(self.variable, str): result = '' while it_expression.in_line_function(self.variable[0]): result += self.variable[0] self.variable = self.variable[1:] else: result = [] while it_expression.in_line_function(self.variable[0]): result.append(self.variable[0]) self.variable = self.variable[1:] result = post_type_work(result, original_type) return PyKot(result, True) def take_last_while(self, it_expression): # take_last_while(it expression) raise_type_error_if_merited("take_last_while(it expression)", self.variable, str, list, tuple, type(np.array([]))) self.variable, original_type = pre_type_work(self.variable) if type_compliance(self.variable, str): result = '' while it_expression.in_line_function(self.variable[-1]): result += self.variable[-1] self.variable = self.variable[:-1] else: result = [] while it_expression.in_line_function(self.variable[-1]): result.append(self.variable[-1]) self.variable = self.variable[:-1] result = post_type_work(result, original_type) return PyKot(result, True) def length(self): # length() raise_type_error_if_merited("length()", self.variable, str, list, tuple, type(np.array([]))) return PyKot(len(self.variable)) def first(self): # first() raise_type_error_if_merited("first()", self.variable, str, list, tuple, type(np.array([]))) return PyKot(self.variable[0], True) def last(self): # last() raise_type_error_if_merited("last()", self.variable, str, list, tuple, type(np.array([]))) return PyKot(self.variable[-1], True) def trim_margin(self, margin="|"): # trimMargin(margin) raise_type_error_if_merited("trim_margin(margin='|')", self.variable, str) return PyKot(self.variable[(self.variable.find(margin) + len(margin)):], True) def compare_to(self, comparison: str, ignorecase=False): # compareTo(String, ignorecase=False) self.variable, original_type = pre_type_work(self.variable) comparison, original_type_comparison = pre_type_work(comparison) if type_compliance(self.variable, dict): self.variable = tuple(self.variable) if type_compliance(comparison, dict): comparison = tuple(comparison) if ignorecase: self.variable = self.variable.lower() comparison = comparison.lower() original = [self.variable, comparison] sort_compare = [self.variable, comparison] sort_compare.sort() sort_compare = -1 if sort_compare == original else 1 return PyKot(0 if self.variable == comparison else sort_compare) def sub_string(self, first_index, second_index): # subString(i, j) raise_type_error_if_merited("sub_string(Int, Int)", self.variable, str) first_index, valid1, second_index, valid2 = unwrap_it(first_index, second_index) if valid1: first_index = first_index(self.variable) if valid2: second_index = second_index(self.variable) return PyKot(self.variable[first_index: second_index], True) def split(self, delimiter=' ', *additional_delimiters, ignorecase=False): # split(delimiter) or # split(delimiter, ignorecase=True) or split(delimiter.toRegex()) or split(regex(delimiter)) raise_type_error_if_merited("split(delimiter=' ', *additional_delimiters, ignorecase=False)", self.variable, str) if ignorecase: string = self.variable.lower() delimiter_list = [delimiter.lower()] + [d.lower() for d in additional_delimiters] else: string = self.variable delimiter_list = [delimiter] + [d for d in additional_delimiters] if type_compliance(delimiter, type(re.compile(''))): result = re.split(delimiter, self.variable) else: delimiter_indexes = [] found = 0 for delimiter in delimiter_list: while found != -1 and (len(string) - found) >= len(delimiter): found = string.find(delimiter, found, len(string) - 1) if found == -1: continue delimiter_indexes.append(found) found += len(delimiter) delimiter_indexes.append(found) found = 0 delimiter_indexes.append(0) delimiter_indexes.sort() delimiter_indexes.append(-1) di = iter(delimiter_indexes) delimiter_indexes = list(zip(di, di)) result = [self.variable[i:] if j == -1 else self.variable[i: j] for i, j in delimiter_indexes] return PyKot(tuple(result), True) def sub_sequence(self, first_index: int, second_index: int): # subSequence(i, j) raise_type_error_if_merited("sub_string(Int, Int)", self.variable, str) first_index, valid1, second_index, valid2 = unwrap_it(first_index, second_index) if valid1: first_index = first_index(self.variable) if valid2: second_index = second_index(self.variable) return PyKot(self.variable[first_index: second_index], True) def lines(self): # lines() raise_type_error_if_merited("lines()", self.variable, str) return PyKot(self.variable.splitlines(), True) def capitalize(self): # capitalize() raise_type_error_if_merited("capitalize()", self.variable, str) return PyKot(self.variable.capitalize(), True) def to_regex(self): # toRegex() raise_type_error_if_merited("to_regex()", self.variable, str) return re.compile(self.variable) def replace(self, old_value: str, new_value: str, ignorecase=False): # replace(old, new, ignorecase=False) raise_type_error_if_merited("replace(String, String, ignorecase=False)", self.variable, str) if ignorecase: find_index = self.variable.lower().find(old_value.lower()) if find_index == -1: return PyKot(self.variable, True) return PyKot(self.variable[:find_index] + new_value + self.variable[(find_index + len(old_value)):], True) return PyKot(self.variable.replace(old_value, new_value), True) def ends_with(self, substring): # endsWith(substring) raise_type_error_if_merited("ends_with(String)", self.variable, str, list, tuple, type(np.array([]))) if type_compliance(self.variable, str): result = True if self.variable[-len(substring):] == substring else False else: self.variable = unpack_array(self.variable) result = True for element in self.variable: if not type_compliance(element, str): raise TypeError("All elements in iterable must be a String to use ends_with()") if result: result = True if element[-len(substring):] == substring else False return PyKot(result, True) def plus(self, string_or_int): # plus(String) or plus(Int) raise_type_error_if_merited("plus(String) or plus(Int)", self.variable, str, int) if type_compliance(self.variable, str) and type_compliance(string_or_int, int): string_or_int = str(string_or_int) elif type_compliance(self.variable, int) and type_compliance(string_or_int, str): string_or_int = int(string_or_int) return PyKot(self.variable + string_or_int, True) def get(self, index): # get() raise_type_error_if_merited("get(Int)", self.variable, str, list, tuple, type(np.array([])), dict) if isinstance(self.variable[index], type(np.array([1])[0])): result = int(self.variable[index]) elif isinstance(self.variable[index], type(np.array([1.0])[0])): result = float(self.variable[index]) elif isinstance(self.variable, dict): result = self.variable[index] if index in self.variable.keys() else None else: result = self.variable[index] return PyKot(result, True) def to_string(self): # toString() raise_type_error_if_merited("to_string()", self.variable, str, int, list, tuple, range, dict) if isinstance(self.variable, str): result = self.variable else: result = str(self.variable) return PyKot(result, True) def content_to_string(self): # contentToString() raise_type_error_if_merited("content_to_string()", self.variable, list, tuple, type(np.array([]))) return PyKot(str([x for x in self.variable]), True) def any(self, predicate=None): # any(predicate) raise_type_error_if_merited("any(), any(value), or any(predicate)", self.variable, list, tuple, dict, type(np.array([]))) result = unpack_array(self.variable) if type_compliance(predicate, type(it())): predicate = predicate.in_line_function if type_compliance(self.variable, dict): if not type_compliance(predicate, str, int): result = True if len(list(filter(predicate, self.variable.items()))) > 0 else False else: if not type_compliance(predicate, str, int): result = True if len(list(filter(predicate, result))) > 0 else False if type_compliance(predicate, str, int): if type_compliance(self.variable, dict): result = True if predicate in self.variable.keys() else False else: result = True if predicate in self.variable else False if predicate is None: if self.variable: result = True else: result = False return PyKot(result, True) def none(self): # any(predicate) raise_type_error_if_merited("any(), any(value), or any(predicate)", self.variable, list, tuple, dict, type(np.array([]))) return PyKot(False if unpack_array(self.variable) else True, True) def to_list(self): # toList() raise_type_error_if_merited("to_list()", self.variable, list, tuple, dict, type(np.array([]))) if type_compliance(self.variable, tuple): result = self.variable elif type_compliance(self.variable, dict): result = tuple([(key, self.variable[key]) for key in self.variable.keys()]) else: result = tuple(self.variable) return PyKot(result, True) def to_mutable_list(self): # toMutableList() raise_type_error_if_merited("to_mutable_list()", self.variable, list, tuple, dict, type(np.array([]))) if isinstance(self.variable, tuple): result = list(self.variable) elif type_compliance(self.variable, dict): result = [(key, self.variable[key]) for key in self.variable.keys()] elif type_compliance(self.variable, type(np.array([]))): result = [x for x in unpack_array(self.variable)] else: result = self.variable return PyKot(result, True) def contains(self, element): # contains(element) raise_type_error_if_merited("contains()", self.variable, list, tuple, dict, type(np.array([]))) if isinstance(self.variable, dict): return PyKot(element in self.variable.keys(), True) return PyKot(element in self.variable, True) def filter(self, predicate): # filter(predicate) raise_type_error_if_merited("filter(function)", self.variable, list, tuple, dict, type(np.array([]))) predicate = predicate.in_line_function if type_compliance(self.variable, dict): new_map = dict(tuple(filter(predicate, self.variable.items()))) result = new_map else: result = list(filter(predicate, self.variable)) return PyKot(result, True) def filter_not(self, predicate): # filterNot(predicate) raise_type_error_if_merited("filter_not(function)", self.variable, list, tuple, dict, type(np.array([]))) predicate = predicate.in_line_function if type_compliance(self.variable, dict): new_map = {} do_not_include = list(filter(predicate, self.variable.items())) do_not_include = [x for x, y in do_not_include] for key in self.variable.keys(): if key not in do_not_include: new_map[key] = self.variable[key] result = new_map else: new_list = [] do_not_include = list(filter(predicate, self.variable)) for value in [unpack_array_element(x) for x in self.variable]: if value not in do_not_include: new_list.append(value) result = new_list return PyKot(result, True) def filter_indexed(self, predicate): # filter_indexed(predicate) raise_type_error_if_merited("filter_indexed(predicate)", self.variable, list, tuple, type(np.array([]))) raise_type_error_if_merited("filter_indexed()", predicate, type(lambda x: x)) return PyKot([y for x, y in enumerate(unpack_array(self.variable)) if predicate(x, y)], True) def filter_not_null(self): # filter_not_null() raise_type_error_if_merited("filter_not_null()", self.variable, list, tuple, type(np.array([]))) return PyKot([x for x in unpack_array(self.variable) if x is not None]) def filter_is_instance(self, acceptable_type): # filter_is_instance(type) raise_type_error_if_merited("filter_is_instance(acceptable_type)", self.variable, list, tuple, type(np.array([]))) return PyKot([x for x in unpack_array(self.variable) if type(x) == acceptable_type]) def partition(self, predicate): # partition(predicate) raise_type_error_if_merited("partition(predicate)", self.variable, list, tuple, type(np.array([]))) if type_compliance(predicate, type(it())): predicate = predicate.in_line_function match = [] rest = [] for element in unpack_array(self.variable): if predicate(element): match.append(element) else: rest.append(element) return PyKot((tuple(match), tuple(rest)), True) def for_each(self, *statements): # forEach( statements ) raise_type_error_if_merited("for_each(*statements)", self.variable, list, tuple, type(
np.array([])
numpy.array
""" Copyright (C) 2018-2020 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest import numpy as np from mo.middle.passes.fusing.decomposition import convert_scale_shift_to_mul_add, convert_batch_norm from mo.utils.unittest.graph import build_graph from mo.utils.ir_engine.compare_graphs import compare_graphs nodes_attributes = { 'placeholder_1': {'shape': None, 'type': 'Parameter', 'kind': 'op', 'op': 'Parameter'}, 'placeholder_1_data': {'value': None, 'shape': None, 'kind': 'data', 'data_type': None}, 'placeholder_2': {'shape': None, 'type': 'Parameter', 'kind': 'op', 'op': 'Parameter'}, 'placeholder_2_data': {'value': None, 'shape': None, 'kind': 'data', 'data_type': None}, # ScaleShift layer 'scaleshift_1': {'type': 'ScaleShift', 'kind': 'op', 'op': 'ScaleShift', 'axis': 0}, 'const_scaleshift_1_w': {'value': None, 'shape': None, 'kind': 'op'}, 'scaleshift_1_w': {'value': None, 'shape': None, 'kind': 'data'}, 'const_scaleshift_1_b': {'value': None, 'shape': None, 'kind': 'op'}, 'scaleshift_1_b': {'value': None, 'shape': None, 'kind': 'data'}, 'scaleshift_1_data': {'value': None, 'shape': None, 'kind': 'data'}, # Mul and Add operations 'mul_1': {'type': None, 'value': None, 'kind': 'op', 'op': 'Mul'}, 'const_mul_1_w': {'value': None, 'shape': None, 'kind': 'op'}, 'mul_1_w': {'value': None, 'shape': None, 'kind': 'data'}, 'mul_1_data': {'value': None, 'shape': None, 'kind': 'data'}, 'add_1': {'type': None, 'kind': 'op', 'op': 'Add'}, 'const_add_1_w': {'value': None, 'shape': None, 'kind': 'op'}, 'add_1_w': {'value': None, 'shape': None, 'kind': 'data'}, 'add_1_data': {'value': None, 'shape': None, 'kind': 'data'}, # Mul and Add operations 'mul_2': {'type': None, 'kind': 'op', 'op': 'Mul'}, 'const_mul_2_w': {'value': None, 'shape': None, 'kind': 'op'}, 'mul_2_w': {'value': None, 'shape': None, 'kind': 'data'}, 'mul_2_data': {'value': None, 'shape': None, 'kind': 'data'}, 'add_2': {'type': None, 'kind': 'op', 'op': 'Add'}, 'const_add_2_w': {'value': None, 'shape': None, 'kind': 'op'}, 'add_2_w': {'value': None, 'shape': None, 'kind': 'data'}, 'add_2_data': {'value': None, 'shape': None, 'kind': 'data'}, # Reshape 'placeholder_2/Reshape_': {'type': 'Reshape', 'kind': 'op', 'op': 'Reshape'}, 'placeholder_2/Reshape_data': {'value': None, 'shape': None, 'kind': 'data'}, 'placeholder_2/Reshape_const': {'type': 'Const', 'kind': 'op', 'op': 'Const', 'value': None}, 'placeholder_2/Reshape_const_data': {'kind': 'data', 'value': None, 'shape': None}, # BatchNorm operation 'bn_op': {'type': None, 'kind': 'op', 'op': 'BatchNorm', 'can_be_fused': True}, 'const_bn_const': {'value': None, 'shape': None, 'kind': 'op'}, 'bn_const': {'value': None, 'shape': None, 'kind': 'data'}, 'const_bn_beta': {'value': None, 'shape': None, 'kind': 'op'}, 'bn_beta': {'value': None, 'shape': None, 'kind': 'data'}, 'const_bn_mean': {'value': None, 'shape': None, 'kind': 'op'}, 'bn_mean': {'value': None, 'shape': None, 'kind': 'data'}, 'const_bn_var': {'value': None, 'shape': None, 'kind': 'op'}, 'bn_var': {'value': None, 'shape': None, 'kind': 'data'}, 'bn_data': {'value': None, 'shape': None, 'kind': 'data'}, # Concat1 operation 'concat': {'type': 'Concat', 'kind': 'op', 'op': 'Concat'}, 'concat_data': {'value': None, 'shape': None, 'kind': 'data'}, 'op_output': {'kind': 'op', 'op': 'Result'} } class ScaleShiftToMulAdd(unittest.TestCase): # ScaleShift -> Mul def test_scaleshift_to_mul_1(self): graph = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'scaleshift_1'), ('const_scaleshift_1_w', 'scaleshift_1_w'), ('scaleshift_1_w', 'scaleshift_1'), ('scaleshift_1', 'scaleshift_1_data'), ('scaleshift_1_data', 'op_output') ], {'placeholder_1_data': {'shape': np.array([1, 227, 227, 3])}, 'scaleshift_1_w': {'shape': np.array([3]), 'value': np.array([1, 2, 3])}, 'scaleshift_1_data': {} }) graph_ref = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'mul_1'), ('const_mul_1_w', 'mul_1_w'), ('mul_1_w', 'mul_1'), ('mul_1', 'scaleshift_1_data'), ('scaleshift_1_data', 'op_output') ], {'placeholder_1_data': {'shape': np.array([1, 227, 227, 3])}, 'const_mul_1_w': {'shape': np.array([3]), 'value': np.array([1, 2, 3])}, 'mul_1_w': {'shape': np.array([3]), 'value': np.array([1, 2, 3])}, 'mul_1': {'can_be_fused': True}, 'scaleshift_1_data': {} }) graph.graph['layout'] = 'NHWC' convert_scale_shift_to_mul_add(graph) graph.clean_up() (flag, resp) = compare_graphs(graph, graph_ref, 'placeholder_1') self.assertTrue(flag, resp) # ScaleShift 2 inputs-> Mul def test_scaleshift2_to_mul(self): graph = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_2', 'placeholder_2_data'), ('placeholder_1_data', 'scaleshift_1'), ('placeholder_2_data', 'scaleshift_1'), ('scaleshift_1', 'scaleshift_1_data'), ('scaleshift_1_data', 'op_output') ], {'placeholder_1_data': {'shape': np.array([1, 227, 227, 3])}, 'placeholder_2_data': {'shape': np.array([1, 227])}, 'scaleshift_1_data': {} }) graph_ref = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_2', 'placeholder_2_data'), ('placeholder_2_data', 'placeholder_2/Reshape_'), ('placeholder_2/Reshape_const', 'placeholder_2/Reshape_const_data'), ('placeholder_2/Reshape_const_data', 'placeholder_2/Reshape_'), ('placeholder_2/Reshape_', 'placeholder_2/Reshape_data'), ('placeholder_1_data', 'mul_1'), ('placeholder_2/Reshape_data', 'mul_1'), ('mul_1', 'scaleshift_1_data'), ('scaleshift_1_data', 'op_output') ], {'placeholder_1_data': {'shape': np.array([1, 227, 227, 3])}, 'placeholder_2_data': {'shape': np.array([1, 227])}, 'placeholder_2/Reshape_const': {'value': np.array([1, 227, 1, 1]), 'shape': [4]}, 'placeholder_2/Reshape_const_data': {'value': np.array([1, 227, 1, 1]), 'shape': [4]}, 'placeholder_2/Reshape_data': {'shape': np.array([1, 227, 1, 1])}, 'mul_1': {'can_be_fused': True}, 'scaleshift_1_data': {} }) graph.graph['layout'] = 'NHWC' convert_scale_shift_to_mul_add(graph) graph.clean_up() (flag, resp) = compare_graphs(graph, graph_ref, 'placeholder_1') self.assertTrue(flag, resp) # ScaleShift 2 inputs-> Mul (axis = 1) def test_scaleshift2_axis1_to_mul(self): graph = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_2', 'placeholder_2_data'), ('placeholder_1_data', 'scaleshift_1'), ('placeholder_2_data', 'scaleshift_1'), ('scaleshift_1', 'scaleshift_1_data'), ('scaleshift_1_data', 'op_output') ], {'placeholder_1_data': {'shape': np.array([1, 227, 227, 3])}, 'placeholder_2_data': {'shape': np.array([227])}, 'scaleshift_1': {'axis': 1}, 'scaleshift_1_data': {} }) graph_ref = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_2', 'placeholder_2_data'), ('placeholder_2_data', 'placeholder_2/Reshape_'), ('placeholder_2/Reshape_const', 'placeholder_2/Reshape_const_data'), ('placeholder_2/Reshape_const_data', 'placeholder_2/Reshape_'), ('placeholder_2/Reshape_', 'placeholder_2/Reshape_data'), ('placeholder_1_data', 'mul_1'), ('placeholder_2/Reshape_data', 'mul_1'), ('mul_1', 'scaleshift_1_data'), ('scaleshift_1_data', 'op_output') ], {'placeholder_1_data': {'shape': np.array([1, 227, 227, 3])}, 'placeholder_2_data': {'shape': np.array([227])}, 'placeholder_2/Reshape_const': {'value': np.array([1, 227, 1, 1]), 'shape': [4]}, 'placeholder_2/Reshape_const_data': {'value': np.array([1, 227, 1, 1]), 'shape': [4]}, 'placeholder_2/Reshape_data': {'shape': np.array([1, 227, 1, 1])}, 'mul_1': {'can_be_fused': True}, 'scaleshift_1_data': {} }) graph.graph['layout'] = 'NHWC' convert_scale_shift_to_mul_add(graph) graph.clean_up() (flag, resp) = compare_graphs(graph, graph_ref, 'placeholder_1') self.assertTrue(flag, resp) # ScaleShift -> Mul (Zero biases) def test_scaleshift_to_mul_2(self): graph = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'scaleshift_1'), ('const_scaleshift_1_w', 'scaleshift_1_w'), ('const_scaleshift_1_b', 'scaleshift_1_b'), ('scaleshift_1_w', 'scaleshift_1'), ('scaleshift_1_b', 'scaleshift_1'), ('scaleshift_1', 'scaleshift_1_data'), ('scaleshift_1_data', 'op_output') ], {'placeholder_1_data': {'shape': np.array([1, 227, 227, 3])}, 'scaleshift_1_w': {'shape': np.array([3]), 'value': np.array([1, 2, 3])}, 'scaleshift_1_b': {'shape': np.array([3]), 'value': np.array([0, 0, 0])}, 'scaleshift_1_data': {} }) graph_ref = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'mul_1'), ('const_mul_1_w', 'mul_1_w'), ('mul_1_w', 'mul_1'), ('mul_1', 'scaleshift_1_data'), ('scaleshift_1_data', 'op_output') ], {'placeholder_1_data': {'shape': np.array([1, 227, 227, 3])}, 'const_mul_1_w': {'shape': np.array([3]), 'value': np.array([1, 2, 3])}, 'mul_1_w': {'shape': np.array([3]), 'value': np.array([1, 2, 3])}, 'mul_1': {'can_be_fused': True}, 'scaleshift_1_data': {} }) graph.graph['layout'] = 'NHWC' convert_scale_shift_to_mul_add(graph) graph.clean_up() (flag, resp) = compare_graphs(graph, graph_ref, 'placeholder_1') self.assertTrue(flag, resp) # ScaleShift -> Mul->Add def test_scaleshift_to_mul_add(self): graph = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'scaleshift_1'), ('const_scaleshift_1_w', 'scaleshift_1_w'), ('const_scaleshift_1_b', 'scaleshift_1_b'), ('scaleshift_1_w', 'scaleshift_1'), ('scaleshift_1_b', 'scaleshift_1'), ('scaleshift_1', 'scaleshift_1_data'), ('scaleshift_1_data', 'op_output') ], {'placeholder_1_data': {'shape': np.array([1, 227, 227, 3])}, 'scaleshift_1_w': {'shape': np.array([3]), 'value': np.array([1, 2, 3])}, 'scaleshift_1_b': {'shape': np.array([3]), 'value': np.array([3, 2, 1])}, 'scaleshift_1_data': {} }) graph_ref = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'mul_1'), ('const_mul_1_w', 'mul_1_w'), ('mul_1_w', 'mul_1'), ('mul_1', 'mul_1_data'), ('mul_1_data', 'add_1'), ('const_add_1_w', 'add_1_w'), ('add_1_w', 'add_1'), ('add_1', 'scaleshift_1_data'), ('scaleshift_1_data', 'op_output') ], {'placeholder_1_data': {'shape': np.array([1, 227, 227, 3])}, 'const_mul_1_w': {'shape': np.array([3]), 'value': np.array([1, 2, 3])}, 'mul_1_w': {'shape': np.array([3]), 'value': np.array([1, 2, 3])}, 'const_add_1_w': {'shape': np.array([3]), 'value': np.array([3, 2, 1])}, 'add_1_w': {'shape': np.array([3]), 'value': np.array([3, 2, 1])}, 'mul_1_data': {'shape': np.array([1, 227, 227, 3])}, 'add_1': {'can_be_fused': True}, 'mul_1': {'can_be_fused': True}, 'scaleshift_1_data': {} }) graph.graph['layout'] = 'NHWC' convert_scale_shift_to_mul_add(graph) graph.clean_up() (flag, resp) = compare_graphs(graph, graph_ref, 'placeholder_1') self.assertTrue(flag, resp) # ScaleShift -> None (Zero weights and biases) def test_scaleshift_to_nothing(self): graph = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'scaleshift_1'), ('const_scaleshift_1_w', 'scaleshift_1_w'), ('const_scaleshift_1_b', 'scaleshift_1_b'), ('scaleshift_1_w', 'scaleshift_1'), ('scaleshift_1_b', 'scaleshift_1'), ('scaleshift_1', 'scaleshift_1_data'), ('scaleshift_1_data', 'op_output') ], {'placeholder_1_data': {'shape': np.array([1, 227, 227, 3])}, 'scaleshift_1_w': {'shape': np.array([3]), 'value': np.array([1, 1, 1])}, 'scaleshift_1_b': {'shape': np.array([3]), 'value': np.array([0, 0, 0])}, 'scaleshift_1_data': {'shape': np.array([1, 227, 227, 3])} }, nodes_with_edges_only=True) graph_ref = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'op_output') ], {'placeholder_1_data': {'shape': np.array([1, 227, 227, 3])}} ,nodes_with_edges_only=True) graph.graph['layout'] = 'NHWC' convert_scale_shift_to_mul_add(graph) graph.clean_up() (flag, resp) = compare_graphs(graph, graph_ref, 'placeholder_1') self.assertTrue(flag, resp) # ScaleShift -> ScaleShift (can_be_fused=False) def test_scaleshift_can_be_fused(self): graph = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'scaleshift_1'), ('const_scaleshift_1_w', 'scaleshift_1_w'), ('const_scaleshift_1_b', 'scaleshift_1_b'), ('scaleshift_1_w', 'scaleshift_1'), ('scaleshift_1_b', 'scaleshift_1'), ('scaleshift_1', 'scaleshift_1_data'), ('scaleshift_1_data', 'op_output') ], {'placeholder_1_data': {'shape': np.array([1, 227, 227, 3])}, 'scaleshift_1_w': {'shape': np.array([3]), 'value': np.array([1, 1, 1])}, 'scaleshift_1_b': {'shape': np.array([3]), 'value': np.array([0, 0, 0])}, 'scaleshift_1': {'can_be_fused': False}, 'scaleshift_1_data': {'shape': np.array([1, 227, 227, 3])} }) graph_ref = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'scaleshift_1'), ('const_scaleshift_1_w', 'scaleshift_1_w'), ('const_scaleshift_1_b', 'scaleshift_1_b'), ('scaleshift_1_w', 'scaleshift_1'), ('scaleshift_1_b', 'scaleshift_1'), ('scaleshift_1', 'scaleshift_1_data'), ('scaleshift_1_data', 'op_output') ], {'placeholder_1_data': {'shape': np.array([1, 227, 227, 3])}, 'const_scaleshift_1_w': {'shape': np.array([3]), 'value': np.array([1, 1, 1])}, 'scaleshift_1_w': {'shape': np.array([3]), 'value': np.array([1, 1, 1])}, 'const_scaleshift_1_b': {'shape': np.array([3]), 'value': np.array([0, 0, 0])}, 'scaleshift_1_b': {'shape': np.array([3]), 'value': np.array([0, 0, 0])}, 'scaleshift_1': {'can_be_fused': False}, 'scaleshift_1_data': {'shape': np.array([1, 227, 227, 3])} }) convert_scale_shift_to_mul_add(graph) graph.clean_up() (flag, resp) = compare_graphs(graph, graph_ref, 'scaleshift_1_data') self.assertTrue(flag, resp) class BatchNormDecomposition(unittest.TestCase): def test_bn_decomposition_1(self): graph = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'bn_op'), ('const_bn_const', 'bn_const'), ('const_bn_beta', 'bn_beta'), ('const_bn_mean', 'bn_mean'), ('const_bn_var', 'bn_var'), ('bn_const', 'bn_op'), ('bn_beta', 'bn_op'), ('bn_mean', 'bn_op'), ('bn_var', 'bn_op'), ('bn_op', 'bn_data'), ('concat', 'concat_data'), ('bn_data', 'concat'), ('concat_data', 'op_output') ], {'placeholder_1_data': {'shape': np.array([1, 227, 227, 3])}, 'bn_op': {'eps': 1.2}, 'bn_const': {'shape': np.array([3]), 'value': np.array([1, 2, 3])}, 'bn_beta': {'shape': np.array([3]), 'value': np.array([1, 2, 3])}, 'bn_mean': {'shape': np.array([3]), 'value': np.array([1, 2, 3])}, 'bn_var': {'shape': np.array([3]), 'value': np.array([1, 2, 3])}, 'bn_data': {'shape': np.array([1, 227, 227, 3])}, 'concat_data': {} }, nodes_with_edges_only=True) graph_ref = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'mul_1'), ('const_mul_1_w', 'mul_1_w'), ('mul_1_w', 'mul_1'), ('mul_1', 'mul_1_data'), ('mul_1_data', 'add_1'), ('const_add_1_w', 'add_1_w'), ('add_1_w', 'add_1'), ('add_1', 'add_1_data'), ('add_1_data', 'mul_2'), ('const_mul_2_w', 'mul_2_w'), ('mul_2_w', 'mul_2'), ('mul_2', 'mul_2_data'), ('mul_2_data', 'add_2'), ('const_add_2_w', 'add_2_w'), ('add_2_w', 'add_2'), ('add_2', 'add_2_data'), ('concat', 'concat_data'), ('add_2_data', 'concat'), ('concat_data', 'op_output') ], {'placeholder_1_data': {'shape': np.array([1, 227, 227, 3])}, 'const_mul_1_w': {'shape':
np.array([3])
numpy.array
# LSTM(GRU) 예시 : KODEX200 주가 (2010 ~ 현재)를 예측해 본다. # KODEX200의 종가와, 10일, 40일 이동평균을 이용하여 향후 10일 동안의 종가를 예측해 본다. # 과거 20일 (step = 20) 종가, 이동평균 패턴을 학습하여 예측한다. # 일일 주가에 대해 예측이 가능할까 ?? # # 2018.11.22, 아마추어퀀트 (조성현) # -------------------------------------------------------------------------- import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import pandas as pd from MyUtil import YahooData nInput = 3 nOutput = 3 nStep = 20 nNeuron = 50 # 2차원 배열의 시계열 데이터로 학습용 배치 파일을 만든다. # return : xBatch - RNN 입력 # yBatch - RNN 출력 # # step = 2, n = 3 이라면, # xData = [[1,2,3], [4,5,6], [7,8,9], [10,11,12], ...] # xBatch = [[[1,2,3], [4,5,6]], [[7,8,9], [10,11,12]], ...] # yBatch = [[[4,5,6], [7,8,9]], [[10,11,12], [13,14,15]], ...] def createTrainData(xData, step, n=nInput): m = np.arange(len(xData) - step) np.random.shuffle(m) x, y = [], [] for i in m: a = xData[i:(i+step)] x.append(a) xBatch = np.reshape(np.array(x), (len(m), step, n)) for i in m+1: a = xData[i:(i+step)] y.append(a) yBatch = np.reshape(np.array(y), (len(m), step, n)) return xBatch, yBatch # 주가 데이터 #df = YahooData.getStockDataYahoo('^KS11', start='2007-01-01') df = pd.read_csv('StockData/^KS11.csv', index_col=0, parse_dates=True) df = pd.DataFrame(df['Close']) df['ma_10'] = pd.DataFrame(df['Close']).rolling(window=10).mean() df['ma_40'] = pd.DataFrame(df['Close']).rolling(window=40).mean() df = df.dropna() df = (df - df.mean()) / df.std() # 학습 데이터를 생성한다. data = np.array(df) xBatch, yBatch = createTrainData(data, nStep) # RNN 그래프를 생성한다 (Wx, Wh). xBatch를 RNN에 입력한다. tf.reset_default_graph() x = tf.placeholder(tf.float32, [None, nStep, nInput]) rnn = tf.nn.rnn_cell.LSTMCell(nNeuron) #rnn = tf.nn.rnn_cell.GRUCell(nNeuron) output, state = tf.nn.dynamic_rnn(rnn, x, dtype=tf.float32) # RNN의 출력값을 입력으로 받아 3개의 y가 출력되도록 하는 feed-forward network를 생성한다. (Wy) y = tf.placeholder(tf.float32, [None, nStep, nOutput]) inFC = tf.reshape(output, [-1, nNeuron]) fc1 = tf.contrib.layers.fully_connected(inputs=inFC, num_outputs=nNeuron) predY = tf.contrib.layers.fully_connected(inputs=fc1, num_outputs=nOutput, activation_fn=None) predY = tf.reshape(predY, [-1, nStep, nOutput]) # Mean square error (MSE)로 Loss를 정의한다. xBatch가 입력되면 yBatch가 출력되도록 함. loss = tf.reduce_sum(tf.square(predY - y)) optimizer = tf.train.AdamOptimizer(learning_rate=0.001) minLoss = optimizer.minimize(loss) # 그래프를 실행한다. 학습한다. (Wx, Wh, Wy를 업데이트함) sess = tf.Session() sess.run(tf.global_variables_initializer()) lossHist = [] for i in range(300): sess.run(minLoss, feed_dict={x: xBatch, y: yBatch}) if i % 5 == 0: ploss = sess.run(loss, feed_dict={x: xBatch, y: yBatch}) lossHist.append(ploss) print(i, "\tLoss:", ploss) # 향후 10 기간 데이터를 예측한다. 향후 1 기간을 예측하고, 예측값을 다시 입력하여 2 기간을 예측한다. # 이런 방식으로 10 기간까지 예측한다. nFuture = 10 if len(data) > 100: lastData = np.copy(data[-100:]) # 원 데이터의 마지막 100개만 그려본다 else: lastData = np.copy(data) dx =
np.copy(lastData)
numpy.copy
import types import numpy as np import pytest import torch from combine1d.core.cost_function import (get_indices_for_unknown_parameters, get_known_parameters, create_cost_fct, initialise_flowline, initialise_mb_models, get_cost_terms, cost_fct, calculate_difference_between_observation_and_model, define_reg_parameters, get_gradients, do_height_shift_spinup) from combine1d.core.first_guess import get_first_guess from combine1d.core.dynamics import run_model_and_get_temporal_model_data pytestmark = pytest.mark.filterwarnings("ignore:<class 'combine1d.core.torch_interp1d.Interp1d'> " "should not be instantiated.:DeprecationWarning") class TestCreateCostFct: def test_get_known_parameters(self, data_logger_init): data_logger = data_logger_init known_parameters = get_known_parameters(data_logger) fl = data_logger.flowline_init for key in known_parameters.keys(): if 'area_bed_h' in data_logger.control_vars: assert 'bed_h' in known_parameters else: assert key in data_logger.control_vars if key in ['w0_m', 'lambdas']: prefix = '_' mask = (data_logger.is_trapezoid & data_logger.ice_mask) elif key in ['bed_h']: prefix = '' mask = data_logger.ice_mask elif key in ['area_bed_h']: prefix = '' mask = data_logger.ice_mask key = 'bed_h' elif key in ['surface_h']: prefix = '' mask = np.full(data_logger.ice_mask.shape, True) assert np.allclose(known_parameters[key], getattr(fl, prefix + key)[~mask], equal_nan=True) def test_create_indices_for_unknown_parameters(self, data_logger_init): data_logger = data_logger_init parameter_indices = get_indices_for_unknown_parameters(data_logger) all_indices = np.array([]) for key in parameter_indices.keys(): assert key in data_logger.control_vars all_indices = np.append(all_indices, parameter_indices[key]) # check that start with 0, every index is only present once, ends at len() - 1 values, counts = np.unique(all_indices, return_counts=True) assert np.allclose(counts, 1) assert np.min(values) == 0 assert
np.max(values)
numpy.max
