prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # WikiGraphs is licensed under the terms of the Creative Commons # Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. # # WikiText-103 data (unchanged) is licensed by Salesforce.com, Inc. under the # terms of the Creative Commons Attribution-ShareAlike 4.0 International # (CC BY-SA 4.0) license. You can find details about CC BY-SA 4.0 at: # # https://creativecommons.org/licenses/by-sa/4.0/legalcode # # Freebase data is licensed by Google LLC under the terms of the Creative # Commons CC BY 4.0 license. You may obtain a copy of the License at: # # https://creativecommons.org/licenses/by/4.0/legalcode # # ============================================================================== """Tests for wikigraphs.model.graph_net.""" from absl import logging from absl.testing import absltest import haiku as hk import jax import jax.numpy as jnp import jraph import numpy as np import optax from wikigraphs.model import graph_net as gn class GraphNetTest(absltest.TestCase): def test_node_classification(self): # If node has more than 2 neighbors --> class 1, otherwise class 0. # Graph structure: # 1 4 # | \ / | # | 0 - 3 | # | / \ | # 2 5 edges = np.array([ [0, 1], [1, 2], [2, 0], [0, 3], [3, 4], [4, 5], [5, 3], ], dtype=np.int32) n_node = edges.max() + 1 n_edge = edges.shape[0] g = jraph.GraphsTuple( senders=edges[:, 0], receivers=edges[:, 1], edges=np.ones((edges.shape[0], 1), dtype=np.float32), nodes=np.ones((n_node, 1), dtype=np.float32), n_node=np.array([n_node], dtype=np.int32), n_edge=np.array([n_edge], dtype=np.int32), globals=None) g = gn.add_reverse_edges(g) targets = np.array([1, 0, 0, 1, 0, 0], dtype=np.int32) n_classes = 2 def forward(graph, targets): model = gn.SimpleGraphNet(num_layers=5, layer_norm=False) graph = model(graph) nodes = graph.nodes logits = hk.Linear(n_classes)(nodes) pred = logits.argmax(axis=-1) accuracy = (pred == targets).mean() targets = jax.nn.one_hot(targets, n_classes, dtype=jnp.float32) return -jnp.mean(jnp.sum( jax.nn.log_softmax(logits, axis=-1) * targets, axis=-1)), accuracy init_fn, apply_fn = hk.without_apply_rng(hk.transform(forward)) rng = hk.PRNGSequence(0) params = init_fn(next(rng), g, targets) optimizer = optax.chain( optax.scale_by_adam(), optax.scale(-1e-3)) opt_state = optimizer.init(params) apply_fn = jax.jit(apply_fn) for i in range(500): (loss, acc), grad = jax.value_and_grad(apply_fn, has_aux=True)(params, g, targets) updates, opt_state = optimizer.update(grad, opt_state, params) params = optax.apply_updates(params, updates) if (i + 1) % 100 == 0: logging.info('Step %d, loss %.8f, accuracy %.4f', i + 1, loss, acc) self.assertLess(loss, 0.01) self.assertEqual(acc, 1.0) def test_pad_size(self): self.assertEqual(gn.pad_size(1), 1) self.assertEqual(gn.pad_size(5), 8) self.assertEqual(gn.pad_size(7), 8) self.assertEqual(gn.pad_size(101), 128) def test_pad_graphs(self): # No new edges to add graphs = jraph.GraphsTuple( nodes=np.arange(6)[:, None], edges=np.arange(4)[:, None], senders=np.array([0, 2, 3, 4]), receivers=np.array([1, 3, 4, 5]), n_node=np.array([2, 4]), n_edge=np.array([1, 3]), globals=None) padded = gn.pad_graphs(graphs) np.testing.assert_array_equal( padded.nodes, np.array([0, 1, 2, 3, 4, 5, 0, 0])[:, None]) np.testing.assert_array_equal(padded.edges, graphs.edges) np.testing.assert_array_equal(padded.senders, graphs.senders) np.testing.assert_array_equal(padded.receivers, graphs.receivers) np.testing.assert_array_equal(padded.n_node, [2, 4, 2]) np.testing.assert_array_equal(padded.n_edge, [1, 3, 0]) # Add just a single default node graphs = jraph.GraphsTuple( nodes=np.arange(7)[:, None], edges=np.arange(5)[:, None], senders=np.array([0, 2, 3, 5, 6]), receivers=np.array([1, 3, 4, 6, 5]), n_node=np.array([2, 3, 2]), n_edge=np.array([1, 2, 2]), globals=None) padded = gn.pad_graphs(graphs) np.testing.assert_array_equal( padded.nodes, np.array([0, 1, 2, 3, 4, 5, 6, 0])[:, None]) np.testing.assert_array_equal( padded.edges, np.array([0, 1, 2, 3, 4, 0, 0, 0])[:, None]) np.testing.assert_array_equal( padded.senders, [0, 2, 3, 5, 6, 7, 7, 7]) np.testing.assert_array_equal( padded.receivers, [1, 3, 4, 6, 5, 7, 7, 7]) np.testing.assert_array_equal( padded.n_node, [2, 3, 2, 1]) np.testing.assert_array_equal( padded.n_edge, [1, 2, 2, 3]) # Num. nodes is a power of 2 but we still pad at least one extra node graphs = jraph.GraphsTuple( nodes=np.arange(8)[:, None], edges=np.arange(5)[:, None], senders=np.array([0, 2, 3, 5, 6]), receivers=np.array([1, 3, 4, 6, 7]), n_node=np.array([2, 3, 3]), n_edge=np.array([1, 2, 2]), globals=None) padded = gn.pad_graphs(graphs) np.testing.assert_array_equal( padded.nodes, np.array([0, 1, 2, 3, 4, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0])[:, None]) np.testing.assert_array_equal( padded.edges, np.array([0, 1, 2, 3, 4, 0, 0, 0])[:, None]) np.testing.assert_array_equal( padded.senders, [0, 2, 3, 5, 6, 8, 8, 8]) np.testing.assert_array_equal( padded.receivers, [1, 3, 4, 6, 7, 8, 8, 8]) np.testing.assert_array_equal( padded.n_node, [2, 3, 3, 8]) np.testing.assert_array_equal( padded.n_edge, [1, 2, 2, 3]) def test_batch_graphs_by_device(self): # batch 4 graphs for 2 devices num_devices = 2 graphs = [ jraph.GraphsTuple( nodes=np.arange(2)[:, None], edges=np.arange(2)[:, None], senders=np.array([0, 1]), receivers=np.array([1, 0]), n_node=np.array([2]), n_edge=np.array([2]), globals=None), jraph.GraphsTuple( nodes=np.arange(3)[:, None], edges=np.arange(1)[:, None], senders=np.array([2]), receivers=np.array([0]), n_node=np.array([3]), n_edge=np.array([1]), globals=None), jraph.GraphsTuple( nodes=np.arange(4)[:, None], edges=np.arange(2)[:, None], senders=np.array([1, 0]), receivers=np.array([2, 3]), n_node=np.array([4]), n_edge=np.array([2]), globals=None), jraph.GraphsTuple( nodes=np.arange(5)[:, None], edges=np.arange(3)[:, None], senders=np.array([2, 1, 3]), receivers=np.array([1, 4, 0]), n_node=np.array([5]), n_edge=np.array([3]), globals=None), ] batched = gn.batch_graphs_by_device(graphs, num_devices) self.assertLen(batched, num_devices) np.testing.assert_array_equal( batched[0].nodes, np.array([0, 1, 0, 1, 2])[:, None]) np.testing.assert_array_equal( batched[0].edges, np.array([0, 1, 0])[:, None]) np.testing.assert_array_equal( batched[0].senders, np.array([0, 1, 4])) np.testing.assert_array_equal( batched[0].receivers, np.array([1, 0, 2])) np.testing.assert_array_equal( batched[0].n_node, np.array([2, 3])) np.testing.assert_array_equal( batched[0].n_edge, np.array([2, 1])) np.testing.assert_array_equal( batched[1].nodes, np.array([0, 1, 2, 3, 0, 1, 2, 3, 4])[:, None]) np.testing.assert_array_equal( batched[1].edges, np.array([0, 1, 0, 1, 2])[:, None]) np.testing.assert_array_equal( batched[1].senders,
np.array([1, 0, 6, 5, 7])
numpy.array
import os import numpy as np import matplotlib.pyplot as plt import tensorflow as tf import agents.utils as agent_utils class FullOracleModel: def __init__(self, env, input_shape, num_blocks, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, learning_rate, weight_decay, gamma, batch_norm=False): self.env = env self.input_shape = input_shape self.num_blocks = num_blocks self.encoder_filters = encoder_filters self.encoder_filter_sizes = encoder_filter_sizes self.encoder_strides = encoder_strides self.encoder_neurons = encoder_neurons self.learning_rate = learning_rate self.weight_decay = weight_decay self.gamma = gamma self.batch_norm = batch_norm def encode(self, states, batch_size=100): assert states.shape[0] num_steps = int(np.ceil(states.shape[0] / batch_size)) embeddings = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] embedding = self.session.run(self.state_block_t, feed_dict={ self.states_pl: states[batch_slice] }) embeddings.append(embedding) embeddings = np.concatenate(embeddings, axis=0) return embeddings def build(self): self.build_placeholders_and_constants() self.build_model() self.build_training() def build_placeholders_and_constants(self): self.states_pl = tf.placeholder(tf.float32, shape=(None, *self.input_shape), name="states_pl") self.actions_pl = tf.placeholder(tf.int32, shape=(None,), name="actions_pl") self.rewards_pl = tf.placeholder(tf.float32, shape=(None,), name="rewards_pl") self.dones_pl = tf.placeholder(tf.bool, shape=(None,), name="dones_pl") self.next_states_pl = tf.placeholder(tf.float32, shape=(None, *self.input_shape), name="next_states_pl") self.is_training_pl = tf.placeholder(tf.bool, shape=[], name="is_training_pl") self.r_c = tf.constant(self.env.r, dtype=tf.float32) self.p_c = tf.constant(self.env.p, dtype=tf.float32) def build_model(self): self.state_block_t = self.build_encoder(self.states_pl) self.next_state_block_t = self.build_encoder(self.next_states_pl, share_weights=True) def build_training(self): r_t = tf.gather(self.r_c, self.actions_pl) p_t = tf.gather(self.p_c, self.actions_pl) dones_t = tf.cast(self.dones_pl, tf.float32) self.reward_loss_t = tf.square(self.rewards_pl - tf.reduce_sum(self.state_block_t * r_t, axis=1)) self.transition_loss_t = tf.reduce_sum( tf.square(tf.stop_gradient(self.next_state_block_t) - tf.matmul(tf.expand_dims(self.state_block_t, axis=1), p_t)[:, 0, :]), axis=1 ) * (1 - dones_t) reg = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) if len(reg) > 0: self.regularization_loss_t = tf.add_n(reg) else: self.regularization_loss_t = 0 self.loss_t = tf.reduce_mean( (1 / 2) * (self.reward_loss_t + self.gamma * self.transition_loss_t), axis=0 ) + self.regularization_loss_t self.train_step = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss_t) if self.batch_norm: self.update_op = tf.group(*tf.get_collection(tf.GraphKeys.UPDATE_OPS)) self.train_step = tf.group(self.train_step, self.update_op) def build_encoder(self, input_t, share_weights=False): x = tf.expand_dims(input_t, axis=-1) with tf.variable_scope("encoder", reuse=share_weights): for idx in range(len(self.encoder_filters)): with tf.variable_scope("conv{:d}".format(idx + 1)): x = tf.layers.conv2d( x, self.encoder_filters[idx], self.encoder_filter_sizes[idx], self.encoder_strides[idx], padding="SAME", activation=tf.nn.relu if not self.batch_norm else None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer(), use_bias=not self.batch_norm ) if self.batch_norm and idx != len(self.encoder_filters) - 1: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) x = tf.layers.flatten(x) if self.batch_norm: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) for idx, neurons in enumerate(self.encoder_neurons): with tf.variable_scope("fc{:d}".format(idx + 1)): x = tf.layers.dense( x, neurons, activation=tf.nn.relu if not self.batch_norm else None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer(), use_bias=not self.batch_norm ) if self.batch_norm: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) with tf.variable_scope("predict"): x = tf.layers.dense( x, self.num_blocks, activation=tf.nn.softmax, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer() ) return x def start_session(self, gpu_memory=None): gpu_options = None if gpu_memory is not None: gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory) tf_config = tf.ConfigProto(gpu_options=gpu_options) self.session = tf.Session(config=tf_config) self.session.run(tf.global_variables_initializer()) def stop_session(self): if self.session is not None: self.session.close() class PartialOracleModel: ENCODER_NAMESPACE = "encoder" TARGET_ENCODER_NAMESPACE = "target_encoder" def __init__(self, input_shape, num_blocks, num_actions, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, learning_rate_encoder, learning_rate_model, weight_decay, gamma, optimizer_encoder, optimizer_model, max_steps, batch_norm=True, target_network=False, add_hand_state=False, add_entropy=False, entropy_from=10000, entropy_start=0.0, entropy_end=0.1, ce_transitions=False): self.input_shape = input_shape self.num_blocks = num_blocks self.num_actions = num_actions self.encoder_filters = encoder_filters self.encoder_filter_sizes = encoder_filter_sizes self.encoder_strides = encoder_strides self.encoder_neurons = encoder_neurons self.learning_rate_encoder = learning_rate_encoder self.learning_rate_model = learning_rate_model self.weight_decay = weight_decay self.gamma = gamma self.optimizer_encoder = optimizer_encoder self.optimizer_model = optimizer_model self.max_steps = max_steps self.batch_norm = batch_norm self.target_network = target_network self.add_hand_state = add_hand_state self.add_entropy = add_entropy self.entropy_from = entropy_from self.entropy_start = entropy_start self.entropy_end = entropy_end self.ce_transitions = ce_transitions self.hand_states_pl, self.next_hand_states_pl = None, None def encode(self, states, batch_size=100, hand_states=None): assert states.shape[0] num_steps = int(np.ceil(states.shape[0] / batch_size)) embeddings = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: states[batch_slice], self.is_training_pl: False } if hand_states is not None: feed_dict[self.hand_states_pl] = hand_states[batch_slice] embedding = self.session.run(self.state_block_t, feed_dict=feed_dict) embeddings.append(embedding) embeddings = np.concatenate(embeddings, axis=0) return embeddings def build(self): self.build_placeholders() self.build_model() self.build_training() def build_placeholders(self): self.states_pl = tf.placeholder(tf.float32, shape=(None, *self.input_shape), name="states_pl") self.actions_pl = tf.placeholder(tf.int32, shape=(None,), name="actions_pl") self.rewards_pl = tf.placeholder(tf.float32, shape=(None,), name="rewards_pl") self.dones_pl = tf.placeholder(tf.bool, shape=(None,), name="dones_pl") self.next_states_pl = tf.placeholder(tf.float32, shape=(None, *self.input_shape), name="next_states_pl") self.is_training_pl = tf.placeholder(tf.bool, shape=[], name="is_training_pl") if self.add_hand_state: self.hand_states_pl = tf.placeholder(tf.float32, shape=(None, 1), name="hand_states_pl") self.next_hand_states_pl = tf.placeholder(tf.float32, shape=(None, 1), name="next_hand_states_pl") def build_model(self): self.state_block_t = self.build_encoder(self.states_pl, hand_state=self.hand_states_pl) if self.target_network: self.next_state_block_t = self.build_encoder( self.next_states_pl, share_weights=False, namespace=self.TARGET_ENCODER_NAMESPACE, hand_state=self.next_hand_states_pl ) self.build_target_update() else: self.next_state_block_t = self.build_encoder( self.next_states_pl, share_weights=True, hand_state=self.next_hand_states_pl ) self.r_t = tf.get_variable( "reward_matrix", shape=(self.num_actions, self.num_blocks), dtype=tf.float32, initializer=tf.random_uniform_initializer(minval=0, maxval=1, dtype=tf.float32) ) self.p_t = tf.get_variable( "transition_matrix", shape=(self.num_actions, self.num_blocks, self.num_blocks), dtype=tf.float32, initializer=tf.random_uniform_initializer(minval=0, maxval=1, dtype=tf.float32) ) def build_training(self): self.global_step = tf.train.get_or_create_global_step() r_t = tf.gather(self.r_t, self.actions_pl) p_t = tf.gather(self.p_t, self.actions_pl) dones_t = tf.cast(self.dones_pl, tf.float32) self.reward_loss_t = (1 / 2) * tf.square(self.rewards_pl - tf.reduce_sum(self.state_block_t * r_t, axis=1)) if self.ce_transitions: # treat p_t as log probabilities p_t = tf.nn.softmax(p_t, axis=-1) # predict next state next_state = tf.matmul(tf.expand_dims(self.state_block_t, axis=1), p_t)[:, 0, :] # cross entropy between next state probs and predicted probs self.transition_loss_t = - self.next_state_block_t * tf.log(next_state + 1e-7) self.transition_loss_t = tf.reduce_sum(self.transition_loss_t, axis=-1) self.transition_loss_t = self.transition_loss_t * (1 - dones_t) else: self.transition_loss_t = (1 / 2) * tf.reduce_sum( tf.square(tf.stop_gradient(self.next_state_block_t) - tf.matmul(tf.expand_dims(self.state_block_t, axis=1), p_t)[:, 0, :]), axis=1 ) * (1 - dones_t) reg = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) if len(reg) > 0: self.regularization_loss_t = tf.add_n(reg) else: self.regularization_loss_t = 0 self.loss_t = tf.reduce_mean( self.reward_loss_t + self.gamma * self.transition_loss_t, axis=0 ) + self.regularization_loss_t if self.add_entropy: plogs = self.state_block_t * tf.log(self.state_block_t + 1e-7) self.entropy_loss_t = tf.reduce_mean(tf.reduce_sum(- plogs, axis=1), axis=0) f = tf.maximum(0.0, tf.cast(self.global_step - self.entropy_from, tf.float32)) / \ (self.max_steps - self.entropy_from) f = f * (self.entropy_end - self.entropy_start) + self.entropy_start self.loss_t += f * self.entropy_loss_t encoder_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.ENCODER_NAMESPACE) model_variables = [self.r_t, self.p_t] encoder_optimizer = agent_utils.get_optimizer(self.optimizer_encoder, self.learning_rate_encoder) model_optimizer = agent_utils.get_optimizer(self.optimizer_model, self.learning_rate_model) self.encoder_train_step = encoder_optimizer.minimize( self.loss_t, global_step=self.global_step, var_list=encoder_variables ) if self.batch_norm: self.update_op = tf.group(*tf.get_collection(tf.GraphKeys.UPDATE_OPS)) self.encoder_train_step = tf.group(self.encoder_train_step, self.update_op) self.model_train_step = model_optimizer.minimize( self.loss_t, var_list=model_variables ) self.train_step = tf.group(self.encoder_train_step, self.model_train_step) def build_encoder(self, input_t, share_weights=False, namespace=ENCODER_NAMESPACE, hand_state=None): x = tf.expand_dims(input_t, axis=-1) with tf.variable_scope(namespace, reuse=share_weights): for idx in range(len(self.encoder_filters)): with tf.variable_scope("conv{:d}".format(idx + 1)): x = tf.layers.conv2d( x, self.encoder_filters[idx], self.encoder_filter_sizes[idx], self.encoder_strides[idx], padding="SAME", activation=tf.nn.relu if not self.batch_norm else None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer(), use_bias=not self.batch_norm ) if self.batch_norm and idx != len(self.encoder_filters) - 1: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) x = tf.layers.flatten(x) if self.batch_norm: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) if hand_state is not None: x = tf.concat([x, hand_state], axis=1) for idx, neurons in enumerate(self.encoder_neurons): with tf.variable_scope("fc{:d}".format(idx + 1)): x = tf.layers.dense( x, neurons, activation=tf.nn.relu if not self.batch_norm else None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer(), use_bias=not self.batch_norm ) if self.batch_norm: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) with tf.variable_scope("predict"): x = tf.layers.dense( x, self.num_blocks, activation=tf.nn.softmax, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer() ) return x def build_target_update(self): source_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.ENCODER_NAMESPACE) target_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.TARGET_ENCODER_NAMESPACE) assert len(source_vars) == len(target_vars) and len(source_vars) > 0 update_ops = [] for source_var, target_var in zip(source_vars, target_vars): update_ops.append(tf.assign(target_var, source_var)) self.target_update_op = tf.group(*update_ops) def start_session(self, gpu_memory=None): gpu_options = None if gpu_memory is not None: gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory) tf_config = tf.ConfigProto(gpu_options=gpu_options) self.session = tf.Session(config=tf_config) self.session.run(tf.global_variables_initializer()) def stop_session(self): if self.session is not None: self.session.close() class GumbelModel: ENCODER_NAMESPACE = "encoder" TARGET_ENCODER_NAMESPACE = "target_encoder" def __init__(self, input_shape, num_blocks, num_actions, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, learning_rate_encoder, learning_rate_r, learning_rate_p, weight_decay, gamma, optimizer_encoder, optimizer_model, max_steps, batch_norm=True, target_network=True, gamma_schedule=None, straight_through=False, kl=False, kl_weight=1.0, oracle_r=None, oracle_p=None, transitions_mse=False, correct_ce=False): self.input_shape = input_shape self.num_blocks = num_blocks self.num_actions = num_actions self.encoder_filters = encoder_filters self.encoder_filter_sizes = encoder_filter_sizes self.encoder_strides = encoder_strides self.encoder_neurons = encoder_neurons self.learning_rate_encoder = learning_rate_encoder self.learning_rate_r = learning_rate_r self.learning_rate_p = learning_rate_p self.weight_decay = weight_decay self.gamma = gamma self.optimizer_encoder = optimizer_encoder self.optimizer_model = optimizer_model self.max_steps = max_steps self.batch_norm = batch_norm self.target_network = target_network self.gamma_schedule = gamma_schedule self.straight_through = straight_through self.kl = kl self.kl_weight = kl_weight self.oracle_r = oracle_r self.oracle_p = oracle_p self.transitions_mse = transitions_mse self.correct_ce = correct_ce if self.gamma_schedule is not None: assert len(self.gamma) == len(self.gamma_schedule) + 1 self.hand_states_pl, self.next_hand_states_pl = None, None def encode(self, states, batch_size=100, hand_states=None): assert states.shape[0] num_steps = int(np.ceil(states.shape[0] / batch_size)) embeddings = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: states[batch_slice], self.is_training_pl: False } if hand_states is not None: feed_dict[self.hand_states_pl] = hand_states[batch_slice] embedding = self.session.run(self.state_block_samples_t, feed_dict=feed_dict) embeddings.append(embedding) embeddings = np.concatenate(embeddings, axis=0) return embeddings def build(self): self.build_placeholders() self.build_model() self.build_training() def build_placeholders(self): self.states_pl = tf.placeholder(tf.float32, shape=(None, *self.input_shape), name="states_pl") self.actions_pl = tf.placeholder(tf.int32, shape=(None,), name="actions_pl") self.rewards_pl = tf.placeholder(tf.float32, shape=(None,), name="rewards_pl") self.dones_pl = tf.placeholder(tf.bool, shape=(None,), name="dones_pl") self.next_states_pl = tf.placeholder(tf.float32, shape=(None, *self.input_shape), name="next_states_pl") self.is_training_pl = tf.placeholder(tf.bool, shape=[], name="is_training_pl") self.hand_states_pl = tf.placeholder(tf.float32, shape=(None, 1), name="hand_states_pl") self.next_hand_states_pl = tf.placeholder(tf.float32, shape=(None, 1), name="next_hand_states_pl") self.temperature_pl = tf.placeholder(tf.float32, shape=[], name="temperature_pl") def build_model(self): # encode state block self.state_block_logits_t = self.build_encoder(self.states_pl, hand_state=self.hand_states_pl) agent_utils.summarize(self.state_block_logits_t, "state_block_logits_t") self.state_block_cat_dist = tf.contrib.distributions.OneHotCategorical( logits=self.state_block_logits_t ) self.state_block_samples_t = tf.cast(self.state_block_cat_dist.sample(), tf.int32) self.state_block_sg_dist = tf.contrib.distributions.RelaxedOneHotCategorical( self.temperature_pl, logits=self.state_block_logits_t ) self.state_block_sg_samples_t = self.state_block_sg_dist.sample() agent_utils.summarize(self.state_block_sg_samples_t, "state_block_sg_samples_t") if self.straight_through: # hard sample self.state_block_sg_samples_hard_t = \ tf.cast(tf.one_hot(tf.argmax(self.state_block_sg_samples_t, -1), self.num_blocks), tf.float32) # fake gradients for the hard sample self.state_block_sg_samples_t = \ tf.stop_gradient(self.state_block_sg_samples_hard_t - self.state_block_sg_samples_t) + \ self.state_block_sg_samples_t agent_utils.summarize(self.state_block_sg_samples_hard_t, "state_block_sg_samples_hard_t") # encode next state block if self.target_network: self.next_state_block_logits_t = self.build_encoder( self.next_states_pl, share_weights=False, namespace=self.TARGET_ENCODER_NAMESPACE, hand_state=self.next_hand_states_pl ) self.build_target_update() else: self.next_state_block_logits_t = self.build_encoder( self.next_states_pl, share_weights=True, hand_state=self.next_hand_states_pl ) self.next_state_block_cat_dist = tf.contrib.distributions.OneHotCategorical( logits=self.next_state_block_logits_t ) self.next_state_block_samples_t = tf.cast(self.next_state_block_cat_dist.sample(), tf.float32) self.r_v = tf.get_variable( "reward_matrix", shape=(self.num_actions, self.num_blocks), dtype=tf.float32, initializer=tf.random_uniform_initializer(minval=0, maxval=1, dtype=tf.float32) ) self.r_t = self.r_v self.p_v = tf.get_variable( "transition_matrix", shape=(self.num_actions, self.num_blocks, self.num_blocks), dtype=tf.float32, initializer=tf.random_uniform_initializer(minval=0, maxval=1, dtype=tf.float32) ) if not self.transitions_mse: self.p_t = tf.nn.softmax(self.p_v, axis=-1) else: self.p_t = self.p_v def build_training(self): # set up global step variable self.global_step = tf.train.get_or_create_global_step() # gather reward and transition matrices for each action if self.oracle_r is not None: r_t = tf.gather(self.oracle_r, self.actions_pl) else: r_t = tf.gather(self.r_t, self.actions_pl) if self.oracle_p is not None: p_t = tf.gather(self.oracle_p, self.actions_pl) else: p_t = tf.gather(self.p_t, self.actions_pl) dones_t = tf.cast(self.dones_pl, tf.float32) # reward loss self.reward_loss_t = tf.square(self.rewards_pl - tf.reduce_sum(self.state_block_sg_samples_t * r_t, axis=1)) # transition loss next_state = tf.matmul(tf.expand_dims(self.state_block_sg_samples_t, axis=1), p_t)[:, 0, :] if self.transitions_mse: self.transition_loss_t = tf.reduce_sum( tf.square(tf.stop_gradient(self.next_state_block_samples_t) - next_state), axis=1 ) * (1 - dones_t) else: if self.correct_ce: self.transition_loss_t = tf.reduce_sum( - tf.stop_gradient(tf.nn.softmax(self.next_state_block_logits_t)) * tf.log(next_state + 1e-7), axis=1 ) * (1 - dones_t) else: self.transition_loss_t = tf.reduce_sum( - tf.stop_gradient(self.next_state_block_samples_t) * tf.log(next_state + 1e-7), axis=1 ) * (1 - dones_t) # weight decay regularizer reg = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) if len(reg) > 0: self.regularization_loss_t = tf.add_n(reg) else: self.regularization_loss_t = 0.0 # kl divergence regularizer if self.kl: prior_logits_t = tf.ones_like(self.state_block_logits_t) / self.num_blocks prior_cat_dist = tf.contrib.distributions.OneHotCategorical(logits=prior_logits_t) kl_divergence_t = tf.contrib.distributions.kl_divergence(self.state_block_cat_dist, prior_cat_dist) self.kl_loss_t = tf.reduce_mean(kl_divergence_t) else: self.kl_loss_t = 0.0 # final loss if self.gamma_schedule is not None: gamma = tf.train.piecewise_constant(self.global_step, self.gamma_schedule, self.gamma) else: gamma = self.gamma self.loss_t = tf.reduce_mean( self.reward_loss_t + gamma * self.transition_loss_t, axis=0 ) + self.regularization_loss_t + self.kl_weight * self.kl_loss_t # encoder optimizer encoder_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.ENCODER_NAMESPACE) encoder_optimizer = agent_utils.get_optimizer(self.optimizer_encoder, self.learning_rate_encoder) self.encoder_train_step = encoder_optimizer.minimize( self.loss_t, global_step=self.global_step, var_list=encoder_variables ) # add batch norm updates if self.batch_norm: self.update_op = tf.group(*tf.get_collection(tf.GraphKeys.UPDATE_OPS)) self.encoder_train_step = tf.group(self.encoder_train_step, self.update_op) # model optimizer if not full oracle if self.oracle_r is None or self.oracle_p is None: r_optimizer = agent_utils.get_optimizer(self.optimizer_model, self.learning_rate_r) r_step = r_optimizer.minimize( self.reward_loss_t, var_list=[self.r_v] ) p_optimizer = agent_utils.get_optimizer(self.optimizer_model, self.learning_rate_p) p_step = p_optimizer.minimize( self.transition_loss_t, var_list=[self.p_v] ) self.model_train_step = tf.group(r_step, p_step) self.train_step = tf.group(self.encoder_train_step, self.model_train_step) else: self.train_step = self.encoder_train_step def build_encoder(self, input_t, share_weights=False, namespace=ENCODER_NAMESPACE, hand_state=None): x = tf.expand_dims(input_t, axis=-1) with tf.variable_scope(namespace, reuse=share_weights): for idx in range(len(self.encoder_filters)): with tf.variable_scope("conv{:d}".format(idx + 1)): x = tf.layers.conv2d( x, self.encoder_filters[idx], self.encoder_filter_sizes[idx], self.encoder_strides[idx], padding="SAME", activation=tf.nn.relu if not self.batch_norm else None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer(), use_bias=not self.batch_norm ) if self.batch_norm and idx != len(self.encoder_filters) - 1: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) x = tf.layers.flatten(x) if self.batch_norm: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) if hand_state is not None: x = tf.concat([x, hand_state], axis=1) for idx, neurons in enumerate(self.encoder_neurons): with tf.variable_scope("fc{:d}".format(idx + 1)): x = tf.layers.dense( x, neurons, activation=tf.nn.relu if not self.batch_norm else None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer(), use_bias=not self.batch_norm ) if self.batch_norm: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) with tf.variable_scope("predict"): x = tf.layers.dense( x, self.num_blocks, activation=None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer() ) return x def build_target_update(self): source_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.ENCODER_NAMESPACE) target_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.TARGET_ENCODER_NAMESPACE) assert len(source_vars) == len(target_vars) and len(source_vars) > 0 update_ops = [] for source_var, target_var in zip(source_vars, target_vars): update_ops.append(tf.assign(target_var, source_var)) self.target_update_op = tf.group(*update_ops) def build_summaries(self): # losses tf.summary.scalar("loss", self.loss_t) tf.summary.scalar("transition_loss", tf.reduce_mean(self.transition_loss_t)) tf.summary.scalar("reward_loss", tf.reduce_mean(self.reward_loss_t)) # logits grads grad_t = tf.gradients(tf.reduce_mean(self.transition_loss_t), self.state_block_logits_t) grad_r = tf.gradients(tf.reduce_mean(self.reward_loss_t), self.state_block_logits_t) norm_grad_t = tf.norm(grad_t, ord=2, axis=-1)[0] norm_grad_r = tf.norm(grad_r, ord=2, axis=-1)[0] agent_utils.summarize(norm_grad_t, "logits_grad_t") agent_utils.summarize(norm_grad_r, "logits_grad_r") # samples grads grad_t = tf.gradients(tf.reduce_mean(self.transition_loss_t), self.state_block_sg_samples_t) grad_r = tf.gradients(tf.reduce_mean(self.reward_loss_t), self.state_block_sg_samples_t) norm_grad_t = tf.norm(grad_t, ord=2, axis=-1)[0] norm_grad_r = tf.norm(grad_r, ord=2, axis=-1)[0] agent_utils.summarize(norm_grad_t, "sg_samples_grad_t") agent_utils.summarize(norm_grad_r, "sg_samples_grad_r") def start_session(self, gpu_memory=None): gpu_options = None if gpu_memory is not None: gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory) tf_config = tf.ConfigProto(gpu_options=gpu_options) self.session = tf.Session(config=tf_config) self.session.run(tf.global_variables_initializer()) def stop_session(self): if self.session is not None: self.session.close() class ExpectationModel: ENCODER_NAMESPACE = "encoder" TARGET_ENCODER_NAMESPACE = "target_encoder" def __init__(self, input_shape, num_blocks, num_actions, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, learning_rate_encoder, learning_rate_r, learning_rate_t, weight_decay, gamma, optimizer_encoder, optimizer_model, max_steps, batch_norm=True, target_network=True, oracle_r=None, oracle_t=None, propagate_next_state=False, z_transform=False, abs_z_transform=False, sigsoftmax=False, encoder_tau=1.0, model_tau=1.0, no_tau_target_encoder=False, kl_penalty=False, kl_penalty_weight=0.01, small_r_init=False, small_t_init=False): if propagate_next_state: assert not target_network self.input_shape = input_shape self.num_blocks = num_blocks self.num_actions = num_actions self.encoder_filters = encoder_filters self.encoder_filter_sizes = encoder_filter_sizes self.encoder_strides = encoder_strides self.encoder_neurons = encoder_neurons self.learning_rate_encoder = learning_rate_encoder self.learning_rate_r = learning_rate_r self.learning_rate_t = learning_rate_t self.weight_decay = weight_decay self.gamma = gamma self.optimizer_encoder = optimizer_encoder self.optimizer_model = optimizer_model self.max_steps = max_steps self.batch_norm = batch_norm self.target_network = target_network self.oracle_r = oracle_r self.oracle_t = oracle_t self.propagate_next_state = propagate_next_state self.z_transform = z_transform self.abs_z_transform = abs_z_transform self.sigsoftmax = sigsoftmax self.encoder_tau = encoder_tau self.model_tau = model_tau self.no_tau_target_encoder = no_tau_target_encoder self.kl_penalty = kl_penalty self.kl_penalty_weight = kl_penalty_weight self.small_r_init = small_r_init self.small_t_init = small_t_init self.hand_states_pl, self.next_hand_states_pl = None, None def encode(self, depths, hand_states, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) embeddings = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[batch_slice], self.is_training_pl: False } embedding = self.session.run(self.state_softmax_t, feed_dict=feed_dict) embeddings.append(embedding) embeddings = np.concatenate(embeddings, axis=0) return embeddings def validate(self, depths, hand_states, actions, rewards, next_depths, next_hand_states, dones, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) losses = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[:, np.newaxis][batch_slice], self.actions_pl: actions[batch_slice], self.rewards_pl: rewards[batch_slice], self.next_states_pl: next_depths[batch_slice], self.next_hand_states_pl: next_hand_states[:, np.newaxis][batch_slice], self.dones_pl: dones[batch_slice], self.is_training_pl: False } l1, l2 = self.session.run([self.full_transition_loss_t, self.full_reward_loss_t], feed_dict=feed_dict) losses.append(np.transpose(np.array([l1, l2]), axes=(1, 0))) losses = np.concatenate(losses, axis=0) return losses def validate_and_encode(self, depths, hand_states, actions, rewards, next_depths, next_hand_states, dones, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) losses = [] embeddings = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[:, np.newaxis][batch_slice], self.actions_pl: actions[batch_slice], self.rewards_pl: rewards[batch_slice], self.next_states_pl: next_depths[batch_slice], self.next_hand_states_pl: next_hand_states[:, np.newaxis][batch_slice], self.dones_pl: dones[batch_slice], self.is_training_pl: False } tmp_embeddings, l1, l2 = self.session.run([ self.state_softmax_t, self.full_transition_loss_t, self.full_reward_loss_t], feed_dict=feed_dict ) losses.append(np.transpose(np.array([l1, l2]), axes=(1, 0))) embeddings.append(tmp_embeddings) losses = np.concatenate(losses, axis=0) embeddings = np.concatenate(embeddings) return losses, embeddings def build(self): self.build_placeholders() self.build_model() self.build_training() def build_placeholders(self): self.states_pl = tf.placeholder(tf.float32, shape=(None, *self.input_shape), name="states_pl") self.actions_pl = tf.placeholder(tf.int32, shape=(None,), name="actions_pl") self.rewards_pl = tf.placeholder(tf.float32, shape=(None,), name="rewards_pl") self.dones_pl = tf.placeholder(tf.bool, shape=(None,), name="dones_pl") self.next_states_pl = tf.placeholder(tf.float32, shape=(None, *self.input_shape), name="next_states_pl") self.is_training_pl = tf.placeholder(tf.bool, shape=[], name="is_training_pl") self.hand_states_pl = tf.placeholder(tf.float32, shape=(None, 1), name="hand_states_pl") self.next_hand_states_pl = tf.placeholder(tf.float32, shape=(None, 1), name="next_hand_states_pl") def build_model(self): self.state_logits_t, self.state_softmax_t = self.build_encoder( self.states_pl, self.hand_states_pl, self.encoder_tau ) self.perplexity_t = tf.constant(2, dtype=tf.float32) ** ( - tf.reduce_mean( tf.reduce_sum( self.state_softmax_t * tf.log(self.state_softmax_t + 1e-7) / tf.log(tf.constant(2, dtype=self.state_softmax_t.dtype)), axis=1 ), axis=0 ) ) if self.no_tau_target_encoder: target_tau = 1.0 else: target_tau = self.encoder_tau if self.target_network: self.next_state_logits_t, self.next_state_softmax_t = self.build_encoder( self.next_states_pl, self.next_hand_states_pl, target_tau, share_weights=False, namespace=self.TARGET_ENCODER_NAMESPACE ) self.build_target_update() else: self.next_state_logits_t, self.next_state_softmax_t = self.build_encoder( self.next_states_pl, self.next_hand_states_pl, target_tau, share_weights=True ) self.build_r_model() self.build_t_model() def build_r_model(self): if self.small_r_init: r_init = tf.random_normal_initializer(mean=0, stddev=0.1, dtype=tf.float32) else: r_init = tf.random_uniform_initializer(minval=0, maxval=1, dtype=tf.float32) self.r_v = tf.get_variable( "reward_matrix", shape=(self.num_actions, self.num_blocks), dtype=tf.float32, initializer=r_init ) self.r_t = self.r_v def build_t_model(self): if self.small_t_init: t_init = tf.random_normal_initializer(mean=0, stddev=0.1, dtype=tf.float32) else: t_init = tf.random_uniform_initializer(minval=0, maxval=1, dtype=tf.float32) self.t_v = tf.get_variable( "transition_matrix", shape=(self.num_actions, self.num_blocks, self.num_blocks), dtype=tf.float32, initializer=t_init ) self.t_softmax_t = tf.nn.softmax(self.t_v / self.model_tau, axis=2) self.t_logsoftmax_t = tf.nn.log_softmax(self.t_v / self.model_tau, axis=2) def build_training(self): # prep self.global_step = tf.train.get_or_create_global_step() self.gather_matrices() self.dones_float_t = tf.cast(self.dones_pl, tf.float32) # build losses self.build_reward_loss() self.build_transition_loss() self.build_regularization_loss() self.build_kl_penalty() # build full loss self.gamma_v = tf.Variable(initial_value=self.gamma, trainable=False) self.loss_t = self.reward_loss_t + tf.stop_gradient(self.gamma_v) * self.transition_loss_t + \ self.regularization_loss_t + self.kl_penalty_weight_v * self.kl_penalty_t # build training self.build_encoder_training() self.build_model_training() # integrate training into a single op if self.model_train_step is None: self.train_step = self.encoder_train_step else: self.train_step = tf.group(self.encoder_train_step, self.model_train_step) def gather_matrices(self): if self.oracle_r is not None: self.r_gather_t = tf.gather(self.oracle_r, self.actions_pl) else: self.r_gather_t = tf.gather(self.r_t, self.actions_pl) if self.oracle_t is not None: self.t_logsoftmax_gather_t = tf.gather(self.oracle_t, self.actions_pl) else: self.t_logsoftmax_gather_t = tf.gather(self.t_logsoftmax_t, self.actions_pl) def build_reward_loss(self): term1 = tf.square(self.rewards_pl[:, tf.newaxis] - self.r_gather_t) term2 = term1 * self.state_softmax_t self.full_reward_loss_t = (1 / 2) * tf.reduce_sum(term2, axis=1) self.reward_loss_t = (1 / 2) * tf.reduce_mean(tf.reduce_sum(term2, axis=1), axis=0) def build_transition_loss(self): if self.propagate_next_state: self.transition_term1 = self.state_softmax_t[:, :, tf.newaxis] * self.next_state_softmax_t[:, tf.newaxis, :] else: self.transition_term1 = self.state_softmax_t[:, :, tf.newaxis] * tf.stop_gradient( self.next_state_softmax_t[:, tf.newaxis, :] ) self.transition_term2 = self.transition_term1 * self.t_logsoftmax_gather_t self.full_transition_loss_t = - tf.reduce_sum(self.transition_term2, axis=[1, 2]) * (1 - self.dones_float_t) self.transition_loss_t = tf.reduce_sum(self.full_transition_loss_t, axis=0) / tf.reduce_max( [1.0, tf.reduce_sum(1 - self.dones_float_t)] ) def build_regularization_loss(self): reg = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) if len(reg) > 0: self.regularization_loss_t = tf.add_n(reg) else: self.regularization_loss_t = 0 def build_kl_penalty(self): self.kl_penalty_weight_v = tf.Variable(self.kl_penalty_weight, trainable=False, dtype=tf.float32) self.kl_penalty_weight_pl = tf.placeholder(tf.float32, shape=[], name="kl_penalty_weight_pl") self.kl_penalty_weight_assign = tf.assign(self.kl_penalty_weight_v, self.kl_penalty_weight_pl) if self.kl_penalty: log_softmax = tf.nn.log_softmax(self.state_logits_t, axis=-1) self.kl_penalty_t = tf.reduce_mean(tf.reduce_sum(self.state_softmax_t * log_softmax, axis=-1), axis=0) else: self.kl_penalty_t = 0.0 def build_encoder_training(self): encoder_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.ENCODER_NAMESPACE) encoder_optimizer = agent_utils.get_optimizer(self.optimizer_encoder, self.learning_rate_encoder) self.encoder_train_step = encoder_optimizer.minimize( self.loss_t, global_step=self.global_step, var_list=encoder_variables ) if self.batch_norm: self.update_op = tf.group(*tf.get_collection(tf.GraphKeys.UPDATE_OPS)) self.encoder_train_step = tf.group(self.encoder_train_step, self.update_op) def build_model_training(self): model_train_step = [] if self.oracle_r is None: r_optimizer = agent_utils.get_optimizer(self.optimizer_model, self.learning_rate_r) self.r_step = r_optimizer.minimize( self.reward_loss_t, var_list=[self.r_v] ) model_train_step.append(self.r_step) if self.oracle_t is None: t_optimizer = agent_utils.get_optimizer(self.optimizer_model, self.learning_rate_t) self.t_step = t_optimizer.minimize( self.transition_loss_t, var_list=[self.t_v] ) model_train_step.append(self.t_step) if len(model_train_step) > 0: self.model_train_step = tf.group(*model_train_step) else: self.model_train_step = None def build_encoder(self, depth_pl, hand_state_pl, tau, share_weights=False, namespace=ENCODER_NAMESPACE): x = tf.expand_dims(depth_pl, axis=-1) with tf.variable_scope(namespace, reuse=share_weights): for idx in range(len(self.encoder_filters)): with tf.variable_scope("conv{:d}".format(idx + 1)): x = tf.layers.conv2d( x, self.encoder_filters[idx], self.encoder_filter_sizes[idx], self.encoder_strides[idx], padding="SAME", activation=tf.nn.relu if not self.batch_norm else None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer(), use_bias=not self.batch_norm ) if self.batch_norm and idx != len(self.encoder_filters) - 1: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) x = tf.layers.flatten(x) if self.batch_norm: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) x = tf.concat([x, hand_state_pl], axis=1) for idx, neurons in enumerate(self.encoder_neurons): with tf.variable_scope("fc{:d}".format(idx + 1)): x = tf.layers.dense( x, neurons, activation=tf.nn.relu if not self.batch_norm else None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer(), use_bias=not self.batch_norm ) if self.batch_norm: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) with tf.variable_scope("predict"): x = tf.layers.dense( x, self.num_blocks, activation=None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer() ) if self.z_transform: dist = x - tf.reduce_min(x, axis=1)[:, tf.newaxis] dist = dist / tf.reduce_sum(dist, axis=1)[:, tf.newaxis] elif self.abs_z_transform: abs_x = tf.abs(x) dist = abs_x / tf.reduce_sum(abs_x, axis=1)[:, tf.newaxis] elif self.sigsoftmax: e_x = tf.exp(x - tf.reduce_max(x, axis=1)[:, tf.newaxis]) sig_e_x = e_x * tf.nn.sigmoid(x) dist = sig_e_x / tf.reduce_sum(sig_e_x, axis=1)[:, tf.newaxis] else: dist = tf.nn.softmax(x / tau) return x, dist def build_target_update(self): source_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.ENCODER_NAMESPACE) target_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.TARGET_ENCODER_NAMESPACE) assert len(source_vars) == len(target_vars) and len(source_vars) > 0 update_ops = [] for source_var, target_var in zip(source_vars, target_vars): update_ops.append(tf.assign(target_var, source_var)) self.target_update_op = tf.group(*update_ops) def build_summaries(self): # losses tf.summary.scalar("loss", self.loss_t) tf.summary.scalar("transition_loss", tf.reduce_mean(self.transition_loss_t)) tf.summary.scalar("reward_loss", tf.reduce_mean(self.reward_loss_t)) # logits and softmax agent_utils.summarize(self.state_logits_t, "logits") agent_utils.summarize(self.state_softmax_t, "softmax") # gradients self.grad_norms_d = dict() for target, target_name in zip( [self.loss_t, self.transition_loss_t, self.reward_loss_t], ["total_loss", "t_loss", "r_loss"] ): for source, source_name in zip([self.state_logits_t, self.state_softmax_t], ["logits", "softmax"]): grads = tf.gradients(tf.reduce_mean(target), source) grad_norms = tf.norm(grads, ord=1, axis=-1)[0] name = "state_{}_grad_{}".format(source_name, target_name) self.grad_norms_d[name] = tf.reduce_mean(grad_norms) agent_utils.summarize(grad_norms, name) def set_gamma(self, value): self.session.run(tf.assign(self.gamma_v, value)) def set_kl_penalty_weight(self, value): self.session.run(self.kl_penalty_weight_assign, feed_dict={self.kl_penalty_weight_pl: value}) def start_session(self, gpu_memory=None): gpu_options = None if gpu_memory is not None: gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory) tf_config = tf.ConfigProto(gpu_options=gpu_options) self.session = tf.Session(config=tf_config) self.session.run(tf.global_variables_initializer()) def stop_session(self): if self.session is not None: self.session.close() def save_matrices_as_images(self, step, save_dir, ext="pdf"): r, p = self.session.run([self.r_t, self.t_softmax_t]) r = np.reshape(r, (r.shape[0], -1)) p = np.reshape(p, (p.shape[0], -1)) r_path = os.path.join(save_dir, "r_{:d}.{}".format(step, ext)) p_path = os.path.join(save_dir, "p_{:d}.{}".format(step, ext)) plt.clf() plt.imshow(r, vmin=-0.5, vmax=1.5) plt.colorbar() plt.savefig(r_path) plt.clf() plt.imshow(p, vmin=0, vmax=1) plt.colorbar() plt.savefig(p_path) class ExpectationModelGaussian(ExpectationModel): def __init__(self, input_shape, num_blocks, num_actions, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, learning_rate_encoder, learning_rate_r, learning_rate_t, weight_decay, gamma, optimizer_encoder, optimizer_model, max_steps, batch_norm=True, target_network=True, oracle_r=None, oracle_t=None, propagate_next_state=False, z_transform=False, abs_z_transform=False, sigsoftmax=False, encoder_tau=1.0, model_tau=1.0, no_tau_target_encoder=False, kl_penalty=False, kl_penalty_weight=0.01, small_r_init=False, small_t_init=False): super(ExpectationModelGaussian, self).__init__( input_shape, num_blocks, num_actions, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, learning_rate_encoder, learning_rate_r, learning_rate_t, weight_decay, gamma, optimizer_encoder, optimizer_model, max_steps, batch_norm=batch_norm, target_network=target_network, oracle_r=oracle_r, oracle_t=oracle_t, propagate_next_state=propagate_next_state, z_transform=z_transform, abs_z_transform=abs_z_transform, sigsoftmax=sigsoftmax, encoder_tau=encoder_tau, model_tau=model_tau, no_tau_target_encoder=no_tau_target_encoder, kl_penalty=kl_penalty, kl_penalty_weight=kl_penalty_weight, small_r_init=small_r_init, small_t_init=small_t_init ) def build_model(self): self.state_mu_t, self.state_sd_t, self.state_var_t, self.state_logits_t, self.state_softmax_t = \ self.build_encoder( self.states_pl, self.hand_states_pl, self.encoder_tau, namespace=self.ENCODER_NAMESPACE ) self.perplexity_t = tf.constant(2, dtype=tf.float32) ** ( - tf.reduce_mean( tf.reduce_sum( self.state_softmax_t * tf.log(self.state_softmax_t + 1e-7) / tf.log(tf.constant(2, dtype=self.state_softmax_t.dtype)), axis=1 ), axis=0 ) ) if self.no_tau_target_encoder: target_tau = 1.0 else: target_tau = self.encoder_tau if self.target_network: self.next_state_mu_t, self.next_state_sd_t, self.next_state_var_t, self.next_state_logits_t, \ self.next_state_softmax_t = \ self.build_encoder( self.next_states_pl, self.next_hand_states_pl, target_tau, share_weights=False, namespace=self.TARGET_ENCODER_NAMESPACE ) self.build_target_update() else: self.next_state_mu_t, self.next_state_sd_t, self.next_state_var_t, self.next_state_logits_t, \ self.next_state_softmax_t = \ self.build_encoder( self.next_states_pl, self.next_hand_states_pl, target_tau, share_weights=True, namespace=self.ENCODER_NAMESPACE ) self.build_r_model() self.build_t_model() def build_encoder(self, depth_pl, hand_state_pl, tau, share_weights=False, namespace=None): x = tf.expand_dims(depth_pl, axis=-1) with tf.variable_scope(namespace, reuse=share_weights): for idx in range(len(self.encoder_filters)): with tf.variable_scope("conv{:d}".format(idx + 1)): x = tf.layers.conv2d( x, self.encoder_filters[idx], self.encoder_filter_sizes[idx], self.encoder_strides[idx], padding="SAME", activation=tf.nn.relu if not self.batch_norm else None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer(), use_bias=not self.batch_norm ) if self.batch_norm and idx != len(self.encoder_filters) - 1: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) x = tf.layers.flatten(x) if self.batch_norm: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) x = tf.concat([x, hand_state_pl], axis=1) for idx, neurons in enumerate(self.encoder_neurons): with tf.variable_scope("fc{:d}".format(idx + 1)): x = tf.layers.dense( x, neurons, activation=tf.nn.relu if not self.batch_norm else None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer(), use_bias=not self.batch_norm ) if self.batch_norm: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) with tf.variable_scope("predict"): mu_t = tf.layers.dense( x, self.num_blocks, activation=None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer() ) log_var_t = tf.layers.dense( x, self.num_blocks, activation=None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer() ) var_t = tf.exp(log_var_t) sd_t = tf.sqrt(var_t) noise_t = tf.random_normal( shape=(tf.shape(mu_t)[0], self.num_blocks), mean=0, stddev=1.0 ) sample_t = mu_t + sd_t * noise_t dist_t = tf.nn.softmax(sample_t / tau) return mu_t, sd_t, var_t, sample_t, dist_t def build_kl_penalty(self): self.kl_penalty_weight_v = tf.Variable(self.kl_penalty_weight, trainable=False, dtype=tf.float32) self.kl_penalty_weight_pl = tf.placeholder(tf.float32, shape=[], name="kl_penalty_weight_pl") self.kl_penalty_weight_assign = tf.assign(self.kl_penalty_weight_v, self.kl_penalty_weight_pl) if self.kl_penalty: kl_divergence_t = 0.5 * (tf.square(self.state_mu_t) + self.state_var_t - tf.log(self.state_var_t) - 1.0) self.kl_penalty_t = tf.reduce_mean(tf.reduce_sum(kl_divergence_t, axis=1), axis=0) else: self.kl_penalty_t = 0.0 class ExpectationModelGaussianWithQ(ExpectationModelGaussian): def __init__(self, input_shape, num_blocks, num_actions, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, learning_rate_encoder, learning_rate_r, learning_rate_t, learning_rate_q, weight_decay, reward_gamma, transition_gamma, optimizer_encoder, optimizer_model, max_steps, batch_norm=True, target_network=True, oracle_r=None, oracle_t=None, propagate_next_state=False, z_transform=False, abs_z_transform=False, sigsoftmax=False, encoder_tau=1.0, model_tau=1.0, no_tau_target_encoder=False, kl_penalty=False, kl_penalty_weight=0.01, small_r_init=False, small_t_init=False, small_q_init=False): super(ExpectationModelGaussianWithQ, self).