#!/bin/env python def co2_emissions(yr, escheme): from scipy.interpolate import interp1d import numpy as np ## historical emissions time = np.arange(1764, 2006, step=1) emit_hist = [0,0.003,0.003,0.003,0.003,0.003,0.003,0.004,0.004,0.004,0.004,0.004,0.004,0.004,0.004,0.004,0.004, 0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.006,0.006,0.006,0.006,0.006,0.006,0.007, 0.007,0.007,0.008,0.008,0.010,0.009,0.009,0.009,0.010,0.010,0.010,0.010,0.010,0.011,0.011,0.011,0.011, 0.012,0.013,0.014,0.014,0.014,0.014,0.014,0.015,0.016,0.016,0.017,0.017,0.018,0.018,0.018,0.024,0.023, 0.023,0.024,0.024,0.025,0.029,0.029,0.030,0.031,0.033,0.034,0.036,0.037,0.039,0.043,0.043,0.046,0.047, 0.050,0.054,0.054,0.057,0.059,0.069,0.071,0.076,0.077,0.078,0.083,0.091,0.095,0.097,0.104,0.112,0.119, 0.122,0.130,0.135,0.142,0.147,0.156,0.173,0.184,0.174,0.188,0.191,0.195,0.196,0.210,0.236,0.243,0.256, 0.272,0.275,0.277,0.281,0.295,0.327,0.327,0.356,0.372,0.374,0.370,0.383,0.406,0.419,0.440,0.465,0.507, 0.534,0.552,0.566,0.617,0.624,0.663,0.707,0.784,0.750,0.785,0.819,0.836,0.879,0.943,0.850,0.838,0.901, 0.955,0.936,0.806,0.932,0.803,0.845,0.970,0.963,0.975,0.983,1.062,1.065,1.145,1.053,0.940,0.847,0.893, 0.973,1.027,1.130,1.209,1.142,1.192,1.299,1.334,1.342,1.391,1.383,1.160,1.238,1.392,1.469,1.419,1.630, 1.768,1.796,1.841,1.865,2.043,2.178,2.270,2.330,2.462,2.577,2.594,2.700,2.848,3.008,3.145,3.305,3.411, 3.588,3.800,4.076,4.231,4.399,4.635,4.644,4.615,4.883,5.029,5.105,5.387,5.332,5.168,5.127,5.110,5.290, 5.444,5.610,5.753,5.964,6.089,6.144,6.235,6.118,6.124,6.242,6.372,6.510,6.619,6.588,6.569,6.735,6.896, 6.949,7.286,7.672,7.971] if escheme == "rcp85": time2 = np.arange(2006, 2101, step=1) time = np.concatenate([time, time2]) emit_future = [8.162,8.352,8.543,8.735,8.926,9.187,9.448,9.709,9.970,10.232,10.493,10.754,11.015, 11.276,11.538,11.768,11.998,12.228,12.458,12.688,12.918,13.149,13.379,13.609,13.839, 14.134,14.429,14.723,15.018,15.313,15.608,15.902,16.197,16.492,16.787,17.128,17.470, 17.812,18.154,18.496,18.837,19.179,19.521,19.863,20.205,20.544,20.883,21.222,21.561, 21.900,22.240,22.579,22.918,23.257,23.596,23.833,24.069,24.306,24.543,24.779,25.016, 25.252,25.489,25.726,25.962,26.107,26.251,26.395,26.540,26.684,26.829,26.973,27.117, 27.262,27.406,27.499,27.592,27.685,27.778,27.871,27.964,28.058,28.151,28.244,28.337, 28.377,28.417,28.458,28.498,28.538,28.579,28.619,28.659,28.700,28.740] emit = np.concatenate([emit_hist, emit_future]) elif escheme == "pulse": time = time.transpose() emit = time * 0 emit[time == 1800] = 10 # single year of pulsed emissions else: time = time.transpose() emit = time * 0 #time = [-1e6, time, 1e6] # time = np.array([-1e6, time, 1e6]) time = np.insert(time, 0, -1e6, axis=0) time = np.append(time, 1e6) # emit = [0, emit, emit[-1]] emit = np.insert(emit, 0, 0, axis=0) emit = np.append(emit, emit[-1]) # FF=interp1(time,emit,yr); #FF = interp1d(time, emit, yr) FF_fctn = interp1d(time, emit) FF = FF_fctn(yr) return(FF) def calc_pco2(t, s, ta, c, phg): ''' this function calculates the partial pressure of co2 ''' import numpy as np pt = 0e-3 sit = 40.0e-3 tk = 273.15 + t tk100 = tk / 100.0 tk1002 = tk100**2 invtk = 1.0 / tk dlogtk = np.log(tk) ### note this variable has to change names since "is" is inbuilt in python # is = 19.924*s./(1000.-1.005*s); iss = 19.924 * s / (1000. - 1.005 * s) # is2 =is.*is; iss2 = iss**2 sqrtis = np.sqrt(iss) s2 = s**2 sqrts = np.sqrt(s) s15 = s ** 1.5 scl = s / 1.80655 fflocal = (np.exp(-162.8301 + 218.2968 / tk100 + 90.9241 * np.log(tk100) - 1.47696 * tk1002 + s * (.025695 - .025225 * tk100 + 0.0049867 * tk1002))) k0local = (np.exp(93.4517 / tk100 - 60.2409 + 23.3585 * np.log(tk100) + s * (0.023517 - 0.023656 * tk100 + 0.0047036 * tk1002))) k1local = 10**((-1 * (3670.7 * invtk - 62.008 + 9.7944 * dlogtk - 0.0118 * s + 0.000116 * s2))) k2local = 10**(-1 * (1394.7 * invtk + 4.777 - 0.0184 * s + 0.000118 * s2)) kblocal = np.exp((-8966.90 - 2890.53 * sqrts - 77.942 * s + 1.728 * s15 - 0.0996 * s2) * invtk + (148.0248 + 137.1942 * sqrts + 1.62142 * s) + (-24.4344 - 25.085 * sqrts - 0.2474 * s) * dlogtk + 0.053105 *sqrts * tk) k1plocal = np.exp(-4576.752 * invtk + 115.525 - 18.453 * dlogtk + (-106.736 * invtk + 0.69171) * sqrts + (-0.65643 * invtk - 0.01844) * s) k2plocal = np.exp(-8814.715 * invtk + 172.0883 - 27.927 * dlogtk + (-160.340 * invtk + 1.3566) * sqrts + (0.37335 * invtk - 0.05778) * s) k3plocal = np.exp(-3070.75 * invtk - 18.141 + (17.27039 * invtk + 2.81197) * sqrts + (-44.99486 * invtk - 0.09984) * s) ksilocal = np.exp(-8904.2 * invtk + 117.385 - 19.334 * dlogtk + (-458.79 * invtk + 3.5913) * sqrtis + (188.74 * invtk - 1.5998) * iss + (-12.1652 * invtk + 0.07871) * iss2 + np.log(1.0 - 0.001005 * s)) kwlocal = np.exp(-13847.26 * invtk + 148.9652 - 23.6521 * dlogtk + (118.67 * invtk - 5.977 + 1.0495 * dlogtk) * sqrts - 0.01615 * s) kslocal = np.exp(-4276.1 * invtk + 141.328 - 23.093 * dlogtk + (-13856 * invtk + 324.57 - 47.986 * dlogtk) *sqrtis + (35474 * invtk - 771.54 + 114.723 * dlogtk) *iss - 2698 * invtk * iss**1.5 + 1776 * invtk * iss2 + np.log(1.0 - 0.001005 * s)) kflocal = np.exp(1590.2 * invtk - 12.641 + 1.525 * sqrtis + np.log(1.0 - 0.001005 * s) + np.log(1.0 + (0.1400 / 96.062) * (scl) / kslocal)) btlocal = 0.000232 * scl/10.811 stlocal = 0.14 * scl/96.062 ftlocal = 0.000067 * scl/18.998 pHlocal = phg permil =1.0 / 1024.5 pt = pt * permil sit = sit * permil ta = ta * permil c = c * permil #################### ## start iteration ## #################### phguess = pHlocal hguess = 10.0**(-phguess) bohg = btlocal*kblocal / (hguess + kblocal) stuff = (hguess * hguess * hguess + (k1plocal * hguess * hguess) + (k1plocal * k2plocal * hguess) + (k1plocal * k2plocal * k3plocal)) h3po4g = (pt * hguess * hguess * hguess) / stuff h2po4g = (pt * k1plocal * hguess * hguess) / stuff hpo4g = (pt * k1plocal * k2plocal * hguess) / stuff po4g = (pt * k1plocal * k2plocal * k3plocal) / stuff siooh3g = sit * ksilocal / (ksilocal + hguess); cag = (ta - bohg - (kwlocal / hguess) + hguess - hpo4g - 2.0*po4g + h3po4g - siooh3g) gamm = c / cag hnew = (0.5 * (-k1local * (1 - gamm) + np.sqrt((k1local**2) * (1 - gamm)**2 +4 * k1local * k2local * (2 * gamm - 1) ) )) pHlocal_new = -np.log10(hnew) pHlocal = pHlocal_new pco2local = (c / fflocal / (1.0 + (k1local / hnew) + (k1local * k2local / (hnew**2)))) fflocal = fflocal / permil return(pco2local, pHlocal, fflocal) def get_matrix_index(arr_row_num, arr_col_num, row_ind, col_ind): import numpy as np pool_indices = [] element_nums = np.arange(0, 9*5).reshape(arr_col_num, arr_row_num).transpose() for ind in range(0, len(row_ind)): # print(element_nums[row_ind[ind], col_ind[0][ind]]) pool_indices.append(element_nums[row_ind[ind], col_ind[0][ind]]) return(pool_indices) def carbon_climate_derivs(t, y, PE, PS, PL, PO): ''' this is the main function for the box model ''' import numpy as np from scipy.interpolate import interp1d #import seawater as sw # added the necessary seawater functions to their own .py module from seawater_functions import dens0, dens, seck, T68conv Tloc = y[PE['Jtmp']].transpose() Nloc = y[PE['Jnut']].transpose() Dloc = y[PE['Jcoc']].transpose() Cloc = y[PE['Jcla']] patm = y[PE['Jatm']] ## special cases for ocean carbon pumps # homogenize T,S if no solubility pump (for pCO2 only) ############################### NOTE: Need to add T from whatever dict it's coming from #################################### if PS['DoOcn'] == 1: Tsol = PO['T'] Ssol = PO['S'] if PS['DoOcnSol'] == 0: Ttmp=Tsol.flatten() Stmp=Ssol.flatten() Tsol[0,PO['Isfc']] = np.sum(Ttmp[PO['Isfc']] * PO['A'][PO['Isfc']]) / np.sum(PO['A'][PO['Isfc']]) Ssol[0,PO['Isfc']] = np.sum(Stmp[PO['Isfc']] * PO['A'][PO['Isfc']]) / np.sum(PO['A'][PO['Isfc']]) # homogenize alkalinity if no bio pump TAsol = PO['TA'] if PS['DoOcnBio'] == 0: TAsol[PO['Isfc']] = np.sum(PO['TA'][PO['Isfc']] * PO['A'][PO['Isfc']]) / np.sum(PO['A'][PO['Isfc']]) ## update basic quantities # time ymod = t / PE['spery'] # year in model time (starting from 0) ycal = ymod - PS['yspin'] + PS['ypert'] # calendar year (negative means "BCE") if ycal < PS['ypert']: doAtm = 0 # hold atmospheric co2 constant to equilibrate else: doAtm = 1 # allow atmospheric co2 to evolve # interp1d example # matlab: interp1(x, y, xn, 'linear') # python: yn_f2 = interp1d(x[::-1], y[::-1]) # python: yn_py2 = yn_f2(xn) # atmosphere + climate FF = co2_emissions(ycal, PS['escheme']) # fossil fuel co2 emissions (Pg/yr) # [ycal FF] FF = FF * 1e15 / 12 / PE['spery'] # convert to molC/s RFco2 = 5.35 * np.log(patm / PE['patm0']) * PS['DoRadCO2'] # radiative forcing from CO2 RFsto=np.interp(round(ycal),PS['Yint'].transpose(), PS['RFint'].transpose()) RF = (RFco2 + np.nansum(RFsto)) * doAtm dTbar = np.sum(Tloc[PO['Isfc']] * PO['A'][PO['Isfc']]) / np.sum(PO['A'][PO['Isfc']]) #------ terrestrial NPPfac = 1 + np.interp(ycal,PS['Yint'].transpose(), PS['NPPint'].transpose()) NPP = PL['NPP_o'] * NPPfac * (1 + PS['CCC_LC'] * PL['beta_fert'] * np.log(patm / PE['patm0'])) # perturbation NPP #krate = np.diag(PL['kbase']) * PL['Q10_resp']**(PS['CCC_LT'] * dTbar / 10) # scaled turnover rate krate = PL['kbase'] * PL['Q10_resp']**(PS['CCC_LT'] * dTbar / 10) # scaled turnover rate (vector) ## create a matrix version of krate with values on the diagonal krate_diag =
np.zeros((krate.shape[0], krate.shape[0]))
numpy.zeros
import numpy as np from astropy.tests.helper import pytest from stingray import Lightcurve from stingray import Powerspectrum, AveragedPowerspectrum, \ DynamicalPowerspectrum from stingray.powerspectrum import classical_pvalue np.random.seed(20150907) class TestPowerspectrum(object): @classmethod def setup_class(cls): tstart = 0.0 tend = 1.0 dt = 0.0001 time = np.arange(tstart + 0.5*dt, tend + 0.5*dt, dt) mean_count_rate = 100.0 mean_counts = mean_count_rate * dt poisson_counts = np.random.poisson(mean_counts, size=time.shape[0]) cls.lc = Lightcurve(time, counts=poisson_counts, dt=dt, gti=[[tstart, tend]]) def test_make_empty_periodogram(self): ps = Powerspectrum() assert ps.norm == "frac" assert ps.freq is None assert ps.power is None assert ps.power_err is None assert ps.df is None assert ps.m == 1 assert ps.n is None def test_make_periodogram_from_lightcurve(self): ps = Powerspectrum(lc=self.lc) assert ps.freq is not None assert ps.power is not None assert ps.power_err is not None assert ps.df == 1.0 / self.lc.tseg assert ps.norm == "frac" assert ps.m == 1 assert ps.n == self.lc.time.shape[0] assert ps.nphots == np.sum(self.lc.counts) def test_periodogram_types(self): ps = Powerspectrum(lc=self.lc) assert isinstance(ps.freq, np.ndarray) assert isinstance(ps.power, np.ndarray) assert isinstance(ps.power_err, np.ndarray) def test_init_with_lightcurve(self): assert Powerspectrum(self.lc) def test_init_without_lightcurve(self): with pytest.raises(TypeError): assert Powerspectrum(self.lc.counts) def test_init_with_nonsense_data(self): nonsense_data = [None for i in range(100)] with pytest.raises(TypeError): assert Powerspectrum(nonsense_data) def test_init_with_nonsense_norm(self): nonsense_norm = "bla" with pytest.raises(ValueError): assert Powerspectrum(self.lc, norm=nonsense_norm) def test_init_with_wrong_norm_type(self): nonsense_norm = 1.0 with pytest.raises(TypeError): assert Powerspectrum(self.lc, norm=nonsense_norm) def test_total_variance(self): """ the integral of powers (or Riemann sum) should be close to the variance divided by twice the length of the light curve. Note: make sure the factors of ncounts match! Also, make sure to *exclude* the zeroth power! """ ps = Powerspectrum(lc=self.lc) nn = ps.n pp = ps.unnorm_power / np.float(nn) ** 2 p_int = np.sum(pp[:-1] * ps.df) + (pp[-1] * ps.df) / 2 var_lc = np.var(self.lc.counts) / (2. * self.lc.tseg) assert np.isclose(p_int, var_lc, atol=0.01, rtol=0.01) def test_frac_normalization_is_standard(self): """ Make sure the standard normalization of a periodogram is rms and it stays that way! """ ps = Powerspectrum(lc=self.lc) assert ps.norm == "frac" def test_frac_normalization_correct(self): """ In fractional rms normalization, the integral of the powers should be equal to the variance of the light curve divided by the mean of the light curve squared. """ ps = Powerspectrum(lc=self.lc, norm="frac") ps_int = np.sum(ps.power[:-1] * ps.df) + ps.power[-1] * ps.df / 2 std_lc = np.var(self.lc.counts) / np.mean(self.lc.counts) ** 2 assert np.isclose(ps_int, std_lc, atol=0.01, rtol=0.01) def test_fractional_rms_in_frac_norm_is_consistent(self): time = np.arange(0, 100, 1) + 0.5 poisson_counts = np.random.poisson(100.0, size=time.shape[0]) lc = Lightcurve(time, counts=poisson_counts, dt=1, gti=[[0, 100]]) ps = Powerspectrum(lc=lc, norm="leahy") rms_ps_l, rms_err_l = ps.compute_rms(min_freq=ps.freq[1], max_freq=ps.freq[-1], white_noise_offset=0) ps = Powerspectrum(lc=lc, norm="frac") rms_ps, rms_err = ps.compute_rms(min_freq=ps.freq[1], max_freq=ps.freq[-1], white_noise_offset=0) assert np.allclose(rms_ps, rms_ps_l, atol=0.01) assert np.allclose(rms_err, rms_err_l, atol=0.01) def test_fractional_rms_in_frac_norm_is_consistent_averaged(self): time = np.arange(0, 400, 1) + 0.5 poisson_counts = np.random.poisson(100.0, size=time.shape[0]) lc = Lightcurve(time, counts=poisson_counts, dt=1, gti=[[0, 400]]) ps = AveragedPowerspectrum(lc=lc, norm="leahy", segment_size=100) rms_ps_l, rms_err_l = ps.compute_rms(min_freq=ps.freq[1], max_freq=ps.freq[-1], white_noise_offset=0) ps = AveragedPowerspectrum(lc=lc, norm="frac", segment_size=100) rms_ps, rms_err = ps.compute_rms(min_freq=ps.freq[1], max_freq=ps.freq[-1], white_noise_offset=0) assert np.allclose(rms_ps, rms_ps_l, atol=0.01) assert np.allclose(rms_err, rms_err_l, atol=0.01) def test_fractional_rms_in_frac_norm(self): time = np.arange(0, 400, 1) + 0.5 poisson_counts = np.random.poisson(100.0, size=time.shape[0]) lc = Lightcurve(time, counts=poisson_counts, dt=1, gti=[[0, 400]]) ps = AveragedPowerspectrum(lc=lc, norm="frac", segment_size=100) rms_ps, rms_err = ps.compute_rms(min_freq=ps.freq[1], max_freq=ps.freq[-1], white_noise_offset=0) rms_lc = np.std(lc.counts) / np.mean(lc.counts) assert np.isclose(rms_ps, rms_lc, atol=0.01) def test_leahy_norm_Poisson_noise(self): """ In Leahy normalization, the poisson noise level (so, in the absence of a signal, the average power) should be equal to 2. """ time = np.linspace(0, 10.0, 1e5) counts = np.random.poisson(1000, size=time.shape[0]) lc = Lightcurve(time, counts) ps = Powerspectrum(lc, norm="leahy") assert np.isclose(np.mean(ps.power[1:]), 2.0, atol=0.01, rtol=0.01) def test_leahy_norm_total_variance(self): """ In Leahy normalization, the total variance should be the sum of powers multiplied by the number of counts and divided by the square of the number of data points in the light curve """ ps = Powerspectrum(lc=self.lc, norm="Leahy") ps_var = (np.sum(self.lc.counts) / ps.n ** 2.) * \ (np.sum(ps.power[:-1]) + ps.power[-1] / 2.) assert np.isclose(ps_var, np.var(self.lc.counts), atol=0.01) def test_fractional_rms_in_leahy_norm(self): """ fractional rms should only be *approximately* equal the standard deviation divided by the mean of the light curve. Therefore, we allow for a larger tolerance in np.isclose() """ ps = Powerspectrum(lc=self.lc, norm="Leahy") rms_ps, rms_err = ps.compute_rms(min_freq=ps.freq[0], max_freq=ps.freq[-1]) rms_lc = np.std(self.lc.counts) / np.mean(self.lc.counts) assert np.isclose(rms_ps, rms_lc, atol=0.01) def test_fractional_rms_fails_when_rms_not_leahy(self): with pytest.raises(Exception): ps = Powerspectrum(lc=self.lc, norm="rms") rms_ps, rms_err = ps.compute_rms(min_freq=ps.freq[0], max_freq=ps.freq[-1]) def test_abs_norm_Poisson_noise(self): """ Poisson noise level for a light curve with absolute rms-squared normalization should be approximately 2 * the mean count rate of the light curve. """ time = np.linspace(0, 1., 1e4) counts = np.random.poisson(0.01, size=time.shape[0]) lc = Lightcurve(time, counts) ps = Powerspectrum(lc, norm="abs") print(lc.counts/lc.tseg) abs_noise = 2. * 100 # expected Poisson noise level; # hardcoded value from above print(np.mean(ps.power[1:]), abs_noise) assert np.isclose(np.mean(ps.power[1:]), abs_noise, atol=30) def test_fractional_rms_error(self): """ TODO: Need to write a test for the fractional rms error. But I don't know how! """ pass def test_rebin_makes_right_attributes(self): ps = Powerspectrum(lc=self.lc, norm="Leahy") # replace powers ps.power = np.ones_like(ps.power) * 2.0 rebin_factor = 2 bin_ps = ps.rebin(rebin_factor*ps.df) assert bin_ps.freq is not None assert bin_ps.power is not None assert bin_ps.power is not None assert bin_ps.df == rebin_factor * 1.0 / self.lc.tseg assert bin_ps.norm.lower() == "leahy" assert bin_ps.m == 2 assert bin_ps.n == self.lc.time.shape[0] assert bin_ps.nphots == np.sum(self.lc.counts) def test_rebin_uses_mean(self): """ Make sure the rebin-method uses "mean" to average instead of summing powers by default, and that this is not changed in the future! Note: function defaults come as a tuple, so the first keyword argument had better be 'method' """ ps = Powerspectrum(lc=self.lc, norm="Leahy") assert ps.rebin.__defaults__[2] == "mean" @pytest.mark.parametrize('df', [2, 3, 5, 1.5, 1, 85]) def test_rebin(self, df): """ TODO: Not sure how to write tests for the rebin method! """ ps = Powerspectrum(lc=self.lc, norm="Leahy") bin_ps = ps.rebin(df) assert np.isclose(bin_ps.freq[1] - bin_ps.freq[0], bin_ps.df, atol=1e-4, rtol=1e-4) assert np.isclose(bin_ps.freq[0], (ps.freq[0] - ps.df * 0.5 + bin_ps.df * 0.5), atol=1e-4, rtol=1e-4) def test_classical_significances_runs(self): ps = Powerspectrum(lc=self.lc, norm="Leahy") ps.classical_significances() def test_classical_significances_fails_in_rms(self): ps = Powerspectrum(lc=self.lc, norm="frac") with pytest.raises(ValueError): ps.classical_significances() def test_classical_significances_threshold(self): ps = Powerspectrum(lc=self.lc, norm="leahy") # change the powers so that just one exceeds the threshold ps.power = np.zeros_like(ps.power) + 2.0 index = 1 ps.power[index] = 10.0 threshold = 0.01 pval = ps.classical_significances(threshold=threshold, trial_correction=False) assert pval[0, 0] < threshold assert pval[1, 0] == index def test_classical_significances_trial_correction(self): ps = Powerspectrum(lc=self.lc, norm="leahy") # change the powers so that just one exceeds the threshold ps.power = np.zeros_like(ps.power) + 2.0 index = 1 ps.power[index] = 10.0 threshold = 0.01 pval = ps.classical_significances(threshold=threshold, trial_correction=True) assert np.size(pval) == 0 def test_classical_significances_with_logbinned_psd(self): ps = Powerspectrum(lc=self.lc, norm="leahy") ps_log = ps.rebin_log() pval = ps_log.classical_significances(threshold=1.1, trial_correction=False) assert len(pval[0]) == len(ps_log.power) def test_pvals_is_numpy_array(self): ps = Powerspectrum(lc=self.lc, norm="leahy") # change the powers so that just one exceeds the threshold ps.power = np.zeros_like(ps.power) + 2.0 index = 1 ps.power[index] = 10.0 threshold = 1.0 pval = ps.classical_significances(threshold=threshold, trial_correction=True) assert isinstance(pval, np.ndarray) assert pval.shape[0] == 2 class TestAveragedPowerspectrum(object): @classmethod def setup_class(cls): tstart = 0.0 tend = 10.0 dt = 0.0001 time = np.arange(tstart + 0.5*dt, tend + 0.5*dt, dt) mean_count_rate = 1000.0 mean_counts = mean_count_rate * dt poisson_counts = np.random.poisson(mean_counts, size=time.shape[0]) cls.lc = Lightcurve(time, counts=poisson_counts, gti=[[tstart, tend]], dt=dt) def test_one_segment(self): segment_size = self.lc.tseg ps = AveragedPowerspectrum(self.lc, segment_size) assert np.isclose(ps.segment_size, segment_size) def test_make_empty_periodogram(self): ps = AveragedPowerspectrum() assert ps.norm == "frac" assert ps.freq is None assert ps.power is None assert ps.power_err is None assert ps.df is None assert ps.m == 1 assert ps.n is None @pytest.mark.parametrize('nseg', [1, 2, 3, 5, 10, 20, 100]) def test_n_segments(self, nseg): segment_size = self.lc.tseg/nseg ps = AveragedPowerspectrum(self.lc, segment_size) assert ps.m == nseg def test_segments_with_leftover(self): segment_size = self.lc.tseg / 2. - 1. ps = AveragedPowerspectrum(self.lc, segment_size) assert np.isclose(ps.segment_size, segment_size) assert ps.m == 2 def test_init_without_segment(self): with pytest.raises(ValueError): assert AveragedPowerspectrum(self.lc) def test_init_with_nonsense_segment(self): segment_size = "foo" with pytest.raises(TypeError): assert AveragedPowerspectrum(self.lc, segment_size) def test_init_with_none_segment(self): segment_size = None with pytest.raises(ValueError): assert AveragedPowerspectrum(self.lc, segment_size) def test_init_with_inf_segment(self): segment_size = np.inf with pytest.raises(ValueError): assert AveragedPowerspectrum(self.lc, segment_size) def test_init_with_nan_segment(self): segment_size = np.nan with pytest.raises(ValueError): assert AveragedPowerspectrum(self.lc, segment_size) def test_list_of_light_curves(self): n_lcs = 10 tstart = 0.0 tend = 1.0 dt = 0.0001 time = np.arange(tstart + 0.5*dt, tend + 0.5*dt, dt) mean_count_rate = 1000.0 mean_counts = mean_count_rate * dt lc_all = [] for n in range(n_lcs): poisson_counts = np.random.poisson(mean_counts, size=len(time)) lc = Lightcurve(time, counts=poisson_counts, gti=[[tstart, tend]], dt=dt) lc_all.append(lc) segment_size = 0.5 assert AveragedPowerspectrum(lc_all, segment_size) @pytest.mark.parametrize('df', [2, 3, 5, 1.5, 1, 85]) def test_rebin(self, df): """ TODO: Not sure how to write tests for the rebin method! """ aps = AveragedPowerspectrum(lc=self.lc, segment_size=1, norm="Leahy") bin_aps = aps.rebin(df) assert np.isclose(bin_aps.freq[1]-bin_aps.freq[0], bin_aps.df, atol=1e-4, rtol=1e-4) assert np.isclose(bin_aps.freq[0], (aps.freq[0]-aps.df*0.5+bin_aps.df*0.5), atol=1e-4, rtol=1e-4) @pytest.mark.parametrize('f', [20, 30, 50, 15, 1, 850]) def test_rebin_factor(self, f): """ TODO: Not sure how to write tests for the rebin method! """ aps = AveragedPowerspectrum(lc=self.lc, segment_size=1, norm="Leahy") bin_aps = aps.rebin(f=f) assert np.isclose(bin_aps.freq[1]-bin_aps.freq[0], bin_aps.df, atol=1e-4, rtol=1e-4) assert np.isclose(bin_aps.freq[0], (aps.freq[0]-aps.df*0.5+bin_aps.df*0.5), atol=1e-4, rtol=1e-4) @pytest.mark.parametrize('df', [0.01, 0.1]) def test_rebin_log(self, df): # For now, just verify that it doesn't crash aps = AveragedPowerspectrum(lc=self.lc, segment_size=1, norm="Leahy") bin_aps = aps.rebin_log(df) def test_rebin_with_invalid_type_attribute(self): new_df = 2 aps = AveragedPowerspectrum(lc=self.lc, segment_size=1, norm='leahy') aps.type = 'invalid_type' with pytest.raises(AttributeError): assert aps.rebin(df=new_df) def test_list_with_nonsense_component(self): n_lcs = 10 tstart = 0.0 tend = 1.0 dt = 0.0001 time = np.linspace(tstart, tend, int((tend - tstart) / dt)) mean_count_rate = 1000.0 mean_counts = mean_count_rate * dt lc_all = [] for n in range(n_lcs): poisson_counts = np.random.poisson(mean_counts, size=len(time)) lc = Lightcurve(time, counts=poisson_counts) lc_all.append(lc) lc_all.append(1.0) segment_size = 0.5 with pytest.raises(TypeError): assert AveragedPowerspectrum(lc_all, segment_size) def test_leahy_correct_for_multiple(self): n = 10 lc_all = [] for i in range(n): time = np.arange(0.0, 10.0, 10. / 10000) counts = np.random.poisson(1000, size=time.shape[0]) lc = Lightcurve(time, counts) lc_all.append(lc) ps = AveragedPowerspectrum(lc_all, 1.0, norm="leahy") assert np.isclose(np.mean(ps.power), 2.0, atol=1e-2, rtol=1e-2) assert np.isclose(np.std(ps.power), 2.0 / np.sqrt(n*10), atol=0.1, rtol=0.1) class TestClassicalSignificances(object): def test_function_runs(self): power = 2.0 nspec = 1.0 classical_pvalue(power, nspec) def test_power_is_not_infinite(self): power = np.inf nspec = 1 with pytest.raises(ValueError): classical_pvalue(power, nspec) def test_power_is_not_infinite2(self): power = -np.inf nspec = 1 with pytest.raises(ValueError): classical_pvalue(power, nspec) def test_power_is_non_nan(self): power = np.nan nspec = 1 with pytest.raises(ValueError): classical_pvalue(power, nspec) def test_power_is_positive(self): power = -2.0 nspec = 1.0 with pytest.raises(ValueError): classical_pvalue(power, nspec) def test_nspec_is_not_infinite(self): power = 2.0 nspec = np.inf with pytest.raises(ValueError): classical_pvalue(power, nspec) def test_nspec_is_not_infinite2(self): power = 2.0 nspec = -np.inf with pytest.raises(ValueError): classical_pvalue(power, nspec) def test_nspec_is_not_nan(self): power = 2.0 nspec = np.nan with pytest.raises(ValueError): classical_pvalue(power, nspec) def test_nspec_is_positive(self): power = 2.0 nspec = -1.0 with pytest.raises(ValueError): classical_pvalue(power, nspec) def test_nspec_is_nonzero(self): power = 2.0 nspec = 0.0 with pytest.raises(ValueError): classical_pvalue(power, nspec) def test_nspec_is_an_integer_number(self): power = 2.0 nspec = 2.5 with pytest.raises(ValueError): classical_pvalue(power, nspec) def test_nspec_float_type_okay(self): power = 2.0 nspec = 2.0 classical_pvalue(power, nspec) def test_pvalue_decreases_with_increasing_power(self): power1 = 2.0 power2 = 20.0 nspec = 1.0 pval1 = classical_pvalue(power1, nspec) pval2 = classical_pvalue(power2, nspec) assert pval1 - pval2 > 0.0 def test_pvalue_must_decrease_with_increasing_nspec(self): power = 3.0 nspec1 = 1.0 nspec2 = 10.0 pval1 = classical_pvalue(power, nspec1) pval2 = classical_pvalue(power, nspec2) assert pval1 - pval2 > 0.0 def test_very_large_powers_produce_zero_prob(self): power = 31000.0 nspec = 1 pval = classical_pvalue(power, nspec) assert np.isclose(pval, 0.0) class TestDynamicalPowerspectrum(object): def setup_class(cls): # generate timestamps timestamps = np.linspace(1, 100, 10000) freq = 25 + 1.2 * np.sin(2 * np.pi * timestamps / 130) # variability signal with drifiting frequency vari = 25 * np.sin(2 * np.pi * freq * timestamps) signal = vari + 50 # create a lightcurve lc = Lightcurve(timestamps, signal, err_dist='gauss') cls.lc = lc # Simple lc to demonstrate rebinning of dyn ps # Simple lc to demonstrate rebinning of dyn ps test_times = np.arange(16) test_counts = [2, 3, 1, 3, 1, 5, 2, 1, 4, 2, 2, 2, 3, 4, 1, 7] cls.lc_test = Lightcurve(test_times, test_counts) def test_with_short_seg_size(self): with pytest.raises(ValueError): dps = DynamicalPowerspectrum(self.lc, segment_size=0) def test_with_long_seg_size(self): with pytest.raises(ValueError): dps = DynamicalPowerspectrum(self.lc, segment_size=1000) def test_matrix(self): dps = DynamicalPowerspectrum(self.lc, segment_size=3) nsegs = int(self.lc.tseg / dps.segment_size) nfreq = int((1 / self.lc.dt) / (2 * (dps.freq[1] - dps.freq[0])) - (1 / self.lc.tseg)) assert dps.dyn_ps.shape == (nfreq, nsegs) def test_trace_maximum_without_boundaries(self): dps = DynamicalPowerspectrum(self.lc, segment_size=3) max_pos = dps.trace_maximum() assert np.max(dps.freq[max_pos]) <= 1 / self.lc.dt assert np.min(dps.freq[max_pos]) >= 1 / dps.segment_size def test_trace_maximum_with_boundaries(self): dps = DynamicalPowerspectrum(self.lc, segment_size=3) minfreq = 21 maxfreq = 24 max_pos = dps.trace_maximum(min_freq=minfreq, max_freq=maxfreq) assert
np.max(dps.freq[max_pos])
numpy.max
import numpy import sys def local_energy_generic(h1e, eri, G, ecore=0.0, Ghalf=None): r"""Calculate local for generic two-body hamiltonian. This uses the full form for the two-electron integrals. For testing purposes only. Parameters ---------- system : :class:`hubbard` System information for the hubbard model. G : :class:`numpy.ndarray` Walker's "green's function" Returns ------- (E, T, V): tuple Local, kinetic and potential energies. """ e1 = (numpy.einsum('ij,ij->', h1e[0], G[0]) + numpy.einsum('ij,ij->', h1e[1], G[1])) euu = 0.5*(numpy.einsum('prqs,pr,qs->', eri, G[0], G[0]) - numpy.einsum('prqs,ps,qr->', eri, G[0], G[0])) edd = 0.5*(numpy.einsum('prqs,pr,qs->', eri, G[1], G[1]) - numpy.einsum('prqs,ps,qr->', eri, G[1], G[1])) eud = 0.5*numpy.einsum('prqs,pr,qs->', eri, G[0], G[1]) edu = 0.5*numpy.einsum('prqs,pr,qs->', eri, G[1], G[0]) e2 = euu + edd + eud + edu return (e1+e2+ecore, e1+ecore, e2) def local_energy_generic_pno(system, G, Ghalf=None, eri=None, C0=None,\ ecoul0 = None, exxa0 = None, exxb0 = None, UVT=None): na = system.nup nb = system.ndown M = system.nbasis UVT_aa = UVT[0] UVT_bb = UVT[1] UVT_ab = UVT[2] Ga, Gb = Ghalf[0], Ghalf[1] # Element wise multiplication. e1b = numpy.sum(system.H1[0]*G[0]) + numpy.sum(system.H1[1]*G[1]) eJaa = 0.0 eKaa = 0.0 if (len(C0.shape) == 3): CT = C0[0,:,:].T else: CT = C0[:,:].T GTa = CT[:na,:] # hard-coded to do single slater GTb = CT[na:,:] # hard-coded to do single slater for (i,j),(U,VT) in zip(system.ij_list_aa, UVT_aa): if (i == j): c = 0.5 else: c = 1.0 theta_i = Ga[i,:] theta_j = Ga[j,:] thetaT_i = GTa[i,:] thetaT_j = GTa[j,:] thetaU = numpy.einsum("p,pk->k", theta_i,U) thetaV = numpy.einsum("p,kp->k", theta_j,VT) thetaTU = numpy.einsum("p,pk->k", thetaT_i,U) thetaTV = numpy.einsum("p,kp->k", thetaT_j,VT) eJaa += c * (numpy.dot(thetaU, thetaV) - numpy.dot(thetaTU, thetaTV)) thetaU = numpy.einsum("p,pk->k", theta_j,U) thetaV = numpy.einsum("p,kp->k", theta_i,VT) thetaTU = numpy.einsum("p,pk->k", thetaT_j,U) thetaTV = numpy.einsum("p,kp->k", thetaT_i,VT) eKaa -= c * (numpy.dot(thetaU, thetaV) - numpy.dot(thetaTU, thetaTV)) eJbb = 0.0 eKbb = 0.0 for (i,j),(U,VT) in zip(system.ij_list_bb, UVT_bb): if (i == j): c = 0.5 else: c = 1.0 theta_i = Gb[i,:] theta_j = Gb[j,:] thetaT_i = GTb[i,:] thetaT_j = GTb[j,:] thetaU = numpy.einsum("p,pk->k", theta_i,U) thetaV = numpy.einsum("p,kp->k", theta_j,VT) thetaTU = numpy.einsum("p,pk->k", thetaT_i,U) thetaTV = numpy.einsum("p,kp->k", thetaT_j,VT) eJbb += c * (numpy.dot(thetaU, thetaV) - numpy.dot(thetaTU, thetaTV)) thetaU = numpy.einsum("p,pk->k", theta_j,U) thetaV = numpy.einsum("p,kp->k", theta_i,VT) thetaTU = numpy.einsum("p,pk->k", thetaT_j,U) thetaTV = numpy.einsum("p,kp->k", thetaT_i,VT) eKbb -= c * (numpy.dot(thetaU, thetaV) - numpy.dot(thetaTU, thetaTV)) eJab = 0.0 for (i,j),(U,VT) in zip(system.ij_list_ab, UVT_ab): theta_i = Ga[i,:] theta_j = Gb[j,:] thetaT_i = GTa[i,:] thetaT_j = GTb[j,:] thetaU = numpy.einsum("p,pk->k", theta_i,U) thetaV = numpy.einsum("p,kp->k", theta_j,VT) thetaTU = numpy.einsum("p,pk->k", thetaT_i,U) thetaTV = numpy.einsum("p,kp->k", thetaT_j,VT) eJab += (numpy.dot(thetaU, thetaV) - numpy.dot(thetaTU, thetaTV)) e2b = 0.5*(ecoul0 - exxa0 - exxb0) + eJaa + eJbb + eJab + eKaa + eKbb return (e1b + e2b + system.ecore, e1b + system.ecore, e2b) def local_energy_generic_opt(system, G, Ghalf=None, eri=None): na = system.nup nb = system.ndown M = system.nbasis vipjq_aa = eri[0,:na**2*M**2].reshape((na,M,na,M)) vipjq_bb = eri[0,na**2*M**2:na**2*M**2+nb**2*M**2].reshape((nb,M,nb,M)) vipjq_ab = eri[0,na**2*M**2+nb**2*M**2:].reshape((na,M,nb,M)) Ga, Gb = Ghalf[0], Ghalf[1] # Element wise multiplication. e1b = numpy.sum(system.H1[0]*G[0]) + numpy.sum(system.H1[1]*G[1]) # Coulomb eJaa = 0.5 *
numpy.einsum("irjs,ir,js", vipjq_aa, Ga, Ga)
numpy.einsum
from __future__ import division, print_function, unicode_literals import sys import cv2 import numpy as np from scipy.signal import argrelextrema from matplotlib import pyplot as plt import model_handler from localization_cnn.constants import ( HEIGHT, WIDTH, TRAINED_MODELS, MODEL) HEAT_MAP_THRESH = 125 SLIDE = 8 class ROI: def __init__(self, left, right, top, bottom): self.left = left self.right = right self.bottom = bottom self.top = top self.width = self.right - self.left def get_x_range(self, width, slide): return range(self.left, self.right - width, slide) def get_y_range(self, height, slide): return range(self.top, self.bottom - height, slide) class Localizer: def __init__(self, model, img): self.width = WIDTH self.height = WIDTH self.slide = SLIDE self.img = self.normalize_images(img, 1300) self.img_h, self.img_w = self.img.shape[:2] self.model = model self.top = 0 self.left = 0 self.right = self.img_w self.bottom = self.img_h self.roi = ROI(self.left, self.right, self.top, self.bottom) def process(self, debug=False): gray = cv2.cvtColor(self.img, cv2.COLOR_BGR2GRAY) windows, offsets = self._get_windows(gray) predictions = self._predict(windows) heat_map = self._calculate_heat_map(predictions, offsets) _, thresh = cv2.threshold(heat_map, HEAT_MAP_THRESH, 255, cv2.THRESH_TOZERO) x1, x2 = self._get_x_range_all(thresh) y_peaks = self._get_y_response(thresh) # list of list fields = self._get_fields(self.img, thresh, y_peaks) if debug: merge = np.ones((600, 800, 3), dtype=np.uint8) * 255 cur_y = 20 for f in fields: merge[cur_y:cur_y+f.shape[0], 20:20+f.shape[1]] = f cur_y += f.shape[0] + 10 cv2.imshow("Merge", merge) cv2.imshow("Thresh", thresh[:, x1:x2]) cv2.waitKey(0) return fields def normalize_images(self, img, norm_w): if img is None: exit(1) height, width = img.shape[:2] target_height = round((norm_w / width) * height) img_res = cv2.resize(src=img, dsize=(norm_w, target_height), interpolation=cv2.INTER_CUBIC) return img_res def _get_windows(self, img): windows = [] offsets = [] for y_offset in self.roi.get_y_range(self.height, self.slide): for x_offset in self.roi.get_x_range(self.width, self.slide): img_window = img[y_offset: y_offset + self.height, x_offset: x_offset + self.width] img_window = img_window.flatten() / 255.0 windows.append(img_window) offsets.append((x_offset, y_offset)) return windows, offsets def _predict(self, windows): n_windows = len(windows) windows = np.array(windows) windows = windows.reshape(n_windows, HEIGHT, WIDTH, 1).astype('float32') predictions = self.model.predict(windows, verbose=0) predictions = [pred[1] - pred[0] for pred in predictions] return predictions def _calculate_heat_map(self, predictions, offsets): heat_map =
np.zeros((self.img_h, self.img_w))
numpy.zeros
""" Predict on manifolds: losses. """ import numpy as np import geomstats.lie_group as lie_group from geomstats.special_orthogonal_group import SpecialOrthogonalGroup SO3 = SpecialOrthogonalGroup(n=3) def loss(y_pred, y_true, metric=SO3.bi_invariant_metric, representation='vector'): if representation == 'quaternion': y_pred = SO3.rotation_vector_from_quaternion(y_pred) y_true = SO3.rotation_vector_from_quaternion(y_true) loss = lie_group.loss(y_pred, y_true, SO3, metric) return loss def grad(y_pred, y_true, metric=SO3.bi_invariant_metric, representation='vector'): y_pred = np.expand_dims(y_pred, axis=0) y_true = np.expand_dims(y_true, axis=0) if representation == 'vector': grad = lie_group.grad(y_pred, y_true, SO3, metric) if representation == 'quaternion': differential = np.zeros((1, 6, 7)) differential = np.zeros((1, 3, 4)) quat_scalar = y_pred[:, :1] quat_vec = y_pred[:, 1:] quat_vec_norm = np.linalg.norm(quat_vec, axis=1) quat_sq_norm = quat_vec_norm ** 2 + quat_scalar ** 2 quat_arctan2 = np.arctan2(quat_vec_norm, quat_scalar) differential_scalar = - 2 * quat_vec / (quat_sq_norm) differential_vec = (2 * (quat_scalar / quat_sq_norm - 2 * quat_arctan2 / quat_vec_norm) * np.outer(quat_vec, quat_vec) / quat_vec_norm ** 2 + 2 * quat_arctan2 / quat_vec_norm * np.eye(3)) differential[0, :, :1] = differential_scalar.transpose() differential[0, :, 1:] = differential_vec y_pred = SO3.rotation_vector_from_quaternion(y_pred) y_true = SO3.rotation_vector_from_quaternion(y_true) grad = lie_group.grad(y_pred, y_true, SO3, metric) grad =
np.matmul(grad, differential)
numpy.matmul
# -*- coding: utf-8 -*- # Authors: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # License: BSD (3-clause) from copy import deepcopy import re import numpy as np from .baseline import rescale, _check_baseline, _log_rescale from .channels.channels import (ContainsMixin, UpdateChannelsMixin, SetChannelsMixin, InterpolationMixin) from .channels.layout import _merge_ch_data, _pair_grad_sensors from .defaults import _EXTRAPOLATE_DEFAULT, _BORDER_DEFAULT from .filter import detrend, FilterMixin from .utils import (check_fname, logger, verbose, _time_mask, warn, sizeof_fmt, SizeMixin, copy_function_doc_to_method_doc, _validate_type, fill_doc, _check_option, ShiftTimeMixin, _build_data_frame, _check_pandas_installed, _check_pandas_index_arguments, _convert_times, _scale_dataframe_data, _check_time_format) from .viz import (plot_evoked, plot_evoked_topomap, plot_evoked_field, plot_evoked_image, plot_evoked_topo) from .viz.evoked import plot_evoked_white, plot_evoked_joint from .viz.topomap import _topomap_animation from .io.constants import FIFF from .io.open import fiff_open from .io.tag import read_tag from .io.tree import dir_tree_find from .io.pick import pick_types, _picks_to_idx from .io.meas_info import read_meas_info, write_meas_info from .io.proj import ProjMixin from .io.write import (start_file, start_block, end_file, end_block, write_int, write_string, write_float_matrix, write_id, write_float, write_complex_float_matrix) from .io.base import TimeMixin, _check_maxshield _aspect_dict = { 'average': FIFF.FIFFV_ASPECT_AVERAGE, 'standard_error': FIFF.FIFFV_ASPECT_STD_ERR, 'single_epoch': FIFF.FIFFV_ASPECT_SINGLE, 'partial_average': FIFF.FIFFV_ASPECT_SUBAVERAGE, 'alternating_subaverage': FIFF.FIFFV_ASPECT_ALTAVERAGE, 'sample_cut_out_by_graph': FIFF.FIFFV_ASPECT_SAMPLE, 'power_density_spectrum': FIFF.FIFFV_ASPECT_POWER_DENSITY, 'dipole_amplitude_cuvre': FIFF.FIFFV_ASPECT_DIPOLE_WAVE, 'squid_modulation_lower_bound': FIFF.FIFFV_ASPECT_IFII_LOW, 'squid_modulation_upper_bound': FIFF.FIFFV_ASPECT_IFII_HIGH, 'squid_gate_setting': FIFF.FIFFV_ASPECT_GATE, } _aspect_rev = {val: key for key, val in _aspect_dict.items()} @fill_doc class Evoked(ProjMixin, ContainsMixin, UpdateChannelsMixin, SetChannelsMixin, InterpolationMixin, FilterMixin, TimeMixin, SizeMixin, ShiftTimeMixin): """Evoked data. Parameters ---------- fname : str Name of evoked/average FIF file to load. If None no data is loaded. condition : int, or str Dataset ID number (int) or comment/name (str). Optional if there is only one data set in file. proj : bool, optional Apply SSP projection vectors. kind : str Either 'average' or 'standard_error'. The type of data to read. Only used if 'condition' is a str. allow_maxshield : bool | str (default False) If True, allow loading of data that has been recorded with internal active compensation (MaxShield). Data recorded with MaxShield should generally not be loaded directly, but should first be processed using SSS/tSSS to remove the compensation signals that may also affect brain activity. Can also be "yes" to load without eliciting a warning. %(verbose)s Attributes ---------- info : dict Measurement info. ch_names : list of str List of channels' names. nave : int Number of averaged epochs. kind : str Type of data, either average or standard_error. comment : str Comment on dataset. Can be the condition. data : array of shape (n_channels, n_times) Evoked response. first : int First time sample. last : int Last time sample. tmin : float The first time point in seconds. tmax : float The last time point in seconds. times : array Time vector in seconds. The time interval between consecutive time samples is equal to the inverse of the sampling frequency. baseline : None | tuple of length 2 This attribute reflects whether the data has been baseline-corrected (it will be a ``tuple``) or not (it will be ``None``). %(verbose)s Notes ----- Evoked objects contain a single condition only. """ @verbose def __init__(self, fname, condition=None, proj=True, kind='average', allow_maxshield=False, verbose=None): # noqa: D102 _validate_type(proj, bool, "'proj'") # Read the requested data self.info, self.nave, self._aspect_kind, self.comment, self.times, \ self.data, self.baseline = _read_evoked(fname, condition, kind, allow_maxshield) self._update_first_last() self.verbose = verbose self.preload = True if proj: self.apply_proj() @property def kind(self): """The data kind.""" return _aspect_rev[self._aspect_kind] @kind.setter def kind(self, kind): _check_option('kind', kind, list(_aspect_dict.keys())) self._aspect_kind = _aspect_dict[kind] @property def data(self): """The data matrix.""" return self._data @data.setter def data(self, data): """Set the data matrix.""" self._data = data @verbose def apply_baseline(self, baseline=(None, 0), verbose=None): """Baseline correct evoked data. Parameters ---------- %(baseline_evoked)s %(verbose_meth)s Returns ------- evoked : instance of Evoked The baseline-corrected Evoked object. Notes ----- .. versionadded:: 0.13.0 """ _check_baseline(baseline, self.times[0], self.times[-1], self.info['sfreq']) if self.baseline is not None and baseline is None: raise ValueError('The data has already been baseline-corrected. ' 'Cannot remove existing basline correction.') elif baseline is None: # Do not rescale logger.info(_log_rescale(None)) else: # Atually baseline-correct the data. Logging happens in rescale(). self.data = rescale(self.data, self.times, baseline, copy=False) self.baseline = baseline return self def save(self, fname): """Save dataset to file. Parameters ---------- fname : str The name of the file, which should end with -ave.fif or -ave.fif.gz. Notes ----- To write multiple conditions into a single file, use :func:`mne.write_evokeds`. .. versionchanged:: 0.21 Information on baseline correction will be stored with the dataset, and will be restored when reading the data again via `~mne.read_evokeds`. """ write_evokeds(fname, self) def __repr__(self): # noqa: D105 s = "'%s' (%s, N=%s)" % (self.comment, self.kind, self.nave) s += ", [%0.5g, %0.5g] sec" % (self.times[0], self.times[-1]) s += ", %s ch" % self.data.shape[0] s += ", ~%s" % (sizeof_fmt(self._size),) return "<Evoked | %s>" % s @property def ch_names(self): """Channel names.""" return self.info['ch_names'] @property def tmin(self): """First time point. .. versionadded:: 0.21 """ return self.times[0] @property def tmax(self): """Last time point. .. versionadded:: 0.21 """ return self.times[-1] @verbose def crop(self, tmin=None, tmax=None, include_tmax=True, verbose=None): """Crop data to a given time interval. Parameters ---------- tmin : float | None Start time of selection in seconds. tmax : float | None End time of selection in seconds. %(include_tmax)s %(verbose_meth)s Returns ------- evoked : instance of Evoked The cropped Evoked object, modified in-place. Notes ----- %(notes_tmax_included_by_default)s """ if tmin is None: tmin = self.tmin elif tmin < self.tmin: warn('tmin is not in Evoked time interval. tmin is set to ' 'Evoked.tmin') tmin = self.tmin if tmax is None: tmax = self.tmax elif tmax > self.tmax: warn('tmax is not in Evoked time interval. tmax is set to ' 'Evoked.tmax') tmax = self.tmax mask = _time_mask(self.times, tmin, tmax, sfreq=self.info['sfreq'], include_tmax=include_tmax) self.times = self.times[mask] self._update_first_last() self.data = self.data[:, mask] try: _check_baseline(self.baseline, tmin, tmax, self.info['sfreq']) except ValueError as err: err_msg = str(err) acceptable_msgs = ( 'Baseline interval is only one sample', 'Baseline interval (tmin = .*) is outside of data range', 'Baseline interval (tmax = .*) is outside of data range', 'Baseline min (.*) must be less than baseline max' ) if any([re.match(regexp, err_msg) for regexp in acceptable_msgs]): # The baseline period no longer applies, so wipe it out. warn('Cropping removes baseline period, setting baseline=None') self.baseline = None else: # Something unexpected happened. raise err return self @verbose def decimate(self, decim, offset=0, verbose=None): """Decimate the evoked data. Parameters ---------- %(decim)s %(decim_offset)s %(verbose_meth)s Returns ------- evoked : instance of Evoked The decimated Evoked object. See Also -------- Epochs.decimate Epochs.resample mne.io.Raw.resample Notes ----- %(decim_notes)s .. versionadded:: 0.13.0 """ decim, offset, new_sfreq = _check_decim(self.info, decim, offset) start_idx = int(round(self.times[0] * (self.info['sfreq'] * decim))) i_start = start_idx % decim + offset decim_slice = slice(i_start, None, decim) self.info['sfreq'] = new_sfreq self.data = self.data[:, decim_slice].copy() self.times = self.times[decim_slice].copy() self._update_first_last() return self @copy_function_doc_to_method_doc(plot_evoked) def plot(self, picks=None, exclude='bads', unit=True, show=True, ylim=None, xlim='tight', proj=False, hline=None, units=None, scalings=None, titles=None, axes=None, gfp=False, window_title=None, spatial_colors=False, zorder='unsorted', selectable=True, noise_cov=None, time_unit='s', sphere=None, verbose=None): return plot_evoked( self, picks=picks, exclude=exclude, unit=unit, show=show, ylim=ylim, proj=proj, xlim=xlim, hline=hline, units=units, scalings=scalings, titles=titles, axes=axes, gfp=gfp, window_title=window_title, spatial_colors=spatial_colors, zorder=zorder, selectable=selectable, noise_cov=noise_cov, time_unit=time_unit, sphere=sphere, verbose=verbose) @copy_function_doc_to_method_doc(plot_evoked_image) def plot_image(self, picks=None, exclude='bads', unit=True, show=True, clim=None, xlim='tight', proj=False, units=None, scalings=None, titles=None, axes=None, cmap='RdBu_r', colorbar=True, mask=None, mask_style=None, mask_cmap='Greys', mask_alpha=.25, time_unit='s', show_names=None, group_by=None, sphere=None): return plot_evoked_image( self, picks=picks, exclude=exclude, unit=unit, show=show, clim=clim, xlim=xlim, proj=proj, units=units, scalings=scalings, titles=titles, axes=axes, cmap=cmap, colorbar=colorbar, mask=mask, mask_style=mask_style, mask_cmap=mask_cmap, mask_alpha=mask_alpha, time_unit=time_unit, show_names=show_names, group_by=group_by, sphere=sphere) @copy_function_doc_to_method_doc(plot_evoked_topo) def plot_topo(self, layout=None, layout_scale=0.945, color=None, border='none', ylim=None, scalings=None, title=None, proj=False, vline=[0.0], fig_background=None, merge_grads=False, legend=True, axes=None, background_color='w', noise_cov=None, show=True): """ Notes ----- .. versionadded:: 0.10.0 """ return plot_evoked_topo( self, layout=layout, layout_scale=layout_scale, color=color, border=border, ylim=ylim, scalings=scalings, title=title, proj=proj, vline=vline, fig_background=fig_background, merge_grads=merge_grads, legend=legend, axes=axes, background_color=background_color, noise_cov=noise_cov, show=show) @copy_function_doc_to_method_doc(plot_evoked_topomap) def plot_topomap(self, times="auto", ch_type=None, vmin=None, vmax=None, cmap=None, sensors=True, colorbar=True, scalings=None, units=None, res=64, size=1, cbar_fmt="%3.1f", time_unit='s', time_format=None, proj=False, show=True, show_names=False, title=None, mask=None, mask_params=None, outlines='head', contours=6, image_interp='bilinear', average=None, axes=None, extrapolate=_EXTRAPOLATE_DEFAULT, sphere=None, border=_BORDER_DEFAULT, nrows=1, ncols='auto'): return plot_evoked_topomap( self, times=times, ch_type=ch_type, vmin=vmin, vmax=vmax, cmap=cmap, sensors=sensors, colorbar=colorbar, scalings=scalings, units=units, res=res, size=size, cbar_fmt=cbar_fmt, time_unit=time_unit, time_format=time_format, proj=proj, show=show, show_names=show_names, title=title, mask=mask, mask_params=mask_params, outlines=outlines, contours=contours, image_interp=image_interp, average=average, axes=axes, extrapolate=extrapolate, sphere=sphere, border=border, nrows=nrows, ncols=ncols) @copy_function_doc_to_method_doc(plot_evoked_field) def plot_field(self, surf_maps, time=None, time_label='t = %0.0f ms', n_jobs=1, fig=None, vmax=None, n_contours=21, verbose=None): return plot_evoked_field(self, surf_maps, time=time, time_label=time_label, n_jobs=n_jobs, fig=fig, vmax=vmax, n_contours=n_contours, verbose=verbose) @copy_function_doc_to_method_doc(plot_evoked_white) def plot_white(self, noise_cov, show=True, rank=None, time_unit='s', sphere=None, axes=None, verbose=None): return plot_evoked_white( self, noise_cov=noise_cov, rank=rank, show=show, time_unit=time_unit, sphere=sphere, axes=axes, verbose=verbose) @copy_function_doc_to_method_doc(plot_evoked_joint) def plot_joint(self, times="peaks", title='', picks=None, exclude='bads', show=True, ts_args=None, topomap_args=None): return plot_evoked_joint(self, times=times, title=title, picks=picks, exclude=exclude, show=show, ts_args=ts_args, topomap_args=topomap_args) @fill_doc def animate_topomap(self, ch_type=None, times=None, frame_rate=None, butterfly=False, blit=True, show=True, time_unit='s', sphere=None): """Make animation of evoked data as topomap timeseries. The animation can be paused/resumed with left mouse button. Left and right arrow keys can be used to move backward or forward in time. Parameters ---------- ch_type : str | None Channel type to plot. Accepted data types: 'mag', 'grad', 'eeg', 'hbo', 'hbr', 'fnirs_od, and 'fnirs_cw_amplitude'. If None, first available channel type from ('mag', 'grad', 'eeg', 'hbo', 'hbr', 'fnirs_od, 'fnirs_cw_amplitude') is used. Defaults to None. times : array of float | None The time points to plot. If None, 10 evenly spaced samples are calculated over the evoked time series. Defaults to None. frame_rate : int | None Frame rate for the animation in Hz. If None, frame rate = sfreq / 10. Defaults to None. butterfly : bool Whether to plot the data as butterfly plot under the topomap. Defaults to False. blit : bool Whether to use blit to optimize drawing. In general, it is recommended to use blit in combination with ``show=True``. If you intend to save the animation it is better to disable blit. Defaults to True. show : bool Whether to show the animation. Defaults to True. time_unit : str The units for the time axis, can be "ms" (default in 0.16) or "s" (will become the default in 0.17). .. versionadded:: 0.16 %(topomap_sphere_auto)s Returns ------- fig : instance of matplotlib.figure.Figure The figure. anim : instance of matplotlib.animation.FuncAnimation Animation of the topomap. Notes ----- .. versionadded:: 0.12.0 """ return _topomap_animation( self, ch_type=ch_type, times=times, frame_rate=frame_rate, butterfly=butterfly, blit=blit, show=show, time_unit=time_unit, sphere=sphere) def as_type(self, ch_type='grad', mode='fast'): """Compute virtual evoked using interpolated fields. .. Warning:: Using virtual evoked to compute inverse can yield unexpected results. The virtual channels have ``'_v'`` appended at the end of the names to emphasize that the data contained in them are interpolated. Parameters ---------- ch_type : str The destination channel type. It can be 'mag' or 'grad'. mode : str Either ``'accurate'`` or ``'fast'``, determines the quality of the Legendre polynomial expansion used. ``'fast'`` should be sufficient for most applications. Returns ------- evoked : instance of mne.Evoked The transformed evoked object containing only virtual channels. Notes ----- This method returns a copy and does not modify the data it operates on. It also returns an EvokedArray instance. .. versionadded:: 0.9.0 """ from .forward import _as_meg_type_inst return _as_meg_type_inst(self, ch_type=ch_type, mode=mode) @fill_doc def detrend(self, order=1, picks=None): """Detrend data. This function operates in-place. Parameters ---------- order : int Either 0 or 1, the order of the detrending. 0 is a constant (DC) detrend, 1 is a linear detrend. %(picks_good_data)s Returns ------- evoked : instance of Evoked The detrended evoked object. """ picks = _picks_to_idx(self.info, picks) self.data[picks] = detrend(self.data[picks], order, axis=-1) return self def copy(self): """Copy the instance of evoked. Returns ------- evoked : instance of Evoked A copy of the object. """ evoked = deepcopy(self) return evoked def __neg__(self): """Negate channel responses. Returns ------- evoked_neg : instance of Evoked The Evoked instance with channel data negated and '-' prepended to the comment. """ out = self.copy() out.data *= -1 out.comment = '-' + (out.comment or 'unknown') return out def get_peak(self, ch_type=None, tmin=None, tmax=None, mode='abs', time_as_index=False, merge_grads=False, return_amplitude=False): """Get location and latency of peak amplitude. Parameters ---------- ch_type : 'mag', 'grad', 'eeg', 'seeg', 'ecog', 'hbo', hbr', 'misc', None The channel type to use. Defaults to None. If more than one sensor Type is present in the data the channel type has to be explicitly set. tmin : float | None The minimum point in time to be considered for peak getting. If None (default), the beginning of the data is used. tmax : float | None The maximum point in time to be considered for peak getting. If None (default), the end of the data is used. mode : {'pos', 'neg', 'abs'} How to deal with the sign of the data. If 'pos' only positive values will be considered. If 'neg' only negative values will be considered. If 'abs' absolute values will be considered. Defaults to 'abs'. time_as_index : bool Whether to return the time index instead of the latency in seconds. merge_grads : bool If True, compute peak from merged gradiometer data. return_amplitude : bool If True, return also the amplitude at the maximum response. .. versionadded:: 0.16 Returns ------- ch_name : str The channel exhibiting the maximum response. latency : float | int The time point of the maximum response, either latency in seconds or index. amplitude : float The amplitude of the maximum response. Only returned if return_amplitude is True. .. versionadded:: 0.16 """ # noqa: E501 supported = ('mag', 'grad', 'eeg', 'seeg', 'ecog', 'misc', 'hbo', 'hbr', 'None', 'fnirs_cw_amplitude', 'fnirs_od') types_used = self.get_channel_types(unique=True, only_data_chs=True) _check_option('ch_type', str(ch_type), supported) if ch_type is not None and ch_type not in types_used: raise ValueError('Channel type `{ch_type}` not found in this ' 'evoked object.'.format(ch_type=ch_type)) elif len(types_used) > 1 and ch_type is None: raise RuntimeError('More than one sensor type found. `ch_type` ' 'must not be `None`, pass a sensor type ' 'value instead') if merge_grads: if ch_type != 'grad': raise ValueError('Channel type must be grad for merge_grads') elif mode == 'neg': raise ValueError('Negative mode (mode=neg) does not make ' 'sense with merge_grads=True') meg = eeg = misc = seeg = ecog = fnirs = False picks = None if ch_type in ('mag', 'grad'): meg = ch_type elif ch_type == 'eeg': eeg = True elif ch_type == 'misc': misc = True elif ch_type == 'seeg': seeg = True elif ch_type == 'ecog': ecog = True elif ch_type in ('hbo', 'hbr', 'fnirs_cw_amplitude', 'fnirs_od'): fnirs = ch_type if ch_type is not None: if merge_grads: picks = _pair_grad_sensors(self.info, topomap_coords=False) else: picks = pick_types(self.info, meg=meg, eeg=eeg, misc=misc, seeg=seeg, ecog=ecog, ref_meg=False, fnirs=fnirs) data = self.data ch_names = self.ch_names if picks is not None: data = data[picks] ch_names = [ch_names[k] for k in picks] if merge_grads: data, _ = _merge_ch_data(data, ch_type, []) ch_names = [ch_name[:-1] + 'X' for ch_name in ch_names[::2]] ch_idx, time_idx, max_amp = _get_peak(data, self.times, tmin, tmax, mode) out = (ch_names[ch_idx], time_idx if time_as_index else self.times[time_idx]) if return_amplitude: out += (max_amp,) return out @fill_doc def to_data_frame(self, picks=None, index=None, scalings=None, copy=True, long_format=False, time_format='ms'): """Export data in tabular structure as a pandas DataFrame. Channels are converted to columns in the DataFrame. By default, an additional column "time" is added, unless ``index='time'`` (in which case time values form the DataFrame's index). Parameters ---------- %(picks_all)s %(df_index_evk)s Defaults to ``None``. %(df_scalings)s %(df_copy)s %(df_longform_raw)s %(df_time_format)s .. versionadded:: 0.20 Returns ------- %(df_return)s """ # check pandas once here, instead of in each private utils function pd = _check_pandas_installed() # noqa # arg checking valid_index_args = ['time'] valid_time_formats = ['ms', 'timedelta'] index = _check_pandas_index_arguments(index, valid_index_args) time_format = _check_time_format(time_format, valid_time_formats) # get data picks = _picks_to_idx(self.info, picks, 'all', exclude=()) data = self.data[picks, :] times = self.times data = data.T if copy: data = data.copy() data = _scale_dataframe_data(self, data, picks, scalings) # prepare extra columns / multiindex mindex = list() times = _convert_times(self, times, time_format) mindex.append(('time', times)) # build DataFrame df = _build_data_frame(self, data, picks, long_format, mindex, index, default_index=['time']) return df def _check_decim(info, decim, offset): """Check decimation parameters.""" if decim < 1 or decim != int(decim): raise ValueError('decim must be an integer > 0') decim = int(decim) new_sfreq = info['sfreq'] / float(decim) lowpass = info['lowpass'] if decim > 1 and lowpass is None: warn('The measurement information indicates data is not low-pass ' 'filtered. The decim=%i parameter will result in a sampling ' 'frequency of %g Hz, which can cause aliasing artifacts.' % (decim, new_sfreq)) elif decim > 1 and new_sfreq < 3 * lowpass: warn('The measurement information indicates a low-pass frequency ' 'of %g Hz. The decim=%i parameter will result in a sampling ' 'frequency of %g Hz, which can cause aliasing artifacts.' % (lowpass, decim, new_sfreq)) # > 50% nyquist lim offset = int(offset) if not 0 <= offset < decim: raise ValueError('decim must be at least 0 and less than %s, got ' '%s' % (decim, offset)) return decim, offset, new_sfreq @fill_doc class EvokedArray(Evoked): """Evoked object from numpy array. Parameters ---------- data : array of shape (n_channels, n_times) The channels' evoked response. See notes for proper units of measure. info : instance of Info Info dictionary. Consider using ``create_info`` to populate this structure. tmin : float Start time before event. Defaults to 0. comment : str Comment on dataset. Can be the condition. Defaults to ''. nave : int Number of averaged epochs. Defaults to 1. kind : str Type of data, either average or standard_error. Defaults to 'average'. %(verbose)s %(baseline_array)s Defaults to ``None``, i.e. no baseline correction. .. versionadded:: 0.21 See Also -------- EpochsArray, io.RawArray, create_info Notes ----- Proper units of measure: * V: eeg, eog, seeg, emg, ecg, bio, ecog * T: mag * T/m: grad * M: hbo, hbr * Am: dipole * AU: misc """ @verbose def __init__(self, data, info, tmin=0., comment='', nave=1, kind='average', verbose=None, baseline=None): # noqa: D102 dtype = np.complex128 if np.iscomplexobj(data) else np.float64 data = np.asanyarray(data, dtype=dtype) if data.ndim != 2: raise ValueError('Data must be a 2D array of shape (n_channels, ' 'n_samples), got shape %s' % (data.shape,)) if len(info['ch_names']) != np.shape(data)[0]: raise ValueError('Info (%s) and data (%s) must have same number ' 'of channels.' % (len(info['ch_names']),
np.shape(data)
numpy.shape
import numpy as np from operator import itemgetter from ldds.base import generate_points, lagrangian_descriptor def check_if_points_escape_box(u, box_boundaries): """ Determine if points u in 2D plane have escaped from box_boundaries limits. Parameters ---------- u : ndarray, shape(n, 2), Points in plane. box_boundaries : list of 2 tuples of floats, Values are interpreted as [[x_min,x_max], [y_min, y_max]]. Returns ------- u_indices : ndarray of bools, shape(n, 2), True/False for points inside/outside the box_boundaries respectively. """ x, y = u.T # Escape condition box_x_min, box_x_max = box_boundaries[0] box_y_min, box_y_max = box_boundaries[1] u_indices = (x >= box_x_min) & (x <= box_x_max) & (y >= box_y_min) & (y <= box_y_max) return u_indices def pbc_correction_coords_single_axis(x, box_origin, box_length): """ Correct single coordinate on a periodic domain. Parameters ---------- x : ndarray, shape(n,) Coordinate values. box_origin : float or False(bool), Values of perdiodic domain origin. If False, no correction is applied. box_length : float or False(bool) Length of periodic doamin. If False, no correction is applied Returns ------- x_pbc : ndarray, shape(n,) Corrected coordinate values. """ x_pbc = x x0 = box_origin L = box_length if not isinstance(x0, bool) or not isinstance(L, bool): #apply PBC correction x = x + L/2 - x0 x =
np.mod(x + 2*L, L)
numpy.mod
from detectron2.utils.logger import setup_logger setup_logger() import cv2, os, re import numpy as np from detectron2 import model_zoo from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.utils.visualizer import Visualizer from detectron2.data import MetadataCatalog, DatasetCatalog from densepose.config import add_densepose_config from densepose.vis.base import CompoundVisualizer from densepose.vis.densepose_results import DensePoseResultsFineSegmentationVisualizer, DensePoseResultsVisualizer from densepose.vis.densepose_data_points import DensePoseDataCoarseSegmentationVisualizer from densepose.vis.bounding_box import ScoredBoundingBoxVisualizer from densepose.vis.extractor import CompoundExtractor, DensePoseResultExtractor, create_extractor from densepose.vis.extractor import extract_boxes_xywh_from_instances from densepose.converters import ToChartResultConverterWithConfidences from densepose.vis.base import MatrixVisualizer import torch import collections import argparse from pathlib import Path import matplotlib.pyplot as plt from scipy import ndimage from scipy.ndimage.interpolation import rotate from scipy.spatial import ConvexHull import pandas as pd from skimage import morphology # window setting window_segm = 'segm' window_bbox = 'bbox' window_norm = 'norm' window_dilation = 'dilation' window_stitched_data = 'stitched data' # setting gray_val_scale = 10.625 cmap = cv2.COLORMAP_PARULA # files of config densepose_keypoints_dir = os.path.join('output', 'segments') openpose_keypoints_dir = os.path.join('output', 'data') norm_segm_dir = os.path.join('output', 'pix') fname_vitruve_norm = os.path.join('pix', 'vitruve_norm.png') # data type # keypoints = {key: (x, y, score)} # pixel = (x, y) # segments_xy = [(x1, y1), (x2, y2), ...] # segm = [[x1, y1]=(b,g,r), [x2, y2]=(b,g,r), ...] -> 2D np.ndarray # coarse segmentation: # 0 = Background # 1 = Torso, # 2 = Right Hand, 3 = Left Hand, 4 = Left Foot, 5 = Right Foot, # 6 = Upper Leg Right, 7 = Upper Leg Left, 8 = Lower Leg Right, 9 = Lower Leg Left, # 10 = Upper Arm Left, 11 = Upper Arm Right, 12 = Lower Arm Left, 13 = Lower Arm Right, # 14 = Head COARSE_ID = [ 'Background', 'Torso', 'RHand', 'LHand', 'LFoot', 'RFoot', 'RThigh', 'LThigh', 'RCalf', 'LCalf', 'LUpperArm', 'RUpperArm', 'LLowerArm', 'RLowerArm', 'Head' ] # implicit cmap = cv2.COLORMAP_PARULA <= hard-coded!!! ugh!!! # BGRA -> alpha channel: 0 = transparent, 255 = non-transparent COARSE_TO_COLOR = { 'Background': [255, 255, 255, 255], 'Torso': [191, 78, 22, 255], 'RThigh': [167, 181, 44, 255], 'LThigh': [141, 187, 91, 255], 'RCalf': [114, 191, 147, 255], 'LCalf': [96, 188, 192, 255], 'LUpperArm': [87, 207, 112, 255], 'RUpperArm': [55, 218, 162, 255], 'LLowerArm': [25, 226, 216, 255], 'RLowerArm': [37, 231, 253, 255], 'Head': [14, 251, 249, 255] } # fine segmentation: # 0 = Background # 1, 2 = Torso, # 3 = Right Hand, 4 = Left Hand, 5 = Left Foot, 6 = Right Foot, # 7, 9 = Upper Leg Right, 8, 10 = Upper Leg Left, 11, 13 = Lower Leg Right, 12, 14 = Lower Leg Left, # 15, 17 = Upper Arm Left, 16, 18 = Upper Arm Right, 19, 21 = Lower Arm Left, 20, 22 = Lower Arm Right, # 23, 24 = Head FINE_TO_COARSE_SEGMENTATION = { 1: 1, 2: 1, 3: 2, 4: 3, 5: 4, 6: 5, 7: 6, 8: 7, 9: 6, 10: 7, 11: 8, 12: 9, 13: 8, 14: 9, 15: 10, 16: 11, 17: 10, 18: 11, 19: 12, 20: 13, 21: 12, 22: 13, 23: 14, 24: 14 } # Body 25 Keypoints JOINT_ID = [ 'Nose', 'Neck', 'RShoulder', 'RElbow', 'RWrist', 'LShoulder', 'LElbow', 'LWrist', 'MidHip', 'RHip', 'RKnee', 'RAnkle', 'LHip', 'LKnee', 'LAnkle', 'REye', 'LEye', 'REar', 'LEar', 'LBigToe', 'LSmallToe', 'LHeel', 'RBigToe', 'RSmallToe', 'RHeel', 'Background' ] def _extract_i_from_iuvarr(iuv_arr): return iuv_arr[0, :, :] def _extract_u_from_iuvarr(iuv_arr): return iuv_arr[1, :, :] def _extract_v_from_iuvarr(iuv_arr): return iuv_arr[2, :, :] def extract_segm(result_densepose, is_coarse=True): iuv_array = torch.cat( (result_densepose.labels[None].type(torch.float32), result_densepose.uv * 255.0) ).type(torch.uint8) iuv_array = iuv_array.cpu().numpy() segm = _extract_i_from_iuvarr(iuv_array) if is_coarse: for fine_idx, coarse_idx in FINE_TO_COARSE_SEGMENTATION.items(): segm[segm == fine_idx] = coarse_idx mask = np.zeros(segm.shape, dtype=np.uint8) mask[segm > 0] = 1 # matrix = _extract_v_from_iuvarr(iuv_array) return mask, segm def _resize(mask, segm, w, h): interp_method_mask = cv2.INTER_NEAREST interp_method_segm = cv2.INTER_LINEAR, if (w != mask.shape[1]) or (h != mask.shape[0]): mask = cv2.resize(mask, (w, h), interp_method_mask) if (w != segm.shape[1]) or (h != segm.shape[0]): segm = cv2.resize(segm, (w, h), interp_method_segm) return mask, segm def _calc_angle(point1, center, point2): try: a = np.array(point1)[0:2] - np.array(center)[0:2] b = np.array(point2)[0:2] - np.array(center)[0:2] cos_theta = np.dot(a, b) sin_theta = np.cross(a, b) rad = np.arctan2(sin_theta, cos_theta) deg = np.rad2deg(rad) if np.isnan(rad): return 0, 0 return rad, deg except: return 0, 0 def _rotate(point, center, rad): # print(point) x = ((point[0] - center[0]) * np.cos(rad)) - ((point[1] - center[1]) * np.sin(rad)) + center[0] y = ((point[0] - center[0]) * np.sin(rad)) + ((point[1] - center[1]) * np.cos(rad)) + center[1] if len(point) == 3: return [int(x), int(y), point[2]] # for keypoints with score elif len(point) == 2: return (int(x), int(y)) # for segments (x, y) without score def _segm_xy(segm, segm_id_list, is_equal=True): if len(segm_id_list) == 1: segm_id = segm_id_list[0] if is_equal: y, x = np.where(segm == segm_id) else: y, x = np.where(segm != segm_id) elif len(segm_id_list) > 1: if is_equal: cond = [] for segm_id in segm_id_list: cond.append(segm == segm_id) y, x = np.where(np.logical_or.reduce(tuple(cond))) else: cond = [] for segm_id in segm_id_list: cond.append(segm != segm_id) y, x = np.where(np.logical_or.reduce(tuple(cond))) return list(zip(x, y)) def _segments_xy_centroid(segments_xy): x = [segment_xy[0] for segment_xy in segments_xy if not np.isnan(segment_xy[0])] y = [segment_xy[1] for segment_xy in segments_xy if not np.isnan(segment_xy[1])] centroid = (sum(x) / len(segments_xy), sum(y) / len(segments_xy)) return centroid def _keypoints_midpoint(keypoint1, keypoint2): return ((np.array(keypoint1) + np.array(keypoint2)) / 2).astype(int) def is_valid(keypoints): # check the scores for each main keypoint, which MUST exist! # main_keypoints = BODY BOX main_keypoints = ['Nose', 'Neck', 'RShoulder', 'LShoulder', 'RHip', 'LHip', 'MidHip'] keypoints = dict(zip(JOINT_ID, keypoints)) # filter the main keypoints by score > 0 filtered_keypoints = [key for key, value in keypoints.items() if key in main_keypoints and value[2] > 0] print('Number of valid keypoints (must be equal to 7):', len(filtered_keypoints)) if len(filtered_keypoints) != 7: return False else: return True def _get_segments_xy(segm, keypoints): segments_xy = [] bg_xy = [] # 0 segments_xy.append(bg_xy) torso_xy = _segm_xy(segm=segm, segm_id_list=[1]) segments_xy.append(torso_xy) r_hand_xy = [] # 2 l_hand_xy = [] # 3 l_foot_xy = [] # 4 r_foot_xy = [] # 5 segments_xy.append(r_hand_xy) segments_xy.append(l_hand_xy) segments_xy.append(l_foot_xy) segments_xy.append(r_foot_xy) r_thigh_xy = _segm_xy(segm=segm, segm_id_list=[6]) l_thigh_xy = _segm_xy(segm=segm, segm_id_list=[7]) r_calf_xy = _segm_xy(segm=segm, segm_id_list=[8]) l_calf_xy = _segm_xy(segm=segm, segm_id_list=[9]) segments_xy.append(r_thigh_xy) segments_xy.append(l_thigh_xy) segments_xy.append(r_calf_xy) segments_xy.append(l_calf_xy) l_upper_arm_xy = _segm_xy(segm=segm, segm_id_list=[10]) r_upper_arm_xy = _segm_xy(segm=segm, segm_id_list=[11]) l_lower_arm_xy = _segm_xy(segm=segm, segm_id_list=[12]) r_lower_arm_xy = _segm_xy(segm=segm, segm_id_list=[13]) segments_xy.append(l_upper_arm_xy) segments_xy.append(r_upper_arm_xy) segments_xy.append(l_lower_arm_xy) segments_xy.append(r_lower_arm_xy) head_xy = _segm_xy(segm=segm, segm_id_list=[14]) segments_xy.append(head_xy) # valid segments with keypoints dict_segments_xy = dict(zip(COARSE_ID, segments_xy)) segments_xy = {} # head if len(dict_segments_xy['Head']) > 0 and keypoints['Nose'][2] > 0: segments_xy['Head'] = {'segm_xy': dict_segments_xy['Head'], 'keypoints': {'Nose': keypoints['Nose']} } # torso if len(dict_segments_xy['Torso']) > 0: segments_xy['Torso'] = {'segm_xy': dict_segments_xy['Torso'], 'keypoints': {'Neck': keypoints['Neck'], 'RShoulder': keypoints['RShoulder'], 'LShoulder': keypoints['LShoulder'], 'MidHip': keypoints['MidHip'], 'RHip': keypoints['RHip'], 'LHip': keypoints['LHip']} } # lower limbs if len(dict_segments_xy['RThigh']) > 0 and 'RKnee' in keypoints and keypoints['RKnee'][2] > 0: segments_xy['RThigh'] = {'segm_xy': dict_segments_xy['RThigh'], 'keypoints': {'RKnee': keypoints['RKnee']} } if len(dict_segments_xy['LThigh']) > 0 and 'LKnee' in keypoints and keypoints['LKnee'][2] > 0: segments_xy['LThigh'] = {'segm_xy': dict_segments_xy['LThigh'], 'keypoints': {'LKnee': keypoints['LKnee']} } if len(dict_segments_xy['RCalf']) > 0 and 'RAnkle' in keypoints and keypoints['RAnkle'][2] > 0: segments_xy['RCalf'] = {'segm_xy': dict_segments_xy['RCalf'], 'keypoints': {'RAnkle': keypoints['RAnkle']} } if len(dict_segments_xy['LCalf']) > 0 and 'LAnkle' in keypoints and keypoints['LAnkle'][2] > 0: segments_xy['LCalf'] = {'segm_xy': dict_segments_xy['LCalf'], 'keypoints': {'LAnkle': keypoints['LAnkle']} } # upper limbs if len(dict_segments_xy['RUpperArm']) > 0 and 'RElbow' in keypoints and keypoints['RElbow'][2] > 0: segments_xy['RUpperArm'] = {'segm_xy': dict_segments_xy['RUpperArm'], 'keypoints': {'RElbow': keypoints['RElbow']} } if len(dict_segments_xy['LUpperArm']) > 0 and 'LElbow' in keypoints and keypoints['LElbow'][2] > 0: segments_xy['LUpperArm'] = {'segm_xy': dict_segments_xy['LUpperArm'], 'keypoints': {'LElbow': keypoints['LElbow']} } if len(dict_segments_xy['RLowerArm']) > 0 and 'RWrist' in keypoints and keypoints['RWrist'][2] > 0: segments_xy['RLowerArm'] = {'segm_xy': dict_segments_xy['RLowerArm'], 'keypoints': {'RWrist': keypoints['RWrist']} } if len(dict_segments_xy['LLowerArm']) > 0 and 'LWrist' in keypoints and keypoints['LWrist'][2] > 0: segments_xy['LLowerArm'] = {'segm_xy': dict_segments_xy['LLowerArm'], 'keypoints': {'LWrist': keypoints['LWrist']} } return segments_xy def _rotate_to_vertical_pose(segments_xy): midhip_keypoint = segments_xy['Torso']['keypoints']['MidHip'] neck_keypoint = segments_xy['Torso']['keypoints']['Neck'] # calculate the angle for rotation to vertical pose reference_point = np.array(midhip_keypoint) + np.array((0, -100, 0)) rad, deg = _calc_angle(point1=neck_keypoint, center=midhip_keypoint, point2=reference_point) for segment_id, segment in segments_xy.items(): segments_xy[segment_id]['segm_xy'] = np.array([_rotate((x, y), midhip_keypoint, rad) for (x, y) in segment['segm_xy']]) for keypoints_id, keypoints in segment['keypoints'].items(): segments_xy[segment_id]['keypoints'][keypoints_id] = _rotate(keypoints, midhip_keypoint, rad) return segments_xy def _rotate_head_around_centroid(segm_xy, keypoint1_ref, keypoint2_ref): # midpoint of vertical line and horizontal line centroid = _segments_xy_centroid(segm_xy) rad, deg = _calc_angle(centroid, keypoint1_ref, keypoint2_ref) rad += np.pi segm_xy = np.array([_rotate([x, y], keypoint1_ref, rad) for (x, y) in segm_xy]) keypoint = _rotate(centroid, keypoint1_ref, rad) return segm_xy, keypoint def _rotate_limbs_around_midpoint(segm_xy, keypoint, ref_keypoint, is_right, is_leg): # mid-keypoint midpoint = _keypoints_midpoint(keypoint1=keypoint, keypoint2=ref_keypoint) # rotate to horizontal ref_midpoint = midpoint + np.array([50, 0, 0]) if is_right: rad, deg = _calc_angle(ref_keypoint, midpoint, ref_midpoint) if is_leg: rad -= np.pi/2 else: rad, deg = _calc_angle(keypoint, midpoint, ref_midpoint) if is_leg: rad += np.pi / 2 segm_xy = np.array([_rotate([x, y], midpoint, rad) for (x, y) in segm_xy]) keypoint = midpoint return segm_xy, keypoint def _rotate_to_tpose(segments_xy): # nose -> head (BUT nose is not at the middle point of face, e.g., face right, face left!!!) # midhip -> torso (DONE in vertical rotation) # elbow -> upper arm # wrist -> lower arm # knee -> thigh # ankle -> calf # valid keypoints confirmed by is_valid() nose_keypoint = segments_xy['Head']['keypoints']['Nose'] neck_keypoint = segments_xy['Torso']['keypoints']['Neck'] rsho_keypoint = segments_xy['Torso']['keypoints']['RShoulder'] lsho_keypoint = segments_xy['Torso']['keypoints']['LShoulder'] midhip_keypoint = segments_xy['Torso']['keypoints']['MidHip'] rhip_keypoint = segments_xy['Torso']['keypoints']['RHip'] lhip_keypoint = segments_xy['Torso']['keypoints']['LHip'] # update midhip keypoint = [vertical height of torso] + [midpoint = (midhip + neck) / 2] if 'Torso' in segments_xy and len(segments_xy['Torso']['segm_xy']) > 0: segments_xy['Torso']['keypoints']['MidHip'] = (_euclidian(neck_keypoint, midhip_keypoint), _keypoints_midpoint(neck_keypoint, midhip_keypoint)) # buggy -> update midhip keypoint = (midhip + neck) / 2 # elongated torso <- (1) shoulders go up at both sides; (2) crotch goes down in the middle; # segments_xy['Torso']['keypoints']['MidHip'] = _keypoints_midpoint(neck_keypoint, midhip_keypoint) # head -> NOT use Nose, use Centroid of head_xy!!! # ONE solution to Issue FOUR: NOSE is not at the middle point of the head!!! # so nose keypoint = head centroid if 'Head' in segments_xy and len(segments_xy['Head']['segm_xy']) > 0: segm_xy, keypoint = _rotate_head_around_centroid(segm_xy=segments_xy['Head']['segm_xy'], keypoint1_ref=neck_keypoint, keypoint2_ref=midhip_keypoint) segments_xy['Head']['segm_xy'] = segm_xy segments_xy['Head']['keypoints']['Nose'] = keypoint # Upper Limb # Right # wrist keypoint = lower arm midpoint if 'RLowerArm' in segments_xy and 'RUpperArm' in segments_xy and len(segments_xy['RLowerArm']['segm_xy']) > 0 and segments_xy['RLowerArm']['keypoints']['RWrist'][2] > 0 and segments_xy['RUpperArm']['keypoints']['RElbow'][2] > 0: segm_xy, keypoint = _rotate_limbs_around_midpoint(segm_xy=segments_xy['RLowerArm']['segm_xy'], keypoint=segments_xy['RLowerArm']['keypoints']['RWrist'], ref_keypoint=segments_xy['RUpperArm']['keypoints']['RElbow'], is_right=True, is_leg=False) segments_xy['RLowerArm']['segm_xy'] = segm_xy segments_xy['RLowerArm']['keypoints']['RWrist'] = keypoint # elbow keypoint = upper arm midpoint if 'RUpperArm' in segments_xy and len(segments_xy['RUpperArm']['segm_xy']) > 0 and segments_xy['RUpperArm']['keypoints']['RElbow'][2] > 0: segm_xy, keypoint = _rotate_limbs_around_midpoint(segm_xy=segments_xy['RUpperArm']['segm_xy'], keypoint=segments_xy['RUpperArm']['keypoints']['RElbow'], ref_keypoint=rsho_keypoint, is_right=True, is_leg=False) segments_xy['RUpperArm']['segm_xy'] = segm_xy segments_xy['RUpperArm']['keypoints']['RElbow'] = keypoint # Left # wrist keypoint = lower arm midpoint if 'LLowerArm' in segments_xy and 'LUpperArm' in segments_xy and len(segments_xy['LLowerArm']['segm_xy']) > 0 and segments_xy['LLowerArm']['keypoints']['LWrist'][2] > 0 and segments_xy['LUpperArm']['keypoints']['LElbow'][2] > 0: segm_xy, keypoint = _rotate_limbs_around_midpoint(segm_xy=segments_xy['LLowerArm']['segm_xy'], keypoint=segments_xy['LLowerArm']['keypoints']['LWrist'], ref_keypoint=segments_xy['LUpperArm']['keypoints']['LElbow'], is_right=False, is_leg=False) segments_xy['LLowerArm']['segm_xy'] = segm_xy segments_xy['LLowerArm']['keypoints']['LWrist'] = keypoint # elbow keypoint = upper arm midpoint if 'LUpperArm' in segments_xy and len(segments_xy['LUpperArm']['segm_xy']) > 0 and segments_xy['LUpperArm']['keypoints']['LElbow'][2] > 0: segm_xy, keypoint = _rotate_limbs_around_midpoint(segm_xy=segments_xy['LUpperArm']['segm_xy'], keypoint=segments_xy['LUpperArm']['keypoints']['LElbow'], ref_keypoint=lsho_keypoint, is_right=False, is_leg=False) segments_xy['LUpperArm']['segm_xy'] = segm_xy segments_xy['LUpperArm']['keypoints']['LElbow'] = keypoint # Lower Limb # Right # ankle keypoint = calf midpoint if 'RCalf' in segments_xy and 'RThigh' in segments_xy and len(segments_xy['RCalf']['segm_xy']) > 0 and segments_xy['RCalf']['keypoints']['RAnkle'][2] > 0 and segments_xy['RThigh']['keypoints']['RKnee'][2] > 0: segm_xy, keypoint = _rotate_limbs_around_midpoint(segm_xy=segments_xy['RCalf']['segm_xy'], keypoint=segments_xy['RCalf']['keypoints']['RAnkle'], ref_keypoint=segments_xy['RThigh']['keypoints']['RKnee'], is_right=True, is_leg=True) segments_xy['RCalf']['segm_xy'] = segm_xy segments_xy['RCalf']['keypoints']['RAnkle'] = keypoint # knee keypoint = thigh midpoint if 'RThigh' in segments_xy and len(segments_xy['RThigh']['segm_xy']) > 0 and segments_xy['RThigh']['keypoints']['RKnee'][2] > 0: segm_xy, keypoint = _rotate_limbs_around_midpoint(segm_xy=segments_xy['RThigh']['segm_xy'], keypoint=segments_xy['RThigh']['keypoints']['RKnee'], ref_keypoint=rhip_keypoint, is_right=True, is_leg=True) segments_xy['RThigh']['segm_xy'] = segm_xy segments_xy['RThigh']['keypoints']['RKnee'] = keypoint # Left # ankle keypoint = calf midpoint if 'LCalf' in segments_xy and 'LThigh' in segments_xy and len(segments_xy['LCalf']['segm_xy']) > 0 and segments_xy['LCalf']['keypoints']['LAnkle'][2] > 0 and segments_xy['LThigh']['keypoints']['LKnee'][2] > 0: segm_xy, keypoint = _rotate_limbs_around_midpoint(segm_xy=segments_xy['LCalf']['segm_xy'], keypoint=segments_xy['LCalf']['keypoints']['LAnkle'], ref_keypoint=segments_xy['LThigh']['keypoints']['LKnee'], is_right=False, is_leg=True) segments_xy['LCalf']['segm_xy'] = segm_xy segments_xy['LCalf']['keypoints']['LAnkle'] = keypoint # knee keypoint = thigh midpoint if 'LThigh' in segments_xy and len(segments_xy['LThigh']['segm_xy']) > 0 and segments_xy['LThigh']['keypoints']['LKnee'][2] > 0: segm_xy, keypoint = _rotate_limbs_around_midpoint(segm_xy=segments_xy['LThigh']['segm_xy'], keypoint=segments_xy['LThigh']['keypoints']['LKnee'], ref_keypoint=lhip_keypoint, is_right=False, is_leg=True) segments_xy['LThigh']['segm_xy'] = segm_xy segments_xy['LThigh']['keypoints']['LKnee'] = keypoint return segments_xy def rotate_segments_xy(segm, keypoints): # Issue ONE: cannot rotate body to [Face-front + Torso-front] view!!! # Issue TWO: cannot have the same person -> so it can be a fat person or a thin person!!! # *Issue THREE*: NO mapped HAND and FOOT keypoints to rotate them - hands are feet are ignored in analysis!!! # *Issue FOUR*: NOSE is not at the middle point of the head, e.g., face right, face left, so cannot normalize HEAD!!! # STEP 1: rotated any pose to a vertical pose, i.e., stand up, sit up, etc... # extract original segment's x, y segments_xy = _get_segments_xy(segm=segm, keypoints=keypoints) # rotated segment to vertical pose, i.e., stand up, sit up, etc... vertical_segments_xy = _rotate_to_vertical_pose(segments_xy=segments_xy) # STEP 2: rotate specific segment further to t-pose tpose_segments_xy = _rotate_to_tpose(segments_xy=vertical_segments_xy) return tpose_segments_xy def _euclidian(point1, point2): return np.sqrt((point1[0]-point2[0])**2 + (point1[1]-point2[1])**2) def _remove_outlier(segm_xy): # outlier factor factor = 2 # mean of [x, y] xy_mean = np.mean(segm_xy, axis=0) # mean distance between [x, y] and mean of [x, y] distance_mean = np.mean([_euclidian(xy, xy_mean) for xy in segm_xy]) # remove outliers from segm_xy segm_xy_without_outliers = [xy for xy in segm_xy if _euclidian(xy, xy_mean) <= distance_mean * factor] return segm_xy_without_outliers def _translate_and_scale_segm_to_convex(image, segm_id, segm_xy, keypoint, ref_point, is_man, is_rect_symmetrical, segm_symmetry_dict, scaler): # test each segment # print('Segment ID:', segm_id) # remove outliers print('Before removing outliers:', len(segm_xy)) segm_xy = np.array(_remove_outlier(segm_xy=segm_xy)).astype(int) print('After removing outliers:', len(segm_xy)) min_x, min_y = np.min(segm_xy, axis=0).astype(int) max_x, max_y = np.max(segm_xy, axis=0).astype(int) margin = 5 w = int(max_x - min_x + margin*2) h = int(max_y - min_y + margin*2) img_bg = np.empty((h, w, 4), np.uint8) img_bg.fill(255) img_bg[:, :, 3] = 0 # alpha channel = 0 -> transparent # fill the segment with the segment color contours = [[int(x - min_x + margin), int(y - min_y + margin)] for x, y in segm_xy] # option 1 - convex hull of [x, y] contours = np.array(contours, np.int32) cv2.fillConvexPoly(img_bg, cv2.convexHull(contours), color=COARSE_TO_COLOR[segm_id]) # option 2 - dots on [x, y] # for x, y in contours: # cv2.circle(img_bg, (x, y), color=COARSE_TO_COLOR[segm_id], radius=2, thickness=-2) # assumption: head_radius = 31 -> head_height = 31*2 = 62 -> men; 58 -> women if segm_id == 'Head' and h > 0: if is_man: scaler = 62 / h else: scaler = 58 / h img_bg = cv2.resize(img_bg, (int(w * scaler), int(h * scaler)), cv2.INTER_LINEAR) h, w, _ = img_bg.shape # midpoint [x, y] in the scaled coordinates of img_bg # distance between the center point and the left/upper boundaries midpoint_x, midpoint_y = ((np.array(keypoint)[0:2] - np.array([min_x, min_y]) + np.array([margin, margin])) * scaler).astype(int) x, y = ref_point min_x = int(x - midpoint_x) max_x = int(x + w - midpoint_x) min_y = int(y - midpoint_y) max_y = int(y + h - midpoint_y) cond_bg = img_bg[:, :, 3] > 0 # condition for already-drawn segment pixels try: image[min_y:max_y, min_x:max_x, :][cond_bg] = img_bg[cond_bg] except: if segm_id == 'Head': return scaler # test each segment # cv2.circle(img_bg, (midpoint_x, midpoint_y), radius=5,color=(255, 255, 0), thickness=-1) # cv2.imshow('test', img_bg) # cv2.waitKey(0) # cv2.destroyAllWindows() if segm_id == 'Head': return scaler, None else: return None def _symmetrize_rect_segm(segm_id, w, h, midpoint_x, midpoint_y, segm_symmetry_dict): if segm_id == 'Head': segm_symmetry_dict['Head'] = (w, h) else: if midpoint_x < w/2: w = int((w - midpoint_x) * 2) else: w = int(midpoint_x * 2) if midpoint_y < h/2: h = int((h - midpoint_y) * 2) else: h = int(midpoint_y * 2) if segm_id == 'Torso': segm_symmetry_dict['Torso'] = (w, h) elif segm_id == 'RUpperArm': segm_symmetry_dict['RUpperArm'] = (w, h) elif segm_id == 'RLowerArm': segm_symmetry_dict['RLowerArm'] = (w, h) elif segm_id == 'LUpperArm': if 'RUpperArm' in segm_symmetry_dict: ref_w, ref_h = segm_symmetry_dict['RUpperArm'] if w < ref_w: segm_symmetry_dict['LUpperArm'] = segm_symmetry_dict['RUpperArm'] else: segm_symmetry_dict['LUpperArm'] = (w, h) segm_symmetry_dict['RUpperArm'] = (w, h) else: segm_symmetry_dict['LUpperArm'] = (w, h) segm_symmetry_dict['RUpperArm'] = (w, h) elif segm_id == 'LLowerArm': if 'RLowerArm' in segm_symmetry_dict: ref_w, ref_h = segm_symmetry_dict['RLowerArm'] if w < ref_w: segm_symmetry_dict['LLowerArm'] = segm_symmetry_dict['RLowerArm'] else: segm_symmetry_dict['LLowerArm'] = (w, h) segm_symmetry_dict['RLowerArm'] = (w, h) else: segm_symmetry_dict['LLowerArm'] = (w, h) segm_symmetry_dict['RLowerArm'] = (w, h) elif segm_id == 'RThigh': segm_symmetry_dict['RThigh'] = (w, h) elif segm_id == 'RCalf': segm_symmetry_dict['RCalf'] = (w, h) elif segm_id == 'LThigh': if 'RThigh' in segm_symmetry_dict: ref_w, ref_h = segm_symmetry_dict['RThigh'] if h < ref_h: segm_symmetry_dict['LThigh'] = segm_symmetry_dict['RThigh'] else: segm_symmetry_dict['LThigh'] = (w, h) segm_symmetry_dict['RThigh'] = (w, h) else: segm_symmetry_dict['LThigh'] = (w, h) segm_symmetry_dict['RThigh'] = (w, h) elif segm_id == 'LCalf': if 'RCalf' in segm_symmetry_dict: ref_w, ref_h = segm_symmetry_dict['RCalf'] if h < ref_h: segm_symmetry_dict['LCalf'] = segm_symmetry_dict['RCalf'] else: segm_symmetry_dict['LCalf'] = (w, h) segm_symmetry_dict['RCalf'] = (w, h) else: segm_symmetry_dict['LCalf'] = (w, h) segm_symmetry_dict['RCalf'] = (w, h) def _draw_symmetrical_rect_segm(image, segm_id, w_and_h, ref_point, update_dict=True): w, h = w_and_h # update output_dict if update_dict: global output_dict output_dict[segm_id + '_w'] = w output_dict[segm_id + '_h'] = h img_bg = np.empty((h, w, 4), np.uint8) img_bg.fill(255) img_bg[:, :] = COARSE_TO_COLOR[segm_id] midpoint_x = w / 2 midpoint_y = h / 2 x, y = ref_point min_x = int(x - midpoint_x) max_x = int(x + midpoint_x) min_y = int(y - midpoint_y) max_y = int(y + midpoint_y) try: added_image = cv2.addWeighted(image[min_y:max_y, min_x:max_x, :], 0.1, img_bg, 0.9, 0) image[min_y:max_y, min_x:max_x, :] = added_image except: pass def _translate_and_scale_segm_to_rect(image, segm_id, segm_xy, keypoint, ref_point, is_man, is_rect_symmetrical, segm_symmetry_dict, scaler): # test each segment print('Segment ID:', segm_id) # remove outliers print('Before removing outliers:', len(segm_xy)) segm_xy = np.array(_remove_outlier(segm_xy=segm_xy)).astype(int) print('After removing outliers:', len(segm_xy)) min_x, min_y =
np.min(segm_xy, axis=0)
numpy.min
import os import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt import matplotlib.animation as animation from collections import OrderedDict from tensorflow.python.keras.models import load_model from pkg_resources import resource_filename from transomaly.prepare_input import PrepareInputArrays from transomaly.loss_functions import mean_squared_error, chisquare_loss, mean_squared_error_over_error matplotlib.use('TkAgg') SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) COLPB = {'g': 'tab:green', 'r': 'tab:red'} MARKPB = {'g': 'o', 'r': 's', 'z': 'd'} ALPHAPB = {'g': 0.3, 'r': 1., 'z': 1} CLASS_COLOR = {'SNIa-norm': 'tab:green', 'SNIbc': 'tab:orange', 'SNII': 'tab:blue', 'SNIIn': 'blue', 'SNIa-91bg': 'tab:red', 'SNIa-x': 'bisque', 'point-Ia': 'tab:brown', 'Kilonova': '#aaffc3', 'SLSN-I': 'tab:olive', 'PISN': 'tab:cyan', 'ILOT': '#FF1493', 'CART': 'navy', 'TDE': 'tab:pink', 'AGN': 'tab:purple'} # npred = 7 # model_filepath_onepoint_infuture = "/Users/danmuth/OneDrive - University of Cambridge/PycharmProjects/transomaly/plots/model__ci()_ns1_c(1,)/keras_model_epochs300_onepoint_pred7timesteps_infuture_normalised_predict_last49_timesteps_nodropout_100lstmneurons/keras_model_epochs300_onepoint_pred7timesteps_infuture_normalised_predict_last49_timesteps_nodropout_100lstmneurons.hdf5" model_filepath = "/Users/danmuth/OneDrive - University of Cambridge/PycharmProjects/transomaly/plots/model__ci()_ns1_c(1,)/keras_model_epochs500_pred2timesteps_normalised_predict_last49_timesteps_nodropout_100lstmneurons/keras_model_epochs500_pred2timesteps_normalised_predict_last49_timesteps_nodropout_100lstmneurons.hdf5" model = load_model(model_filepath, custom_objects={'loss': mean_squared_error()}) passbands = ('g','r') contextual_info = () X = np.array([np.array([[0.09158034, 0.07176773], [0.09008677, 0.07137485], [0.08917016, 0.0727186 ], [0.09029362, 0.07340094], [0.08999084, 0.07224263], [0.08900606, 0.07197019], [0.08739904, 0.07095805], [0.08682939, 0.07071227], [0.08567506, 0.07031706], [0.08386102, 0.07021409], [0.0836062 , 0.0698832 ], [0.08332578, 0.07050169], [0.08397429, 0.06937913], [0.0860095 , 0.0716971 ], [0.09076107, 0.07780995], [0.09871331, 0.08934081], [0.11663096, 0.11012718], [0.15700709, 0.15327507], [0.23417453, 0.22872161], [0.35862168, 0.33963544], [0.51792838, 0.48456903], [0.68616083, 0.64401235], [0.81866526, 0.79203408], [0.90768435, 0.89154676], [0.93726188, 0.94250969], [0.92312219, 0.95238174], [0.85896026, 0.93542825], [0.74499556, 0.87812468], [0.62114839, 0.78786493], [0.50529031, 0.6932507 ], [0.40645818, 0.6036984 ], [0.32993884, 0.52479434], [0.27163636, 0.45807863], [0.22780797, 0.40140124], [0.19817062, 0.35339631], [0.17674938, 0.31370617], [0.16142444, 0.27973599], [0.14923072, 0.25118097], [0.13910386, 0.22674725], [0.13288632, 0.20717057], [0.12727512, 0.191151 ], [0.12253798, 0.17674126], [0.11748478, 0.16368262], [0.11428479, 0.15247652], [0.110435 , 0.14285344], [0.10726069, 0.13410306], [0.10317767, 0.12546451], [0.10019489, 0.11729226], [0.09654251, 0.11025106]])]) y = np.array([np.array([[0.09008677, 0.07137485], [0.08917016, 0.0727186 ], [0.09029362, 0.07340094], [0.08999084, 0.07224263], [0.08900606, 0.07197019], [0.08739904, 0.07095805], [0.08682939, 0.07071227], [0.08567506, 0.07031706], [0.08386102, 0.07021409], [0.0836062 , 0.0698832 ], [0.08332578, 0.07050169], [0.08397429, 0.06937913], [0.0860095 , 0.0716971 ], [0.09076107, 0.07780995], [0.09871331, 0.08934081], [0.11663096, 0.11012718], [0.15700709, 0.15327507], [0.23417453, 0.22872161], [0.35862168, 0.33963544], [0.51792838, 0.48456903], [0.68616083, 0.64401235], [0.81866526, 0.79203408], [0.90768435, 0.89154676], [0.93726188, 0.94250969], [0.92312219, 0.95238174], [0.85896026, 0.93542825], [0.74499556, 0.87812468], [0.62114839, 0.78786493], [0.50529031, 0.6932507 ], [0.40645818, 0.6036984 ], [0.32993884, 0.52479434], [0.27163636, 0.45807863], [0.22780797, 0.40140124], [0.19817062, 0.35339631], [0.17674938, 0.31370617], [0.16142444, 0.27973599], [0.14923072, 0.25118097], [0.13910386, 0.22674725], [0.13288632, 0.20717057], [0.12727512, 0.191151 ], [0.12253798, 0.17674126], [0.11748478, 0.16368262], [0.11428479, 0.15247652], [0.110435 , 0.14285344], [0.10726069, 0.13410306], [0.10317767, 0.12546451], [0.10019489, 0.11729226], [0.09654251, 0.11025106], [0.09630747, 0.10437187]])]) timesX = np.array([np.array([-70., -67., -64., -61., -58., -55., -52., -49., -46., -43., -40., -37., -34., -31., -28., -25., -22., -19., -16., -13., -10., -7., -4., -1., 2., 5., 8., 11., 14., 17., 20., 23., 26., 29., 32., 35., 38., 41., 44., 47., 50., 53., 56., 59., 62., 65., 68., 71., 74., 77.])]) objids =
np.array(['median_Ia'])
numpy.array
# coding: utf-8 # # Assignment 2 # # Before working on this assignment please read these instructions fully. In the submission area, you will notice that you can click the link to **Preview the Grading** for each step of the assignment. This is the criteria that will be used for peer grading. Please familiarize yourself with the criteria before beginning the assignment. # # An NOAA dataset has been stored in the file `data/C2A2_data/BinnedCsvs_d100/4e86d2106d0566c6ad9843d882e72791333b08be3d647dcae4f4b110.csv`. The data for this assignment comes from a subset of The National Centers for Environmental Information (NCEI) [Daily Global Historical Climatology Network](https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt) (GHCN-Daily). The GHCN-Daily is comprised of daily climate records from thousands of land surface stations across the globe. # # Each row in the assignment datafile corresponds to a single observation. # # The following variables are provided to you: # # * **id** : station identification code # * **date** : date in YYYY-MM-DD format (e.g. 2012-01-24 = January 24, 2012) # * **element** : indicator of element type # * TMAX : Maximum temperature (tenths of degrees C) # * TMIN : Minimum temperature (tenths of degrees C) # * **value** : data value for element (tenths of degrees C) # # For this assignment, you must: # # 1. Read the documentation and familiarize yourself with the dataset, then write some python code which returns a line graph of the record high and record low temperatures by day of the year over the period 2005-2014. The area between the record high and record low temperatures for each day should be shaded. # 2. Overlay a scatter of the 2015 data for any points (highs and lows) for which the ten year record (2005-2014) record high or record low was broken in 2015. # 3. Watch out for leap days (i.e. February 29th), it is reasonable to remove these points from the dataset for the purpose of this visualization. # 4. Make the visual nice! Leverage principles from the first module in this course when developing your solution. Consider issues such as legends, labels, and chart junk. # # The data you have been given is near **None, None, Singapore**, and the stations the data comes from are shown on the map below. # In[1]: import matplotlib.pyplot as plt import mplleaflet import pandas as pd def leaflet_plot_stations(binsize, hashid): df = pd.read_csv('data/C2A2_data/BinSize_d{}.csv'.format(binsize)) station_locations_by_hash = df[df['hash'] == hashid] lons = station_locations_by_hash['LONGITUDE'].tolist() lats = station_locations_by_hash['LATITUDE'].tolist() plt.figure(figsize=(8,8)) plt.scatter(lons, lats, c='r', alpha=0.7, s=200) return mplleaflet.display() leaflet_plot_stations(100,'4e86d2106d0566c6ad9843d882e72791333b08be3d647dcae4f4b110') # In[2]: df = pd.read_csv('data/C2A2_data/BinnedCsvs_d100/4e86d2106d0566c6ad9843d882e72791333b08be3d647dcae4f4b110.csv') # In[3]: df.sort(['ID','Date']).head() # In[4]: df['Year'], df['Month-Date'] = zip(*df['Date'].apply(lambda x: (x[:4], x[5:]))) df = df[df['Month-Date'] != '02-29'] # In[5]: import numpy as np temp_min = df[(df['Element'] == 'TMIN') & (df['Year'] != '2015')].groupby('Month-Date').aggregate({'Data_Value':np.min}) temp_max = df[(df['Element'] == 'TMAX') & (df['Year'] != '2015')].groupby('Month-Date').aggregate({'Data_Value':np.max}) # In[6]: temp_min.head() # In[7]: temp_min_15 = df[(df['Element'] == 'TMIN') & (df['Year'] == '2015')].groupby('Month-Date').aggregate({'Data_Value':np.min}) temp_max_15 = df[(df['Element'] == 'TMAX') & (df['Year'] == '2015')].groupby('Month-Date').aggregate({'Data_Value':np.max}) # In[8]: broken_min =
np.where(temp_min_15['Data_Value'] < temp_min['Data_Value'])
numpy.where
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # os.environ['CUDA_VISIBLE_DEVICES'] = '-1' import time import heapq import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import argparse import pickle import pdb from scipy.special import expit from sklearn.metrics import confusion_matrix from tensorflow.keras.models import load_model from sys import stdout from tensorflow.keras.callbacks import Callback from collections import defaultdict, namedtuple from multiprocessing import Pool from random import sample, shuffle from glob import glob class F1Score(Callback): # this is really heavy handed! # have to evaluate the set twice def __init__(self, validation_data, n_classes, model_out_path, batch_size=4, two_headed_net=False): super(F1Score, self).__init__() self.validation_data = validation_data self.batch_size = batch_size self.n_classes = n_classes self.model_out_path = os.path.splitext(model_out_path)[0] self.two_headed_net = two_headed_net if self.two_headed_net: self.model_out_path += "epoch-{}-f1-{}.h5" else: self.model_out_path += "epoch-{}-f1-{}.h5" self.f1_scores = [] def on_train_begin(self, logs={}): pass def on_epoch_end(self, epochs, logs): # 5.4.1 For each validation batch cmat, prec, recall = confusion_matrix_from_generator(self.validation_data, batch_size=self.batch_size, model=self.model, n_classes=self.n_classes, multi_output=self.two_headed_net) print('n pixels per class:', np.sum(cmat, axis=1)) print(prec) print(recall) precision_irrigated = prec[0] recall_irrigated = recall[0] f1 = 2*(precision_irrigated * recall_irrigated) / (precision_irrigated + recall_irrigated) if np.isnan(f1): return outp = self.model_out_path.format(epochs, f1) print('saving', outp) if not os.path.isfile(outp): self.model.save(outp) # maybe get some space savings return def softmax(arr, count_dim=0): arr = np.exp(arr) arr /= (
np.sum(arr, axis=count_dim, keepdims=True)
numpy.sum
import numpy as np import pytest import numpy.testing as npt from collections import OrderedDict from pulse2percept.implants import (DiskElectrode, PointSource, ElectrodeArray, ElectrodeGrid) def test_ElectrodeArray(): with pytest.raises(TypeError): ElectrodeArray("foo") with pytest.raises(TypeError): ElectrodeArray(OrderedDict({'A1': 0})) with pytest.raises(TypeError): ElectrodeArray([0]) # Empty array: earray = ElectrodeArray([]) npt.assert_equal(earray.n_electrodes, 0) # npt.assert_equal(earray[0], None) npt.assert_equal(earray['A01'], None) with pytest.raises(TypeError): earray[PointSource(0, 0, 0)] ElectrodeArray([]) # A single electrode: earray = ElectrodeArray(PointSource(0, 1, 2)) npt.assert_equal(earray.n_electrodes, 1) npt.assert_equal(isinstance(earray[0], PointSource), True) npt.assert_equal(isinstance(earray[[0]], list), True) npt.assert_equal(isinstance(earray[[0]][0], PointSource), True) npt.assert_almost_equal(earray[0].x, 0) npt.assert_almost_equal(earray[0].y, 1) npt.assert_almost_equal(earray[0].z, 2) # Indexing: ps1, ps2 = PointSource(0, 0, 0), PointSource(1, 1, 1) earray = ElectrodeArray({'A01': ps1, 'D07': ps2}) npt.assert_equal(earray['A01'], ps1) npt.assert_equal(earray['D07'], ps2) # Slots: npt.assert_equal(hasattr(earray, '__slots__'), True) npt.assert_equal(hasattr(earray, '__dict__'), False) def test_ElectrodeArray_add_electrode(): earray = ElectrodeArray([]) npt.assert_equal(earray.n_electrodes, 0) with pytest.raises(TypeError): earray.add_electrode('A01', ElectrodeArray([])) # Add an electrode: key0 = 'A04' earray.add_electrode(key0, PointSource(0, 1, 2)) npt.assert_equal(earray.n_electrodes, 1) # Both numeric and string index should work: for key in [key0, 0]: npt.assert_equal(isinstance(earray[key], PointSource), True) npt.assert_almost_equal(earray[key].x, 0) npt.assert_almost_equal(earray[key].y, 1) npt.assert_almost_equal(earray[key].z, 2) with pytest.raises(ValueError): # Can't add the same electrode twice: earray.add_electrode(key0, PointSource(0, 1, 2)) # Add another electrode: key1 = 'A01' earray.add_electrode(key1, DiskElectrode(4, 5, 6, 7)) npt.assert_equal(earray.n_electrodes, 2) # Both numeric and string index should work: for key in [key1, 1]: npt.assert_equal(isinstance(earray[key], DiskElectrode), True) npt.assert_almost_equal(earray[key].x, 4) npt.assert_almost_equal(earray[key].y, 5) npt.assert_almost_equal(earray[key].z, 6) npt.assert_almost_equal(earray[key].r, 7) # We can also get a list of electrodes: for keys in [[key0, key1], [0, key1], [key0, 1], [0, 1]]: selected = earray[keys] npt.assert_equal(isinstance(selected, list), True) npt.assert_equal(isinstance(selected[0], PointSource), True) npt.assert_equal(isinstance(selected[1], DiskElectrode), True) def test_ElectrodeArray_remove_electrode(): earray1 = ElectrodeArray([]) earray2 = ElectrodeArray([]) npt.assert_equal(earray1.n_electrodes, 0) # Can't remove electrodes from empty electrodeArray with pytest.raises(ValueError): earray1.remove_electrode(None) with pytest.raises(ValueError): earray1.remove_electrode("foo") key = [0] * 4 key[0] = 'D03' key[1] = 'A02' key[2] = 'F10' key[3] = 'E12' earray1.add_electrode(key[0], PointSource(0, 1, 2)) earray1.add_electrode(key[1], PointSource(3, 4, 5)) earray1.add_electrode(key[2], PointSource(6, 7, 8)) earray1.add_electrode(key[3], PointSource(9, 10, 11)) npt.assert_equal(earray1.n_electrodes, 4) earray2.add_electrode(key[0], PointSource(0, 1, 2)) earray2.add_electrode(key[1], PointSource(3, 4, 5)) earray2.add_electrode(key[2], PointSource(6, 7, 8)) earray2.add_electrode(key[3], PointSource(9, 10, 11)) npt.assert_equal(earray2.n_electrodes, 4) # Remove one electrode key[1] from the electrodeArray earray1.remove_electrode(key[0]) npt.assert_equal(earray1.n_electrodes, 3) # Can't remove an electrode that has been removed with pytest.raises(ValueError): earray1.remove_electrode(key[0]) # List keeps order: npt.assert_equal(earray1[0], earray1[key[1]]) npt.assert_equal(earray1[1], earray1[key[2]])
npt.assert_equal(earray1[2], earray1[key[3]])
numpy.testing.assert_equal