__init__( input_shape, num_blocks, num_actions, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, learning_rate_encoder, learning_rate_r, learning_rate_t, weight_decay, transition_gamma, optimizer_encoder, optimizer_model, max_steps, batch_norm=batch_norm, target_network=target_network, oracle_r=oracle_r, oracle_t=oracle_t, propagate_next_state=propagate_next_state, z_transform=z_transform, abs_z_transform=abs_z_transform, sigsoftmax=sigsoftmax, encoder_tau=encoder_tau, model_tau=model_tau, no_tau_target_encoder=no_tau_target_encoder, kl_penalty=kl_penalty, kl_penalty_weight=kl_penalty_weight, small_r_init=small_r_init, small_t_init=small_t_init ) self.learning_rate_q = learning_rate_q self.small_q_init = small_q_init self.reward_gamma = reward_gamma def validate(self, depths, hand_states, actions, rewards, q_values, next_depths, next_hand_states, dones, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) losses = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[:, np.newaxis][batch_slice], self.actions_pl: actions[batch_slice], self.rewards_pl: rewards[batch_slice], self.q_values_pl: q_values[batch_slice], self.next_states_pl: next_depths[batch_slice], self.next_hand_states_pl: next_hand_states[:, np.newaxis][batch_slice], self.dones_pl: dones[batch_slice], self.is_training_pl: False } l1, l2, l3 = self.session.run( [self.full_q_loss_t, self.full_transition_loss_t, self.full_reward_loss_t], feed_dict=feed_dict ) losses.append(np.transpose(np.array([l1, l2, l3]), axes=(1, 0))) losses = np.concatenate(losses, axis=0) return losses def validate_and_encode(self, depths, hand_states, actions, rewards, q_values, next_depths, next_hand_states, dones, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) losses = [] embeddings = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[:, np.newaxis][batch_slice], self.actions_pl: actions[batch_slice], self.rewards_pl: rewards[batch_slice], self.q_values_pl: q_values[batch_slice], self.next_states_pl: next_depths[batch_slice], self.next_hand_states_pl: next_hand_states[:, np.newaxis][batch_slice], self.dones_pl: dones[batch_slice], self.is_training_pl: False } tmp_embeddings, l1, l2, l3 = self.session.run([ self.state_softmax_t, self.full_q_loss_t, self.full_transition_loss_t, self.full_reward_loss_t], feed_dict=feed_dict ) losses.append(np.transpose(np.array([l1, l2, l3]), axes=(1, 0))) embeddings.append(tmp_embeddings) losses = np.concatenate(losses, axis=0) embeddings = np.concatenate(embeddings) return losses, embeddings def build_placeholders(self): self.states_pl = tf.placeholder(tf.float32, shape=(None, *self.input_shape), name="states_pl") self.actions_pl = tf.placeholder(tf.int32, shape=(None,), name="actions_pl") self.rewards_pl = tf.placeholder(tf.float32, shape=(None,), name="rewards_pl") self.q_values_pl = tf.placeholder(tf.float32, shape=(None, self.num_actions), name="q_values_pl") self.dones_pl = tf.placeholder(tf.bool, shape=(None,), name="dones_pl") self.next_states_pl = tf.placeholder(tf.float32, shape=(None, *self.input_shape), name="next_states_pl") self.is_training_pl = tf.placeholder(tf.bool, shape=[], name="is_training_pl") self.hand_states_pl = tf.placeholder(tf.float32, shape=(None, 1), name="hand_states_pl") self.next_hand_states_pl = tf.placeholder(tf.float32, shape=(None, 1), name="next_hand_states_pl") def build_model(self): self.state_mu_t, self.state_sd_t, self.state_var_t, self.state_logits_t, self.state_softmax_t = \ self.build_encoder( self.states_pl, self.hand_states_pl, self.encoder_tau, namespace=self.ENCODER_NAMESPACE ) self.perplexity_t = tf.constant(2, dtype=tf.float32) ** ( - tf.reduce_mean( tf.reduce_sum( self.state_softmax_t * tf.log(self.state_softmax_t + 1e-7) / tf.log(tf.constant(2, dtype=self.state_softmax_t.dtype)), axis=1 ), axis=0 ) ) if self.no_tau_target_encoder: target_tau = 1.0 else: target_tau = self.encoder_tau if self.target_network: self.next_state_mu_t, self.next_state_sd_t, self.next_state_var_t, self.next_state_logits_t, \ self.next_state_softmax_t = \ self.build_encoder( self.next_states_pl, self.next_hand_states_pl, target_tau, share_weights=False, namespace=self.TARGET_ENCODER_NAMESPACE ) self.build_target_update() else: self.next_state_mu_t, self.next_state_sd_t, self.next_state_var_t, self.next_state_logits_t, \ self.next_state_softmax_t = \ self.build_encoder( self.next_states_pl, self.next_hand_states_pl, target_tau, share_weights=True, namespace=self.ENCODER_NAMESPACE ) self.build_r_model() self.build_t_model() self.build_q_model() def build_q_model(self): if self.small_q_init: q_init = tf.random_normal_initializer(mean=0, stddev=0.1, dtype=tf.float32) else: q_init = tf.random_uniform_initializer(minval=0, maxval=1, dtype=tf.float32) self.q_v = tf.get_variable( "q_matrix", shape=(self.num_actions, self.num_blocks), dtype=tf.float32, initializer=q_init ) self.q_t = self.q_v def build_training(self): # prep self.global_step = tf.train.get_or_create_global_step() self.gather_matrices() self.dones_float_t = tf.cast(self.dones_pl, tf.float32) # build losses self.build_q_loss() self.build_reward_loss() self.build_transition_loss() self.build_regularization_loss() self.build_kl_penalty() # build full loss self.gamma_v = tf.Variable(initial_value=self.gamma, trainable=False) self.loss_t = self.q_loss_t + self.reward_gamma * self.reward_loss_t + \ tf.stop_gradient(self.gamma_v) * self.transition_loss_t + \ self.regularization_loss_t + self.kl_penalty_weight_v * self.kl_penalty_t # build training self.build_encoder_training() self.build_model_training() self.build_q_model_training() if self.model_train_step is None: self.model_train_step = self.q_step else: self.model_train_step = tf.group(self.model_train_step, self.q_step) # integrate training into a single op self.train_step = tf.group(self.encoder_train_step, self.model_train_step) def build_q_loss(self): term1 = tf.square(self.q_values_pl[:, :, tf.newaxis] - self.q_t[tf.newaxis, :, :]) term1 = tf.reduce_sum(term1, axis=1) term2 = term1 * self.state_softmax_t self.full_q_loss_t = (1 / 2) * tf.reduce_sum(term2, axis=1) self.q_loss_t = tf.reduce_mean(self.full_q_loss_t, axis=0) def build_q_model_training(self): q_optimizer = agent_utils.get_optimizer(self.optimizer_model, self.learning_rate_q) self.q_step = q_optimizer.minimize( self.q_loss_t, var_list=[self.q_v] ) class ExpectationModelContinuous: ENCODER_NAMESPACE = "encoder" TARGET_ENCODER_NAMESPACE = "target_encoder" def __init__(self, input_shape, num_blocks, num_actions, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, learning_rate_encoder, learning_rate_r, learning_rate_t, weight_decay, gamma, optimizer_encoder, optimizer_model, max_steps, batch_norm=True, target_network=True, propagate_next_state=False, no_sample=False, softplus=False, beta=0.0, zero_embedding_variance=False, old_bn_settings=False, bn_momentum=0.99): if propagate_next_state: assert not target_network self.input_shape = input_shape self.num_blocks = num_blocks self.num_actions = num_actions self.encoder_filters = encoder_filters self.encoder_filter_sizes = encoder_filter_sizes self.encoder_strides = encoder_strides self.encoder_neurons = encoder_neurons self.learning_rate_encoder = learning_rate_encoder self.learning_rate_r = learning_rate_r self.learning_rate_t = learning_rate_t self.weight_decay = weight_decay self.gamma = gamma self.optimizer_encoder = optimizer_encoder self.optimizer_model = optimizer_model self.max_steps = max_steps self.batch_norm = batch_norm self.target_network = target_network self.propagate_next_state = propagate_next_state self.no_sample = no_sample self.softplus = softplus self.beta = beta self.zero_embedding_variance = zero_embedding_variance self.old_bn_settings = old_bn_settings self.bn_momentum = bn_momentum self.hand_states_pl, self.next_hand_states_pl = None, None def encode(self, depths, hand_states, batch_size=100, zero_sd=False): num_steps = int(np.ceil(depths.shape[0] / batch_size)) embeddings = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[batch_slice], self.is_training_pl: False } if zero_sd: feed_dict[self.state_sd_t] = np.zeros( (len(depths[batch_slice]), self.num_blocks), dtype=np.float32 ) embedding = self.session.run(self.state_mu_t, feed_dict=feed_dict) embeddings.append(embedding) embeddings = np.concatenate(embeddings, axis=0) return embeddings def predict_next_states(self, depths, hand_states, actions, batch_size=100, zero_sd=False): num_steps = int(np.ceil(depths.shape[0] / batch_size)) next_states = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[batch_slice], self.actions_pl: actions[batch_slice], self.is_training_pl: False } if zero_sd: feed_dict[self.state_sd_t] = np.zeros( (len(depths[batch_slice]), self.num_blocks), dtype=np.float32 ) tmp_next_states = self.session.run(self.transformed_logits, feed_dict=feed_dict) next_states.append(tmp_next_states) next_states = np.concatenate(next_states, axis=0) return next_states def predict_rewards(self, depths, hand_states, actions, batch_size=100, zero_sd=False): num_steps = int(np.ceil(depths.shape[0] / batch_size)) rewards = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[batch_slice], self.actions_pl: actions[batch_slice], self.is_training_pl: False } if zero_sd: feed_dict[self.state_sd_t] = np.zeros( (len(depths[batch_slice]), self.num_blocks), dtype=np.float32 ) tmp_rewards = self.session.run(self.reward_prediction_t, feed_dict=feed_dict) rewards.append(tmp_rewards) rewards = np.concatenate(rewards, axis=0) return rewards def validate(self, depths, hand_states, actions, rewards, next_depths, next_hand_states, dones, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) losses = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[:, np.newaxis][batch_slice], self.actions_pl: actions[batch_slice], self.rewards_pl: rewards[batch_slice], self.next_states_pl: next_depths[batch_slice], self.next_hand_states_pl: next_hand_states[:, np.newaxis][batch_slice], self.dones_pl: dones[batch_slice], self.is_training_pl: False } l1, l2 = self.session.run([self.full_transition_loss_t, self.full_reward_loss_t], feed_dict=feed_dict) losses.append(np.transpose(np.array([l1, l2]), axes=(1, 0))) losses = np.concatenate(losses, axis=0) return losses def validate_and_encode(self, depths, hand_states, actions, rewards, next_depths, next_hand_states, dones, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) losses = [] embeddings = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[:, np.newaxis][batch_slice], self.actions_pl: actions[batch_slice], self.rewards_pl: rewards[batch_slice], self.next_states_pl: next_depths[batch_slice], self.next_hand_states_pl: next_hand_states[:, np.newaxis][batch_slice], self.dones_pl: dones[batch_slice], self.is_training_pl: False } tmp_embeddings, l1, l2 = self.session.run([ self.state_mu_t, self.full_transition_loss_t, self.full_reward_loss_t], feed_dict=feed_dict ) losses.append(np.transpose(np.array([l1, l2]), axes=(1, 0))) embeddings.append(tmp_embeddings) losses = np.concatenate(losses, axis=0) embeddings = np.concatenate(embeddings) return losses, embeddings def build(self): self.build_placeholders() self.build_model() self.build_training() self.saver = tf.train.Saver() def build_placeholders(self): self.states_pl = tf.placeholder(tf.float32, shape=(None, *self.input_shape), name="states_pl") self.actions_pl = tf.placeholder(tf.int32, shape=(None,), name="actions_pl") self.rewards_pl = tf.placeholder(tf.float32, shape=(None,), name="rewards_pl") self.dones_pl = tf.placeholder(tf.bool, shape=(None,), name="dones_pl") self.next_states_pl = tf.placeholder(tf.float32, shape=(None, *self.input_shape), name="next_states_pl") self.is_training_pl = tf.placeholder(tf.bool, shape=[], name="is_training_pl") self.hand_states_pl = tf.placeholder(tf.float32, shape=(None, 1), name="hand_states_pl") self.next_hand_states_pl = tf.placeholder(tf.float32, shape=(None, 1), name="next_hand_states_pl") def build_model(self): self.state_mu_t, self.state_var_t, self.state_sd_t, self.state_sample_t = \ self.build_encoder(self.states_pl, self.hand_states_pl) if self.target_network: self.next_state_mu_t, self.next_state_var_t, self.next_state_sd_t, self.next_state_sample_t = self.build_encoder( self.next_states_pl, self.next_hand_states_pl, share_weights=False, namespace=self.TARGET_ENCODER_NAMESPACE ) self.build_target_update() else: self.next_state_mu_t, self.next_state_var_t, self.next_state_sd_t, self.next_state_sample_t = self.build_encoder( self.next_states_pl, self.next_hand_states_pl, share_weights=True ) self.r_v = tf.get_variable( "reward_matrix", shape=(self.num_actions, self.num_blocks), dtype=tf.float32, initializer=tf.random_normal_initializer(mean=0, stddev=np.sqrt(2 / self.num_blocks), dtype=tf.float32) ) self.t_v = tf.get_variable( "transition_matrix", shape=(self.num_actions, self.num_blocks, self.num_blocks), dtype=tf.float32, initializer=tf.random_normal_initializer(mean=0, stddev=np.sqrt(2 / self.num_blocks), dtype=tf.float32) ) def build_training(self): # create global training step variable self.global_step = tf.train.get_or_create_global_step() self.float_dones_t = tf.cast(self.dones_pl, tf.float32) # gather appropriate transition matrices self.gather_r_t = tf.gather(self.r_v, self.actions_pl) self.gather_t_t = tf.gather(self.t_v, self.actions_pl) # build losses self.build_reward_loss() self.build_transition_loss() self.build_weight_decay_loss() self.build_kl_loss() # build the whole loss self.gamma_v = tf.Variable(initial_value=self.gamma, trainable=False) self.loss_t = self.reward_loss_t + tf.stop_gradient(self.gamma_v) * self.transition_loss_t + \ self.regularization_loss_t + self.beta * self.kl_loss_t # build training self.build_encoder_training() self.build_r_model_training() self.build_t_model_training() self.model_train_step = tf.group(self.r_step, self.t_step) self.train_step = tf.group(self.encoder_train_step, self.model_train_step) def build_reward_loss(self): self.reward_prediction_t = tf.reduce_sum(self.state_sample_t * self.gather_r_t, axis=1) term1 = tf.square( self.rewards_pl - self.reward_prediction_t ) self.full_reward_loss_t = (1 / 2) * term1 self.reward_loss_t = tf.reduce_mean(self.full_reward_loss_t, axis=0) def build_transition_loss(self): self.transformed_logits = tf.matmul(self.state_sample_t[:, tf.newaxis, :], self.gather_t_t) self.transformed_logits = self.transformed_logits[:, 0, :] if self.propagate_next_state: term1 = tf.reduce_sum(tf.square(self.next_state_sample_t - self.transformed_logits), axis=1) else: term1 = tf.reduce_sum(tf.square(tf.stop_gradient(self.next_state_sample_t) - self.transformed_logits), axis=1) self.full_transition_loss_t = (1 / 2) * term1 * (1 - self.float_dones_t) self.transition_loss_t = tf.reduce_sum(self.full_transition_loss_t, axis=0) / tf.reduce_max( [1.0, tf.reduce_sum(1 - self.float_dones_t)]) def build_weight_decay_loss(self): reg = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) if len(reg) > 0: self.regularization_loss_t = tf.add_n(reg) else: self.regularization_loss_t = 0 def build_kl_loss(self): self.kl_loss_t = 0.0 if self.beta is not None and self.beta > 0.0: self.kl_divergence_t = 0.5 * ( tf.square(self.state_mu_t) + self.state_var_t - tf.log(self.state_var_t + 1e-5) - 1.0) self.kl_loss_t = tf.reduce_mean(tf.reduce_sum(self.kl_divergence_t, axis=1)) def build_encoder_training(self): encoder_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.ENCODER_NAMESPACE) encoder_optimizer = agent_utils.get_optimizer(self.optimizer_encoder, self.learning_rate_encoder) self.encoder_train_step = encoder_optimizer.minimize( self.loss_t, global_step=self.global_step, var_list=encoder_variables ) if self.batch_norm: self.update_op = tf.group(*tf.get_collection(tf.GraphKeys.UPDATE_OPS)) self.encoder_train_step = tf.group(self.encoder_train_step, self.update_op) def build_r_model_training(self): r_optimizer = agent_utils.get_optimizer(self.optimizer_model, self.learning_rate_r) self.r_step = r_optimizer.minimize( self.reward_loss_t, var_list=[self.r_v] ) def build_t_model_training(self): t_optimizer = agent_utils.get_optimizer(self.optimizer_model, self.learning_rate_t) self.t_step = t_optimizer.minimize( self.transition_loss_t, var_list=[self.t_v] ) def build_encoder(self, depth_pl, hand_state_pl, share_weights=False, namespace=ENCODER_NAMESPACE): if len(depth_pl.shape) == 3: x = tf.expand_dims(depth_pl, axis=-1) elif len(depth_pl.shape) != 4: raise ValueError("Weird depth shape?") else: x = depth_pl with tf.variable_scope(namespace, reuse=share_weights): for idx in range(len(self.encoder_filters)): with tf.variable_scope("conv{:d}".format(idx + 1)): x = tf.layers.conv2d( x, self.encoder_filters[idx], self.encoder_filter_sizes[idx], self.encoder_strides[idx], padding="SAME", activation=tf.nn.relu if not self.batch_norm else None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer(), use_bias=not self.batch_norm ) if self.batch_norm and idx != len(self.encoder_filters) - 1: if self.old_bn_settings: x = tf.layers.batch_normalization( x, training=self.is_training_pl, trainable=not share_weights, momentum=self.bn_momentum ) else: x = tf.layers.batch_normalization( x, training=self.is_training_pl if not share_weights else False, trainable=not share_weights, momentum=self.bn_momentum ) x = tf.nn.relu(x) x = tf.layers.flatten(x) if self.batch_norm: if self.old_bn_settings: x = tf.layers.batch_normalization( x, training=self.is_training_pl, trainable=not share_weights, momentum=self.bn_momentum ) else: x = tf.layers.batch_normalization( x, training=self.is_training_pl if not share_weights else False, trainable=not share_weights, momentum=self.bn_momentum ) x = tf.nn.relu(x) x = tf.concat([x, hand_state_pl], axis=1) for idx, neurons in enumerate(self.encoder_neurons): with tf.variable_scope("fc{:d}".format(idx + 1)): x = tf.layers.dense( x, neurons, activation=tf.nn.relu if not self.batch_norm else None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer(), use_bias=not self.batch_norm ) if self.batch_norm: if self.old_bn_settings: x = tf.layers.batch_normalization( x, training=self.is_training_pl, trainable=not share_weights, momentum=self.bn_momentum ) else: x = tf.layers.batch_normalization( x, training=self.is_training_pl if not share_weights else False, trainable=not share_weights, momentum=self.bn_momentum ) x = tf.nn.relu(x) with tf.variable_scope("predict"): mu = tf.layers.dense( x, self.num_blocks, activation=None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer() ) sigma = tf.layers.dense( x, self.num_blocks, activation=None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer() ) if self.no_sample: sample = mu var_t = None else: noise = tf.random_normal( shape=(tf.shape(mu)[0], self.num_blocks), mean=0, stddev=1.0 ) if self.softplus: # log var is sd sd = tf.nn.softplus(sigma) if self.zero_embedding_variance: sd = sd * 0.0 sd_noise_t = noise * sd sample = mu + sd_noise_t var_t = tf.square(sd) else: var_t = tf.exp(sigma) if self.zero_embedding_variance: var_t = var_t * 0.0 sd = tf.sqrt(var_t) sd_noise_t = noise * sd sample = mu + sd_noise_t return mu, var_t, sd, sample def build_target_update(self): source_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.ENCODER_NAMESPACE) target_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.TARGET_ENCODER_NAMESPACE) assert len(source_vars) == len(target_vars) and len(source_vars) > 0 update_ops = [] for source_var, target_var in zip(source_vars, target_vars): update_ops.append(tf.assign(target_var, source_var)) self.target_update_op = tf.group(*update_ops) def build_summaries(self): # losses tf.summary.scalar("loss", self.loss_t) tf.summary.scalar("transition_loss", tf.reduce_mean(self.transition_loss_t)) tf.summary.scalar("reward_loss", tf.reduce_mean(self.reward_loss_t)) # logits and softmax self.summarize(self.state_mu_t, "means") self.summarize(self.state_var_t, "vars") self.summarize(self.state_sample_t, "samples") # matrices self.summarize(self.r_v, "R") self.summarize(self.t_v, "T") def set_gamma(self, value): self.session.run(tf.assign(self.gamma_v, value)) def start_session(self, gpu_memory=None): gpu_options = None if gpu_memory is not None: gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory) tf_config = tf.ConfigProto(gpu_options=gpu_options) self.session = tf.Session(config=tf_config) self.session.run(tf.global_variables_initializer()) def stop_session(self): if self.session is not None: self.session.close() def load(self, path): self.saver.restore(self.session, path) def save(self, path): path_dir = os.path.dirname(path) if len(path_dir) > 0 and not os.path.isdir(path_dir): os.makedirs(path_dir) self.saver.save(self.session, path) def save_matrices_as_images(self, step, save_dir, ext="pdf"): r, p = self.session.run([self.r_v, self.t_v]) r = np.reshape(r, (r.shape[0], -1)) p = np.reshape(p, (p.shape[0], -1)) r_path = os.path.join(save_dir, "r_{:d}.{}".format(step, ext)) p_path = os.path.join(save_dir, "p_{:d}.{}".format(step, ext)) plt.clf() plt.imshow(r, vmin=-0.5, vmax=1.5) plt.colorbar() plt.savefig(r_path) plt.clf() plt.imshow(p, vmin=0, vmax=1) plt.colorbar() plt.savefig(p_path) def summarize(self, var, name): tf.summary.scalar(name + "_mean", tf.reduce_mean(var)) tf.summary.scalar(name + "_min", tf.reduce_min(var)) tf.summary.scalar(name + "_max", tf.reduce_max(var)) tf.summary.histogram(name + "_hist", var) class ExpectationModelVQ(ExpectationModelContinuous): def __init__(self, input_shape, num_embeddings, dimensionality, num_actions, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, learning_rate_encoder, learning_rate_r, learning_rate_t, weight_decay, gamma_1, optimizer_encoder, optimizer_model, max_steps, batch_norm=True, target_network=True, propagate_next_state=False, no_sample=False, softplus=False, alpha=0.1, beta=0.0): ExpectationModelContinuous.__init__( self, input_shape, dimensionality, num_actions, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, learning_rate_encoder, learning_rate_r, learning_rate_t, weight_decay, gamma_1, optimizer_encoder, optimizer_model, max_steps, batch_norm=batch_norm, target_network=target_network, propagate_next_state=propagate_next_state, no_sample=no_sample, softplus=softplus, beta=beta ) self.num_embeddings = num_embeddings self.dimensionality = dimensionality self.aplha = alpha def build_model(self): self.state_mu_t = \ self.build_encoder(self.states_pl, self.hand_states_pl, namespace=self.ENCODER_NAMESPACE) self.embeds = tf.get_variable( "embeddings", [self.num_embeddings, self.dimensionality], initializer=tf.truncated_normal_initializer(stddev=0.02) ) self.state_sample_t, self.state_classes_t = self.quantize(self.state_mu_t) if self.target_network: self.next_state_mu_t = self.build_encoder( self.next_states_pl, self.next_hand_states_pl, share_weights=False, namespace=self.TARGET_ENCODER_NAMESPACE ) self.build_target_update() else: self.next_state_mu_t = self.build_encoder( self.next_states_pl, self.next_hand_states_pl, share_weights=True, namespace=self.ENCODER_NAMESPACE ) self.next_state_sample_t, self.next_state_classes_t = self.quantize(self.next_state_mu_t) self.r_v = tf.get_variable( "reward_matrix", shape=(self.num_actions, self.dimensionality), dtype=tf.float32, initializer=tf.random_normal_initializer(mean=0, stddev=np.sqrt(2 / self.dimensionality), dtype=tf.float32) ) self.t_v = tf.get_variable( "transition_matrix", shape=(self.num_actions, self.dimensionality, self.dimensionality), dtype=tf.float32, initializer=tf.random_normal_initializer(mean=0, stddev=np.sqrt(2 / self.dimensionality), dtype=tf.float32) ) def quantize(self, prediction): diff = prediction[:, tf.newaxis, :] - self.embeds[tf.newaxis, :, :] norm = tf.norm(diff, axis=2) classes = tf.argmin(norm, axis=1) return tf.gather(self.embeds, classes), classes def build_training(self): # create global training step variable self.global_step = tf.train.get_or_create_global_step() self.float_dones_t = tf.cast(self.dones_pl, tf.float32) # gather appropriate transition matrices self.gather_r_t = tf.gather(self.r_v, self.actions_pl) self.gather_t_t = tf.gather(self.t_v, self.actions_pl) # build losses self.build_reward_loss() self.build_transition_loss() self.build_left_and_right_embedding_losses() self.build_weight_decay_loss() # build the whole loss self.gamma_v = tf.Variable(initial_value=self.gamma, trainable=False) self.main_loss_t = self.reward_loss_t + tf.stop_gradient(self.gamma_v) * self.transition_loss_t + \ self.regularization_loss_t self.loss_t = self.main_loss_t + self.right_loss_t # build training self.build_encoder_and_embedding_training() self.build_r_model_training() self.build_t_model_training() self.model_train_step = tf.group(self.r_step, self.t_step) self.train_step = tf.group(self.encoder_train_step, self.model_train_step) def build_left_and_right_embedding_losses(self): self.left_loss_t = tf.reduce_mean( tf.norm(tf.stop_gradient(self.state_mu_t) - self.state_sample_t, axis=1) ** 2 ) self.right_loss_t = tf.reduce_mean( tf.norm(self.state_mu_t - tf.stop_gradient(self.state_sample_t), axis=1) ** 2 ) def build_reward_loss(self): self.reward_prediction_t = tf.reduce_sum(self.state_sample_t * self.gather_r_t, axis=1) term1 = tf.square( self.rewards_pl - self.reward_prediction_t ) self.full_reward_loss_t = (1 / 2) * term1 self.reward_loss_t = tf.reduce_mean(self.full_reward_loss_t, axis=0) def build_transition_loss(self): self.transformed_logits = tf.matmul(self.state_sample_t[:, tf.newaxis, :], self.gather_t_t) self.transformed_logits = self.transformed_logits[:, 0, :] if self.propagate_next_state: term1 = tf.reduce_mean(tf.square(self.next_state_sample_t - self.transformed_logits), axis=1) else: term1 = tf.reduce_mean(tf.square(tf.stop_gradient(self.next_state_sample_t) - self.transformed_logits), axis=1) self.full_transition_loss_t = (1 / 2) * term1 * (1 - self.float_dones_t) self.transition_loss_t = tf.reduce_sum(self.full_transition_loss_t, axis=0) / tf.reduce_max( [1.0, tf.reduce_sum(1 - self.float_dones_t)]) def build_encoder_and_embedding_training(self): encoder_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.ENCODER_NAMESPACE) encoder_optimizer = agent_utils.get_optimizer(self.optimizer_encoder, self.learning_rate_encoder) grad_z = tf.gradients(self.main_loss_t, self.state_sample_t) encoder_grads = [(tf.gradients(self.state_mu_t, var, grad_z)[0] + self.aplha * tf.gradients(self.right_loss_t, var)[0], var) for var in encoder_variables] embed_grads = list(zip(tf.gradients(self.left_loss_t, self.embeds), [self.embeds])) self.encoder_train_step = encoder_optimizer.apply_gradients( encoder_grads + embed_grads ) if self.batch_norm: self.update_op = tf.group(*tf.get_collection(tf.GraphKeys.UPDATE_OPS)) self.encoder_train_step = tf.group(self.encoder_train_step, self.update_op) def build_encoder(self, depth_pl, hand_state_pl, share_weights=False, namespace=None): x = tf.expand_dims(depth_pl, axis=-1) with tf.variable_scope(namespace, reuse=share_weights): for idx in range(len(self.encoder_filters)): with tf.variable_scope("conv{:d}".format(idx + 1)): x = tf.layers.conv2d( x, self.encoder_filters[idx], self.encoder_filter_sizes[idx], self.encoder_strides[idx], padding="SAME", activation=tf.nn.relu if not self.batch_norm else None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer(), use_bias=not self.batch_norm ) if self.batch_norm and idx != len(self.encoder_filters) - 1: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) x = tf.layers.flatten(x) if self.batch_norm: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) x = tf.concat([x, hand_state_pl], axis=1) for idx, neurons in enumerate(self.encoder_neurons): with tf.variable_scope("fc{:d}".format(idx + 1)): x = tf.layers.dense( x, neurons, activation=tf.nn.relu if not self.batch_norm else None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer(), use_bias=not self.batch_norm ) if self.batch_norm: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) with tf.variable_scope("predict"): mu = tf.layers.dense( x, self.num_blocks, activation=None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer() ) return mu class ExpectationModelContinuousNNTransitions(ExpectationModelContinuous): def __init__(self, input_shape, num_blocks, num_actions, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, learning_rate_encoder, learning_rate_r, learning_rate_t, transition_neurons, weight_decay, gamma_1, optimizer_encoder, optimizer_model, max_steps, batch_norm=True, target_network=True, propagate_next_state=False, no_sample=False, softplus=False, beta=0.0): ExpectationModelContinuous.__init__( self, input_shape, num_blocks, num_actions, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, learning_rate_encoder, learning_rate_r, learning_rate_t, weight_decay, gamma_1, optimizer_encoder, optimizer_model, max_steps, batch_norm=batch_norm, target_network=target_network, propagate_next_state=propagate_next_state, no_sample=no_sample, softplus=softplus, beta=beta ) self.transition_neurons = transition_neurons def build_model(self): # TODO: throw out t_v; either accept mu_t or sample_t self.state_mu_t, self.state_var_t, self.state_sd_t, self.state_sample_t = \ self.build_encoder(self.states_pl, self.hand_states_pl) if self.target_network: self.next_state_mu_t, self.next_state_var_t, self.next_state_sd_t, self.next_state_sample_t = self.build_encoder( self.next_states_pl, self.next_hand_states_pl, share_weights=False, namespace=self.TARGET_ENCODER_NAMESPACE ) self.build_target_update() else: self.next_state_mu_t, self.next_state_var_t, self.next_state_sd_t, self.next_state_sample_t = self.build_encoder( self.next_states_pl, self.next_hand_states_pl, share_weights=True ) self.r_v = tf.get_variable( "reward_matrix", shape=(self.num_actions, self.num_blocks), dtype=tf.float32, initializer=tf.random_normal_initializer(mean=0, stddev=np.sqrt(2 / self.num_blocks), dtype=tf.float32) ) self.t_v = tf.get_variable( "transition_matrix", shape=(self.num_actions, self.num_blocks, self.num_blocks), dtype=tf.float32, initializer=tf.random_normal_initializer(mean=0, stddev=np.sqrt(2 / self.num_blocks), dtype=tf.float32) ) def build_transition_nn(self, embedding): # TODO: needs to accept actions as well x = embedding with tf.variable_scope("transition"): for idx, neurons in enumerate(self.transition_neurons): with tf.variable_scope("fc{:d}".format(idx)): if idx == len(self.transition_neurons) - 1: x = tf.layers.dense( x, neurons, activation=None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer() ) else: x = tf.layers.dense( x, neurons, activation=tf.nn.relu if not self.batch_norm else None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer(), use_bias=not self.batch_norm ) if self.batch_norm: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) assert embedding.shape[1] == x.shape[1] return x class ExpectationModelContinuousWithQ(ExpectationModelContinuous): def __init__(self, input_shape, num_blocks, num_actions, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, learning_rate_encoder, learning_rate_r, learning_rate_t, learning_rate_q, weight_decay, gamma_1, gamma_2, optimizer_encoder, optimizer_model, max_steps, batch_norm=True, target_network=True, propagate_next_state=False, no_sample=False, softplus=False, beta=0.0, old_bn_settings=False, bn_momentum=0.99): ExpectationModelContinuous.__init__( self, input_shape, num_blocks, num_actions, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, learning_rate_encoder, learning_rate_r, learning_rate_t, weight_decay, gamma_1, optimizer_encoder, optimizer_model, max_steps, batch_norm=batch_norm, target_network=target_network, propagate_next_state=propagate_next_state, no_sample=no_sample, softplus=softplus, beta=beta, old_bn_settings=old_bn_settings, bn_momentum=bn_momentum ) self.gamma_2 = gamma_2 self.learning_rate_q = learning_rate_q def validate(self, depths, hand_states, actions, rewards, q_values, next_depths, next_hand_states, dones, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) losses = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[:, np.newaxis][batch_slice], self.actions_pl: actions[batch_slice], self.rewards_pl: rewards[batch_slice], self.q_values_pl: q_values[batch_slice], self.next_states_pl: next_depths[batch_slice], self.next_hand_states_pl: next_hand_states[:, np.newaxis][batch_slice], self.dones_pl: dones[batch_slice], self.is_training_pl: False } l1, l2, l3 = self.session.run( [self.full_q_loss_t, self.full_transition_loss_t, self.full_reward_loss_t], feed_dict=feed_dict ) losses.append(np.transpose(np.array([l1, l2, l3]), axes=(1, 0))) losses = np.concatenate(losses, axis=0) return losses def validate_and_encode(self, depths, hand_states, actions, rewards, q_values, next_depths, next_hand_states, dones, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) losses = [] embeddings = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[:, np.newaxis][batch_slice], self.actions_pl: actions[batch_slice], self.rewards_pl: rewards[batch_slice], self.q_values_pl: q_values[batch_slice], self.next_states_pl: next_depths[batch_slice], self.next_hand_states_pl: next_hand_states[:, np.newaxis][batch_slice], self.dones_pl: dones[batch_slice], self.is_training_pl: False } tmp_embeddings, l1, l2, l3 = self.session.run([ self.state_mu_t, self.full_q_loss_t, self.full_transition_loss_t, self.full_reward_loss_t], feed_dict=feed_dict ) losses.append(np.transpose(np.array([l1, l2, l3]), axes=(1, 0))) embeddings.append(tmp_embeddings) losses = np.concatenate(losses, axis=0) embeddings = np.concatenate(embeddings) return losses, embeddings def build_placeholders(self): self.states_pl = tf.placeholder(tf.float32, shape=(None, *self.input_shape), name="states_pl") self.actions_pl = tf.placeholder(tf.int32, shape=(None,), name="actions_pl") self.rewards_pl = tf.placeholder(tf.float32, shape=(None,), name="rewards_pl") self.q_values_pl = tf.placeholder(tf.float32, shape=(None, self.num_actions), name="q_values_pl") self.dones_pl = tf.placeholder(tf.bool, shape=(None,), name="dones_pl") self.next_states_pl = tf.placeholder(tf.float32, shape=(None, *self.input_shape), name="next_states_pl") self.is_training_pl = tf.placeholder(tf.bool, shape=[], name="is_training_pl") self.hand_states_pl = tf.placeholder(tf.float32, shape=(None, 1), name="hand_states_pl") self.next_hand_states_pl = tf.placeholder(tf.float32, shape=(None, 1), name="next_hand_states_pl") def build_model(self): self.build_encoders() self.build_linear_models() def build_encoders(self): self.state_mu_t, self.state_var_t, self.state_sd_t, self.state_sample_t = \ self.build_encoder(self.states_pl, self.hand_states_pl) if self.target_network: self.next_state_mu_t, self.next_state_var_t, self.next_state_sd_t, self.next_state_sample_t = self.build_encoder( self.next_states_pl, self.next_hand_states_pl, share_weights=False, namespace=self.TARGET_ENCODER_NAMESPACE ) self.build_target_update() else: self.next_state_mu_t, self.next_state_var_t, self.next_state_sd_t, self.next_state_sample_t = self.build_encoder( self.next_states_pl, self.next_hand_states_pl, share_weights=True ) def build_linear_models(self): self.q_v = tf.get_variable( "q_values_matrix", shape=(self.num_actions, self.num_blocks), dtype=tf.float32, initializer=tf.random_normal_initializer(mean=0, stddev=np.sqrt(2 / self.num_blocks), dtype=tf.float32) ) self.r_v = tf.get_variable( "reward_matrix", shape=(self.num_actions, self.num_blocks), dtype=tf.float32, initializer=tf.random_normal_initializer(mean=0, stddev=np.sqrt(2 / self.num_blocks), dtype=tf.float32) ) self.t_v = tf.get_variable( "transition_matrix", shape=(self.num_actions, self.num_blocks, self.num_blocks), dtype=tf.float32, initializer=tf.random_normal_initializer(mean=0, stddev=np.sqrt(2 / self.num_blocks), dtype=tf.float32) ) def build_training(self): # create global training step variable self.global_step = tf.train.get_or_create_global_step() self.float_dones_t = tf.cast(self.dones_pl, tf.float32) # gather appropriate transition matrices self.gather_r_t = tf.gather(self.r_v, self.actions_pl) self.gather_t_t = tf.gather(self.t_v, self.actions_pl) # build losses self.build_q_loss() self.build_reward_loss() self.build_transition_loss() self.build_weight_decay_loss() self.build_kl_loss() # build the whole loss self.gamma_v = tf.Variable(initial_value=self.gamma, trainable=False) self.loss_t = self.q_loss_t + self.gamma_2 * self.reward_loss_t + \ tf.stop_gradient(self.gamma_v) * self.transition_loss_t + \ self.regularization_loss_t + self.beta * self.kl_loss_t # build training self.build_encoder_training() self.build_q_model_training() self.build_r_model_training() self.build_t_model_training() self.model_train_step = tf.group(self.q_step, self.r_step, self.t_step) self.train_step = tf.group(self.encoder_train_step, self.model_train_step) def build_q_loss(self): self.q_prediction_t = tf.reduce_sum(self.state_sample_t[:, tf.newaxis, :] * self.q_v[tf.newaxis, :, :], axis=2) term1 = tf.reduce_mean(tf.square(self.q_values_pl - self.q_prediction_t), axis=1) self.full_q_loss_t = (1 / 2) * term1 self.q_loss_t = tf.reduce_mean(self.full_q_loss_t, axis=0) def build_q_model_training(self): q_optimizer = agent_utils.get_optimizer(self.optimizer_model, self.learning_rate_q) self.q_step = q_optimizer.minimize( self.q_loss_t, var_list=[self.q_v] ) class ExpectationModelVQWithQ(ExpectationModelVQ): def __init__(self, input_shape, num_blocks, dimensionality, num_actions, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, learning_rate_encoder, learning_rate_r, learning_rate_t, learning_rate_q, weight_decay, gamma_1, gamma_2, optimizer_encoder, optimizer_model, max_steps, batch_norm=True, target_network=True, propagate_next_state=False, no_sample=False, softplus=False, alpha=0.1, beta=0.0): ExpectationModelVQ.__init__( self, input_shape, num_blocks, dimensionality, num_actions, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, learning_rate_encoder, learning_rate_r, learning_rate_t, weight_decay, gamma_1, optimizer_encoder, optimizer_model, max_steps, batch_norm=batch_norm, target_network=target_network, propagate_next_state=propagate_next_state, no_sample=no_sample, softplus=softplus, alpha=alpha, beta=beta ) self.gamma_2 = gamma_2 self.learning_rate_q = learning_rate_q def validate(self, depths, hand_states, actions, rewards, q_values, next_depths, next_hand_states, dones, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) losses = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[:, np.newaxis][batch_slice], self.actions_pl: actions[batch_slice], self.rewards_pl: rewards[batch_slice], self.q_values_pl: q_values[batch_slice], self.next_states_pl: next_depths[batch_slice], self.next_hand_states_pl: next_hand_states[:, np.newaxis][batch_slice], self.dones_pl: dones[batch_slice], self.is_training_pl: False } l1, l2, l3 = self.session.run( [self.full_q_loss_t, self.full_transition_loss_t, self.full_reward_loss_t], feed_dict=feed_dict ) losses.append(np.transpose(np.array([l1, l2, l3]), axes=(1, 0))) losses = np.concatenate(losses, axis=0) return losses def validate_and_encode(self, depths, hand_states, actions, rewards, q_values, next_depths, next_hand_states, dones, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) losses = [] embeddings = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[:, np.newaxis][batch_slice], self.actions_pl: actions[batch_slice], self.rewards_pl: rewards[batch_slice], self.q_values_pl: q_values[batch_slice], self.next_states_pl: next_depths[batch_slice], self.next_hand_states_pl: next_hand_states[:, np.newaxis][batch_slice], self.dones_pl: dones[batch_slice], self.is_training_pl: False } tmp_embeddings, l1, l2, l3 = self.session.run([ self.state_mu_t, self.full_q_loss_t, self.full_transition_loss_t, self.full_reward_loss_t], feed_dict=feed_dict ) losses.append(np.transpose(np.array([l1, l2, l3]), axes=(1, 0))) embeddings.append(tmp_embeddings) losses = np.concatenate(losses, axis=0) embeddings = np.concatenate(embeddings) return losses, embeddings def build_placeholders(self): self.states_pl = tf.placeholder(tf.float32, shape=(None, *self.input_shape), name="states_pl") self.actions_pl = tf.placeholder(tf.int32, shape=(None,), name="actions_pl") self.rewards_pl = tf.placeholder(tf.float32, shape=(None,), name="rewards_pl") self.q_values_pl = tf.placeholder(tf.float32, shape=(None, self.num_actions), name="q_values_pl") self.dones_pl = tf.placeholder(tf.bool, shape=(None,), name="dones_pl") self.next_states_pl = tf.placeholder(tf.float32, shape=(None, *self.input_shape), name="next_states_pl") self.is_training_pl = tf.placeholder(tf.bool, shape=[], name="is_training_pl") self.hand_states_pl = tf.placeholder(tf.float32, shape=(None, 1), name="hand_states_pl") self.next_hand_states_pl = tf.placeholder(tf.float32, shape=(None, 1), name="next_hand_states_pl") def build_model(self): self.state_mu_t = \ self.build_encoder(self.states_pl, self.hand_states_pl, namespace=self.ENCODER_NAMESPACE) self.embeds = tf.get_variable( "embeddings", [self.num_embeddings, self.dimensionality], initializer=tf.truncated_normal_initializer(stddev=0.02) ) self.state_sample_t, self.state_classes_t = self.quantize(self.state_mu_t) if self.target_network: self.next_state_mu_t = self.build_encoder( self.next_states_pl, self.next_hand_states_pl, share_weights=False, namespace=self.TARGET_ENCODER_NAMESPACE ) self.build_target_update() else: self.next_state_mu_t = self.build_encoder( self.next_states_pl, self.next_hand_states_pl, share_weights=True, namespace=self.ENCODER_NAMESPACE ) self.next_state_sample_t, self.next_state_classes_t = self.quantize(self.next_state_mu_t) self.q_v = tf.get_variable( "q_values_matrix", shape=(self.num_actions, self.dimensionality), dtype=tf.float32, initializer=tf.random_normal_initializer(mean=0, stddev=np.sqrt(2 / self.dimensionality), dtype=tf.float32) ) self.r_v = tf.get_variable( "reward_matrix", shape=(self.num_actions, self.dimensionality), dtype=tf.float32, initializer=tf.random_normal_initializer(mean=0, stddev=np.sqrt(2 / self.dimensionality), dtype=tf.float32) ) self.t_v = tf.get_variable( "transition_matrix", shape=(self.num_actions, self.dimensionality, self.dimensionality), dtype=tf.float32, initializer=tf.random_normal_initializer(mean=0, stddev=np.sqrt(2 / self.dimensionality), dtype=tf.float32) ) def build_training(self): # create global training step variable self.global_step = tf.train.get_or_create_global_step() self.float_dones_t = tf.cast(self.dones_pl, tf.float32) # gather appropriate transition matrices self.gather_r_t = tf.gather(self.r_v, self.actions_pl) self.gather_t_t = tf.gather(self.t_v, self.actions_pl) # build losses self.build_q_loss() self.build_reward_loss() self.build_transition_loss() self.build_left_and_right_embedding_losses() self.build_weight_decay_loss() # build the whole loss self.gamma_v = tf.Variable(initial_value=self.gamma, trainable=False) self.main_loss_t = self.q_loss_t + self.gamma_2 * self.reward_loss_t + \ tf.stop_gradient(self.gamma_v) * self.transition_loss_t + self.regularization_loss_t self.loss_t = self.main_loss_t + self.right_loss_t # build training self.build_encoder_and_embedding_training() self.build_q_model_training() self.build_r_model_training() self.build_t_model_training() self.model_train_step = tf.group(self.q_step, self.r_step, self.t_step) self.train_step = tf.group(self.encoder_train_step, self.model_train_step) def build_q_loss(self): self.q_prediction_t = tf.reduce_sum(self.state_sample_t[:, tf.newaxis, :] * self.q_v[tf.newaxis, :, :], axis=2) term1 = tf.reduce_mean(tf.square(self.q_values_pl - self.q_prediction_t), axis=1) self.full_q_loss_t = (1 / 2) * term1 self.q_loss_t = tf.reduce_mean(self.full_q_loss_t, axis=0) def build_q_model_training(self): q_optimizer = agent_utils.get_optimizer(self.optimizer_model, self.learning_rate_q) self.q_step = q_optimizer.minimize( self.q_loss_t, var_list=[self.q_v] ) class ExpectationModelVQWithQNeural(ExpectationModelVQWithQ): def __init__(self, input_shape, num_blocks, dimensionality, num_actions, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, q_neurons, learning_rate_encoder, learning_rate_r, learning_rate_t, learning_rate_q, weight_decay, gamma_1, gamma_2, optimizer_encoder, optimizer_model, max_steps, batch_norm=True, target_network=True, propagate_next_state=False, no_sample=False, softplus=False, alpha=0.1, beta=0.0): ExpectationModelVQWithQ.__init__( self, input_shape, num_blocks, dimensionality, num_actions, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, learning_rate_encoder, learning_rate_r, learning_rate_t, learning_rate_q, weight_decay, gamma_1, gamma_2, optimizer_encoder, optimizer_model, max_steps, batch_norm=batch_norm, target_network=target_network, propagate_next_state=propagate_next_state, no_sample=no_sample, softplus=softplus, alpha=alpha, beta=beta ) self.q_neurons = q_neurons def build_model(self): self.state_mu_t = \ self.build_encoder(self.states_pl, self.hand_states_pl, namespace=self.ENCODER_NAMESPACE) self.embeds = tf.get_variable( "embeddings", [self.num_embeddings, self.dimensionality], initializer=tf.truncated_normal_initializer(stddev=0.02) ) self.state_sample_t, self.state_classes_t = self.quantize(self.state_mu_t) if self.target_network: self.next_state_mu_t = self.build_encoder( self.next_states_pl, self.next_hand_states_pl, share_weights=False, namespace=self.TARGET_ENCODER_NAMESPACE ) self.build_target_update() else: self.next_state_mu_t = self.build_encoder( self.next_states_pl, self.next_hand_states_pl, share_weights=True, namespace=self.ENCODER_NAMESPACE ) self.next_state_sample_t, self.next_state_classes_t = self.quantize(self.next_state_mu_t) self.r_v = tf.get_variable( "reward_matrix", shape=(self.num_actions, self.dimensionality), dtype=tf.float32, initializer=tf.random_normal_initializer(mean=0, stddev=np.sqrt(2 / self.dimensionality), dtype=tf.float32) ) self.t_v = tf.get_variable( "transition_matrix", shape=(self.num_actions, self.dimensionality, self.dimensionality), dtype=tf.float32, initializer=tf.random_normal_initializer(mean=0, stddev=np.sqrt(2 / self.dimensionality), dtype=tf.float32) ) def build_q_loss(self): self.q_prediction_t = self.build_q_model(self.state_sample_t) term1 = tf.reduce_mean(tf.square(self.q_values_pl - self.q_prediction_t), axis=1) self.full_q_loss_t = (1 / 2) * term1 self.q_loss_t = tf.reduce_mean(self.full_q_loss_t, axis=0) def build_q_model_training(self): q_optimizer = agent_utils.get_optimizer(self.optimizer_model, self.learning_rate_q) self.q_step = q_optimizer.minimize( self.q_loss_t, var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="q_model") ) def build_q_model(self, embedding): x = embedding with tf.variable_scope("q_model"): for idx, neurons in enumerate(self.q_neurons): with tf.variable_scope("fc{:d}".format(idx)): if idx == len(self.q_neurons) - 1: x = tf.layers.dense( x, neurons, activation=None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer() ) else: x = tf.layers.dense( x, neurons, activation=tf.nn.relu if not self.batch_norm else None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer(), use_bias=not self.batch_norm ) if self.batch_norm: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) return x class ExpectationModelHierarchy: L1_NAMESPACE = "l1" L1_TARGET_NAMESPACE = "target_l1" L2_NAMESPACE = "l2" L2_TARGET_NAMESPACE = "target_l2" def __init__(self, input_shape, l1_num_blocks, l2_num_blocks, num_actions, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, l1_learning_rate_encoder, l2_learning_rate_encoder, learning_rate_r, learning_rate_t, weight_decay, gamma, optimizer_encoder, optimizer_model, max_steps, l2_hiddens, batch_norm=True, target_network=True, propagate_next_state=False, no_sample=False): if propagate_next_state: assert not target_network self.input_shape = input_shape self.l1_num_blocks = l1_num_blocks self.l2_num_blocks = l2_num_blocks self.num_actions = num_actions self.encoder_filters = encoder_filters self.encoder_filter_sizes = encoder_filter_sizes self.encoder_strides = encoder_strides self.encoder_neurons = encoder_neurons self.l1_learning_rate_encoder = l1_learning_rate_encoder self.l2_learning_rate_encoder = l2_learning_rate_encoder self.learning_rate_r = learning_rate_r self.learning_rate_t = learning_rate_t self.weight_decay = weight_decay self.gamma = gamma self.optimizer_encoder = optimizer_encoder self.optimizer_model = optimizer_model self.max_steps = max_steps self.l2_hiddens = l2_hiddens self.batch_norm = batch_norm self.target_network = target_network self.propagate_next_state = propagate_next_state self.no_sample = no_sample self.hand_states_pl, self.next_hand_states_pl = None, None def encode(self, depths, hand_states, level, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) embeddings = [] if level == self.L1_NAMESPACE: to_run = self.l1_state_mu_t else: to_run = self.l2_softmax_t for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[batch_slice], self.is_training_pl: False } embedding = self.session.run(to_run, feed_dict=feed_dict) embeddings.append(embedding) embeddings = np.concatenate(embeddings, axis=0) return embeddings def validate(self, depths, hand_states, actions, rewards, next_depths, next_hand_states, dones, level, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) losses = [] if level == self.L1_NAMESPACE: to_run = [self.l1_full_transition_loss_t, self.l1_full_reward_loss_t] else: to_run = [self.l2_full_transition_loss_t, self.l2_full_reward_loss_t] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[:, np.newaxis][batch_slice], self.actions_pl: actions[batch_slice], self.rewards_pl: rewards[batch_slice], self.next_states_pl: next_depths[batch_slice], self.next_hand_states_pl: next_hand_states[:, np.newaxis][batch_slice], self.dones_pl: dones[batch_slice], self.is_training_pl: False } l1, l2 = self.session.run(to_run, feed_dict=feed_dict) losses.append(np.transpose(np.array([l1, l2]), axes=(1, 0))) losses = np.concatenate(losses, axis=0) return losses def validate_and_encode(self, depths, hand_states, actions, rewards, next_depths, next_hand_states, dones, level, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) losses = [] embeddings = [] if level == self.L1_NAMESPACE: to_run = [self.l1_state_mu_t, self.l1_full_transition_loss_t, self.l1_full_reward_loss_t] else: to_run = [self.l2_softmax_t, self.l2_full_transition_loss_t, self.l2_full_reward_loss_t] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[:, np.newaxis][batch_slice], self.actions_pl: actions[batch_slice], self.rewards_pl: rewards[batch_slice], self.next_states_pl: next_depths[batch_slice], self.next_hand_states_pl: next_hand_states[:, np.newaxis][batch_slice], self.dones_pl: dones[batch_slice], self.is_training_pl: False } tmp_embeddings, l1, l2 = self.session.run(to_run, feed_dict=feed_dict) losses.append(np.transpose(np.array([l1, l2]), axes=(1, 0))) embeddings.append(tmp_embeddings) losses = np.concatenate(losses, axis=0) embeddings = np.concatenate(embeddings) return losses, embeddings def build(self): self.build_placeholders() self.build_model() self.build_training() def build_placeholders(self): self.states_pl = tf.placeholder(tf.float32, shape=(None, *self.input_shape), name="states_pl") self.actions_pl = tf.placeholder(tf.int32, shape=(None,), name="actions_pl") self.rewards_pl = tf.placeholder(tf.float32, shape=(None,), name="rewards_pl") self.dones_pl = tf.placeholder(tf.bool, shape=(None,), name="dones_pl") self.next_states_pl = tf.placeholder(tf.float32, shape=(None, *self.input_shape), name="next_states_pl") self.is_training_pl = tf.placeholder(tf.bool, shape=[], name="is_training_pl") self.hand_states_pl = tf.placeholder(tf.float32, shape=(None, 1), name="hand_states_pl") self.next_hand_states_pl = tf.placeholder(tf.float32, shape=(None, 1), name="next_hand_states_pl") def build_model(self): # level one self.l1_state_mu_t, self.l1_state_log_var_t, self.l1_state_sample_t = \ self.build_l1(self.states_pl, self.hand_states_pl, namespace=self.L1_NAMESPACE) if self.target_network: self.l1_next_state_mu_t, self.l1_next_state_log_var_t, self.l1_next_state_sample_t = self.build_l1( self.next_states_pl, self.next_hand_states_pl, share_weights=False, namespace=self.L1_TARGET_NAMESPACE ) else: self.l1_next_state_mu_t, self.l1_next_state_log_var_t, self.l1_next_state_sample_t = self.build_l1( self.next_states_pl, self.next_hand_states_pl, share_weights=True, namespace=self.L1_NAMESPACE ) self.l1_r_v = tf.get_variable( "reward_matrix_l1", shape=(self.num_actions, self.l1_num_blocks), dtype=tf.float32, initializer=tf.random_normal_initializer(mean=0, stddev=np.sqrt(2 / self.l1_num_blocks), dtype=tf.float32) ) self.l1_r_t = self.l1_r_v self.l1_t_v = tf.get_variable( "transition_matrix_l1", shape=(self.num_actions, self.l1_num_blocks, self.l1_num_blocks), dtype=tf.float32, initializer=tf.random_normal_initializer(mean=0, stddev=np.sqrt(2 / self.l1_num_blocks), dtype=tf.float32) ) self.l1_t_t = self.l1_t_v # level two self.l2_logits_t, self.l2_softmax_t = self.build_l2(self.l1_state_mu_t, self.L2_NAMESPACE) if self.target_network: self.l2_next_logits_t, self.l2_next_softmax_t = self.build_l2( self.l1_state_mu_t, namespace=self.L2_TARGET_NAMESPACE, share_weights=False ) else: self.l2_next_logits_t, self.l2_next_softmax_t = self.build_l2( self.l1_state_mu_t, namespace=self.L2_NAMESPACE, share_weights=True ) self.l2_r_v = tf.get_variable( "reward_matrix_l2", shape=(self.num_actions, self.l2_num_blocks), dtype=tf.float32, initializer=tf.random_uniform_initializer(minval=0, maxval=1, dtype=tf.float32) ) self.l2_r_t = self.l2_r_v self.l2_t_v = tf.get_variable( "transition_matrix_l2", shape=(self.num_actions, self.l2_num_blocks, self.l2_num_blocks), dtype=tf.float32, initializer=tf.random_normal_initializer(mean=0, stddev=np.sqrt(2 / self.l2_num_blocks), dtype=tf.float32) ) self.l2_t_t = tf.nn.softmax(self.l2_t_v, axis=-1) # build target updates if self.target_network: self.build_target_update() def build_training(self): # create global training step variable self.global_step = tf.train.get_or_create_global_step() # gather appropriate transition matrices l1_r_per_action_t = tf.gather(self.l1_r_t, self.actions_pl) l2_r_per_action_t = tf.gather(self.l2_r_t, self.actions_pl) l1_t_per_action_t = tf.gather(self.l1_t_t, self.actions_pl) l2_t_per_action_t = tf.gather(tf.nn.log_softmax(self.l2_t_v), self.actions_pl) # reward cross-entropy dones_t = tf.cast(self.dones_pl, tf.float32) self.l1_full_reward_loss_t = (1 / 2) * tf.square( self.rewards_pl - tf.reduce_sum(self.l1_state_sample_t * l1_r_per_action_t, axis=1) ) self.l1_reward_loss_t = tf.reduce_mean(self.l1_full_reward_loss_t, axis=0) self.l2_full_reward_loss_t = (1 / 2) * tf.reduce_sum( tf.square(self.rewards_pl[:, tf.newaxis] - l2_r_per_action_t) * self.l2_softmax_t, axis=1 ) self.l2_reward_loss_t = tf.reduce_mean(self.l2_full_reward_loss_t, axis=0) # transition cross-entropy l1_transformed_logits = tf.matmul(self.l1_state_sample_t[:, tf.newaxis, :], l1_t_per_action_t) l1_transformed_logits = l1_transformed_logits[:, 0, :] self.l1_full_transition_loss_t = (1 / 2) * tf.reduce_sum( tf.square(tf.stop_gradient(self.l1_next_state_sample_t) - l1_transformed_logits), axis=1 ) * (1 - dones_t) self.l1_transition_loss_t = tf.reduce_sum(self.l1_full_transition_loss_t, axis=0) / tf.reduce_max([1.0, tf.reduce_sum(1 - dones_t)]) term1 = self.l2_softmax_t[:, :, tf.newaxis] * tf.stop_gradient(self.l2_next_softmax_t[:, tf.newaxis, :]) * \ l2_t_per_action_t self.l2_full_transition_loss_t = - tf.reduce_sum(term1, axis=[1, 2]) * (1 - dones_t) self.l2_transition_loss_t = tf.reduce_sum(self.l2_full_transition_loss_t, axis=0) / tf.reduce_max([1.0, tf.reduce_sum(1 - dones_t)]) # regularization l1_reg = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES, scope=self.L1_NAMESPACE) l2_reg = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES, scope=self.L2_NAMESPACE) self.l1_regularization_loss_t = 0 self.l2_regularization_loss_t = 0 if len(l1_reg) > 0: self.l1_regularization_loss_t = tf.add_n(l1_reg) if len(l2_reg) > 0: self.l2_regularization_loss_t = tf.add_n(l2_reg) # full loss self.gamma_v = tf.Variable(initial_value=self.gamma, trainable=False, dtype=tf.float32) self.l1_loss_t = self.l1_reward_loss_t + \ tf.stop_gradient(self.gamma_v) * self.l1_transition_loss_t + \ self.l1_regularization_loss_t self.l2_loss_t = self.l2_reward_loss_t + \ tf.stop_gradient(self.gamma_v) * self.l2_transition_loss_t + \ self.l2_regularization_loss_t # optimizers l1_encoder_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.L1_NAMESPACE) l2_encoder_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.L2_NAMESPACE) l1_encoder_optimizer = agent_utils.get_optimizer(self.optimizer_encoder, self.l1_learning_rate_encoder) l2_encoder_optimizer = agent_utils.get_optimizer(self.optimizer_encoder, self.l2_learning_rate_encoder) self.l1_encoder_train_step = l1_encoder_optimizer.minimize( self.l1_loss_t, global_step=self.global_step, var_list=l1_encoder_variables ) self.l2_encoder_train_step = l2_encoder_optimizer.minimize( self.l2_loss_t, global_step=self.global_step, var_list=l2_encoder_variables ) if self.batch_norm: self.update_op = tf.group(*tf.get_collection(tf.GraphKeys.UPDATE_OPS)) self.l1_encoder_train_step = tf.group(self.l1_encoder_train_step, self.update_op) l1_r_optimizer = agent_utils.get_optimizer(self.optimizer_model, self.learning_rate_r) l2_r_optimizer = agent_utils.get_optimizer(self.optimizer_model, self.learning_rate_r) self.l1_r_step = l1_r_optimizer.minimize( self.l1_reward_loss_t, var_list=[self.l1_r_v] ) self.l2_r_step = l2_r_optimizer.minimize( self.l2_reward_loss_t, var_list=[self.l2_r_v] ) l1_t_optimizer = agent_utils.get_optimizer(self.optimizer_model, self.learning_rate_t) l2_t_optimizer = agent_utils.get_optimizer(self.optimizer_model, self.learning_rate_t) self.l1_t_step = l1_t_optimizer.minimize( self.l1_transition_loss_t, var_list=[self.l1_t_v] ) self.l2_t_step = l2_t_optimizer.minimize( self.l2_transition_loss_t, var_list=[self.l2_t_v] ) self.l1_model_train_step = tf.group(self.l1_r_step, self.l1_t_step) self.l2_model_train_step = tf.group(self.l2_r_step, self.l2_t_step) self.l1_train_step = tf.group(self.l1_encoder_train_step, self.l1_model_train_step) self.l2_train_step = tf.group(self.l2_encoder_train_step, self.l2_model_train_step) def build_l1(self, depth_pl, hand_state_pl, share_weights=False, namespace=L1_NAMESPACE): x = tf.expand_dims(depth_pl, axis=-1) with tf.variable_scope(namespace, reuse=share_weights): for idx in range(len(self.encoder_filters)): with tf.variable_scope("conv{:d}".format(idx + 1)): x = tf.layers.conv2d( x, self.encoder_filters[idx], self.encoder_filter_sizes[idx], self.encoder_strides[idx], padding="SAME", activation=tf.nn.relu if not self.batch_norm else None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer(), use_bias=not self.batch_norm ) if self.batch_norm and idx != len(self.encoder_filters) - 1: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) x = tf.layers.flatten(x) if self.batch_norm: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) x = tf.concat([x, hand_state_pl], axis=1) for idx, neurons in enumerate(self.encoder_neurons): with tf.variable_scope("fc{:d}".format(idx + 1)): x = tf.layers.dense( x, neurons, activation=tf.nn.relu if not self.batch_norm else None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer(), use_bias=not self.batch_norm ) if self.batch_norm: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) with tf.variable_scope("predict"): mu = tf.layers.dense( x, self.l1_num_blocks, activation=None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer() ) log_var = tf.layers.dense( x, self.l1_num_blocks, activation=None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer() ) if self.no_sample: sample = mu else: noise = tf.random_normal( shape=(tf.shape(mu)[0], self.l1_num_blocks), mean=0, stddev=1.0 ) var_t = tf.exp(log_var) sd = tf.sqrt(var_t) sd_noise_t = noise * sd sample = mu + sd_noise_t return mu, log_var, sample def build_l2(self, l1_output, namespace, share_weights=False): x = l1_output with tf.variable_scope(namespace, reuse=share_weights): for idx, neurons in enumerate(self.l2_hiddens): with tf.variable_scope("fc{:d}".format(idx + 1)): x = tf.layers.dense( x, neurons, activation=tf.nn.relu, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer() ) l2_logits = tf.layers.dense( x, self.l2_num_blocks, activation=None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer() ) l2_softmax = tf.nn.softmax(l2_logits) return l2_logits, l2_softmax def build_target_update(self): ops = [] for source, target in zip([self.L1_NAMESPACE, self.L2_NAMESPACE], [self.L1_TARGET_NAMESPACE, self.L2_TARGET_NAMESPACE]): source_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=source) target_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=target) assert len(source_vars) == len(target_vars) and len(source_vars) > 0 for source_var, target_var in zip(source_vars, target_vars): ops.append(tf.assign(target_var, source_var)) self.target_update_op = tf.group(*ops) def set_gamma(self, value): self.session.run(tf.assign(self.gamma_v, value)) def start_session(self, gpu_memory=None): gpu_options = None if gpu_memory is not None: gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory) tf_config = tf.ConfigProto(gpu_options=gpu_options) self.session = tf.Session(config=tf_config) self.session.run(tf.global_variables_initializer()) def stop_session(self): if self.session is not None: self.session.close() class RobsTwoStepModel: ENCODER_NAMESPACE = "encoder" TARGET_ENCODER_NAMESPACE = "target_encoder" def __init__(self, input_shape, num_blocks, num_actions, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, learning_rate_encoder, learning_rate_r, learning_rate_t, weight_decay, gamma, optimizer_encoder, optimizer_model, max_steps, batch_norm=True, tau=1.0, stop_step_two_reward_gradients=False, normal_t_init=False): self.input_shape = input_shape self.num_blocks = num_blocks self.num_actions = num_actions self.encoder_filters = encoder_filters self.encoder_filter_sizes = encoder_filter_sizes self.encoder_strides = encoder_strides self.encoder_neurons = encoder_neurons self.learning_rate_encoder = learning_rate_encoder self.learning_rate_r = learning_rate_r self.learning_rate_t = learning_rate_t self.weight_decay = weight_decay self.gamma = gamma self.optimizer_encoder = optimizer_encoder self.optimizer_model = optimizer_model self.max_steps = max_steps self.batch_norm = batch_norm self.tau = tau self.stop_step_two_reward_gradients = stop_step_two_reward_gradients self.normal_t_init = normal_t_init self.hand_states_pl, self.next_hand_states_pl = None, None def encode(self, depths, hand_states, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) embeddings = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[batch_slice], self.is_training_pl: False } embedding = self.session.run(self.state_softmax_t, feed_dict=feed_dict) embeddings.append(embedding) embeddings = np.concatenate(embeddings, axis=0) return embeddings def validate(self, depths, hand_states, actions, rewards, next_actions, next_rewards, dones, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) losses = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[:, np.newaxis][batch_slice], self.actions_pl: actions[batch_slice], self.rewards_pl: rewards[batch_slice], self.next_actions_pl: next_actions[batch_slice], self.next_rewards_pl: next_rewards[batch_slice], self.dones_pl: dones[batch_slice], self.is_training_pl: False } l1, l2 = self.session.run( [self.full_step_one_reward_loss_t, self.full_step_two_reward_loss_t], feed_dict=feed_dict ) losses.append(np.transpose(np.array([l1, l2]), axes=(1, 0))) losses = np.concatenate(losses, axis=0) return losses def validate_and_encode(self, depths, hand_states, actions, rewards, next_actions, next_rewards, dones, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) losses = [] embeddings = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[:, np.newaxis][batch_slice], self.actions_pl: actions[batch_slice], self.rewards_pl: rewards[batch_slice], self.next_actions_pl: next_actions[batch_slice], self.next_rewards_pl: next_rewards[batch_slice], self.dones_pl: dones[batch_slice], self.is_training_pl: False } tmp_embeddings, l1, l2 = self.session.run([ self.state_softmax_t, self.full_step_one_reward_loss_t, self.full_step_two_reward_loss_t], feed_dict=feed_dict ) losses.append(np.transpose(np.array([l1, l2]), axes=(1, 0))) embeddings.append(tmp_embeddings) losses = np.concatenate(losses, axis=0) embeddings = np.concatenate(embeddings) return losses, embeddings def build(self): self.build_placeholders() self.build_model() self.build_training() def build_placeholders(self): self.states_pl = tf.placeholder(tf.float32, shape=(None, *self.input_shape), name="states_pl") self.hand_states_pl = tf.placeholder(tf.float32, shape=(None, 1), name="hand_states_pl") self.actions_pl = tf.placeholder(tf.int32, shape=(None,), name="actions_pl") self.rewards_pl = tf.placeholder(tf.float32, shape=(None,), name="rewards_pl") self.dones_pl = tf.placeholder(tf.bool, shape=(None,), name="dones_pl") self.next_actions_pl = tf.placeholder(tf.int32, shape=(None,), name="next_actions_pl") self.next_rewards_pl = tf.placeholder(tf.float32, shape=(None,), name="next_rewards_pl") self.is_training_pl = tf.placeholder(tf.bool, shape=[], name="is_training_pl") def build_model(self): self.state_logits_t, self.state_softmax_t = self.build_encoder(self.states_pl, self.hand_states_pl) self.perplexity_t = tf.constant(2, dtype=tf.float32) ** ( - tf.reduce_mean( tf.reduce_sum( self.state_softmax_t * tf.log(self.state_softmax_t + 1e-7) / tf.log(tf.constant(2, dtype=self.state_softmax_t.dtype)), axis=1 ), axis=0 ) ) self.r_v = tf.get_variable( "reward_matrix", shape=(self.num_actions, self.num_blocks), dtype=tf.float32, initializer=tf.random_uniform_initializer(minval=0, maxval=1, dtype=tf.float32) ) self.r_t = self.r_v if self.normal_t_init: init = tf.random_normal_initializer(mean=0, stddev=np.sqrt(2 / self.num_blocks)) else: init = tf.random_uniform_initializer(minval=0, maxval=1, dtype=tf.float32) self.t_v = tf.get_variable( "transition_matrix", shape=(self.num_actions, self.num_blocks, self.num_blocks), dtype=tf.float32, initializer=init ) self.t_t = tf.nn.softmax(self.t_v, axis=-1) def build_training(self): # create global training step variable self.global_step = tf.train.get_or_create_global_step() # gather appropriate transition matrices r_per_action_t = tf.gather(self.r_t, self.actions_pl) t_per_action_t = tf.gather(self.t_t, self.actions_pl) next_r_per_action_t = tf.gather(self.r_t, self.next_actions_pl) if self.stop_step_two_reward_gradients: next_r_per_action_t = tf.stop_gradient(next_r_per_action_t) # one step reward loss self.full_step_one_reward_loss_t, self.step_one_reward_loss_t = \ self.build_reward_loss(r_per_action_t, self.rewards_pl, self.state_softmax_t) # two step reward loss self.transformed_next_state_softmax_t = \ tf.matmul(self.state_softmax_t[:, tf.newaxis, :], t_per_action_t)[:, 0, :] self.full_step_two_reward_loss_t, self.step_two_reward_loss_t = \ self.build_reward_loss( next_r_per_action_t, self.next_rewards_pl, self.transformed_next_state_softmax_t, dones=self.dones_pl ) # regularization reg = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) if len(reg) > 0: self.regularization_loss_t = tf.add_n(reg) else: self.regularization_loss_t = 0 # full loss self.gamma_v = tf.Variable(initial_value=self.gamma, trainable=False, dtype=tf.float32) self.loss_t = self.step_one_reward_loss_t + tf.stop_gradient(self.gamma_v) * self.step_two_reward_loss_t + \ self.regularization_loss_t # optimizers encoder_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.ENCODER_NAMESPACE) encoder_optimizer = agent_utils.get_optimizer(self.optimizer_encoder, self.learning_rate_encoder) self.encoder_train_step = encoder_optimizer.minimize( self.loss_t, global_step=self.global_step, var_list=encoder_variables ) if self.batch_norm: self.update_op = tf.group(*tf.get_collection(tf.GraphKeys.UPDATE_OPS)) self.encoder_train_step = tf.group(self.encoder_train_step, self.update_op) model_train_step = [] r_optimizer = agent_utils.get_optimizer(self.optimizer_model, self.learning_rate_r) self.r_step = r_optimizer.minimize( self.loss_t, var_list=[self.r_v] ) model_train_step.append(self.r_step) t_optimizer = agent_utils.get_optimizer(self.optimizer_model, self.learning_rate_t) self.t_step = t_optimizer.minimize( self.loss_t, var_list=[self.t_v] ) model_train_step.append(self.t_step) self.model_train_step = tf.group(*model_train_step) self.train_step = tf.group(self.encoder_train_step, self.model_train_step) @staticmethod def build_reward_loss(expected_rewards, observed_rewards, encodings, dones=None): # compute the reward loss term1_t = tf.square(observed_rewards[:, tf.newaxis] - expected_rewards) term2_t = term1_t * encodings full_reward_loss_t = (1 / 2) * tf.reduce_sum(term2_t, axis=1) if dones is not None: dones = (1.0 - tf.cast(dones, dtype=tf.float32)) full_reward_loss_t = full_reward_loss_t * dones reward_loss_t = tf.reduce_sum(full_reward_loss_t) / tf.reduce_max([tf.reduce_sum(dones), 1.0]) else: reward_loss_t = tf.reduce_mean(full_reward_loss_t) return full_reward_loss_t, reward_loss_t def build_encoder(self, depth_pl, hand_state_pl, share_weights=False, namespace=ENCODER_NAMESPACE): x = tf.expand_dims(depth_pl, axis=-1) with tf.variable_scope(namespace, reuse=share_weights): for idx in range(len(self.encoder_filters)): with tf.variable_scope("conv{:d}".format(idx + 1)): x = tf.layers.conv2d( x, self.encoder_filters[idx], self.encoder_filter_sizes[idx], self.encoder_strides[idx], padding="SAME", activation=tf.nn.relu if not self.batch_norm else None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer(), use_bias=not self.batch_norm ) if self.batch_norm and idx != len(self.encoder_filters) - 1: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) x = tf.layers.flatten(x) if self.batch_norm: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) x = tf.concat([x, hand_state_pl], axis=1) for idx, neurons in enumerate(self.encoder_neurons): with tf.variable_scope("fc{:d}".format(idx + 1)): x = tf.layers.dense( x, neurons, activation=tf.nn.relu if not self.batch_norm else None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer(), use_bias=not self.batch_norm ) if self.batch_norm: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) with tf.variable_scope("predict"): x = tf.layers.dense( x, self.num_blocks, activation=None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer() ) dist = tf.nn.softmax(x / self.tau) return x, dist def build_summaries(self): # losses tf.summary.scalar("loss", self.loss_t) tf.summary.scalar("step_one_reward_loss", tf.reduce_mean(self.step_one_reward_loss_t)) tf.summary.scalar("step_two_reward_loss", tf.reduce_mean(self.step_two_reward_loss_t)) # logits and softmax agent_utils.summarize(self.state_logits_t, "logits") agent_utils.summarize(self.state_softmax_t, "softmax") # grad norms self.build_gradient_norm_summary(self.loss_t, self.state_logits_t, "state_logits_grad_norm") self.build_gradient_norm_summary(self.loss_t, self.state_softmax_t, "state_softmax_grad_norm") self.build_gradient_norm_summary(self.loss_t, self.r_v, "r_grad_norm", matrix_grad=True) self.build_gradient_norm_summary(self.loss_t, self.t_v, "t_grad_norm", matrix_grad=True) def build_gradient_norm_summary(self, y, x, name, matrix_grad=False): # TODO: different dimensions of r_t and t_t grad_t = tf.gradients(y, x) if matrix_grad: grad_t = grad_t[0] norm_t = tf.norm(grad_t, ord=2, axis=-1)[0] agent_utils.summarize(norm_t, name) def set_gamma(self, value): self.session.run(tf.assign(self.gamma_v, value)) def start_session(self, gpu_memory=None): gpu_options = None if gpu_memory is not None: gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory) tf_config = tf.ConfigProto(gpu_options=gpu_options) self.session = tf.Session(config=tf_config) self.session.run(tf.global_variables_initializer()) def stop_session(self): if self.session is not None: self.session.close() def save_matrices_as_images(self, step, save_dir, ext="pdf"): r, p = self.session.run([self.r_t, self.t_t]) r = np.reshape(r, (r.shape[0], -1)) p = np.reshape(p, (p.shape[0], -1)) r_path = os.path.join(save_dir, "r_{:d}.{}".format(step, ext)) p_path = os.path.join(save_dir, "p_{:d}.{}".format(step, ext)) plt.clf() plt.imshow(r, vmin=-0.5, vmax=1.5) plt.colorbar() plt.savefig(r_path) plt.clf() plt.imshow(p, vmin=0, vmax=1) plt.colorbar() plt.savefig(p_path) class RobsTwoStepModelContinuous: ENCODER_NAMESPACE = "encoder" TARGET_ENCODER_NAMESPACE = "target_encoder" def __init__(self, input_shape, num_blocks, num_actions, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, learning_rate_encoder, learning_rate_r, learning_rate_t, weight_decay, gamma, optimizer_encoder, optimizer_model, max_steps, batch_norm=True, stop_step_two_reward_gradients=False, model_init_std=0.1, no_sample=False): self.input_shape = input_shape self.num_blocks = num_blocks self.num_actions = num_actions self.encoder_filters = encoder_filters self.encoder_filter_sizes = encoder_filter_sizes self.encoder_strides = encoder_strides self.encoder_neurons = encoder_neurons self.learning_rate_encoder = learning_rate_encoder self.learning_rate_r = learning_rate_r self.learning_rate_t = learning_rate_t self.weight_decay = weight_decay self.gamma = gamma self.optimizer_encoder = optimizer_encoder self.optimizer_model = optimizer_model self.max_steps = max_steps self.batch_norm = batch_norm self.stop_step_two_reward_gradients = stop_step_two_reward_gradients self.model_init_std = model_init_std self.no_sample = no_sample self.hand_states_pl, self.next_hand_states_pl = None, None def encode(self, depths, hand_states, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) embeddings = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[batch_slice], self.is_training_pl: False } # TODO: I could sample embedding = self.session.run(self.mu_t, feed_dict=feed_dict) embeddings.append(embedding) embeddings = np.concatenate(embeddings, axis=0) return embeddings def validate(self, depths, hand_states, actions, rewards, next_actions, next_rewards, dones, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) losses = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[:, np.newaxis][batch_slice], self.actions_pl: actions[batch_slice], self.rewards_pl: rewards[batch_slice], self.next_actions_pl: next_actions[batch_slice], self.next_rewards_pl: next_rewards[batch_slice], self.dones_pl: dones[batch_slice], self.is_training_pl: False } l1, l2 = self.session.run( [self.full_step_one_reward_loss_t, self.full_step_two_reward_loss_t], feed_dict=feed_dict ) losses.append(np.transpose(np.array([l1, l2]), axes=(1, 0))) losses = np.concatenate(losses, axis=0) return losses def validate_and_encode(self, depths, hand_states, actions, rewards, next_actions, next_rewards, dones, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) losses = [] embeddings = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[:, np.newaxis][batch_slice], self.actions_pl: actions[batch_slice], self.rewards_pl: rewards[batch_slice], self.next_actions_pl: next_actions[batch_slice], self.next_rewards_pl: next_rewards[batch_slice], self.dones_pl: dones[batch_slice], self.is_training_pl: False } tmp_embeddings, l1, l2 = self.session.run([ self.mu_t, self.full_step_one_reward_loss_t, self.full_step_two_reward_loss_t], feed_dict=feed_dict ) losses.append(np.transpose(np.array([l1, l2]), axes=(1, 0))) embeddings.append(tmp_embeddings) losses = np.concatenate(losses, axis=0) embeddings = np.concatenate(embeddings) return losses, embeddings def build(self): self.build_placeholders() self.build_model() self.build_training() def build_placeholders(self): self.states_pl = tf.placeholder(tf.float32, shape=(None, *self.input_shape), name="states_pl") self.hand_states_pl = tf.placeholder(tf.float32, shape=(None, 1), name="hand_states_pl") self.actions_pl = tf.placeholder(tf.int32, shape=(None,), name="actions_pl") self.rewards_pl = tf.placeholder(tf.float32, shape=(None,), name="rewards_pl") self.dones_pl = tf.placeholder(tf.bool, shape=(None,), name="dones_pl") self.next_actions_pl = tf.placeholder(tf.int32, shape=(None,), name="next_actions_pl") self.next_rewards_pl = tf.placeholder(tf.float32, shape=(None,), name="next_rewards_pl") self.is_training_pl = tf.placeholder(tf.bool, shape=[], name="is_training_pl") def build_model(self): self.mu_t, self.log_var_t, self.sample_t = self.build_encoder(self.states_pl, self.hand_states_pl) self.r_v = tf.get_variable( "reward_matrix", shape=(self.num_actions, self.num_blocks), dtype=tf.float32, initializer=tf.random_normal_initializer(mean=0, stddev=np.sqrt(2 / self.num_blocks), dtype=tf.float32) ) self.r_t = self.r_v self.t_v = tf.get_variable( "transition_matrix", shape=(self.num_actions, self.num_blocks, self.num_blocks), dtype=tf.float32, initializer=tf.random_normal_initializer(mean=0, stddev=np.sqrt(2 / self.num_blocks), dtype=tf.float32) ) self.t_t = self.t_v #self.t_t = tf.nn.softmax(self.t_v, axis=-1) def build_training(self): # create global training step variable self.global_step = tf.train.get_or_create_global_step() # gather appropriate transition matrices r_per_action_t = tf.gather(self.r_t, self.actions_pl) t_per_action_t = tf.gather(self.t_t, self.actions_pl) next_r_per_action_t = tf.gather(self.r_t, self.next_actions_pl) if self.stop_step_two_reward_gradients: next_r_per_action_t = tf.stop_gradient(next_r_per_action_t) # one step reward loss self.full_step_one_reward_loss_t, self.step_one_reward_loss_t = \ self.build_reward_loss(r_per_action_t, self.rewards_pl, self.sample_t) # two step reward loss self.transformed_next_state_sample_t = \ tf.matmul(self.sample_t[:, tf.newaxis, :], t_per_action_t)[:, 0, :] self.full_step_two_reward_loss_t, self.step_two_reward_loss_t = \ self.build_reward_loss( next_r_per_action_t, self.next_rewards_pl, self.transformed_next_state_sample_t, dones=self.dones_pl ) # regularization reg = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) if len(reg) > 0: self.regularization_loss_t = tf.add_n(reg) else: self.regularization_loss_t = 0 # full loss self.gamma_v = tf.Variable(initial_value=self.gamma, trainable=False, dtype=tf.float32) self.loss_t = self.step_one_reward_loss_t + tf.stop_gradient(self.gamma_v) * self.step_two_reward_loss_t + \ self.regularization_loss_t # optimizers encoder_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.ENCODER_NAMESPACE) encoder_optimizer = agent_utils.get_optimizer(self.optimizer_encoder, self.learning_rate_encoder) self.encoder_train_step = encoder_optimizer.minimize( self.loss_t, global_step=self.global_step, var_list=encoder_variables ) if self.batch_norm: self.update_op = tf.group(*tf.get_collection(tf.GraphKeys.UPDATE_OPS)) self.encoder_train_step = tf.group(self.encoder_train_step, self.update_op) model_train_step = [] r_optimizer = agent_utils.get_optimizer(self.optimizer_model, self.learning_rate_r) self.r_step = r_optimizer.minimize( self.loss_t, var_list=[self.r_v] ) model_train_step.append(self.r_step) t_optimizer = agent_utils.get_optimizer(self.optimizer_model, self.learning_rate_t) self.t_step = t_optimizer.minimize( self.loss_t, var_list=[self.t_v] ) model_train_step.append(self.t_step) self.model_train_step = tf.group(*model_train_step) self.train_step = tf.group(self.encoder_train_step, self.model_train_step) @staticmethod def build_reward_loss(expected_rewards, observed_rewards, encodings, dones=None): # compute the reward loss term1_t = tf.square( observed_rewards - tf.reduce_sum(encodings * expected_rewards, axis=1) ) full_reward_loss_t = (1 / 2) * term1_t if dones is not None: dones = (1.0 - tf.cast(dones, dtype=tf.float32)) full_reward_loss_t = full_reward_loss_t * dones reward_loss_t = tf.reduce_sum(full_reward_loss_t) / tf.reduce_max([tf.reduce_sum(dones), 1.0]) else: reward_loss_t = tf.reduce_mean(full_reward_loss_t) return full_reward_loss_t, reward_loss_t def build_encoder(self, depth_pl, hand_state_pl, share_weights=False, namespace=ENCODER_NAMESPACE): x = tf.expand_dims(depth_pl, axis=-1) with tf.variable_scope(namespace, reuse=share_weights): for idx in range(len(self.encoder_filters)): with tf.variable_scope("conv{:d}".format(idx + 1)): x = tf.layers.conv2d( x, self.encoder_filters[idx], self.encoder_filter_sizes[idx], self.encoder_strides[idx], padding="SAME", activation=tf.nn.relu if not self.batch_norm else None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer(), use_bias=not self.batch_norm ) if self.batch_norm and idx != len(self.encoder_filters) - 1: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) x = tf.layers.flatten(x) if self.batch_norm: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) x = tf.concat([x, hand_state_pl], axis=1) for idx, neurons in enumerate(self.encoder_neurons): with tf.variable_scope("fc{:d}".format(idx + 1)): x = tf.layers.dense( x, neurons, activation=tf.nn.relu if not self.batch_norm else None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer(), use_bias=not self.batch_norm ) if self.batch_norm: x = tf.layers.batch_normalization(x, training=self.is_training_pl) x = tf.nn.relu(x) with tf.variable_scope("predict"): mu = tf.layers.dense( x, self.num_blocks, activation=None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer() ) log_var = tf.layers.dense( x, self.num_blocks, activation=None, kernel_regularizer=agent_utils.get_weight_regularizer(self.weight_decay), kernel_initializer=agent_utils.get_mrsa_initializer() ) if self.no_sample: sample = mu else: noise = tf.random_normal( shape=(tf.shape(mu)[0], self.num_blocks), mean=0, stddev=1.0 ) var_t = tf.exp(log_var) sd = tf.sqrt(var_t) sd_noise_t = noise * sd sample = mu + sd_noise_t return mu, log_var, sample def build_summaries(self): # losses tf.summary.scalar("loss", self.loss_t) tf.summary.scalar("step_one_reward_loss", tf.reduce_mean(self.step_one_reward_loss_t)) tf.summary.scalar("step_two_reward_loss", tf.reduce_mean(self.step_two_reward_loss_t)) # means and variances agent_utils.summarize(self.mu_t, "means") agent_utils.summarize(self.log_var_t, "log_variances") # grad norms self.build_gradient_norm_summary(self.loss_t, self.mu_t, "means_grad_norm") self.build_gradient_norm_summary(self.loss_t, self.log_var_t, "log_variances_grad_norm") self.build_gradient_norm_summary(self.loss_t, self.r_v, "r_grad_norm", matrix_grad=True) self.build_gradient_norm_summary(self.loss_t, self.t_v, "t_grad_norm", matrix_grad=True) def build_gradient_norm_summary(self, y, x, name, matrix_grad=False): # TODO: different dimensions of r_t and t_t grad_t = tf.gradients(y, x) if matrix_grad: grad_t = grad_t[0] norm_t = tf.norm(grad_t, ord=2, axis=-1)[0] agent_utils.summarize(norm_t, name) def set_gamma(self, value): self.session.run(tf.assign(self.gamma_v, value)) def start_session(self, gpu_memory=None): gpu_options = None if gpu_memory is not None: gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory) tf_config = tf.ConfigProto(gpu_options=gpu_options) self.session = tf.Session(config=tf_config) self.session.run(tf.global_variables_initializer()) def stop_session(self): if self.session is not None: self.session.close() def save_matrices_as_images(self, step, save_dir, ext="pdf"): r, p = self.session.run([self.r_t, self.t_t]) r = np.reshape(r, (r.shape[0], -1)) p = np.reshape(p, (p.shape[0], -1)) r_path = os.path.join(save_dir, "r_{:d}.{}".format(step, ext)) p_path = os.path.join(save_dir, "p_{:d}.{}".format(step, ext)) plt.clf() plt.imshow(r, vmin=-0.5, vmax=1.5) plt.colorbar() plt.savefig(r_path) plt.clf() plt.imshow(p, vmin=0, vmax=1) plt.colorbar() plt.savefig(p_path) class RobsTwoStepModelHierarchy: L1_NAMESPACE = "l1" L2_NAMESPACE = "l2" def __init__(self, input_shape, l1_num_blocks, l2_num_blocks, num_actions, encoder_filters, encoder_filter_sizes, encoder_strides, encoder_neurons, l1_learning_rate_encoder, l2_learning_rate_encoder, learning_rate_r, learning_rate_t, weight_decay, gamma, optimizer_encoder, optimizer_model, max_steps, l2_hiddens, batch_norm=True, stop_step_two_reward_gradients=False, model_init_std=0.1, no_sample=False): self.input_shape = input_shape self.l1_num_blocks = l1_num_blocks self.l2_num_blocks = l2_num_blocks self.num_actions = num_actions self.encoder_filters = encoder_filters self.encoder_filter_sizes = encoder_filter_sizes self.encoder_strides = encoder_strides self.encoder_neurons = encoder_neurons self.l1_learning_rate_encoder = l1_learning_rate_encoder self.l2_learning_rate_encoder = l2_learning_rate_encoder self.learning_rate_r = learning_rate_r self.learning_rate_t = learning_rate_t self.weight_decay = weight_decay self.gamma = gamma self.optimizer_encoder = optimizer_encoder self.optimizer_model = optimizer_model self.max_steps = max_steps self.l2_hiddens = l2_hiddens self.batch_norm = batch_norm self.stop_step_two_reward_gradients = stop_step_two_reward_gradients self.model_init_std = model_init_std self.no_sample = no_sample self.hand_states_pl, self.next_hand_states_pl = None, None def encode(self, depths, hand_states, level, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) embeddings = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[batch_slice], self.is_training_pl: False } if level == self.L1_NAMESPACE: to_run = self.l1_mu_t else: to_run = self.l2_softmax_t embedding = self.session.run(to_run, feed_dict=feed_dict) embeddings.append(embedding) embeddings = np.concatenate(embeddings, axis=0) return embeddings def validate(self, depths, hand_states, actions, rewards, next_actions, next_rewards, dones, level, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) losses = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[:, np.newaxis][batch_slice], self.actions_pl: actions[batch_slice], self.rewards_pl: rewards[batch_slice], self.next_actions_pl: next_actions[batch_slice], self.next_rewards_pl: next_rewards[batch_slice], self.dones_pl: dones[batch_slice], self.is_training_pl: False } if level == self.L1_NAMESPACE: to_run = [self.l1_full_step_one_reward_loss_t, self.l1_full_step_two_reward_loss_t] else: to_run = [self.l2_full_step_one_reward_loss_t, self.l2_full_step_two_reward_loss_t] l1, l2 = self.session.run(to_run, feed_dict=feed_dict) losses.append(np.transpose(np.array([l1, l2]), axes=(1, 0))) losses = np.concatenate(losses, axis=0) return losses def validate_and_encode(self, depths, hand_states, actions, rewards, next_actions, next_rewards, dones, level, batch_size=100): num_steps = int(np.ceil(depths.shape[0] / batch_size)) losses = [] embeddings = [] for i in range(num_steps): batch_slice = np.index_exp[i * batch_size:(i + 1) * batch_size] feed_dict = { self.states_pl: depths[batch_slice], self.hand_states_pl: hand_states[:, np.newaxis][batch_slice], self.actions_pl: actions[batch_slice], self.rewards_pl: rewards[batch_slice], self.next_actions_pl: next_actions[batch_slice], self.next_rewards_pl: next_rewards[batch_slice], self.dones_pl: dones[batch_slice], self.is_training_pl: False } if level == self.L1_NAMESPACE: to_run = [self.l1_mu_t, self.l1_full_step_one_reward_loss_t, self.l1_full_step_two_reward_loss_t] else: to_run = [self.l2_softmax_t, self.l2_full_step_one_reward_loss_t, self.l2_full_step_two_reward_loss_t] tmp_embeddings, l1, l2 = self.session.run(to_run, feed_dict=feed_dict) losses.append(np.transpose(np.array([l1, l2]), axes=(1, 0))) embeddings.append(tmp_embeddings) losses = np.concatenate(losses, axis=0) embeddings = np.concatenate(embeddings) return losses, embeddings def build(self): self.build_placeholders() self.build_model() self.build_training() def build_placeholders(self): self.states_pl = tf.placeholder(tf.float32, shape=(None, *self.input_shape), name="states_pl") self.hand_states_pl = tf.placeholder(tf.float32, shape=(None, 1), name="hand_states_pl") self.actions_pl = tf.placeholder(tf.int32, shape=(None,), name="actions_pl") self.rewards_pl = tf.placeholder(tf.float32, shape=(None,), name="rewards_pl") self.dones_pl = tf.placeholder(tf.bool, shape=(None,), name="dones_pl") self.next_actions_pl = tf.placeholder(tf.int32, shape=(None,), name="next_actions_pl") self.next_rewards_pl = tf.placeholder(tf.float32, shape=(None,), name="next_rewards_pl") self.is_training_pl = tf.placeholder(tf.bool, shape=[], name="is_training_pl") def build_model(self): # build level one model self.l1_mu_t, self.l1_log_var_t, self.l1_sample_t = self.build_l1(self.states_pl, self.hand_states_pl) self.l1_r_v = tf.get_variable( "reward_matrix_l1", shape=(self.num_actions, self.l1_num_blocks), dtype=tf.float32, initializer=tf.random_normal_initializer(mean=0, stddev=np.sqrt(2 / self.l1_num_blocks), dtype=tf.float32) ) self.l1_r_t = self.l1_r_v self.l1_t_v = tf.get_variable( "transition_matrix_l1", shape=(self.num_actions, self.l1_num_blocks, self.l1_num_blocks), dtype=tf.float32, initializer=tf.random_normal_initializer(mean=0, stddev=np.sqrt(2 / self.l1_num_blocks), dtype=tf.float32) ) self.l1_t_t = self.l1_t_v # build level two model self.l2_logits_t, self.l2_softmax_t = self.build_l2(self.l1_mu_t) self.l2_r_v = tf.get_variable( "reward_matrix_l2", shape=(self.num_actions, self.l2_num_blocks), dtype=tf.float32, initializer=tf.random_uniform_initializer(minval=0, maxval=1, dtype=tf.float32) ) self.l2_r_t = self.l2_r_v self.l2_t_v = tf.get_variable( "transition_matrix_l2", shape=(self.num_actions, self.l2_num_blocks, self.l2_num_blocks), dtype=tf.float32, initializer=tf.random_normal_initializer(mean=0, stddev=
np.sqrt(2 / self.l2_num_blocks)
numpy.sqrt
""" Streamline plotting for 2D vector fields. """ import numpy as np import matplotlib import matplotlib.cm as cm import matplotlib.colors as mcolors import matplotlib.collections as mcollections import matplotlib.patches as patches __all__ = ['streamplot'] def streamplot(axes, x, y, u, v, density=1, linewidth=None, color=None, cmap=None, norm=None, arrowsize=1, arrowstyle='-|>', minlength=0.1, transform=None): """Draws streamlines of a vector flow. *x*, *y* : 1d arrays an *evenly spaced* grid. *u*, *v* : 2d arrays x and y-velocities. Number of rows should match length of y, and the number of columns should match x. *density* : float or 2-tuple Controls the closeness of streamlines. When `density = 1`, the domain is divided into a 25x25 grid---*density* linearly scales this grid. Each cell in the grid can have, at most, one traversing streamline. For different densities in each direction, use [density_x, density_y]. *linewidth* : numeric or 2d array vary linewidth when given a 2d array with the same shape as velocities. *color* : matplotlib color code, or 2d array Streamline color. When given an array with the same shape as velocities, *color* values are converted to colors using *cmap*. *cmap* : :class:`~matplotlib.colors.Colormap` Colormap used to plot streamlines and arrows. Only necessary when using an array input for *color*. *norm* : :class:`~matplotlib.colors.Normalize` Normalize object used to scale luminance data to 0, 1. If None, stretch (min, max) to (0, 1). Only necessary when *color* is an array. *arrowsize* : float Factor scale arrow size. *arrowstyle* : str Arrow style specification. See :class:`~matplotlib.patches.FancyArrowPatch`. *minlength* : float Minimum length of streamline in axes coordinates. Returns: *stream_container* : StreamplotSet Container object with attributes - lines: `matplotlib.collections.LineCollection` of streamlines - arrows: collection of `matplotlib.patches.FancyArrowPatch` objects representing arrows half-way along stream lines. This container will probably change in the future to allow changes to the colormap, alpha, etc. for both lines and arrows, but these changes should be backward compatible. """ grid = Grid(x, y) mask = StreamMask(density) dmap = DomainMap(grid, mask) # default to data coordinates if transform is None: transform = axes.transData if color is None: color = next(axes._get_lines.color_cycle) if linewidth is None: linewidth = matplotlib.rcParams['lines.linewidth'] line_kw = {} arrow_kw = dict(arrowstyle=arrowstyle, mutation_scale=10 * arrowsize) use_multicolor_lines = isinstance(color, np.ndarray) if use_multicolor_lines: assert color.shape == grid.shape line_colors = [] else: line_kw['color'] = color arrow_kw['color'] = color if isinstance(linewidth, np.ndarray): assert linewidth.shape == grid.shape line_kw['linewidth'] = [] else: line_kw['linewidth'] = linewidth arrow_kw['linewidth'] = linewidth ## Sanity checks. assert u.shape == grid.shape assert v.shape == grid.shape if np.any(np.isnan(u)): u = np.ma.array(u, mask=np.isnan(u)) if np.any(np.isnan(v)): v = np.ma.array(v, mask=np.isnan(v)) integrate = get_integrator(u, v, dmap, minlength) trajectories = [] for xm, ym in _gen_starting_points(mask.shape): if mask[ym, xm] == 0: xg, yg = dmap.mask2grid(xm, ym) t = integrate(xg, yg) if t is not None: trajectories.append(t) if use_multicolor_lines: if norm is None: norm = mcolors.normalize(color.min(), color.max()) if cmap is None: cmap = cm.get_cmap(matplotlib.rcParams['image.cmap']) else: cmap = cm.get_cmap(cmap) streamlines = [] arrows = [] for t in trajectories: tgx = np.array(t[0]) tgy = np.array(t[1]) # Rescale from grid-coordinates to data-coordinates. tx = np.array(t[0]) * grid.dx + grid.x_origin ty =
np.array(t[1])
numpy.array
""" @author: <NAME> (2017, Vrije Universiteit Brussel) """ import numpy as np from collections import OrderedDict import sys sys.path.insert(0, '../') from python_backend.user_jobs import TheoreticalUser from python_backend import specs_jobs, utils_jobs def get_random_job_matrix(min_num_jobs, seed, normalise=True): """ Returns a matrix (num_jobs x num_objectives) of random job offers """ random_state = np.random.RandomState(seed) for j in range(10): num_rand_jobs = min_num_jobs*100 # initialise job matrix job_matrix =
np.zeros((num_rand_jobs, specs_jobs.NUM_OBJECTIVES))
numpy.zeros
import os import glob import random import torch import imageio import errno import numpy as np import tifffile as tiff import torch.nn as nn import matplotlib.pyplot as plt from torch.utils import data from sklearn.metrics import confusion_matrix # ============================================= class CustomDataset(torch.utils.data.Dataset): def __init__(self, imgs_folder, labels_folder, augmentation): # 1. Initialize file paths or a list of file names. self.imgs_folder = imgs_folder self.labels_folder = labels_folder self.data_augmentation = augmentation # self.transform = transforms def __getitem__(self, index): # 1. Read one data from file (e.g. using num py.fromfile, PIL.Image.open). # 2. Preprocess the data (e.g. torchvision.Transform). # 3. Return a data pair (e.g. image and label). all_images = glob.glob(os.path.join(self.imgs_folder, '*.npy')) all_labels = glob.glob(os.path.join(self.labels_folder, '*.npy')) # sort all in the same order all_labels.sort() all_images.sort() # # label = Image.open(all_labels[index]) # label = tiff.imread(all_labels[index]) label = np.load(all_labels[index]) label = np.array(label, dtype='float32') # image = tiff.imread(all_images[index]) image = np.load(all_images[index]) image = np.array(image, dtype='float32') # labelname = all_labels[index] path_label, labelname = os.path.split(labelname) labelname, labelext = os.path.splitext(labelname) # c_amount = len(np.shape(label)) # # # Reshaping everyting to make sure the order: channel x height x width if c_amount == 3: d1, d2, d3 = np.shape(label) if d1 != min(d1, d2, d3): label = np.reshape(label, (d3, d1, d2)) # elif c_amount == 2: h, w = np.shape(label) label = np.reshape(label, (1, h, w)) # d1, d2, d3 = np.shape(image) # if d1 != min(d1, d2, d3): # image = np.reshape(image, (d3, d1, d2)) # if self.data_augmentation == 'full': # augmentation: augmentation = random.uniform(0, 1) # if augmentation < 0.25: # c, h, w = np.shape(image) # for channel in range(c): # image[channel, :, :] = np.flip(image[channel, :, :], axis=0).copy() image[channel, :, :] = np.flip(image[channel, :, :], axis=1).copy() # label = np.flip(label, axis=1).copy() label = np.flip(label, axis=2).copy() elif augmentation < 0.5: # mean = 0.0 sigma = 0.15 noise = np.random.normal(mean, sigma, image.shape) mask_overflow_upper = image + noise >= 1.0 mask_overflow_lower = image + noise < 0.0 noise[mask_overflow_upper] = 1.0 noise[mask_overflow_lower] = 0.0 image += noise elif augmentation < 0.75: # c, h, w = np.shape(image) # for channel in range(c): # channel_ratio = random.uniform(0, 1) # image[channel, :, :] = image[channel, :, :] * channel_ratio elif self.data_augmentation == 'flip': # augmentation: augmentation = random.uniform(0, 1) # if augmentation > 0.5 or augmentation == 0.5: # c, h, w = np.shape(image) # for channel in range(c): # image[channel, :, :] = np.flip(image[channel, :, :], axis=0).copy() # label = np.flip(label, axis=1).copy() elif self.data_augmentation == 'all_flip': # augmentation: augmentation = random.uniform(0, 1) # if augmentation > 0.5 or augmentation == 0.5: # c, h, w = np.shape(image) # for channel in range(c): # image[channel, :, :] = np.flip(image[channel, :, :], axis=0).copy() image[channel, :, :] = np.flip(image[channel, :, :], axis=1).copy() # label = np.flip(label, axis=1).copy() label = np.flip(label, axis=2).copy() return image, label, labelname def __len__(self): # You should change 0 to the total size of your dataset. return len(glob.glob(os.path.join(self.imgs_folder, '*.npy'))) # ============================================================================================ def evaluate_noisy_label(data, model1, model2, class_no): """ Args: data: model1: model2: class_no: Returns: """ model1.eval() model2.eval() # test_dice = 0 test_dice_all = [] # for i, (v_images, v_labels_over, v_labels_under, v_labels_wrong, v_labels_true, v_imagename) in enumerate(data): # v_images = v_images.to(device='cuda', dtype=torch.float32) v_outputs_logits = model1(v_images) v_outputs_logits_noisy = model2(v_images) # _, v_output = torch.max(v_outputs_logits, dim=1) v_outputs_noisy = [] # for v_noisy_logit in v_outputs_logits_noisy: # _, v_noisy_output = torch.max(v_noisy_logit, dim=1) v_outputs_noisy.append(v_noisy_output.cpu().detach().numpy()) # v_dice_ = segmentation_scores(v_labels_true, v_output.cpu().detach().numpy(), class_no) # epoch_noisy_labels = [v_labels_over.cpu().detach().numpy(), v_labels_under.cpu().detach().numpy(), v_labels_wrong.cpu().detach().numpy(), v_labels_true.cpu().detach().numpy()] v_ged = generalized_energy_distance(epoch_noisy_labels, v_outputs_noisy, class_no) test_dice += v_dice_ test_dice_all.append(test_dice) # # print(i) # print(test_dice) # print(test_dice / (i + 1)) return test_dice / (i + 1), v_ged def evaluate_noisy_label_2(data, model1, model2, class_no): """ Args: data: model1: model2: class_no: Returns: """ model1.eval() model2.eval() test_dice = 0 test_dice_all = [] for i, (v_images, v_labels_over, v_labels_under, v_labels_wrong, v_labels_true, v_imagename) in enumerate(data): # v_images = v_images.to(device='cuda', dtype=torch.float32) v_outputs_logits = model1(v_images) b, c, h, w = v_outputs_logits.size() v_outputs_logits = nn.Softmax(dim=1)(v_outputs_logits) cms = model2(v_images) # _, v_output = torch.max(v_outputs_logits, dim=1) v_outputs_noisy = [] # for cm in cms: # cm = cm.reshape(b * h * w, c, c) cm = cm / cm.sum(1, keepdim=True) v_noisy_logit = torch.bmm(cm, v_outputs_logits.reshape(b * h * w, c, 1)).reshape(b, c, h, w) _, v_noisy_output = torch.max(v_noisy_logit, dim=1) v_outputs_noisy.append(v_noisy_output.cpu().detach().numpy()) # v_dice_ = segmentation_scores(v_labels_true, v_output.cpu().detach().numpy(), class_no) # epoch_noisy_labels = [v_labels_over.cpu().detach().numpy(), v_labels_under.cpu().detach().numpy(), v_labels_wrong.cpu().detach().numpy(), v_labels_true.cpu().detach().numpy()] v_ged = generalized_energy_distance(epoch_noisy_labels, v_outputs_noisy, class_no) test_dice += v_dice_ test_dice_all.append(test_dice) # # print(i) # print(test_dice) # print(test_dice / (i + 1)) return test_dice / (i + 1), v_ged def evaluate_noisy_label_3(data, model1, class_no): """ Args: data: model1: class_no: Returns: """ model1.eval() # model2.eval() # test_dice = 0 test_dice_all = [] # for i, (v_images, v_labels_over, v_labels_under, v_labels_wrong, v_labels_good, v_imagename) in enumerate(data): # # print(i) # v_images = v_images.to(device='cuda', dtype=torch.float32) v_outputs_logits, cms = model1(v_images) b, c, h, w = v_outputs_logits.size() v_outputs_logits = nn.Softmax(dim=1)(v_outputs_logits) # cms = model2(v_images) # _, v_output = torch.max(v_outputs_logits, dim=1) v_outputs_noisy = [] # # v_outputs_logits = v_outputs_logits.permute(0, 2, 3, 1).contiguous() # v_outputs_logits = v_outputs_logits.reshape(b * h * w, c, 1) # for cm in cms: # cm = cm.reshape(b * h * w, c, c) cm = cm / cm.sum(1, keepdim=True) v_noisy_output = torch.bmm(cm, v_outputs_logits.reshape(b * h * w, c, 1)).reshape(b, c, h, w) # cm = cm.permute(0, 2, 3, 1).contiguous().view(b * h * w, c, c) # cm = cm / cm.sum(1, keepdim=True) # v_noisy_output = torch.bmm(cm, v_outputs_logits) # v_noisy_output = v_noisy_output.view(b, h, w, c).permute(0, 3, 1, 2).contiguous() _, v_noisy_output = torch.max(v_noisy_output, dim=1) v_outputs_noisy.append(v_noisy_output.cpu().detach().numpy()) # v_dice_ = segmentation_scores(v_labels_good, v_output.cpu().detach().numpy(), class_no) # epoch_noisy_labels = [v_labels_over.cpu().detach().numpy(), v_labels_under.cpu().detach().numpy(), v_labels_wrong.cpu().detach().numpy(), v_labels_good.cpu().detach().numpy()] v_ged = generalized_energy_distance(epoch_noisy_labels, v_outputs_noisy, class_no) test_dice += v_dice_ test_dice_all.append(test_dice) # # print(i) # print(test_dice) # print(test_dice / (i + 1)) # return test_dice / (i + 1), v_ged def evaluate_noisy_label_4(data, model1, class_no): """ Args: data: model1: class_no: Returns: """ model1.eval() # model2.eval() # test_dice = 0 test_dice_all = [] # for i, (v_images, v_labels_over, v_labels_under, v_labels_wrong, v_labels_good, v_imagename) in enumerate(data): # # print(i) # v_images = v_images.to(device='cuda', dtype=torch.float32) v_outputs_logits, cms = model1(v_images) b, c, h, w = v_outputs_logits.size() v_outputs_logits = nn.Softmax(dim=1)(v_outputs_logits) # cms = model2(v_images) # _, v_output = torch.max(v_outputs_logits, dim=1) v_outputs_noisy = [] # v_outputs_logits = v_outputs_logits.view(b, c, h*w) v_outputs_logits = v_outputs_logits.permute(0, 2, 1).contiguous().view(b*h*w, c) v_outputs_logits = v_outputs_logits.view(b * h * w, c, 1) # for cm in cms: # cm = cm.reshape(b, c**2, h*w).permute(0, 2, 1).contiguous().view(b*h*w, c*c).view(b*h*w, c, c) cm = cm / cm.sum(1, keepdim=True) v_noisy_output = torch.bmm(cm, v_outputs_logits).view(b*h*w, c) v_noisy_output = v_noisy_output.view(b, h*w, c).permute(0, 2, 1).contiguous().view(b, c, h, w) _, v_noisy_output = torch.max(v_noisy_output, dim=1) v_outputs_noisy.append(v_noisy_output.cpu().detach().numpy()) # v_dice_ = segmentation_scores(v_labels_good, v_output.cpu().detach().numpy(), class_no) # epoch_noisy_labels = [v_labels_over.cpu().detach().numpy(), v_labels_under.cpu().detach().numpy(), v_labels_wrong.cpu().detach().numpy(), v_labels_good.cpu().detach().numpy()] v_ged = generalized_energy_distance(epoch_noisy_labels, v_outputs_noisy, class_no) test_dice += v_dice_ test_dice_all.append(test_dice) # # print(i) # print(test_dice) # print(test_dice / (i + 1)) # return test_dice / (i + 1), v_ged def evaluate_noisy_label_6(data, model1, class_no): """ Args: data: model1: class_no: Returns: """ model1.eval() # model2.eval() # test_dice = 0 test_dice_all = [] # for i, (v_images, v_labels_over, v_labels_under, v_labels_wrong, v_labels_good, v_imagename) in enumerate(data): # # print(i) # v_images = v_images.to(device='cuda', dtype=torch.float32) v_outputs_logits, cms = model1(v_images) b, c, h, w = v_outputs_logits.size() v_outputs_logits = nn.Softmax(dim=1)(v_outputs_logits) # cms = model2(v_images) # _, v_output = torch.max(v_outputs_logits, dim=1) v_outputs_noisy = [] # v_outputs_logits = v_outputs_logits.view(b, c, h*w) v_outputs_logits = v_outputs_logits.permute(0, 2, 1).contiguous().view(b*h*w, c) v_outputs_logits = v_outputs_logits.view(b * h * w, c, 1) # for cm in cms: # b, c_r_d, h, w = cm.size() r = c_r_d // c // 2 cm1 = cm[:, 0:r * c, :, :] if r == 1: cm2 = cm[:, r * c:c_r_d-1, :, :] else: cm2 = cm[:, r * c:c_r_d-1, :, :] cm1_reshape = cm1.view(b, c_r_d // 2, h * w).permute(0, 2, 1).contiguous().view(b * h * w, r * c).view(b * h * w, r, c) cm2_reshape = cm2.view(b, c_r_d // 2, h * w).permute(0, 2, 1).contiguous().view(b * h * w, r * c).view(b * h * w, c, r) # cm1_reshape = cm1_reshape / cm1_reshape.sum(1, keepdim=True) cm2_reshape = cm2_reshape / cm2_reshape.sum(1, keepdim=True) # v_noisy_output = torch.bmm(cm1_reshape, v_outputs_logits) v_noisy_output = torch.bmm(cm2_reshape, v_noisy_output).view(b * h * w, c) v_noisy_output = v_noisy_output.view(b, h * w, c).permute(0, 2, 1).contiguous().view(b, c, h, w) # # v_noisy_output = torch.bmm(cm, v_outputs_logits).view(b*h*w, c) # v_noisy_output = v_noisy_output.view(b, h*w, c).permute(0, 2, 1).contiguous().view(b, c, h, w) _, v_noisy_output = torch.max(v_noisy_output, dim=1) v_outputs_noisy.append(v_noisy_output.cpu().detach().numpy()) # v_dice_ = segmentation_scores(v_labels_good, v_output.cpu().detach().numpy(), class_no) # epoch_noisy_labels = [v_labels_over.cpu().detach().numpy(), v_labels_under.cpu().detach().numpy(), v_labels_wrong.cpu().detach().numpy(), v_labels_good.cpu().detach().numpy()] v_ged = generalized_energy_distance(epoch_noisy_labels, v_outputs_noisy, class_no) test_dice += v_dice_ test_dice_all.append(test_dice) # # print(i) # print(test_dice) # print(test_dice / (i + 1)) # return test_dice / (i + 1), v_ged def evaluate_noisy_label_7(data, model1, model2, class_no, low_rank): """ Args: data: model1: model2: class_no: low_rank: Returns: """ model1.eval() model2.eval() # test_dice = 0 test_dice_all = [] # for i, (v_images, v_labels_over, v_labels_under, v_labels_wrong, v_labels_good, v_imagename) in enumerate(data): # # print(i) # v_images = v_images.to(device='cuda', dtype=torch.float32) v_outputs_logits = model1(v_images) b, c, h, w = v_outputs_logits.size() v_outputs_logits = nn.Softmax(dim=1)(v_outputs_logits) cms = model2(v_images) # _, v_output = torch.max(v_outputs_logits, dim=1) v_outputs_noisy = [] # v_outputs_logits = v_outputs_logits.view(b, c, h*w) v_outputs_logits = v_outputs_logits.permute(0, 2, 1).contiguous().view(b*h*w, c) v_outputs_logits = v_outputs_logits.view(b * h * w, c, 1) # for cm in cms: # if low_rank is False: # cm = cm.reshape(b, c**2, h*w).permute(0, 2, 1).contiguous().view(b*h*w, c*c).view(b*h*w, c, c) cm = cm / cm.sum(1, keepdim=True) v_noisy_output = torch.bmm(cm, v_outputs_logits).view(b*h*w, c) v_noisy_output = v_noisy_output.view(b, h*w, c).permute(0, 2, 1).contiguous().view(b, c, h, w) # else: # b, c_r_d, h, w = cm.size() r = c_r_d // c // 2 cm1 = cm[:, 0:r * c, :, :] cm2 = cm[:, r * c:c_r_d, :, :] cm1_reshape = cm1.view(b, c_r_d // 2, h * w).permute(0, 2, 1).contiguous().view(b * h * w, r * c).view(b * h * w, r, c) cm2_reshape = cm2.view(b, c_r_d // 2, h * w).permute(0, 2, 1).contiguous().view(b * h * w, r * c).view(b * h * w, c, r) # cm1_reshape = cm1_reshape / cm1_reshape.sum(1, keepdim=True) cm2_reshape = cm2_reshape / cm2_reshape.sum(1, keepdim=True) # v_noisy_output = torch.bmm(cm1_reshape, v_outputs_logits) v_noisy_output = torch.bmm(cm2_reshape, v_noisy_output).view(b * h * w, c) v_noisy_output = v_noisy_output.view(b, h * w, c).permute(0, 2, 1).contiguous().view(b, c, h, w) # _, v_noisy_output = torch.max(v_noisy_output, dim=1) v_outputs_noisy.append(v_noisy_output.cpu().detach().numpy()) # v_dice_ = segmentation_scores(v_labels_good, v_output.cpu().detach().numpy(), class_no) # epoch_noisy_labels = [v_labels_over.cpu().detach().numpy(), v_labels_under.cpu().detach().numpy(), v_labels_wrong.cpu().detach().numpy(), v_labels_good.cpu().detach().numpy()] v_ged = generalized_energy_distance(epoch_noisy_labels, v_outputs_noisy, class_no) test_dice += v_dice_ test_dice_all.append(test_dice) # # print(i) # print(test_dice) # print(test_dice / (i + 1)) # return test_dice / (i + 1), v_ged def evaluate_noisy_label_5(data, model1, class_no): """ Args: data: model1: class_no: Returns: """ model1.eval() # model2.eval() # test_dice = 0 test_dice_all = [] # for i, (v_images, v_labels_over, v_labels_under, v_labels_wrong, v_labels_good, v_labels_true, v_imagename) in enumerate(data): # # print(i) # v_images = v_images.to(device='cuda', dtype=torch.float32) v_outputs_logits, cms = model1(v_images) b, c, h, w = v_outputs_logits.size() v_outputs_logits = nn.Softmax(dim=1)(v_outputs_logits) # cms = model2(v_images) # _, v_output = torch.max(v_outputs_logits, dim=1) v_outputs_noisy = [] # v_outputs_logits = v_outputs_logits.view(b, c, h*w) v_outputs_logits = v_outputs_logits.permute(0, 2, 1).contiguous().view(b*h*w, c) v_outputs_logits = v_outputs_logits.view(b * h * w, c, 1) # for cm in cms: # # cm = cm.reshape(b * h * w, c, c) # cm = cm / cm.sum(1, keepdim=True) # v_noisy_output = torch.bmm(cm, v_outputs_logits.reshape(b * h * w, c, 1)).reshape(b, c, h, w) # cm = cm.permute(0, 2, 3, 1).contiguous().view(b * h * w, c, c) cm = cm.reshape(b, c**2, h*w).permute(0, 2, 1).contiguous().view(b*h*w, c*c).view(b*h*w, c, c) cm = cm / cm.sum(1, keepdim=True) v_noisy_output = torch.bmm(cm, v_outputs_logits).view(b*h*w, c) v_noisy_output = v_noisy_output.view(b, h*w, c).permute(0, 2, 1).contiguous().view(b, c, h, w) _, v_noisy_output = torch.max(v_noisy_output, dim=1) v_outputs_noisy.append(v_noisy_output.cpu().detach().numpy()) # v_dice_ = segmentation_scores(v_labels_true, v_output.cpu().detach().numpy(), class_no) # epoch_noisy_labels = [v_labels_over.cpu().detach().numpy(), v_labels_under.cpu().detach().numpy(), v_labels_wrong.cpu().detach().numpy(), v_labels_true.cpu().detach().numpy(), v_labels_good.cpu().detach().numpy()] v_ged = generalized_energy_distance(epoch_noisy_labels, v_outputs_noisy, class_no) test_dice += v_dice_ test_dice_all.append(test_dice) # # print(i) # print(test_dice) # print(test_dice / (i + 1)) # return test_dice / (i + 1), v_ged def evaluate(evaluatedata, model, device, class_no): """ Args: evaluatedata: model: device: class_no: Returns: """ model.eval() # with torch.no_grad(): # test_iou = 0 # for j, (testimg, testlabel, testname) in enumerate(evaluatedata): # testimg = testimg.to(device=device, dtype=torch.float32) testlabel = testlabel.to(device=device, dtype=torch.float32) # testoutput = model(testimg) if class_no == 2: testoutput = torch.sigmoid(testoutput) testoutput = (testoutput > 0.5).float() else: _, testoutput = torch.max(testoutput, dim=1) # mean_iu_ = segmentation_scores(testlabel.cpu().detach().numpy(), testoutput.cpu().detach().numpy(), class_no) test_iou += mean_iu_ # return test_iou / (j+1) def test(testdata, model, device, class_no, save_path): """ Args: testdata: model: device: class_no: save_path: Returns: """ model.eval() with torch.no_grad(): # test_iou = 0 # for j, (testimg, testlabel, testname) in enumerate(testdata): # testimg = testimg.to(device=device, dtype=torch.float32) testlabel = testlabel.to(device=device, dtype=torch.float32) # testoutput = model(testimg) if class_no == 2: testoutput = torch.sigmoid(testoutput) testoutput = (testoutput > 0.5).float() else: _, testoutput = torch.max(testoutput, dim=1) # mean_iu_ = segmentation_scores(testlabel.cpu().detach().numpy(), testoutput.cpu().detach().numpy(), class_no) test_iou += mean_iu_ # # ======================================================== # # Plotting segmentation: # ======================================================== prediction_map_path = save_path + '/' + 'Visual_results' # try: os.mkdir(prediction_map_path) except OSError as exc: if exc.errno != errno.EEXIST: raise pass b, c, h, w = np.shape(testlabel) testoutput_original = np.asarray(testoutput.cpu().detach().numpy(), dtype=np.uint8) testoutput_original = np.squeeze(testoutput_original, axis=0) testoutput_original = np.repeat(testoutput_original[:, :, np.newaxis], 3, axis=2) # if class_no == 2: segmentation_map = np.zeros((h, w, 3), dtype=np.uint8) # segmentation_map[:, :, 0][np.logical_and(testoutput_original[:, :, 0] == 1, testoutput_original[:, :, 1] == 1, testoutput_original[:, :, 2] == 1)] = 255 segmentation_map[:, :, 1][np.logical_and(testoutput_original[:, :, 0] == 1, testoutput_original[:, :, 1] == 1, testoutput_original[:, :, 2] == 1)] = 0 segmentation_map[:, :, 2][np.logical_and(testoutput_original[:, :, 0] == 1, testoutput_original[:, :, 1] == 1, testoutput_original[:, :, 2] == 1)] = 0 # else: segmentation_map = np.zeros((h, w, 3), dtype=np.uint8) if class_no == 4: # multi class for brats 2018 segmentation_map[:, :, 0][np.logical_and(testoutput_original[:, :, 0] == 1, testoutput_original[:, :, 1] == 1, testoutput_original[:, :, 2] == 1)] = 255 segmentation_map[:, :, 1][np.logical_and(testoutput_original[:, :, 0] == 1, testoutput_original[:, :, 1] == 1, testoutput_original[:, :, 2] == 1)] = 0 segmentation_map[:, :, 2][np.logical_and(testoutput_original[:, :, 0] == 1, testoutput_original[:, :, 1] == 1, testoutput_original[:, :, 2] == 1)] = 0 # segmentation_map[:, :, 0][np.logical_and(testoutput_original[:, :, 0] == 2, testoutput_original[:, :, 1] == 2, testoutput_original[:, :, 2] == 2)] = 0 segmentation_map[:, :, 1][np.logical_and(testoutput_original[:, :, 0] == 2, testoutput_original[:, :, 1] == 2, testoutput_original[:, :, 2] == 2)] = 255 segmentation_map[:, :, 2][np.logical_and(testoutput_original[:, :, 0] == 2, testoutput_original[:, :, 1] == 2, testoutput_original[:, :, 2] == 2)] = 0 # segmentation_map[:, :, 0][np.logical_and(testoutput_original[:, :, 0] == 3, testoutput_original[:, :, 1] == 3, testoutput_original[:, :, 2] == 3)] = 0 segmentation_map[:, :, 1][np.logical_and(testoutput_original[:, :, 0] == 3, testoutput_original[:, :, 1] == 3, testoutput_original[:, :, 2] == 3)] = 0 segmentation_map[:, :, 2][np.logical_and(testoutput_original[:, :, 0] == 3, testoutput_original[:, :, 1] == 3, testoutput_original[:, :, 2] == 3)] = 255 # elif class_no == 8: # multi class for cityscapes segmentation_map[:, :, 0][np.logical_and(testoutput_original[:, :, 0] == 0, testoutput_original[:, :, 1] == 0, testoutput_original[:, :, 2] == 0)] = 255 segmentation_map[:, :, 1][np.logical_and(testoutput_original[:, :, 0] == 0, testoutput_original[:, :, 1] == 0, testoutput_original[:, :, 2] == 0)] = 0 segmentation_map[:, :, 2][np.logical_and(testoutput_original[:, :, 0] == 0, testoutput_original[:, :, 1] == 0, testoutput_original[:, :, 2] == 0)] = 0 # segmentation_map[:, :, 0][np.logical_and(testoutput_original[:, :, 0] == 1, testoutput_original[:, :, 1] == 1, testoutput_original[:, :, 2] == 1)] = 0 segmentation_map[:, :, 1][np.logical_and(testoutput_original[:, :, 0] == 1, testoutput_original[:, :, 1] == 1, testoutput_original[:, :, 2] == 1)] = 255 segmentation_map[:, :, 2][np.logical_and(testoutput_original[:, :, 0] == 1, testoutput_original[:, :, 1] == 1, testoutput_original[:, :, 2] == 1)] = 0 # segmentation_map[:, :, 0][np.logical_and(testoutput_original[:, :, 0] == 2, testoutput_original[:, :, 1] == 2, testoutput_original[:, :, 2] == 2)] = 0 segmentation_map[:, :, 1][np.logical_and(testoutput_original[:, :, 0] == 2, testoutput_original[:, :, 1] == 2, testoutput_original[:, :, 2] == 2)] = 0 segmentation_map[:, :, 2][np.logical_and(testoutput_original[:, :, 0] == 2, testoutput_original[:, :, 1] == 2, testoutput_original[:, :, 2] == 2)] = 255 # segmentation_map[:, :, 0][np.logical_and(testoutput_original[:, :, 0] == 3, testoutput_original[:, :, 1] == 3, testoutput_original[:, :, 2] == 3)] = 255 segmentation_map[:, :, 1][np.logical_and(testoutput_original[:, :, 0] == 3, testoutput_original[:, :, 1] == 3, testoutput_original[:, :, 2] == 3)] = 255 segmentation_map[:, :, 2][np.logical_and(testoutput_original[:, :, 0] == 3, testoutput_original[:, :, 1] == 3, testoutput_original[:, :, 2] == 3)] = 0 # segmentation_map[:, :, 0][np.logical_and(testoutput_original[:, :, 0] == 4, testoutput_original[:, :, 1] == 4, testoutput_original[:, :, 2] == 4)] = 153 segmentation_map[:, :, 1][np.logical_and(testoutput_original[:, :, 0] == 4, testoutput_original[:, :, 1] == 4, testoutput_original[:, :, 2] == 4)] = 51 segmentation_map[:, :, 2][np.logical_and(testoutput_original[:, :, 0] == 4, testoutput_original[:, :, 1] == 4, testoutput_original[:, :, 2] == 4)] = 255 # segmentation_map[:, :, 0][np.logical_and(testoutput_original[:, :, 0] == 5, testoutput_original[:, :, 1] == 5, testoutput_original[:, :, 2] == 5)] = 255 segmentation_map[:, :, 1][np.logical_and(testoutput_original[:, :, 0] == 5, testoutput_original[:, :, 1] == 5, testoutput_original[:, :, 2] == 5)] = 102 segmentation_map[:, :, 2][np.logical_and(testoutput_original[:, :, 0] == 5, testoutput_original[:, :, 1] == 5, testoutput_original[:, :, 2] == 5)] = 178 # segmentation_map[:, :, 0][np.logical_and(testoutput_original[:, :, 0] == 6, testoutput_original[:, :, 1] == 6, testoutput_original[:, :, 2] == 6)] = 102 segmentation_map[:, :, 1][np.logical_and(testoutput_original[:, :, 0] == 6, testoutput_original[:, :, 1] == 6, testoutput_original[:, :, 2] == 6)] = 255 segmentation_map[:, :, 2][np.logical_and(testoutput_original[:, :, 0] == 6, testoutput_original[:, :, 1] == 6, testoutput_original[:, :, 2] == 6)] = 102 # prediction_name = 'seg_' + testname[0] + '.png' full_error_map_name = os.path.join(prediction_map_path, prediction_name) imageio.imsave(full_error_map_name, segmentation_map) # prediction_result_path = save_path + '/Quantitative_Results' # try: # os.mkdir(prediction_result_path) # except OSError as exc: # if exc.errno != errno.EEXIST: # raise # pass # result_dictionary = {'Test dice': str(test_iou / len(testdata))} # ff_path = prediction_result_path + '/test_result_data.txt' ff = open(ff_path, 'w') ff.write(str(result_dictionary)) ff.close() print('Test iou: {:.4f}, '.format(test_iou / len(testdata))) class CustomDataset_punet(torch.utils.data.Dataset): def __init__(self, dataset_location, dataset_tag, noisylabel, augmentation=False): # self.label_mode = noisylabel self.dataset_tag = dataset_tag # if noisylabel == 'multi': # if dataset_tag == 'mnist': self.label_over_folder = dataset_location + '/Over' self.label_under_folder = dataset_location + '/Under' self.label_wrong_folder = dataset_location + '/Wrong' self.label_good_folder = dataset_location + '/GT' self.image_folder = dataset_location + '/Gaussian' elif dataset_tag == 'brats': self.label_over_folder = dataset_location + '/Over' self.label_under_folder = dataset_location + '/Under' self.label_wrong_folder = dataset_location + '/Wrong' self.label_good_folder = dataset_location + '/Good' self.image_folder = dataset_location + '/Image' elif dataset_tag == 'lidc': self.label_over_folder = dataset_location + '/Annotator_1' self.label_under_folder = dataset_location + '/Annotator_2' self.label_wrong_folder = dataset_location + '/Annotator_3' self.label_good_folder = dataset_location + '/Annotator_4' self.label_true_folder = dataset_location + '/Annotator_5' self.image_folder = dataset_location + '/Image' # elif noisylabel == 'binary': if dataset_tag == 'mnist': self.label_folder = dataset_location + '/Mean' self.image_folder = dataset_location + '/Gaussian' self.true_label_folder = dataset_location + '/GT' elif noisylabel == 'normal': if dataset_tag == 'mnist': self.label_folder = dataset_location + '/GT' self.image_folder = dataset_location + '/Gaussian' elif noisylabel == 'p_unet': if dataset_tag == 'mnist': self.label_folder = dataset_location + '/All' self.image_folder = dataset_location + '/Gaussian' self.data_aug = augmentation def __getitem__(self, index): if self.label_mode == 'multi': # if self.dataset_tag == 'mnist' or self.dataset_tag == 'brats': # all_labels_over = glob.glob(os.path.join(self.label_over_folder, '*.tif')) all_labels_over.sort() # all_labels_under = glob.glob(os.path.join(self.label_under_folder, '*.tif')) all_labels_under.sort() # all_labels_wrong = glob.glob(os.path.join(self.label_wrong_folder, '*.tif')) all_labels_wrong.sort() # all_labels_good = glob.glob(os.path.join(self.label_good_folder, '*.tif')) all_labels_good.sort() # all_images = glob.glob(os.path.join(self.image_folder, '*.tif')) all_images.sort() # label_over = tiff.imread(all_labels_over[index]) label_over = np.array(label_over, dtype='float32') # label_under = tiff.imread(all_labels_under[index]) label_under = np.array(label_under, dtype='float32') # label_wrong = tiff.imread(all_labels_wrong[index]) label_wrong = np.array(label_wrong, dtype='float32') # label_good = tiff.imread(all_labels_good[index]) label_good = np.array(label_good, dtype='float32') # image = tiff.imread(all_images[index]) image = np.array(image, dtype='float32') # # dim_length = len(np.shape(label_over)) label_over[label_over == 4.0] = 3.0 label_wrong[label_wrong == 4.0] = 3.0 label_good[label_good == 4.0] = 3.0 label_under[label_under == 4.0] = 3.0 if self.dataset_tag == 'mnist': label_over = np.where(label_over > 0.5, 1.0, 0.0) label_under = np.where(label_under > 0.5, 1.0, 0.0) label_wrong = np.where(label_wrong > 0.5, 1.0, 0.0) if np.amax(label_good) != 1.0: # sometimes, some preprocessing might give it as 0 - 255 range label_good = np.where(label_good > 10.0, 1.0, 0.0) else: assert np.amax(label_good) == 1.0 label_good = np.where(label_good > 0.5, 1.0, 0.0) # print(np.unique(label_over)) # label_over: h x w # image: h x w x c c_amount = len(np.shape(label_over)) # Reshaping everyting to make sure the order: channel x height x width if c_amount == 3: # d1, d2, d3 = np.shape(label_over) # if d1 != min(d1, d2, d3): # assert d3 == min(d1, d2, d3) # label_over = np.transpose(label_over, (2, 0, 1)) label_under = np.transpose(label_under, (2, 0, 1)) label_wrong = np.transpose(label_wrong, (2, 0, 1)) label_good = np.transpose(label_good, (2, 0, 1)) # elif c_amount == 2: # label_over =
np.expand_dims(label_over, axis=0)
numpy.expand_dims
import os import copy import glob import numpy as np from gains import Absorber import corner from utils import (fit_2d_gmm, vcomplex, nested_ddict, make_ellipses, baselines_2_ants, find_outliers_2d_mincov, find_outliers_2d_dbscan, find_outliers_dbscan, fit_kde, fit_2d_kde, hdi_of_mcmc, hdi_of_sample, bc_endpoint, ants_2_baselines) import matplotlib from uv_data import UVData from from_fits import create_model_from_fits_file from model import Model from spydiff import import_difmap_model, modelfit_difmap from spydiff import modelfit_difmap matplotlib.use('Agg') label_size = 12 matplotlib.rcParams['xtick.labelsize'] = label_size matplotlib.rcParams['ytick.labelsize'] = label_size def xy_2_rtheta(params): flux, x, y = params[:3] r = np.sqrt(x ** 2 + y ** 2) theta = np.rad2deg(np.arctan(x / y)) result = [flux, r, theta] try: result.extend(params[3:]) except IndexError: pass return result def boot_ci(boot_images, original_image, cred_mass=0.68, kind=None): """ Calculate bootstrap CI. :param boot_images: Iterable of 2D numpy arrays with bootstrapped images. :param original_image: 2D numpy array with original image. :param kind: (optional) Type of CI. "asym", "bc" or None. If ``None`` than symmetric one. (default: ``None``) :return: Two numpy arrays with low and high CI borders for each pixel. """ images_cube = np.dstack(boot_images) boot_ci = np.zeros(np.shape(images_cube[:, :, 0])) mean_boot = np.zeros(np.shape(images_cube[:, :, 0])) hdi_0 = np.zeros(np.shape(images_cube[:, :, 0])) hdi_1 = np.zeros(np.shape(images_cube[:, :, 0])) hdi_low = np.zeros(np.shape(images_cube[:, :, 0])) hdi_high = np.zeros(np.shape(images_cube[:, :, 0])) alpha = 1 - cred_mass print("calculating CI intervals") if kind == "bc": for (x, y), value in np.ndenumerate(boot_ci): hdi_low[x, y] = bc_endpoint(images_cube[x, y, :], original_image[x, y], alpha/2.) hdi_high[x, y] = bc_endpoint(images_cube[x, y, :], original_image[x, y], 1-alpha/2.) else: for (x, y), value in np.ndenumerate(boot_ci): hdi = hdi_of_sample(images_cube[x, y, :], cred_mass=cred_mass) boot_ci[x, y] = hdi[1] - hdi[0] hdi_0[x, y] = hdi[0] hdi_1[x, y] = hdi[1] mean_boot[x, y] = np.mean(images_cube[x, y, :]) if kind == 'asym': hdi_low = original_image - (mean_boot - hdi_0) hdi_high = original_image + hdi_1 - mean_boot else: hdi_low = original_image - boot_ci / 2. hdi_high = original_image + boot_ci / 2. return hdi_low, hdi_high def analyze_bootstrap_samples(dfm_model_fname, booted_mdl_paths, dfm_model_dir=None, plot_comps=None, plot_file=None, txt_file=None, cred_mass=0.68, coordinates='xy', out_samples_path=None, limits=None, fig=None): """ Plot bootstrap distribution of model component parameters. :param dfm_model_fname: File name of original difmap model. :param booted_mdl_paths: Iterable of paths to bootstrapped difmap models. :param dfm_model_dir: (optional) Directory with original difmap model. If ``None`` then CWD. (default: ``None``) :param plot_comps: (optional) Iterable of components number to plot on same plot. If ``None`` then plot parameter distributions of all components. :param plot_file: (optional) File to save picture. If ``None`` then don't save picture. (default: ``None``) :param txt_file: (optional) File to save credible intervals for parameters. If ``None`` then don't save credible intervals. (default: ``None``) :param cred_mass: (optional) Value of credible interval mass. Float in range (0., 1.). (default: ``0.68``) :param coordinates: (optional) Type of coordinates to use. ``xy`` or ``rtheta``. (default: ``xy``) """ n_boot = len(booted_mdl_paths) # Get params of initial model used for bootstrap comps_orig = import_difmap_model(dfm_model_fname, dfm_model_dir) comps_params0 = {i: [] for i in range(len(comps_orig))} for i, comp in enumerate(comps_orig): # FIXME: Move (x, y) <-> (r, theta) mapping to ``Component`` if coordinates == 'xy': params = comp.p elif coordinates == 'rtheta': params = xy_2_rtheta(comp.p) else: raise Exception comps_params0[i].extend(list(params)) # Load bootstrap models comps_params = {i: [] for i in range(len(comps_orig))} for booted_mdl_path in booted_mdl_paths: path, booted_mdl_file = os.path.split(booted_mdl_path) comps = import_difmap_model(booted_mdl_file, path) for i, comp in enumerate(comps): # FIXME: Move (x, y) <-> (r, theta) mapping to ``Component`` if coordinates == 'xy': params = comp.p elif coordinates == 'rtheta': params = xy_2_rtheta(comp.p) else: raise Exception comps_params[i].extend(list(params)) comps_to_plot = [comps_orig[k] for k in plot_comps] # (#boot, #parameters) boot_data = np.hstack(
np.array(comps_params[i])
numpy.array
# -*- coding: utf-8 -*- # @Time : 2021/2/10 11:24 上午 # @Author : <NAME> # @fileName: SaDE.py # @Software: PyCharm # @Blog :https://lesliewongcv.github.io/ import numpy as np import matplotlib.pyplot as plt import sys sys.path.append('../') import DifferenceEvolution as DE import GenericAlgorithm as GA NP = 50 D = 10 CRm = np.random.normal(0.5, 0.1) X = np.arange(-5, 5, 0.1) Y = X ** 2 ITER = 100 rep_set = np.zeros(4) LP = 2 # ITER = 3 def rand_1_mutation(popu_): offspringSet = np.zeros((NP, D)) for j in range(NP): f = np.random.normal(0.5, 0.3) sub_popu = np.delete(popu_, j, axis=0) rand_sub = np.arange(sub_popu.shape[0]) np.random.shuffle(rand_sub) offspringSet[j] = sub_popu[rand_sub[4]] + f * (sub_popu[rand_sub[0]] - sub_popu[rand_sub[1]]) return offspringSet def rand2best_2_mutation(popu_): offspringSet = np.zeros((NP, D)) for k in range(NP): f = np.random.normal(0.5, 0.3) sub_popu = np.delete(popu_, k, axis=0) rand_sub = np.arange(sub_popu.shape[0]) np.random.shuffle(rand_sub) offspringSet[k] = sub_popu[rand_sub[4]] + f * (sub_popu[rand_sub[0]] - sub_popu[rand_sub[1]]) \ + f * (sub_popu[rand_sub[2]] - sub_popu[rand_sub[3]]) return offspringSet def cur2rand_1_mutation(popu_): offspringSet = np.zeros((NP, D)) for l in range(NP): f = np.random.normal(0.5, 0.3) cur = popu_[l] sub_popu = np.delete(popu_, l, axis=0) rand_sub = np.arange(sub_popu.shape[0]) np.random.shuffle(rand_sub) offspringSet[l] = cur + f * (sub_popu[rand_sub[0]] - cur) \ + f * (sub_popu[rand_sub[1]] - sub_popu[rand_sub[2]]) return offspringSet def rand_2_mutation(popu_): offspringSet = np.zeros((NP, D)) for i in range(NP): f = np.random.normal(0.5, 0.3) sub_popu = np.delete(popu_, i, axis=0) rand_sub = np.arange(sub_popu.shape[0]) np.random.shuffle(rand_sub) offspringSet[i] = sub_popu[rand_sub[0]] + f * (sub_popu[rand_sub[1]] - sub_popu[rand_sub[2]]) \ + f * (sub_popu[rand_sub[3]] - sub_popu[rand_sub[4]]) return offspringSet def crossover(popu, off_v, NP, D, CRm): off_u = np.copy(popu) Cr_rand = np.random.rand(NP * 4, D) Cr = np.random.normal(CRm, 0.1, (4 * NP, D)) # CRi = N(CRm, Std) Cr_r_index = np.where(Cr_rand <= Cr) # the result of np.where is a tuple including 2 array off_u[Cr_r_index] = off_v[Cr_r_index] rand_j = np.random.randint(0, D, size=NP) for i in range(NP): off_u[i, rand_j] = popu[i, rand_j] _ = 1 + 1 return off_u, Cr def selection(off_u, popu): popu_fitness = DE.fitness_score(popu, 4 * NP, D) mask = np.where(DE.fitness_score(off_u, 4 * NP, D) <= popu_fitness) off_final = np.copy(popu) off_final[mask] = off_u[mask] replace_num = len(mask[0]) rep = np.zeros(4) rep[0] = sum(mask[0] <= 50) rep[1] = sum(mask[0] <= 100) - rep[0] rep[2] = sum(mask[0] <= 150) - rep[1] - rep[0] rep[3] = len(mask[0]) - rep[2] - rep[1] - rep[0] _ = 1 + 1 return off_final, rep, replace_num, mask # f = np.random.normal(0.5, 0.3) # randomly sampled from normal distribution and applied to EACH TARGET VECTOR p = np.random.uniform(0, 1) p1 = 0.25 p2 = 0.5 p3 = 0.75 popu, popu_ft = DE.init_popu(4 * NP, D) CRtmp_mean = 0 for i in range(ITER): for i in range(LP): off_v1 = rand_1_mutation(popu[:50]) off_v2 = rand2best_2_mutation(popu[50:100]) off_v3 = cur2rand_1_mutation(popu[100:150]) off_v4 = rand_2_mutation(popu[150:]) off_v = np.concatenate((off_v1, off_v2, off_v3, off_v4)) off_u, CRi = crossover(popu, off_v, NP, D, CRm) off_final, replace, replace_num, replace_CR = selection(off_u, popu) rep_set += replace CRtmp_mean += np.mean(CRi[replace_CR]) _ = 2 + 2 p1 = (replace[0]) / replace_num p2 = (replace[0] + replace[1]) / replace_num p3 = (replace[0] + replace[1] + replace[2]) / replace_num p =
np.random.uniform(0, 1)
numpy.random.uniform
# -*- coding: utf-8 -*- # Copyright 2019 the HERA Project # Licensed under the MIT License import pytest import os import shutil import numpy as np import sys from collections import OrderedDict as odict import copy import glob from pyuvdata import UVData from pyuvdata import utils as uvutils import unittest from scipy import stats from scipy import constants from pyuvdata import UVFlag from .. import datacontainer, io, frf from ..data import DATA_PATH @pytest.mark.filterwarnings("ignore:The default for the `center` keyword has changed") def test_timeavg_waterfall(): fname = os.path.join(DATA_PATH, "zen.2458042.12552.xx.HH.uvXA") uvd = UVData() uvd.read_miriad(fname) d = uvd.get_data(24, 25) f = uvd.get_flags(24, 25) n = uvd.get_nsamples(24, 25) t = np.unique(uvd.time_array) fr = uvd.freq_array.squeeze() lsts = [] for _l in uvd.lst_array: if _l not in lsts: lsts.append(_l) lsts = np.array(lsts) antpos, ants = uvd.get_ENU_antpos() blv = antpos[ants.tolist().index(24)] - antpos[ants.tolist().index(25)] # test basic execution ad, af, an, al, aea = frf.timeavg_waterfall(d, 25, verbose=False) assert ad.shape == (3, 64) assert af.shape == (3, 64) assert an.shape == (3, 64) assert not np.any(af) assert np.allclose(an[1, 0], 25.0) assert np.allclose(an[2, 0], 10.0) # test rephase ad, af, an, al, aea = frf.timeavg_waterfall(d, 25, flags=f, rephase=True, lsts=lsts, freqs=fr, bl_vec=blv, nsamples=n, extra_arrays=dict(times=t), verbose=False) assert ad.shape == (3, 64) assert af.shape == (3, 64) assert an.shape == (3, 64) assert np.any(af) assert len(al) == 3 assert len(aea['avg_times']) == 3 assert np.allclose(an.max(), 25.0) # test various Navgs ad, af, an, al, aea = frf.timeavg_waterfall(d, 1, flags=f, rephase=True, lsts=lsts, freqs=fr, bl_vec=blv, nsamples=n, extra_arrays=dict(times=t), verbose=False) assert ad.shape == (60, 64) ad, af, an, al, aea = frf.timeavg_waterfall(d, 60, flags=f, rephase=True, lsts=lsts, freqs=fr, bl_vec=blv, nsamples=n, extra_arrays=dict(times=t), verbose=False) assert ad.shape == (1, 64) # wrap lst ad2, af2, an2, al2, aea2 = frf.timeavg_waterfall(d, 60, flags=f, rephase=True, lsts=lsts + 1.52917804, freqs=fr, bl_vec=blv, nsamples=n, extra_arrays=dict(times=t), verbose=False) assert ad.shape == (1, 64) assert np.allclose(ad, ad2) assert np.allclose(al, al2 - 1.52917804) # Test Error with pytest.raises(ValueError): frf.timeavg_waterfall(d, 25, verbose=False, wgt_by_nsample=True, wgt_by_favg_nsample=True) # test weightings d = np.ones((4, 10)) d[0, :] *= 2 n = np.ones((4, 10)) n[0, 0:5] *= 2 ad, _, _, _, _ = frf.timeavg_waterfall(d, 2, rephase=False, nsamples=n, wgt_by_nsample=True) np.testing.assert_array_equal(ad[1, :], 1.0) np.testing.assert_array_equal(ad[0, 0:5], 5. / 3) np.testing.assert_array_equal(ad[0, 5:10], 1.5) ad, _, _, _, _ = frf.timeavg_waterfall(d, 2, rephase=False, nsamples=n, wgt_by_nsample=False, wgt_by_favg_nsample=True) np.testing.assert_array_equal(ad[1, :], 1.0) np.testing.assert_array_equal(ad[0, :], 1.6) def test_fir_filtering(): # convert a high-pass frprofile to an FIR filter frbins = np.linspace(-40e-3, 40e-3, 1024) frp = np.ones(1024) frp[512 - 9:512 + 10] = 0.0 fir, tbins = frf.frp_to_fir(frp, delta_bin=np.diff(frbins)[0]) # confirm its purely real assert not np.any(np.isclose(np.abs(fir.real), 0.0)) assert np.allclose(np.abs(fir.imag), 0.0) # convert back _frp, _frbins = frf.frp_to_fir(fir, delta_bin=np.diff(tbins)[0], undo=True) np.testing.assert_array_almost_equal(frp, _frp.real) np.testing.assert_array_almost_equal(np.diff(frbins), np.diff(_frbins)) assert np.allclose(np.abs(_frp.imag), 0.0) # test noise averaging properties frp = np.zeros(1024) frp[512] = 1.0 t_ratio = frf.fr_tavg(frp) assert np.allclose(t_ratio, 1024) @pytest.mark.filterwarnings("ignore:The default for the `center` keyword has changed") class Test_FRFilter(object): def setup_method(self): self.fname = os.path.join(DATA_PATH, "zen.2458042.12552.xx.HH.uvXA") self.F = frf.FRFilter(self.fname, filetype='miriad') self.F.read() def test_timeavg_data(self): # test basic time average self.F.timeavg_data(self.F.data, self.F.times, self.F.lsts, 35, rephase=True, keys=[(24, 25, 'ee')]) assert self.F.Navg == 3 assert len(self.F.avg_data) == 1 assert self.F.avg_data[(24, 25, 'ee')].shape == (20, 64) # test full time average and overwrite self.F.timeavg_data(self.F.data, self.F.times, self.F.lsts, 1e10, rephase=True, verbose=False, overwrite=False) assert self.F.Navg == 60 assert len(self.F.avg_data) == 28 assert self.F.avg_data[(24, 25, 'ee')].shape == (20, 64) assert self.F.avg_data[(24, 37, 'ee')].shape == (1, 64) # test weight by nsample F = copy.deepcopy(self.F) k = (24, 25, 'ee') F.nsamples[k][:3] = 0.0 F.timeavg_data(F.data, F.times, F.lsts, 35, nsamples=F.nsamples, keys=[k], overwrite=True, wgt_by_nsample=True) assert np.all(np.isclose(F.avg_data[k][0], 0.0)) # assert data is zero b/c I zeroed nsample assert np.all(np.isclose(F.avg_nsamples[k][0], 0.0)) # assert avg_nsample is also zero assert np.all(np.isclose(F.avg_nsamples[k][1:], 3.0)) # assert non-zeroed nsample is 3 # repeat without nsample wgt F.timeavg_data(F.data, F.times, F.lsts, 35, nsamples=F.nsamples, keys=[k], overwrite=True, wgt_by_nsample=False) assert not np.any(np.isclose(F.avg_data[k][0, 5:-5], 0.0)) # assert non-edge data is now not zero assert np.all(np.isclose(F.avg_nsamples[k][0], 0.0)) # avg_nsample should still be zero # exceptions pytest.raises(AssertionError, self.F.timeavg_data, self.F.data, self.F.times, self.F.lsts, 1.0) def test_filter_data(self): # construct high-pass filter frates = np.fft.fftshift(np.fft.fftfreq(self.F.Ntimes, self.F.dtime)) * 1e3 w = np.ones((self.F.Ntimes, self.F.Nfreqs), dtype=np.float) w[np.abs(frates) < 20] = 0.0 frps = datacontainer.DataContainer(dict([(k, w) for k in self.F.data])) # make gaussian random noise bl = (24, 25, 'ee') window = 'blackmanharris' ec = 0 np.random.seed(0) self.F.data[bl] = np.reshape(stats.norm.rvs(0, 1, self.F.Ntimes * self.F.Nfreqs) + 1j * stats.norm.rvs(0, 1, self.F.Ntimes * self.F.Nfreqs), (self.F.Ntimes, self.F.Nfreqs)) # fr filter noise self.F.filter_data(self.F.data, frps, overwrite=True, verbose=False, axis=0, keys=[bl]) # check key continue w/ ridiculous edgecut self.F.filter_data(self.F.data, frps, overwrite=False, verbose=False, keys=[bl], edgecut_low=100, axis=0) # fft self.F.fft_data(data=self.F.data, assign='dfft', ax='freq', window=window, edgecut_low=ec, edgecut_hi=ec, overwrite=True) self.F.fft_data(data=self.F.filt_data, assign='rfft', ax='freq', window=window, edgecut_low=ec, edgecut_hi=ec, overwrite=True) # ensure drop in noise power is reflective of frf_nsamples dfft = np.mean(np.abs(self.F.dfft[bl]), axis=0) rfft = np.mean(np.abs(self.F.rfft[bl]), axis=0) r = np.mean(dfft / rfft) assert np.allclose(r, np.sqrt(np.mean(self.F.filt_nsamples[bl])), atol=1e-1) def test_write_data(self): self.F.timeavg_data(self.F.data, self.F.times, self.F.lsts, 35, rephase=False, verbose=False) self.F.write_data(self.F.avg_data, "./out.uv", filetype='miriad', overwrite=True, add_to_history='testing', times=self.F.avg_times, lsts=self.F.avg_lsts) assert os.path.exists("./out.uv") hd = io.HERAData('./out.uv', filetype='miriad') hd.read() assert 'testing' in hd.history.replace('\n', '').replace(' ', '') assert 'Thisfilewasproducedbythefunction' in hd.history.replace('\n', '').replace(' ', '') shutil.rmtree("./out.uv") pytest.raises(AssertionError, self.F.write_data, self.F.avg_data, "./out.uv", times=self.F.avg_times) pytest.raises(ValueError, self.F.write_data, self.F.data, "hi", filetype='foo') def test_time_avg_data_and_write(self, tmpdir): # time-averaged data written too file will be compared to this. tmp_path = tmpdir.strpath output = tmp_path + '/test_output.miriad' flag_output = tmp_path + '/test_output.flags.h5' self.F.timeavg_data(self.F.data, self.F.times, self.F.lsts, 35., rephase=True, overwrite=True, wgt_by_nsample=True, flags=self.F.flags, nsamples=self.F.nsamples) frf.time_avg_data_and_write(self.fname, output, t_avg=35., rephase=True, wgt_by_nsample=True, flag_output=flag_output, filetype='miriad') data_out = frf.FRFilter(output, filetype='miriad') data_out.read() for k in data_out.data: assert np.allclose(data_out.data[k], self.F.avg_data[k]) assert np.allclose(data_out.flags[k], self.F.avg_flags[k]) assert np.allclose(data_out.nsamples[k], self.F.avg_nsamples[k]) def test_time_avg_data_and_write_baseline_list(self, tmpdir): # compare time averaging over baseline list versus time averaging # without baseline list. tmp_path = tmpdir.strpath uvh5s = sorted(glob.glob(DATA_PATH + '/zen.2458045.*.uvh5')) output_files = [] for file in uvh5s: baseline_list = io.baselines_from_filelist_position(file, uvh5s) output = tmp_path + '/' + file.split('/')[-1] output_files.append(output) output_flags = tmp_path + '/' + file.split('/')[-1].replace('.uvh5', '.flags.h5') with pytest.warns(RuntimeWarning): frf.time_avg_data_and_write(baseline_list=[], flag_output=output_flags, input_data_list=uvh5s, rephase=True, output_data=output, t_avg=35., wgt_by_nsample=True) frf.time_avg_data_and_write(baseline_list=baseline_list, flag_output=output_flags, input_data_list=uvh5s, rephase=True, output_data=output, t_avg=35., wgt_by_nsample=True) # now do everything at once: output = tmp_path + '/combined.uvh5' frf.time_avg_data_and_write(uvh5s, output, t_avg=35., rephase=True, wgt_by_nsample=True) data_out = frf.FRFilter(output) data_out_bls = frf.FRFilter(output_files) data_out.read() data_out_bls.read() # check that data, flags, nsamples are all close. for k in data_out.data: assert np.all(np.isclose(data_out.data[k], data_out_bls.data[k])) assert np.all(np.isclose(data_out.flags[k], data_out_bls.flags[k])) assert np.all(np.isclose(data_out.nsamples[k], data_out_bls.nsamples[k])) def test_time_average_argparser_multifile(self): sys.argv = [sys.argv[0], "first.uvh5", "second.uvh5", "output.uvh5", "--cornerturnfile", "input.uvh5", "--t_avg", "35.", "--rephase"] ap = frf.time_average_argparser() args = ap.parse_args() assert args.cornerturnfile == "input.uvh5" assert args.output_data == "output.uvh5" assert args.input_data_list == ['first.uvh5', 'second.uvh5'] assert args.t_avg == 35. assert not args.clobber assert not args.verbose assert args.flag_output is None assert args.filetype == "uvh5" def test_tophat_frfilter(self): fname = os.path.join(DATA_PATH, "zen.2458043.12552.xx.HH.uvORA") k = (24, 25, 'ee') frfil = frf.FRFilter(fname, filetype='miriad') frfil.read(bls=[k]) bl = np.linalg.norm(frfil.antpos[24] - frfil.antpos[25]) / constants.c * 1e9 sdf = (frfil.freqs[1] - frfil.freqs[0]) / 1e9 frfil.tophat_frfilter(tol=1e-2, output_prefix='frfiltered') for k in frfil.data.keys(): assert frfil.frfiltered_resid[k].shape == (60, 64) assert frfil.frfiltered_model[k].shape == (60, 64) assert k in frfil.frfiltered_info # test skip_wgt imposition of flags fname = os.path.join(DATA_PATH, "zen.2458043.12552.xx.HH.uvORA") k = (24, 25, 'ee') # check successful run when avg_red_bllens is True and when False. for avg_red_bllens in [True, False]: frfil = frf.FRFilter(fname, filetype='miriad') frfil.read(bls=[k]) if avg_red_bllens: frfil.avg_red_baseline_vectors() wgts = {k: np.ones_like(frfil.flags[k], dtype=np.float)} wgts[k][:, 0] = 0.0 frfil.tophat_frfilter(keys=[k], wgts=wgts, tol=1e-5, window='blackman-harris', skip_wgt=0.1, maxiter=100) assert frfil.clean_info[k][(0, frfil.Nfreqs)]['status']['axis_0'][0] == 'skipped' np.testing.assert_array_equal(frfil.clean_flags[k][:, 0], np.ones_like(frfil.flags[k][:, 0])) np.testing.assert_array_equal(frfil.clean_model[k][:, 0], np.zeros_like(frfil.clean_resid[k][:, 0])) np.testing.assert_array_equal(frfil.clean_resid[k][:, 0], np.zeros_like(frfil.clean_resid[k][:, 0])) def test_load_tophat_frfilter_and_write_baseline_list(self, tmpdir): tmp_path = tmpdir.strpath uvh5 = [os.path.join(DATA_PATH, "test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.first.uvh5"), os.path.join(DATA_PATH, "test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.second.uvh5")] cals = [os.path.join(DATA_PATH, "test_input/zen.2458101.46106.xx.HH.uv.abs.calfits_54x_only.part1"), os.path.join(DATA_PATH, "test_input/zen.2458101.46106.xx.HH.uv.abs.calfits_54x_only.part2")] outfilename = os.path.join(tmp_path, 'temp.h5') cdir = os.path.join(tmp_path, 'cache_temp') # make a cache directory if os.path.isdir(cdir): shutil.rmtree(cdir) os.mkdir(cdir) # test graceful exit with baseline list length of zero. with pytest.warns(RuntimeWarning): frf.load_tophat_frfilter_and_write(datafile_list=uvh5, baseline_list=[], calfile_list=cals, spw_range=[100, 200], cache_dir=cdir, read_cache=True, write_cache=True, avg_red_bllens=True, res_outfilename=outfilename, clobber=True, mode='dayenu') for avg_bl in [True, False]: frf.load_tophat_frfilter_and_write(datafile_list=uvh5, baseline_list=[(53, 54)], polarizations=['ee'], calfile_list=cals, spw_range=[100, 200], cache_dir=cdir, read_cache=True, write_cache=True, avg_red_bllens=avg_bl, res_outfilename=outfilename, clobber=True, mode='dayenu') hd = io.HERAData(outfilename) d, f, n = hd.read() assert len(list(d.keys())) == 1 assert d[(53, 54, 'ee')].shape[1] == 100 assert d[(53, 54, 'ee')].shape[0] == 60 # now do no spw range and no cal files just to cover those lines. frf.load_tophat_frfilter_and_write(datafile_list=uvh5, baseline_list=[(53, 54)], polarizations=['ee'], cache_dir=cdir, read_cache=True, write_cache=True, avg_red_bllens=avg_bl, res_outfilename=outfilename, clobber=True, mode='dayenu') hd = io.HERAData(outfilename) d, f, n = hd.read() assert len(list(d.keys())) == 1 assert d[(53, 54, 'ee')].shape[1] == 1024 assert d[(53, 54, 'ee')].shape[0] == 60 # now test flag factorization and time thresholding. # prepare an input files for broadcasting flags uvh5 = os.path.join(DATA_PATH, "test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.uvh5") input_file = os.path.join(tmp_path, 'temp_special_flags.h5') shutil.copy(uvh5, input_file) hd = io.HERAData(input_file) _, flags, _ = hd.read() ntimes_before = hd.Ntimes nfreqs_before = hd.Nfreqs freqs_before = hd.freqs times_before = hd.times for bl in flags: flags[bl][:] = False flags[bl][0, :hd.Nfreqs // 2] = True # first time has 50% flagged flags[bl][-3:, -1] = True # last channel has flags for three integrations hd.update(flags=flags) hd.write_uvh5(input_file, clobber=True) # this time_threshold will result in # entire first integration begin flagged # and entire final channel being flagged # when flags are broadcasted. time_thresh = 2. / hd.Ntimes for blnum, bl in enumerate(flags.keys()): outfilename = os.path.join(tmp_path, 'bl_chunk_%d.h5' % blnum) frf.load_tophat_frfilter_and_write(datafile_list=[input_file], res_outfilename=outfilename, tol=1e-4, baseline_list=[bl[:2]], polarizations=[bl[-1]], cache_dir=cdir, factorize_flags=True, time_thresh=time_thresh, clobber=True) # now load all of the outputs in output_files = glob.glob(tmp_path + '/bl_chunk_*.h5') hd = io.HERAData(output_files) d, f, n = hd.read() hd_original = io.HERAData(uvh5) for bl in hd_original.bls: assert bl in d.keys() for bl in f: assert np.all(f[bl][:, -1]) assert np.all(f[bl][0, :]) # test apriori flags and flag_yaml flag_yaml = os.path.join(DATA_PATH, 'test_input/a_priori_flags_sample.yaml') uvf = UVFlag(hd, mode='flag', copy_flags=True) uvf.to_waterfall(keep_pol=False, method='and') uvf.flag_array[:] = False flagfile = os.path.join(tmp_path, 'test_flag.h5') uvf.write(flagfile, clobber=True) frf.load_tophat_frfilter_and_write(datafile_list=[input_file], res_outfilename=outfilename, tol=1e-4, baseline_list=[bl[:2]], polarizations=[bl[-1]], clobber=True, mode='dayenu', external_flags=flagfile, overwrite_flags=True) # test that all flags are False hd = io.HERAData(outfilename) d, f, n = hd.read() for k in f: assert np.all(~f[k]) # now do the external yaml frf.load_tophat_frfilter_and_write(datafile_list=[input_file], res_outfilename=outfilename, tol=1e-4, baseline_list=[bl[:2]], polarizations=[bl[-1]], clobber=True, mode='dayenu', external_flags=flagfile, overwrite_flags=True, flag_yaml=flag_yaml) # test that all flags are af yaml flags hd = io.HERAData(outfilename) d, f, n = hd.read() for k in f: assert np.all(f[k][:, 0]) assert np.all(f[k][:, 1]) assert np.all(f[k][:, 10:20]) assert np.all(f[k][:, 60]) os.remove(outfilename) shutil.rmtree(cdir) def test_load_tophat_frfilter_and_write_multifile(self, tmpdir): # cover line where baseline-list is None and multiple files are provided. uvh5s = sorted(glob.glob(DATA_PATH + '/zen.2458045.*.uvh5')) tmp_path = tmpdir.strpath outfilename = os.path.join(tmp_path, 'temp_output.uvh5') frf.load_tophat_frfilter_and_write(uvh5s, filled_outfilename=outfilename, tol=1e-4, clobber=True) hd = io.HERAData(uvh5s) d, f, n = hd.read() hdoutput = io.HERAData(outfilename) doutput, foutput, nouput = hdoutput.read() for k in doutput: assert doutput[k].shape == d[k].shape def test_load_tophat_frfilter_and_write(self, tmpdir): tmp_path = tmpdir.strpath uvh5 = os.path.join(DATA_PATH, "test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.uvh5") outfilename = os.path.join(tmp_path, 'temp.h5') CLEAN_outfilename = os.path.join(tmp_path, 'temp_clean.h5') filled_outfilename = os.path.join(tmp_path, 'temp_filled.h5') frf.load_tophat_frfilter_and_write(uvh5, res_outfilename=outfilename, tol=1e-4, clobber=True, Nbls_per_load=1) hd = io.HERAData(outfilename) d, f, n = hd.read(bls=[(53, 54, 'ee')]) for bl in d: assert not np.all(np.isclose(d[bl], 0.)) frfil = frf.FRFilter(uvh5, filetype='uvh5') frfil.read(bls=[(53, 54, 'ee')]) frfil.tophat_frfilter(keys=[(53, 54, 'ee')], tol=1e-4, verbose=True) np.testing.assert_almost_equal(d[(53, 54, 'ee')], frfil.clean_resid[(53, 54, 'ee')], decimal=5) np.testing.assert_array_equal(f[(53, 54, 'ee')], frfil.flags[(53, 54, 'ee')]) # test NotImplementedError pytest.raises(NotImplementedError, frf.load_tophat_frfilter_and_write, uvh5, res_outfilename=outfilename, tol=1e-4, clobber=True, Nbls_per_load=1, avg_red_bllens=True, baseline_list=[(54, 54)], polarizations=['ee']) # test loading and writing all baselines at once. uvh5 = os.path.join(DATA_PATH, "test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.uvh5") outfilename = os.path.join(tmp_path, 'temp.h5') for avg_bl in [True, False]: frf.load_tophat_frfilter_and_write(uvh5, res_outfilename=outfilename, tol=1e-4, clobber=True, Nbls_per_load=None, avg_red_bllens=avg_bl) hd = io.HERAData(outfilename) d, f, n = hd.read(bls=[(53, 54, 'ee')]) for bl in d: assert not np.all(np.isclose(d[bl], 0.)) frfil = frf.FRFilter(uvh5, filetype='uvh5') frfil.read(bls=[(53, 54, 'ee')]) frfil.tophat_frfilter(keys=[(53, 54, 'ee')], tol=1e-4, verbose=True) np.testing.assert_almost_equal(d[(53, 54, 'ee')], frfil.clean_resid[(53, 54, 'ee')], decimal=5) np.testing.assert_array_equal(f[(53, 54, 'ee')], frfil.flags[(53, 54, 'ee')]) cal = os.path.join(DATA_PATH, "test_input/zen.2458101.46106.xx.HH.uv.abs.calfits_54x_only") outfilename = os.path.join(tmp_path, 'temp.h5') os.remove(outfilename) for avg_bl in [True, False]: frf.load_tophat_frfilter_and_write(uvh5, calfile_list=cal, tol=1e-4, res_outfilename=outfilename, Nbls_per_load=2, clobber=True, avg_red_bllens=avg_bl) hd = io.HERAData(outfilename) assert 'Thisfilewasproducedbythefunction' in hd.history.replace('\n', '').replace(' ', '') d, f, n = hd.read() for bl in d: if not np.all(f[bl]): assert not np.all(np.isclose(d[bl], 0.)) np.testing.assert_array_equal(f[(53, 54, 'ee')], True) os.remove(outfilename) # test skip_autos frf.load_tophat_frfilter_and_write(uvh5, calfile_list=None, tol=1e-4, res_outfilename=outfilename, filled_outfilename=filled_outfilename, CLEAN_outfilename=CLEAN_outfilename, Nbls_per_load=2, clobber=True, avg_red_bllens=avg_bl, skip_autos=True) hd = io.HERAData(outfilename) d, f, n = hd.read() hd_original = io.HERAData(uvh5) do, fo, no = hd_original.read() chd = io.HERAData(CLEAN_outfilename) cd, cf, cn = chd.read() fhd = io.HERAData(filled_outfilename) fd, ff, fn = fhd.read() # test that the resids are are equal to original data. for bl in do: if bl[0] == bl[1]: assert np.allclose(do[bl], d[bl]) # check that resid equals original data. assert np.allclose(fo[bl], f[bl]) assert np.allclose(no[bl], n[bl]) assert np.allclose(cd[bl], np.zeros_like(cd[bl])) # check that all model values are zero. assert np.allclose(fd[bl][~f[bl]], d[bl][~f[bl]]) # check that filled data equals original data. else: assert not np.allclose(do[bl], d[bl]) assert np.allclose(no[bl], n[bl]) # prepare an input file for broadcasting flags input_file = os.path.join(tmp_path, 'temp_special_flags.h5') shutil.copy(uvh5, input_file) hd = io.HERAData(input_file) _, flags, _ = hd.read() ntimes_before = hd.Ntimes nfreqs_before = hd.Nfreqs freqs_before = hd.freqs times_before = hd.times for bl in flags: flags[bl][:] = False flags[bl][0, :hd.Nfreqs // 2] = True # first time has 50% flagged flags[bl][-3:, -1] = True # last channel has flags for three integrations hd.update(flags=flags) hd.write_uvh5(input_file, clobber=True) # this time_threshold will result in # entire first integration begin flagged # and entire final channel being flagged # when flags are broadcasted. time_thresh = 2. / hd.Ntimes frf.load_tophat_frfilter_and_write(input_file, res_outfilename=outfilename, tol=1e-4, factorize_flags=True, time_thresh=time_thresh, clobber=True) hd = io.HERAData(outfilename) d, f, n = hd.read(bls=[(53, 54, 'ee')]) for bl in f: assert np.any(f[bl][:, :-1]) assert np.all(f[bl][0, :]) # test delay filtering and writing with factorized flags and partial i/o frf.load_tophat_frfilter_and_write(input_file, res_outfilename=outfilename, tol=1e-4, factorize_flags=True, time_thresh=time_thresh, clobber=True) hd = io.HERAData(outfilename) d, f, n = hd.read(bls=[(53, 54, 'ee')]) for bl in f: # check that flags were broadcasted. assert np.all(f[bl][0, :]) assert np.all(f[bl][:, -1]) assert not np.all(np.isclose(d[bl], 0.)) frf.load_tophat_frfilter_and_write(input_file, res_outfilename=outfilename, tol=1e-4, Nbls_per_load=1, factorize_flags=True, time_thresh=time_thresh, clobber=True) hd = io.HERAData(outfilename) d, f, n = hd.read(bls=[(53, 54, 'ee')]) for bl in f: # check that flags were broadcasted. assert
np.all(f[bl][0, :])
numpy.all
import unittest import matplotlib.pyplot as plt import numpy as np import random from keras.models import Model from keras.layers import Input from keras.optimizers import Adam from CNNTripletModel import build_network, build_model, TripletLossLayer class TestCNNTripletModel(unittest.TestCase): # Test the Triplet Loss Layer, that it returns proper distance def test_Triplet_Loss_Layer_Functionality(self): input_shape = (28,28,1) anch = np.random.rand(1,28,28,1) pos = np.random.rand(1,28,28,1) neg = np.random.rand(1,28,28,1) triplets = [anch, pos, neg] network = build_network(input_shape, embeddingsize=10) network_train = build_model(input_shape, network) optimizer = Adam(lr=0.00006) network_train.compile(loss=None, optimizer=optimizer) value = round(network_train.predict(triplets),5) emebed_a = network(anch) emebed_p = network(pos) emebed_n = network(neg) p_dist = np.sum(np.square(emebed_a - emebed_p), axis=-1) n_dist = np.sum(np.square(emebed_a - emebed_n), axis=-1) expected_value = round(np.sum(np.maximum(p_dist - n_dist + 0.2, 0), axis=0),6) self.assertTrue(abs(value-expected_value) < 0.0001) # Test that model has proper input shape def test_input_shape(self): input_shape = (28,28,1) network = build_network(input_shape, embeddingsize=10) network_train = build_model(input_shape, network) optimizer = Adam(lr=0.00006) network_train.compile(loss=None, optimizer=optimizer) value = network_train.input_shape expected_value = [(None,28,28,1)] * 3 for i in range(3): self.assertTrue(value[i] == expected_value[i]) # Test that model has proper output shape def test_output_shape(self): input_shape = (28,28,1) network = build_network(input_shape, embeddingsize=10) value = network.output_shape expected_value = (None,10) self.assertTrue(value == expected_value) # Test that model can be trained and loss changes def test_loss_changes(self): random.seed(123) input_shape = (28,28,1) anch = np.random.rand(10,28,28,1) pos = np.random.rand(10,28,28,1) neg = np.random.rand(10,28,28,1) triplets = [anch, pos, neg] network = build_network(input_shape, embeddingsize=10) network_train = build_model(input_shape, network) optimizer = Adam(lr=0.00006) network_train.compile(loss=None, optimizer=optimizer) loss = [] for i in range(3): loss.append(network_train.train_on_batch(triplets, None)) value = loss[0]- loss[1] self.assertTrue(value != 0) # Test that the loss does not go to zero def test_no_zero_loss(self): in_tensor = tf.placeholder(tf.float32, (None, 3)) labels = tf.placeholder(tf.int32, None, 1) model = Model(in_tensor, labels) sess = tf.Session() loss = sess.run(model.loss, feed_dict={ in_tensor:
np.ones(1, 3)
numpy.ones
import numpy as np from munch import unmunchify from tensorboardX import SummaryWriter from stable_baselines3.common.monitor import Monitor class CoordMonitor(Monitor): REQUEST_KEYS = ['accepts', 'requests', 'num_invalid', 'num_rejects', 'no_egress_route', 'no_extension', 'skipped_on_arrival'] ACCEPTED_KEYS = ['cum_service_length', 'cum_route_hops', 'cum_datarate', 'cum_max_latency', 'cum_resd_latency'] ACCEPTED_VALS = ['mean_service_len', 'mean_hops', 'mean_datarate', 'mean_latency', 'mean_resd_latency'] def __init__(self, episode, tag, env, filename=None, allow_early_resets=True, reset_keywords=(), infor_keywords=()): super().__init__(env, None, allow_early_resets, reset_keywords, infor_keywords) self.writer = SummaryWriter(filename) self.episode = episode self.tag = tag self.reset() def close(self): self.writer.flush() self.writer.close() super().close() def reset(self, **kwargs): self.c_util, self.m_util, self.d_util = [], [], [] return super().reset(**kwargs) def step(self, action): obs, reward, done, info = super().step(action) for service in range(len(self.env.services)): logs = unmunchify(self.env.info[service]) for key in self.REQUEST_KEYS: scalar = logs[key] / self.env.num_requests tag = f'{self.tag}/{service}/{key}' self.writer.add_scalar(tag, scalar, self.episode) accepts = logs['accepts'] if logs['accepts'] > 0 else np.inf for key in self.ACCEPTED_KEYS: scalar = logs[key] / accepts tag = f'{self.tag}/{service}/{key}' self.writer.add_scalar(tag, scalar, self.episode) self.update_utilization() return obs, reward, done, info def update_utilization(self): nodes = self.env.net.nodes cutil = [1 - self.env.computing[n] / self.env.net.nodes[n]['compute'] for n in nodes] mutil = [1 - self.env.memory[n] / self.env.net.nodes[n]['memory'] for n in nodes] cutil = np.mean(cutil) mutil = np.mean(mutil) edges = self.env.net.edges max_cap = [self.env.net.edges[e]['datarate'] for e in edges] edges = [frozenset({*e}) for e in edges] cap = [self.env.datarate[e] for e in edges] dutil = 1 - np.asarray(cap) /
np.asarray(max_cap)
numpy.asarray
""" Pyaccel tracking module This module concentrates all tracking routines of the accelerator. Most of them take a structure called 'positions' as an argument which should store the initial coordinates of the particle, or the bunch of particles to be tracked. Most of these routines generate tracked particle positions as output, among other data. These input and ouput particle positions are stored as native python lists or numpy arrays. Depending on the routine these position objects may have one, two, three or four indices. These indices are used to select particle's inices (p), coordinates(c), lattice element indices(e) or turn number (n). For example, v = pos[p,c,e,n]. Routines in these module may return particle positions structure missing one or more indices but the PCEN ordering is preserved. """ import multiprocessing as _multiproc import numpy as _np import trackcpp as _trackcpp import mathphys as _mp from . import accelerator as _accelerator from . import utils as _utils from .utils import interactive as _interactive LOST_PLANES = (None, 'x', 'y', 'z') class TrackingException(Exception): """.""" @_interactive def generate_bunch(emitx, emity, sigmae, sigmas, twi, n_part, cutoff=3): """ Create centered bunch with the desired equilibrium and twiss params. Inputs: emitx = horizontal emittance; emity = vertical emittance; sigmae = energy dispersion; sigmas = bunch length; twi = TwissObject at the desired location n_part = number of particles cutoff = number of sigmas to cut the distribution (in bunch size) Output: particles = numpy.array.shape == (6, n_part) """ # generate longitudinal phase space parts = _mp.functions.generate_random_numbers( 2*n_part, dist_type='norm', cutoff=cutoff) p_en = sigmae * parts[:n_part] p_s = sigmas * parts[n_part:] # generate transverse phase space parts = _mp.functions.generate_random_numbers( 2*n_part, dist_type='exp', cutoff=cutoff*cutoff/2) ampx = _np.sqrt(emitx * 2*parts[:n_part]) ampy = _np.sqrt(emity * 2*parts[n_part:]) parts = _mp.functions.generate_random_numbers( 2*n_part, dist_type='unif', cutoff=cutoff) phx = _np.pi * parts[:n_part] phy = _np.pi * parts[n_part:] p_x = ampx*_np.sqrt(twi.betax) p_y = ampy*_np.sqrt(twi.betay) p_x *= _np.cos(phx) p_y *= _np.cos(phy) p_x += twi.etax * p_en p_y += twi.etay * p_en p_xp = -ampx/_np.sqrt(twi.betax) p_yp = -ampy/_np.sqrt(twi.betay) p_xp *= twi.alphax*_np.cos(phx) + _np.sin(phx) p_yp *= twi.alphay*_np.cos(phy) + _np.sin(phy) p_xp += twi.etapx * p_en p_yp += twi.etapy * p_en return _np.array((p_x, p_xp, p_y, p_yp, p_en, p_s)) @_interactive def set_4d_tracking(accelerator): accelerator.cavity_on = False accelerator.radiation_on = False @_interactive def set_6d_tracking(accelerator): accelerator.cavity_on = True accelerator.radiation_on = True @_interactive def element_pass(element, particles, energy, **kwargs): """Track particle(s) through an element. Accepts one or multiple particles initial positions. In the latter case, a list of particles or numpy 2D array (with particle as second index) should be given as input; also, outputs get an additional dimension, with particle as second index. Keyword arguments: element -- 'Element' object particles -- initial 6D particle(s) position(s) ex.1: particles = [rx,px,ry,py,de,dl] ex.3: particles = numpy.zeros((6, Np)) energy -- energy of the beam [eV] harmonic_number -- harmonic number of the lattice (optional, defaul=1) cavity_on -- cavity on state (True/False) (optional, defaul=False) radiation_on -- radiation on state (True/False) (optional, defaul=False) vchamber_on -- vacuum chamber on state (True/False) (optional, defaul=False) Returns: part_out -- a numpy array with tracked 6D position(s) of the particle(s). If elementpass is invoked for a single particle then 'part_out' is a simple vector with one index that refers to the particle coordinates. If 'particles' represents many particles, the first index of 'part_out' selects the coordinate and the second index selects the particle. Raises TrackingException """ # checks if all necessary arguments have been passed kwargs['energy'] = energy # creates accelerator for tracking accelerator = _accelerator.Accelerator(**kwargs) # checks whether single or multiple particles p_in, _ = _process_args(accelerator, particles) # tracks through the list of pos ret = _trackcpp.track_elementpass_wrapper( element.trackcpp_e, p_in, accelerator.trackcpp_acc) if ret > 0: raise TrackingException return p_in.squeeze() @_interactive def line_pass( accelerator, particles, indices=None, element_offset=0, parallel=False): """Track particle(s) along a line. Accepts one or multiple particles initial positions. In the latter case, a list of particles or a numpy 2D array (with particle as second index) should be given as input; tracked particles positions at the entrances of elements are output variables, as well as information on whether particles have been lost along the tracking and where they were lost. Keyword arguments: (accelerator, particles, indices, element_offset) accelerator -- Accelerator object particles -- initial 6D particle(s) position(s). Few examples ex.1: particles = [rx,px,ry,py,de,dl] ex.2: particles = numpy.array([rx,px,ry,py,de,dl]) ex.3: particles = numpy.zeros((6, Np)) indices -- list of indices corresponding to accelerator elements at whose entrances, tracked particles positions are to be stored; string: 'open': corresponds to selecting all elements. 'closed' : equal 'open' plus the position at the end of the last element. element_offset -- element offset (default 0) for tracking. tracking will start at the element with index 'element_offset' parallel -- whether to parallelize calculation or not. If an integer is passed that many processes will be used. If True, the number of processes will be determined automatically. Returns: (part_out, lost_flag, lost_element, lost_plane) part_out -- 6D position for each particle at entrance of each element. The structure of 'part_out' depends on inputs 'particles' and 'indices'. If 'indices' is None then only tracked positions at the end of the line are returned. There are still two possibilities for the structure of part_out, depending on 'particles': (1) if 'particles' is a single particle: ex.:particles = [rx1,px1,ry1,py1,de1,dl1] indices = None part_out=numpy.array([rx2,px2,ry2,py2,de2,dl2]) (2) if 'particles' is numpy matrix with several particles, then 'part_out' will be a matrix (numpy array of arrays) whose first index picks a coordinate rx, px, ry, py, de or dl, in this order, and the second index selects a particular particle. ex.:particles.shape == (6, Np) indices = None part_out.shape == (6, Np) Now, if 'indices' is not None then 'part_out' can be either (3) a numpy matrix, when 'particles' is a single particle. The first index of 'part_out' runs through the particle coordinate and the second through the element index. (4) a numpy rank-3 tensor, when 'particles' is the initial positions of many particles. The first index is the coordinate index, the second index is the particle index and the third index is the element index at whose entrances particles coordinates are returned. lost_flag -- a general flag indicating whether there has been particle loss. lost_element -- list of element index where each particle was lost If the particle survived the tracking through the line its corresponding element in this list is set to None. When there is only one particle defined as a python list (not as a numpy matrix with one column) 'lost_element' returns a single number. lost_plane -- list of strings representing on what plane each particle was lost while being tracked. If the particle is not lost then its corresponding element in the list is set to None. If it is lost in the horizontal or vertical plane it is set to string 'x' or 'y', correspondingly. If tracking is performed with a single particle described as a python list then 'lost_plane' returns a single string """ # checks whether single or multiple particles, reformats particles p_in, indices = _process_args(accelerator, particles, indices) indices = indices if indices is not None else [len(accelerator), ] if not parallel: p_out, lost_flag, lost_element, lost_plane = _line_pass( accelerator, p_in, indices, element_offset) else: slcs = _get_slices_multiprocessing(parallel, p_in.shape[1]) with _multiproc.Pool(processes=len(slcs)) as pool: res = [] for slc in slcs: res.append(pool.apply_async(_line_pass, ( accelerator, p_in[:, slc], indices, element_offset))) p_out, lost_element, lost_plane = [], [], [] lost_flag = False for re_ in res: part_out, lflag, lelement, lplane = re_.get() lost_flag |= lflag p_out.append(part_out) lost_element.extend(lelement) lost_plane.extend(lplane) p_out = _np.concatenate(p_out, axis=1) # simplifies output structure in case of single particle if len(lost_element) == 1: lost_element = lost_element[0] lost_plane = lost_plane[0] return p_out, lost_flag, lost_element, lost_plane def _line_pass(accelerator, p_in, indices, element_offset): # store only final position? args = _trackcpp.LinePassArgs() for idx in indices: args.indices.push_back(int(idx)) args.element_offset = int(element_offset) n_part = p_in.shape[1] p_out = _np.zeros((6, n_part * len(indices)), dtype=float) # tracking lost_flag = bool(_trackcpp.track_linepass_wrapper( accelerator.trackcpp_acc, p_in, p_out, args)) p_out = p_out.reshape(6, n_part, -1) p_out = _np.squeeze(p_out) # fills vectors with info about particle loss lost_element = list(args.lost_element) lost_plane = [LOST_PLANES[lp] for lp in args.lost_plane] return p_out, lost_flag, lost_element, lost_plane @_interactive def ring_pass( accelerator, particles, nr_turns=1, turn_by_turn=None, element_offset=0, parallel=False): """Track particle(s) along a ring. Accepts one or multiple particles initial positions. In the latter case, a list of particles or a numpy 2D array (with particle as firts index) should be given as input; tracked particles positions at the end of the ring are output variables, as well as information on whether particles have been lost along the tracking and where they were lost. Keyword arguments: (accelerator, particles, nr_turns, turn_by_turn, elment_offset) accelerator -- Accelerator object particles -- initial 6D particle(s) position(s). Few examples ex.1: particles = [rx,px,ry,py,de,dl] ex.2: particles = numpy.array([rx,px,ry,py,de,dl]) ex.3: particles = numpy.zeros((6, Np)) nr_turns -- number of turns around ring to track each particle. turn_by_turn -- parameter indicating what turn by turn positions are to be returned. If None ringpass returns particles positions only at the end of the ring, at the last turn. If bool(turn_by_turn) is True, ringpass returns positions at the beginning of every turn (including the first) and at the end of the ring in the last turn. element_offset -- element offset (default 0) for tracking. tracking will start at the element with index 'element_offset' parallel -- whether to parallelize calculation or not. If an integer is passed that many processes will be used. If True, the number of processes will be determined automatically. Returns: (part_out, lost_flag, lost_turn, lost_element, lost_plane) part_out -- 6D position for each particle at end of ring. The structure of 'part_out' depends on inputs 'particles' and 'turn_by_turn'. If 'turn_by_turn' is None then only tracked positions at the end 'nr_turns' are returned. There are still two possibilities for the structure of part_out, depending on 'particles': (1) if 'particles' is a single particle, 'part_out' will also be a unidimensional numpy array: ex.:particles = [rx1,px1,ry1,py1,de1,dl1] turn_by_turn = False part_out = numpy.array([rx2,px2,ry2,py2,de2,dl2]) (2) if 'particles' is either a numpy matrix with several particles then 'part_out' will be a matrix (numpy array of arrays) whose first index selects the coordinate rx, px, ry, py, de or dl, in this order, and the second index selects a particular particle. ex.: particles.shape == (6, Np) turn_by_turn = False part_out.shape == (6, Np)) 'turn_by_turn' can also be either 'closed' or 'open'. In either case 'part_out' will have tracked positions at the entrances of the elements. The difference is that for 'closed' it will have an additional tracked position at the exit of the last element, thus closing the data, in case the line is a ring. The format of 'part_out' is ... (3) a numpy matrix, when 'particles' is a single particle. The first index of 'part_out' runs through coordinates rx, px, ry, py, de or dl and the second index runs through the turn number. (4) a numpy rank-3 tensor, when 'particles' is the initial positions of many particles. The first index runs through coordinates, the second through particles and the third through turn number. lost_flag -- a general flag indicating whether there has been particle loss. lost_turn -- list of turn index where each particle was lost. lost_element -- list of element index where each particle was lost If the particle survived the tracking through the ring its corresponding element in this list is set to None. When there is only one particle defined as a python list (not as a numpy matrix with one column) 'lost_element' returns a single number. lost_plane -- list of strings representing on what plane each particle was lost while being tracked. If the particle is not lost then its corresponding element in the list is set to None. If it is lost in the horizontal or vertical plane it is set to string 'x' or 'y', correspondingly. If tracking is performed with a single particle described as a python list then 'lost_plane' returns a single string. """ # checks whether single or multiple particles, reformats particles p_in, *_ = _process_args(accelerator, particles, indices=None) if not parallel: p_out, lost_flag, lost_turn, lost_element, lost_plane = _ring_pass( accelerator, p_in, nr_turns, turn_by_turn, element_offset) else: slcs = _get_slices_multiprocessing(parallel, p_in.shape[1]) with _multiproc.Pool(processes=len(slcs)) as pool: res = [] for slc in slcs: res.append(pool.apply_async(_ring_pass, ( accelerator, p_in[:, slc], nr_turns, turn_by_turn, element_offset))) p_out, lost_turn, lost_element, lost_plane = [], [], [], [] lost_flag = False for re_ in res: part_out, lflag, lturn, lelement, lplane = re_.get() lost_flag |= lflag p_out.append(part_out) lost_turn.extend(lturn) lost_element.extend(lelement) lost_plane.extend(lplane) p_out = _np.concatenate(p_out, axis=1) # simplifies output structure in case of single particle if len(lost_element) == 1: lost_turn = lost_turn[0] lost_element = lost_element[0] lost_plane = lost_plane[0] return p_out, lost_flag, lost_turn, lost_element, lost_plane def _ring_pass(accelerator, p_in, nr_turns, turn_by_turn, element_offset): # static parameters of ringpass args = _trackcpp.RingPassArgs() args.nr_turns = int(nr_turns) args.trajectory = bool(turn_by_turn) args.element_offset = int(element_offset) n_part = p_in.shape[1] if bool(turn_by_turn): p_out = _np.zeros((6, n_part*(nr_turns+1)), dtype=float) else: p_out = _np.zeros((6, n_part), dtype=float) # tracking lost_flag = bool(_trackcpp.track_ringpass_wrapper( accelerator.trackcpp_acc, p_in, p_out, args)) p_out = p_out.reshape(6, n_part, -1) p_out =
_np.squeeze(p_out)
numpy.squeeze
from collections import namedtuple import numpy as np from cloudnetpy import utils class Fmcw94Bin: """RPG Cloud Radar Level 1 data reader.""" def __init__(self, filename): self.filename = filename self._file_position = 0 self.header = self.read_rpg_header() self.data = self.read_rpg_data() def read_rpg_header(self): """Reads the header or rpg binary file.""" def append(names, dtype=np.int32, n_values=1): """Updates header dictionary.""" for name in names: header[name] = np.fromfile(file, dtype, int(n_values)) header = {} file = open(self.filename, 'rb') append(('file_code', '_header_length'), np.int32) append(('_start_time', '_stop_time'), np.uint32) append(('program_number',)) append(('model_number',)) # 0 = single polarization, 1 = dual pol. header['_program_name'] = self.read_string(file) header['_customer_name'] = self.read_string(file) append(('radar_frequency', 'antenna_separation', 'antenna_diameter', 'antenna_gain', # linear 'half_power_beam_width'), np.float32) append(('dual_polarization',), np.int8) # 0 = single pol, 1 = LDR, 2 = STSR append(('sample_duration',), np.float32) append(('latitude', 'longitude'), np.float32) append(('calibration_interval', '_number_of_range_gates', '_number_of_temperature_levels', '_number_of_humidity_levels', '_number_of_chirp_sequences')) append(('range',), np.float32, int(header['_number_of_range_gates'])) append(('_temperature_levels',), np.float32, int(header['_number_of_temperature_levels'])) append(('_humidity_levels',), np.float32, int(header['_number_of_humidity_levels'])) append(('number_of_spectral_samples', 'chirp_start_indices', 'number_of_averaged_chirps'), n_values=int(header['_number_of_chirp_sequences'])) append(('integration_time', 'range_resolution', 'nyquist_velocity'), np.float32, int(header['_number_of_chirp_sequences'])) append(('_is_power_levelling', '_is_spike_filter', '_is_phase_correction', '_is_relative_power_correction'), np.int8) append(('FFT_window',), np.int8) # 0=square, 1=parzen, 2=blackman, 3=welch, 4=slepian2, 5=slepian3 append(('input_voltage_range',)) append(('noise_threshold',), np.float32) # Fix for Level 1 version 4 files: if int(header['file_code']) >= 889348: _ = np.fromfile(file, np.int32, 25) _ = np.fromfile(file, np.uint32, 10000) self._file_position = file.tell() file.close() return header @staticmethod def read_string(file_id): """Read characters from binary data until whitespace.""" str_out = '' while True: c =
np.fromfile(file_id, np.int8, 1)
numpy.fromfile
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(221, 'P m -3 m', transformations) space_groups[221] = sg space_groups['P m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(222, 'P n -3 n :2', transformations) space_groups[222] = sg space_groups['P n -3 n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(223, 'P m -3 n', transformations) space_groups[223] = sg space_groups['P m -3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(224, 'P n -3 m :2', transformations) space_groups[224] = sg space_groups['P n -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(225, 'F m -3 m', transformations) space_groups[225] = sg space_groups['F m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(226, 'F m -3 c', transformations) space_groups[226] = sg space_groups['F m -3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(227, 'F d -3 m :2', transformations) space_groups[227] = sg space_groups['F d -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,5,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,5,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,5]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,3,5]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,5,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,5]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,5]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,0,5]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,5]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([1,0,0,0,1,0,0,0,-1])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """" This module contains tools for backend modeling and scoring EDITED FOR UEF SUMMERSCHOOL """ __version__ = '1.1' __author__ = '<NAME>, <NAME>' __email__ = '<EMAIL>' import numpy as np from scipy.linalg import eigh, cholesky, inv, svd, solve import time class GPLDA: def __init__(self,tv_dim, nphi, niter): self.tv_dim = tv_dim self.nphi = nphi self.niter = niter self.Sigma = 1./self.tv_dim * np.eye(self.tv_dim) self.Phi = np.r_[np.eye(self.nphi), np.zeros((self.tv_dim-self.nphi, self.nphi))] self.Sb = np.zeros((self.tv_dim, self.tv_dim)) self.St = np.zeros((self.tv_dim, self.tv_dim)) def train_ml(self, data, spk_labs): classes, labels = unique(spk_labs, return_ind = True) nclasses = classes.size Sw = compute_within_cov(data, labels, nclasses) self.St = np.cov(data) self.Sb = self.St - Sw def train_em(self, data, spk_labs): # make sure the labels are sorted spk_labs = unique(spk_labs, return_ind = True)[1] spk_labs, I = np.sort(spk_labs), np.argsort(spk_labs) data = data[:, I] spk_counts = np.bincount(spk_labs) # sessions per speaker print('\n\nRandomly initializing the PLDA hyperparameters ...\n\n') # Sigma = np.cov(data.T) # Phi = np.random.randn((self.tv_dim, nphi)) nspks = spk_counts.size F = np.zeros((self.tv_dim, nspks)) cnt = 0 for spk in range(nspks): # Speaker indices idx = np.arange(spk_counts[spk]) + cnt F[:, spk] = data[:, idx].sum(1) cnt += spk_counts[spk] data_cov = data.dot(data.T) print('Re-estimating the Eigenvoice subspace with {} factors ...\n'.format(self.nphi)) for iter in range(self.niter): print('EM iter#: {} \t'.format(iter+1), end=" ") tic = time.time() # expectation Ey, Eyy = self.expectation_plda(data, F, spk_counts); # maximization self.maximization_plda(data, data_cov, F, Ey, Eyy) llk = self.comp_llk(data) toc = time.time() - tic print('[llk = {0:.2f}] \t [elaps = {1:.2f} s]'.format(llk, toc)) self.Sb = self.Phi.dot(self.Phi.T) self.St = self.Sb + self.Sigma def expectation_plda(self, data, F, spk_counts): # computes the posterior mean and covariance of the factors nsamples = data.shape[1] nspks = spk_counts.size Eyy = np.zeros((self.nphi,self.nphi)) Ey_spk = np.zeros((self.nphi, nspks)) # initialize common terms to save computations uniqFreqs = unique(spk_counts) nuniq = uniqFreqs.size invTerms = np.empty((nuniq,self.nphi,self.nphi)) PhiT_invS = solve(self.Sigma.T, self.Phi).T PhiT_invS_Phi = PhiT_invS.dot(self.Phi) I = np.eye(self.nphi) for ix in range(nuniq): nPhiT_invS_Phi = uniqFreqs[ix] * PhiT_invS_Phi invTerms[ix] = inv(I + nPhiT_invS_Phi) for spk in range(nspks): nsessions = spk_counts[spk] PhiT_invS_y = PhiT_invS.dot(F[:, spk]) idx = np.flatnonzero(uniqFreqs == nsessions)[0] Cyy = invTerms[idx] Ey_spk[:, spk] = Cyy.dot(PhiT_invS_y) Eyy += nsessions * Cyy Eyy += (Ey_spk * spk_counts.T).dot(Ey_spk.T) return Ey_spk, Eyy def comp_llk(self, data): nsamples = data.shape[1] S = self.Phi.dot(self.Phi.T) + self.Sigma llk = -0.5 * (self.tv_dim * nsamples * np.log(2*np.pi) \ + nsamples * logdet(S) + np.sum(data*solve(S,data))) return llk def maximization_plda(self, data, data_cov, F, Ey, Eyy): # ML re-estimation of the Eignevoice subspace and the covariance of the # residual noise (full). nsamples = data.shape[1] Ey_FT = Ey.dot(F.T) self.Phi = solve(Eyy.T,Ey_FT).T self.Sigma = 1./nsamples * (data_cov - self.Phi.dot(Ey_FT)) def score_trials(self, model_iv, test_iv): nphi = self.Phi.shape[0] iSt = inv(self.St) iS = inv(self.St-self.Sb.dot(iSt).dot(self.Sb)) Q = iSt-iS P = iSt.dot(self.Sb).dot(iS) U, s, V = svd(P, full_matrices=False) Lambda = np.diag(s[:nphi]) Uk = U[:,:nphi] Q_hat = Uk.T.dot(Q).dot(Uk) model_iv = Uk.T.dot(model_iv) test_iv = Uk.T.dot(test_iv) score_h1 = np.sum(model_iv.T.dot(Q_hat) * model_iv.T, 1, keepdims=True) score_h2 = np.sum(test_iv.T.dot(Q_hat) * test_iv.T, 1, keepdims=True) score_h1h2 = 2 * model_iv.T.dot(Lambda).dot(test_iv) scores = score_h1h2 + score_h1 + score_h2.T return scores def unique(arr, return_ind=False): if return_ind: k = 0 d = dict() uniques = np.empty(arr.size, dtype=arr.dtype) indexes = np.empty(arr.size, dtype='i') for i, a in enumerate(arr): if a in d: indexes[i] = d[a] else: indexes[i] = k uniques[k] = a d[a] = k k += 1 return uniques[:k], indexes else: _, idx = np.unique(arr, return_index=True) return arr[np.sort(idx)] def unit_len_norm(data): data_norm = np.sqrt(np.sum(data * data, 0)) data_norm[data_norm == 0] = 1. return data / data_norm def calc_white_mat(Sw): # calculates the whitening transformation for cov matrix X w = cholesky(inv(Sw), lower=True) return w def logdet(A): u = cholesky(A) y = 2*np.log(np.diag(u)).sum() return y def wccn(data, labels): nclasses = np.unique(labels).size Sw = compute_within_cov(data, labels, nclasses) Sw = Sw + 1e-6 * np.eye(Sw.shape[0]) return calc_white_mat(Sw) def compute_class_avg(data, labels, nclasses): ndim = data.shape[0] mu_c = np.zeros((nclasses, ndim)) for c in labels: # numeric labels are assumed idx = np.flatnonzero(labels == c) mu_c[c] = data[:, idx].mean(1) return mu_c def compute_within_cov(data, labels, nclasses, adapt=False): mu_c = compute_class_avg(data, labels, nclasses) # numeric labels are assumed data_mu = data - mu_c[labels].T Sw = np.cov(data_mu) # Sw = data_mu.dot(data_mu.T) return Sw def lda(data, labels, adapt=False): ndim, nobs = data.shape if nobs != len(labels): raise ValueError("oh dear! number of data samples ({}) should match the label size ({})!".format(nobs, len(labels))) M = data.mean(1, keepdims=True) # centering the data data = data - M classes, labels = unique(labels, return_ind=True) # make sure labels are numerical nclasses = classes.size Sw = compute_within_cov(data, labels, nclasses) St =
np.cov(data)
numpy.cov
# -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems and the Max Planck Institute for Biological # Cybernetics. All rights reserved. # # Contact: <EMAIL> # ../blender-2.79-linux-glibc219-x86_64/blender -b -P generate_multiHumanPose.py -- 10 0 3 import sys print(sys.version) import bpy from bpy_extras.object_utils import world_to_camera_view as world2cam import numpy as np from mathutils import Matrix, Vector, Quaternion, Euler import math from os.path import join, dirname, realpath, exists, basename from os import listdir, remove from glob import glob from random import choice from os import remove import cv2 from scipy.io import loadmat, savemat import json import importlib.util from itertools import combinations from scipy.special import binom from scipy import array as array import subprocess import pickle import bounding_box_collision as collisionDetector import ray_back_projection_visibleArea as ray_back_projection # Todo: please add your own working directory and the path to your virtualenv here # both paths should not end with a "/" working_dir = '' #absolute path to datageneration collisionVirtualenv = '' #path to root of virtual environment. rest of path (/bin/activate) will be added later in the script ################################### #Todo: set output directory PATH_out = '' #outout folder PATH_tmp = '' # tmp-output folder mocapDataName = 'mocapAll' dataset_path_prefix = 'testHands' ################################### import logging logger = logging.getLogger('train') logger.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter('[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) ################################### ################################### ################################### DBG_MODE_ENFORCE_FLAT_HAND = False ################################### ################################### ################################### DBG_MODE_ENFORCE_POSE_ZERO = False ################################### ################################### ################################### UPPER_HEAD = True # what images to save save_dbug_Imgs = True save_flow = True #################################################### #################################################### Camera res = [640, 640] cam_lens = 60 cam_sensor = 32 #################################################### #################################################### background # lsun_base_path = './resources/sun397_' lsun_base_path = './resources/' #Todo: replace with path to folder containing SUN397 folder FLAG_flip_BG = True ##################################################### ##################################################### POSITION RANDOM_POSITION_perCHUNCK = True ##################################################### ##################################################### BACKGROUND RANDOM_BG = True RANDOM_BG_per_CHUNK = True ##################################################### ##################################################### TEXTURE RANDOM_TXT = True RANDOM_TXT_per_CHUNK = True ##################################################### ##################################################### SHAPE RANDOM_SHAPE = True RANDOM_SHAPE_per_CHUNK = RANDOM_SHAPE RANDOM_SHAPE_mode = 'randomShape' ##################################################### ##################################################### LIGHTS RANDOM_LIGHTS = True RANDOM_LIGHTS_per_CHUNK = True ##################################################### ##################################################### HAND POSE RANDOM_HAND_POSE = True RANDOM_Pxl_BLUR_SIZE = True RANDOM_CAMERA_JITTER = False ##################################################### ##################################################### RANDOM_CAM_matrix_world = True USE_MOTION_BLUR = True ##################################################### ##################################################### CAMERA ROT - Z # TODO: leads to movement of people outside of scene, since they are rotated around their # initial position RANDOM_ROT_Z = False RANDOM_BG_per_FRAME = not RANDOM_BG_per_CHUNK RANDOM_TXT_per_FRAME = not RANDOM_TXT_per_CHUNK RANDOM_LIGHTS_per_FRAME = not RANDOM_LIGHTS_per_CHUNK n_bones = 52 total_pose_DOFs = 78 ##################################################### ##################################################### ##################################################### DBG_FLAG_writeOnDisk = False DBG_print_MOCAP_keys = False bg_plane_dist = 10.0 bg_plane_dist_TOLERRANCE = 0.50 bg_plane_dist_INF = 1e+10 # depth larger than cut of depth are set to this value (not used in this stepsizeFactor = 2 FILE_segm_per_v = './resources/segm_per_v_overlap_SMPLH.pkl' FILE_sh_original = './resources/sh.osl' PATHs_texture_participants_GENDER_SPECIFIC = True PATHs_texture_participants = './smpl_data' \ '/fixed_textures' \ '/<GENDER' \ '>/<CEASAR>_<GENDER>*.jpg' PATH_MoCap_SMPLH = './smpl_data/handPoses/per_SEQ___bodyHands/' fingertipVerticesPATH = './resources/fingertips_SMPLH.json' data_folder = './smpl_data' FILE_smpl_data_MOCAP = join(data_folder, 'smpl_data_20170225.npz') data_folder_other = './resources' FILE_smpl_data_OTHER = join(data_folder_other, 'smpl_data_ONLY_SHAPES_REGRESSORS.npz') DBG_motion_data_filter = False DBG_FBX_bone_names = False DBG_segmentation = False ##################################################### stepsize_hands = 10 frames_per_shape = 1 ##################################################### shape_totalCoeffs = 10 shape_ndofs = 10 ##################################################### ##################################################### ##################################################### #################################################### #################################################### vblur_factor_Miu = 0.03 vblur_factor_Std = 0.03 vblur_factor = 0. def project_joints3d_imwrite(joint_3d, img, intrinsic=None, extrinsic=None, imgPATH=None, cam_ob=None, scene=None, save_dbug_Imgs=True): for key in list(joint_3d.keys()): for ii in range(joint_3d[key].shape[0]): j3d = joint_3d[key][ii, :] j3d_4x1 = np.vstack([j3d.reshape((3, 1)), np.array([1])]) if not (intrinsic is None or extrinsic is None): joint_2d = np.dot(np.dot(intrinsic, extrinsic), j3d_4x1) joint_2d = np.array([int(np.round(joint_2d[0] / joint_2d[2])), int(np.round(joint_2d[1] / joint_2d[2]))]) cv2.circle(img, tuple((joint_2d[0], joint_2d[1])), 2, (0, 255, 255), 1) else: render_scale = scene.render.resolution_percentage / 100 render_size = (int(scene.render.resolution_x * render_scale), int(scene.render.resolution_y * render_scale)) joint_2d = world2cam(scene, cam_ob, Vector((j3d_4x1[:]))) joint_2d.x = joint_2d.x * render_size[0] joint_2d.y = -joint_2d.y * render_size[1] + render_size[1] - 1 cv2.circle(img, tuple((int(np.round(joint_2d.x)), int(np.round(joint_2d.y)))), 2, (0, 255, 255), 1) if save_dbug_Imgs: cv2.imwrite(imgPATH, img) print(imgPATH) def cam_compute_intrinsic(): res_x_px = res[0] res_y_px = res[1] f_mm = cam_lens sensor_w_mm = cam_sensor sensor_h_mm = sensor_w_mm * res_y_px / res_x_px scale = 1 skew = 0 pixel_aspect_ratio = 1 fx_px = f_mm * res_x_px * scale / sensor_w_mm fy_px = f_mm * res_y_px * scale * pixel_aspect_ratio / sensor_h_mm # Center of the image u = np.round(res_x_px * scale / 2) v = np.round(res_y_px * scale / 2) # Intrinsic camera matrix K = np.array([[fx_px, skew, u], [0, fy_px, v], [0, 0, 1]]) return K def load_hand_poses(PATH_hand_poses): print('\n\n\n') from glob import glob from os.path import join import pickle as pk paths = sorted(glob(join(PATH_hand_poses, '*.pkl'))) print() hand_poses = [] print('load_hand_poses') for pp in paths: print(pp) with open(pp, "rb") as fin: hand_poses_CURR = pk.load(fin, encoding='latin1') # # keep hands only !!! for ii in range(len(hand_poses_CURR)): hand_poses_CURR[ii] = hand_poses_CURR[ii][-ncomps:] hand_poses_CURR[ii] = hand_poses_CURR[ii] # ignFr = 20 hand_poses.append(hand_poses_CURR[ignFr:-ignFr]) return hand_poses def set_background(FLAG_RANDOM, bg_img, idx): # bg_img = bg_img_INN.copy() # not needed when not in function # with 100% probability, switch if True: # flip_coin(.1): bg_img.user_clear() bpy.data.images.remove(bg_img) # if FLAG_RANDOM: PATH_bg = choice(bg_paths) else: PATH_bg = bg_paths[0] # if FLAG_flip_BG: bg_img_TMP = cv2.imread(PATH_bg) bg_img_TMP = cv2.flip(bg_img_TMP, 1) # PATH_bg_TMP = join(PATH_tmp, join(str(idx), 'bg_TMP.jpg')) if not exists(dirname(PATH_bg_TMP)): makedirs(dirname(PATH_bg_TMP)) cv2.imwrite(PATH_bg_TMP, bg_img_TMP) bg_img = bpy.data.images.load(PATH_bg_TMP) bg_img = bpy.data.images.load(PATH_bg) scene.node_tree.nodes['Image'].image = bg_img return bg_img, PATH_bg ############################################################################## ############################################################################## def set_txt(FLAG_RANDOM, cloth_img, txt_paths, i): # cloth_img = cloth_img_INN.copy() # not needed when not in function # with 100% probability, switch texture if True: # flip_coin(.1): cloth_img.user_clear() bpy.data.images.remove(cloth_img) if FLAG_RANDOM: txt_PATH = choice(txt_paths) else: txt_PATH = txt_paths[0] print(txt_PATH) cloth_img = bpy.data.images.load(txt_PATH) return cloth_img, txt_PATH ############################################################################## ############################################################################## def set_shape(FLAG_RANDOM, RANDOM_mode, i, random_shapes_gendered, gender, fshapes_gendered): if FLAG_RANDOM: if RANDOM_mode == 'randomShapeFromDist': shape = random_shapes_gendered[gender][i](3.) # RANDOM SHAPE from distribution elif RANDOM_mode == 'randomShape': shape = choice(fshapes_gendered[gender]) # RANDOM SHAPE else: print('\n\n\n', 'not defined - set_sh ape - RANDOM_mode', '\n\n\n') else: shape = fshapes[0] return shape ############################################################################## ############################################################################## def set_lights(RANDOM_LIGHTS): if RANDOM_LIGHTS: sh_coeffs = .7 * (2 * np.random.rand(9) - 1) sh_coeffs[0] = .5 + .9 * np.random.rand() # first coeff is ambient sh_coeffs[1] = -.7 * np.random.rand() else: sh_coeffs = .7 * (2 * np.ones(9) * 1.0 - 1) sh_coeffs[0] = .4 + .7 * 0.5 # first coeff is ambient sh_coeffs[1] = -.7 * 0.5 return sh_coeffs def get_x_range(cam_ob, plane_ob): cam_distance = plane_ob.location - cam_ob.location lower_visibility_line = z_rotation(cam_distance, -cam_ob.data.angle_y) s = cam_ob.location[1] / lower_visibility_line[1] x_upper_bound = cam_ob.location[0] - lower_visibility_line[0] * s if cam_ob.location[0] < -2: x_upper_bound = 4.5 x_range = [plane_ob.location[0], x_upper_bound] return x_range # Check for endianness, based on <NAME>'s optical flow code. # Using little-endian architecture, these two should be equal. TAG_FLOAT = 202021.25 TAG_CHAR = 'PIEH'.encode() # def flow_write(filename, uv, v=None): """ Write optical flow to file. If v is None, uv is assumed to contain both u and v channels, stacked in depth. Original code by <NAME>, adapted from <NAME>. """ nBands = 2 if v is None: uv_ = np.array(uv) assert (uv_.ndim == 3) if uv_.shape[0] == 2: u = uv_[0, :, :] v = uv_[1, :, :] elif uv_.shape[2] == 2: u = uv_[:, :, 0] v = uv_[:, :, 1] else: print('Wrong format for flow input') exit(-1) else: u = uv assert (u.shape == v.shape) height, width = u.shape f = open(filename, 'wb') # write the header f.write(TAG_CHAR) np.array(width).astype(np.int32).tofile(f) np.array(height).astype(np.int32).tofile(f) # arrange into matrix form tmp = np.zeros((height, width * nBands)) tmp[:, np.arange(width) * 2] = u tmp[:, np.arange(width) * 2 + 1] = v tmp.astype(np.float32).tofile(f) f.close() def flow_2_img_fromFlowRawImg(flow): xx = flow[:, :, 0].astype(np.float32) # horizontal yy = flow[:, :, 1].astype(np.float32) # vertical mag, ang = cv2.cartToPolar(xx, yy, angleInDegrees=True) maxmag = 10 mag = np.clip(mag, 0, maxmag) / maxmag hsv = np.ones((flow.shape[0], flow.shape[1], 3), dtype=np.float32) hsv[:, :, 0] = ang hsv[:, :, 1] = mag bgr = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) return bgr def render_2d_pose(PATH_OUT_pose_joints_2d_VIZ, pose_joints_2d, sizYX): sizYX = (int(np.round(sizYX[0])), int(np.round(sizYX[1]))) IMG_OUT_2d_pose = np.zeros((sizYX[0], sizYX[1], 1), np.uint8) for key in list(pose_joints_2d.keys()): for ii in range(pose_joints_2d[key].shape[0]): centerr = tuple(np.round(pose_joints_2d[key][ii, :]).astype(int)) cv2.circle(IMG_OUT_2d_pose, centerr, 0, (255, 255, 255)) cv2.imwrite(PATH_OUT_pose_joints_2d_VIZ, IMG_OUT_2d_pose) def setState0(): for ob in bpy.data.objects.values(): ob.select = False bpy.context.scene.objects.active = None # create ONE MATERIAL PER PART # as defined in a PKL with the segmentation # this is useful to render the segmentation in a material pass def create_segmentation(ob, person_nr): print('creating segmentation') mat_dict = {} vgroups = {} # print('exists(' + FILE_segm_per_v + ') --> ' + str(exists(FILE_segm_per_v))) with open(FILE_segm_per_v, 'rb') as f: vsegm = load(f) bpy.ops.object.material_slot_remove() parts = sorted(vsegm.keys()) materialID_2_part = ['' for ii in range(len(part2num))] # for ipart, part in enumerate(parts): vs = vsegm[part] vgroups[part] = ob.vertex_groups.new(part) vgroups[part].add(vs, 1.0, 'ADD') bpy.ops.object.vertex_group_set_active(group=part) mat_dict[part] = bpy.data.materials['Material'].copy() mat_dict[part].pass_index = part2num[part] bpy.ops.object.material_slot_add() ob.material_slots[-1].material = mat_dict[part] bpy.ops.object.mode_set(mode='EDIT') bpy.ops.mesh.select_all(action='DESELECT') bpy.ops.object.vertex_group_select() bpy.ops.object.material_slot_assign() bpy.ops.object.mode_set(mode='OBJECT') materialID_2_part[ int((mat_dict[part].pass_index) / ((person_nr + 1) * len(parts))) - 1] = part if DBG_segmentation: print('create_segmentation - (id+1) - %02d // %02d - %03d' % ( ipart + 1, mat_dict[part].pass_index, mat_dict[part].pass_index * 5), ' -', part) if DBG_segmentation: exit(1) return (mat_dict, materialID_2_part) # create the different passes that we render def create_composite_nodes(tree, name, img=None): ################################################################### res_paths = {k: join(PATH_tmp, name, '%s_BLENDER' % (k)) for k in ( 'depth', 'normal', 'txt', 'flow', 'segm', 'object_Id')} #################################################################### # Clear default nodes for n in tree.nodes: tree.nodes.remove(n) # Create node for foreground image ################################################# layers = tree.nodes.new('CompositorNodeRLayers') ################################################# # Create node for background image bg_im = tree.nodes.new('CompositorNodeImage') if img is not None: bg_im.image = img FORMAT_file_FLOAT = 'OPEN_EXR' # OPEN_EXR_MULTILAYER FORMAT_file_NON_float = 'PNG' NAMING_CONVENTION = '#####' # Create node for mixing foreground and background images mix = tree.nodes.new('CompositorNodeMixRGB') mix.use_alpha = True # # Create node for the final output ############################################################ composite_out = tree.nodes.new('CompositorNodeComposite') ############################################################ # Create node for saving depth depth_out = tree.nodes.new('CompositorNodeOutputFile') depth_out.format.file_format = FORMAT_file_FLOAT depth_out.base_path = res_paths['depth'] depth_out.file_slots[0].path = NAMING_CONVENTION # Create node for saving normals normals_out = tree.nodes.new('CompositorNodeOutputFile') normals_out.format.file_format = FORMAT_file_FLOAT normals_out.base_path = res_paths['normal'] normals_out.file_slots[0].path = NAMING_CONVENTION # Create node for saving foreground image txt_out = tree.nodes.new('CompositorNodeOutputFile') txt_out.format.file_format = FORMAT_file_NON_float txt_out.base_path = res_paths['txt'] txt_out.file_slots[0].path = NAMING_CONVENTION flow_out = tree.nodes.new('CompositorNodeOutputFile') flow_out.format.file_format = FORMAT_file_FLOAT flow_out.base_path = res_paths['flow'] flow_out.file_slots[0].path = NAMING_CONVENTION segm_out = tree.nodes.new('CompositorNodeOutputFile') segm_out.format.file_format = FORMAT_file_FLOAT segm_out.base_path = res_paths['segm'] segm_out.file_slots[0].path = NAMING_CONVENTION objectid_out = tree.nodes.new('CompositorNodeOutputFile') objectid_out.format.file_format = FORMAT_file_FLOAT objectid_out.base_path = res_paths['object_Id'] objectid_out.file_slots[0].path = NAMING_CONVENTION vecblur = tree.nodes.new('CompositorNodeVecBlur') vecblur.samples = 64 vecblur.factor = vblur_factor finalblur = tree.nodes.new('CompositorNodeBlur') tree.links.new(layers.outputs['Image'], vecblur.inputs[0]) if '2.79' in bpy.app.version_string: tree.links.new(layers.outputs['Depth'], vecblur.inputs[1]) tree.links.new(layers.outputs['Vector'], vecblur.inputs[2]) else: tree.links.new(layers.outputs['Z'], vecblur.inputs[1]) tree.links.new(layers.outputs['Speed'], vecblur.inputs[2]) tree.links.new(vecblur.outputs[0], finalblur.inputs[0]) # tree.links.new(finalblur.outputs[0], composite_out.inputs[0]) tree.links.new(finalblur.outputs[0], txt_out.inputs[0]) # if '2.79' in bpy.app.version_string: tree.links.new(layers.outputs['Depth'], depth_out.inputs[0]) tree.links.new(layers.outputs['Vector'], flow_out.inputs[0]) else: tree.links.new(layers.outputs['Z'], depth_out.inputs[0]) tree.links.new(layers.outputs['Speed'], flow_out.inputs[0]) tree.links.new(layers.outputs['Normal'], normals_out.inputs[0]) tree.links.new(layers.outputs['IndexMA'], segm_out.inputs[0]) tree.links.new(layers.outputs['IndexOB'], objectid_out.inputs[0]) return (res_paths) # Creation of the spherical harmonics material, using an OSL script def create_sh_material(tree, PATH_sh, img=None): # clear default nodes for n in tree.nodes: tree.nodes.remove(n) uv = tree.nodes.new('ShaderNodeTexCoord') uv.location = -800, 400 uv_im = tree.nodes.new('ShaderNodeTexImage') uv_im.location = -400, 400 if img is not None: uv_im.image = img rgb = tree.nodes.new('ShaderNodeRGB') rgb.location = -400, 200 script = tree.nodes.new('ShaderNodeScript') script.location = -230, 400 script.mode = 'EXTERNAL' script.filepath = PATH_sh script.update() # the emission node makes it independent of the scene lighting emission = tree.nodes.new('ShaderNodeEmission') emission.location = -60, 400 mat_out = tree.nodes.new('ShaderNodeOutputMaterial') mat_out.location = 110, 400 tree.links.new(uv.outputs[2], uv_im.inputs[0]) tree.links.new(uv_im.outputs[0], script.inputs[0]) tree.links.new(script.outputs[0], emission.inputs[0]) tree.links.new(emission.outputs[0], mat_out.inputs[0]) def y_rotation(vector, theta): """Rotates 3-D vector around y-axis""" R = np.array( [[np.cos(theta), 0, np.sin(theta)], [0, 1, 0], [-np.sin(theta), 0, np.cos(theta)]]) return np.dot(R, vector) def z_rotation(vector, theta): """Rotates 3-D vector around z-axis""" R = np.array( [[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) return np.dot(R, vector) def create_textured_plane(cam_ob, scene, res, cam_distance=9, impath=None, camera_pitch=None): x_loc = -3 y_loc = -1 z_loc = 0 bpy.ops.mesh.primitive_plane_add(radius=3, location=(x_loc, y_loc, z_loc), rotation=(1.5708, 1.5708, -1.5708)) cam_distance = Vector((x_loc, y_loc, z_loc)) - cam_ob.location lower_visibility_line = z_rotation(cam_distance, cam_ob.data.angle_y / 2) s = (cam_ob.location[0] + 3) / -lower_visibility_line[0] y_visibl = cam_ob.location[1] + s * lower_visibility_line[1] # select the plane bpy.ops.object.select_all(action='DESELECT') plane = bpy.data.objects['Plane'] plane.select = True scene.objects.active = plane # compute cam_distance to plane center x = cam_ob.matrix_world[0][3] y = cam_ob.matrix_world[1][3] cam_distance = math.sqrt((x_loc - x) ** 2 + (y_loc - y) ** 2) # scale plane to cover visible area vertices = [plane.matrix_world * vert.co for vert in bpy.data.meshes['Plane'].vertices] vertices = np.array(vertices) max_x, max_y, max_z = np.max(vertices, axis=0) min_x, min_y, min_z = np.min(vertices, axis=0) scale_y = y_visibl / max_y * 1.2 # 1.2 just to make sure that it really covers the whole # field of fiew, even when camera is shifted scale_z = scale_y * res[0] / res[1] bpy.ops.transform.resize(value=(1, -scale_y, scale_z)) plane_ob = bpy.data.objects['Plane'] planemat = bpy.data.materials.new('PlaneMat') plane_ob.data.materials.append(planemat) planemat.use_nodes = True bpy.ops.object.editmode_toggle() bpy.ops.uv.unwrap(method='ANGLE_BASED', margin=0.001, correct_aspect=True) bpy.ops.object.editmode_toggle() tree = planemat.node_tree uv = tree.nodes.new('ShaderNodeTexCoord') texim = tree.nodes.new('ShaderNodeTexImage') mat = tree.nodes.new('ShaderNodeEmission') lpath = tree.nodes.new('ShaderNodeLightPath') out = tree.nodes['Material Output'] mix = tree.nodes.new('ShaderNodeMixShader') if impath is not None: im = bpy.data.images.load(impath) texim.image = im tree.links.new(uv.outputs[0], texim.inputs[0]) tree.links.new(texim.outputs[0], mat.inputs[0]) tree.links.new(mat.outputs[0], mix.inputs[2]) tree.links.new(lpath.outputs[0], mix.inputs[0]) tree.links.new(mix.outputs[0], out.inputs[0]) extrema = {} extrema[' max_z'] = max_z extrema[' max_y'] = max_y extrema[' min_z'] = min_z extrema[' min_y'] = min_y extrema[' min_x'] = min_x extrema[' min_x'] = min_x return plane_ob, texim, extrema, lower_visibility_line # Computes rotation matrix through Rodrigues formula as in cv2.Rodrigues def Rodrigues(rotvec): theta = np.linalg.norm(rotvec) r = (rotvec / theta).reshape(3, 1) if theta > 0. else rotvec cost = np.cos(theta) mat = np.asarray([[0, -r[2], r[1]], [r[2], 0, -r[0]], [-r[1], r[0], 0]]) return (cost * np.eye(3) + (1 - cost) * r.dot(r.T) + np.sin(theta) * mat) def init_scene(gender, nr=0, lower_visibility_line=None): ########################################################################### ########################################################################### pathhh = join(data_folder, '%s_avg_noFlatHand.fbx' % gender[0]) print(pathhh) bpy.ops.import_scene.fbx(filepath=pathhh, axis_forward='X', axis_up='Z', global_scale=100) obname = '%s_avg' % gender[0] ########################################################################## ob = bpy.data.objects[obname] ob.data.use_auto_smooth = False # autosmooth creates weird artifacts # assign the existing spherical harmonics material ob.active_material = bpy.data.materials['Material'] # delete the default cube (which held the material) bpy.ops.object.select_all(action='DESELECT') if 'Cube' in bpy.data.objects.keys(): bpy.data.objects['Cube'].select = True bpy.ops.object.delete(use_global=False) # delete the default cube (which held the material) bpy.ops.object.select_all(action='DESELECT') bpy.data.objects['Lamp'].select = True bpy.ops.object.delete(use_global=False) cam_ob = bpy.data.objects['Camera'] # scn = bpy.context.scene ########################################## # if scene is set up for the first time bpy.ops.object.select_all(action='DESELECT') if nr == 0: # set camera properties and initial position scn.objects.active = cam_ob camT_mu = 9.0 camT_stdev = 0.1 if RANDOM_CAM_matrix_world: trr = np.random.normal(camT_mu, camT_stdev) else: trr = camT_mu cam_y_offset = -np.random.rand(1) * trr # * 0.5 alpha = math.atan((trr + 3) / -cam_y_offset) # +3 is the plane distance! camera_pitch = -math.radians(180 - 90 - math.degrees(alpha)) print(math.degrees(camera_pitch)) cam_ob.matrix_world = Matrix(((0.0, 0.0, 1.0, trr), (0.0, -1.0, 0.0, cam_y_offset - 1), (1.