import unittest, os import numpy as np import tensorflow as tf from ovejero import bnn_alexnet from scipy.stats import multivariate_normal # Eliminate TF warning in tests os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' class BNNTests(unittest.TestCase): def setUp(self): self.random_seed = 1234 tf.random.set_seed(self.random_seed) np.random.seed(self.random_seed) def tearDown(self): # Make sure we don't have any models lingering in memory. tf.keras.backend.clear_session() def test_AlwaysDropout(self): # Test that the implementation of Always dropout behaves as expected. # Start with no dropout and make sure that behaves how you want it to. input_layer = tf.ones((200,200,200)) dropout_rate = 0 d_layer = bnn_alexnet.AlwaysDropout(dropout_rate) output_layer = d_layer(input_layer) np.testing.assert_equal(input_layer.numpy(),output_layer.numpy()) dropout_rate = 0.1 d_layer = bnn_alexnet.AlwaysDropout(dropout_rate) output_layer = d_layer(input_layer) # Test that the two arrays aren't equal. self.assertGreater(np.mean(np.abs(input_layer.numpy()-output_layer.numpy() )),0) # Test that the mean value hasn't changed (remember we divide the output # by the dropout rate so the mean is unchanged) self.assertAlmostEqual(np.mean(input_layer.numpy()), np.mean(output_layer.numpy()),places=3) # Test that the median value is as expected. self.assertAlmostEqual(np.median(output_layer.numpy()),1/0.9,places=5) # Repeat the above tests for other dropout rates. dropout_rate = 0.5 d_layer = bnn_alexnet.AlwaysDropout(dropout_rate) output_layer = d_layer(input_layer) self.assertGreater(np.mean(np.abs(input_layer.numpy()-output_layer.numpy() )),0) self.assertAlmostEqual(np.mean(input_layer.numpy()), np.mean(output_layer.numpy()),places=2) dropout_rate = 0.9 d_layer = bnn_alexnet.AlwaysDropout(dropout_rate) output_layer = d_layer(input_layer) self.assertGreater(np.mean(np.abs(input_layer.numpy()-output_layer.numpy() )),0) self.assertAlmostEqual(np.mean(input_layer.numpy()), np.mean(output_layer.numpy()),places=2) self.assertEqual(np.median(output_layer.numpy()),0.0) def test_ConcreteDropout(self): # Test that our implementation of ConcreteDropout works as expected. output_dim = 100 activation = 'relu' kernel_regularizer = 1e-6 dropout_regularizer = 1e-5 init_min = 0.1 init_max = 0.1 input_shape = (None,200) cd_layer = bnn_alexnet.ConcreteDropout(output_dim,activation=activation, kernel_regularizer=kernel_regularizer, dropout_regularizer=dropout_regularizer, init_min=init_min, init_max=init_max) cd_layer.build(input_shape=input_shape) # Check that all of the weights have the right shapes kernel = cd_layer.weights[0] bias = cd_layer.weights[1] p_logit = cd_layer.weights[2] self.assertListEqual(list(kernel.shape),[200,100]) self.assertListEqual(list(bias.shape),[100]) self.assertListEqual(list(p_logit.shape),[1]) # Check that the initializations worked as we wanted them to self.assertEqual(np.sum(bias.numpy()),0) self.assertEqual(p_logit.numpy(),np.log(0.1)-np.log(1-0.1)) # Check that the losses for the layer is what we would expect for # concrete dropout. p_logit_reg = cd_layer.losses[0].numpy() kernel_reg = cd_layer.losses[1].numpy() # We know what we set p to p = 0.1 p_logit_correct = p * np.log(p) + (1-p)*np.log(1-p) p_logit_correct *= dropout_regularizer * 200 self.assertAlmostEqual(p_logit_reg, p_logit_correct) kernel_correct = kernel_regularizer * np.sum(np.square( kernel.numpy())) / (1-p) self.assertAlmostEqual(kernel_reg, kernel_correct) # Now check that the call function doesn't return the same value each # time false_input = tf.constant((np.random.rand(1,200)),dtype=tf.float32) output1 = cd_layer(false_input).numpy() output2 = cd_layer(false_input).numpy() self.assertGreater(np.sum(np.abs(output1-output2)),1) def test_SpatialConcreteDropout(self): # Test that our implementation of ConcreteDropout works as expected. filters = 64 kernel_size = (5,5) activation = 'relu' kernel_regularizer = 1e-6 dropout_regularizer = 1e-5 init_min = 0.1 init_max = 0.1 input_shape = (None,20,20,64) cd_layer = bnn_alexnet.SpatialConcreteDropout(filters, kernel_size, activation=activation, kernel_regularizer=kernel_regularizer, dropout_regularizer=dropout_regularizer, init_min=init_min, init_max=init_max) cd_layer.build(input_shape=input_shape) # Check that all of the weights have the right shapes kernel = cd_layer.weights[0] bias = cd_layer.weights[1] p_logit = cd_layer.weights[2] self.assertListEqual(list(kernel.shape),[5,5,64,64]) self.assertListEqual(list(bias.shape),[64]) self.assertListEqual(list(p_logit.shape),[1]) # Check that the initializations worked as we wanted them to self.assertEqual(np.sum(bias.numpy()),0) self.assertEqual(p_logit.numpy(),np.log(0.1)-np.log(1-0.1)) # Check that the losses for the layer is what we would expect for # concrete dropout. p_logit_reg = cd_layer.losses[0].numpy() kernel_reg = cd_layer.losses[1].numpy() # We know what we set p to p = 0.1 p_logit_correct = p * np.log(p) + (1-p)*np.log(1-p) p_logit_correct *= dropout_regularizer * 64 self.assertAlmostEqual(p_logit_reg, p_logit_correct) kernel_correct = kernel_regularizer * np.sum(np.square( kernel.numpy())) / (1-p) self.assertAlmostEqual(kernel_reg, kernel_correct) # Now check that the call function doesn't return the same value each # time false_input = tf.constant((np.random.rand(1,20,20,64)),dtype=tf.float32) output1 = cd_layer(false_input).numpy() output2 = cd_layer(false_input).numpy() self.assertGreater(np.sum(np.abs(output1-output2)),1) def test_concrete_alexnet(self): # Test that the models initialized agree with what we intended layer_names = ['input','spatial_concrete_dropout','max_pooling2d', 'spatial_concrete_dropout','max_pooling2d', 'spatial_concrete_dropout','spatial_concrete_dropout', 'spatial_concrete_dropout','max_pooling2d','flatten', 'concrete_dropout','concrete_dropout','concrete_dropout'] image_size = (100,100,1) num_params = 8 model = bnn_alexnet.concrete_alexnet(image_size, num_params, kernel_regularizer=1e-6,dropout_regularizer=1e-5) input_shapes = [[],(100,100,1),(48,48,64), (24,24,64),(24,24,192),(12,12,192),(12,12,384),(12,12,384), (12,12,256),(6,6,256),(9216,),(4096,),(4096,)] output_shapes = [[]]+input_shapes[2:] + [(num_params,)] l_i = 0 # All I can really check is that the layers are of the right type and # have the right shapes for layer in model.layers: self.assertTrue(layer_names[l_i] in layer.name) self.assertEqual(layer.dtype,tf.float32) self.assertEqual(layer.input_shape[1:],input_shapes[l_i]) self.assertEqual(layer.output_shape[1:],output_shapes[l_i]) # Check that all the concrete dropout layer except the last have # a ReLU activation function. if 'concrete' in layer.name and l_i < len(model.layers)-1: self.assertEqual(layer.activation,tf.keras.activations.relu) l_i += 1 def test_dropout_alexnet(self): # Test that the models initialized agree with what we intended layer_names = ['input','always_dropout','conv2d','max_pooling2d', 'always_dropout','conv2d','max_pooling2d','always_dropout', 'conv2d','always_dropout','conv2d','always_dropout', 'conv2d','max_pooling2d','flatten','always_dropout','dense', 'always_dropout','dense','always_dropout','dense'] image_size = (100,100,1) num_params = 8 # Kernel regularizer and dropout rate kr = 1e-6 dr = 0.1 model = bnn_alexnet.dropout_alexnet(image_size, num_params, kernel_regularizer=kr,dropout_rate=dr) input_shapes = [[],(100,100,1),(100,100,1),(48,48,64), (24,24,64),(24,24,64),(24,24,192),(12,12,192),(12,12,192), (12,12,384),(12,12,384),(12,12,384),(12,12,384),(12,12,256), (6,6,256),(9216,),(9216,),(4096,),(4096,),(4096,),(4096,)] output_shapes = [[]]+input_shapes[2:] + [(num_params,)] # All I can really check is that the layers are of the right type and # have the right shapes for l_i, layer in enumerate(model.layers): self.assertTrue(layer_names[l_i] in layer.name) self.assertEqual(layer.dtype,tf.float32) self.assertEqual(layer.input_shape[1:],input_shapes[l_i]) self.assertEqual(layer.output_shape[1:],output_shapes[l_i]) # Check that all the concrete dropout layer except the last have # a ReLU activation function. if 'conv2d' in layer.name: self.assertEqual(layer.activation,tf.keras.activations.relu) self.assertEqual(layer.kernel_regularizer.l2,np.array(kr*(1-dr), dtype=np.float32)) if 'dense' in layer.name and l_i < len(model.layers)-1: self.assertEqual(layer.activation,tf.keras.activations.relu) self.assertEqual(layer.kernel_regularizer.l2,np.array(kr*(1-dr), dtype=np.float32)) # Repeat the test for dropout of 0 layer_names = ['input','conv2d','max_pooling2d','conv2d', 'max_pooling2d','conv2d','conv2d','conv2d','max_pooling2d','flatten', 'dense','dense','dense'] image_size = (100,100,1) num_params = 8 dr = 0.0 model = bnn_alexnet.dropout_alexnet(image_size, num_params, kernel_regularizer=kr,dropout_rate=dr) input_shapes = [[],(100,100,1),(48,48,64), (24,24,64),(24,24,192),(12,12,192), (12,12,384),(12,12,384),(12,12,256), (6,6,256),(9216,),(4096,),(4096,)] output_shapes = [[]]+input_shapes[2:] + [(num_params,)] # All I can really check is that the layers are of the right type and # have the right shapes for l_i, layer in enumerate(model.layers): self.assertTrue(layer_names[l_i] in layer.name) self.assertEqual(layer.dtype,tf.float32) self.assertEqual(layer.input_shape[1:],input_shapes[l_i]) self.assertEqual(layer.output_shape[1:],output_shapes[l_i]) # Check that all the concrete dropout layer except the last have # a ReLU activation function. if 'conv2d' in layer.name: self.assertEqual(layer.activation,tf.keras.activations.relu) self.assertEqual(layer.kernel_regularizer.l2,np.array(kr*(1-dr), dtype=np.float32)) if 'dense' in layer.name and l_i < len(model.layers)-1: self.assertEqual(layer.activation,tf.keras.activations.relu) self.assertEqual(layer.kernel_regularizer.l2,np.array(kr*(1-dr), dtype=np.float32)) class LensingLossFunctionsTests(unittest.TestCase): def setUp(self): # Set a seed to make sure that the behaviour of all the test functions # is consistent. np.random.seed(2) def test_mse_loss(self): # Test that for a variety of number of parameters and bnn types, the # algorithm always returns the MSE loss. flip_pairs = [] for num_params in range(1,20): # Diagonal covariance loss_class = bnn_alexnet.LensingLossFunctions(flip_pairs,num_params) y_true = np.random.randn(num_params).reshape(1,-1) y_pred = np.random.randn(num_params*2).reshape(1,-1) mse_tensor = loss_class.mse_loss(tf.constant(y_true,dtype=tf.float32), tf.constant(y_pred,dtype=tf.float32)) self.assertAlmostEqual(mse_tensor.numpy()[0],np.mean(np.square( y_true-y_pred[:,:num_params])),places=5) # Full covariance y_true = np.random.randn(num_params).reshape(1,-1) y_pred = np.random.randn(int(num_params*(num_params+1)/2)).reshape( 1,-1) mse_tensor = loss_class.mse_loss(tf.constant(y_true,dtype=tf.float32), tf.constant(y_pred,dtype=tf.float32)) self.assertAlmostEqual(mse_tensor.numpy()[0],np.mean(np.square( y_true-y_pred[:,:num_params])),places=5) # GMM two matrices full covariance y_true = np.random.randn(num_params).reshape(1,-1) y_pred = np.random.randn(2*(num_params + int( num_params*(num_params+1)/2))+1).reshape(1,-1) mse_tensor = loss_class.mse_loss(tf.constant(y_true,dtype=tf.float32), tf.constant(y_pred,dtype=tf.float32)) self.assertAlmostEqual(mse_tensor.numpy()[0],np.mean(np.square( y_true-y_pred[:,:num_params])),places=5) # Now an explicit test that flip_pairs is working flip_pairs = [[1,2]] num_params = 5 loss_class = bnn_alexnet.LensingLossFunctions(flip_pairs,num_params) y_true = np.ones((4,num_params)) y_pred = np.ones((4,num_params)) y_pred[:,1:3] *= -1 mse_tensor = loss_class.mse_loss(tf.constant(y_true,dtype=tf.float32), tf.constant(y_pred,dtype=tf.float32)) self.assertEqual(np.sum(mse_tensor.numpy()),0) # Make sure flipping other pairs does not return 0 y_pred[:,4] *= -1 mse_tensor = loss_class.mse_loss(tf.constant(y_true,dtype=tf.float32), tf.constant(y_pred,dtype=tf.float32)) self.assertGreater(np.sum(mse_tensor.numpy()),0.1) def test_log_gauss_diag(self): # Will not be used for this test, but must be passed in. flip_pairs = [] for num_params in range(1,20): # Pick a random true, pred, and std and make sure it agrees with the # scipy calculation loss_class = bnn_alexnet.LensingLossFunctions(flip_pairs,num_params) y_true = np.random.randn(num_params) y_pred = np.random.randn(num_params) std_pred = np.random.randn(num_params) nlp_tensor = loss_class.log_gauss_diag(tf.constant(y_true), tf.constant(y_pred),tf.constant(std_pred)) # Compare to scipy function to be exact. Add 2 pi offset. scipy_nlp = -multivariate_normal.logpdf(y_true,y_pred, np.diag(np.exp(std_pred))) - np.log(2 * np.pi) * num_params/2 self.assertAlmostEqual(nlp_tensor.numpy(),scipy_nlp) def test_diagonal_covariance_loss(self): # Test that the diagonal covariance loss gives the correct values flip_pairs = [[1,2],[3,4],[1,2,3,4]] num_params = 6 loss_class = bnn_alexnet.LensingLossFunctions(flip_pairs,num_params) # Set up a couple of test function to make sure that the minimum loss # is taken y_true = np.ones((1,num_params)) y_pred = np.ones((1,num_params)) y_pred1 = np.ones((1,num_params)); y_pred1[:,[1,2]] = -1 y_pred2 = np.ones((1,num_params)); y_pred2[:,[3,4]] = -1 y_pred3 = np.ones((1,num_params)); y_pred3[:,[1,2,3,4]] = -1 y_preds = [y_pred,y_pred1,y_pred2,y_pred3] std_pred = np.ones((1,num_params)) # The correct value of the nlp scipy_nlp = -multivariate_normal.logpdf(y_true.flatten(),y_pred.flatten(), np.diag(np.exp(std_pred.flatten()))) -np.log(2 * np.pi)*num_params/2 for yp in y_preds: yptf = tf.constant(np.concatenate([yp,std_pred],axis=-1), dtype=tf.float32) yttf = tf.constant(y_true,dtype=tf.float32) diag_loss = loss_class.diagonal_covariance_loss(yttf,yptf) self.assertAlmostEqual(diag_loss.numpy(),scipy_nlp) # Repeat this excercise, but introducing error in prediction for yp in y_preds: yp[:,0] = 10 scipy_nlp = -multivariate_normal.logpdf(y_true.flatten(),y_pred.flatten(), np.diag(np.exp(std_pred.flatten()))) -np.log(2 * np.pi)*num_params/2 for yp in y_preds: yptf = tf.constant(np.concatenate([yp,std_pred],axis=-1), dtype=tf.float32) yttf = tf.constant(y_true,dtype=tf.float32) diag_loss = loss_class.diagonal_covariance_loss(yttf,yptf) self.assertAlmostEqual(diag_loss.numpy(),scipy_nlp) # Confirm that when the wrong pair is flipped, it does not # return the same answer. y_pred4 = np.ones((1,num_params)) y_pred4[:,[5,2]] = -1 y_pred4[:,0] = 10 yptf = tf.constant(np.concatenate([y_pred4,std_pred],axis=-1), dtype=tf.float32) yttf = tf.constant(y_true,dtype=tf.float32) diag_loss = loss_class.diagonal_covariance_loss(yttf,yptf) self.assertGreater(np.abs(diag_loss.numpy()-scipy_nlp),1) # Make sure it is still consistent with the true nlp scipy_nlp = -multivariate_normal.logpdf(y_true.flatten(), y_pred4.flatten(), np.diag(np.exp(std_pred.flatten()))) -np.log(2 * np.pi)*num_params/2 self.assertAlmostEqual(diag_loss.numpy(),scipy_nlp) # Finally, confirm that batching works yptf = tf.constant(np.concatenate( [np.concatenate([y_pred,std_pred],axis=-1), np.concatenate([y_pred1,std_pred],axis=-1)],axis=0),dtype=tf.float32) self.assertEqual(yptf.shape,[2,12]) diag_loss = loss_class.diagonal_covariance_loss(yttf,yptf).numpy() self.assertEqual(diag_loss.shape,(2,)) self.assertEqual(diag_loss[0],diag_loss[1]) def test_construct_precision_matrix(self): # A couple of test cases to make sure that the generalized precision # matrix code works as expected. num_params = 4 flip_pairs = [] loss_class = bnn_alexnet.LensingLossFunctions(flip_pairs,num_params) # Set up a fake l matrix with elements l_mat_elements = np.array([[1,2,3,4,5,6,7,8,9,10]],dtype=float) l_mat = np.array([[np.exp(1),0,0,0],[2,np.exp(3),0,0],[4,5,np.exp(6),0], [7,8,9,np.exp(10)]]) prec_mat = np.matmul(l_mat,l_mat.T) # Get the tf representation of the prec matrix l_mat_elements_tf = tf.constant(l_mat_elements) p_mat_tf, diag_tf, L_mat = loss_class.construct_precision_matrix( l_mat_elements_tf) # Make sure everything matches np.testing.assert_almost_equal(p_mat_tf.numpy()[0],prec_mat,decimal=5) diag_elements = np.array([1,3,6,10]) np.testing.assert_almost_equal(diag_tf.numpy()[0],diag_elements) for pi, p_mat_np in enumerate(p_mat_tf.numpy()): np.testing.assert_almost_equal(p_mat_np,np.dot( L_mat.numpy()[pi],L_mat.numpy()[pi].T)) # Rinse and repeat for a different number of elements with batching num_params = 3 flip_pairs = [] loss_class = bnn_alexnet.LensingLossFunctions(flip_pairs,num_params) # Set up a fake l matrix with elements l_mat_elements = np.array([[1,2,3,4,5,6],[1,2,3,4,5,6]],dtype=float) l_mat = np.array([[np.exp(1),0,0],[2,np.exp(3),0],[4,5,np.exp(6)]]) prec_mat = np.matmul(l_mat,l_mat.T) # Get the tf representation of the prec matrix l_mat_elements_tf = tf.constant(l_mat_elements) p_mat_tf, diag_tf, _ = loss_class.construct_precision_matrix( l_mat_elements_tf) # Make sure everything matches for p_mat in p_mat_tf.numpy(): np.testing.assert_almost_equal(p_mat,prec_mat) diag_elements = np.array([1,3,6]) for diag in diag_tf.numpy(): np.testing.assert_almost_equal(diag,diag_elements) def test_log_gauss_full(self): # Will not be used for this test, but must be passed in. flip_pairs = [] for num_params in range(1,10): # Pick a random true, pred, and std and make sure it agrees with the # scipy calculation loss_class = bnn_alexnet.LensingLossFunctions(flip_pairs,num_params) y_true = np.random.randn(num_params) y_pred = np.random.randn(num_params) l_mat_elements_tf = tf.constant( np.expand_dims(np.random.randn(int(num_params*(num_params+1)/2)), axis=0),dtype=tf.float32) p_mat_tf, L_diag, _ = loss_class.construct_precision_matrix( l_mat_elements_tf) p_mat = p_mat_tf.numpy()[0] nlp_tensor = loss_class.log_gauss_full(tf.constant(np.expand_dims( y_true,axis=0),dtype=float),tf.constant(np.expand_dims( y_pred,axis=0),dtype=float),p_mat_tf,L_diag) # Compare to scipy function to be exact. Add 2 pi offset. scipy_nlp = (-multivariate_normal.logpdf(y_true,y_pred,np.linalg.inv( p_mat)) - np.log(2 * np.pi) * num_params/2) # The decimal error can be significant due to inverting the precision # matrix self.assertAlmostEqual(np.sum(nlp_tensor.numpy()),scipy_nlp,places=1) def test_full_covariance_loss(self): # Test that the diagonal covariance loss gives the correct values flip_pairs = [[1,2],[3,4],[1,2,3,4]] num_params = 6 loss_class = bnn_alexnet.LensingLossFunctions(flip_pairs,num_params) # Set up a couple of test function to make sure that the minimum loss # is taken y_true = np.ones((1,num_params)) y_pred = np.ones((1,num_params)) y_pred1 = np.ones((1,num_params)); y_pred1[:,[1,2]] = -1 y_pred2 = np.ones((1,num_params)); y_pred2[:,[3,4]] = -1 y_pred3 = np.ones((1,num_params)); y_pred3[:,[1,2,3,4]] = -1 y_preds = [y_pred,y_pred1,y_pred2,y_pred3] L_elements_len = int(num_params*(num_params+1)/2) # Have to keep this matrix simple so that we still get a reasonable # answer when we invert it for scipy check L_elements = np.zeros((1,L_elements_len))+1e-2 # Get out the covariance matrix in numpy l_mat_elements_tf = tf.constant(L_elements,dtype=tf.float32) p_mat_tf, L_diag, _ = loss_class.construct_precision_matrix( l_mat_elements_tf) cov_mat = np.linalg.inv(p_mat_tf.numpy()[0]) # The correct value of the nlp scipy_nlp = -multivariate_normal.logpdf(y_true.flatten(),y_pred.flatten(), cov_mat) -np.log(2 * np.pi)*num_params/2 for yp in y_preds: yptf = tf.constant(np.concatenate([yp,L_elements],axis=-1), dtype=tf.float32) yttf = tf.constant(y_true,dtype=tf.float32) diag_loss = loss_class.full_covariance_loss(yttf,yptf) self.assertAlmostEqual(np.sum(diag_loss.numpy()),scipy_nlp,places=4) # Repeat this excercise, but introducing error in prediction for yp in y_preds: yp[:,0] = 10 scipy_nlp = -multivariate_normal.logpdf(y_true.flatten(),y_pred.flatten(), cov_mat) -np.log(2 * np.pi)*num_params/2 for yp in y_preds: yptf = tf.constant(np.concatenate([yp,L_elements],axis=-1), dtype=tf.float32) yttf = tf.constant(y_true,dtype=tf.float32) diag_loss = loss_class.full_covariance_loss(yttf,yptf) self.assertAlmostEqual(np.sum(diag_loss.numpy()),scipy_nlp,places=4) # Confirm that when the wrong pair is flipped, it does not # return the same answer. y_pred4 = np.ones((1,num_params)); y_pred4[:,[5,2]] = -1 y_pred4[:,0] = 10 yptf = tf.constant(np.concatenate([y_pred4,L_elements],axis=-1), dtype=tf.float32) yttf = tf.constant(y_true,dtype=tf.float32) diag_loss = loss_class.full_covariance_loss(yttf,yptf) self.assertGreater(np.abs(diag_loss.numpy()-scipy_nlp),1) # Make sure it is still consistent with the true nlp scipy_nlp = -multivariate_normal.logpdf(y_true.flatten(), y_pred4.flatten(),cov_mat) -np.log(2 * np.pi)*num_params/2 self.assertAlmostEqual(np.sum(diag_loss.numpy()),scipy_nlp,places=2) # Finally, confirm that batching works yptf = tf.constant(np.concatenate( [np.concatenate([y_pred,L_elements],axis=-1), np.concatenate([y_pred1,L_elements],axis=-1)],axis=0), dtype=tf.float32) self.assertEqual(yptf.shape,[2,27]) diag_loss = loss_class.full_covariance_loss(yttf,yptf).numpy() self.assertEqual(diag_loss.shape,(2,)) self.assertEqual(diag_loss[0],diag_loss[1]) def test_log_gauss_gm_full(self): # Will not be used for this test, but must be passed in. flip_pairs = [] for num_params in range(1,10): # Pick a random true, pred, and std and make sure it agrees with the # scipy calculation loss_class = bnn_alexnet.LensingLossFunctions(flip_pairs,num_params) y_true = np.random.randn(num_params) yttf=tf.constant(np.expand_dims(y_true,axis=0),dtype=float) y_pred1 = np.random.randn(num_params) yp1tf=tf.constant(np.expand_dims(y_pred1,axis=0),dtype=float) y_pred2 = np.random.randn(num_params) yp2tf=tf.constant(np.expand_dims(y_pred2,axis=0),dtype=float) pi = np.random.rand() pitf = tf.constant(np.array([[pi]]),dtype=float) l_mat_elements_tf1 = tf.constant( np.expand_dims(np.random.randn(int(num_params*(num_params+1)/2)), axis=0),dtype=tf.float32) l_mat_elements_tf2 = tf.constant( np.expand_dims(np.random.randn(int(num_params*(num_params+1)/2)), axis=0),dtype=tf.float32) p_mat_tf1, L_diag1, _ = loss_class.construct_precision_matrix( l_mat_elements_tf1) p_mat_tf2, L_diag2, _ = loss_class.construct_precision_matrix( l_mat_elements_tf2) cov_mat1 = np.linalg.inv(p_mat_tf1.numpy()[0]) cov_mat2 = np.linalg.inv(p_mat_tf2.numpy()[0]) nlp_tensor = loss_class.log_gauss_gm_full(yttf,[yp1tf,yp2tf], [p_mat_tf1,p_mat_tf2],[L_diag1,L_diag2],[pitf,1-pitf]) # Compare to scipy function to be exact. Add 2 pi offset. scipy_nlp1 = (multivariate_normal.logpdf(y_true,y_pred1,cov_mat1) + np.log(2 * np.pi) * num_params/2 + np.log(pi)) scipy_nlp2 = (multivariate_normal.logpdf(y_true,y_pred2,cov_mat2) + np.log(2 * np.pi) * num_params/2 + np.log(1-pi)) scipy_nlp = -np.logaddexp(scipy_nlp1,scipy_nlp2) # The decimal error can be significant due to inverting the precision # matrix self.assertAlmostEqual(np.sum(nlp_tensor.numpy()),scipy_nlp,places=1) def test_gm_full_covariance_loss(self): # Test that the diagonal covariance loss gives the correct values flip_pairs = [[1,2],[3,4],[1,2,3,4]] num_params = 6 loss_class = bnn_alexnet.LensingLossFunctions(flip_pairs,num_params) # Set up a couple of test function to make sure that the minimum loss # is taken y_true = np.ones((1,num_params)) y_pred = np.ones((1,num_params)) y_pred1 = np.ones((1,num_params)) y_pred1[:,[1,2]] = -1 y_pred2 = np.ones((1,num_params)) y_pred2[:,[3,4]] = -1 y_pred3 = np.ones((1,num_params)) y_pred3[:,[1,2,3,4]] = -1 y_preds = [y_pred,y_pred1,y_pred2,y_pred3] L_elements_len = int(num_params*(num_params+1)/2) # Have to keep this matrix simple so that we still get a reasonable # answer when we invert it for scipy check L_elements =
np.zeros((1,L_elements_len))
numpy.zeros
# Created on Jun. 28, 2018 # An implementation of the homonymous Matlab function. import numpy as np from .polystab import polystab """ Input variables: h - Frequency response array w - Normalized frequency array (from zero to pi) nb - numerator order na - denominator order wt - weight array, same length with h gauss - whether to use Gauss-Newton method, default False real - whether real or complex filter, default True maxiter - maximum number of iteration when using Gauss-Newton method, default 30 tol - tolerance when using Gauss-Newton method, default 0.01 """ def invfreqz(h, w, nb, na, wt=None, gauss=False, real=True, maxiter=30, tol=0.01): if len(h) != len(w): raise ValueError('H and W should be of equal length.') nb = nb + 1 nm = max(nb-1, na) OM_a = np.mat(np.arange(0, nm+1)) OM_m = OM_a.T *
np.mat(w)
numpy.mat
import numpy as np def shannon(data, sigma=1.0): """Given data (squared differences of vectors), return the entropy and p_ij values for the data.""" # Compute P-row and corresponding perplexity arg = -data/(2*sigma**2) if (arg > 0).any(): raise ValueError('At least one probability is negative') if (arg > 710).any(): raise ValueError('overflow warning, sigma={0:.2g}'.format(sigma)) P = np.exp(arg) sumP = P.sum(axis=0) # H = -Sum_j p_jilogp_ji # p_ji = P/sumP # log p_ji = log P - log sumP # H = Sum_j p_ji/sumP * (D_ji/2*sigma**2 + np.log(sumP)) # H = Sum_j (p_ji*D_ji/2*sigma**2))/sumP + p_ji/sumP*np.log(sumP) # H = beta * Sum_j (p_ji*D_ji)/sumP + Sum_j p_ji/sumP *np.log(sumP) # Sum_j p_ji = Sum_j p(j|i) = 1 # H = beta * meancondD + np.log(sumP) H = np.log(sumP) + (2*sigma**2) * np.sum(data * P) / sumP if np.abs(H) == np.inf: raise ValueError('Entropy is undefined') # normalize the p_ij P = P/sumP return H, P def binary_search(D_i, target, inv_sigma=1., inv_sigma_min=1.*10**-8, inv_sigma_max=np.inf, tol=10**-3, max_iters=100): """Implement a binary search to find the ideal sigma_i.""" H, P_i = shannon(D_i, 1/inv_sigma) # Evaluate whether the perplexity is within tolerance delta = H - target iterations = 0 prevH = 0 if type(tol) is not float: raise ValueError('tolerance value must be a number') while np.abs(delta) > tol: if iterations > max_iters: break if delta > 0: # if difference is positive, the minimum bound of sigma # is the current sigma: inv_sigma_min = inv_sigma # if sigmamax is at a boundary point: if inv_sigma_max == np.inf: # increase the current sigma to twice its value # (sigmamax is too high to average) inv_sigma = inv_sigma_min * 2. else: # otherwise take the average of bounds inv_sigma = (inv_sigma_min + inv_sigma_max)/2. else: inv_sigma_max = inv_sigma inv_sigma = (inv_sigma_min + inv_sigma_max)/2. # Update H, P_i = shannon(D_i, 1/inv_sigma) delta = H - target iterations += 1 if prevH == H: return P_i, 1/inv_sigma prevH = H if iterations == 50: print('Error, non convergence') return P_i, 1/inv_sigma def sne(X): """ # calculate the dotproduct between each sample: # calculate |x_j|^2 for each vector """ sum_X = np.sum(np.square(X), 1) dotprod = -2 * np.dot(X, X.T) # calculate # |x_j|^2 - 2*|x_i||x_j|cosTheta = |x_j|^2 - 2*|x_i - x_j|^2 # this is asymmetric Dprime = np.add(dotprod, sum_X) # symmetrize by completing the square: # |x_j|^2 - 2*|x_i - x_j|^2 + |x_i| D = np.add(Dprime.T, sum_X) # set D_ii = 0 D = D.astype(np.float) D = np.maximum(D, 0) np.fill_diagonal(D, 0) return D def tsne_Y(Y): """ # The code below changes between t-SNE and SNE. # The matrix below results in (p_ij + p_ji)/2 after exp and normalization # calculate the dotproduct between each sample: # calculate |x_j|^2 for each vector """ sum_Y = np.sum(np.square(Y), 1) dotprod = -2 * np.dot(Y, Y.T) # calculate # |x_j|^2 - 2*|x_i||x_j|cosTheta = |x_j|^2 - 2*|x_i - x_j|^2 # this is asymmetric Dprime = np.add(dotprod, sum_Y) # symmetrize by completing the square: # |x_j|^2 - 2*|x_i - x_j|^2 + |x_i| D = np.add(Dprime.T, sum_Y) # student t with 1df numerator = 1/(1 + D) Q = numerator/numerator.sum(axis=0) # underflow Q = np.maximum(Q, 10**-12) np.fill_diagonal(Q, 0) np.fill_diagonal(numerator, 0) return Q, numerator def run_SNE(X=np.array([]), no_dims=2, perplexity=30.0, reduce_dims=0, max_iter=1000, learning_rate=1., SNE=True, min_gain=0.1): """Run t-sne on dataset.""" # if desired, PCA reduce the data if reduce_dims != 0: X, _, _ = pca(X, reduce_dims) print(X.max()) print(X.sum(axis=1).max()) # initialize variables n, d = X.shape min_gain = 0.01 # minimum gain initial_momentum = 0.5 final_momentum = 0.8 # initialize Y matrix: Y = np.random.randn(n, no_dims) # Y shaped as samples(n) and no_dims (50) # initialize gradient wrt Y matrix gradY = np.zeros((n, no_dims)) # deltaY diffY = np.zeros((n, no_dims)) # for gradient computations iY = np.zeros((n, no_dims)) # for gradient computations gains = np.ones((n, no_dims)) # no clue KL = np.zeros(max_iter) # Compute P-values P = find_perplexity(X, perplexity=perplexity, tol=1.*10**-3) if SNE == False: # symmetrize by adding p_ij + p_ji P = P + np.transpose(P) # normalization will take care of the # extra factor of 2 P = P/P.sum(axis=1) # make sure off-diagonals are not zero # underflow is a real problem here P =
np.maximum(P, 10**-20)
numpy.maximum
import numpy as np import matplotlib.pyplot as plt from PIL import Image from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True import ptitprince as pt import meld_classifier.paths as paths from meld_classifier.meld_cohort import MeldCohort import os import glob import pandas as pd from statsmodels.formula.api import ols import statsmodels.api as sm import scipy.stats as stats import json from textwrap import wrap class ExperimentComparison: def __init__( self, experiments_dictionary, experiment_path=paths.EXPERIMENT_PATH, folds=range(10), threshold="optimal", params_for_experiment_name=None, restrict_subjects=None, ): """ Class for comparing experiments. Calculates experiment statistics and generates plots summarising comparisons Args: threshold (string): "optimal" or "0.5" params_for_experiment_name: optional dict containing data and network parameters that should be included in the experiment name on the plots (useful when comparing experiments that vary two parameters) restrict_subjects (optional, string): "FLAIR" "noFLAIR", restrict subjects to compare to a subset of the original test subjects. Either use only subjects with FLAIR features, or only subjects without FLAIR features """ self.threshold = threshold self.experiments_dictionary = experiments_dictionary self.experiment_path = experiment_path self.experiment_folders = list(experiments_dictionary.keys()) self.params_for_experiment_name = params_for_experiment_name self.folds = folds self.restrict_subjects = restrict_subjects self.folds_df, self.fold_statistics = self.load_fold_results() self.patients_df, self.controls_df = self.load_subject_results() # --- data loading functions --- def load_subject_results(self): patient_stats = [] control_stats = [] patient_ids = [] control_ids = [] sub_column_p = [] sub_column_c = [] fold_column = [] for folder in self.experiment_folders: for param in self.experiments_dictionary[folder]: for fold in self.folds: # get the name by which the experiment should be represented exp_name = self._get_experiment_name( folder, param, fold=fold, use_params=self.params_for_experiment_name is not None, params=self.params_for_experiment_name, ) experiment_variable = os.path.basename(folder)[:-9] # load per-subject results fold_dict = self._load_json( os.path.join( self.experiment_path, folder, "fold_{}".format(fold), "results", "per_subject_{}_{}_{}.json".format(experiment_variable, param, self.threshold), ) ) # get data parameters (needed to know how to filter subjects) data_parameters = json.load( open( os.path.join( self.experiment_path, folder, "fold_{}".format(fold), "data_parameters_{}_{}.json".format(experiment_variable, param), ) ) ) subject_ids = self.filter_subjects( list(fold_dict["patients"].keys()), hdf5_file_root=data_parameters["hdf5_file_root"] ) for subject in sorted(subject_ids): patient_stats.append(fold_dict["patients"][subject]) patient_ids.append(subject) sub_column_p.append(exp_name) fold_column.append(fold) subject_ids = self.filter_subjects( list(fold_dict["controls"].keys()), hdf5_file_root=data_parameters["hdf5_file_root"] ) for subject in sorted(subject_ids): control_stats.append(fold_dict["controls"][subject]) control_ids.append(subject) sub_column_c.append(exp_name) patients_df = pd.DataFrame(patient_stats) patients_df["subexperiment"] = sub_column_p patients_df["subj_id"] = patient_ids patients_df = patients_df.rename(columns={0: "detected", 1: "n_clusters", 2: "dice_index"}) patients_df["dice_index"] = np.log(patients_df["dice_index"] + 0.01) patients_df["specificity"] = patients_df["n_clusters"] == 0 patients_df["n_clusters"] = np.log(patients_df["n_clusters"] + 0.5) patients_df["fold"] = fold_column controls_df = pd.DataFrame(control_stats) controls_df["subexperiment"] = sub_column_c controls_df["subj_id"] = control_ids controls_df = controls_df.rename(columns={0: "any_clusters", 1: "n_clusters"}) controls_df["specificity"] = controls_df["n_clusters"] == 0 controls_df["n_clusters"] = np.log(controls_df["n_clusters"] + 0.5) return patients_df, controls_df def filter_subjects(self, subject_ids, hdf5_file_root="{site_code}_{group}_featuremetrix.hdf5"): """filter subjects to FLAIR or no FLAIR, depending on self.restrict_subjects. Note: this is independent of the features that the model was actually trained on. It looks in the hdf5 and thus filters on general availability of FLAIR or not """ if self.restrict_subjects is None: return subject_ids else: c = MeldCohort(hdf5_file_root=hdf5_file_root) # get all FLAIR subjects all_flair_subject_ids = cohort.get_subject_ids(subject_features_to_exclude=["FLAIR"]) # restrict subjects to those that have flair features flair_subject_ids = [subj_id for subj_id in subject_ids if subj_id in all_flair_subject_ids] if self.restrict_subjects == "FLAIR": print("using {} of {} subjects".format(len(flair_subject_ids), len(subject_ids))) return flair_subject_ids elif self.restrict_subjects == "noFLAIR": # return difference between all subjects and flair subjects (resulting in those that dont have flair) noflair_subject_ids = list(np.setdiff1d(subject_ids, flair_subject_ids)) print("using {} of {} subjects".format(len(noflair_subject_ids), len(subject_ids))) return noflair_subject_ids else: raise NotImplementedError(self.restrict_subjects) def load_fold_results(self): folds_column = [] fold_stats = [] sub_column = [] for fold in self.folds: for folder in self.experiment_folders: for param in self.experiments_dictionary[folder]: # extract variable name omitting the date experiment_variable = os.path.basename(folder)[:-9] exp_name = self._get_experiment_name( folder, param, fold=fold, use_params=self.params_for_experiment_name is not None, params=self.params_for_experiment_name, ) stats_df = pd.read_csv( os.path.join( self.experiment_path, folder, "fold_{}".format(fold), "results", "test_results_{}_{}.csv".format(experiment_variable, param), ) ) folds_column.append(fold) sub_column.append(exp_name) if self.threshold == "optimal": fold_stats.append(stats_df.loc[1]) elif self.threshold == "0.5": fold_stats.append(stats_df.loc[0]) # get names of statistics from one of the dataframes fold_statistics = list(stats_df.columns) # format into nice table folds_df = pd.DataFrame(fold_stats) folds_df["fold"] = folds_column folds_df["subexperiment"] = sub_column return folds_df, fold_statistics def _load_json(self, json_file): with open(json_file, "r") as f: results_dict = json.load(f) return results_dict def _get_experiment_name(self, experiment_folder, param_value, fold=0, use_params=False, params={}): exp_name = os.path.basename(experiment_folder)[:-9] if use_params is False: # take original experiment name consisting of parameter to vary + parameter value # remove date from experiment_folder (9 characters) name = "{}_{}".format(exp_name, param_value) else: # use format: parameter1_value1-parameter2_value2... exp_path = os.path.join(self.experiment_path, experiment_folder, "fold_{}".format(fold)) data_params = self._load_json( os.path.join(exp_path, "data_parameters_{}_{}.json".format(exp_name, param_value)) ) network_params = self._load_json( os.path.join(exp_path, "network_parameters_{}_{}.json".format(exp_name, param_value)) ) name = [] for p in params.get("data_parameters", []): name.append("{}_{}".format(p, data_params[p])) for p in params.get("network_parameters", []): name.append("{}_{}".format(p, network_params[p])) name = "-".join(name) return name # --- calculate comparison functions --- def calculate_per_patient_ranks(self, stats_of_interest, subexperiments): dataframe = self.patients_df print(stats_of_interest, subexperiments) df1 = dataframe[["subj_id", "fold", stats_of_interest[0], stats_of_interest[1]]][ dataframe["subexperiment"] == subexperiments[0] ] df2 = dataframe[["subj_id", "fold", stats_of_interest[0], stats_of_interest[1]]][ dataframe["subexperiment"] == subexperiments[1] ] df1 = df1.reset_index(drop=True) df2 = df2.reset_index(drop=True) diff_df = df1.copy() diff_df[stats_of_interest[0]] = df1[stats_of_interest[0]] - df2[stats_of_interest[0]] diff_df[stats_of_interest[1]] = df1[stats_of_interest[1]] - df2[stats_of_interest[1]] sorted = diff_df.sort_values(by=["dice_index"]) sorted.to_csv( os.path.join( self.experiment_path, self.experiment_folders[0], "per_patient_differences_{}-{}.csv".format(subexperiments[0], subexperiments[1]), ), index=False, ) return def anova(self, dataframe, statistic): """test independence of different experiments""" mod = ols('Q("{}") ~ Q("{}")'.format(statistic, "subexperiment"), data=dataframe).fit() try: aov_table = sm.stats.anova_lm(mod, typ=2) except ValueError: aov_table = sm.stats.anova_lm(mod, typ=1) stat_ = np.array(aov_table)[0, 2] p =