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 1.0))) cam_ob.select = True bpy.ops.transform.rotate(value=camera_pitch, axis=(0, 0, 1)) cam_ob.data.lens = cam_lens cam_ob.data.sensor_width = cam_sensor cam_ob.data.clip_start = 0.1 plane_ob, texim, extrema, lower_visibility_line = create_textured_plane(cam_ob, scene, res, cam_distance=trr + 3, camera_pitch=camera_pitch) ########################################## # Setup an empty object in the center which will be the parent of the Camera # This allows to easily rotate an object around the origin scn.cycles.film_transparent = True scn.render.layers["RenderLayer"].use_pass_vector = True scn.render.layers["RenderLayer"].use_pass_normal = True scene.render.layers['RenderLayer'].use_pass_emit = True scene.render.layers['RenderLayer'].use_pass_emit = True scene.render.layers['RenderLayer'].use_pass_material_index = True scene.render.layers['RenderLayer'].use_pass_object_index = True if '2.79' in bpy.app.version_string: scene.render.layers['RenderLayer'].use_pass_vector = True # Set render size scn.render.resolution_x = res[0] scn.render.resolution_y = res[1] scn.render.resolution_percentage = 100 scn.render.image_settings.file_format = 'PNG' else: plane_ob = bpy.data.objects['Plane'] # clear existing animation data ob.data.shape_keys.animation_data_clear() arm_ob = bpy.data.objects['Armature'] arm_ob.animation_data_clear() ########################################## # and translate it randomly on x-y plane bpy.ops.object.select_all(action='DESELECT') arm_ob.select = True bpy.context.scene.objects.active = arm_ob cam_distance = plane_ob.location - cam_ob.location lower_visibility_line = z_rotation(cam_distance, -cam_ob.data.angle_y) s = cam_ob.location[1] / lower_visibility_line[1] x_upper_bound = cam_ob.location[0] - lower_visibility_line[0] * s x_range = [plane_ob.location[0], x_upper_bound] translation = random_placement_in_visibl_area(cam_ob, x_range, res) bpy.ops.transform.translate(value=(translation[0], 0, translation[1])) ob.name = obname + '.%03d' % nr obname = ob.name for name in arm_ob.pose.bones.keys(): bone = arm_ob.pose.bones.get(name) if bone is None: continue bone.name = obname + name.split('avg')[-1] # give a new name to distinguish objects later arm_ob.name = 'Armature.%03d' % nr arm_ob.pass_index = nr + 1 ob.pass_index = nr + 1 if not (nr == 0): plane_ob = bpy.data.objects['Plane'] return (ob, obname, arm_ob, cam_ob, plane_ob, None, lower_visibility_line) else: return (ob, obname, arm_ob, cam_ob, plane_ob, texim, lower_visibility_line) def random_placement_in_visibl_area(cam_ob, x_range=[-3, 2], res=None): translation = np.zeros((2, 1)) translation[0] = np.random.uniform(x_range[0], x_range[1], 1) # y equals z in blender coodinate system visible_y_line = ray_back_projection.get_yrange(cam_ob, translation[0], res[0], res[1]) print(visible_y_line) translation[1] = np.random.uniform(visible_y_line[0] * float(3) / 4, visible_y_line[1] * float(3) / 4, 1) return translation def vector_move(colliding_person, translation=None, y=None): if y is None: y = colliding_person.location[1] print(colliding_person.location) colliding_person.location = Vector((0, y, 0)) scene.update() print(colliding_person.location) vec = Vector((translation[0], y, translation[1])) colliding_person.location = vec scene.update() print(colliding_person.location) # transformation between pose and blendshapes. Final choice in SMPL paper was # a flattened version of the rotation matrix after subtracting the identity def rodrigues2bshapes(pose, n_bones): rod_rots = np.asarray(pose).reshape(n_bones, 3) mat_rots = [Rodrigues(rod_rot) for rod_rot in rod_rots] bshapes = np.concatenate([(mat_rot - np.eye(3)).ravel() for mat_rot in mat_rots[1:]]) return (mat_rots, bshapes) # apply trans pose and shape to character def apply_trans_pose_shape(trans, pose, shape, ob, arm_ob, obname, scene, cam_ob, n_bones, frame=None, init_trans=Vector((0, 0, 0)), DBG_exitIfNeeded=False): # set z to zero, to make sure all are translated to zero-height (y-in blender) init_trans[2] = 0 pose_coeffs = pose.copy() pose = [] pose_coeffs[body_pose_dofs:(body_pose_dofs + ncomps)].dot(selected_components) ################################################################## full_hand_pose = pose_coeffs[body_pose_dofs:(body_pose_dofs + ncomps)].dot( selected_components) ################################################################## mixed_body_full_hand_pose = np.concatenate( (pose_coeffs[:body_pose_dofs], hands_mean + full_hand_pose)) ################################################################# pose = mixed_body_full_hand_pose.copy() # # print('body_pose_dofs = ', ############################################## mrots, bsh = rodrigues2bshapes(pose, n_bones) ############################################## if DBG_FBX_bone_names: print(arm_ob.pose.bones) for ii, bb in enumerate(arm_ob.pose.bones): print('%02d - %-16s' % (ii, bb.name)) exit(1) # set the location of the first bone to the translation parameter arm_ob.pose.bones[obname + '_' + part_match['bone_00']].location = trans - init_trans if frame is not None: arm_ob.pose.bones[obname + '_' + part_match['root']].keyframe_insert('location', frame=frame) for ibone, mrot in enumerate(mrots): bone = arm_ob.pose.bones[obname + '_' + part_match['bone_%02d' % ibone]] bone.rotation_quaternion = Matrix(mrot).to_quaternion() if frame is not None: bone.keyframe_insert('rotation_quaternion', frame=frame) bone.keyframe_insert('location', frame=frame) # apply pose blendshapes for ibshape, bshape in enumerate(bsh): ob.data.shape_keys.key_blocks['Pose%03d' % ibshape].value = bshape if frame is not None: ob.data.shape_keys.key_blocks['Pose%03d' % ibshape].keyframe_insert('value', index=-1, frame=frame) for ibshape, shape_elem in enumerate(shape): ob.data.shape_keys.key_blocks['Shape%03d' % ibshape].slider_min = -10.0 ob.data.shape_keys.key_blocks['Shape%03d' % ibshape].slider_max = 10.0 ob.data.shape_keys.key_blocks['Shape%03d' % ibshape].value = shape_elem if frame is not None: ob.data.shape_keys.key_blocks['Shape%03d' % ibshape].keyframe_insert('value', index=-1, frame=frame) return init_trans def get_head_boundingbox(arm_ob, ob, render_size): render_scale = scene.render.resolution_percentage / 100 render_size = (int(scene.render.resolution_x * render_scale), int(scene.render.resolution_y * render_scale)) head_bounding_box_vertices = [486, 3975, 457, 331, 411, 3050] # corresponding to left ear, # right ear, back of head, tip of nose, upper head, adams apple mesh = ob.to_mesh(scene, True, 'PREVIEW') mesh_vertices = [arm_ob.matrix_world * vert.co for vert in mesh.vertices] bone_locations_2d = np.zeros((6, 2)) for i, vertex in enumerate(head_bounding_box_vertices): co_2d = world2cam(scene, cam_ob, mesh_vertices[vertex]) # triangle 411 is on the top of the head bone_locations_2d[i, :] = [co_2d.x * render_size[0], -co_2d.y * render_size[1] + render_size[1] - 1] x_min, y_min = np.min(bone_locations_2d, axis=0) x_max, y_max = np.max(bone_locations_2d, axis=0) head_bb_dict = {'x1': x_min, 'x2': x_max, 'y1': y_min, 'y2': y_max} return head_bb_dict def get_upper_head(arm_ob, ob, render_size): mesh = ob.to_mesh(scene, True, 'PREVIEW') mesh_vertices = [arm_ob.matrix_world * vert.co for vert in mesh.vertices] co_2d = world2cam(scene, cam_ob, mesh_vertices[411]) # triangle 411 is on the top of the head co_3d = mesh_vertices[411] bone_locations_2d = (co_2d.x * render_size[0], -co_2d.y * render_size[1] + render_size[1] - 1) bone_locations_3d = (co_3d.x, co_3d.y, co_3d.z) bpy.data.meshes.remove(mesh) return bone_locations_2d, bone_locations_3d def get_bone_locs(arm_ob, ob, obname, scene, cam_ob, n_bones, UPPER_HEAD): render_scale = scene.render.resolution_percentage / 100 render_size = (int(scene.render.resolution_x * render_scale), int(scene.render.resolution_y * render_scale)) n_fingertips = 10 if UPPER_HEAD: bone_locations_2d = np.empty((n_bones + n_fingertips + 1, 2)) bone_locations_3d = np.empty((n_bones + n_fingertips + 1, 3), dtype='float32') else: bone_locations_2d = np.empty((n_bones + n_fingertips, 2)) bone_locations_3d = np.empty((n_bones + n_fingertips, 3), dtype='float32') bone_loc_names = [] idx = 0 for ibone in range(n_bones): bone = arm_ob.pose.bones[obname + '_' + part_match['bone_%02d' % ibone]] if UPPER_HEAD and part_match['bone_%02d' % ibone] == 'Head': bone_locations_2d[-1], bone_locations_3d[-1] = get_upper_head(arm_ob, ob, render_size) infoAdd = '' ###################################################################### ###################################################################### if True: if True: co_2d = world2cam(scene, cam_ob, arm_ob.matrix_world * bone.head) co_3d = arm_ob.matrix_world * bone.head bone_locations_3d[idx] = (co_3d.x, co_3d.y, co_3d.z) bone_locations_2d[idx] = ( co_2d.x * render_size[0], -co_2d.y * render_size[1] + render_size[1] - 1) bone_loc_names.append(part_match['bone_%02d' % ibone] + infoAdd) ############# idx = idx + 1 ######################################################################## ######################################################################## endEffectorNamesList = ['index2', 'middle2', 'pinky2', 'ring2', 'thumb2'] if any(pp in part_match['bone_%02d' % ibone] for pp in endEffectorNamesList): co_2d = world2cam(scene, cam_ob, arm_ob.matrix_world * bone.tail) co_3d = arm_ob.matrix_world * bone.tail # bone_locations_3d[idx] = (co_3d.x, co_3d.y, co_3d.z) bone_locations_2d[idx] = ( co_2d.x * render_size[0], -co_2d.y * render_size[1] + render_size[1] - 1) # infoAdd = '------------------------------ TAIL' print('~~~ ibone %02d - %02d - %-15s' % ( ibone, idx, part_match['bone_%02d' % ibone]), bone_locations_2d[idx], bone_locations_3d[idx], infoAdd) bone_loc_names.append(part_match['bone_%02d' % ibone] + infoAdd) ########################################################################### idx = idx + 1 return (bone_locations_2d, bone_locations_3d, bone_loc_names) # reset the joint positions of the character according to its new shape def reset_joint_positions(shape, ob, arm_ob, obname, scene, cam_ob, reg_ivs, joint_reg, n_bones, total_pose_DOFs): # Since the regression is sparse, only the relevant vertex # elements (joint_reg) and their indices (reg_ivs) are loaded # zero the pose and trans to obtain joint positions in zero pose print('\n\n', 'apply_trans_pose_shape - AAA', '\n\n') ####################################################################### _ = apply_trans_pose_shape(orig_trans, np.zeros(total_pose_DOFs), shape, ob, arm_ob, obname, scene, cam_ob, n_bones, DBG_exitIfNeeded=False) ######################################################################## # obtain a mesh after applying modifiers bpy.ops.wm.memory_statistics() me = ob.to_mesh(scene, True, 'PREVIEW') full_mesh = np.empty((len(me.vertices), 3)) for ivertexx, vertexx in enumerate(me.vertices): full_mesh[ivertexx] = np.array(vertexx.co) reg_vs = np.empty((len(reg_ivs), 3)) for iiv, iv in enumerate(reg_ivs): reg_vs[iiv] = me.vertices[iv].co bpy.data.meshes.remove(me) # regress joint positions in rest pose ####################################### joint_xyz = joint_reg.dot(reg_vs) ####################################### # adapt joint positions in rest pose arm_ob.hide = False bpy.ops.object.mode_set(mode='EDIT') arm_ob.hide = True for ibone in range(n_bones): bb = arm_ob.data.edit_bones[obname + '_' + part_match['bone_%02d' % ibone]] bboffset = bb.tail - bb.head bb.head = joint_xyz[ibone] bb.tail = bb.head + bboffset # there is a Maya-Blender compatibility issue!!! - this # will be overwritten for fingertips _2 exactly below boneName = part_match['bone_%02d' % ibone] if any(pp in boneName for pp in ['rring2', 'rmiddle2', 'rindex2', 'lthumb2', 'lmiddle2', 'lring2', 'rthumb2', 'lindex2', 'lpinky2', 'rpinky2']): currFingertipVerticesNP = full_mesh[fingertipVerticesDICT[boneName[:-1]]] bb.tail = np.average(currFingertipVerticesNP, axis=0) # bpy.ops.object.mode_set(mode='OBJECT') # return (shape) # load poses and shapes def load_body_data(smpl_data_MOCAP, smpl_data_OTHER, ob, obname, gender, i=None): # load moshed data from MOCAP dataset # create a dictionary with key the sequence name and values the pose and trans cmu_parms = {} cmu_frames = {} cmu_stepsize = {} for seq in smpl_data_MOCAP.files: if not(seq.startswith('pose')): continue cmu_parms[seq.replace('pose_', '')] = {'poses': smpl_data_MOCAP[seq][:,:body_pose_dofs], 'trans': smpl_data_MOCAP[ seq.replace('pose_', 'trans_')]} cmu_frames[seq.replace('pose_', '')] = len(smpl_data_MOCAP[seq]) if 'cmu' in seq: cmu_stepsize[seq.replace('pose_', '')] = 5 cmu_stepsize[seq.replace('pose_', '')] = 5 else: cmu_stepsize[seq.replace('pose_', '')] = 10 print('cmu_parms') for ii, kk in enumerate(cmu_parms.keys()): print('%03d - %-20s' % (ii, kk)) # if DBG_motion_data_filter: print('len(cmu_parms) = ' + str(len(cmu_parms))) exit(1) n_sh_bshapes = len([k for k in ob.data.shape_keys.key_blocks.keys() if k.startswith('Shape')]) fshapes = smpl_data_OTHER['%sshapes' % gender][:, :n_sh_bshapes] return (cmu_parms, fshapes, cmu_frames, cmu_stepsize) def render_segmentation(PATH_BLENDER_segm, PATH_OUT_segm_PNG, PATH_OUT_segm_VIZ, save_dbug_imgs): import numpy as np import cv2 segm = cv2.imread(PATH_BLENDER_segm, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) segm = np.uint8(segm) if (len(segm.shape) == 3 and np.sum(np.abs(segm[:, :, 0] - segm[:, :, 1])) == 0 and np.sum( np.abs(segm[:, :, 1] - segm[:, :, 2])) == 0 and np.sum( np.abs(segm[:, :, 2] - segm[:, :, 0])) == 0): segm = segm[:, :, 0] segm_nonzero = segm[np.nonzero(segm)] print('\n\n\n') print(segm_nonzero.shape) print('\n\n\n') if segm_nonzero.shape[0] > 0: VIZmultipl = np.int(np.floor(255 / np.amax(segm_nonzero))) else: VIZmultipl = bg_plane_dist_INF segmVIZ = segm * VIZmultipl if save_dbug_Imgs: cv2.imwrite(PATH_OUT_segm_PNG, segm) cv2.imwrite(PATH_OUT_segm_VIZ, segmVIZ) # return segm def depth_2_depthVIZ(PATH_depth_EXR, PATH_OUT_depth_VIZ, DBG_verbose=False, VIZ_HACK=True): # depth = cv2.imread(PATH_depth_EXR, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) # depth_min = np.amin(depth[np.nonzero(depth)]) depth_max = np.amax(depth[np.nonzero(depth)]) # if VIZ_HACK: depth[depth == 1e+10] = 0 if DBG_verbose and depth[np.nonzero(depth)].shape[0] > 0: print(np.unique(np.hstack(depth[np.nonzero(depth)]))) print(len(np.unique(np.hstack(depth[np.nonzero(depth)])))) print(' - VIZ HACK') # depthVIZ = np.zeros_like(depth) cv2.normalize(depth, depthVIZ, alpha=0., beta=255., norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32FC1) depthVIZ_min = 0 depthVIZ_max = 0 if depthVIZ[np.nonzero(depthVIZ)].shape[0] > 0: depthVIZ_min = np.amin(depthVIZ[np.nonzero(depthVIZ)]) depthVIZ_max = np.amax(depthVIZ[np.nonzero(depthVIZ)]) if DBG_verbose: print(depthVIZ.shape) print('Non-Zero:') print('b - depthVIZ_min =', depthVIZ_min, ' ', 'depthVIZ_max =', depthVIZ_max) if VIZ_HACK: depthVIZ = np.clip(depthVIZ - depthVIZ_min * 0.80, 0., 255.) if DBG_verbose: print('depthVIZ_min * 0.98 = ', depthVIZ_min * 0.98) cv2.normalize(depthVIZ, depthVIZ, alpha=0., beta=255., norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32FC1) if DBG_verbose and depthVIZ[np.nonzero(depthVIZ)].shape[0] > 0: depthVIZ_min = np.amin(depthVIZ[np.nonzero(depthVIZ)]) depthVIZ_max = np.amax(depthVIZ[np.nonzero(depthVIZ)]) print(depthVIZ.shape) print('Non-Zero:') print('c - depthVIZ_min =', depthVIZ_min, ' ', 'depthVIZ_max =', depthVIZ_max) print(np.unique(np.hstack(depthVIZ[np.nonzero(depthVIZ)]))) print(len(np.unique(np.hstack(depthVIZ[np.nonzero(depthVIZ)])))) cv2.imwrite(PATH_OUT_depth_VIZ, depthVIZ) def get_annorect(annolist, head_anno, img_anno, objectpos_anno, scale_anno, pose_joints_2d, joints_2d_vsbl, head_bbx_dict, img_path, scale_dict): smplToMPI = [8, 5, 2, 1, 4, 7, 0, 12, 15, 62, 21, 19, 17, 16, 18, 20] annorect = [] head_bb_anno = [] obj_pos = [] scales = [] for obname in joints_2d_vsbl.keys(): pose_joints_2d_person = pose_joints_2d[obname][smplToMPI] joints_2d_vsbl_person = joints_2d_vsbl[obname][smplToMPI] head_bb = head_bbx_dict[obname] # point = [] annopoints = [] for i in range(pose_joints_2d_person.shape[0]): point = {} if pose_joints_2d_person[i, 0] >= 0 and pose_joints_2d_person[i, 0] <= res[0] and \ pose_joints_2d_person[i, 1] >= 0 and pose_joints_2d_person[i, 1] <= res[1]: point = {'id': i, 'x': pose_joints_2d_person[i, 0], 'y': pose_joints_2d_person[i, 1], 'is_visible': joints_2d_vsbl_person[i]} annopoints.append(point) annorect.append(annopoints) head_bb_anno.append((head_bb['x1'], head_bb['y1'], head_bb['x2'], head_bb['y2'])) obj_pos.append((pose_joints_2d[obname][9, :])) scales.append(scale_dict[obname]) annolist.append(annorect) head_anno.append(head_bb_anno) img_anno.append(img_path) objectpos_anno.append(obj_pos) scale_anno.append(scales) return annolist, head_anno, img_anno, objectpos_anno, scale_anno def get_collisions(obs, obnames, arm_obs, filename, PATH_tmp_model, plane_ob, working_dir, virtualEnvDir): plane_ob.select = True bpy.context.scene.objects.active = plane_ob bpy.ops.export_mesh.ply(filepath=join(PATH_tmp_model, 'plane_ob_model.ply'), use_mesh_modifiers=False) obnameStr = '' for ob, obname in zip(obs, obnames): model_path = join(PATH_tmp_model, obname + '_model.ply') ob.select = True bpy.context.scene.objects.active = ob #careful, when manually exporting from blender 2.8 normals are added to faces #newer versions of blender might have changed the default arguments _ = bpy.ops.export_mesh.ply(filepath=model_path, use_uv_coords=False) obnameStr = obnameStr + '+' + obname callArgument = 'cd ' + working_dir + ' ; . ' + virtualEnvDir + '/bin/activate ; python ' + \ './meshIsect/collision_detection_cgal_meshIsect.py ' '--modelFolder=' + \ PATH_tmp_model + ' --obnames=' + obnameStr print(callArgument) _ = subprocess.call(callArgument, shell=True) PATH_tmp_intersect = PATH_tmp_model.split('models')[0] intersection_per_ob = np.load(join(PATH_tmp_intersect, 'intersection.npy')) plane_collision = np.load(join(PATH_tmp_intersect, 'plane_collision.npy')) remove(join(PATH_tmp_intersect, 'plane_collision.npy')) remove(join(PATH_tmp_intersect, 'intersection.npy')) plane_collision = plane_collision > 0 print(plane_collision) return intersection_per_ob, plane_collision sorted_parts = ['global', 'leftThigh', 'rightThigh', 'spine', 'leftCalf', 'rightCalf', 'spine1', 'leftFoot', 'rightFoot', 'spine2', 'leftToes', 'rightToes', 'neck', 'leftShoulder', 'rightShoulder', 'head', 'leftUpperArm', 'rightUpperArm', 'leftForeArm', 'rightForeArm', 'leftHand', 'rightHand', 'lIndex0', 'lMiddle0', 'lPinky0', 'lRing0', 'lThumb0', 'rIndex0', 'rMiddle0', 'rPinky0', 'rRing0', 'rThumb0', 'lIndex1', 'lMiddle1', 'lPinky1', 'lRing1', 'lThumb1', 'rIndex1', 'rMiddle1', 'rPinky1', 'rRing1', 'rThumb1', 'lIndex2', 'lMiddle2', 'lPinky2', 'lRing2', 'lThumb2', 'rIndex2', 'rMiddle2', 'rPinky2', 'rRing2', 'rThumb2'] part_match = {'root': 'root', 'bone_00': 'Pelvis', # OK 'bone_01': 'L_Hip', # OK 'bone_02': 'R_Hip', # OK 'bone_03': 'Spine1', # OK 'bone_04': 'L_Knee', # OK 'bone_05': 'R_Knee', # OK 'bone_06': 'Spine2', # OK 'bone_07': 'L_Ankle', # OK 'bone_08': 'R_Ankle', # OK 'bone_09': 'Spine3', # OK 'bone_10': 'L_Foot', # OK 'bone_11': 'R_Foot', # OK 'bone_12': 'Neck', # OK 'bone_13': 'L_Collar', # OK 'bone_14': 'R_Collar', # OK 'bone_15': 'Head', # OK 'bone_16': 'L_Shoulder', # OK 'bone_17': 'R_Shoulder', # OK 'bone_18': 'L_Elbow', # OK 'bone_19': 'R_Elbow', # OK 'bone_20': 'L_Wrist', # OK 'bone_21': 'R_Wrist', # OK 'bone_22': 'lindex0', 'bone_23': 'lindex1', 'bone_24': 'lindex2', 'bone_25': 'lmiddle0', 'bone_26': 'lmiddle1', 'bone_27': 'lmiddle2', 'bone_28': 'lpinky0', 'bone_29': 'lpinky1', 'bone_30': 'lpinky2', 'bone_31': 'lring0', 'bone_32': 'lring1', 'bone_33': 'lring2', 'bone_34': 'lthumb0', 'bone_35': 'lthumb1', 'bone_36': 'lthumb2', 'bone_37': 'rindex0', 'bone_38': 'rindex1', 'bone_39': 'rindex2', 'bone_40': 'rmiddle0', 'bone_41': 'rmiddle1', 'bone_42': 'rmiddle2', 'bone_43': 'rpinky0', 'bone_44': 'rpinky1', 'bone_45': 'rpinky2', 'bone_46': 'rring0', 'bone_47': 'rring1', 'bone_48': 'rring2', 'bone_49': 'rthumb0', 'bone_50': 'rthumb1', 'bone_51': 'rthumb2'} part2num = {part: (ipart + 1) for ipart, part in enumerate(sorted_parts)} flat_hand_mean = True body_pose_dofs = 66 ncomps = 12 ###### load hand stuff ############################################# with open('./smpl_data/mano_v1_2/models/MANO_LEFT.pkl','rb') as infile: manoLeft = pickle.load(infile, encoding='latin1') hands_componentsl = manoLeft['hands_components'] hands_meanl = np.zeros( hands_componentsl.shape[1]) if flat_hand_mean else manoLeft['hands_mean'] hands_coeffsl = manoLeft['hands_coeffs'][:, :ncomps // 2] with open('./smpl_data/mano_v1_2/models/MANO_RIGHT.pkl','rb') as infile: manoRight = pickle.load(infile, encoding='latin1') hands_componentsr = manoRight['hands_components'] hands_meanr = np.zeros( hands_componentsl.shape[1]) if flat_hand_mean else manoRight['hands_mean'] hands_coeffsr = manoRight['hands_coeffs'][:, :ncomps // 2] selected_components = np.vstack((np.hstack( (hands_componentsl[:ncomps // 2], np.zeros_like(hands_componentsl[:ncomps // 2]))), # 12, 90 np.hstack((np.zeros_like(hands_componentsr[:ncomps // 2]), hands_componentsr[:ncomps // 2])))) hands_mean = np.concatenate((hands_meanl, hands_meanr)) # 90 ######################################################################## pose_coeffs = np.zeros(body_pose_dofs + selected_components.shape[0]) # 78 ######################################################################## ########################################################################### full_hand_pose = pose_coeffs[body_pose_dofs:(body_pose_dofs + ncomps)].dot( selected_components) # 90 ########################################################################### mixed_body_full_hand_pose = np.concatenate((pose_coeffs[:body_pose_dofs], hands_mean + full_hand_pose)) # 156 # # ######################################################################### if __name__ == '__main__': import sys import h5py import gzip from pickle import load from os import makedirs, system logger.info('starting') ################################################################# print(len(sys.argv)) for ii, arg in enumerate(sys.argv): if arg == '--': print(ii, arg, ' :)') else: if ii == 7 or ii == 8: print(ii, arg, bool(int(arg))) else: print(ii, arg) ########################################################################## print('\n\n') logger.info(len(sys.argv)) if sys.argv[-2] == '--': # 0: Train print('LOCAL SCRIPT ---> Will take into account the local TRAIN/VALID/TEST flag') # # 1: Valid idx = int(sys.argv[-1]) # 2: Test elif sys.argv[-4] == '--' and sys.argv[-2] != '--': logger.info('CLUSTER SCRIPT') print('CLUSTER SCRIPT ---> Will overwrite the local TRAIN/VALID/TEST flag') idx = int(sys.argv[-3]) ###################################################### def split_ID_2_string(splitID): switcher = {0: 'train', 1: 'valid', 2: 'test', } return switcher.get(splitID, 'error') ###################################################### split = split_ID_2_string(int(sys.argv[-2])) if split == 'error': print('\n\n\n') print('not defined - split argument') print('\n\n\n') exit() ###################################################### nrOfPeople = int(sys.argv[-1]) if nrOfPeople == 0: logger.info('draw poisson sample') nrOfPeople = np.random.poisson(10, (1,))[0] if nrOfPeople <= 1: nrOfPeople = 2 print('\n\n\n') print('*** split = ', split, '***') logger.info(str(nrOfPeople)) ################################################################### ##################################################### ##################################################### with open(fingertipVerticesPATH) as data_file: fingertipVerticesDICT = json.load(data_file) ##################################################### ##################################################### ##################################################### ##################################################### ##################################################### segmented_materials = True ##################################################### ##################################################### #################################################### scene = bpy.data.scenes['Scene'] #################################################### scene.render.engine = 'CYCLES' bpy.data.materials['Material'].use_nodes = True scene.cycles.shading_system = True scene.use_nodes = True #################################################### ################################################################### ################################################################### smpl_data_MOCAP = np.load(FILE_smpl_data_MOCAP, encoding='latin1', allow_pickle=True) smpl_data_OTHER = np.load(FILE_smpl_data_OTHER) ################################################################### smpl_data___joint_regressorr = smpl_data_OTHER['joint_regressor'] smpl_data___regression_verts = smpl_data_OTHER['regression_verts'] ################################################################### ################################################################### PATH_out = join(PATH_out, dataset_path_prefix, split) PATH_tmp = join(PATH_tmp, dataset_path_prefix, split) if not exists(PATH_out): makedirs(PATH_out) if not exists(PATH_tmp): makedirs(PATH_tmp) ####################################### ####################################### SMPLH_joint_regressorr = np.load( join(data_folder, 'SMPLH_data_joint_regressor.npy')) SMPLH_regression_verts = np.load( join(data_folder, 'SMPLH_data_regression_verts.npy')) smpl_data___joint_regressorr = SMPLH_joint_regressorr.copy() smpl_data___regression_verts = SMPLH_regression_verts.copy() ############################################################### # create some empty lists to store everything necessary for multi persons obs = [] obnames = [] arm_obs = [] data = [] shapes = [] random_shapes = [] harmonics_scripts = [] materials = [] materialID_2_part = [] gender = [] cloth_img = [] cloth_img_PATHs = [] real_img = [] txt_paths = [] txt_paths_trn = [] txt_paths_val = [] txt_paths_test = [] orig_trans = [] nrOfPeople = int(nrOfPeople) fend = np.zeros((nrOfPeople, 1)) N = np.zeros((nrOfPeople,)) random_zrot = 2 * np.pi * np.random.rand(nrOfPeople) lower_visibility_line = None stepsize = np.ones((nrOfPeople,), dtype=int) dataNames = [] annolist = [] head_anno = [] image_anno = [] objectpos_anno = [] scale_anno = [] ###################################################### def gender_ID_2_string(splitID): switcher = {0: 'male', 1: 'female', } return switcher.get(splitID, 'error') ###################################################### beta_stds_gendered = {} random_shapes_gendered = {} fshapes_gendered = {} for i in range(nrOfPeople): gender.append(gender_ID_2_string(choice([0, 1]))) ###################################################### ###################################################### if gender[i] == 'error': print('\n\n\n') print('not defined - gender argument') print('\n\n\n') exit() print('*** gender = ', gender[i], '***') print('\n\n\n') logger.info('init_scene') ################################################################# if lower_visibility_line is None: ob, obname, arm_ob, cam_ob, plane_ob, teximage, lower_visibility_line = init_scene( gender[i], i, lower_visibility_line=None) else: ob, obname, arm_ob, cam_ob, plane_ob, teximage, lower_visibility_line = init_scene( gender[i], i, lower_visibility_line=lower_visibility_line) obs.append(ob) obnames.append(obname) arm_obs.append(arm_ob) if not (teximage is None): texim = teximage #################################### intrinsic = cam_compute_intrinsic() #################################### split_proportion_TRAIN = 0.8 split_proportion_VALID = 0.1 split_proportion_TESTT = 0.1 assert (split_proportion_TRAIN + split_proportion_VALID + split_proportion_TESTT) == 1.0 logger.info('load body data') ################################################################################################# cmu_parms, fshapes, cmu_frames, cmu_stepsize = load_body_data(smpl_data_MOCAP, smpl_data_OTHER, ob, obname, gender=gender[i], i=i) shuffle_idx = np.load( './resources/random_mocap_order.npy') shuffle_idx = np.array(shuffle_idx, dtype=int) ################################################################################################# fshapes_NUMB = fshapes.shape[0] xxxShapesTRN = int(round(fshapes_NUMB * (split_proportion_TRAIN))) xxxShapesVLD = int(round(fshapes_NUMB * (split_proportion_TRAIN + split_proportion_VALID))) if split == 'train': fshapes_gendered[gender[i]] = fshapes[:xxxShapesTRN, :] elif split == 'valid': fshapes_gendered[gender[i]] = fshapes[xxxShapesTRN:xxxShapesVLD, :] elif split == 'test': fshapes_gendered[gender[i]] = fshapes[xxxShapesVLD:, :] else: print('\n\n\n') print('not defined - split !@#') print('\n\n\n') exit() shuffle_idx = np.load('./resources/random_mocap_order_'+mocapDataName+'.npy') shuffle_idx = np.array(shuffle_idx, dtype=int) cmu_parms_keyz = np.array(sorted(cmu_parms.keys()))[shuffle_idx] cmu_parms_NUMB = len(cmu_parms_keyz) # xxxCmuTRN = int(round(cmu_parms_NUMB * (split_proportion_TRAIN))) xxxCmuVLD = int(round(cmu_parms_NUMB * (split_proportion_TRAIN + split_proportion_VALID))) if split == 'train': names = cmu_parms_keyz[:xxxCmuTRN] elif split == 'valid': names = cmu_parms_keyz[xxxCmuTRN:xxxCmuVLD] elif split == 'test': names = cmu_parms_keyz[xxxCmuVLD:] else: print('\n\n\n') print('not defined - split !@#') print('\n\n\n') exit() # if i == 0: name = sorted(names)[idx % len(names)] filename = str(idx) # name # could also be just a number else: # sample cmu_mocap_sequence with probability = frames_m / frames_total frame_ar = np.array([cmu_frames[key] / cmu_stepsize[key] for key in names]) csum = np.cumsum(frame_ar / np.sum(frame_ar)) dice = np.random.rand(1) rand_seq = np.argmax(csum > dice) # get first occurrence of this condition name = names[rand_seq] dataNames.append(name) if DBG_print_MOCAP_keys: for idd, kk in enumerate(sorted(cmu_parms.keys())): print('%04d - %-20s' % (idd, kk)) print(' ') print('gender = %s' % [i]) print('len(cmu_parms) = %s' % len(cmu_parms)) print('idx = %s' % idx) print('idx %% len = %s' % (idx % len(cmu_parms))) print('\n\n\n') print('DBG_print_MOCAP_keys = True --> Exiting now !!!') print('\n\n\n') exit(1) ############################################################################################################### ############################################################################################################### ############################################### ############################################### hand_poses = load_hand_poses(PATH_MoCap_SMPLH) ############################################### ############################################### hand_poses_NUMB = len(hand_poses) # xxxHPosesTRN = int(round(hand_poses_NUMB * (split_proportion_TRAIN))) xxxHPosesVLD = int(round(hand_poses_NUMB * (split_proportion_TRAIN + split_proportion_VALID))) if split == 'train': # synth flow - PATHs hand_poses = hand_poses[:xxxHPosesTRN] elif split == 'valid': hand_poses = hand_poses[xxxHPosesTRN:xxxHPosesVLD] elif split == 'test': hand_poses = hand_poses[xxxHPosesVLD:] else: print('\n\n\n') print('not defined - split @#$') print('\n\n\n') exit() ############################################### ############################################### lsun_path = './resources/sun397_' + split + '.txt' ##################################################### ##################################################### bg_paths = [] with open(lsun_path) as f: for line in f: bg_paths.append(join(lsun_base_path, line.strip())) ##################################################### if RANDOM_BG: PATH_bg = choice(bg_paths) else: PATH_bg = bg_paths[0] ##################################################### bg_img = bpy.data.images.load(PATH_bg) ##################################################### PATH_tmp_models = join(PATH_tmp, filename, 'models') print(PATH_tmp_models) if not exists(PATH_tmp_models): makedirs(PATH_tmp_models) else: fileList = listdir(PATH_tmp_models) for fi in fileList: remove(join(PATH_tmp_models, fi)) caesar_txt_paths = sorted(glob( (PATHs_texture_participants.replace('<CEASAR>', 'grey')).replace('<GENDER>', gender[i]))) noncaesar_txt_paths = sorted(glob( (PATHs_texture_participants.replace('<CEASAR>', 'nongrey')).replace('<GENDER>', gender[i]))) # ncaesar = len(caesar_txt_paths) nnoncaesar = len(noncaesar_txt_paths) print(noncaesar_txt_paths) # xxxCeasarTRN = int(round(ncaesar * (split_proportion_TRAIN))) xxxCeasarVLD = int(round(ncaesar * (split_proportion_TRAIN + split_proportion_VALID))) # xxxNonCeasarTRN = int(round(nnoncaesar * (split_proportion_TRAIN))) xxxNonCeasarVLD = int(round(nnoncaesar * (split_proportion_TRAIN + split_proportion_VALID))) # print(xxxCeasarTRN) print(xxxCeasarVLD) print(xxxNonCeasarTRN) print(xxxNonCeasarVLD) print('----') print(ncaesar) print(nnoncaesar) non_ceasar_ceasar_ratio = 8 if ncaesar >= nnoncaesar: if split == 'train': txt_paths.append(caesar_txt_paths[:xxxCeasarTRN] + ( non_ceasar_ceasar_ratio * (ncaesar // nnoncaesar) * noncaesar_txt_paths[ :xxxNonCeasarTRN])) elif split == 'valid': txt_paths.append(caesar_txt_paths[xxxCeasarTRN:xxxCeasarVLD] + ( non_ceasar_ceasar_ratio * (ncaesar // nnoncaesar) * noncaesar_txt_paths[ xxxNonCeasarTRN:xxxNonCeasarVLD])) elif split == 'test': txt_paths.append(caesar_txt_paths[xxxCeasarVLD:] + ( non_ceasar_ceasar_ratio * (ncaesar // nnoncaesar) * noncaesar_txt_paths[ xxxNonCeasarVLD:])) else: print('\n\n\n') print('not defined - split $%^') print('\n\n\n') exit() else: if split == 'train': print(len(int(np.round( 1 / non_ceasar_ceasar_ratio * (nnoncaesar // ncaesar))) * caesar_txt_paths[ :xxxCeasarTRN])) print(len(noncaesar_txt_paths[:xxxNonCeasarTRN])) txt_paths.append(int(np.round( 1 / non_ceasar_ceasar_ratio * (nnoncaesar // ncaesar))) * caesar_txt_paths[:xxxCeasarTRN] + noncaesar_txt_paths[:xxxNonCeasarTRN]) elif split == 'valid': txt_paths.append(int(np.round( 1 / non_ceasar_ceasar_ratio * (nnoncaesar // ncaesar))) * caesar_txt_paths[xxxCeasarTRN:xxxCeasarVLD] + noncaesar_txt_paths[xxxNonCeasarTRN:xxxNonCeasarVLD]) elif split == 'test': txt_paths.append(int(np.round( 1 / non_ceasar_ceasar_ratio * (nnoncaesar // ncaesar))) * caesar_txt_paths[xxxCeasarVLD:] + noncaesar_txt_paths[xxxNonCeasarVLD:]) else: print('\n\n\n') print('not defined - split $%^') print('\n\n\n') exit() print('---final textures') #################################################### # PUT INITIAL CLOTHING cloth_img_name = choice(txt_paths[i]) cloth_img.append(bpy.data.images.load(cloth_img_name)) #################################################### # grab random textures from existing participants real_img.append(cloth_img[i]) # this texture holds the part segmentation. # Ideally it should be directly done with face colors #################################################### #################################################### #################################################### mat_tree = bpy.data.materials['Material'].node_tree #################################################### # Create copy-spher.harm. directory if not exist #################################################### PATH_OUT_sh = join(PATH_out, filename, 'spher_harm', 'sh.osl') #################################################### if not exists(dirname(PATH_OUT_sh)): makedirs(dirname(PATH_OUT_sh)) system('cp %s %s' % (FILE_sh_original.replace(' ', '\ '), PATH_OUT_sh.replace(' ', '\ '))) #################################################### create_sh_material(mat_tree, PATH_OUT_sh, img=real_img[i]) #################################################### res_paths = create_composite_nodes(scene.node_tree, filename, img=bg_img) #################################################### setState0() ob.select = True bpy.context.scene.objects.active = ob # # create material segmentation if segmented_materials: mat, matID_2_part = create_segmentation(ob, i) materials.append(mat) materialID_2_part.append(matID_2_part) # prob_dressed = {'global': .01, 'leftThigh': .9, 'rightThigh': .9, 'spine': .9, 'leftCalf': .5, 'rightCalf': .5, 'spine1': .9, 'leftFoot': .9, 'rightFoot': .9, 'spine2': .9, 'leftToes': .9, 'rightToes': .9, 'neck': .01, 'leftShoulder': .8, 'rightShoulder': .8, 'head': .01, 'leftUpperArm': .5, 'rightUpperArm': .5, 'leftForeArm': .5, 'rightForeArm': .5, 'leftHand': .01, 'rightHand': .01, 'lIndex0': .01, 'lMiddle0': .01, 'lPinky0': .01, 'lRing0': .01, 'lThumb0': .01, 'rIndex0': .01, 'rMiddle0': .01, 'rPinky0': .01, 'rRing0': .01, 'rThumb0': .01, 'lIndex1': .01, 'lMiddle1': .01, 'lPinky1': .01, 'lRing1': .01, 'lThumb1': .01, 'rIndex1': .01, 'rMiddle1': .01, 'rPinky1': .01, 'rRing1': .01, 'rThumb1': .01, 'lIndex2': .01, 'lMiddle2': .01, 'lPinky2': .01, 'lRing2': .01, 'lThumb2': .01, 'rIndex2': .01, 'rMiddle2': .01, 'rPinky2': .01, 'rRing2': .01, 'rThumb2': .01} else: materials.append({'FullBody': bpy.data.materials['Material']}) prob_dressed = {'FullBody': 1.} ########################################################################################################################## orig_pelvis_loc = (arm_ob.matrix_world.copy() * arm_ob.pose.bones[ obname + '_' + part_match['bone_00']].head.copy()) - Vector((-1., 1., 1.)) ########################################################################################################################## orig_cam_loc = cam_ob.location.copy() ########################################################################################################################## ################################################################### ################################################################### beta_stds_gendered[gender[i]] = np.load( join(data_folder, ('%s_beta_stds.npy' % gender[i]))) # #################################################### #################################################### random_shapes_gendered[gender[i]] = [] random_shapes_gendered[gender[i]].append( lambda std: np.concatenate((np.random.uniform(-std, std, size=(shape_ndofs,)) * beta_stds_gendered[gender[i]][:shape_ndofs], np.zeros(shape_totalCoeffs - shape_ndofs)))) # 64 scene.objects.active = arm_obs[i] orig_trans = np.asarray( arm_obs[i].pose.bones[obname + '_' + part_match['bone_00']].location).copy() # The spherical harmonics material needs a script to be loaded scs = [] for mname, material in materials[i].items(): scs.append(material.node_tree.nodes['Script']) scs[-1].filepath = PATH_OUT_sh scs[-1].update() harmonics_scripts.append(scs) flip_coin = lambda prob: np.random.rand() < prob data.append(cmu_parms[name]) stepsize[i] = int(cmu_stepsize[name]) * stepsizeFactor N[i] = len(data[i]['poses'][::stepsize[i]]) ##################################################### get_real_frame = lambda ifr: ifr # ifr*stepsize random_camera_trans = Vector((0., 0., 0.)) random_camera_rotX = 0 random_camera_rotY = 0 random_camera_rotZ = 0 random_camera_rotX_ACCUM = 0. random_camera_rotY_ACCUM = 0. random_camera_rotZ_ACCUM = 0. reset_loc = False flip_coin_perCHUNK = False ############################################################ # ############################################################ # ############################################################ # create a sequence of frames_per_shape with a single shape and rotation, with keyframes # # keyframe animation is important to obtain the flow min_N_idx = np.argmin(N) min_N = N[min_N_idx] ishapes = range(int(np.ceil(float(min_N) / float(frames_per_shape)))) fbegin = np.zeros((len(ishapes), nrOfPeople)) fend = np.zeros((len(ishapes), nrOfPeople)) reset_loc = np.zeros((nrOfPeople, 1), dtype=bool) init_trans = [] rand_start_frame = np.zeros((nrOfPeople,)) for i, n in enumerate(N): if n == min_N: rand_start_frame[i] = 0 else: rand_start_frame[i] = np.random.randint(0, n - min_N) print(N) print(dataNames) ############################################################ logger.info('start ishapes loop') for ishape in ishapes: for i in range(nrOfPeople): bpy.ops.object.select_all(action='DESELECT') arm_obs[i].select = True bpy.context.scene.objects.active = arm_obs[i] if RANDOM_SHAPE_per_CHUNK: if i == 0: shapes = [] shapes.append( set_shape(RANDOM_SHAPE, RANDOM_SHAPE_mode, i, random_shapes_gendered, gender[i], fshapes_gendered)) ##################################################### curr_shape = reset_joint_positions(shapes[i], obs[i], arm_obs[i], obnames[i], scene, cam_ob, smpl_data___regression_verts, smpl_data___joint_regressorr, n_bones, total_pose_DOFs) if RANDOM_ROT_Z: random_zrot[i] = 2 * np.pi * np.random.rand() # 0...1 bpy.ops.object.select_all(action='DESELECT') def degree2rad(deg): rad = deg * np.pi / 180. return rad if RANDOM_CAMERA_JITTER: flip_coin_perCHUNK = flip_coin(.3) random_camera_trans = .005 * np.random.randn(3) if RANDOM_POSITION_perCHUNCK and not (ishape == ishapes[0]): x_range = get_x_range(cam_ob, plane_ob) for person in arm_obs: bpy.ops.object.select_all(action='DESELECT') person.select = True bpy.context.scene.objects.active = person translation = random_placement_in_visibl_area(cam_ob, x_range, res) vector_move(person, translation) for i in range(nrOfPeople): if N[i] == min_N: fbegin[ishape, i] = ishape * stepsize[i] * frames_per_shape fend[ishape, i] = min((ishape + 1) * stepsize[i] * frames_per_shape, len(data[i]['poses'])) else: fbegin[ishape, i] = ishape * stepsize[i] * frames_per_shape + rand_start_frame[i] fend[ishape, i] = (ishape + 1) * stepsize[i] * frames_per_shape + rand_start_frame[i] for arm_ob in arm_obs: arm_ob.animation_data_clear() cam_ob.animation_data_clear() for i in range(nrOfPeople): if RANDOM_TXT_per_CHUNK: cloth_img[i], cloth_img_PATH = set_txt(RANDOM_TXT, cloth_img[i], txt_paths[i], i) cloth_img_PATHs.append(cloth_img_PATH) if RANDOM_BG_per_CHUNK: bg_img, bg_img_PATH = set_background(RANDOM_BG, bg_img, idx) if RANDOM_LIGHTS_per_CHUNK: sh_coeffs = set_lights(RANDOM_LIGHTS) ############################################# ############################################# blur = scene.node_tree.nodes['Blur'] if RANDOM_Pxl_BLUR_SIZE: blur.size_x = int(np.round(1.0 * np.random.randn())) blur.size_y = int(np.round(1.0 * np.random.randn())) else: blur.size_x = 0. blur.size_y = 0. ########################################################################## ########################################################################## vblur_factor = np.random.normal(vblur_factor_Miu, vblur_factor_Std) if not USE_MOTION_BLUR: vblur_factor = 0. ########################################################################## scene.node_tree.nodes['Vector Blur'].factor = vblur_factor ########################################################################## ########################################################################## allHandsOnly_poses = [] handsOnly_poses = [] for personIDX in range(nrOfPeople): handSeqID = choice(range(len(hand_poses))) lennn = len(hand_poses[handSeqID]) sampledHandFrameIDs = range(lennn)[::stepsize_hands] startSamplingFrID = choice(range(len(sampledHandFrameIDs) - frames_per_shape + 1)) # for sampledHandFrameID in sampledHandFrameIDs: if RANDOM_HAND_POSE: curr_hand_pose = hand_poses[handSeqID][sampledHandFrameID] else: handSeqID = 0 curr_hand_pose = hand_poses[handSeqID][0] if DBG_MODE_ENFORCE_FLAT_HAND: curr_hand_pose = np.zeros_like(hand_poses[0][0]) # handsOnly_poses.append(curr_hand_pose) allHandsOnly_poses.append(handsOnly_poses) ########################### STORED_ITER_seq_frame = [] STORED_ITER_pose = [] STORED_ITER_trans = [] ########################### N_min = np.min(N) mins = np.zeros((nrOfPeople,)) for i in range(nrOfPeople): mins[i] = len(np.arange(fbegin[ishape, i], fend[ishape, i], stepsize[i])) N_min = min(mins) ########################### print('done with allocating - searching for a valid configuration without collisions') print(fbegin) print(fend) print(stepsize) print(mins) ########################### collision = True # repeat until configuration without collisions is found combs = np.linspace(0, nrOfPeople - 1, nrOfPeople, dtype=int) pairs = list(combinations(combs, 2)) logger.info('start collision free assembling') while collision: logger.info('not found yet') collisions_per_pair = np.zeros((len(pairs),), dtype=int) plane_collision = np.zeros((nrOfPeople,), dtype=int) STORED_ITER_seq_frame_temp = [] STORED_ITER_pose_temp = [] STORED_ITER_trans_temp = [] for seq_frame in range(int(N_min)): # get empty lists for collision detection of meshes meshes = [] mesh_vertices = [] start_frame = np.zeros((len(arm_obs),), dtype=int) pose_list = [] trans_list = [] print('seqFrame=' + str(seq_frame)) ############################################### iframe = seq_frame + ishape * frames_per_shape ############################################### scene.frame_set(get_real_frame(seq_frame)) ############################################### for i, (arm_ob, pose_handsOnly) in enumerate(zip(arm_obs, allHandsOnly_poses)): bpy.ops.object.select_all(action='DESELECT') arm_ob.select = True bpy.context.scene.objects.active = arm_ob obs[i].select = True bpy.context.scene.objects.active = obs[i] pose_handsOnly = np.array(pose_handsOnly[i]) pose_list.append( data[i]['poses'][int(fbegin[ishape, i]):int(fend[ishape, i]):stepsize[i]][ seq_frame]) trans_list.append( data[i]['trans'][int(fbegin[ishape, i]):int(fend[ishape, i]):stepsize[i]][ seq_frame]) if len(pose_list[i]) < total_pose_DOFs: pose_list[i] = np.hstack((pose_list[i][:body_pose_dofs], pose_handsOnly)) assert (pose_list[i].shape[0] == body_pose_dofs + ncomps) if DBG_MODE_ENFORCE_POSE_ZERO: pose_list[i][3:] = 0 if seq_frame == 0: init_trans.append(Vector(trans_list[i]) + arm_ob.pose.bones[0].tail) init_trans[i] = apply_trans_pose_shape(Vector(trans_list[i]), pose_list[i], shapes[i], obs[i], arm_obs[i], obnames[i], scene, cam_ob, n_bones, get_real_frame(seq_frame), init_trans[i], True) ############################### arm_obs[i].pose.bones[ obnames[i] + '_' + part_match['root']].rotation_quaternion = Quaternion( Euler((0, 0, random_zrot[i]), 'XYZ')) arm_obs[i].pose.bones[obnames[i] + '_' + part_match['root']].keyframe_insert( 'rotation_quaternion', frame=get_real_frame(seq_frame)) meshes.append(obs[i].to_mesh(scene, True, 'PREVIEW')) mesh_vertices.append( [obs[i].matrix_world * vert.co for vert in meshes[i].vertices]) scene.update() if RANDOM_CAMERA_JITTER and flip_coin_perCHUNK: cam_ob_origloc = cam_ob.location.copy() cam_ob.location = cam_ob_origloc + Vector(random_camera_trans) cam_ob.keyframe_insert('location', frame=get_real_frame(seq_frame)) cam_ob.location = cam_ob_origloc STORED_ITER_seq_frame_temp.append(seq_frame) STORED_ITER_pose_temp.append(pose_list) STORED_ITER_trans_temp.append(trans_list) ######################################### ######################################### # check for collisions x_range = get_x_range(cam_ob, plane_ob) scene.update() _, _, plane_collision_seq = collisionDetector.mesh_collision( mesh_vertices, meshes,pairs, min_max_x=(x_range[0], x_range[1])) plane_collision_seq = np.squeeze(plane_collision_seq) collisions_per_ob, _ = get_collisions(obs, obnames, arm_obs, filename, PATH_tmp_models, plane_ob, working_dir, collisionVirtualenv) collisions_per_pair += np.array(collisions_per_ob, dtype=int) print(plane_collision) plane_collision += np.array(plane_collision_seq) print(collisions_per_ob) # delete all meshes created for collision detection for mesh in meshes: bpy.data.meshes.remove(mesh) ######################################### collision_count = np.sum(collisions_per_pair) ######################################### # resolve colision if any collision between a person with a person or a person with the # background plane was detected if collision_count > 0 or any(plane_collision): for seq_frame in range(int(N_min)): scene.frame_set(get_real_frame(seq_frame)) cam_ob.animation_data_clear() for arm_ob in arm_obs: arm_ob.animation_data_clear() ###################################### ################################ # loop over pairs of people and replace them until no more collisions from last # animation while (collision_count > 0 or any(plane_collision)): print(collisions_per_pair) # select one person from pair with largest number of collisions if any(plane_collision): for j, pl_col in enumerate(plane_collision): if pl_col: max_idx = j else: pair_idx = np.argmax(collisions_per_pair) max_idx = pairs[pair_idx][np.random.randint(0, 2)] colliding_person = arm_obs[max_idx] bpy.ops.object.select_all(action='DESELECT') colliding_person.select = True bpy.context.scene.objects.active = colliding_person # set new initial pose to a new random position in the visible area x_range = get_x_range(cam_ob, plane_ob) translation = random_placement_in_visibl_area(cam_ob, x_range, res) vector_move(colliding_person, translation) print(colliding_person.name) ################################ # update collision counts for j, tpl in enumerate(pairs): if max_idx in tpl: collision_count -= collisions_per_pair[j] collisions_per_pair[j] = 0 plane_collision[max_idx] = 0 else: collision = False # add the data from the valid sequence to the lists to be rendered, for temp_frame, temp_pose, temp_trans in zip(STORED_ITER_seq_frame_temp, STORED_ITER_pose_temp, STORED_ITER_trans_temp): STORED_ITER_seq_frame.append(temp_frame) STORED_ITER_pose.append(temp_pose) STORED_ITER_trans.append(temp_trans) ######################################### print(STORED_ITER_seq_frame) ##################################################### ##################################################### # iterate over the keyframes (here set manually) and render for _idx_ in range(len(STORED_ITER_seq_frame)): ################################################### *** seq_frame = STORED_ITER_seq_frame[_idx_] pose = STORED_ITER_pose[_idx_] trans = STORED_ITER_trans[_idx_] ############################################### iframe = seq_frame + ishape * frames_per_shape ############################################### scene.frame_set(get_real_frame(seq_frame)) ############################################### ##################################################### PATH_INN_depth_EXR = join(res_paths['depth'], '%05d.exr' % (seq_frame)) PATH_OUT_depth_EXR = join(PATH_out, join(filename, 'depth_EXR', '%05d.exr' % (iframe))) PATH_INN_normals_EXR = join(res_paths['normal'], '%05d.exr' % (seq_frame)) PATH_OUT_normals_EXR = join(PATH_out, join(filename, 'normal_EXR', '%05d.exr' % (iframe))) PATH_OUT_normals_VIZ = join(PATH_out, join(filename, 'normal_VIZ', '%05d.png' % (iframe))) PATH_INN_flow_EXR = join(res_paths['flow'], '%05d.exr' % (seq_frame)) PATH_OUT_flow_FLOW_fake = join(PATH_out, join(filename, 'flow_fake', '%05d.flo' % (iframe))) PATH_OUT_flow_FLOW_real = join(PATH_out, join(filename, 'flow', '%05d.flo' % (iframe))) PATH_OUT_flow_VIZ = join(PATH_out, join(filename, 'flow_VIZ', '%05d.png' % (iframe))) PATH_INN_segm_EXR = join(res_paths['segm'], '%05d.exr' % (seq_frame)) PATH_OUT_segm_EXR = join(PATH_out, join(filename, 'segm_EXR', '%05d.exr' % (iframe))) PATH_INN_objectID_EXR = join(res_paths['object_Id'], '%05d.exr' % (seq_frame)) PATH_OUT_objectID_EXR = join(PATH_out, join(filename, 'objectId_EXR', '%05d.exr' % (iframe))) PATH_OUT_objectID_obname = join(PATH_out, join(filename, 'objectId_obname', '%05d.exr' % (iframe))) PATH_OUT_depth_VIZ = join(PATH_out, join(filename, 'depth_VIZ', '%05d.png' % (iframe))) PATH_OUT_segm_PNG = join(PATH_out, join(filename, 'segm_PNG', '%05d.png' % (iframe))) PATH_OUT_segm_VIZ = join(PATH_out, join(filename, 'segm_VIZ', '%05d.png' % (iframe))) # (name, iframe))) PATH_OUT_full_textBG = join(PATH_out, join(filename, 'composition', '%05d.png' % (iframe))) # (name, iframe))) PATH_OUT_pose_joints_2d = join(PATH_out, join(filename, 'pose_joints_2d', '%05d.npy' % (iframe))) # (name, iframe))) PATH_OUT_pose_joints_2d_VIZ = join(PATH_out, join(filename, 'pose_joints_2d_VIZ', '%05d.png' % (iframe))) PATH_OUT_pose_joints_3d = join(PATH_out, join(filename, 'pose_joints_3d', '%05d.npy' % (iframe))) # (name, iframe))) PATH_OUT_pose_joints_3d_VIZ = join(PATH_out, join(filename, 'pose_joints_3d_VIZ', '%05d.png' % ( iframe))) # (name, iframe))) PATH_OUT_pose_joints_VSBL = join(PATH_out, join(filename, 'pose_joints_VSBL', '%05d.npy' % (iframe))) # (name, iframe))) PATH_OUT_shape = join(PATH_out, join(filename, 'shapes', '%05d.npy' % (iframe))) # (name, iframe))) PATH_OUT_pose_fullPCA = join(PATH_out, join(filename, 'pose_coeffs_fullPCA', '%05d.npy' % (iframe))) # (name, iframe))) PATH_OUT_pose_fullFull = join(PATH_out, join(filename, 'pose_coeffs_fullFull', '%05d.npy' % (iframe))) # (name, iframe))) PATH_OUT_BB_handsBody_crn = join(PATH_out, join(filename, 'cropHandsBody_BBs', '%05d.npy' % (iframe))) PATH_OUT_gender = join(PATH_out, join(filename, 'gender', '%05d.txt' % (iframe))) PATH_OUT_HandVisibilityLR = join(PATH_out, join(filename, 'hand_visibility', '%05d.npy' % (iframe))) PATH_OUT_DBG = join(PATH_out, join(filename, 'azzzDBG', '%05d.txt' % (iframe))) PATH_OUT_Cam_RT_4x4 = join(PATH_out, join(filename, 'camera_RT_4x4', '%05d.npy' % (iframe))) PATH_OUT_Cam_RT_4x4_txt = join(PATH_out, join(filename, 'camera_RT_4x4', '%05d.txt' % (iframe))) PATH_OUT_Subj_Pelvis_T = join(PATH_out, join(filename, 'subj_pelvis_T', '%05d.npy' % (iframe))) PATH_OUT_Subj_ZRot = join(PATH_out, join(filename, 'subj_ZRot', '%05d.npy' % (iframe))) PATH_OUT_BLUR_parms = join(PATH_out, join(filename, 'blur_parms', '%05d.npy' % (iframe))) PATH_OUT_BLUR_parmsTxt = join(PATH_out, join(filename, 'blur_parms', '%05d.txt' % (iframe))) PATH_OUT_bg_img_PATH = join(PATH_out, join(filename, 'img_path_BGround', '%05d.txt' % (iframe))) PATH_OUT_txt_img_PATH = join(PATH_out, join(filename, 'img_path_Texture', '%05d.txt' % (iframe))) PATH_OUT_scale = join(PATH_out, join(filename, 'scale', '%05d' % (iframe))) PATH_OUT_bbx_head = join(PATH_out, join(filename, 'bbx_head', '%05d' % (iframe))) PATH_OUT_bbx_head_img = join(PATH_out, join(filename, 'bbx_head', '%05d' % (iframe))) PATH_OUT_ANNOLIST = join(PATH_out, join(filename, 'annolist')) PATH_OUT_ANNOLIST_HEAD = join(PATH_out, join(filename, 'annolist_head')) PATH_OUT_ANNOLIST_img = join(PATH_out, join(filename, 'annolist_img')) PATH_OUT_ANNOLIST_objpos = join(PATH_out, join(filename, 'annolist_objpos')) PATH_OUT_ANNOLIST_scale = join(PATH_out, join(filename, 'annolist_scale')) # if not exists(dirname(PATH_OUT_BB_handsBody_crn)): makedirs(dirname(PATH_OUT_BB_handsBody_crn)) if not exists(dirname(PATH_OUT_full_textBG)): makedirs(dirname(PATH_OUT_full_textBG)) if not exists(dirname(PATH_OUT_pose_joints_2d)): makedirs(dirname(PATH_OUT_pose_joints_2d)) if not exists(dirname(PATH_OUT_pose_joints_2d_VIZ)): makedirs(dirname(PATH_OUT_pose_joints_2d_VIZ)) if not exists(dirname(PATH_OUT_pose_joints_3d)): makedirs(dirname(PATH_OUT_pose_joints_3d)) if not exists(dirname(PATH_OUT_pose_joints_3d_VIZ)): makedirs(dirname(PATH_OUT_pose_joints_3d_VIZ)) if not exists(dirname(PATH_OUT_pose_joints_VSBL)): makedirs(dirname(PATH_OUT_pose_joints_VSBL)) if not exists(dirname(PATH_OUT_segm_PNG)): makedirs(dirname(PATH_OUT_segm_PNG)) if not exists(dirname(PATH_OUT_segm_VIZ)): makedirs(dirname(PATH_OUT_segm_VIZ)) if not exists(dirname(PATH_OUT_depth_VIZ)): makedirs(dirname(PATH_OUT_depth_VIZ)) if not exists(dirname(PATH_OUT_shape)): makedirs(dirname(PATH_OUT_shape)) if not exists(dirname(PATH_OUT_pose_fullPCA)): makedirs(dirname(PATH_OUT_pose_fullPCA)) if not exists(dirname(PATH_OUT_pose_fullFull)): makedirs(dirname(PATH_OUT_pose_fullFull)) if not exists(dirname(PATH_OUT_depth_EXR)): makedirs(dirname(PATH_OUT_depth_EXR)) if not exists(dirname(PATH_OUT_normals_EXR)): makedirs(dirname(PATH_OUT_normals_EXR)) if not exists(dirname(PATH_OUT_normals_VIZ)): makedirs(dirname(PATH_OUT_normals_VIZ)) if not exists(dirname(PATH_OUT_flow_FLOW_fake)): makedirs(dirname(PATH_OUT_flow_FLOW_fake)) if not exists(dirname(PATH_OUT_flow_FLOW_real)): makedirs(dirname(PATH_OUT_flow_FLOW_real)) if not exists(dirname(PATH_OUT_flow_VIZ)): makedirs(dirname(PATH_OUT_flow_VIZ)) if not exists(dirname(PATH_OUT_segm_EXR)): makedirs(dirname(PATH_OUT_segm_EXR)) if not exists(dirname(PATH_OUT_objectID_EXR)): makedirs(dirname(PATH_OUT_objectID_EXR)) if not exists(dirname(PATH_OUT_objectID_obname)): makedirs(dirname(PATH_OUT_objectID_obname)) if not exists(dirname(PATH_OUT_gender)): makedirs(dirname(PATH_OUT_gender)) if not exists(dirname(PATH_OUT_HandVisibilityLR)): makedirs(dirname(PATH_OUT_HandVisibilityLR)) if not exists(dirname(PATH_OUT_DBG)) and DBG_FLAG_writeOnDisk: makedirs(dirname(PATH_OUT_DBG)) if not exists(dirname(PATH_OUT_BLUR_parms)): makedirs(dirname(PATH_OUT_BLUR_parms)) if not exists(dirname(PATH_OUT_Cam_RT_4x4)): makedirs(dirname(PATH_OUT_Cam_RT_4x4)) if not exists(dirname(PATH_OUT_Subj_Pelvis_T)): makedirs(dirname(PATH_OUT_Subj_Pelvis_T)) if not exists(dirname(PATH_OUT_Subj_ZRot)): makedirs(dirname(PATH_OUT_Subj_ZRot)) if not exists(dirname(PATH_OUT_bg_img_PATH)): makedirs(dirname(PATH_OUT_bg_img_PATH)) if not exists(dirname(PATH_OUT_txt_img_PATH)): makedirs(dirname(PATH_OUT_txt_img_PATH)) if not exists(dirname(PATH_OUT_scale)): makedirs(dirname(PATH_OUT_scale)) if not exists(dirname(PATH_OUT_bbx_head)): makedirs(dirname(PATH_OUT_bbx_head)) if not (exists(dirname(PATH_OUT_ANNOLIST))): makedirs(dirname(PATH_OUT_ANNOLIST)) if not (exists(dirname(PATH_OUT_ANNOLIST_HEAD))): makedirs(dirname(PATH_OUT_ANNOLIST_HEAD)) if not (exists(dirname(PATH_OUT_ANNOLIST_img))): makedirs(dirname(PATH_OUT_ANNOLIST_img)) if not (exists(dirname(PATH_OUT_ANNOLIST_objpos))): makedirs(dirname(PATH_OUT_ANNOLIST_objpos)) if not (exists(dirname(PATH_OUT_ANNOLIST_scale))): makedirs(dirname(PATH_OUT_ANNOLIST_scale)) for i in range(nrOfPeople): # not tested for multi person if RANDOM_TXT_per_FRAME: cloth_img[i], cloth_img_PATH = set_txt(RANDOM_TXT, cloth_img[i], txt_paths[i], i) if RANDOM_BG_per_FRAME: bg_img, bg_img_PATH = set_background(RANDOM_BG, bg_img, idx) ##################### texim.image = bg_img ##################### color = None for i in range(nrOfPeople): for mname, material in materials[i].items(): mtree = material.node_tree if color is not None: print(' - color is not None - EXITING') exit(1) mtree.links.new(mtree.nodes['RGB'].outputs[0], mtree.nodes['Script'].inputs[0]) mtree.nodes['RGB'].outputs[0].default_value = color else: mtree.links.new(mtree.nodes['Image Texture'].outputs[0], mtree.nodes['Script'].inputs[0]) ##################################################### if RANDOM_LIGHTS_per_FRAME: # TODO: save all sh coeffs sh_coeffs = set_lights(RANDOM_LIGHTS) ##################################################### for scss in harmonics_scripts: for ish, coeff in enumerate(sh_coeffs): for sc in scs: sc.inputs[ish + 1].default_value = coeff # rendered the textured body scene.render.use_antialiasing = True for i in range(nrOfPeople): for part, mat in materials[i].items(): if True: mat.node_tree.nodes['Image Texture'].image = cloth_img[i] else: print(0) ############################################# ############################################# scene.render.filepath = PATH_OUT_full_textBG ############################################# ############################################# bpy.ops.render.render(write_still=True) ######################################## ######################################## ############################################################## ############################################################# # bone locations should be saved AFTER rendering so that the bones are updated pose_joints_2d = {} pose_joints_3d = {} for ob, arm_ob, obname in zip(obs, arm_obs, obnames): bpy.ops.object.select_all(action='DESELECT') arm_ob.select = True bpy.context.scene.objects.active = arm_ob pose_joints_2d[obname], pose_joints_3d[obname], bone_loc_names = get_bone_locs(arm_ob, ob, obname, scene, cam_ob, n_bones, UPPER_HEAD)
np.save(PATH_OUT_pose_joints_3d, pose_joints_3d)
numpy.save
import numpy as np ### Work Needs to be done. Not fully functional ################################################# # Get input and remove delimiters ################################################# seq = input("Enter in sequence: ") seq = list(seq.split(", ")) count = 0 #stores the # of consecutive singular matrices length = 0 #stores the length of the recurrence sol = 0 tol = 3 print(str(len(seq))) #for i in range(1, int(len(seq)/2)): # matrix = np.zeros((i, i), dtype=int) # for x in range(0, i): # for y in range(0, i): # matrix[x][y] = int(seq[x+y]) - int('0') # # print(str(i) + " " + str(count), end = " ") # print(str(int(np.linalg.det(matrix)%2)) + "\n" + "-------------------------------------------------") # # if count == 5 and int(np.linalg.det(matrix)%2) == 0: # length = i - 6 # break # elif int(np.linalg.det(matrix)%2) == 0: # count+=1 # elif int(np.linalg.det(matrix)%2) == 1: # count = 0 # ####################################################### # Formulate Data into a matrix of size len(seq)/2 ####################################################### seqMatrix = np.zeros((int(len(seq)/2),int(len(seq)/2)), dtype=int) for x in range(0, int(len(seq)/2)): for y in range(0, int(len(seq)/2)): seqMatrix[x][y] = seq[x+y] ####################################################### # Calculate determinants of sub-matrices and stop # when you encounter 3 consecutive 0 determinants # stop and check if the last non-singular matrix # gives a valid solution. If not continue ####################################################### for i in range(12, int(len(seq)/2)): subMatrix = np.zeros((i,i), dtype=int) for x in range(0,i): for y in range(0,i): subMatrix[x][y] = seqMatrix[x][y] det = int(np.linalg.det(subMatrix)%2) print(i, end="") print(" ", end="") print(det, end="") print(" ", end="") print(count, end="") print("\n<<<<<<<<<<<<<<<<") if det == 1: count = 0 elif count == tol and det == 0: count = 0 length = i-tol-1 rhsMatrix =
np.zeros((1,i-tol-1), dtype=int)
numpy.zeros
class input_data: ## Value Initilization import numpy as np from matplotlib import pyplot as plt import math # input data for temperature profile calculation rf = (4.18/2)*1E-3 dr = 1E-4 # mesh spacing alphat = 1E-6 # alpha only contains 1/rho*Cp dt_max = (dr ** 2) / (2 * alphat) # stability condition dt = dt_max / 10 # time step size sp = int(rf/dr) # no of spatial points time_step = int(1E4) # time points kc = 29.0 # clad conductance kg = 58.22E-3 # conductance in gap between clad and gap G = 427E-6 # gap hg = kg / G # gap conductance linear_heat_rate = 400*1E2 Qe = linear_heat_rate/(3.14*rf**2) # Parameter for calculation of k k = [2 for i in range(sp + 1)] # initial array of k x = 2.0 - 1.97 # 1.97 is O/M ratio A = 2.85 * x + 0.035 B = -0.715 * x + 0.286 space = [i for i in range(1, sp)] # Input data for crack surface area calculation a = 5E-6 # grain radius R = rf-0.09E-3 # radius of the pellet H = 14.0E-3 # height of the pellet thickness_of_annuli = 0.5E-3 no_of_annuli = int(R / thickness_of_annuli) # The pellet is divided in n annuli q = 35 # E3 # LHR of pin (kW/m) Nc = q / 2.0 # No of radial cracks S = np.zeros(no_of_annuli + 1) # initialization suRf_dotace area r = np.ones(no_of_annuli + 1) r[0] = R V = float((3.14 * (R ** 2) * H) / no_of_annuli) temp_T = np.ones(no_of_annuli) n = int(5E3) s_v_gb_cummulative = 0 s_v_gb = np.zeros(n) fc = np.ones(n) Dfc = np.ones(n) Q = np.ones(n) DQ = np.ones(n) Rf_dot = np.ones(n) # time required for the establishment of grain bubble t_est # n = int(1E2) fc = np.ones(n) Dfc = np.ones(n) DQ = np.ones(n) Rf_dot = np.zeros(n) to = 1 * np.zeros(n) tc = 1E2*np.ones(n) rt = 1E-10*np.ones(n) # rt[1] = 1E-/7 rt[1] = 1E-09 rc = np.ones(n) rc[1] = 1E-7 Re_dot = np.zeros(n) Re_dot[1] = 1E1 Rc_dot = np.zeros(n) Rc_dot[1] = 1E1 # rt[1] = 1E-7 # rc[1] = 1E-7 a1 = 0.1 a2 = 2.2 omega = 4.1E-29 Del_S_by_S =
np.zeros(n)
numpy.zeros
import numpy as np import matplotlib.pyplot as plt import importlib import matplotlib as mp from numpy import exp from mpl_toolkits.mplot3d import axes3d from numpy import sqrt, arange, pi, meshgrid, cos, sin, mod, size, ones, zeros, linspace, floor, exp fig_width_pt = 4*246.0 # Get this from LaTeX using \showthe\columnwidth inches_per_pt = 1.0/72.27 # Convert pt to inch golden_mean = (np.sqrt(5)-1.0)/2.0 # Aesthetic ratio fig_width = fig_width_pt*inches_per_pt # width in inches fig_height = fig_width*golden_mean # height in inches fig_size = [fig_width,fig_height] # params = {'backend': 'ps', # 'axes.labelsize': 40, # 'font.size': 40, # 'legend.fontsize': 40, # 'xtick.labelsize': 40, # 'ytick.labelsize': 40, # 'lines.linewidth': 6, # 'text.usetex': True, # 'figure.figsize': fig_size} mp.rc('lines', lw=6) mp.rc('savefig', format='pdf') mp.rc('font', size = 40) mp.rc('text', usetex = True) # function to create a subax def create_subax(fig, ax, rect, xlimit=[], ylimit=[], xticks=[], yticks=[], side='b', xticklab=[], yticklab=[]): box = ax.get_position() width = box.width height = box.height inax_position = ax.transAxes.transform(rect[0:2]) transFigure = fig.transFigure.inverted() infig_position = transFigure.transform(inax_position) x = infig_position[0] y = infig_position[1] width *= rect[2] height *= rect[3] # <= Typo was here sub_ax = fig.add_axes([x,y,width,height]) if xlimit: sub_ax.set_xlim(xlimit) if ylimit: sub_ax.set_ylim(ylimit) for tick in sub_ax.xaxis.get_major_ticks(): tick.label.set_fontsize(30) for tick in sub_ax.yaxis.get_major_ticks(): tick.label.set_fontsize(30) sub_ax.set_xticks(xticks) sub_ax.set_yticks(yticks) if xticklab: sub_ax.set_xticklabels(xticklab) if yticklab: sub_ax.set_yticklabels(yticklab) if xlimit and ylimit: rect1 = mp.patches.Rectangle((xlimit[0],ylimit[0]), xlimit[1]-xlimit[0], ylimit[1]-ylimit[0], color='k', fill=False, lw=2, zorder=5) ax.add_patch(rect1) transData = ax.transData.inverted() if side == 'b': subax_pos1 = transData.transform(ax.transAxes.transform(np.array(rect[0:2])+np.array([0,rect[3]]))) subax_pos2 = transData.transform(ax.transAxes.transform(np.array(rect[0:2])+np.array([rect[2],rect[3]]))) ax.plot([xlimit[0],subax_pos1[0]],[ylimit[0],subax_pos1[1]], color='k', lw=2) ax.plot([xlimit[1],subax_pos2[0]],[ylimit[0],subax_pos2[1]], color='k', lw=2) elif side == 'r': subax_pos1 = transData.transform(ax.transAxes.transform(
np.array(rect[0:2])
numpy.array
#!/usr/bin/env python from __future__ import division, absolute_import, print_function from functools import partial import subprocess from distutils.util import strtobool import numpy as np from jams.const import huge from jams.npyio import savez_compressed from jams.closest import closest # ToDo: # Handling constraints # write tmp/population files (as in SCE of Fortran) # write out also in logfile if not None (use jams.tee as in joptimise) # crossover with quadratic function (QIPSO) ? def _ext_obj_wrapper(func, lb, ub, mask, parameterfile, parameterwriter, objectivefile, objectivereader, shell, debug, rank, params): ''' Wrapper function for external program to be optimised to be used with partial: obj = partial(_ext_obj_wrapper, func, lb, ub, mask, parameterfile, parameterwriter, objectivefile, objectivereader, shell, debug, rank) This allows then calling obj with only the argument params: fx = obj(params) Definition ---------- def _ext_obj_wrapper(func, lb, ub, mask, parameterfile, parameterwriter, objectivefile, objectivereader, shell, debug, rank, params): Input ----- func function to minimise (python function or string for external executable) lb (npars) lower bounds of parameters ub (npars) upper bounds of parameters mask (npars) mask to include (1) or exclude (0) parameter from optimisation parameterfile Parameter file for executable; must be given if func is name of executable parameterwriter Python function for writing parameter file if func is name of executable objectivefile File with objective value from executable; must be given if func is name of executable objectivereader Python function for reading objective value if func is name of executable shell If True, the specified command will be executed through the shell. debug If True, model output is displayed for executable. rank Process rank will be given as last argument to external program. params (npars) parameter set Output ------ Function value History ------- Written, MC, Nov 2016 ''' if isinstance(func, (str,list)): parameterwriter(parameterfile, params, lb, ub, mask) if rank is None: func1 = func else: if isinstance(func, str): func1 = [func, str(rank)] else: func1 = func+[str(rank)] if debug: err = subprocess.call(func1, shell=shell) else: err = subprocess.check_output(func1, shell=shell) obj = objectivereader(objectivefile) return obj else: return func(params) # Function wrappers for objective and constraints # used with functools.partial def _obj_wrapper(func, arg, kwarg, x): ''' Wrapper function for function to be optimised to be used with partial: obj = partial(_obj_wrapper, func, arg, kwarg) This allows then calling obj with only the argument x: fx = obj(x) which translates to: fx = func(x, *arg, **kwarg) ''' return func(x, *arg, **kwarg) def _is_feasible_wrapper(func, x): ''' Checking that all constraints are met. func is one of the 'partialised' constraint functions _cons_none_wrapper, _cons_ieqcons_wrapper, and _cons_f_ieqcons_wrapper. This function is partialised: is_feasible = partial(_is_feasible_wrapper, cons) which is unnecessary for now. It could still simply be: is_feasible = cons ''' return np.all(func(x)>=0.) def _cons_none_wrapper(x): ''' Dummy constraints function if no constraints. Returns 0. ''' return np.array([0]) def _cons_ieqcons_wrapper(ieqcons, arg, kwarg, x): ''' Wrapper function for constraints to be used with partial in the case that ieqcons is given, i.e. a list of constraint functions, returning >=0. if constraints are met. ''' return np.array([y(x, *arg, **kwarg) for y in ieqcons]) def _cons_f_ieqcons_wrapper(f_ieqcons, arg, kwarg, x): ''' Wrapper function for constraints to be used with partial in the case that f_ieqcons is given, i.e. a single function returning an 1-D array values >=0. where constraints are met. ''' return np.array(f_ieqcons(x, *arg, **kwarg)) def range012range(x, xmin, xmax): ''' Convert range between [0,1] to range [xmin,xmax] ''' return xmin + x*(xmax-xmin) def range2range01(x, xmin, xmax): ''' Convert range between [xmin,xmax] to range [0,1] ''' return (x-xmin)/(xmax-xmin) def diversity(x, lb, ub, mask): ''' Diversity in swarm positions. From [Pant et al., 2009] http://www.iaeng.org/IJCS/issues_v36/issue_2/IJCS_36_2_02.pdf changed to RMSE. RMSE is generally about 1/2 or 1/3 of normalized geometric range (SCE). ''' # all dimensions [0,1] x01 = np.where(mask, range2range01(x,lb,ub), x) S = float(x01.shape[0]) D = float(x01.shape[1]) # average particle position pmean = np.sum(x01, axis=0)/S # # Eq. 5 of Pant et al. (2009) # div = np.sum(np.sqrt(np.sum((x01-pmean)**2,axis=1)),axis=0) / S # average RMSE div = np.sum(np.sqrt(np.sum((x01-pmean)**2,axis=1)/D),axis=0) / S # # Normalized geometric range of SCE # imax = x01.max(axis=0) # imin = x01.min(axis=0) # imaxmin = np.ma.array(imax-imin, mask=(imax==imin)) # div = np.ma.exp(np.ma.mean(np.ma.log(imaxmin))) return div def get_neighbor_indeces(n, S, topology, kl=1): ''' Get the indices of the neighbors for the current particle given the topology. Input ----- n integer Particle index. S integer Swarm size. topology string Neighborhood topologies. These are rather social than geographical topologies. All neighborhoods comprise the current particle as well. [Kennedy & Mendes, 2002] doi: 10.1109/CEC.2002.1004493 'gbest' Neighborhood is entire swarm. 'lbest' Partciles arranged in a ring, in which each particle communicates with kl particles on each side, i.e. particle i has the neighborhood i-kl, i-kl+1, ..., i, i+1, ..., i+kl-1, i+kl [Mohais et al., 2005] doi: 10.1007/11589990_80 'neumann' Neighborhood of a point including all points at a Hamming distance of 1. Particles are arranges in a lattice, where each particle interacts with its immediate 4 neighbors to the N, S, E, and W. [Kennedy and Mendes, 2006] doi: 10.1109/TSMCC.2006.875410 The von Neumann neighborhood is configured into r rows and c columns, where r is the highest integer less than or equal to sqrt(n) that evenly divides n and c = n / r [Mohais et al., 2005] doi: 10.1007/11589990_80 'ring' 'lbest' with kl=1 Optional Input -------------- kl integer Neighborhood distance in topology 'lbest'. (Default: 1 = ring) ''' if topology.lower() == 'ring': kl=1 if topology.lower() == 'gbest': ii = range(S) elif (topology.lower() == 'lbest') or (topology.lower() == 'ring'): ii = [n] # self for kk in range(1,kl+1): ii.append((n-kk) % S) # left ii.append((n+kk) % S) # right elif topology.lower() == 'neumann': rows = int(np.floor(np.sqrt(S))) while (S % rows) != 0: rows -= 1 cols = S // rows left = lambda x, c: (x - 1) % c + x//c * c right = lambda x, c: (x + 1) % c + x//c * c above = (n - rows) % S below = (n + rows) % S ii = [left(above, cols), above, right(above, cols), left(n, cols), n, right(n, cols), left(below, cols), below, right(below, cols)] return ii def get_best_neighbor(p, fp, topology, kl=1): ''' Get the best neighbor for a given topology Input ----- p ND-array The best known position of each particle. fp 1D-array The objective values at each position in p. topology string Neighborhood topologies. These are rather social than geographical topologies. All neighborhoods comprise the current particle as well. [<NAME>, 2002] doi: 10.1109/CEC.2002.1004493 'gbest' Neighborhood is entire swarm. 'lbest' Partciles arranged in a ring, in which each particle communicates with kl particles on each side, i.e. particle i has the neighborhood i-kl, i-kl+1, ..., i, i+1, ..., i+kl-1, i+kl [Mohais et al., 2005] doi: 10.1007/11589990_80 'neumann' Neighborhood of a point including all points at a Hamming distance of 1. Particles are arranges in a lattice, where each particle interacts with its immediate 4 neighbors to the N, S, E, and W. [<NAME>, 2006] doi: 10.1109/TSMCC.2006.875410 The von Neumann neighborhood is configured into r rows and c columns, where r is the highest integer less than or equal to sqrt(n) that evenly divides n and c = n / r [Mohais et al., 2005] doi: 10.1007/11589990_80 'ring' 'lbest' with kl=1 Optional Input -------------- kl integer Neighborhood distance in topology 'lbest'. (Default: 1 = ring) ''' if topology.lower() == 'ring': kl=1 S = p.shape[0] D = p.shape[1] g = np.ones((S,D))*np.inf fg = np.ones(S)*np.inf if topology.lower() == 'gbest': i_min = np.argmin(fp) ig = p[i_min,:] # overall best ifg = fp[i_min] for ss in range(S): g[ss,:] = ig fg[ss] = ifg elif (topology.lower() == 'lbest') or (topology.lower() == 'ring') or (topology.lower() == 'neumann'): g = np.ones((S,D))*np.inf fg = np.ones(S)*np.inf for ss in range(S): ii = get_neighbor_indeces(ss, S, topology, kl=kl) pp = p[ii,:] fpp = fp[ii] i_min = np.argmin(fpp) g[ss,:] = pp[i_min,:].copy() fg[ss] = fpp[i_min] return [g, fg] def rwde(func, feasible, x, fx, xmin, xmax, lb, ub, x0, mask, maxit, nlocal=5): ''' Random Walk with Direction Exploitation [Petalas et al. 2007] doi: 10.1007/s10479-007-0224-y as implemented in [Wang et al. 2012] doi: 10.1016/j.ins.2012.02.016 Input ----- func objective function wrapper function to min-/maximise feasible constraint function wrapper x 1D-array Position of one particle in parameter space. fx scalar The objective value at position x. xmin 1D-array Lower bounds of particles search positions (parameters). xmax 1D-array Upper bounds of particles search positions (parameters). lb 1D-array The lower bounds of the particle positions (parameters). ub 1D-array The upper bounds of the particle positions (parameters). x0 1D-array Will be taken at dimensions with mask==False. mask 1D-array include (1,True) or exclude (0,False) parameters in optimisation. Optional Input -------------- nlocal numer of local steps (Default: 5) ''' # constants D = x.shape[0] lam_init = 1. # inital stepsize # local search large = fx t = 0 lam = lam_init ngood = 0 for t in range(nlocal): z = np.random.uniform(size=D) xnew = x + lam*z*(xmax - xmin) xnew = np.where(mask, xnew, x0) # mask xnew = np.clip(xnew, lb, ub) # limit fs = feasible(xnew) if fs: fxnew = func(xnew) if maxit: fxnew *= -1. # NaN/Inf large = 1.1*large if large>0. else 0.9*large fxnew = fxnew if np.isfinite(fxnew) else large if fxnew < fx: x = xnew fx = fxnew lam = lam_init ngood += 1 elif fxnew > fx: lam *= 0.5 else: continue return x, fx, ngood def cbls(func, feasible, x, fx, p, xmin, xmax, lb, ub, x0, mask, inertia, phip, maxit, strategy, nlocal=5): ''' Cognition-Based Local Search [Wang et al. 2012] doi: 10.1016/j.ins.2012.02.016 Input ----- func objective function wrapper function to mini-/maximise feasible constraint function wrapper x 1D-array Position of one particle in parameter space. fx 1D-array The objective value at position x. p 1D-array Particle x' best position. xmin 1D-array Lower bounds of particles search positions (parameters). xmax 1D-array Upper bounds of particles search positions (parameters). lb 1D-array The lower bounds of the particle positions (parameters). ub 1D-array The upper bounds of the particle positions (parameters). x0 1D-array Will be taken at dimensions with mask==False. mask 1D-array include (1,True) or exclude (0,False) parameters in optimisation. inertia scalar Particle velocity scaling factor. Default depends on algorithm (strategy). phip scalar Scaling factor to search away from the particle's best known position. Default depends on algorithm (strategy). strategy string PSO variants. 'original': Textbook particle swarm algorithm with inertia weight x = current position p = particles best position g = neighborhood best position rg, rp = np.random.uniform(size=(S,D)) inertia=0.5, phip=2., phig=2. v = inertia*v + rp*phip*(p-x) + rg*phig*(g-x) x = x + v 'inertia': Same as 'original' but with inertia weight decreasing from 0.9 to 0.4 over time, i.e. over iterations (it) imax = 0.9 imin = 0.4 inertia = imax - float(it)/float(maxn-1) * (imax-imin) 'canonical': Clerk & Kennedy (2000) with fixed, clamped constriction factor From PaGMO (esa.github.io/pagmo): Clerc's analysis of the iterative system led him to propose a strategy for the placement of "constriction coefficients" on the terms of the formulas; these coefficients controlled the convergence of the particle and allowed an elegant and well-explained method for preventing explosion, ensuring convergence, and eliminating the arbitrary vmax parameter. The analysis also takes the guesswork out of setting the values of phi_1 and phi_2. "This is the canonical particle swarm algorithm of today." [Poli et al., 2007] doi: 10.1007/s11721-007-0002-0 [Clerc & Kennedy, 2002] doi: 10.1109/4235.985692 From <NAME>, Diss 2001: The problem [with the constriction factor], according to Eberhart and Shi, is that the particles stray too far from the desired region of search space. To mitigate this effect they decided to apply clamping to the constriction factor implementation as well, setting the vmax parameter equal to xmax, the size of the search space. This led to improved performance for almost all the functions they used during testing - both in terms of the rate of convergence and the ability of the algorithm to reach the error threshold. [<NAME> & <NAME>, 2000] Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the Congress on Evolutionary Computation (CEC2000), 84-88. [<NAME>, 2000] An Analysis of Particle Swarm Optimizers, PhD thesis, University of Pretoria, South Africa inertia=0.7289, phip=2.05, phig=2.05 v = inertia * (v + phip*rp*(p - x) + phig*rg*(g - x)) v = clip(v, lb, ub) x = x + v Optional Input -------------- nlocal numer of local steps (Default: 5) ''' # Strategy keyword ptypes = ['original', 'inertia', 'canonical'] assert strategy.lower() in ptypes, 'Cognition-Based Local Search not available for strategy {:}'.format(strategy) # constants D = x.shape[0] # # parameters large = fx fxnew = fx xnew = x[:] v = xmin + np.random.uniform(size=D)*(xmax-xmin) ngood = 0 for t in range(nlocal): # update velocity with only cognitive and without social component rp = np.random.uniform(size=D) if (strategy.lower() == 'original') or (strategy.lower() == 'inertia'): vnew = inertia*v + phip*rp*(p - xnew) elif strategy.lower() == 'canonical': vnew = inertia * (v + phip*rp*(p - xnew)) # new x xnewtest = xnew + vnew # tentative update of x xnewtest = np.where(mask, xnewtest, x0) # mask xnewtest = np.clip(xnewtest, lb, ub) # limit # new fx fs = feasible(xnewtest) if fs: fxnewtest = func(xnewtest) if maxit: fxnewtest *= -1. # NaN/Inf large = 1.1*large if large>0. else 0.9*large fxnewtest = fxnewtest if np.isfinite(fxnewtest) else large if fxnewtest < fx: xnew = xnewtest fxnew = fxnewtest ngood += 1 return xnew, fxnew, ngood # Particle Swarm Optimisation def pso(func, x0, lb, ub, mask=None, ieqcons=None, f_ieqcons=None, arg=(), kwarg={}, swarmsize=None, inertia=None, phip=None, phig=None, maxn=250, minstep=1e-8, minobj=1e-8, maxit=False, init='lhs', strategy='canonical', topology='gbest', kl=1, memetic='no', nmemetic=1, nlocal=5, rrwde=0.01, pls=0.2, includex0=False, seed=None, processes=1, verbose=0, pout=False, cout=False, restart=False, restartfile1='pso.restart.npz', restartfile2='pso.restart.txt', parameterfile=None, parameterwriter=None, objectivefile=None, objectivereader=None, shell=False, debug=False): """ Particle Swarm Optimization (PSO) Definition ---------- def pso(func, x0, lb, ub, mask=None, ieqcons=None, f_ieqcons=None, arg=(), kwarg={}, swarmsize=None, inertia=None, phip=None, phig=None, maxn=250, minstep=1e-8, minobj=1e-8, maxit=False, init='lhs', strategy='canonical', topology='gbest', kl=1, includex0=False, seed=None, processes=1, verbose=0, pout=False, cout=False, restart=False, restartfile1='pso.restart.npz', restartfile2='pso.restart.txt', parameterfile=None, parameterwriter=None, objectivefile=None, objectivereader=None, shell=False, debug=False): Input ----- func python function or string for external executable The function to be minimized. x0 1D-array Will be taken at dimensions with mask==False. lb 1D-array The lower bounds of the particle positions (parameters). ub 1D-array The upper bounds of the particle positions (parameters). Optional Input -------------- mask 1D-array include (1,True) or exclude (0,False) parameters in optimisation. (Default: include all dimensions) ieqcons list A list of functions of length n such that ieqcons[j](x,*arg) >= 0.0 in a successfully optimized problem. (Default: None) f_ieqcons function Returns a 1-D array in which each element must be greater or equal to 0.0 in a successfully optimized problem. If f_ieqcons is specified, ieqcons is ignored. (Default: None) arg tuple Additional arguments passed to objective and constraint functions (only for Python functions). (Default: empty tuple) kwarg dict Additional keyword arguments passed to objective and constraint functions (only for Python functions). (Default: empty dict) swarmsize int The number of particles in the swarm. (Default: max(min(3*len(lb),40),10)) inertia scalar Particle velocity scaling factor. Default depends on algorithm (strategy). phip scalar Scaling factor to search away from the particle's best known position. Default depends on algorithm (strategy). phig scalar Scaling factor to search away from the swarm's (neighbor's) best known position. Default depends on algorithm (strategy). maxn int The maximum number of iterations for the swarm to search. (Default: 250) minstep scalar The minimum stepsize of swarm's best position before the search terminates. (Default: 1e-8) minobj scalar Objective function defining convergence. Attention at maxit=True. (Default: 1e-8) maxit boolean Minimise or maximise func. (Default: False) False: minimise objective function down to minobj True: maximise objective function, i.e. minimise -objective function down to minobj init string How to sample the initial swarm positions and velocities. (Default: 'lhs') 'random': random sampling from uniform distribution 'lhs': latin hypercube sampling from uniform distributions 'sobol': quasirandom Sobol sequence (only up to 40 dimensions) strategy string PSO variants. (Default: 'canonical') 'original': Textbook particle swarm algorithm with inertia weight x = current position p = particles best position g = neighborhood best position rg, rp = np.random.uniform(size=(S,D)) inertia=0.5, phip=2., phig=2. v = inertia*v + rp*phip*(p-x) + rg*phig*(g-x) x = x + v 'inertia': Same as 'original' but with inertia weight decreasing from 0.9 to 0.4 over time, i.e. over iterations (it) imax = 0.9 imin = 0.4 inertia = imax - float(it)/float(maxn-1) * (imax-imin) 'canonical': <NAME> (2000) with fixed, clamped constriction factor From PaGMO (esa.github.io/pagmo): Clerc's analysis of the iterative system led him to propose a strategy for the placement of "constriction coefficients" on the terms of the formulas; these coefficients controlled the convergence of the particle and allowed an elegant and well-explained method for preventing explosion, ensuring convergence, and eliminating the arbitrary vmax parameter. The analysis also takes the guesswork out of setting the values of phi_1 and phi_2. "This is the canonical particle swarm algorithm of today." [Poli et al., 2007] doi: 10.1007/s11721-007-0002-0 [Clerc & Kennedy, 2002] doi: 10.1109/4235.985692 From <NAME>, Diss 2001: The problem [with the constriction factor], according to Eberhart and Shi, is that the particles stray too far from the desired region of search space. To mitigate this effect they decided to apply clamping to the constriction factor implementation as well, setting the vmax parameter equal to xmax, the size of the search space. This led to improved performance for almost all the functions they used during testing - both in terms of the rate of convergence and the ability of the algorithm to reach the error threshold. [<NAME> & <NAME>, 2000] Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the Congress on Evolutionary Computation (CEC2000), 84-88. [<NAME>, 2000] An Analysis of Particle Swarm Optimizers, PhD thesis, University of Pretoria, South Africa inertia=0.7289, phip=2.05, phig=2.05 v = inertia * (v + phip*rp*(p - x) + phig*rg*(g - x)) v = clip(v, lb, ub) x = x + v 'fips': Fully Informed Particle Swarm From PaGMO (esa.github.io/pagmo): Whereas in the traditional algorithm each particle is affected by its own previous performance and the single best success found in its neighborhood, in Mendes' fully informed particle swarm (FIPS), the particle is affected by all its neighbors, sometimes with no influence from its own previous success. "With good parameters, FIPS appears to find better solutions in fewer iterations than the canonical algorithm, but it is much more dependent on the population topology." [Poli et al., 2007] doi: 10.1007/s11721-007-0002-0 [Mendes et al., 2004] doi: 10.1109/TEVC.2004.826074 ri = np.random.uniform(size=nneighbor) inertia = 0.7289 acc_coeff = phip+phig = 4.1 v = inertia * (v + np.sum(ri*acc_coeff/nneighbor*(p[:]-x))) 'nips': Neighborhood Informed Particle Swarm 'fips' but particles are not informed by all other particles but only the particles in its neighborhood given by topology. ri = np.random.uniform(size=nneighbor) inertia = 0.7289, acc_coeff = phip+phig = 4.1 v = inertia * (v + np.sum(ri*acc_coeff/nneighbor*(p[neighbor[:]]-x))) memetic string Perfom local search at some particle positions (Default: 'no') 'no': No local search. 'global': Local search is applied on the overall best position of the swarm. 'local': Local search is applied on each particle with a certain probability. nmemetic integer Do local search after each nmemetic swarm iterations. (Default: 1) nlocal integer Number of local searches. (Default: 5) rrwde float Norm below which local search uses Random Walk with Direction Exploitation (RWDE), otherwise Cognition-Based Local Search (CBLS) (Default: 0.01) pls float or None Probability for each particle to perform local search after nmemetic iterations (Default: 0.2) If None or < 0 then pls will be calculated from the success rate of the last local searches. [Wang et al. 2012] doi: 10.1016/j.ins.2012.02.016 Be ngood the actual number of valid local moving steps (at the memetic step before, t-1) and ntotal the total local moving steps carried out during iteration t-1, respectively. rgood = ngood/ntotal delta = 0.1, beta = 0.5, plsmin = 0.1, plsmax = 1.0 pls = min(max(beta**np.sign(rgood-delta)*pls, plsmin), plsmax) topology string Neighborhood topologies. These are rather social than geographical topologies. All neighborhoods comprise the current particle as well. [Kennedy & Mendes, 2002] doi: 10.1109/CEC.2002.1004493 (Default: 'gbest') 'gbest' Neighborhood is entire swarm. 'lbest' Partciles arranged in a ring, in which each particle communicates with kl particles on each side, i.e. particle i has the neighborhood i-kl, i-kl+1, ..., i, i+1, ..., i+kl-1, i+kl [Mohais et al., 2005] doi: 10.1007/11589990_80 'mbest' Neighborhood is entire part of the swarm on the current MPI process. 'mbest' == 'gbest' if run is on one processor. 'mbest' gets a more and more local search when mpi processes increase. This is more a gimmick than a real topology. 'neumann' Neighborhood of a point including all points at a Hamming distance of 1. Particles are arranges in a lattice, where each particle interacts with its immediate 4 neighbors to the N, S, E, and W. [Kennedy and Mendes, 2006] doi: 10.1109/TSMCC.2006.875410 The von Neumann neighborhood is configured into r rows and c columns, where r is the highest integer less than or equal to sqrt(n) that evenly divides n and c = n / r [Mohais et al., 2005] doi: 10.1007/11589990_80 'ring' 'lbest' with kl=1 kl integer Neighborhood distance in topology 'lbest'. (Default: 1 = ring) verbose integer Controlling amount of print-out. (Default: 0) 0: No print-out. 1: Printing convergence criteria, etc. 2: Printing after each step. includex0 boolean True: include x0 in initial swarm (Default: False) seed int or array_like Seed for numpy's random number generator. (Default: None) processes int The number of processes to use to evaluate objective function and constraints. (Default: 1) pout boolean True: include best per-particle positions and their objective values in output. (Default: False) cout boolean True: include number of function calls in output. (Default: False) restart boolean if True, continue from saved state in restartfile1/2. (Default: False) restartfile1/2 string File names for saving current state of PSO. (Default: pso.restart.npz and pso.restart.txt) State will be always written, except if restartfile1=None. parameterfile string Parameter file for executable; must be given if func is name of executable (Default: None) parameterwriter function Python function for writing parameter file if func is name of executable (Default: None) objectivefile string File with objective value from executable; must be given if func is name of executable (Default: None) objectivereader function Python function for reading objective value if func is name of executable (Default: None) shell boolean If True, the specified executable will be executed through the shell. (Default: False) debug boolean If True, model output is displayed for executable. (Default: False) Output ------ g 1D-array The swarm's best known position. fg scalar The objective value at g. p ND-array The best known position of each particle. fp 1D-array The objective values at each position in p. License ------- The original code of <NAME> (pyswarm) was published under the BSD license. This file is part of the JAMS Python package, distributed under the MIT License. The JAMS Python package originates from the former UFZ Python library, Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany. Copyright (c) 2013-2016 <NAME>, <NAME> - mc (at) macu (dot) de Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. History ------- Written, <NAME>, 2013 - https://github.com/tisimst/pyswarm Modified, MC, Nov 2016 - adapted to JAMS package MC, Nov 2016 - Changed defaults from swarmsize=100, omega=0.5, phip=0.5, phig=0.5, maxn=100 - Include vmax for original: clip(v, vmin, vmax) - Sobol sequences and latin hypercube sampling for initial swarm positions - Different PSO algorithms: original, decreasing inertia weights, constricted fully informed - Stop if function below minobj - debug -> verbose, maxit, cout - neighborhoods - external function - mask, x0, parameterfile, parameterwriter, objectivefile, objectivereader, shell, debug MC, Dec 2016 - includex0, restart, mpi, memetic """ # Get MPI communicator try: from mpi4py import MPI comm = MPI.COMM_WORLD csize = comm.Get_size() crank = comm.Get_rank() except ImportError: comm = None csize = 1 crank = 0 if csize > 1: passrank = crank else: passrank = None dodiv = False # Different variabels types (array, float, int, ...) for restart if restartfile1 is not None: # Only arrays with savez_compressed - restartfile1 restartarray = ['x0', 'lb', 'ub', 'mask1', 'mask2', 'x02', 'v', 'x', 'fx', 'fs', 'p', 'fp', 'gp', 'fgp', 'rs2'] if dodiv: restartarray.extend(['gx']) # Save scalars in simple text file - restartfile2 restartint = ['D', 'S', 'it', 'iS', 'crank', 'rs3', 'rs4', 'ilocal', 'nlgood', 'nltotal'] restartfloat = ['rs5', 'ipls'] restartbool = ['maxit'] restartstring = ['rs1'] if csize > 1: restartfile1 = restartfile1[0:restartfile1.rfind(".")] + '.' + str(crank) + restartfile1[restartfile1.rfind("."):] restartfile2 = restartfile2[0:restartfile2.rfind(".")] + '.' + str(crank) + restartfile2[restartfile2.rfind("."):] saveargarray = '"'+restartfile1+'"' for j in restartarray: saveargarray = saveargarray + ', '+j+'='+j saveargint = ','.join(restartint) saveargfloat = ','.join(restartfloat) saveargbool = ','.join(restartbool) saveargstring = ','.join(restartstring) # Checks # Function assert hasattr(func, '__call__') or isinstance(func, (str,list)), 'Invalid function handle or external call.' # Bounds assert len(lb)==len(ub), 'Lower- and upper-bounds must have the same lengths.' lb = np.array(lb) ub = np.array(ub) assert np.all(ub >= lb), 'All upper-bounds must be greater or equal than lower-bounds.' # Mask if mask is not None: assert len(mask)==len(ub), 'Mask and bounds must have the same lengths.' if not np.all(mask): assert len(mask)==len(x0), 'Mask and x0 must have the same lengths.' # Initialisation keyword inits = ['random', 'lhs', 'sobol'] assert init.lower() in inits, 'Initialisation {:} not in {:}'.format(init, inits) if init.lower() == 'sobol': assert len(lb) <= 40, "Sobol' sequences only work up to 40 dimensions." # Strategy keyword ptypes = ['original', 'inertia', 'canonical', 'fips', 'nips'] assert strategy.lower() in ptypes, 'PSO implementation {:} not in {:}'.format(strategy, ptypes) # Topology keyword ttypes = ['gbest', 'lbest', 'mbest', 'neumann', 'ring'] assert topology.lower() in ttypes, 'Topology {:} not in {:}'.format(topology, ttypes) # Mmemetic keyword mtypes = ['no', 'global', 'local'] assert memetic.lower() in mtypes, 'Memetic implementation {:} not in {:}'.format(memetic, mtypes) # Parameterfile etc. keywords if func is name of executable if isinstance(func, (str,list)): if parameterfile is None: raise IOError('parameterfile must be given if func is name of executable.') else: if csize > 1: parameterfile1 = parameterfile + '.' + str(crank) else: parameterfile1 = parameterfile if parameterwriter is None: raise IOError('parameterwrite must be given if func is name of executable.') if objectivefile is None: raise IOError('objectivefile must be given if func is name of executable.') else: if csize > 1: objectivefile1 = objectivefile + '.' + str(crank) else: objectivefile1 = objectivefile if objectivereader is None: raise IOError('objectivereader must be given if func is name of executable.') # Set defaults per strategy if strategy.lower() == 'original': # Kennedy & Eberhart, 2001 if inertia is None: inertia=0.5 if phip is None: phip=2. if phig is None: phig=2. elif strategy.lower() == 'inertia': # Shi & Eberhart (1998) imax = 0.9 imin = 0.4 if phip is None: phip=2. if phig is None: phig=2. elif strategy.lower() == 'canonical': # Clerc & Kennedy (2000) if inertia is None: inertia=0.7289 if phip is None: phip=2.05 if phig is None: phig=2.05 elif strategy.lower() == 'fips': # Mendes & Kennedy (2004) if inertia is None: inertia=0.7289 if phip is None: phip=2.05 if phig is None: phig=2.05 elif strategy.lower() == 'nips': if inertia is None: inertia=0.7289 if phip is None: phip=2.05 if phig is None: phig=2.05 if not restart: # Problem sizes D = len(lb) # dimension of each particle if swarmsize is None: S = max(min(3*D,40),10) S = max(min(S//csize*csize, (40//csize+1)*csize), (10//csize+1)*csize) else: S = swarmsize # Local swarmsize if S % csize != 0: raise ValueError("Swarmsize "+str(S)+" must be multiple of number of processes "+str(csize)+".") iS = S//csize # local swarmsize # Initialise 1D mask if mask is not None: mask1 = mask else: mask1 = np.ones(D, dtype=np.bool) # Partialise objective function if isinstance(func, (str,list)): obj = partial(_ext_obj_wrapper, func, lb, ub, mask1, parameterfile1, parameterwriter, objectivefile1, objectivereader, shell, debug, passrank) else: obj = partial(_obj_wrapper, func, arg, kwarg) # Check for constraint function(s) and partialise them if f_ieqcons is None: if ieqcons is None: if (verbose>=1) and (crank == 0): print('No constraints given.') cons = _cons_none_wrapper else: if (verbose>=1) and (crank == 0): print('Converting ieqcons to a single constraint function.') cons = partial(_cons_ieqcons_wrapper, ieqcons, arg, kwarg) else: if (verbose>=1) and (crank == 0): print('Single constraint function given in f_ieqcons.') cons = partial(_cons_f_ieqcons_wrapper, f_ieqcons, arg, kwarg) is_feasible = partial(_is_feasible_wrapper, cons) # Initialize the multiprocessing module if necessary if processes > 1: import multiprocessing mp_pool = multiprocessing.Pool(processes) # 2D mask mask2 = np.tile(mask1,iS).reshape((iS,D)) x02 = np.tile(x0,iS).reshape((iS,D)) # Deal with NaN and Inf large = huge / S # Seed random number generator if crank == 0: np.random.seed(seed=seed) # Initialize the particle swarm # current particle positions # current particle velocities if init.lower() == 'random': # Random numbers only on rank 0 for reproducible results if crank == 0: rand = np.random.uniform(size=(2*S,D)) else: rand = np.empty((2*S,D), dtype=np.float) # Scatter has different ordering than needed for reproducible results # Do it manually if csize > 1: comm.Bcast(rand, root=0) x = rand[crank*iS:crank*iS+iS,:] v = rand[S+crank*iS:S+crank*iS+iS,:] elif init.lower() == 'sobol': import sobol nskip = D*S + crank*D*iS x = sobol.i4_sobol_generate(D,iS,nskip).transpose() nskip = 2*D*S + crank*D*iS v = sobol.i4_sobol_generate(D,iS,nskip).transpose() elif init.lower() == 'lhs': x = np.empty((iS,D), dtype=np.float64) v = np.empty((iS,D), dtype=np.float64) if crank == 0: import scipy.stats as stats from jams.lhs import lhs dist = [stats.uniform for i in range(D)] pars = [(0,1) for i in range(D)] gx = lhs(dist, pars, S).transpose() gv = lhs(dist, pars, S).transpose() else: gx = np.empty((S,D), dtype=np.float64) gv = np.empty((S,D), dtype=np.float64) if csize > 1: comm.Scatter([gx, MPI.DOUBLE], [x, MPI.DOUBLE]) comm.Scatter([gv, MPI.DOUBLE], [v, MPI.DOUBLE]) else: x = gx v = gv fx = np.ones(iS)*large # local current particles function values if dodiv: gx = np.empty((iS,D), dtype=np.float64) # global current individual particle positions fs = np.zeros(iS, dtype=bool) # current combined feasibility for each local particle p = np.ones((iS,D), dtype=np.float64)*large # local particles individual best positions fp = np.ones(iS, dtype=np.float64)*large # local particles individual best function values gp = np.ones((S,D), dtype=np.float64)*large # global particles individual best positions fgp = np.ones(S, dtype=np.float64)*large # global particles individual best function values # Maximum velocity vmax = np.abs(ub - lb) vmin = -vmax # Initialize particle positions and velocities v = range012range(v,vmin,vmax) x = range012range(x,lb,ub) if (crank == 0) and includex0: x[-1,:] = x0 x = np.where(mask2, x, x02) # Calculate first objective and constraints for each particle if processes > 1: fs = np.array(mp_pool.map(is_feasible, x)) ii = np.where(fs)[0] if ii.size > 0: fx[ii] = np.array(mp_pool.map(obj, x[ii,:])) else: for i in range(iS): fs[i] = is_feasible(x[i,:]) if fs[i]: fx[i] = obj(x[i,:]) # maximise if maxit: fx *= -1. # NaN/Inf - ToDo: Check large = max(fp.max(), fx[np.isfinite(fx)].max()) large = 1.1*large if large>0. else 0.9*large fx = np.where(np.isfinite(fx), fx, large) # print(1, x[np.where(fs)[0],:]) # Store particles best positions (if constraints are satisfied) i_update = (fx < fp) & fs if np.any(i_update): p[i_update,:] = x[i_update,:].copy() fp[i_update] = fx[i_update] # gather local best particles into global best particles if csize > 1: comm.Allgather([p, MPI.DOUBLE], [gp, MPI.DOUBLE]) comm.Allgather([fp, MPI.DOUBLE], [fgp, MPI.DOUBLE]) else: gp = p fgp = fp if dodiv: if csize > 1: comm.Allgather([x, MPI.DOUBLE], [gx, MPI.DOUBLE]) else: gx = x gmask = np.tile(mask1,S).reshape((S,D)) divers = diversity(gx, lb, ub, gmask) if crank == 0: print(1, divers, fgp.min()) # Iterate until termination criterion met it = 1 ilocal = 0 nlgood = 0 nltotal = nlocal delta = 0.1 beta = 0.5 plsmin = 0.1 plsmax = 1.0 if pls is None: dopls = True else: if pls < 0.: dopls = True else: dopls = False if dopls: ipls = plsmax else: ipls = pls # save restart if restartfile1 is not None: if crank == 0: rs1, rs2, rs3, rs4, rs5 = np.random.get_state() else: rs1, rs2, rs3, rs4, rs5 = 'MT19937', np.array(624, dtype=np.uint), 0, 0, 0. exec("savez_compressed("+saveargarray+")") p2 = open(restartfile2, 'w') exec("print("+saveargint+", file=p2)") exec("print("+saveargfloat+", file=p2)") exec("print("+saveargbool+", file=p2)") exec("print("+saveargstring+", file=p2)") p2.close() else: # if no restart # load restart p1 = open(restartfile1, 'rb') pp = np.load(p1) for i in pp.files: exec(i+" = pp['"+i+"']") p1.close() p2 = open(restartfile2, 'r') for i, pp in enumerate(p2.readline().rstrip().split()): exec(restartint[i]+" = int(pp)") for i, pp in enumerate(p2.readline().rstrip().split()): exec(restartfloat[i]+" = float(pp)") for i, pp in enumerate(p2.readline().rstrip().split()): exec(restartbool[i]+" = bool(strtobool(pp))") for i, pp in enumerate(p2.readline().rstrip().split()): exec(restartstring[i]+" = pp") p2.close() if crank == 0: np.random.set_state((rs1, rs2, rs3, rs4, rs5)) # Partialise objective function if isinstance(func, (str,list)): obj = partial(_ext_obj_wrapper, func, lb, ub, mask1, parameterfile1, parameterwriter, objectivefile1, objectivereader, shell, debug, passrank) else: obj = partial(_obj_wrapper, func, arg, kwarg) # Check for constraint function(s) and partialise them if f_ieqcons is None: if ieqcons is None: if (verbose>=1) and (crank == 0): print('No constraints given.') cons = _cons_none_wrapper else: if (verbose>=1) and (crank == 0): print('Converting ieqcons to a single constraint function.') cons = partial(_cons_ieqcons_wrapper, ieqcons, arg, kwarg) else: if (verbose>=1) and (crank == 0): print('Single constraint function given in f_ieqcons.') cons = partial(_cons_f_ieqcons_wrapper, f_ieqcons, arg, kwarg) is_feasible = partial(_is_feasible_wrapper, cons) if processes > 1: import multiprocessing mp_pool = multiprocessing.Pool(processes) # Iterate swarm while it < maxn: # Stop if minimum found if fgp.min() < minobj: if (verbose>=1) and (crank == 0): print('minobj found (1).') break # Memetic PSO if (memetic.lower() == 'global') and (it % nmemetic == 0): ii0 = fgp.argmin() # gbest xl = gp[ii0,:] fxl = fgp[ii0] if crank == 0: # calc norm in [0,1] space for all parameters gp01 = range2range01(gp,lb,ub) xl01 = range2range01(xl,lb,ub) allnorm = np.array([ np.linalg.norm(gp01[ii,:]-xl01) if ii != ii0 else huge for ii in range(S) ]) # # stepsize is lower or equal to furthest particle - almost no improvement # iib = allnorm.argmax() # # stepsize is lower or equal to mean particle distance - quite some steps with improvements # iib = closest(allnorm, allnorm.mean()) # stepsize is lower or equal to closest particle - lots of steps with improvements iib = allnorm.argmin() dx =