np.array(aov_table)
numpy.array
#!/usr/bin/env python # coding: utf-8 """ Utilities to generate channels defined by their Kraus operators, and convert them to Choi state matrix if needed. Output format is systematically an array of shape (r, d, d), where r is the rank of the channel, d is the dimension of the underlying Hilbert space and each (d, d)-array is a Kraus operator. Unless specified, 'channel' will refer to this form in the end of this description. Main functions are: * QFTKraus: Generates the channel of the quantum Fourier transform. * KrausOp: Makes a convex combination of unitary channels. If no channel is provided, unitary basis is assumed. Used for generating sums of random unitary channels. * add_disentanglement_noise: Takes a channel $C$ acting on qubits and returns a noisy version of it: after $C$, there is a chance that a projection is applied on the first qubit. Similar effect if used on a channel not acting on qubits. * Choi: Generates the Choi matrix of a channel. """ import numpy as N import scipy.linalg as SL import scipy.stats as SS def sylvester(d): """ Sylvester unitary matrix. """ syl = N.diagflat(N.ones(d-1), -1) syl[0, -1] = 1 return syl def clock(d): """ Clock unitary matrix. """ roots_unity = N.e**(N.arange(d) * 2 * N.pi * 1j / d) return N.diagflat(roots_unity) def basis_unitary(d): """ Yields an orthogonal basis of the set unitary matrices U(d). Output array is (d, d, d). First dimension is the index of the unitary in the basis. The unitary with index $di + j$ is $C^i \cdot S^j$, where C is the clock matrix and S is the Sylvester matrix. """ clocks = clock(d) clock_stack = N.eye(d, dtype=complex).reshape(1, d, d) * N.ones((d, 1, 1)) for j in range(1, d): clock_stack[j,:,:] = clock_stack[j-1,:,:] @ clocks syl = sylvester(d) syl_stack = N.eye(d, dtype=complex).reshape(1, d, d) * N.ones((d, 1, 1)) for j in range(1, d): syl_stack[j,:,:] = syl_stack[j-1,:,:] @ syl basis = N.zeros((d**2, d, d), dtype=complex) for i in range(d): for j in range(d): basis[i + j * d,:,:] = clock_stack[i,:,:] @ syl_stack[j,:,:] return basis def sub_basis(d, indices_list): """ Generates the elements of indices given in indices_list of the orthogonal basis of unitary matrices given by: The unitary with index $di + j$ is $C^i \cdot S^j$, where C is the clock matrix and S is the Sylvester matrix. Output array is (len(indices_list), d, d). """ cl = clock(d) syl = sylvester(d) return N.array([N.linalg.matrix_power(cl, i) @ N.linalg.matrix_power(syl,j) for (i,j) in indices_list]) def rand_unitary(dim): """ Generates a uniformly random unitary channel. """ z = 1/N.sqrt(2)*(SS.norm.rvs(size=(dim,dim)) + 1j*SS.norm.rvs(size=(dim,dim))) q, r = SL.qr(z) d = r.diagonal() q *= d/N.abs(d) return q def convex_combi_channels(d, weights, channels): """ Makes a convex combination channels. Input: * d is the dimension of the underlying Hilbert space * weights is an array-like with the weights of each channel. They must sum to one, and be non-negative. * channels: list of channels """ weights = N.asarray(weights) assert N.isclose(weights.sum(), 1), "Not trace-preserving; \sum w_c[0] must equal 1." coeffs = N.sqrt(weights) Kraus = N.concatenate([coeff * channel for (coeff, channel) \ in zip(coeffs, channels)]) return Kraus def KrausOp(d, weights, indices, us=None): """ Convex combination of unitary channels. Write r for the rank of the operator. Input: * d is the dimension of the underlying Hilbert space * weights is an array-like with the weights of each channel. They must sum to one, and be non-negative. * indices are which r unitary operators in us are chosen. * If the list us is None, then it is assumed to be the output basis of the function basis_unitary(d). """ weights = N.asarray(weights) indices = N.asarray(indices) if us is None: us = basis_unitary(d) assert N.isclose(weights.sum(), 1), "Not trace-preserving; \sum w_c[0] must equal 1." coeffs = N.sqrt(weights) Kraus = coeffs.reshape(-1, 1, 1) * us[indices, :, :] return Kraus def add_disentanglement_noise(channel, level): """ Adds the following noise to a channel: with probability level, a measurement is applied in the natural basis to the first qubit, discarding the result. This corresponds to adding two Kraus operators to each Kraus operator $K$, namely $P_+ K$ and $P_- K$, where $P_+$ is the projection on the subspace spanned by the first half of basis vectors, and $P_-$ the projection on the subspace spanned by the other half. INPUT channel: (r, d, d)-array of Kraus operators of the channel. level: Probability of applying the disentanglement. Between 0 and 1. OUTPUT In general, (2r, d, d)-array of Kraus operators. First r operators are the scaled original ones. Last r operators are the difference between those corresponding to projecting on the first half of basis vectors (as, measurement of the first qubit yielded +). and those corresponding to projecting on the second half of basis vectors (as, measurement of the first qubit yielded -). Indeed the a priori rank (3r) channel is at most (2r). If the underlying space's dimension is odd, the second half has one more dimension. Exception: * If level=0, original (r, d, d)-array of Kraus operators. """ if level == 0: return channel r, d = channel.shape[:2] half_d = d // 2 P_plus = N.diag(N.arange(d) < half_d) *
N.sqrt(level/2)
numpy.sqrt
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Oct 31 13:38:02 2019 @author: brsr """ import geopandas import pandas as pd import shapely from shapely.geometry import LineString, Polygon, Point import pyproj #import homography import warnings import numpy as np from abc import ABC from scipy.optimize import minimize, minimize_scalar, root_scalar from scipy.special import hyp2f1, gamma, ellipj, ellipk, ellipkinc #TODO: #vectorize all the things #find a better implementation of conformal # (some kind of circle-packing thing?) #repeated subdivision #arange3 = np.arange(3) #FIRST AXIS IS SPATIAL TGTPTS3 = np.eye(3) TGTPTS4 = np.array([[0, 1, 1, 0], [0, 0, 1, 1]]) def normalize(vectors, axis=0): """Normalizes vectors in n-space. The zero vector remains the zero vector. Args: vectors: Array of vectors axis: Which axis to take the norm over (by default the first axis, 0) >>> x = np.stack((np.ones(5), np.arange(5)), axis=0) >>> normalize(x) array([[1. , 0.70710678, 0.4472136 , 0.31622777, 0.24253563], [0. , 0.70710678, 0.89442719, 0.9486833 , 0.9701425 ]]) """ n = np.linalg.norm(vectors, axis=axis, keepdims=True) return np.where(n <= 0, 0, vectors / n) def complex_to_float2d(arr): """Converts a complex array to a multidimensional float array. >>> x = np.exp(2j*np.pi*np.linspace(0, 1, 5)).round() >>> complex_to_float2d(x.round()) array([[ 1., 0.], [ 0., 1.], [-1., 0.], [-0., -1.], [ 1., -0.]]) """ return arr.view(float).reshape(list(arr.shape) + [-1]) def float2d_to_complex(arr): """Converts a multidimensional float array to a complex array. Input must be a float type, since there is no integer complex type. >>> y = np.arange(8, dtype=float).reshape((-1, 2)) >>> float2d_to_complex(y) array([[0.+1.j], [2.+3.j], [4.+5.j], [6.+7.j]]) """ return arr.view(complex) def sqrt(x): """Real sqrt clipped to 0 for negative values. >>> x = np.array([-np.inf, -1, 0, 1, np.inf, np.nan]) >>> sqrt(x) array([ 0., 0., 0., 1., inf, nan]) """ return np.where(x < 0, 0, np.sqrt(x)) def geodesics(lon, lat, geod, n=100, includepts=False): """Draw geodesics between each adjacent pair of points given by lon and lat. """ lon2 = np.roll(lon, -1, axis=0) lat2 = np.roll(lat, -1, axis=0) result = [] for l, t, l2, t2 in zip(lon, lat, lon2, lat2): g = geod.npts(l, t, l2, t2, n) g.insert(0, (l, t)) g.append((l2, t2)) result.append(LineString(g)) ctrlboundary = geopandas.GeoSeries(result) if includepts: controlpts = arraytoptseries(np.array([lon, lat])) ctrlpoly = geopandas.GeoSeries(pd.concat([ctrlboundary, controlpts], ignore_index=True)) return ctrlpoly else: return ctrlboundary def transform_antipode(lon, lat): """Transform a point given by lon and lat to its antipode.""" lon2 = lon - 180 np.where(lon2 <= -180, lon2 + 360, lon2) return lon2, -lat def ptseriestoarray(ser): """Convert a geopandas GeoSeries containing shapely Points (or LineStrings of all the same length) to an array of shape (2, n) or (3, n). """ return np.stack([x.coords for x in ser], axis=-1).squeeze() def arraytoptseries(arr, crs={'epsg': '4326'}): """Convert an array of shape (2, ...) or (3, ...) to a geopandas GeoSeries containing shapely Point objects. """ if arr.shape[0] == 2: result = geopandas.GeoSeries([Point(x[0], x[1]) for x in arr.reshape(2, -1).T]) else: result = geopandas.GeoSeries([Point(x[0], x[1], x[2]) for x in arr.reshape(3, -1).T]) #result.crs = crs return result def transeach(func, geoms): """Transform each element of geoms using the function func.""" plist = [] for geom in geoms: if isinstance(geom, Point): #special logic for points ll = geom.coords[0] plist.append(Point(func(*ll))) else: plist.append(shapely.ops.transform(func, geom)) return geopandas.GeoSeries(plist) def graticule(spacing1=15, spacing2=1, lonrange = [-180, 180], latrange = [-90, 90]): """ Create a graticule (or another square grid) """ a = int((lonrange[1] - lonrange[0])//spacing2) b = int((latrange[1] - latrange[0])//spacing1) c = int((lonrange[1] - lonrange[0])//spacing1) d = int((latrange[1] - latrange[0])//spacing2) plx = np.linspace(lonrange[0], lonrange[1], num=a + 1) ply = np.linspace(latrange[0], latrange[1], num=b + 1) mex = np.linspace(lonrange[0], lonrange[1], num=c + 1) mey = np.linspace(latrange[0], latrange[1], num=d + 1) parallels = np.stack(np.meshgrid(plx, ply), axis=-1).transpose((1,0,2)) meridians = np.stack(np.meshgrid(mex, mey), axis=-1) gratlist = [parallels[:, i] for i in range(parallels.shape[1])] gratlist += [meridians[:, i] for i in range(meridians.shape[1])] gratl2 = [LineString(line) for line in gratlist] grat = geopandas.GeoSeries(gratl2) grat.crs = {'init': 'epsg:4326'} return grat #%% def trigivenangles(angles, scale=np.pi/180): """Given angles, create the vertices of a triangle with those vertex angles. Only uses the first 2 angles. The last vertex is always 1, 0. >>> angles = np.array([45,90,45]) >>> np.round(trigivenangles(angles), decimals=8) array([[-1., 0., 1.], [ 0., -1., 0.]]) """ angles = angles * scale p0 = [np.cos(2*angles[1]), np.sin(2*angles[1])] p1 = [np.cos(2*angles[0]), np.sin(-2*angles[0])] p2 = [1, 0] return np.array([p0, p1, p2]).T def anglesgivensides(sides, scale=180/np.pi): """Given side lengths of a triangle, determines the interior angle at each vertex, and the radius of the circumcircle. >>> sides=np.array( [3,4,5]) >>> anglesgivensides(sides) """ #might be more stable to use law of cotangents, but eh r = np.product(sides)/sqrt( 2*np.sum(sides**2*np.roll(sides,1)**2) -np.sum(sides**4)) s1 = sides s2 = np.roll(sides, -1) s3 = np.roll(sides, 1) cosangle = (s2**2 + s3**2 - s1**2)/ (2*s2*s3) angles = np.arccos(cosangle) return angles*scale, r def trigivenlengths(sides): """Given side lengths, creates the vertices of a triangle with those side lengths, and having circumcenter at 0,0. >>> sides=np.array( [3,4,5]) >>> np.round(trigivenlengths(sides), decimals=8) array([[-2.5, -0.7, 2.5], [ 0. , -2.4, 0. ]]) """ angles, r = anglesgivensides(sides, scale=1) return r*trigivenangles(np.roll(angles, -1), scale=1) #%% def central_angle(x, y, signed=False): """Central angle between vectors with respect to 0. If vectors have norm 1, this is the spherical distance between them. Args: x, y: Coordinates of points on the sphere. axis: Which axis the vectors lie along. By default, -1. Returns: Array of central angles. >>> t = np.linspace(0, np.pi, 5) >>> c = np.cos(t) >>> s = np.sin(t) >>> z = np.zeros(t.shape) >>> x = np.stack((c, s, z), axis=0) >>> y = np.stack((c, z, s), axis=0) >>> np.round(central_angle(x, y)/np.pi*180) array([ 0., 60., 90., 60., 0.]) """ cos = np.sum(x*y, axis=0) sin = np.linalg.norm(np.cross(x, y, axis=0), axis=0) result = np.arctan2(sin, cos) return result if signed else abs(result) def slerp(pt1, pt2, intervals): """Spherical linear interpolation. Args: pt1: Array of points. When interval is 0, the result is pt1. pt2: Array of points. When interval is 1, the result is pt2. intervals: Array of intervals at which to evaluate the linear interpolation >>> x = np.array([1, 0, 0]) >>> y = np.array([0, 0, 1]) >>> t = np.linspace(0, 1, 4)[:, np.newaxis] >>> slerp(x, y, t) array([[1. , 0. , 0. ], [0.8660254, 0. , 0.5 ], [0.5 , 0. , 0.8660254], [0. , 0. , 1. ]]) """ t = intervals angle = central_angle(pt1, pt2)[..., np.newaxis] return (np.sin((1 - t)*angle)*pt1 + np.sin((t)*angle)*pt2)/np.sin(angle) def dslerp(pt1, pt2, intervals): """The derivative of slerp.""" t = intervals angle = central_angle(pt1, pt2)[..., np.newaxis] return (-np.cos((1 - t)*angle)*pt1 + np.cos(t*angle)*pt2)/np.sin(angle) def triangle_solid_angle(a, b, c, axis=0): """Solid angle of a triangle with respect to 0. If vectors have norm 1, this is the spherical area. Note there are two solid angles defined by three points, determined by orientation of a, b, c. Formula is from <NAME>; <NAME> (1983). "The Solid Angle of a Plane Triangle". IEEE Trans. Biom. Eng. BME-30 (2): 125–126. doi:10.1109/TBME.1983.325207. Args: a, b, c: Coordinates of points on the sphere. Returns: Array of solid angles. >>> t = np.linspace(0, np.pi, 5) >>> a = np.stack([np.cos(t), np.sin(t), np.zeros(5)],axis=0) >>> b = np.array([0, 1, 1])/np.sqrt(2) >>> c = np.array([0, -1, 1])/np.sqrt(2) >>> np.round(triangle_solid_angle(a, b, c), 4) array([ 1.5708, 1.231 , 0. , -1.231 , -1.5708]) """ axes = (axis,axis) top = np.tensordot(a, np.cross(b, c, axis=axis), axes=axes) na = np.linalg.norm(a, axis=0) nb = np.linalg.norm(b, axis=0) nc = np.linalg.norm(c, axis=0) bottom = (na * nb * nc + np.tensordot(a, b, axes=axes) * nc + np.tensordot(b, c, axes=axes) * na + np.tensordot(c, a, axes=axes) * nb) return 2 * np.arctan2(top, bottom) def shoelace(pts): """Find area of polygon in the plane defined by pts, where pts is an array with shape (2,n). >>> pts = np.arange(6).reshape(2,-1)%4 >>> shoelace(pts) 2.0 """ return abs(np.sum(np.cross(pts, np.roll(pts, -1, axis=1), axis=0)))/2 def antipode_v(ll): """Antipodes of points given by longitude and latitude.""" antipode = ll.copy() antipode[0] -= 180 index = antipode[0] < -180 antipode[0, index] += 360 antipode[1] *= -1 return antipode def omegascale(adegpts, degpts_t, geod, spacing=1): """Estimate scale factor and max deformation angle for a map projection based on a grid of points """ #actrlpts, tgtpts, #ar, p = geod.polygon_area_perimeter(actrlpts[0], actrlpts[1]) #at = shoelace(tgtpts) es = geod.es a = geod.a factor = np.pi/180 #lon = adegpts[0]*factor lat = adegpts[1]*factor x = degpts_t[0] y = degpts_t[1] dx = np.gradient(x, factor*spacing) dy = np.gradient(y, factor*spacing) dxdlat, dxdlon = dx dydlat, dydlon = dy J = (dydlat*dxdlon - dxdlat*dydlon) R = a*np.sqrt(1-es)/(1-es*np.sin(lat)**2) h = sqrt((dxdlat)**2 + (dydlat)**2)*(1-es*np.sin(lat)**2)**(3/2)/(a*(1-es)) k = sqrt((dxdlon)**2 + (dydlon)**2)*(1-es*np.sin(lat)**2)**(1/2)/(a*np.cos(lat)) scale = J/(R**2*np.cos(lat)) sinthetaprime = np.clip(scale/(h*k), -1, 1) aprime = sqrt(h**2 + k**2 + 2*h*k*sinthetaprime) bprime = sqrt(h**2 + k**2 - 2*h*k*sinthetaprime) sinomegav2 = np.clip(bprime/aprime, -1, 1) omega = 360*np.arcsin(sinomegav2)/np.pi return omega, scale def rodrigues(center, v, theta): """Rodrigues formula: rotate vector v around center by angle theta """ cxv = np.cross(center, v) cv = np.sum(center* v, axis=-1, keepdims=True) cc = v*np.cos(theta) + cxv*np.sin(theta) + center*cv*(1-np.cos(theta)) return cc #%% class Projection(ABC): """Don't subclass this without subclassing one of transform and transform_v and one of invtransform and invtransform_v, or else an infinite regression will occur""" def transform(self, x, y, z = None, **kwargs): if z is None: pts = np.stack([x,y]) else: pts = np.stack([x,y,z]) vresult = self.transform_v(pts, **kwargs) return vresult def invtransform(self, x, y, z=None, **kwargs): if z is None: pts = np.stack([x,y]) else: pts = np.stack([x,y,z]) vresult = self.invtransform_v(pts, **kwargs) return vresult def transform_v(self, pts, **kwargs): rpts = pts.reshape((pts.shape[0],-1)).T result = [] for xy in rpts: result.append(self.transform(*xy, **kwargs)) result = np.array(result) shape = [-1, ] + list(pts.shape[1:]) return result.T.reshape(shape) def invtransform_v(self, pts, **kwargs): rpts = pts.reshape((pts.shape[0],-1)).T result = [] for xy in rpts: result.append(self.invtransform(*xy, **kwargs)) result = np.array(result) shape = [-1, ] + list(pts.shape[1:]) return result.T.reshape(shape) #%% class UV(Projection): nctrlpts = 4 @staticmethod def grid(**kwargs): """Create a square grid""" return graticule(spacing1=1, spacing2=0.01, lonrange=[0,1], latrange=[0,1]) @staticmethod def gridpolys(n=11): poi = np.array(np.meshgrid(np.linspace(0, 1, n), np.linspace(0, 1, n))) poilist = [] for i, j in np.ndindex(n-1,n-1): x = Polygon([poi[:, i, j], poi[:, i, j+1], poi[:, i+1, j+1], poi[:, i+1, j]]) poilist.append(x) poiframe = geopandas.geoseries.GeoSeries(poilist) return poiframe @staticmethod def segment(uv): u, v = uv index1 = u > v index2 = u < 1 - v #1 and 2 = 0 #1 and not 2 = 1 #not 1 and not 2 = 2 #not 1 and 2 = 3 result = np.zeros(u.shape) result[index1 & ~index2] = 1 result[~index1 & ~index2] = 2 result[~index1 & index2] = 3 return result class Bilinear(UV): """Bilinear interpolation """ _bilinear_mat = np.array([[ 1, 1, 1, 1], [-1, 1, 1,-1], [-1,-1, 1, 1], [ 1,-1, 1,-1]])/4 def __init__(self, tgtpts): self.tgtpts = tgtpts self.abcd = self._bilinear_mat @ tgtpts.T def transform(self, u, v): """u and v should have the same shape""" abcd = self.abcd stack = np.stack([np.ones(u.shape), u, v, u*v]) return (abcd @ stack).T def transform_v(self, pts, **kwargs): return self.transform(pts[0], pts[1]) def invtransform_v(self, pts): abcd = self.abcd A = abcd[:,0] B = abcd[:,1] C = abcd[:,2] D = abcd[:,3] - pts AB = np.cross(A,B) AC = np.cross(A,C) AD = np.cross(A,D) BC = np.cross(B,C) BD = np.cross(B,D) CD = np.cross(C,D) ua = 2*BD ub = AD + BC uc = 2*AC va = 2*CD vb = AD - BC vc = 2*AB u1 = (-ub + sqrt(ub**2 - ua*uc) )/ua #u2 = (-ub - sqrt(ub**2 - ua*uc) )/ua #v2 = (-vb + sqrt(vb**2 - va*vc) )/va v1 = (-vb - sqrt(vb**2 - va*vc) )/va return u1, v1 class Homeomorphism(UV): """Homeomorphism""" def __init__(self, tgtpts): self.tgtpts = tgtpts class Barycentric(Projection): """Transforms between plane and barycentric coordinates""" nctrlpts = 3 def __init__(self, tgtpts): self.tgtpts = tgtpts m = np.concatenate([self.tgtpts, np.ones((1, 3))]) self.minv = np.linalg.inv(m) def transform_v(self, bary): """Convert barycentric to plane""" rbary = bary.reshape(3,-1) result = self.tgtpts @ rbary shape = [2,] + list(bary.shape[1:]) return result.reshape(shape) def invtransform_v(self, xy): """Convert plane to barycentric""" rxy = xy.reshape(2,-1) shape = list(rxy.shape) shape[0] = 1 xy1 = np.concatenate([rxy, np.ones(shape)]) result = self.minv @ xy1 shape = [3,] + list(xy.shape[1:]) return result.reshape(shape) @staticmethod def grid(spacing1=0.1, spacing2=1E-2, rang = [0, 1], eps=1E-8): """Create a triangle grid in barycentric coordinates """ nx = int((rang[1] - rang[0])/spacing1 + 1) ny = int((rang[1] - rang[0])/spacing2 + 1) x = np.linspace(rang[0], rang[1], nx) y = np.linspace(rang[0], rang[1], ny) z = 1 - x[..., np.newaxis] - y #valid = (rang[0] <= z) & (z <= rang[1]) #z[~valid] = np.nan bary1 = np.stack([np.broadcast_to(x[..., np.newaxis], (nx, ny)), np.broadcast_to(y, (nx, ny)), z]) bary = np.concatenate([bary1, np.roll(bary1, -1, axis=0), np.roll(bary1, -2, axis=0)], axis=1) gratlist = [bary[:, i] for i in range(nx*3)] gratl2 = [] for i in range(nx*3): g = gratlist[i] valid = np.all((rang[0]-eps <= g) & (g <= rang[1]+eps), axis=0) if np.sum(valid) > 1: g = g[..., valid] gratl2.append(LineString(g.T)) grat = geopandas.GeoSeries(gratl2) return grat @staticmethod def gridpolys(n=11, eps=0.01): poi = np.meshgrid(np.linspace(0, 1, n), np.linspace(0, 1, n)) poi.append(1 - poi[0] - poi[1]) poi = np.array(poi) poilist = [] for i,j in np.ndindex(n-1,n-1): if poi[2, i, j] >= eps: x = Polygon([poi[:, i, j],poi[:, i, j+1],poi[:, i+1, j]]) poilist.append(x) if poi[2, i+1, j+1] >= -eps: y = Polygon([poi[:, i+1, j+1],poi[:, i+1, j],poi[:, i, j+1]]) poilist.append(y) poiframe = geopandas.geoseries.GeoSeries(poilist) return poiframe @staticmethod def segment(bary): return np.argmin(bary, axis=0) class UnitVector(Projection): """Convert longitude and latitude to unit vector normals. The methods of this class are static, and mostly organized in a class for consistency.""" @staticmethod def transform(x, y, **kwargs): pts = np.stack([x,y]) vresult = UnitVector.transform_v(pts, **kwargs) return vresult @staticmethod def invtransform(x, y, z, **kwargs): pts = np.stack([x,y,z]) vresult = UnitVector.invtransform_v(pts, **kwargs) return vresult @staticmethod def transform_v(ll, scale=np.pi/180): """Convert longitude and latitude to 3-vector >>> ll = np.arange(6).reshape(2,3)*18 >>> UnitVector.transform_v(ll) array([[5.87785252e-01, 2.93892626e-01, 4.95380036e-17], [0.00000000e+00, 9.54915028e-02, 3.59914664e-17], [8.09016994e-01, 9.51056516e-01, 1.00000000e+00]]) """ lon, lat = ll*scale x = np.cos(lat)*np.cos(lon) y = np.cos(lat)*np.sin(lon) z = np.sin(lat) return np.stack([x, y, z], axis=0) @staticmethod def invtransform_v(pts, scale=180/np.pi): """Convert 3-vector to longitude and latitude. Vector does not have to be normalized. >>> UnitVector.invtransform_v(np.eye(3)) array([[ 0., 90., 0.], [ 0., 0., 90.]]) """ lat = scale*np.arctan2(pts[2], sqrt(pts[1]**2 + pts[0]**2)) lon = scale*np.arctan2(pts[1], pts[0]) return np.stack([lon, lat], axis=0) _unitsphgeod = pyproj.Geod(a=1, b=1) class CtrlPtsProjection(Projection, ABC): """Subclass for any map projection that uses (2 or more) control points.""" def __init__(self, ctrlpts, geod = _unitsphgeod): """Parameters: ctrlpts: 2x3 or 2x4 Numpy array, latitude and longitude of each control point geod= a pyproj.Geod object. For a unit sphere use pyproj.Geod(a=1,b=1) """ n = ctrlpts.shape[1] if self.nctrlpts != n: raise ValueError( 'ctrlpts has wrong number of points for this projection') self.geod = geod #it's possible to get a geod where this would give the wrong answer, #but I think it would have to be really weird area, _ = geod.polygon_area_perimeter([0,120,-120],[0,0,0]) self.totalarea = 2*area self.ctrlpts = ctrlpts ctrlpts_v = UnitVector.transform_v(ctrlpts) self.ctrlpts_v = ctrlpts_v center_v = ctrlpts_v.sum(axis=1) self.center_v = center_v / np.linalg.norm(center_v) self.center = UnitVector.invtransform_v(center_v) antipode = antipode_v(ctrlpts) self.antipode = antipode self.antipode_v = UnitVector.transform_v(antipode) self.sa = 0 if self.nctrlpts > 2: faz, baz, sides = self.geod.inv(ctrlpts[0], ctrlpts[1], np.roll(ctrlpts[0], -1), np.roll(ctrlpts[1], -1)) self.sides = sides self.faz = faz self.baz = baz self.ctrl_angles = (faz - np.roll(baz, 1))%360 area, _ = geod.polygon_area_perimeter(*ctrlpts) self.area = area self.ca = central_angle(ctrlpts_v, np.roll(ctrlpts_v, -1, axis=1)) for i in range(1, self.nctrlpts-1): self.sa += triangle_solid_angle(ctrlpts_v[..., 0], ctrlpts_v[..., i], ctrlpts_v[..., i+1]) self.edgenormals = np.cross(ctrlpts_v, np.roll(ctrlpts_v, -1, axis=1), axis=0) else: faz, baz, sides = self.geod.inv(ctrlpts[0,0], ctrlpts[1,0], ctrlpts[0,1], ctrlpts[1,1]) self.sides = sides self.faz = faz self.baz = baz self.area = 0 self.ca = central_angle(ctrlpts_v[..., 0], ctrlpts_v[..., 1]) self.edgenormals = np.cross(ctrlpts_v[..., 0], ctrlpts_v[..., 1]) self.cosca = np.cos(self.ca) self.sinca = np.sin(self.ca) if self.sa < 0: warnings.warn('control polygon is in negative orientation, ' + 'may cause unusual results') if self.nctrlpts == 4: ctrlpts_v = self.ctrlpts_v v0 = ctrlpts_v[..., 0] v1 = ctrlpts_v[..., 1] v2 = ctrlpts_v[..., 2] v3 = ctrlpts_v[..., 3] poip1 = np.cross(np.cross(v0, v1), np.cross(v3, v2)) poip2 = np.cross(np.cross(v0, v3), np.cross(v1, v2)) poip = np.stack([[poip1, -poip1], [poip2, -poip2]]).transpose(2,0,1) poip = poip / np.linalg.norm(poip, axis=0) self.poi_v = poip self.poi = UnitVector.invtransform_v(poip) self.crossx = np.cross(ctrlpts_v, np.roll(ctrlpts_v, -2, axis=1), axis=0)[..., :2] def orienttgtpts(self, tgtpts, N = (0, 90)): """Orient target points so that line from 0 to the projection of N points up. Will fail if map projection doesn't define tgtpts.""" pN = self.transform(*N) if np.allclose(pN, [0,0]): raise ValueError('projection of N too close to 0') angle = np.arctan2(pN[0],pN[1]) rotm = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]) result = rotm @ tgtpts self.tgtpts = result def lune(self, lon, lat): """ Determine which lune a point or series of points lies in. Lune 0 is the lune with vertex at the centroid and edges passing through control points 0 and 1. Lune 1 is the same using control pts 1 and 2, and Lune 2 uses control pts 2 and 0. """ #inexact on ellipsoids but close enough testpt = UnitVector.transform(lon, lat) testpt_v = testpt.reshape(3,-1) ctrlpts_v = self.ctrlpts_v center_v = self.center_v cx = np.cross(center_v, ctrlpts_v, axis=0) sk = cx.T @ testpt_v sg = sk >= 0 ind = sg & ~np.roll(sg, shift=-1, axis=0) result = np.argmax(ind, axis=0) return result.reshape(testpt.shape[1:]) class BarycentricMapProjection(CtrlPtsProjection): nctrlpts = 3 tweak = False bcenter = np.ones(3)/3 def fixbary(self, bary): if self.tweak: return self.fixbary_normalize(bary) else: return self.fixbary_subtract(bary) @staticmethod def fixbary_normalize(bary): """Converts array bary to an array with sum = 1 by dividing by bary.sum(). Will return nan if bary.sum() == 0. >>> fixbary_normalize(np.arange(3)) array([0. , 0.33333333, 0.66666667]) """ bary = np.array(bary) return bary / np.sum(bary, axis=0, keepdims=True) @staticmethod def fixbary_subtract(bary): """Converts array bary to an array with sum = 1 by subtracting (bary.sum() - 1)/bary.shape[0]. >>> fixbary_subtract(np.arange(3)) array([-0.66666667, 0.33333333, 1.33333333]) """ bary = np.array(bary) s = (np.sum(bary, axis=0, keepdims=True) - 1)/bary.shape[0] return bary - s def _fix_corners(self, lon, lat, result): ctrlpts = self.ctrlpts index0 = (lon == ctrlpts[0,0]) & (lat == ctrlpts[1,0]) index1 = (lon == ctrlpts[0,1]) & (lat == ctrlpts[1,1]) index2 = (lon == ctrlpts[0,2]) & (lat == ctrlpts[1,2]) #print(lon, lat, ctrlpts, result) #print(index0.shape, result.shape, np.array([1, 0, 0])[..., np.newaxis].shape) result[..., index0] = np.array([1, 0, 0])[..., np.newaxis] result[..., index1] = np.array([0, 1, 0])[..., np.newaxis] result[..., index2] = np.array([0, 0, 1])[..., np.newaxis] return result def _fix_corners_inv(self, bary, result): index0 = (bary[0] == 1) index1 = (bary[1] == 1) index2 = (bary[2] == 1) if np.any(index0): result[..., index0] = self.ctrlpts_v[..., 0, np.newaxis] if np.any(index1): result[..., index1] = self.ctrlpts_v[..., 1, np.newaxis] if np.any(index2): result[..., index2] = self.ctrlpts_v[..., 2, np.newaxis] return result class UVMapProjection(CtrlPtsProjection): nctrlpts = 4 bcenter = np.ones(2)/2 def _fix_corners(self, lon, lat, result): ctrlpts = self.ctrlpts index0 = (lon == ctrlpts[0,0]) & (lat == ctrlpts[1,0]) index1 = (lon == ctrlpts[0,1]) & (lat == ctrlpts[1,1]) index2 = (lon == ctrlpts[0,2]) & (lat == ctrlpts[1,2]) index3 = (lon == ctrlpts[0,3]) & (lat == ctrlpts[1,3]) result[..., index0] = np.array([ 0, 0])[..., np.newaxis] result[..., index1] = np.array([ 1, 0])[..., np.newaxis] result[..., index2] = np.array([ 1, 1])[..., np.newaxis] result[..., index3] = np.array([ 0, 1])[..., np.newaxis] return result def _fix_corners_inv(self, x, y, result): index0 = (x == 0) & (y == 0) index1 = (x == 1) & (y == 0) index2 = (x == 1) & (y == 1) index3 = (x == 0) & (y == 1) if np.any(index0): result[..., index0] = self.ctrlpts_v[..., 0, np.newaxis] if np.any(index1): result[..., index1] = self.ctrlpts_v[..., 1, np.newaxis] if np.any(index2): result[..., index2] = self.ctrlpts_v[..., 2, np.newaxis] if np.any(index3): result[..., index3] = self.ctrlpts_v[..., 3, np.newaxis] return result #%% not-polygonal projections class ChambTrimetric(CtrlPtsProjection): """Chamberlin trimetric projection""" #FIXME this implementation fails for control triangles with #high aspect ratios nctrlpts = 3 def __init__(self, ctrlpts, geod=_unitsphgeod): super().__init__(ctrlpts, geod) self.tgtpts = trigivenlengths(self.sides) try: self.orienttgtpts(self.tgtpts) except ValueError: pass def transform(self, x, y, **kwargs): if hasattr(x, '__iter__'): raise TypeError() tgtpts = self.tgtpts f, b, rad = self.geod.inv(self.ctrlpts[0], self.ctrlpts[1], x*np.ones(3), y*np.ones(3)) faz = self.faz raz1 = (faz - f) % 360 radsq = np.array(rad).squeeze()**2 ctgt = tgtpts.T.copy().view(dtype=complex).squeeze() a = np.roll(ctgt, -1) - ctgt b = ctgt l = abs(a) lsq = l**2 rsq = radsq/lsq ssq = np.roll(radsq, -1, axis=-1)/lsq x0 = (rsq - ssq + 1)/2 y0 = sqrt(-rsq**2 + 2*rsq*(ssq + 1) - (ssq - 1)**2)/2 y0[np.isnan(y0)] = 0 y = np.where(raz1 > 180, -y0, y0) z0 = x0 +1j*y pts = (a * z0 + b) result = np.mean(pts) return result.real, result.imag def invtransform(self, *args, **kwargs): return NotImplemented class LstSqTrimetric(ChambTrimetric): """Least-squares variation of the Chamberlin trimetric projection""" def transform(self, x, y, **kwargs): init = super().transform(x, y) tgtpts = self.tgtpts f, b, rad = self.geod.inv(self.ctrlpts[0], self.ctrlpts[1], x*np.ones(3), y*np.ones(3)) def objective(v): x = v[0] y = v[1] a = tgtpts[0] b = tgtpts[1] xma = x-a ymb = y-b dist = np.sqrt(xma**2 + ymb**2) result = np.sum((dist - rad)**2 ) f = 1 - rad/dist f[rad <= 0] = 1 jac = 2*np.array([np.sum(xma*f), np.sum(ymb*f)]) return result, jac res = minimize(objective, init, jac=True, method = 'BFGS') return res.x class LinearTrimetric(CtrlPtsProjection): """The linear variation of the Chamberlin Trimetric projection.""" nctrlpts = 3 matrix1 = np.array([[0,-1], [1,0]]) matrix2 = np.array([[0, -1, 1], [1, 0, -1], [-1, 1, 0]]) matrixinv1 = np.array([[-2,1,1], [1,-2,1], [1,1,-2]])*2/3 def __init__(self, ctrlpts, geod=_unitsphgeod): """Parameters: ctrlpts: 2x3 Numpy array, latitude and longitude of each control point geod= a pyproj.Geod object. For a unit sphere use pyproj.Geod(a=1,b=1). """ super().__init__(ctrlpts, geod) self.radius = ((geod.a**(3/2) + geod.b**(3/2))/2)**(2/3) self.tgtpts = trigivenlengths(self.sides) self.setmat() # try: # self.orienttgtpts(self.tgtpts) # self.setmat() # except ValueError: # pass vctrl = self.ctrlpts_v self.invctrlvector = np.linalg.pinv(vctrl) self.invperpmatrix = self.invctrlvector @ self.invctrlvector.T cosrthmin = 1 / np.sqrt(self.invperpmatrix.sum()) self.hminall = np.arccos(cosrthmin)**2 def setmat(self, tgtpts=None): """Set matrices that use tgtpts""" if tgtpts is None: tgtpts = self.tgtpts else: self.tgtpts = tgtpts tgtde = np.linalg.det(np.concatenate([tgtpts, np.ones((1,3))], axis=0)) self.m = self.matrix1 @ tgtpts @ self.matrix2 /(2*tgtde) self.minv = self.matrixinv1 @ tgtpts.T def transform_v(self, pts): rpts = pts.reshape((2,-1)).T rad = [] for x,y in rpts: f, b, radi = self.geod.inv(x*np.ones(3), y*np.ones(3), self.ctrlpts[0], self.ctrlpts[1]) rad.append(radi) shape = list(pts.shape) shape[0] = 3 rad = np.array(rad).T radsq = np.array(rad)**2 result = self.m @ radsq return result.reshape(pts.shape) def invtransform_v(self, pts, n=20, stop=1E-8): if not self.geod.sphere: warnings.warn('inverse transform is approximate on ellipsoids') rpts = pts.reshape((2,-1)) k = self.minv @ rpts/self.radius**2 hmin = -np.min(k, axis=0) print('k: ', k) #hmax = np.pi**2-np.max(k, axis=0) hminall = self.hminall h = np.where(hmin < hminall, hminall, hmin) print('h: ', h) for i in range(n): rsq = (k + h) #pos = rsq > 0 neg = rsq < 0 zer = rsq == 0 c = np.where(neg, np.cosh(np.sqrt(-rsq)), np.cos(np.sqrt(rsq))) b = np.where(neg, np.sinh(np.sqrt(-rsq)), np.sin(np.sqrt(rsq)))/np.sqrt(np.abs(rsq)) b[zer] = 1 f = np.einsum('i...,ij,j...', c, self.invperpmatrix, c) - 1 fprime = np.einsum('i...,ij,j...', c, self.invperpmatrix, b) delta = f/fprime h += delta print('delta:', delta) print('h: ', h) if np.max(np.abs(delta)) < stop: break #h = np.clip(h, hmin, hmax) rsq = np.clip(k + h, 0, np.pi**2) c = np.cos(np.sqrt(rsq)) vector = self.invctrlvector.T @ c print(c) print(vector) return UnitVector.invtransform_v(vector).reshape(pts.shape) def nmforplot(self, pts, n=100): rpts = pts.reshape((2,-1)) k = self.minv @ rpts/self.radius**2 hmin = -np.min(k, axis=0) hmax = np.pi**2-np.max(k, axis=0) h = np.linspace(hmin,hmax,100).T rsq = (k[..., np.newaxis] + h) c = np.cos(np.sqrt(rsq)) nm = np.einsum('i...,ij,j...', c, self.invperpmatrix, c) return h, nm class Alfredo(BarycentricMapProjection): """this doesn't really accomplish anything""" def __init__(self, ctrlpts, tweak=False): """Parameters: ctrlpts: 2x3 Numpy array, latitude and longitude of each control point """ super().__init__(ctrlpts) ctrlpts_v = self.ctrlpts_v self.cosADfactor = (np.cross(np.roll(ctrlpts_v, 1, axis=1), np.roll(ctrlpts_v, -1, axis=1), axis=0) + ctrlpts_v * np.linalg.det(ctrlpts_v)) self.tweak = tweak def transform_v(self, ll): rll = ll.reshape(2, -1) ctrlpts_v = self.ctrlpts_v cosADfactor = self.cosADfactor vtestpt = UnitVector.transform_v(rll) cosAPi = (vtestpt.T @ ctrlpts_v).T cosADi = (vtestpt.T @ cosADfactor).T pli = np.sqrt((1-cosAPi)/(1-cosADi)) b = 1 - pli result = self.fixbary(b) shape = (3,) + ll.shape[1:] return result.reshape(shape) def invtransform(self, *args, **kwargs): return NotImplemented #%% class Areal(BarycentricMapProjection): """Spherical areal projection.""" def __init__(self, ctrlpts, geod=_unitsphgeod): """Parameters: ctrlpts: 2x3 Numpy array, latitude and longitude of each control point geod: a pyproj.Geod object. For a unit sphere use pyproj.Geod(a=1,b=1). """ super().__init__(ctrlpts, geod) a_i = np.sum(np.roll(self.ctrlpts_v, -1, axis=1) * np.roll(self.ctrlpts_v, 1, axis=1), axis=0) self.a_i = a_i self.b_i = (np.roll(a_i, -1) + np.roll(a_i, 1))/(1+a_i) self.tau_c = self.tau(self.area) def tau(self, area): """Convert areas on the geod to tau values for inverse transform""" return np.tan(area/self.totalarea*2*np.pi) def transform(self, x, y): try: areas = [] for i in range(3): smtri = self.ctrlpts.copy() smtri[:, i] = np.array([x,y]) a, _ = self.geod.polygon_area_perimeter(smtri[0], smtri[1]) areas.append(a) areas = np.array(areas) return areas/self.area except ValueError: raise TypeError() def invtransform_v(self, bary): rbary = bary.reshape(3,-1) if not self.geod.sphere: warnings.warn('inverse transform is approximate on ellipsoids') b_i = self.b_i[:,np.newaxis] tau = self.tau_c tau_i = self.tau(self.area*rbary) t_i = tau_i/tau c_i = t_i / ((1+b_i) + (1-b_i) * t_i) f_i = c_i / (1 - np.sum(c_i, axis=0)) vector = self.ctrlpts_v @ f_i shape = [2] + list(bary.shape[1:]) result = UnitVector.invtransform_v(vector).reshape(shape) return result #%% class BisectTri(BarycentricMapProjection): """Inverse is only approximate """ def __init__(self, ctrlpts): """Parameters: ctrlpts: 2xn Numpy array, latitude and longitude of each control point """ super().__init__(ctrlpts) ctrlpts_v = self.ctrlpts_v #v_0 = ctrlpts_v[..., 0] #v_1 = ctrlpts_v[..., 1] #v_2 = ctrlpts_v[..., 2] midpoint_v = np.roll(ctrlpts_v, 1, axis=1) + np.roll(ctrlpts_v, -1, axis=1) midpoint_v /= np.linalg.norm(midpoint_v, axis=0, keepdims=True) self.midpoint_v = midpoint_v self.midpoint = UnitVector.invtransform_v(self.midpoint_v) aream = [] for i in range(3): #index = np.roll(np.arange(3), -i)[:2] #lona = list(ctrlpts[0, index]) + [self.midpoint[0,i],] #lata = list(ctrlpts[1, index]) + [self.midpoint[1,i],] #am, _ = self.geod.polygon_area_perimeter(lona, lata) am = triangle_solid_angle(ctrlpts_v[:,i], ctrlpts_v[:,(i+1)%3], midpoint_v[:,i]) #vc[:,0], mi, lproj) aream.append(am) self.aream = np.array(aream) def transform(self, lon, lat): lon + 0 vtestpt = UnitVector.transform(lon, lat) areas = [] vctrlpts = self.ctrlpts_v actrlpts = self.ctrlpts geod = self.geod area = self.area for i in range(3): vc = np.roll(vctrlpts, i, axis=1) #ac = np.roll(actrlpts, i, axis=1) mi = self.midpoint_v[:,-i]#? lproj = -np.cross(np.cross(vc[..., 1], vc[..., 2]), np.cross(vc[..., 0], vtestpt)) #lllproj = UnitVector.invtransform_v(lproj) #loni = [ac[0,0], mi[0], lllproj[0]] #lati = [ac[1,0], mi[1], lllproj[1]] #a1, _ = geod.polygon_area_perimeter(loni, lati) a1 = triangle_solid_angle(vc[:,0], mi, lproj) areas.append(a1) areas = np.array(areas) + self.aream aa = areas/area bx = [] for i in range(3): x,y,z = np.roll(aa, i, axis=0) b = (y**2 * x**2 + z**2 * x**2 - y**2 * z**2 - x * y**2 + z * y**2 - 2*y*x**2 - x*z**2 + y*z**2 + x**2 + 3*y*x + z*x - 2*y*z - 2*x - y + z + 1) bx.append(b) bx = np.array(bx) betax = bx/bx.sum() return self._fix_corners(lon, lat, betax) def invtransform(self, b1, b2, b3): b1 + 0 beta = np.array([b1,b2,b3]) vctrlpts3 = self.ctrlpts_v #xs = [] ptts = [] for i in range(3): beta1, beta2, beta3 = np.roll(beta, -i, axis=0) x = beta2/(1 - beta1) #xs.append(x) a = x * self.area pt0 = vctrlpts3[:,i] pt1 = vctrlpts3[:,i-2] pt2 = vctrlpts3[:,i-1] cosw = pt1 @ pt2 w = np.arccos(cosw) sinw = np.sin(w) p2 = ((np.cos(a/2)* pt2 @ np.cross(pt0, pt1)- np.sin(a/2)*pt2 @ (pt1 + pt0)) + np.sin(a/2)*cosw*(1 + pt1 @ pt0)) p3 = sinw*np.sin(a/2)*(1 + pt0 @ pt1) r = 2*p3*p2/(p2**2 - p3**2) t = np.arctan(r)/w#really close to just x #print(x, t) #t = x ptt = slerp(pt2, pt1, t) ptts.append(ptt) ptts = np.array(ptts).T ns = np.cross(vctrlpts3, ptts, axis=0) pts = np.cross(ns, np.roll(ns, -1, axis=1), axis=0) v = pts.sum(axis=1) v = self._fix_corners_inv(beta, v) return UnitVector.invtransform_v(v) class BisectTri2(BarycentricMapProjection): """Inverse is only approximate""" def __init__(self, ctrlpts): """Parameters: ctrlpts: 2xn Numpy array, latitude and longitude of each control point """ super().__init__(ctrlpts) ctrlpts_v = self.ctrlpts_v #v_0 = ctrlpts_v[..., 0] #v_1 = ctrlpts_v[..., 1] #v_2 = ctrlpts_v[..., 2] midpoint_v = np.roll(ctrlpts_v, 1, axis=1) + np.roll(ctrlpts_v, -1, axis=1) midpoint_v /= np.linalg.norm(midpoint_v, axis=0, keepdims=True) self.midpoint_v = midpoint_v self.midpoint = UnitVector.invtransform_v(self.midpoint_v) def transform(self, lon, lat): lon + 0 vtestpt = UnitVector.transform(lon, lat) aa = [] vctrlpts = self.ctrlpts_v actrlpts = self.ctrlpts for i in range(3): vc = np.roll(vctrlpts, i, axis=1) ac = np.roll(actrlpts, i, axis=1) mi = self.midpoint[:,-i] lproj = -np.cross(np.cross(vc[..., 1], vc[..., 2]), np.cross(vc[..., 0], vtestpt)) lllproj = UnitVector.invtransform_v(lproj) dist1x = central_angle(vc[..., 1], lproj) f, b, dist1x = self.geod.inv(mi[0], mi[1], lllproj[0],lllproj[1]) f0, b0, _ = self.geod.inv(mi[0], mi[1], ac[0,2], ac[1,2]) deltaf = (f-f0) % 360 if (deltaf <= 90) | (deltaf > 270): s = 1 else: s = -1 t = s*dist1x/self.sides[i] + 1/2 #print(t) aa.append(t) bx = [] for i in range(3): x,y,z = np.roll(aa, i, axis=0) b = (y**2 * x**2 + z**2 * x**2 - y**2 * z**2 - x * y**2 + z * y**2 - 2*y*x**2 - x*z**2 + y*z**2 + x**2 + 3*y*x + z*x - 2*y*z - 2*x - y + z + 1) bx.append(b) bx = np.array(bx) betax = bx/bx.sum() return self._fix_corners(lon, lat, betax) def invtransform(self, b1, b2, b3): b1 + 0 beta = np.array([b1,b2,b3]) vctrlpts3 = self.ctrlpts_v #xs = [] ptts = [] for i in range(3): beta1, beta2, beta3 = np.roll(beta, -i, axis=0) x = beta2/(1 - beta1) pt1 = vctrlpts3[:,i-2] pt2 = vctrlpts3[:,i-1] ptt = slerp(pt2, pt1, x) ptts.append(ptt) ptts = np.array(ptts).T ns = np.cross(vctrlpts3, ptts, axis=0) pts = np.cross(ns, np.roll(ns, -1, axis=1), axis=0) v = pts.sum(axis=1) v = self._fix_corners_inv(beta, v) return UnitVector.invtransform_v(v) class FullerEq(BarycentricMapProjection): def transform_v(self, ll): vtestpt_pre = UnitVector.transform(*ll) vtestpt = vtestpt_pre.reshape(3,-1) ctrlpts_v = self.ctrlpts_v b = [] for i in range(3): v0 = ctrlpts_v[..., i] v1 = ctrlpts_v[..., (i+1)%3] v2 = ctrlpts_v[..., (i-1)%3] cosw01 = v0 @ v1 cosw02 = v0 @ v2 w01 = np.arccos(cosw01) w02 = np.arccos(cosw02) w = (w01 + w02) / 2 sinw = np.sin(w) cosw = np.cos(w) vt01 = np.tensordot(vtestpt, np.cross(v0, v1), axes=(0,0)) vt12 = np.tensordot(vtestpt, np.cross(v1, v2), axes=(0,0)) vt20 = np.tensordot(vtestpt, np.cross(v2, v0), axes=(0,0)) bi = np.arctan2(sinw*vt12, cosw*vt12 + vt01 + vt20)/w #gx = vt12 + cosw*(vt01 + vt20) #tx = np.arctan2(sinw*(vt20 + vt01),gx)/w b.append(bi) #b.append(1-tx) b = np.array(b) result = self.fixbary_subtract(b) return result.reshape(vtestpt_pre.shape) def invtransform(self, b1, b2, b3): b1 + 0 #still not vectorized bi = np.array([b1, b2, b3]) v0 = self.ctrlpts_v[..., 0] v1 = self.ctrlpts_v[..., 1] v2 = self.ctrlpts_v[..., 2] w = self.ca.mean() bi = np.array([b1, b2, b3]) cw = np.cos(w) #sw = np.sin(w) cbw = np.cos(bi*w) sbw = np.sin(bi*w) pcbw = np.product(cbw) psbw = np.product(sbw) scc = np.sum(sbw * np.roll(cbw, -1) * np.roll(cbw, 1)) css = np.sum(cbw*np.roll(sbw, -1)*np.roll(sbw, 1)) objw2 = np.array([2*pcbw - cw - 1, 2*scc, 3*pcbw + 3 - css, 2*psbw]) rts = np.roots(objw2)[-1]#FIXME solve this cubic explicitly rts = rts.real k = np.arctan(rts)/w #f0 = np.where(bi[0] + k > 1, -1, 1) f1 = np.where(bi[1] + k > 1, -1, 1) f2 = np.where(bi[2] + k > 1, -1, 1) #v01 = slerp(v1, v0, bi[0] + k) #v02 = slerp(v2, v0, bi[0] + k) #cx12 = np.cross(v01, v02)*f0 v12 = slerp(v2, v1, bi[1] + k) v10 = slerp(v0, v1, bi[1] + k) cx20 = np.cross(v12, v10)*f1 v20 = slerp(v0, v2, bi[2] + k) v21 = slerp(v1, v2, bi[2] + k) cx01 = np.cross(v20, v21)*f2 v0x = normalize(np.cross(cx20, cx01)) #v1x = normalize(np.cross(cx01, cx12)) #v2x = normalize(np.cross(cx12, cx20)) v0x = self._fix_corners_inv(bi, v0x) #print(v0x) return UnitVector.invtransform_v(v0x) class Fuller(BarycentricMapProjection): def __init__(self, ctrlpts, tweak=False): """Parameters: ctrlpts: 2xn Numpy array, latitude and longitude of each control point """ super().__init__(ctrlpts) self.tweak = tweak def transform(self, lon, lat): lon + 0#will TypeError if lon is not a number vtestpt = UnitVector.transform(lon, lat) ctrlpts_v = self.ctrlpts_v b = [] for i in range(3): v0 = ctrlpts_v[..., i] v1 = ctrlpts_v[..., (i+1)%3] v2 = ctrlpts_v[..., (i+2)%3] vt01 = vtestpt @ np.cross(v0, v1) vt12 = vtestpt @ np.cross(v1, v2) vt20 = vtestpt @ np.cross(v2, v0) cosw01 = v0 @ v1 cosw02 = v0 @ v2 w01 = np.arccos(cosw01) w02 = np.arccos(cosw02) if np.isclose(w01, w02): w = (w01 + w02) / 2 sinw = np.sin(w) cosw = np.cos(w) g = vt12 + cosw*(vt01 + vt20) ti = self._b_eq(w, sinw, vt20, vt01, g) else: sinw01 = sqrt(1 - cosw01**2) sinw02 = sqrt(1 - cosw02**2) g = vt12 + cosw02*vt01 + cosw01*vt20 ti = self._b_neq(w01, sinw02, vt01, w02, sinw01, vt20, g) b.append(1-ti) return self.fixbary(b) def _b_neq(self, w01, sinw02, vt01, w02, sinw01, vt20, g): t0 = (w01*sinw02*vt01 + w02*sinw01*vt20)/(g*w01*w02) if ~np.isfinite(t0): t0 = 0 else: lim = np.pi/np.array([w01,w02]).max() t0 = np.clip(t0, -lim, lim) if abs(t0) < 1E-3: return t0 w = (w01 + w02) / 2 sinw = np.sin(w) t1 = self._b_eq(w, sinw, vt20, vt01, g) t0 = np.clip(t0, -abs(t1), abs(t1)) c1 = sqrt(g**2 + (sinw01*vt20 - sinw02*vt01)**2) c2 = sqrt(g**2 + (sinw01*vt20 + sinw02*vt01)**2) d1 = np.arctan2(sinw01*vt20 - sinw02*vt01, g) d2 = np.arctan2(sinw01*vt20 + sinw02*vt01, g) def objective(t): if t < -lim or t > lim: return t**2, 2*t if t == 0: t = np.finfo(float).eps z = c1*np.cos((w01 - w02)*t - d1) - c2*np.cos((w01 + w02)*t - d2) dz = (-c1*(w01 - w02)*np.sin((w01 - w02)*t - d1) + c2*(w01 + w02)*np.sin((w01 + w02)*t - d2)) return z/t, (t*dz - z)*t**-2 res = root_scalar(objective, fprime=True, method='newton', x0=t0) return res.root def _b_eq(self, w, sinw, vt20, vt01, gx): #x = sinw*(vt20 + vt01)/gx tx = np.arctan2(sinw*(vt20 + vt01),gx)/w #this form would be more efficient: #b = np.arctan2(sinw*vt12, cosw*vt12 + vt01 + vt20)/w return tx def invtransform(self, b1, b2, b3): if self.tweak: return self._invtransform_normalize(b1, b2, b3) else: return self._invtransform_subtract(b1, b2, b3) def _invtransform_subtract(self, b1, b2, b3): b1 + 0#will TypeError if not a number bi = np.array([b1, b2, b3]) v0 = self.ctrlpts_v[..., 0] v1 = self.ctrlpts_v[..., 1] v2 = self.ctrlpts_v[..., 2] def objective(k): f0 = np.where(bi[0] + k > 1, -1, 1) f1 = np.where(bi[1] + k > 1, -1, 1) f2 = np.where(bi[2] + k > 1, -1, 1) v01 = slerp(v1, v0, bi[0] + k) v02 = slerp(v2, v0, bi[0] + k) cx12 = np.cross(v01, v02)*f0 v12 = slerp(v2, v1, bi[1] + k) v10 = slerp(v0, v1, bi[1] + k) cx20 = np.cross(v12, v10)*f1 v20 = slerp(v0, v2, bi[2] + k) v21 = slerp(v1, v2, bi[2] + k) cx01 = np.cross(v20, v21)*f2 v0x = normalize(np.cross(cx20, cx01)) v1x = normalize(np.cross(cx01, cx12)) v2x = normalize(np.cross(cx12, cx20)) #this is slightly more robust than the triple product return (np.linalg.norm(v0x-v1x) + np.linalg.norm(v1x-v2x) + np.linalg.norm(v2x-v0x)) # dv01 = dslerp(v1, v0, bi[0] + k) # dv02 = dslerp(v2, v0, bi[0] + k) # dcx12 = (np.cross(dv01, v02) + np.cross(v01, dv02))*f0 # dv12 = dslerp(v2, v1, bi[1] + k) # dv10 = dslerp(v0, v1, bi[1] + k) # dcx20 = (np.cross(dv12, v10) + np.cross(v12, dv10))*f1 # dv20 = dslerp(v0, v2, bi[2] + k) # dv21 = dslerp(v1, v2, bi[2] + k) # dcx01 = (np.cross(dv20, v21) + np.cross(v20, dv21))*f2 # derivative = dcx12 @ v0x + dcx20 @ v1x + dcx01 @ v2x # return cx12 @ v0x, derivative if b1 == 0 or b2 == 0 or b3 == 0: k = 0 elif np.allclose(self.sides, np.roll(self.sides, 1)): kx = self._k_eq(b1, b2, b3) k = kx[2]#FIXME is 2 always the right one? else: #FIXME why is this so freakin slow res = minimize_scalar(objective, bracket=[0,0.1]) k = res.x #f0 = np.where(bi[0] + k > 1, -1, 1) f1 = np.where(bi[1] + k > 1, -1, 1) f2 = np.where(bi[2] + k > 1, -1, 1) #v01 = slerp(v1, v0, bi[0] + k) #v02 = slerp(v2, v0, bi[0] + k) #cx12 = np.cross(v01, v02)*f0 v12 = slerp(v2, v1, bi[1] + k) v10 = slerp(v0, v1, bi[1] + k) cx20 = np.cross(v12, v10)*f1 v20 = slerp(v0, v2, bi[2] + k) v21 = slerp(v1, v2, bi[2] + k) cx01 = np.cross(v20, v21)*f2 v0x = normalize(np.cross(cx20, cx01)) #v1x = normalize(np.cross(cx01, cx12)) #v2x = normalize(np.cross(cx12, cx20)) v0x = self._fix_corners_inv(bi, v0x) return UnitVector.invtransform_v(v0x) def _k_eq(self, b1, b2, b3): w = self.ca.mean() bi = np.array([b1, b2, b3]) cw = np.cos(w) #sw = np.sin(w) cbw = np.cos(bi*w) sbw = np.sin(bi*w) pcbw = np.product(cbw) psbw = np.product(sbw) scc = np.sum(sbw * np.roll(cbw, -1) * np.roll(cbw, 1)) css = np.sum(cbw*np.roll(sbw, -1)*np.roll(sbw, 1)) objw2 = np.array([2*pcbw - cw - 1, 2*scc, 3*pcbw + 3 - css, 2*psbw]) rts = np.roots(objw2) return np.arctan(rts)/w def _invtransform_normalize(self, b1, b2, b3): b1 + 0#will TypeError if not a number bi = np.array([b1, b2, b3]) v0 = self.ctrlpts_v[..., 0] v1 = self.ctrlpts_v[..., 1] v2 = self.ctrlpts_v[..., 2] def objective(k): f0 = np.where(bi[0] * k > 1, -1, 1) f1 = np.where(bi[1] * k > 1, -1, 1) f2 = np.where(bi[2] * k > 1, -1, 1) v01 = slerp(v1, v0, bi[0] * k) v02 = slerp(v2, v0, bi[0] * k) cx12 = normalize(np.cross(v01, v02))*f0 v12 = slerp(v2, v1, bi[1] * k) v10 = slerp(v0, v1, bi[1] * k) cx20 = normalize(np.cross(v12, v10))*f1 v20 = slerp(v0, v2, bi[2] * k) v21 = slerp(v1, v2, bi[2] * k) cx01 = normalize(np.cross(v20, v21))*f2 v0x = normalize(np.cross(cx20, cx01)) v1x = normalize(np.cross(cx01, cx12)) v2x = normalize(np.cross(cx12, cx20)) #i think this is slightly more robust than the triple product return (np.linalg.norm(v0x-v1x) + np.linalg.norm(v1x-v2x) + np.linalg.norm(v2x-v0x)) res = minimize_scalar(objective, bracket=[1,1.1]) k = res.x #f0 = np.where(bi[0] * k > 1, -1, 1) f1 = np.where(bi[1] * k > 1, -1, 1) f2 = np.where(bi[2] * k > 1, -1, 1) v12 = slerp(v2, v1, bi[1] * k) v10 = slerp(v0, v1, bi[1] * k) cx20 = normalize(np.cross(v12, v10))*f1 v20 = slerp(v0, v2, bi[2] * k) v21 = slerp(v1, v2, bi[2] * k) cx01 = normalize(np.cross(v20, v21))*f2 v0x = normalize(np.cross(cx20, cx01)) v0x = self._fix_corners_inv(bi, v0x) return UnitVector.invtransform_v(v0x) class SnyderEA(BarycentricMapProjection): def __init__(self, ctrlpts): """Parameters: ctrlpts: 2xn Numpy array, latitude and longitude of each control point """ super().__init__(ctrlpts) ctrlpts_v = self.ctrlpts_v v_0 = ctrlpts_v[..., 0] v_1 = ctrlpts_v[..., 1] v_2 = ctrlpts_v[..., 2] self.v_01 = v_0 @ v_1 self.v_12 = v_1 @ v_2 self.v_20 = v_2 @ v_0 self.v_012 = np.linalg.det(ctrlpts_v) self.c = self.v_12 self.c2 = self.c**2 self.s2 = 1 - self.c2 self.s = sqrt(self.s2) self.w = np.arccos(self.c) self.midpoint_v = v_1 + v_2 self.midpoint = UnitVector.invtransform_v(self.midpoint_v) lona = list(ctrlpts[0,:2]) + [self.midpoint[0],] lata = list(ctrlpts[1,:2]) + [self.midpoint[1],] self.area01m, _ = self.geod.polygon_area_perimeter(lona, lata) def transform(self, lon, lat): lon + 0 actrlpts = self.ctrlpts ctrlpts_v = self.ctrlpts_v area = self.area geod = self.geod vtestpt = UnitVector.transform(lon, lat) lproj = -np.cross(np.cross(ctrlpts_v[..., 1], ctrlpts_v[..., 2]), np.cross(ctrlpts_v[..., 0], vtestpt)) norm = np.linalg.norm(lproj, axis=0, keepdims=True) if norm != 0: lproj = lproj / norm lllproj = UnitVector.invtransform_v(lproj) cosAP = ctrlpts_v[..., 0] @ vtestpt cosAD = ctrlpts_v[..., 0] @ lproj pl = sqrt((1-cosAP)/(1-cosAD)) b0 = 1 - pl lona = [actrlpts[0,0], self.midpoint[0], lllproj[0]] lata = [actrlpts[1,0], self.midpoint[1], lllproj[1]] a1, _ = geod.polygon_area_perimeter(lona, lata) a1 += self.area01m b2 = a1/area * pl b1 = 1 - b0 - b2 result = np.stack([b0,b1,b2]) bresult = self._fix_corners(lon, lat, result) return np.where(np.isfinite(bresult), bresult, 0) def invtransform(self, b1, b2, b3): ctrlpts_v = self.ctrlpts_v area = self.area lp = np.array(1-b1) #make this an array so it won't complain about zero division, impute later a = b3/lp v_01 = self.v_01 v_20 = self.v_20 v_012 = self.v_012 c = self.c s = self.s w = self.w Ar = a * area sA = np.sin(Ar) cA = 1 - np.cos(Ar) Fp = ((sA * v_012 + cA*(v_01*c - v_20))**2 - (s*cA*(1 + v_01))**2) Gp = 2*cA*s*(1 + v_01)*(sA*v_012 + cA*(v_01*c - v_20)) result = 1/w*np.arctan2(Gp, Fp) vd = slerp(ctrlpts_v[..., 1], ctrlpts_v[..., 2], result) AdotD = ctrlpts_v[..., 0] @ vd AdotP = 1 - lp**2*(1-AdotD) t = np.arccos(AdotP)/np.arccos(AdotD) vresult = slerp(ctrlpts_v[..., 0], vd, t) bary = np.stack([b1, b2, b3]) vresult = self._fix_corners_inv(bary, vresult) vresult[~np.isfinite(vresult)] = 0 return UnitVector.invtransform_v(vresult) class SnyderEA3(BarycentricMapProjection): tmat = np.array([[1/3,0,0], [1/3,1,0], [1/3,0,1]]) tmatinv = np.array([[3,0,0], [-1,1,0], [-1,0,1]]) def __init__(self, ctrlpts): """Parameters: ctrlpts: 2xn Numpy array, latitude and longitude of each control point """ super().__init__(ctrlpts) subproj = [] #want the center that divides the triangle into 3 equal-area triangles ap = Areal(ctrlpts) center = ap.invtransform(1/3, 1/3, 1/3) self.center = center self.center_v = UnitVector.transform(*center) arr = np.arange(3) for i in range(3): index = np.roll(arr, -i)[1:] cp = np.concatenate([center[:,np.newaxis], ctrlpts[:, index]], axis=1) pj = SnyderEA(cp) subproj.append(pj) self.subproj = subproj def transform(self, lon, lat): subproj = self.subproj i = self.lune(lon, lat) pj = subproj[i-1]#shift because we want the opposite vertex betap = pj.transform(lon, lat) betax = self.tmat @ betap beta = np.roll(betax, i-1, axis=0) return beta def invtransform(self, b1, b2, b3): bary = np.array([b1,b2,b3]) i = (Barycentric.segment(bary) ) % 3 betax = np.roll(bary, -i, axis=0) betap = self.tmatinv @ betax pj = self.subproj[i]#FIXME ? return pj.invtransform(*betap) class SnyderEASym(BarycentricMapProjection): def __init__(self, ctrlpts): """Parameters: ctrlpts: 2xn Numpy array, latitude and longitude of each control point """ super().__init__(ctrlpts) subproj = [] for i in range(3): cp = np.roll(ctrlpts, i, axis=1) pj = SnyderEA(cp) subproj.append(pj) self.subproj = subproj def transform(self, lon, lat): subproj = self.subproj for i in range(3): pj = subproj[i] b = np.roll(pj.transform(lon, lat), -i, axis=0) try: beta += b except NameError: beta = b return beta/3 def invtransform(self, *args, **kwargs): return NotImplemented def schwarz_fp(alpha, beta, gam): """Parameters of the Schwarz triangle map. Args: alpha, beta, gamma: Equal to pi times an angle of the triangle. Returns: s1: Value of the Schwarz triangle map at z=1. sinf: Value of the Schwarz triangle map at z=infinity. scale: Scale factor for spherical triangles. Will be zero or undefined if alpha + beta + gamma <= 1. """ a = (1 - alpha - beta - gam)/2 b = (1 - alpha + beta - gam)/2 c = 1 - alpha palpha = np.pi*alpha pbeta = np.pi*beta pgam = np.pi*gam gfact = gamma(2-c)/(gamma(1-a)*gamma(c)) s1 = gamma(c-a)*gamma(c-b)/gamma(1-b)*gfact sinf = np.exp(1j*palpha)*gamma(b)*gamma(c-a)*gfact/gamma(b-c+1) scale = sqrt(abs((np.cos(palpha+pbeta)+np.cos(pgam))/ (np.cos(palpha-pbeta)+np.cos(pgam)))) return s1, sinf, scale def c2c_mobius_finite(z,zi,wi): """Mobius transformation defined by mapping the points in zi to the points in wi.""" ones = np.ones(zi.shape) a = np.linalg.det(np.stack([zi*wi,wi,ones])) b = np.linalg.det(np.stack([zi*wi,zi,wi])) c = np.linalg.det(np.stack([zi,wi,ones])) d = np.linalg.det(np.stack([zi*wi,zi,ones])) return (a*z+b)/(c*z+d) def c2c_mobius_01inf(z, z0=0, z1=1, zinf=1j ): """Mobius transformation defined by mapping 3 points to 0, 1, infinity""" if ~np.isfinite(zinf): return (z-z0)/(z1-z0) elif ~np.isfinite(z1): return (z-z0)/(z-zinf) elif ~np.isfinite(z0): return (z1-zinf)/(z-zinf) else: return (z-z0)*(z1-zinf)/((z-zinf)*(z1-z0)) class ConformalTri(CtrlPtsProjection): nctrlpts = 3 def __init__(self, ctrlpts, tgtpts, geod=_unitsphgeod): super().__init__(ctrlpts, geod=geod) self.tgtpts = float2d_to_complex(tgtpts.T).squeeze() actrlpts = ctrlpts basei = 0 basept = actrlpts[:, basei] crsst = {'proj': 'stere', 'lon_0': basept[0], 'lat_0': basept[1]} world_crs = {'init': 'epsg:4326'} stert = pyproj.transformer.Transformer.from_crs(world_crs, crs_to=crsst) sterti = pyproj.transformer.Transformer.from_crs(crsst, crs_to=world_crs) self.stert = stert self.sterti = sterti self.ctrl_s1, self.ctrl_sinf, self.ctrl_scale = schwarz_fp(*self.ctrl_angles/180) alpha, beta, gam = self.ctrl_angles/180 self.a = (1 - alpha - beta - gam)/2 self.b = (1 - alpha + beta - gam)/2 self.c = 1 - alpha self.ap = (1 + alpha - beta - gam)/2#a - c + 1 self.bp = (1 + alpha + beta - gam)/2#b - c + 1 self.cp = 1 + alpha#2-c tgt_sides = abs(
np.roll(self.tgtpts, 1)
numpy.roll
from scvelo.plotting.docs import doc_scatter, doc_params from scvelo.plotting.utils import * from inspect import signature import matplotlib.pyplot as pl import numpy as np import pandas as pd @doc_params(scatter=doc_scatter) def scatter( adata=None, basis=None, x=None, y=None, vkey=None, color=None, use_raw=None, layer=None, color_map=None, colorbar=None, palette=None, size=None, alpha=None, linewidth=None, linecolor=None, perc=None, groups=None, sort_order=True, components=None, projection=None, legend_loc=None, legend_loc_lines=None, legend_fontsize=None, legend_fontweight=None, legend_fontoutline=None, xlabel=None, ylabel=None, title=None, fontsize=None, figsize=None, xlim=None, ylim=None, add_density=None, add_assignments=None, add_linfit=None, add_polyfit=None, add_rug=None, add_text=None, add_text_pos=None, add_quiver=None, quiver_size=None, add_outline=None, outline_width=None, outline_color=None, n_convolve=None, smooth=None, rescale_color=None, color_gradients=None, dpi=None, frameon=None, zorder=None, ncols=None, nrows=None, wspace=None, hspace=None, show=None, save=None, ax=None, **kwargs, ): """\ Scatter plot along observations or variables axes. Arguments --------- adata: :class:`~anndata.AnnData` Annotated data matrix. x: `str`, `np.ndarray` or `None` (default: `None`) x coordinate y: `str`, `np.ndarray` or `None` (default: `None`) y coordinate {scatter} Returns ------- If `show==False` a `matplotlib.Axis` """ if adata is None and (x is not None and y is not None): adata = AnnData(np.stack([x, y]).T) # restore old conventions add_assignments = kwargs.pop("show_assignments", add_assignments) add_linfit = kwargs.pop("show_linear_fit", add_linfit) add_polyfit = kwargs.pop("show_polyfit", add_polyfit) add_density = kwargs.pop("show_density", add_density) add_rug = kwargs.pop("rug", add_rug) basis = kwargs.pop("var_names", basis) # keys for figures (fkeys) and multiple plots (mkeys) fkeys = ["adata", "show", "save", "groups", "ncols", "nrows", "wspace", "hspace"] fkeys += ["ax", "kwargs"] mkeys = ["color", "layer", "basis", "components", "x", "y", "xlabel", "ylabel"] mkeys += ["title", "color_map", "add_text"] scatter_kwargs = {"show": False, "save": False} for key in signature(scatter).parameters: if key not in mkeys + fkeys: scatter_kwargs[key] = eval(key) mkwargs = {} for key in mkeys: # mkwargs[key] = key for key in mkeys mkwargs[key] = eval("{0}[0] if is_list({0}) else {0}".format(key)) # use c & color and cmap & color_map interchangeably, # and plot each group separately if groups is 'all' if "c" in kwargs: color = kwargs.pop("c") if "cmap" in kwargs: color_map = kwargs.pop("cmap") if "rasterized" not in kwargs: kwargs["rasterized"] = settings._vector_friendly if isinstance(color_map, (list, tuple)) and all( [is_color_like(c) or c == "transparent" for c in color_map] ): color_map = rgb_custom_colormap(colors=color_map) if isinstance(groups, str) and groups == "all": if color is None: color = default_color(adata) if is_categorical(adata, color): vc = adata.obs[color].value_counts() groups = [[c] for c in vc[vc > 0].index] if isinstance(add_text, (list, tuple, np.ndarray, np.record)): add_text = list(np.array(add_text, dtype=str)) # create list of each mkey and check if all bases are valid. color, layer, components = to_list(color), to_list(layer), to_list(components) x, y, basis = to_list(x), to_list(y), to_valid_bases_list(adata, basis) # get multikey (with more than one element) multikeys = eval(f"[{','.join(mkeys)}]") if is_list_of_list(groups): multikeys.append(groups) key_lengths = np.array([len(key) if is_list(key) else 1 for key in multikeys]) multikey = ( multikeys[np.where(key_lengths > 1)[0][0]] if np.max(key_lengths) > 1 else None ) # gridspec frame for plotting multiple keys (mkeys: list or tuple) if multikey is not None: if np.sum(key_lengths > 1) == 1 and is_list_of_str(multikey): multikey = unique(multikey) # take unique set if no more than one multikey if len(multikey) > 20: raise ValueError("Please restrict the passed list to max 20 elements.") if ax is not None: logg.warn("Cannot specify `ax` when plotting multiple panels.") if is_list(title): title *= int(np.ceil(len(multikey) / len(title))) if nrows is None: ncols = len(multikey) if ncols is None else min(len(multikey), ncols) nrows = int(np.ceil(len(multikey) / ncols)) else: ncols = int(np.ceil(len(multikey) / nrows)) if not frameon: lloc, llines = "legend_loc", "legend_loc_lines" if lloc in scatter_kwargs and scatter_kwargs[lloc] is None: scatter_kwargs[lloc] = "none" if llines in scatter_kwargs and scatter_kwargs[llines] is None: scatter_kwargs[llines] = "none" grid_figsize, dpi = get_figure_params(figsize, dpi, ncols) grid_figsize = (grid_figsize[0] * ncols, grid_figsize[1] * nrows) fig = pl.figure(None, grid_figsize, dpi=dpi) hspace = 0.3 if hspace is None else hspace gspec = pl.GridSpec(nrows, ncols, fig, hspace=hspace, wspace=wspace) ax = [] for i, gs in enumerate(gspec): if i < len(multikey): g = groups[i * (len(groups) > i)] if is_list_of_list(groups) else groups multi_kwargs = {"groups": g} for key in mkeys: # multi_kwargs[key] = key[i] if is multikey else key multi_kwargs[key] = eval( "{0}[i * (len({0}) > i)] if is_list({0}) else {0}".format(key) ) ax.append( scatter( adata, ax=pl.subplot(gs), **multi_kwargs, **scatter_kwargs, **kwargs, ) ) if not frameon and isinstance(ylabel, str): set_label(xlabel, ylabel, fontsize, ax=ax[0], fontweight="bold") savefig_or_show(dpi=dpi, save=save, show=show) if show is False: return ax else: # make sure that there are no more lists, e.g. ['clusters'] becomes 'clusters' color_map = to_val(color_map) color, layer, basis = to_val(color), to_val(layer), to_val(basis) x, y, components = to_val(x), to_val(y), to_val(components) xlabel, ylabel, title = to_val(xlabel), to_val(ylabel), to_val(title) # multiple plots within one ax for comma-separated y or layers (string). if any([isinstance(key, str) and "," in key for key in [y, layer]]): # comma split y, layer, color = [ [k.strip() for k in key.split(",")] if isinstance(key, str) and "," in key else to_list(key) for key in [y, layer, color] ] multikey = y if len(y) > 1 else layer if len(layer) > 1 else None if multikey is not None: for i, mi in enumerate(multikey): ax = scatter( adata, x=x, y=y[i * (len(y) > i)], color=color[i * (len(color) > i)], layer=layer[i * (len(layer) > i)], basis=basis, components=components, groups=groups, xlabel=xlabel, ylabel="expression" if ylabel is None else ylabel, color_map=color_map, title=y[i * (len(y) > i)] if title is None else title, ax=ax, **scatter_kwargs, ) if legend_loc is None: legend_loc = "best" if legend_loc and legend_loc != "none": multikey = [key.replace("Ms", "spliced") for key in multikey] multikey = [key.replace("Mu", "unspliced") for key in multikey] ax.legend(multikey, fontsize=legend_fontsize, loc=legend_loc) savefig_or_show(dpi=dpi, save=save, show=show) if show is False: return ax elif color_gradients is not None and color_gradients is not False: vals, names, color, scatter_kwargs = gets_vals_from_color_gradients( adata, color, **scatter_kwargs ) cols = zip(adata.obs[color].cat.categories, adata.uns[f"{color}_colors"]) c_colors = {cat: col for (cat, col) in cols} mkwargs.pop("color") ax = scatter( adata, color="grey", ax=ax, **mkwargs, **get_kwargs(scatter_kwargs, {"alpha": 0.05}), ) # background ax = scatter( adata, color=color, ax=ax, **mkwargs, **get_kwargs(scatter_kwargs, {"s": 0}), ) # set legend sorted_idx = np.argsort(vals, 1)[:, ::-1][:, :2] for id0 in range(len(names)): for id1 in range(id0 + 1, len(names)): cmap = rgb_custom_colormap( [c_colors[names[id0]], "white", c_colors[names[id1]]], alpha=[1, 0, 1], ) mkwargs.update({"color_map": cmap}) c_vals = np.array(vals[:, id1] - vals[:, id0]).flatten() c_bool = np.array([id0 in c and id1 in c for c in sorted_idx]) if np.sum(c_bool) > 1: _adata = adata[c_bool] if np.sum(~c_bool) > 0 else adata mkwargs["color"] = c_vals[c_bool] ax = scatter( _adata, ax=ax, **mkwargs, **scatter_kwargs, **kwargs ) savefig_or_show(dpi=dpi, save=save, show=show) if show is False: return ax # actual scatter plot else: # set color, color_map, edgecolor, basis, linewidth, frameon, use_raw if color is None: color = default_color(adata, add_outline) if "cmap" not in kwargs: kwargs["cmap"] = ( default_color_map(adata, color) if color_map is None else color_map ) if "s" not in kwargs: kwargs["s"] = default_size(adata) if size is None else size if "edgecolor" not in kwargs: kwargs["edgecolor"] = "none" is_embedding = ((x is None) | (y is None)) and basis not in adata.var_names if basis is None and is_embedding: basis = default_basis(adata) if linewidth is None: linewidth = 1 if linecolor is None: linecolor = "k" if frameon is None: frameon = True if not is_embedding else settings._frameon if isinstance(groups, str): groups = [groups] if use_raw is None and basis not in adata.var_names: use_raw = layer is None and adata.raw is not None if projection == "3d": from mpl_toolkits.mplot3d import Axes3D ax, show = get_ax(ax, show, figsize, dpi, projection) # phase portrait: get x and y from .layers (e.g. spliced vs. unspliced) # NOTE(Haotian): true phase portrait plot here if basis in adata.var_names: if title is None: title = basis if x is None and y is None: x = default_xkey(adata, use_raw=use_raw) y = default_ykey(adata, use_raw=use_raw) elif x is None or y is None: raise ValueError("Both x and y have to specified.") if isinstance(x, str) and isinstance(y, str): layers_keys = list(adata.layers.keys()) + ["X"] if any([key not in layers_keys for key in [x, y]]): raise ValueError("Could not find x or y in layers.") if xlabel is None: xlabel = x if ylabel is None: ylabel = y # NOTE(Haotian): the data to plot is retrieved here x = get_obs_vector(adata, basis, layer=x, use_raw=use_raw) y = get_obs_vector(adata, basis, layer=y, use_raw=use_raw) if legend_loc is None: legend_loc = "none" if use_raw and perc is not None: ub = np.percentile(x, 99.9 if not isinstance(perc, int) else perc) ax.set_xlim(right=ub * 1.05) ub = np.percentile(y, 99.9 if not isinstance(perc, int) else perc) ax.set_ylim(top=ub * 1.05) # velocity model fits (full dynamics and steady-state ratios) if any(["gamma" in key or "alpha" in key for key in adata.var.keys()]): plot_velocity_fits( adata, basis, vkey, use_raw, linewidth, linecolor, legend_loc_lines, legend_fontsize, add_assignments, ax=ax, ) # embedding: set x and y to embedding coordinates elif is_embedding: X_emb = adata.obsm[f"X_{basis}"][:, get_components(components, basis)] x, y = X_emb[:, 0], X_emb[:, 1] # todo: 3d plotting # z = X_emb[:, 2] if projection == "3d" and X_emb.shape[1] > 2 else None elif isinstance(x, str) and isinstance(y, str): var_names = ( adata.raw.var_names if use_raw and adata.raw is not None else adata.var_names ) if layer is None: layer = default_xkey(adata, use_raw=use_raw) x_keys = list(adata.obs.keys()) + list(adata.layers.keys()) is_timeseries = y in var_names and x in x_keys if xlabel is None: xlabel = x if ylabel is None: ylabel = layer if is_timeseries else y if title is None: title = y if is_timeseries else color if legend_loc is None: legend_loc = "none" # gene trend: x and y as gene along obs/layers (e.g. pseudotime) if is_timeseries: x = ( adata.obs[x] if x in adata.obs.keys() else adata.obs_vector(y, layer=x) ) y = get_obs_vector(adata, basis=y, layer=layer, use_raw=use_raw) # get x and y from var_names, var or obs else: if x in var_names and y in var_names: if layer in adata.layers.keys(): x = adata.obs_vector(x, layer=layer) y = adata.obs_vector(y, layer=layer) else: data = adata.raw if use_raw else adata x, y = data.obs_vector(x), data.obs_vector(y) elif x in adata.var.keys() and y in adata.var.keys(): x, y = adata.var[x], adata.var[y] elif x in adata.obs.keys() and y in adata.obs.keys(): x, y = adata.obs[x], adata.obs[y] elif np.any( [var_key in x or var_key in y for var_key in adata.var.keys()] ): var_keys = [ k for k in adata.var.keys() if not isinstance(adata.var[k][0], str) ] var = adata.var[var_keys] x = var.astype(np.float32).eval(x) y = var.astype(np.float32).eval(y) elif np.any( [obs_key in x or obs_key in y for obs_key in adata.obs.keys()] ): obs_keys = [ k for k in adata.obs.keys() if not isinstance(adata.obs[k][0], str) ] obs = adata.obs[obs_keys] x = obs.astype(np.float32).eval(x) y = obs.astype(np.float32).eval(y) else: raise ValueError( "x or y is invalid! pass valid observation or a gene name" ) x, y = make_dense(x).flatten(), make_dense(y).flatten() # convolve along x axes (e.g. pseudotime) if n_convolve is not None: vec_conv =
np.ones(n_convolve)
numpy.ones
import numpy as np from sklearn.pipeline import Pipeline from models.model import Model, ArrayLike from preprocess.report_data import ReportData from preprocess.report_data_d import ColName from training.description_classification.utils import load_svm, SVMPipeline class SVMDescriptionClf(Model[SVMPipeline]): """Complement Naive Bayes model for description classification.""" _model: Pipeline def __init__(self): self._model = load_svm() def predict(self, X: ArrayLike) -> np.ndarray: """Predict the primary incident type of the given descriptions. Params: X: 1D array-like of descriptions to classify Returns: 1D array of `IncidentType` predictions for the given descriptions. """ predictions = self._model.predict(X) return
np.array([prediction for prediction in predictions])
numpy.array
""" .. autoclass:: Peeler :members: """ import os import json from collections import OrderedDict, namedtuple import time import pdb import numpy as np import scipy.signal from scipy.spatial.distance import minkowski, chebyshev import dill as pickle from .catalogueconstructor import CatalogueConstructor from . import signalpreprocessor from .peakdetector import detect_peaks_in_chunk from .tools import make_color_dict from tqdm import tqdm from . import pythran_tools if hasattr(pythran_tools, '__pythran__'): HAVE_PYTHRAN = True else: HAVE_PYTHRAN = False from .cltools import HAVE_PYOPENCL, OpenCL_Helper if HAVE_PYOPENCL: import pyopencl mf = pyopencl.mem_flags import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import seaborn as sns _dtype_spike = [('index', 'int64'), ('cluster_label', 'int64'), ('jitter', 'float64'), ('feature_distance', 'float64')] Spike = namedtuple('Spike', ('index', 'cluster_label', 'jitter', 'feature_distance')) from .labelcodes import (LABEL_TRASH, LABEL_UNCLASSIFIED, LABEL_ALIEN) LABEL_LEFT_LIMIT = -11 LABEL_RIGHT_LIMIT = -12 LABEL_MAXIMUM_SHIFT = -13 # good label are >=0 #~ maximum_jitter_shift = 10 maximum_jitter_shift = 4 #~ maximum_jitter_shift = 1 class Peeler(OpenCL_Helper): """ The peeler is core of spike sorting itself. It basically do a *template matching* on a signals. This class nedd a *catalogue* constructed by :class:`CatalogueConstructor`. Then the compting is applied chunk chunk on the raw signal itself. So this class is the same for both offline/online computing. At each chunk, the algo is basically this one: 1. apply the processing chain (filter, normamlize, ....) 2. Detect peaks 3. Try to classify peak and detect the *jitter* 4. With labeled peak create a prediction for the chunk 5. Substract the prediction from the processed signals. 6. Go back to **2** until there is no peak or only peaks that can't be labeled. 7. return labeld spikes from this or previous chunk and the processed signals (for display or recoding) The main difficulty in the implemtation is to deal with edge because spikes waveforms can spread out in between 2 chunk. Note that the global latency depend on this é paramters: * lostfront_chunksize * chunksize """ def __init__(self, dataio): #for online dataio is None self.dataio = dataio def __repr__(self): t = "Peeler <id: {}> \n workdir: {}\n".format(id(self), self.dataio.dirname) return t def change_params( self, catalogue=None, chunksize=1024, internal_dtype='float32', use_sparse_template=False, sparse_threshold_mad=1.5, shape_distance_threshold=2, shape_boundary_threshold=4, energy_reduction_threshold=0, confidence_threshold=0.6, n_max_passes=3, debugging=False, use_opencl_with_sparse=False, use_pythran_with_sparse=False, cl_platform_index=None, cl_device_index=None, ): """ Set parameters for the Peeler. Parameters ---------- catalogue: the catalogue (a dict) The catalogue made by CatalogueConstructor. chunksize: int (1024 by default) the size of chunk for processing. internal_dtype: 'float32' or 'float64' dtype of internal processing. float32 is OK. float64 is totally useless. use_sparse_template: bool (dafult False) For very high channel count, centroids from catalogue can be sparcifyed. The speedup a lot the process but the sparse_threshold_mad must be set carrefully and compared with use_sparse_template=False. For low channel count this is useless. sparse_threshold_mad: float (1.5 by default) The threshold level. Under this value if all sample on one channel for one centroid is considred as NaN use_opencl_with_sparse: bool When use_sparse_template is True, you can use this to accelerate the labelling of each spike. Usefull for high channel count. use_pythran_with_sparse: bool experimental same as use_opencl_with_sparse but with pythran """ assert catalogue is not None self.catalogue = catalogue self.chunksize = chunksize self.internal_dtype = internal_dtype self.use_sparse_template = use_sparse_template self.sparse_threshold_mad = sparse_threshold_mad self.use_opencl_with_sparse = use_opencl_with_sparse self.use_pythran_with_sparse = use_pythran_with_sparse # RD 03/20/2019 self.distance_order = 1 if shape_distance_threshold is None: self.shape_distance_threshold = 5 else: self.shape_distance_threshold = shape_distance_threshold # RD 05/15/2019 if shape_boundary_threshold is None: self.shape_boundary_threshold = 10 else: self.shape_boundary_threshold = shape_boundary_threshold if energy_reduction_threshold is None: self.energy_reduction_threshold = 0 else: self.energy_reduction_threshold = energy_reduction_threshold # RD 07/25/2019 self.n_max_passes = n_max_passes # RD 01/06/2021 ccFolderName = os.path.join( self.dataio.dirname, 'channel_group_{}'.format(catalogue['chan_grp']), 'catalogue_constructor') projectorPath = os.path.join( ccFolderName, 'projector.pickle') # TODO: supervised projector supervisedProjectorPath = os.path.join( ccFolderName, 'supervised_projector.pickle') if os.path.exists(supervisedProjectorPath): with open(supervisedProjectorPath, 'rb') as f: self.projector = pickle.load(f)['projector'] elif os.path.exists(projectorPath): with open(projectorPath, 'rb') as f: self.projector = pickle.load(f)['projector'] if 'GlobalPUMAP' in self.projector.__repr__(): from umap.parametric_umap import ParametricUMAP, load_ParametricUMAP import tensorflow as tf tf.keras.backend.clear_session() if os.path.exists(supervisedProjectorPath): tfUmap = load_ParametricUMAP( os.path.join(ccFolderName, 'supervised-umap'), useConfigAndWeights=True) else: tfUmap = load_ParametricUMAP( os.path.join(ccFolderName, 'umap'), useConfigAndWeights=True) self.projector.umap = tfUmap classifierPath = os.path.join( ccFolderName, 'classifier.pickle') if os.path.exists(classifierPath): with open(classifierPath, 'rb') as f: self.classifier = pickle.load(f)['classifier'] if confidence_threshold is not None: self.confidence_threshold = confidence_threshold else: self.confidence_threshold = 0 else: self.classifier = None self.confidence_threshold = 0 # evr = self.projector.explained_variance_ratio_ # cum_evr = np.cumsum(evr) # self.variance_cutoff = 0.75 # self.feature_mask = cum_evr < self.variance_cutoff # self.feature_mask[0] = True # self.feature_window = None # self.feature_window = evr[self.feature_mask] / np.sum(evr[self.feature_mask]) self.feature_mask = np.ones((self.projector.n_components), dtype=np.bool) self.feature_window = np.ones((self.feature_mask.sum())) / self.feature_mask.sum() ##### window1 = scipy.signal.triang(2 * int(-self.catalogue['n_left']) + 1) window2 = scipy.signal.triang(2 * int(self.catalogue['n_right']) + 1) window = np.concatenate( ( window1[:int(-self.catalogue['n_left'])], window2[int(self.catalogue['n_right']) + 1:]), axis=-1) discountEdges = False if discountEdges: # discount edges a lot window[window < 0.5] = 0.1 # normalize to sum 1, so that the distance is an average # deviation self.distance_window = (window) / np.sum(window) # create a boundary around the mean prediction # self.boundary_window = window self.debugging = debugging nClusters = catalogue['centers0'].shape[0] self.catalogue.update( {'template_distances': [[] for i in range(nClusters)]}) self.catalogue.update( {'energy_reductions': [[] for i in range(nClusters)]}) self.catalogue.update( {'feat_distances': [[] for i in range(nClusters)]}) self.catalogue.update( {'resid_energies': [[] for i in range(nClusters)]}) self.catalogue.update( {'classifier_confidences': [[] for i in range(nClusters)]}) self.catalogue.update( {'tallyPlots': 0}) # end RD Mods # Some check if self.use_opencl_with_sparse or self.use_pythran_with_sparse: assert self.use_sparse_template, 'For that option you must use sparse template' if self.use_sparse_template: assert self.use_opencl_with_sparse or self.use_pythran_with_sparse, 'For that option you must use OpenCL or Pytran' if self.use_opencl_with_sparse: assert HAVE_PYOPENCL, 'OpenCL is not available' if self.use_pythran_with_sparse: assert HAVE_PYTHRAN, 'Pythran is not available' self.colors = make_color_dict(self.catalogue['clusters']) # precompute some value for jitter estimation n = self.catalogue['cluster_labels'].size self.catalogue['wf1_norm2'] = np.zeros(n) self.catalogue['wf2_norm2'] = np.zeros(n) self.catalogue['wf1_dot_wf2'] = np.zeros(n) for i, k in enumerate(self.catalogue['cluster_labels']): chan = self.catalogue['max_on_channel'][i] wf0 = self.catalogue['centers0'][i,: , chan] wf1 = self.catalogue['centers1'][i,: , chan] wf2 = self.catalogue['centers2'][i,: , chan] self.catalogue['wf1_norm2'][i] = wf1.dot(wf1) self.catalogue['wf2_norm2'][i] = wf2.dot(wf2) self.catalogue['wf1_dot_wf2'][i] = wf1.dot(wf2) if self.use_sparse_template: centers = wf0 = self.catalogue['centers0'] #~ print(centers.shape) mask = np.any(np.abs(centers)>sparse_threshold_mad, axis=1) #~ print(mask.shape) #~ print(mask) print('average sparseness for templates', np.sum(mask)/mask.size) self.catalogue['sparse_mask'] = mask #~ for i in range(centers.shape[0]): #~ fig, ax = plt.subplots() #~ center = centers[i,:,:].copy() #~ center_sparse = center.copy() #~ center_sparse[:, ~mask[i, :]] = 0. #~ ax.plot(center.T.flatten(), color='g') #~ ax.plot(center_sparse.T.flatten(), color='r', ls='--') #~ ax.axhline(sparse_threshold_mad) #~ ax.axhline(-sparse_threshold_mad) #~ plt.show() if self.use_opencl_with_sparse: OpenCL_Helper.initialize_opencl(self, cl_platform_index=cl_platform_index, cl_device_index=cl_device_index) #~ self.ctx = pyopencl.create_some_context(interactive=False) #~ self.queue = pyopencl.CommandQueue(self.ctx) centers = self.catalogue['centers0'] nb_channel = centers.shape[2] peak_width = centers.shape[1] nb_cluster = centers.shape[0] kernel = kernel_opencl%{'nb_channel': nb_channel,'peak_width':peak_width, 'total':peak_width*nb_channel,'nb_cluster' : nb_cluster} prg = pyopencl.Program(self.ctx, kernel) opencl_prg = prg.build(options='-cl-mad-enable') self.kern_waveform_distance = getattr(opencl_prg, 'waveform_distance') wf_shape = centers.shape[1:] one_waveform = np.zeros(wf_shape, dtype='float32') self.one_waveform_cl = pyopencl.Buffer(self.ctx, mf.READ_WRITE| mf.COPY_HOST_PTR, hostbuf=one_waveform) self.catalogue_center_cl = pyopencl.Buffer(self.ctx, mf.READ_WRITE| mf.COPY_HOST_PTR, hostbuf=centers) self.waveform_distance = np.zeros((nb_cluster), dtype='float32') self.waveform_distance_cl = pyopencl.Buffer(self.ctx, mf.READ_WRITE| mf.COPY_HOST_PTR, hostbuf=self.waveform_distance) #~ mask[:] = 0 self.mask_cl = pyopencl.Buffer(self.ctx, mf.READ_WRITE| mf.COPY_HOST_PTR, hostbuf=mask.astype('u1')) rms_waveform_channel = np.zeros(nb_channel, dtype='float32') self.rms_waveform_channel_cl = pyopencl.Buffer(self.ctx, mf.READ_WRITE| mf.COPY_HOST_PTR, hostbuf=rms_waveform_channel) self.cl_global_size = (centers.shape[0], centers.shape[2]) #~ self.cl_local_size = None self.cl_local_size = (centers.shape[0], 1) # faster a GPU because of memory access #~ self.cl_local_size = (1, centers.shape[2]) def process_one_chunk(self, pos, sigs_chunk): #~ print('*'*5) #~ print('chunksize', self.chunksize, '=', self.chunksize/self.sample_rate*1000, 'ms') #~ t1 = time.perf_counter() abs_head_index, preprocessed_chunk = self.signalpreprocessor.process_data(pos, sigs_chunk) #~ t2 = time.perf_counter() #~ print('process_data', (t2-t1)*1000) #note abs_head_index is smaller than pos because prepcorcessed chunk # is late because of local filfilt in signalpreprocessor #shift rsiruals buffer and put the new one on right side #~ t1 = time.perf_counter() fifo_roll_size = self.fifo_residuals.shape[0]-preprocessed_chunk.shape[0] if fifo_roll_size>0 and fifo_roll_size!=self.fifo_residuals.shape[0]: self.fifo_residuals[:fifo_roll_size,:] = self.fifo_residuals[-fifo_roll_size:,:] self.fifo_residuals[fifo_roll_size:,:] = preprocessed_chunk #~ t2 = time.perf_counter() #~ print('fifo move', (t2-t1)*1000.) # relation between inside chunk index and abs index shift = abs_head_index - self.fifo_residuals.shape[0] # TODO remove from peak the very begining of the signal because of border filtering effects #~ t1 = time.perf_counter() good_spikes = [] all_ready_tested = [] passes_counter = 0 while True: #detect peaks # t3 = time.perf_counter() local_peaks = detect_peaks_in_chunk(self.fifo_residuals, self.n_span, self.relative_threshold, self.peak_sign) # t4 = time.perf_counter() #~ print('self.fifo_residuals median', np.median(self.fifo_residuals, axis=0)) #~ print(' detect_peaks_in_chunk', (t4-t3)*1000.) if len(all_ready_tested)>0: local_peaks_to_check = local_peaks[~np.in1d(local_peaks, all_ready_tested)] else: local_peaks_to_check = local_peaks n_ok = 0 prints_counter = 0 for i, local_peak in enumerate(local_peaks_to_check): #~ print(' local_peak', local_peak, 'i', i) #~ t3 = time.perf_counter() pctDone = np.floor(100 * i/local_peaks_to_check.shape[0]) if pctDone >= prints_counter: print(' Peeler, pass {}: {} pct. done...'.format(passes_counter+1, pctDone)) prints_counter += 20 spike = self.classify_and_align_one_spike(local_peak, self.fifo_residuals, self.catalogue) #~ t4 = time.perf_counter() #~ print(' classify_and_align_one_spike', (t4-t3)*1000.) if spike.cluster_label>=0: #~ t3 = time.perf_counter() #~ print(' >>spike.index', spike.index, spike.cluster_label, 'abs index', spike.index+shift) spikes = np.array([spike], dtype=_dtype_spike) prediction = make_prediction_signals(spikes, self.fifo_residuals.dtype, self.fifo_residuals.shape, self.catalogue, safe=False) self.fifo_residuals -= prediction spikes['index'] += shift good_spikes.append(spikes) if passes_counter < self.n_max_passes - 1: n_ok += 1 #~ t4 = time.perf_counter() #~ print(' make_prediction_signals and sub', (t4-t3)*1000.) #~ print(' all_ready_tested before', all_ready_tested) all_ready_tested = [ind for ind in all_ready_tested if np.abs(spike.index-ind)>self.peak_width] #~ print(' all_ready_tested new deal', all_ready_tested) else: all_ready_tested.append(local_peak) # passes_counter += 1 # if n_ok==0: # no peak can be labeled # reserve bad spikes on the right limit for next time local_peaks = local_peaks[local_peaks<(self.chunksize+self.n_span)] bad_spikes = np.zeros(local_peaks.shape[0], dtype=_dtype_spike) bad_spikes['index'] = local_peaks + shift bad_spikes['cluster_label'] = LABEL_UNCLASSIFIED break #~ t2 = time.perf_counter() #~ print('LOOP classify_and_align_one_spike', (t2-t1)*1000) #concatenate, sort and count # here the trick is to keep spikes at the right border # and keep then until the next loop this avoid unordered spike if len(good_spikes)>0: good_spikes = np.concatenate(good_spikes) near_border = (good_spikes['index'] - shift)>=(self.chunksize+self.n_span) near_border_good_spikes = good_spikes[near_border].copy() good_spikes = good_spikes[~near_border] all_spikes = np.concatenate([good_spikes] + [bad_spikes] + self.near_border_good_spikes) self.near_border_good_spikes = [near_border_good_spikes] # for next chunk else: all_spikes = np.concatenate([bad_spikes] + self.near_border_good_spikes) self.near_border_good_spikes = [] # all_spikes = all_spikes[np.argsort(all_spikes['index'])] all_spikes = all_spikes.take(np.argsort(all_spikes['index'])) self.total_spike += all_spikes.size return abs_head_index, preprocessed_chunk, self.total_spike, all_spikes def _initialize_before_each_segment(self, sample_rate=None, nb_channel=None, source_dtype=None): self.nb_channel = nb_channel self.sample_rate = sample_rate self.source_dtype = source_dtype self.signalpreprocessor_engine = self.catalogue['signal_preprocessor_params']['signalpreprocessor_engine'] #~ print('self.signalpreprocessor_engine', self.signalpreprocessor_engine) SignalPreprocessor_class = signalpreprocessor.signalpreprocessor_engines[self.signalpreprocessor_engine] #~ SignalPreprocessor_class = signalpreprocessor.signalpreprocessor_engines['numpy'] self.signalpreprocessor = SignalPreprocessor_class(sample_rate, nb_channel, self.chunksize, source_dtype) p = dict(self.catalogue['signal_preprocessor_params']) p.pop('signalpreprocessor_engine') p['normalize'] = True p['signals_medians'] = self.catalogue['signals_medians'] p['signals_mads'] = self.catalogue['signals_mads'] self.signalpreprocessor.change_params(**p) assert self.chunksize>self.signalpreprocessor.lostfront_chunksize, 'lostfront_chunksize ({}) is greater than chunksize ({})!'.format(self.signalpreprocessor.lostfront_chunksize, self.chunksize) self.internal_dtype = self.signalpreprocessor.output_dtype self.peak_sign = self.catalogue['peak_detector_params']['peak_sign'] self.relative_threshold = self.catalogue['peak_detector_params']['relative_threshold'] peak_span = self.catalogue['peak_detector_params']['peak_span'] self.n_span = int(sample_rate*peak_span)//2 self.n_span = max(1, self.n_span) self.peak_width = self.catalogue['peak_width'] self.n_side = self.catalogue['peak_width'] + maximum_jitter_shift + self.n_span + 1 assert self.chunksize > (self.n_side+1), 'chunksize is too small because of n_size' self.alien_value_threshold = self.catalogue['clean_waveforms_params']['alien_value_threshold'] self.total_spike = 0 self.near_border_good_spikes = [] self.fifo_residuals = np.zeros((self.n_side+self.chunksize, nb_channel), dtype=self.internal_dtype) def initialize_online_loop(self, sample_rate=None, nb_channel=None, source_dtype=None): self._initialize_before_each_segment(sample_rate=sample_rate, nb_channel=nb_channel, source_dtype=source_dtype) def run_offline_loop_one_segment(self, seg_num=0, duration=None, progressbar=True): chan_grp = self.catalogue['chan_grp'] kargs = {} kargs['sample_rate'] = self.dataio.sample_rate kargs['nb_channel'] = self.dataio.nb_channel(chan_grp) kargs['source_dtype'] = self.dataio.source_dtype self._initialize_before_each_segment(**kargs) if duration is not None: length = int(duration*self.dataio.sample_rate) else: length = self.dataio.get_segment_length(seg_num) #~ length -= length%self.chunksize #initialize engines self.dataio.reset_processed_signals(seg_num=seg_num, chan_grp=chan_grp, dtype=self.internal_dtype) self.dataio.reset_spikes(seg_num=seg_num, chan_grp=chan_grp, dtype=_dtype_spike) iterator = self.dataio.iter_over_chunk( seg_num=seg_num, chan_grp=chan_grp, chunksize=self.chunksize, i_stop=length, signal_type='initial') if progressbar: iterator = tqdm(iterable=iterator, total=length//self.chunksize) for pos, sigs_chunk in iterator: if not progressbar: pctDone = np.floor(100 * pos/length) print('Peeler: on chunk {} of {} ({} pct.)'.format(pos//self.chunksize, length//self.chunksize, pctDone)) sig_index, preprocessed_chunk, total_spike, spikes = self.process_one_chunk(pos, sigs_chunk) if sig_index<=0: continue # save preprocessed_chunk to file self.dataio.set_signals_chunk(preprocessed_chunk, seg_num=seg_num, chan_grp=chan_grp, i_start=sig_index-preprocessed_chunk.shape[0], i_stop=sig_index, signal_type='processed') if spikes is not None and spikes.size>0: self.dataio.append_spikes(seg_num=seg_num, chan_grp=chan_grp, spikes=spikes) if len(self.near_border_good_spikes)>0: # deal with extra remaining spikes extra_spikes = self.near_border_good_spikes[0] extra_spikes = extra_spikes.take(np.argsort(extra_spikes['index'])) self.total_spike += extra_spikes.size if extra_spikes.size>0: self.dataio.append_spikes(seg_num=seg_num, chan_grp=chan_grp, spikes=extra_spikes) self.dataio.flush_processed_signals(seg_num=seg_num, chan_grp=chan_grp) self.dataio.flush_spikes(seg_num=seg_num, chan_grp=chan_grp) if self.debugging: sns.set_style('whitegrid') fig, ax = plt.subplots(1, 5) fig.set_size_inches(20, 4) chanTitle = 'Chan_grp {}'.format(self.catalogue['chan_grp']) # print(chanTitle) for idx, distList in enumerate(self.catalogue['template_distances']): try: theseDist = np.array(distList) this95 = ( np.nanmean(theseDist) + 2 * np.nanstd(theseDist)) summaryText = 'clus {}, 95% < {}, {} total'.format(idx, this95, len(theseDist)) sns.distplot( theseDist, ax=ax[0], label=summaryText, bins=np.arange(0, 5, 0.2)) ax[0].set_xlim([0, 5]) ax[0].set_xlabel('Weighted distance to template') ax[0].set_ylabel('Count (normalized)') ########## theseEn = np.array(self.catalogue['energy_reductions'][idx]) this95 = ( np.nanmean(theseEn) + 2 * np.nanstd(theseEn)) summaryText = 'clus {}, 95% < {}, {} total'.format(idx, this95, len(theseEn)) sns.distplot( theseEn, ax=ax[1], label=summaryText) # ax[1].set_xlim([0, 100]) # print(summaryText) ax[1].set_xlabel('energy reduction') ax[1].set_ylabel('Count (normalized)') ###################### theseFeat = np.array(self.catalogue['feat_distances'][idx]) this95 = ( np.nanmean(theseFeat) + 2 * np.nanstd(theseFeat)) summaryText = 'clus {}, 95% < {}, {} total'.format(idx, this95, len(theseFeat)) sns.distplot( theseFeat, ax=ax[2], label=summaryText, bins=np.arange(0, 5, 0.2) ) ax[2].set_xlim([0, 5]) print(summaryText) ax[2].set_xlabel('Feature distances from template') ax[2].set_ylabel('Count (normalized)') # ############## theseWfEns = np.array(self.catalogue['resid_energies'][idx]) this95 = ( np.nanmean(theseWfEns) + 2 * np.nanstd(theseWfEns)) summaryText = 'clus {}, 95% < {}, {} total'.format(idx, this95, len(theseWfEns)) sns.distplot( theseWfEns, ax=ax[3], label=summaryText, # bins=np.arange(0, 5, 0.2) ) # ax[2].set_xlim([0, 5]) ax[3].set_xlabel('Squared sum of residual waveform') ax[3].set_ylabel('Count (normalized)') ########### theseConfs = np.array(self.catalogue['classifier_confidences'][idx]) this95 = ( np.nanmean(theseConfs) + 2 * np.nanstd(theseConfs)) summaryText = 'clus {}, 95% < {}, {} total'.format(idx, this95, len(theseConfs)) sns.distplot( theseConfs, ax=ax[4], label=summaryText, # bins=np.arange(0, 5, 0.2) ) # ax[2].set_xlim([0, 5]) ax[4].set_xlabel('Classifier confidence values') ax[4].set_ylabel('Count (normalized)') except Exception: print('Error in peeler.run_offline_loop_one_segment( diagnostic plots') plt.legend() plt.title(chanTitle) histPNGName = os.path.join( self.dataio.dirname, 'templateHist_{}.png'.format(self.catalogue['chan_grp'])) plt.savefig(histPNGName) plt.close() def run_offline_all_segment(self, **kargs): #TODO remove chan_grp here because it is redundant from catalogue['chan_grp'] assert hasattr(self, 'catalogue'), 'So peeler.change_params first' #~ print('run_offline_all_segment', chan_grp) for seg_num in range(self.dataio.nb_segment): self.run_offline_loop_one_segment(seg_num=seg_num, **kargs) run = run_offline_all_segment def classify_and_align_one_spike(self, local_index, residual, catalogue): # local_index is index of peaks inside residual and not # the absolute peak_pos. So time scaling must be done outside. width = catalogue['peak_width'] n_left = catalogue['n_left'] #~ alien_value_threshold = catalogue['clean_waveforms_params']['alien_value_threshold'] #ind is the windows border!!!!! ind = local_index + n_left if ind+width+maximum_jitter_shift+1>=residual.shape[0]: # too near right limits no label label = LABEL_RIGHT_LIMIT jitter = 0 feature_distance = 0 elif ind<=maximum_jitter_shift: # too near left limits no label #~ print(' LABEL_LEFT_LIMIT', ind) label = LABEL_LEFT_LIMIT jitter = 0 feature_distance = 0 elif catalogue['centers0'].shape[0]==0: # empty catalogue label = LABEL_UNCLASSIFIED jitter = 0 feature_distance = 0 else: waveform = residual[ind:ind+width,:] if self.alien_value_threshold is not None and \ np.any(np.abs(waveform)>self.alien_value_threshold) : label = LABEL_ALIEN jitter = 0 feature_distance = 0 else: #~ t1 = time.perf_counter() label, jitter, feature_distance = self.estimate_one_jitter(waveform) #~ t2 = time.perf_counter() #~ print(' estimate_one_jitter', (t2-t1)*1000.) #~ jitter = -jitter #TODO debug jitter sign is positive on right and negative to left #~ print('label, jitter', label, jitter) # if more than one sample of jitter # then we try a peak shift # take it if better #TODO debug peak shift if np.abs(jitter) > 0.5 and label >=0: prev_ind, prev_label, prev_jitter = ind, label, jitter shift = -int(np.round(jitter)) #~ print('classify and align shift', shift) if np.abs(shift) >maximum_jitter_shift: #~ print(' LABEL_MAXIMUM_SHIFT avec shift') label = LABEL_MAXIMUM_SHIFT else: ind = ind + shift if ind+width>=residual.shape[0]: #~ print(' LABEL_RIGHT_LIMIT avec shift') label = LABEL_RIGHT_LIMIT elif ind<0: #~ print(' LABEL_LEFT_LIMIT avec shift') label = LABEL_LEFT_LIMIT #TODO: force to label anyway the spike if spike is at the left of FIFO else: waveform = residual[ind:ind+width,:] new_label, new_jitter, new_feature_distance = self.estimate_one_jitter(waveform) if np.abs(new_jitter)<np.abs(prev_jitter): #~ print('keep shift') label, jitter, feature_distance = new_label, new_jitter, new_feature_distance local_index += shift else: #~ print('no keep shift worst jitter') pass #security if with jitter the index is out if label>=0: local_pos = local_index - np.round(jitter).astype('int64') + n_left if local_pos<0: label = LABEL_LEFT_LIMIT elif (local_pos+width) >=residual.shape[0]: label = LABEL_RIGHT_LIMIT return Spike(local_index, label, jitter, feature_distance) def estimate_one_jitter(self, waveform): """ Estimate the jitter for one peak given its waveform Method proposed by <NAME> see: https://hal.archives-ouvertes.fr/hal-01111654v1 http://christophe-pouzat.github.io/LASCON2016/SpikeSortingTheElementaryWay.html for best reading (at least for me SG): * wf = the wafeform of the peak * k = cluster label of the peak * wf0, wf1, wf2 : center of catalogue[k] + first + second derivative * jitter0 : jitter estimation at order 0 * jitter1 : jitter estimation at order 1 * h0_norm2: error at order0 * h1_norm2: error at order1 * h2_norm2: error at order2 """ # This line is the slower part !!!!!! # cluster_idx = np.argmin(np.sum(np.sum((catalogue['centers0']-waveform)**2, axis = 1), axis = 1)) catalogue = self.catalogue if self.use_opencl_with_sparse: rms_waveform_channel = np.sum(waveform**2, axis=0).astype('float32') pyopencl.enqueue_copy(self.queue, self.one_waveform_cl, waveform) pyopencl.enqueue_copy(self.queue, self.rms_waveform_channel_cl, rms_waveform_channel) event = self.kern_waveform_distance(self.queue, self.cl_global_size, self.cl_local_size, self.one_waveform_cl, self.catalogue_center_cl, self.mask_cl, self.rms_waveform_channel_cl, self.waveform_distance_cl) pyopencl.enqueue_copy(self.queue, self.waveform_distance, self.waveform_distance_cl) cluster_idx = np.argmin(self.waveform_distance) elif self.use_pythran_with_sparse: s = pythran_tools.pythran_loop_sparse_dist(waveform, catalogue['centers0'], catalogue['sparse_mask']) cluster_idx =
np.argmin(s)
numpy.argmin
import argparse import os import logging import string import sys import json import numpy as np import pandas as pd import tensorflow as tf from .transform import ( sequence_embedding, normalize, denormalize, one_hot_encode_classes, split_train_test_set, ) from .model import ( conv1d_regression_model, conv1d_densenet_regression_model, compile_regression_model, MeanAbsoluteError, ) from .load import load_dataset from .utilities import SaveModelCallback, generate_random_run_id logger = logging.getLogger(__name__) def main(): logging.basicConfig(level=logging.INFO, format="%(asctime)s (%(levelname)s) %(message)s") parser = argparse.ArgumentParser() parser.add_argument('model_type', choices=['conv1d', 'conv1d_densenet']) parser.add_argument('--run_id', type=str, default=None) parser.add_argument('--resume', action='store_true') parser.add_argument('--learning_rate', type=float, default=1e-4) parser.add_argument('--batch_size', type=int, default=32) parser.add_argument('--n_epochs', type=int, default=10) args = parser.parse_args() model_type = args.model_type run_id = args.run_id resume = args.resume learning_rate = args.learning_rate batch_size = args.batch_size n_epochs = args.n_epochs if run_id is None and resume: logger.error('Specify --run_id to resume run') sys.exit(1) elif run_id is None and not resume: run_id = generate_random_run_id() logger.info(f'Run {run_id}') input_path = os.path.join(os.getcwd(), 'data/dataset_train.csv') output_folder = os.path.join(os.getcwd(), f'saved_models_regression/{run_id}/') model_path = os.path.join(output_folder, f'model.h5') metadata_path = os.path.join(output_folder, f'metadata.json') log_dir = os.path.join(os.getcwd(), f'summary_log/regression/{run_id}') for dir_path in [output_folder, log_dir]: try: os.makedirs(output_folder) except FileExistsError: pass alphabet = ['A', 'T', 'G', 'C'] if resume: with open(metadata_path, 'r') as f: metadata = json.load(f) elif model_type == 'conv1d': metadata = { 'run_id': run_id, 'alphabet': alphabet, 'model_type': model_type, 'n_epochs': 0, 'n_conv_1': 3, 'n_filters_1': 88, 'kernel_size_1': 29, 'n_conv_2': 1, 'n_filters_2': 54, 'kernel_size_2': 44, 'l2_reg': 1e-4, 'dropout': 0.5, 'seed':
np.random.randint(0, 9999)
numpy.random.randint