np.abs(gp[iib,:]-xl)
numpy.abs
""" Test the different methods of transforming the longitude coordinates after rolling""" import numpy as np # calculate the offset in the same way as in dataset_utils def calculate_offset(a, bounds): low, high = bounds # get resolution of data res = a[1] - a[0] # calculate how many degrees to move by to have lon[0] of rolled subset as lower bound of request diff = a[0] - low # work out how many elements to roll by to roll data by 1 degree index = 1 / res # calculate the corresponding offset needed to change data by diff # round up to ensure rolling by enough # offset = math.ceil(diff * index) offset = int(round(diff * index)) return offset def dataset_roll(a, offset, bounds): # roll the dataset low, high = bounds a_roll = np.roll(a, offset) if offset < 0: a_new = np.where( np.logical_and(low >= a_roll, a_roll <= -(360 + low)), a_roll, a_roll % 360 ) # this doesn't work in all negative offset cases else: a_new = np.where(a_roll < (360 + low), a_roll, a_roll % -360) return a_new def dataset_roll_using_offset(a, offset): # roll the dataset a_roll = np.roll(a, offset) if offset < 0: a_roll[offset:] = a_roll[offset:] % 360 else: a_roll[:offset] = a_roll[:offset] % -360 return a_roll class TestLonRoll_0_360: # offset = 359 def test_to_minus_359_0(self): a = np.arange(start=0, stop=360, step=1) bounds = (-359, 0) offset = calculate_offset(a, bounds) a_where = dataset_roll(a, offset, bounds) assert np.array_equal(a_where, np.arange(start=-359, stop=1, step=1)) a_offset = dataset_roll_using_offset(a, offset) assert np.array_equal(a_offset, np.arange(start=-359, stop=1, step=1)) # offset = 270 def test_to_minus_270_to_89(self): a = np.arange(start=0, stop=360, step=1) bounds = (-270, 89) offset = calculate_offset(a, bounds) a_where = dataset_roll(a, offset, bounds) assert np.array_equal(a_where, np.arange(start=-270, stop=90, step=1)) a_offset = dataset_roll_using_offset(a, offset) assert np.array_equal(a_offset, np.arange(start=-270, stop=90, step=1)) # offset = 180 def test_to_minus_180_179(self): a = np.arange(start=0, stop=360, step=1) bounds = (-180, 179) offset = calculate_offset(a, bounds) a_where = dataset_roll(a, offset, bounds) assert np.array_equal(a_where, np.arange(start=-180, stop=180, step=1)) a_offset = dataset_roll_using_offset(a, offset) assert np.array_equal(a_offset, np.arange(start=-180, stop=180, step=1)) # offset = 90 def test_to_minus_90_269(self): a = np.arange(start=0, stop=360, step=1) bounds = (-90, 269) offset = calculate_offset(a, bounds) a_where = dataset_roll(a, offset, bounds) assert np.array_equal(a_where, np.arange(start=-90, stop=270, step=1)) a_offset = dataset_roll_using_offset(a, offset) assert np.array_equal(a_offset, np.arange(start=-90, stop=270, step=1)) # offset = 0 def test_to_0_359(self): a = np.arange(start=0, stop=360, step=1) bounds = (0, 359) offset = calculate_offset(a, bounds) a_where = dataset_roll(a, offset, bounds) assert np.array_equal(a_where,
np.arange(start=0, stop=360, step=1)
numpy.arange
import numpy as np from numpy.testing import assert_equal import pandas as pd from pandas.testing import assert_frame_equal, assert_series_equal import pytest from linearmodels.iv.data import IVData try: import xarray as xr MISSING_XARRAY = False except ImportError: MISSING_XARRAY = True def test_numpy_2d() -> None: x = np.empty((10, 2)) xdh = IVData(x) assert xdh.ndim == x.ndim assert xdh.cols == ["x.0", "x.1"] assert xdh.rows == list(np.arange(10)) assert_equal(xdh.ndarray, x) df = pd.DataFrame(x, columns=xdh.cols, index=xdh.rows) assert_frame_equal(xdh.pandas, df) assert xdh.shape == (10, 2) assert xdh.labels == {0: xdh.rows, 1: xdh.cols} def test_numpy_1d() -> None: x = np.empty(10) xdh = IVData(x) assert xdh.ndim == 2 assert xdh.cols == ["x"] assert xdh.rows == list(np.arange(10)) assert_equal(xdh.ndarray, x[:, None]) df = pd.DataFrame(x[:, None], columns=xdh.cols, index=xdh.rows) assert_frame_equal(xdh.pandas, df) assert xdh.shape == (10, 1) def test_pandas_df_numeric() -> None: x = np.empty((10, 2)) index = pd.date_range("2017-01-01", periods=10) xdf = pd.DataFrame(x, columns=["a", "b"], index=index) xdh = IVData(xdf) assert xdh.ndim == 2 assert xdh.cols == list(xdf.columns) assert xdh.rows == list(xdf.index) assert_equal(xdh.ndarray, x) df = pd.DataFrame(x, columns=xdh.cols, index=xdh.rows).asfreq("D") assert_frame_equal(xdh.pandas, df) assert xdh.shape == (10, 2) def test_pandas_series_numeric() -> None: x = np.empty(10) index = pd.date_range("2017-01-01", periods=10) xs = pd.Series(x, name="charlie", index=index) xdh = IVData(xs) assert xdh.ndim == 2 assert xdh.cols == [xs.name] assert xdh.rows == list(xs.index) assert_equal(xdh.ndarray, x[:, None]) df = pd.DataFrame(x[:, None], columns=xdh.cols, index=xdh.rows).asfreq("D") assert_frame_equal(xdh.pandas, df) assert xdh.shape == (10, 1) @pytest.mark.skipif(MISSING_XARRAY, reason="xarray not installed") def test_xarray_1d() -> None: x_np = np.random.randn(10) x = xr.DataArray(x_np) dh = IVData(x, "some_variable") assert_equal(dh.ndarray, x_np[:, None]) assert dh.rows == list(np.arange(10)) assert dh.cols == ["some_variable.0"] expected = pd.DataFrame(x_np, columns=dh.cols, index=dh.rows) assert_frame_equal(expected, dh.pandas) index = pd.date_range("2017-01-01", periods=10) x = xr.DataArray(x_np, [("time", index)]) dh = IVData(x, "some_variable") assert_equal(dh.ndarray, x_np[:, None]) assert_series_equal(pd.Series(dh.rows), pd.Series(list(index))) assert dh.cols == ["some_variable.0"] expected = pd.DataFrame(x_np[:, None], columns=dh.cols, index=dh.rows) assert_frame_equal(expected, dh.pandas) @pytest.mark.skipif(MISSING_XARRAY, reason="xarray not installed") def test_xarray_2d() -> None: x_np = np.random.randn(10, 2) x = xr.DataArray(x_np) dh = IVData(x) assert_equal(dh.ndarray, x_np) assert dh.rows == list(np.arange(10)) assert dh.cols == ["x.0", "x.1"] expected = pd.DataFrame(x_np, columns=dh.cols, index=dh.rows) assert_frame_equal(expected, dh.pandas) index = pd.date_range("2017-01-01", periods=10) x = xr.DataArray(x_np, [("time", index), ("variables", ["apple", "banana"])]) dh = IVData(x) assert_equal(dh.ndarray, x_np) assert_series_equal(pd.Series(dh.rows), pd.Series(list(index))) assert dh.cols == ["apple", "banana"] expected = pd.DataFrame(x_np, columns=dh.cols, index=dh.rows) assert_frame_equal(expected, dh.pandas) def test_invalid_types() -> None: with pytest.raises(ValueError): IVData(np.empty((1, 1, 1))) with pytest.raises(ValueError): IVData(np.empty((10, 2, 2))) with pytest.raises(TypeError): class AnotherClass(object): _ndim = 2 @property def ndim(self) -> int: return self._ndim IVData(AnotherClass()) def test_string_cat_equiv() -> None: s1 = pd.Series(["a", "b", "a", "b", "c", "d", "a", "b"]) s2 = pd.Series(np.arange(8.0)) s3 = pd.Series( ["apple", "banana", "apple", "banana", "cherry", "date", "apple", "banana"] ) df = pd.DataFrame({"string": s1, "number": s2, "other_string": s3}) dh = IVData(df) df_cat = df.copy() df_cat["string"] = df_cat["string"].astype("category") dh_cat = IVData(df_cat) assert_frame_equal(dh.pandas, dh_cat.pandas) def test_existing_datahandler() -> None: x = np.empty((10, 2)) index = pd.date_range("2017-01-01", periods=10) xdf = pd.DataFrame(x, columns=["a", "b"], index=index) xdh = IVData(xdf) xdh2 = IVData(xdh) assert xdh is not xdh2 assert xdh.cols == xdh2.cols assert xdh.rows == xdh2.rows assert_equal(xdh.ndarray, xdh2.ndarray) assert xdh.ndim == xdh2.ndim assert_frame_equal(xdh.pandas, xdh2.pandas) def test_categorical() -> None: index = pd.date_range("2017-01-01", periods=10) cat = pd.Categorical(["a", "b", "a", "b", "a", "a", "b", "c", "c", "a"]) num = np.empty(10) df = pd.DataFrame(dict(cat=cat, num=num), index=index) dh = IVData(df) assert dh.ndim == 2 assert dh.shape == (10, 3) assert sorted(dh.cols) == sorted(["cat.b", "cat.c", "num"]) assert dh.rows == list(index)
assert_equal(dh.pandas["num"].values, num)
numpy.testing.assert_equal
import sys sys.path.append("../") from numpy import sin, pi, arange from appJar import gui x =
arange(0.0, 3.0, 0.01)
numpy.arange
#!/usr/bin/env python # coding: utf-8 # In[1]: # new feature selection for MNIST dataset # labels (index) as before (no change), see notebook 'data_mnist' # version data_mnist_comp: max features (150 x 3 = 450) # the version was extended and used to create data with max features (200 x 3 = 600) # In[ ]: import gzip import numpy as np import matplotlib.pyplot as plt import copy from scipy import ndimage, misc threshold = 180 num_angles = 230 # In[2]: # produce a raster (random) # random seed: inserted only later np.random.seed(30) raster = np.zeros((num_angles, 5)) raster[:, 0] = np.random.randint(0, 360, num_angles) raster[:, 1] = np.random.randint(0, 27, num_angles) # choose a row raster[:, 2] = np.random.randint(0, 27, num_angles) raster[:, 3] = np.random.randint(0, 27, num_angles) raster[:, 4] = np.random.randint(0, 18, num_angles) # initial position (column) for cutting out samples of length 10, between 0 and 18 # In[5]: # READ AND GET FEATURES TRAINING DATA f = gzip.open('train-images-idx3-ubyte.gz','r') num_images = 60000 #number of images to read out image_size = 28 #image size f.read(16) #related to position of image buf = f.read(image_size * image_size * num_images) data = np.frombuffer(buf, dtype=np.uint8).astype(np.float32) data = data.reshape(num_images, image_size, image_size, 1) res = np.zeros((num_images, num_angles * 3, 10)) res_2 = np.zeros((num_images, num_angles * 3)) res_3 = np.zeros((num_images, num_angles * 3)) for z in range(num_images): image_binary = np.zeros((image_size, image_size)) image_binary_turned = np.zeros((image_size, image_size)) store = np.empty((num_angles * 3, 10)) image = np.asarray(data[z]).squeeze() #python array with 28 x 28 pixel values for i, angle in enumerate(raster[:, 0]): image_turned = ndimage.rotate(image, angle, reshape=False) for a in range(image_size): image_binary_turned[a , :] = [0 if i < threshold else 1 for i in image_turned[a,:]] event_rows = np.zeros((3, 10)) # 1 times 10 bins long for c, start in enumerate(raster[i, 1:4]): #start = raster[i, 1] for b in range(10): if (image_binary_turned[int(start), (b + int(raster[i, 4]))] < image_binary_turned[int(start), (b + 1 + int(raster[i, 4]))]) and (np.size(np.nonzero(event_rows[c, :])) == 0): event_rows[c, b] = 1 if i == 0: store = event_rows if i > 0: store = np.concatenate((store, event_rows), axis = 0) res[z, :, :] = store events = np.nonzero(store) for d in range(np.shape(events)[1]): res_2[z, events[0][d]] = events[1][d] res_3[z, events[0][d]] = 1 np.save('spikes_all_.txt', res) np.save('spike_times_all_.txt', res_2) np.save('spike_weights_all_.txt', res_3) # In[6]: # READ AND GET FEATURES TEST DATA f = gzip.open('t10k-images-idx3-ubyte.gz','r') image_size = 28 #image size num_images = 10000 #number of images to read out f.read(16) #related to position of image buf = f.read(image_size * image_size * num_images) data = np.frombuffer(buf, dtype=np.uint8).astype(np.float32) data = data.reshape(num_images, image_size, image_size, 1) res = np.zeros((num_images, num_angles * 3, 10)) res_2 =
np.zeros((num_images, num_angles * 3))
numpy.zeros
from __future__ import print_function import numpy as np import pickle as pkl import networkx as nx import scipy.io as sio import scipy.sparse as sp import scipy.sparse.linalg as slinalg import scipy.linalg as linalg from scipy.sparse.linalg.eigen.arpack import eigsh from sklearn.feature_extraction.text import TfidfTransformer from sklearn.preprocessing import normalize import sys from os import path import copy import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import time import random import tensorflow as tf # import matplotlib.pyplot as plt def save_sparse_csr(filename, array): np.savez(filename, data=array.data, indices=array.indices, indptr=array.indptr, shape=array.shape) def load_sparse_csr(filename): loader = np.load(filename) return sp.csr_matrix((loader['data'], loader['indices'], loader['indptr']), shape=loader['shape']) def parse_index_file(filename): """Parse index file.""" index = [] for line in open(filename): index.append(int(line.strip())) return index def sample_mask(idx, l): """Create mask.""" mask = np.zeros(l) mask[idx] = 1 return np.array(mask, dtype=np.bool) def get_triplet(y_train, train_mask, max_triplets): # print('y_train----',y_train.shape) index_nonzero = y_train.nonzero() # for i in range(y_train.shape[1]): # label_count.append(index_nonzero[1][[index_nonzero[1]==i]].size) label_count = np.sum(y_train, axis=0) all_count = np.sum(label_count) index_nonzero = np.transpose(np.concatenate((index_nonzero[0][np.newaxis,:], index_nonzero[1]\ [np.newaxis, :]),axis=0)).tolist() index_nonzero = sorted(index_nonzero, key = lambda s: s[1]) #print(index_nonzero) #print(label_count) def get_one_triplet(input_index, index_nonzero, label_count, all_count, max_triplets): triplet = [] if label_count[input_index[1]]==0: return 0 else: # print('max_triplets', max_triplets) # print(all_count) # print(label_count[input_index[1]]) n_triplets = min(max_triplets, int(all_count-label_count[input_index[1]])) # print('----------') for j in range(int(label_count[input_index[1]])-1): positives = [] negatives = [] for k, (value, label) in enumerate(index_nonzero): #find a postive sample, and if only one sample then choose itself if label == input_index[1] and (value != input_index[0] or label_count[input_index[1]]==1): positives.append(index_nonzero[k]) if label != input_index[1]: negatives.append(index_nonzero[k]) # print('positives' ,positives) # print('negatives', negatives) negatives = random.sample(list(negatives), n_triplets) for value, label in negatives: triplet.append([input_index[0], positives[j][0], value]) return triplet triplet = [] for i, j in enumerate(index_nonzero): triple = get_one_triplet(j, index_nonzero, label_count, all_count,max_triplets) if triple == 0: continue else: triplet.extend(triple) np_triple = np.concatenate(np.array([triplet]), axis = 1) return np_triple def load_data(dataset_str, train_size, validation_size, model_config, shuffle=True): """Load data.""" if dataset_str in ['USPS-Fea', 'CIFAR-Fea', 'Cifar_10000_fea', 'Cifar_R10000_fea', 'MNIST-Fea', 'MNIST-10000', 'MNIST-5000']: data = sio.loadmat('data/{}.mat'.format(dataset_str)) l = data['labels'].flatten() labels = np.zeros([l.shape[0],np.max(data['labels'])+1]) labels[np.arange(l.shape[0]), l.astype(np.int8)] = 1 features = data['X'] sample = features[0].copy() adj = data['G'] else: names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph'] objects = [] for i in range(len(names)): with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f: if sys.version_info > (3, 0): objects.append(pkl.load(f, encoding='latin1')) else: objects.append(pkl.load(f)) x, y, tx, ty, allx, ally, graph = tuple(objects) adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)) test_idx_reorder = parse_index_file("data/ind.{}.test.index".format(dataset_str)) test_idx_range = np.sort(test_idx_reorder) if dataset_str == 'citeseer': # Fix citeseer dataset (there are some isolated nodes in the graph) # Find isolated nodes, add them as zero-vecs into the right position test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder) + 1) tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1])) tx_extended[test_idx_range - min(test_idx_range), :] = tx tx = tx_extended ty_extended = np.zeros((len(test_idx_range_full), y.shape[1])) ty_extended[test_idx_range - min(test_idx_range), :] = ty ty = ty_extended features = sp.vstack((allx, tx)).tolil() # features = sp.eye(features.shape[0]).tolil() # features = sp.lil_matrix(allx) labels = np.vstack((ally, ty)) # labels = np.vstack(ally) if dataset_str.startswith('nell'): # Find relation nodes, add them as zero-vecs into the right position test_idx_range_full = range(allx.shape[0], len(graph)) isolated_node_idx = np.setdiff1d(test_idx_range_full, test_idx_reorder) tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1])) tx_extended[test_idx_range - allx.shape[0], :] = tx tx = tx_extended ty_extended = np.zeros((len(test_idx_range_full), y.shape[1])) ty_extended[test_idx_range - allx.shape[0], :] = ty ty = ty_extended features = sp.vstack((allx, tx)).tolil() features[test_idx_reorder, :] = features[test_idx_range, :] labels = np.vstack((ally, ty)) labels[test_idx_reorder, :] = labels[test_idx_range, :] idx_all = np.setdiff1d(range(len(graph)), isolated_node_idx) if not os.path.isfile("data/planetoid/{}.features.npz".format(dataset_str)): print("Creating feature vectors for relations - this might take a while...") features_extended = sp.hstack((features, sp.lil_matrix((features.shape[0], len(isolated_node_idx)))), dtype=np.int32).todense() features_extended[isolated_node_idx, features.shape[1]:] = np.eye(len(isolated_node_idx)) features = sp.csr_matrix(features_extended, dtype=np.float32) print("Done!") save_sparse_csr("data/planetoid/{}.features".format(dataset_str), features) else: features = load_sparse_csr("data/planetoid/{}.features.npz".format(dataset_str)) adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)) features[test_idx_reorder, :] = features[test_idx_range, :] labels[test_idx_reorder, :] = labels[test_idx_range, :] features = preprocess_features(features, feature_type=model_config['feature']) global all_labels all_labels = labels.copy() # split the data set idx = np.arange(len(labels)) no_class = labels.shape[1] # number of class # validation_size = validation_size * len(idx) // 100 # if not hasattr(train_size, '__getitem__'): train_size = [train_size for i in range(labels.shape[1])] if shuffle: np.random.shuffle(idx) idx_train = [] count = [0 for i in range(no_class)] label_each_class = train_size next = 0 for i in idx: if count == label_each_class: break next += 1 for j in range(no_class): if labels[i, j] and count[j] < label_each_class[j]: idx_train.append(i) count[j] += 1 test_size = model_config['test_size'] if model_config['validate']: if test_size: assert next+validation_size<len(idx) idx_val = idx[next:next+validation_size] assert next+validation_size+test_size < len(idx) idx_test = idx[-test_size:] if test_size else idx[next+validation_size:] else: if test_size: assert next+test_size<len(idx) idx_val = idx[-test_size:] if test_size else idx[next:] idx_test = idx[-test_size:] if test_size else idx[next:] # else: # labels_of_class = [0] # while (np.prod(labels_of_class) == 0): # np.random.shuffle(idx) # idx_train = idx[0:int(len(idx) * train_size // 100)] # labels_of_class = np.sum(labels[idx_train], axis=0) # idx_val = idx[-500 - validation_size:-500] # idx_test = idx[-500:] print('labels of each class : ', np.sum(labels[idx_train], axis=0)) # idx_val = idx[len(idx) * train_size // 100:len(idx) * (train_size // 2 + 50) // 100] # idx_test = idx[len(idx) * (train_size // 2 + 50) // 100:len(idx)] train_mask = sample_mask(idx_train, labels.shape[0]) val_mask = sample_mask(idx_val, labels.shape[0]) test_mask = sample_mask(idx_test, labels.shape[0]) y_train = np.zeros(labels.shape) y_val = np.zeros(labels.shape) y_test = np.zeros(labels.shape) y_train[train_mask, :] = labels[train_mask, :] y_val[val_mask, :] = labels[val_mask, :] y_test[test_mask, :] = labels[test_mask, :] # else: # idx_test = test_idx_range.tolist() # idx_train = range(len(y)) # idx_val = range(len(y), len(y) + 500) # # train_mask = sample_mask(idx_train, labels.shape[0]) # val_mask = sample_mask(idx_val, labels.shape[0]) # test_mask = sample_mask(idx_test, labels.shape[0]) # # y_train = np.zeros(labels.shape) # y_val = np.zeros(labels.shape) # y_test = np.zeros(labels.shape) # y_train[train_mask, :] = labels[train_mask, :] # y_val[val_mask, :] = labels[val_mask, :] # y_test[test_mask, :] = labels[test_mask, :] size_of_each_class = np.sum(labels[idx_train], axis=0) return adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return tf.SparseTensorValue(coords, values, np.array(shape, dtype=np.int64)) if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx def preprocess_features(features, feature_type): if feature_type == 'bow': # """Row-normalize feature matrix and convert to tuple representation""" rowsum = np.array(features.sum(1)) r_inv =
np.power(rowsum, -1)
numpy.power
# -------------------------------------------------------- # P2ORM: Formulation, Inference & Application # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> # -------------------------------------------------------- import torch import numpy as np from sklearn.metrics import average_precision_score import sys sys.path.append('../..') from .utility import AverageMeter from lib.dataset.gen_label_methods import occ_order_pred_to_edge_prob class MetricsEvaluator(object): """object for train/val evaluation with relevant metric""" def __init__(self, config, isTrain): self.config = config self.isTrain = isTrain # occ edge metrics self.mIoU_edge = AverageMeter() self.mF1_edge = AverageMeter() self.AP_edge = AverageMeter() self.perf_edge = PixLabelEvaluator(num_class=2, cls_sel_ind=[1]) self.curr_mIoU_edge = 0. self.curr_mF1_edge = 0. self.curr_AP_edge = 0. # occ order metrics if self.config.network.task_type == 'occ_order': self.mIoU_E = AverageMeter() self.mIoU_S = AverageMeter() self.mIoU_SE = AverageMeter() self.mIoU_NE = AverageMeter() self.mF1_E = AverageMeter() self.mF1_S = AverageMeter() self.mF1_SE = AverageMeter() self.mF1_NE = AverageMeter() self.perf_E = PixLabelEvaluator(3, config.TEST.class_sel_ind) self.perf_S = PixLabelEvaluator(3, config.TEST.class_sel_ind) self.perf_SE = PixLabelEvaluator(3, config.TEST.class_sel_ind) self.perf_NE = PixLabelEvaluator(3, config.TEST.class_sel_ind) self.curr_mIoU_E = 0. self.curr_mIoU_S = 0. self.curr_mIoU_SE = 0. self.curr_mIoU_NE = 0. self.curr_mF1_E = 0. self.curr_mF1_S = 0. self.curr_mF1_SE = 0. self.curr_mF1_NE = 0. def cal_batch_metrics(self, net_out, targets): if self.config.network.task_type == 'occ_order': # cal occ order metrics self.perf_E.cal_batch(targets[0], net_out[:, 0:3, :, :]) self.perf_S.cal_batch(targets[1], net_out[:, 3:6, :, :]) self.curr_mIoU_E, _ = self.perf_E.Mean_IoU() self.curr_mIoU_S, _ = self.perf_S.Mean_IoU() self.curr_mF1_E, _ = self.perf_E.Mean_F1_Score() self.curr_mF1_S, _ = self.perf_S.Mean_F1_Score() self.mIoU_E.update(self.curr_mIoU_E.item(), targets[0].size(0)) self.mIoU_S.update(self.curr_mIoU_S.item(), targets[1].size(0)) self.mF1_E.update(self.curr_mF1_E.item(), targets[0].size(0)) self.mF1_S.update(self.curr_mF1_S.item(), targets[1].size(0)) if self.config.dataset.connectivity == 8: self.perf_SE.cal_batch(targets[2], net_out[:, 6:9, :, :]) self.perf_NE.cal_batch(targets[3], net_out[:, 9:12, :, :]) self.curr_mIoU_SE, _ = self.perf_SE.Mean_IoU() self.curr_mIoU_NE, _ = self.perf_NE.Mean_IoU() self.curr_mF1_SE, _ = self.perf_SE.Mean_F1_Score() self.curr_mF1_NE, _ = self.perf_NE.Mean_F1_Score() self.mIoU_SE.update(self.curr_mIoU_SE.item(), targets[2].size(0)) self.mIoU_NE.update(self.curr_mIoU_NE.item(), targets[3].size(0)) self.mF1_SE.update(self.curr_mF1_SE.item(), targets[2].size(0)) self.mF1_NE.update(self.curr_mF1_NE.item(), targets[3].size(0)) # cal occ edge metrics if not self.isTrain: occ_edge_prob, _ = occ_order_pred_to_edge_prob(net_out, self.config.dataset.connectivity) occ_edge_prob_flat = np.array(occ_edge_prob.detach().cpu()).flatten() occ_edge_gt_flat = np.array(targets[-1].detach().cpu()).flatten().astype(np.int16) self.curr_AP_edge = average_precision_score(occ_edge_gt_flat, occ_edge_prob_flat) * 100 # percentage self.AP_edge.update(self.curr_AP_edge, targets[-1].size(0)) elif self.config.network.task_type == 'occ_ori': # cal occ edge metrics occ_edge_prob = net_out[:, 0, :, :].unsqueeze(dim=1) # N,1,H,W occ_edge_hard = (occ_edge_prob > 0.5).float() occ_edge_gt = targets[-1] # N,H,W self.perf_edge.cal_batch(occ_edge_gt, occ_edge_hard) self.curr_mIoU_edge, _ = self.perf_edge.Mean_IoU() self.curr_mF1_edge, _ = self.perf_edge.Mean_F1_Score() self.mIoU_edge.update(self.curr_mIoU_edge, targets[-1].size(0)) self.mF1_edge.update(self.curr_mF1_edge, targets[-1].size(0)) if not self.isTrain: occ_edge_gt_flat = np.array(targets[-1].detach().cpu()).flatten().astype(np.int16) occ_edge_prob_flat = np.array(occ_edge_prob.detach().cpu()).flatten() self.curr_AP_edge = average_precision_score(occ_edge_gt_flat, occ_edge_prob_flat) * 100 # percentage self.AP_edge.update(self.curr_AP_edge, targets[-1].size(0)) def cal_set_metrics(self, isTest=False): """cal avg perf over whole train/val set""" if self.config.network.task_type == 'occ_order': if self.config.dataset.connectivity == 4: self.mIoU_all = (self.mIoU_E.avg + self.mIoU_S.avg) / 2 self.mF1_all = (self.mF1_E.avg + self.mF1_S.avg) / 2 self.mIoUs = [self.mIoU_E.avg, self.mIoU_S.avg] self.mF1s = [self.mF1_E.avg, self.mF1_S.avg] if isTest: self.perf_E.confusion_matrix_curr = self.perf_E.confusion_matrix_all self.perf_S.confusion_matrix_curr = self.perf_S.confusion_matrix_all _, prec_E_classes = self.perf_E.Mean_Precision() _, prec_S_classes = self.perf_S.Mean_Precision() _, recall_E_classes = self.perf_E.Mean_Recall() _, recall_S_classes = self.perf_S.Mean_Recall() self.prec_all = (prec_E_classes + prec_S_classes) / 2 self.recall_all = (recall_E_classes + recall_S_classes) / 2 elif self.config.dataset.connectivity == 8: self.mIoU_all = (self.mIoU_E.avg + self.mIoU_S.avg + self.mIoU_SE.avg + self.mIoU_NE.avg) / 4 self.mF1_all = (self.mF1_E.avg + self.mF1_S.avg + self.mF1_SE.avg + self.mF1_NE.avg) / 4 self.mIoUs = [self.mIoU_E.avg, self.mIoU_S.avg, self.mIoU_SE.avg, self.mIoU_NE.avg] self.mF1s = [self.mF1_E.avg, self.mF1_S.avg, self.mF1_SE.avg, self.mF1_NE.avg] if isTest: self.perf_E.confusion_matrix_curr = self.perf_E.confusion_matrix_all self.perf_S.confusion_matrix_curr = self.perf_S.confusion_matrix_all self.perf_SE.confusion_matrix_curr = self.perf_SE.confusion_matrix_all self.perf_NE.confusion_matrix_curr = self.perf_NE.confusion_matrix_all _, prec_E_classes = self.perf_E.Mean_Precision() _, prec_S_classes = self.perf_S.Mean_Precision() _, prec_SE_classes = self.perf_SE.Mean_Precision() _, prec_NE_classes = self.perf_NE.Mean_Precision() _, recall_E_classes = self.perf_E.Mean_Recall() _, recall_S_classes = self.perf_S.Mean_Recall() _, recall_SE_classes = self.perf_SE.Mean_Recall() _, recall_NE_classes = self.perf_NE.Mean_Recall() self.prec_all = (prec_E_classes + prec_S_classes + prec_SE_classes + prec_NE_classes) / 4 self.recall_all = (recall_E_classes + recall_S_classes + recall_SE_classes + recall_NE_classes) / 4 elif self.config.network.task_type == 'occ_ori': self.mIoU_all = self.mIoU_edge.avg self.mF1_all = self.mF1_edge.avg self.mIoUs = [self.mIoU_edge.avg] self.mF1s = [self.mF1_edge.avg] class PixLabelEvaluator(object): """ pixel-wise labeling evaluator derived from https://github.com/jfzhang95/pytorch-deeplab-xception/blob/master/utils/metrics.py """ def __init__(self, num_class, cls_sel_ind): self.num_class = num_class self.cls_sel_ind = cls_sel_ind self.confusion_matrix_curr = np.zeros((self.num_class,) * 2) self.confusion_matrix_all =
np.zeros((self.num_class,) * 2)
numpy.zeros
import os from collections import defaultdict import numpy as np import copy import pickle import scipy.sparse from PIL import Image import h5py, json import torch from pycocotools.coco import COCO from torch.utils.data import Dataset from lib.scene_parser.rcnn.structures.bounding_box import BoxList from lib.utils.box import bbox_overlaps class vg_hdf5(Dataset): def __init__(self, cfg, split="train", transforms=None, num_im=-1, num_val_im=0, filter_duplicate_rels=True, filter_non_overlap=True, filter_empty_rels=True): assert split == "train" or split == "test", "split must be one of [train, val, test]" assert num_im >= -1, "the number of samples must be >= 0" # split = 'train' if split == 'test' else 'test' self.data_dir = cfg.DATASET.PATH self.transforms = transforms self.split = split self.filter_non_overlap = filter_non_overlap self.filter_duplicate_rels = filter_duplicate_rels and self.split == 'train' self.roidb_file = os.path.join(self.data_dir, "VG-SGG.h5") self.image_file = os.path.join(self.data_dir, "imdb_1024.h5") # read in dataset from a h5 file and a dict (json) file assert os.path.exists(self.data_dir), \ "cannot find folder {}, please download the visual genome data into this folder".format(self.data_dir) self.im_h5 = h5py.File(self.image_file, 'r') self.info = json.load(open(os.path.join(self.data_dir, "VG-SGG-dicts.json"), 'r')) self.im_refs = self.im_h5['images'] # image data reference im_scale = self.im_refs.shape[2] # add background class self.info['label_to_idx']['__background__'] = 0 self.class_to_ind = self.info['label_to_idx'] self.ind_to_classes = sorted(self.class_to_ind, key=lambda k: self.class_to_ind[k]) # cfg.ind_to_class = self.ind_to_classes self.predicate_to_ind = self.info['predicate_to_idx'] self.predicate_to_ind['__background__'] = 0 self.ind_to_predicates = sorted(self.predicate_to_ind, key=lambda k: self.predicate_to_ind[k]) # cfg.ind_to_predicate = self.ind_to_predicates self.split_mask, self.image_index, self.im_sizes, self.gt_boxes, self.gt_classes, self.relationships = load_graphs( self.roidb_file, self.image_file, self.split, num_im, num_val_im=num_val_im, filter_empty_rels=filter_empty_rels, filter_non_overlap=filter_non_overlap and split == "train", ) self.json_category_id_to_contiguous_id = self.class_to_ind self.contiguous_category_id_to_json_id = { v: k for k, v in self.json_category_id_to_contiguous_id.items() } @property def coco(self): """ :return: a Coco-like object that we can use to evaluate detection! """ anns = [] for i, (cls_array, box_array) in enumerate(zip(self.gt_classes, self.gt_boxes)): for cls, box in zip(cls_array.tolist(), box_array.tolist()): anns.append({ 'area': (box[3] - box[1] + 1) * (box[2] - box[0] + 1), 'bbox': [box[0], box[1], box[2] - box[0] + 1, box[3] - box[1] + 1], 'category_id': cls, 'id': len(anns), 'image_id': i, 'iscrowd': 0, }) fauxcoco = COCO() fauxcoco.dataset = { 'info': {'description': 'ayy lmao'}, 'images': [{'id': i} for i in range(self.__len__())], 'categories': [{'supercategory': 'person', 'id': i, 'name': name} for i, name in enumerate(self.ind_to_classes) if name != '__background__'], 'annotations': anns, } fauxcoco.createIndex() return fauxcoco def _im_getter(self, idx): w, h = self.im_sizes[idx, :] ridx = self.image_index[idx] im = self.im_refs[ridx] im = im[:, :h, :w] # crop out im = im.transpose((1,2,0)) # c h w -> h w c return im def __len__(self): return len(self.image_index) def __getitem__(self, index): """ get dataset item """ # get image img = Image.fromarray(self._im_getter(index)); width, height = img.size # get object bounding boxes, labels and relations obj_boxes = self.gt_boxes[index].copy() obj_labels = self.gt_classes[index].copy() obj_relation_triplets = self.relationships[index].copy() if self.filter_duplicate_rels: # Filter out dupes! assert self.split == 'train' old_size = obj_relation_triplets.shape[0] all_rel_sets = defaultdict(list) for (o0, o1, r) in obj_relation_triplets: all_rel_sets[(o0, o1)].append(r) obj_relation_triplets = [(k[0], k[1], np.random.choice(v)) for k,v in all_rel_sets.items()] obj_relation_triplets = np.array(obj_relation_triplets) obj_relations = np.zeros((obj_boxes.shape[0], obj_boxes.shape[0])) for i in range(obj_relation_triplets.shape[0]): subj_id = obj_relation_triplets[i][0] obj_id = obj_relation_triplets[i][1] pred = obj_relation_triplets[i][2] obj_relations[subj_id, obj_id] = pred target_raw = BoxList(obj_boxes, (width, height), mode="xyxy") img, target = self.transforms(img, target_raw) target.add_field("labels", torch.from_numpy(obj_labels)) target.add_field("pred_labels", torch.from_numpy(obj_relations)) target.add_field("relation_labels", torch.from_numpy(obj_relation_triplets)) target = target.clip_to_image(remove_empty=False) return img, target, index def get_groundtruth(self, index): width, height = self.im_sizes[index, :] # get object bounding boxes, labels and relations obj_boxes = self.gt_boxes[index].copy() obj_labels = self.gt_classes[index].copy() obj_relation_triplets = self.relationships[index].copy() if self.filter_duplicate_rels: # Filter out dupes! assert self.split == 'train' old_size = obj_relation_triplets.shape[0] all_rel_sets = defaultdict(list) for (o0, o1, r) in obj_relation_triplets: all_rel_sets[(o0, o1)].append(r) obj_relation_triplets = [(k[0], k[1], np.random.choice(v)) for k,v in all_rel_sets.items()] obj_relation_triplets = np.array(obj_relation_triplets) obj_relations = np.zeros((obj_boxes.shape[0], obj_boxes.shape[0])) for i in range(obj_relation_triplets.shape[0]): subj_id = obj_relation_triplets[i][0] obj_id = obj_relation_triplets[i][1] pred = obj_relation_triplets[i][2] obj_relations[subj_id, obj_id] = pred target = BoxList(obj_boxes, (width, height), mode="xyxy") target.add_field("labels", torch.from_numpy(obj_labels)) target.add_field("pred_labels", torch.from_numpy(obj_relations)) target.add_field("relation_labels", torch.from_numpy(obj_relation_triplets)) target.add_field("difficult", torch.from_numpy(obj_labels).clone().fill_(0)) return target def get_img_info(self, img_id): w, h = self.im_sizes[img_id, :] return {"height": h, "width": w} def map_class_id_to_class_name(self, class_id): return self.ind_to_classes[class_id] def load_graphs(graphs_file, images_file, mode='train', num_im=-1, num_val_im=0, filter_empty_rels=True, filter_non_overlap=False): """ Load the file containing the GT boxes and relations, as well as the dataset split :param graphs_file: HDF5 :param mode: (train, val, or test) :param num_im: Number of images we want :param num_val_im: Number of validation images :param filter_empty_rels: (will be filtered otherwise.) :param filter_non_overlap: If training, filter images that dont overlap. :return: image_index: numpy array corresponding to the index of images we're using boxes: List where each element is a [num_gt, 4] array of ground truth boxes (x1, y1, x2, y2) gt_classes: List where each element is a [num_gt] array of classes relationships: List where each element is a [num_r, 3] array of (box_ind_1, box_ind_2, predicate) relationships """ if mode not in ('train', 'val', 'test'): raise ValueError('{} invalid'.format(mode)) roi_h5 = h5py.File(graphs_file, 'r') im_h5 = h5py.File(images_file, 'r') data_split = roi_h5['split'][:] split = 2 if mode == 'test' else 0 split_mask = data_split == split # Filter out images without bounding boxes split_mask &= roi_h5['img_to_first_box'][:] >= 0 if filter_empty_rels: split_mask &= roi_h5['img_to_first_rel'][:] >= 0 image_index = np.where(split_mask)[0] if num_im > -1: image_index = image_index[:num_im] if num_val_im > 0: if mode == 'val': image_index = image_index[:num_val_im] elif mode == 'train': image_index = image_index[num_val_im:] split_mask = np.zeros_like(data_split).astype(bool) split_mask[image_index] = True # Get box information all_labels = roi_h5['labels'][:, 0] all_boxes = roi_h5['boxes_{}'.format(1024)][:] # will index later assert np.all(all_boxes[:, :2] >= 0) # sanity check assert np.all(all_boxes[:, 2:] > 0) # no empty box # convert from xc, yc, w, h to x1, y1, x2, y2 all_boxes[:, :2] = all_boxes[:, :2] - all_boxes[:, 2:] / 2 all_boxes[:, 2:] = all_boxes[:, :2] + all_boxes[:, 2:] im_to_first_box = roi_h5['img_to_first_box'][split_mask] im_to_last_box = roi_h5['img_to_last_box'][split_mask] im_to_first_rel = roi_h5['img_to_first_rel'][split_mask] im_to_last_rel = roi_h5['img_to_last_rel'][split_mask] im_widths = im_h5["image_widths"][split_mask] im_heights = im_h5["image_heights"][split_mask] # load relation labels _relations = roi_h5['relationships'][:] _relation_predicates = roi_h5['predicates'][:, 0] assert (im_to_first_rel.shape[0] == im_to_last_rel.shape[0]) assert (_relations.shape[0] == _relation_predicates.shape[0]) # sanity check # Get everything by image. im_sizes = [] image_index_valid = [] boxes = [] gt_classes = [] relationships = [] for i in range(len(image_index)): boxes_i = all_boxes[im_to_first_box[i]:im_to_last_box[i] + 1, :] gt_classes_i = all_labels[im_to_first_box[i]:im_to_last_box[i] + 1] if im_to_first_rel[i] >= 0: predicates = _relation_predicates[im_to_first_rel[i]:im_to_last_rel[i] + 1] obj_idx = _relations[im_to_first_rel[i]:im_to_last_rel[i] + 1] - im_to_first_box[i] assert np.all(obj_idx >= 0) assert np.all(obj_idx < boxes_i.shape[0]) rels = np.column_stack((obj_idx, predicates)) else: assert not filter_empty_rels rels =
np.zeros((0, 3), dtype=np.int32)
numpy.zeros
import numpy as np from pyfmmlib2d import SFMM def stokes_kernel(sx, tx): ns = sx.shape[1] nt = tx.shape[1] dx = tx[0][:,None] - sx[0] dy = tx[1][:,None] - sx[1] d2 = dx**2 + dy**2 d = np.sqrt(d2) logr = np.log(d) c = 0.25/np.pi G00 = (-logr + dx*dx/d2) G01 = dx*dy/d2 G11 = (-logr + dy*dy/d2) u_mat = np.zeros([nt, 2*ns], dtype=float) v_mat = np.zeros([nt, 2*ns], dtype=float) u_mat[:, 0*ns:1*ns] = c*G00 u_mat[:, 1*ns:2*ns] = c*G01 v_mat[:, 0*ns:1*ns] = c*G01 v_mat[:, 1*ns:2*ns] = c*G11 return u_mat, v_mat def stokes_kernel_stress(sx, tx): ns = sx.shape[1] nt = tx.shape[1] dx = tx[0][:,None] - sx[0] dy = tx[1][:,None] - sx[1] d2 = dx**2 + dy**2 d4 = d2*d2 # forces part, u_x c = 0.25/np.pi G00 = (dx*dy**2 - dx**3)/d4 G01 = (dy**3 - dx**2*dy)/d4 ux_mat = np.zeros([nt, 2*ns]) ux_mat[:, 0*ns:1*ns] = c*G00 ux_mat[:, 1*ns:2*ns] = c*G01 # forces part, u_y G00 = (-3*dy*dx**2-dy**3)/d4 G01 = (dx**3 - dx*dy**2)/d4 uy_mat = np.zeros([nt, 2*ns]) uy_mat[:, 0*ns:1*ns] = c*G00 uy_mat[:, 1*ns:2*ns] = c*G01 # forces part, v_x G01 = (dy**3 - dy*dx**2)/d4 G11 = (-3*dx*dy**2-dx**3)/d4 vx_mat = np.zeros([nt, 2*ns]) vx_mat[:, 0*ns:1*ns] = c*G01 vx_mat[:, 1*ns:2*ns] = c*G11 # forces part, v_y G01 = (dx**3 - dy**2*dx)/d4 G11 = (dy*dx**2 - dy**3)/d4 vy_mat = np.zeros([nt, 2*ns]) vy_mat[:, 0*ns:1*ns] = c*G01 vy_mat[:, 1*ns:2*ns] = c*G11 # forces part, p c = 0.5/np.pi G0 = dx/d2 G1 = dy/d2 p_mat = np.zeros([nt, 2*ns]) p_mat[:, 0*ns:1*ns] = c*G0 p_mat[:, 1*ns:2*ns] = c*G1 return 2*ux_mat - p_mat, uy_mat + vx_mat, 2*vy_mat - p_mat class periodized_stokes_fmm(object): def __init__(self, bounds, p=16, eps=1e-14): """ Class to execute periodized Stokes FMM bounds: [xmin, xmax, ymin, ymax] (location of periodic box) p: order of expansion to use on periodic walls """ self.bounds = bounds self.p = p # compute the location of the collocation nodes nodes, weights = np.polynomial.legendre.leggauss(p) nodes = nodes * 0.5 + 0.5 ranx = bounds[1] - bounds[0] rany = bounds[3] - bounds[2] if np.abs(ranx - rany) > 1e-15: raise Exception('For now, periodization bounds must be a square.') self.width = ranx self.weights = weights*0.5*self.width nodey = nodes*rany + bounds[2] rep = lambda x: np.repeat(x, p) self.node_left = np.row_stack([ rep(bounds[0]), nodey ]) self.node_right = np.row_stack([ rep(bounds[1]), nodey ]) nodex = nodes*ranx + bounds[0] self.node_bottom = np.row_stack([ nodex, rep(bounds[2]) ]) self.node_top = np.row_stack([ nodex, rep(bounds[3]) ]) self.check = np.column_stack([ self.node_left, self.node_right, \ self.node_bottom, self.node_top ]) # get normals (not outward facing!) self.normal_left = np.row_stack([ rep(1.0), rep(0.0) ]) self.normal_right = np.row_stack([ rep(1.0), rep(0.0) ]) self.normal_bottom = np.row_stack([ rep(0.0), rep(1.0) ]) self.normal_top = np.row_stack([ rep(0.0), rep(1.0) ]) self.normals = np.column_stack([ self.normal_left, self.normal_right, self.normal_bottom, self.normal_top ]) # generate sources self.n_check = 4*p self.n_sources = self.n_check self.center = [ 0.5*(self.bounds[0]+self.bounds[1]), 0.5*(self.bounds[2]+self.bounds[3]) ] radius = 0.5*np.sqrt(2)*self.width adj =
np.log(eps)
numpy.log
import numpy as np from auto_editor.audiotsm2.base import AnalysisSynthesisTSM from auto_editor.audiotsm2.utils.windows import hanning class WSOLAConverter(): """ A Converter implementing the WSOLA (Waveform Similarity-based Overlap-Add) time-scale modification procedure. """ def __init__(self, channels, frame_length, synthesis_hop, tolerance): self._channels = channels self._frame_length = frame_length self._synthesis_hop = synthesis_hop self._tolerance = tolerance self._synthesis_frame = np.empty((channels, frame_length)) self._natural_progression = np.empty((channels, frame_length)) self._first = True def clear(self): self._first = True def convert_frame(self, analysis_frame): for k in range(0, self._channels): if self._first: delta = 0 else: cross_correlation = np.correlate( analysis_frame[k, :-self._synthesis_hop], self._natural_progression[k]) delta =
np.argmax(cross_correlation)
numpy.argmax
"""Film Mode Matching Mode Solver Implementation of the Film Mode Matching (FMM) algorithm, as described in: - Sudbo, "Film mode matching a versatile numerical method for vector mode field calculations in dielectric waveguides", Pure App. Optics, 2 (1993), 211-233 - Sudbo, "Improved formulation of the film mode matching method for mode field calculations in dielectric waveguides", Pure App. Optics, 3 (1994), 381-388 Examples ======== See L{FMM1d} and L{FMM2d}. """ from __future__ import print_function from builtins import zip from builtins import range from builtins import object from functools import reduce __author__ = '<NAME> & <NAME>' import numpy import scipy import scipy.optimize import copy import EMpy.utils from EMpy.modesolvers.interface import * import pylab class Message(object): def __init__(self, msg, verbosity=0): self.msg = msg self.verbosity = verbosity def show(self, verbosity=0): if self.verbosity <= verbosity: print((self.verbosity - 1) * '\t' + self.msg) class Struct(object): """Empty class to fill with whatever I want. Maybe a dictionary would do?""" pass class Boundary(object): """Boundary conditions. Electric and Magnetic boundary conditions are translated to Symmetric and Antisymmetric for each field. @ivar xleft: Left bc on x. @ivar xright: Right bc on x. @ivar yleft: Left bc on y. @ivar yright: Right bc on y. """ def __init__(self, xleft='Electric Wall', yleft='Magnetic Wall', xright='Electric Wall', yright='Magnetic Wall'): """Set the boundary conditions, validate and translate.""" self.xleft = xleft self.yleft = yleft self.xright = xright self.yright = yright self.validate() self.translate() def validate(self): """Validate the input. @raise ValueError: Unknown boundary. """ if not reduce(lambda x, y: x & y, [(x == 'Electric Wall') | (x == 'Magnetic Wall') for x in [self.xleft, self.yleft, self.xright, self.yright]]): raise ValueError('Unknown boundary.') def translate(self): """Translate for each field. @raise ValueError: Unknown boundary. """ self.xh = '' self.xe = '' self.yh = '' self.ye = '' if self.xleft == 'Electric Wall': self.xh += 'A' self.xe += 'S' elif self.xleft == 'Magnetic Wall': self.xh += 'S' self.xe += 'A' else: raise ValueError('Unknown boundary.') if self.xright == 'Electric Wall': self.xh += 'A' self.xe += 'S' elif self.xright == 'Magnetic Wall': self.xh += 'S' self.xe += 'A' else: raise ValueError('Unknown boundary.') if self.yleft == 'Electric Wall': self.yh += 'A' self.ye += 'S' elif self.yleft == 'Magnetic Wall': self.yh += 'S' self.ye += 'A' else: raise ValueError('Unknown boundary.') if self.yright == 'Electric Wall': self.yh += 'A' self.ye += 'S' elif self.yright == 'Magnetic Wall': self.yh += 'S' self.ye += 'A' else: raise ValueError('Unknown boundary.') def __str__(self): return 'xleft = %s, xright = %s, yleft = %s, yright = %s' % (self.xleft, self.xright, self.yleft, self.yright) class Slice(object): """One dimensional arrangement of layers and 1d modes. A slice is made of a stack of layers, i.e. refractive indeces with a thickness, with given boundary conditions. It holds 1d modes, both TE and TM. @ivar x1: start point of the slice in x. @ivar x2: end point of the slice in x. @ivar Uy: array of points delimiting the layers. @ivar boundary: boundary conditions. @ivar modie: E modes. @ivar modih: H modes. @ivar Ux: array of points delimiting the slices in x (internally set). @ivar refractiveindex: refractive index of all the slices (internally set). @ivar epsilon: epsilon of all the slices (internally set). @ivar wl: vacuum wavelength. """ def __init__(self, x1, x2, Uy, boundary, modie, modih): self.x1 = x1 self.x2 = x2 self.Uy = Uy self.boundary = boundary self.modie = modie self.modih = modih def __str__(self): return 'x1 = %g, x2 = %g\nUy = %s\nboundary = %s' % (self.x1, self.x2, self.Uy, self.boundary) class FMMMode1d(Mode): """One dimensional mode. Note ==== Virtual class. """ pass class FMMMode1dx(FMMMode1d): """Matching coefficients in the x-direction. L{FMMMode1dy}s are weighted by these coefficients to assure continuity. """ def __str__(self): return 'sl = %s\nsr = %s\nal = %s\nar = %s\nk = %s\nU = %s' % \ (self.sl.__str__(), self.sr.__str__(), self.al.__str__(), self.ar.__str__(), self.k.__str__(), self.U.__str__()) class FMMMode1dy(FMMMode1d): """One dimensional mode. It holds the coefficients that describe the mode in the FMM expansion. Note ==== The mode is suppose one dimensional, in the y direction. @ivar sl: array of value of the mode at the lhs of each slice. @ivar sr: array of value of the mode at the rhs of each slice. @ivar al: array of value of the derivative of the mode at the lhs of each slice. @ivar ar: array of value of the derivative of the mode at the lhs of each slice. @ivar k: wavevector inside each layer. @ivar keff: effective wavevector. @ivar zero: how good the mode is? it must be as close to zero as possible! @ivar Uy: array of points delimiting the layers. """ def eval(self, y_): """Evaluate the mode at y.""" y = numpy.atleast_1d(y_) ny = len(y) f = numpy.zeros(ny, dtype=complex) for iU in range(len(self.U) - 1): k = self.k[iU] sl = self.sl[iU] al = self.al[iU] Ul = self.U[iU] Ur = self.U[iU+1] idx = numpy.where((Ul <= y) & (y <= Ur)) yy = y[idx] - Ul f[idx] = sl * numpy.cos(k * yy) + al * sinxsux(k * yy) * yy return f def plot(self, y): f = self.eval(y) pylab.plot(y, numpy.real(f), y, numpy.imag(y)) pylab.legend(('real', 'imag')) pylab.xlabel('y') pylab.ylabel('mode1d') pylab.show() def __str__(self): return 'sl = %s\nsr = %s\nal = %s\nar = %s\nk = %s\nkeff = %s\nzero = %s\nU = %s' % \ (self.sl.__str__(), self.sr.__str__(), self.al.__str__(), self.ar.__str__(), self.k.__str__(), self.keff.__str__(), self.zero.__str__(), self.U.__str__()) class FMMMode2d(Mode): """Two dimensional mode. It holds the coefficients that describe the mode in the FMM expansion. """ def get_x(self, n=100): return numpy.linspace(self.slicesx[0].Ux[0], self.slicesx[0].Ux[-1], n) def get_y(self, n=100): return numpy.linspace(self.slicesx[0].Uy[0], self.slicesx[0].Uy[-1], n) def eval(self, x_=None, y_=None): """Evaluate the mode at x,y.""" if x_ is None: x = self.get_x() else: x = numpy.atleast_1d(x_) if y_ is None: y = self.get_y() else: y = numpy.atleast_1d(y_) nmodi = len(self.modie) lenx = len(x) leny = len(y) k0 = 2. * numpy.pi / self.slicesx[0].wl kz = self.keff uh = numpy.zeros((nmodi, lenx), dtype=complex) ue = numpy.zeros_like(uh) udoth = numpy.zeros_like(uh) udote = numpy.zeros_like(uh) Exsh = numpy.zeros((leny, nmodi), dtype=complex) Exah = numpy.zeros_like(Exsh) Exse = numpy.zeros_like(Exsh) Exae = numpy.zeros_like(Exsh) Eysh = numpy.zeros_like(Exsh) Eyah = numpy.zeros_like(Exsh) Eyse = numpy.zeros_like(Exsh) Eyae = numpy.zeros_like(Exsh) Ezsh = numpy.zeros_like(Exsh) Ezah = numpy.zeros_like(Exsh) Ezse = numpy.zeros_like(Exsh) Ezae = numpy.zeros_like(Exsh) cBxsh = numpy.zeros_like(Exsh) cBxah = numpy.zeros_like(Exsh) cBxse = numpy.zeros_like(Exsh) cBxae = numpy.zeros_like(Exsh) cBysh = numpy.zeros_like(Exsh) cByah = numpy.zeros_like(Exsh) cByse = numpy.zeros_like(Exsh) cByae = numpy.zeros_like(Exsh) cBzsh = numpy.zeros_like(Exsh) cBzah = numpy.zeros_like(Exsh) cBzse = numpy.zeros_like(Exsh) cBzae = numpy.zeros_like(Exsh) ExTE = numpy.zeros((leny,lenx), dtype=complex) EyTE = numpy.zeros_like(ExTE) EzTE = numpy.zeros_like(ExTE) ExTM = numpy.zeros_like(ExTE) EyTM = numpy.zeros_like(ExTE) EzTM = numpy.zeros_like(ExTE) cBxTE = numpy.zeros_like(ExTE) cByTE = numpy.zeros_like(ExTE) cBzTE = numpy.zeros_like(ExTE) cBxTM = numpy.zeros_like(ExTE) cByTM = numpy.zeros_like(ExTE) cBzTM = numpy.zeros_like(ExTE) for mx, slice in enumerate(self.slicesx): idx = numpy.where((slice.x1 <= x) & (x < slice.x2)) x2 = x[idx] - slice.x1 x1 = slice.x2 - x[idx] dx = slice.x2 - slice.x1 for n in range(nmodi): fi = slice.modih[n].eval(y) fidot = dot(slice.modih[n]).eval(y) psi = slice.modie[n].eval(y) psisueps = sueps(slice.modie[n]).eval(y) psidotsueps = sueps(dot(slice.modie[n])).eval(y) kfh = self.modih[n].k[mx] kxh = scipy.sqrt(kfh**2 - kz**2) sl = self.modih[n].sl[mx] * (k0/kfh)**2 al = self.modih[n].al[mx] sr = self.modih[n].sr[mx] * (k0/kfh)**2 ar = self.modih[n].ar[mx] uh[n,idx] = (numpy.sin(kxh * x1) * sl + numpy.sin(kxh * x2) * sr) / numpy.sin(kxh * dx) udoth[n,idx] = (numpy.sin(kxh * x1) * al + numpy.sin(kxh * x2) * ar) / numpy.sin(kxh * dx) kfe = self.modie[n].k[mx] kxe = scipy.sqrt(kfe**2 - kz**2) sl = self.modie[n].sl[mx] * (k0/kfe)**2 al = self.modie[n].al[mx] sr = self.modie[n].sr[mx] * (k0/kfe)**2 ar = self.modie[n].ar[mx] ue[n,idx] = (numpy.sin(kxe * x1) * sl + numpy.sin(kxe * x2) * sr) / numpy.sin(kxe * dx) udote[n,idx] = (numpy.sin(kxe * x1) * al + numpy.sin(kxe * x2) * ar) / numpy.sin(kxe * dx) Exsh[:,n] = (kz/k0) * fi Exah[:,n] = 0 Exse[:,n] = 0 Exae[:,n] = -psidotsueps / k0**2 Eysh[:,n] = 0 Eyah[:,n] = 0 Eyse[:,n] = -(kfe/k0)**2 * psisueps Eyae[:,n] = 0 Ezsh[:,n] = 0 Ezah[:,n] = -1j * fi / k0 Ezse[:,n] = 1j * kz / k0**2 * psidotsueps Ezae[:,n] = 0 cBxsh[:,n] = 0 cBxah[:,n] = fidot / k0**2 cBxse[:,n] = kz / k0 * psi cBxae[:,n] = 0 cBysh[:,n] = (kfh/k0)**2 * fi cByah[:,n] = 0 cByse[:,n] = 0 cByae[:,n] = 0 cBzsh[:,n] = -1j * kz / k0**2 * fidot cBzah[:,n] = 0 cBzse[:,n] = 0 cBzae[:,n] = -1j * psi / k0 ExTE[:,idx] = numpy.tensordot(Exsh, uh[:,idx], axes=1) + numpy.tensordot(Exah, udoth[:,idx], axes=1) ExTM[:,idx] = numpy.tensordot(Exse, ue[:,idx], axes=1) + numpy.tensordot(Exae, udote[:,idx], axes=1) EyTE[:,idx] = numpy.tensordot(Eysh, uh[:,idx], axes=1) + numpy.tensordot(Eyah, udoth[:,idx], axes=1) EyTM[:,idx] = numpy.tensordot(Eyse, ue[:,idx], axes=1) + numpy.tensordot(Eyae, udote[:,idx], axes=1) EzTE[:,idx] = numpy.tensordot(Ezsh, uh[:,idx], axes=1) + numpy.tensordot(Ezah, udoth[:,idx], axes=1) EzTM[:,idx] = numpy.tensordot(Ezse, ue[:,idx], axes=1) + numpy.tensordot(Ezae, udote[:,idx], axes=1) cBxTE[:,idx] = numpy.tensordot(cBxsh, uh[:,idx], axes=1) + numpy.tensordot(cBxah, udoth[:,idx], axes=1) cBxTM[:,idx] = numpy.tensordot(cBxse, ue[:,idx], axes=1) + numpy.tensordot(cBxae, udote[:,idx], axes=1) cByTE[:,idx] = numpy.tensordot(cBysh, uh[:,idx], axes=1) + numpy.tensordot(cByah, udoth[:,idx], axes=1) cByTM[:,idx] = numpy.tensordot(cByse, ue[:,idx], axes=1) + numpy.tensordot(cByae, udote[:,idx], axes=1) cBzTE[:,idx] = numpy.tensordot(cBzsh, uh[:,idx], axes=1) + numpy.tensordot(cBzah, udoth[:,idx], axes=1) cBzTM[:,idx] = numpy.tensordot(cBzse, ue[:,idx], axes=1) + numpy.tensordot(cBzae, udote[:,idx], axes=1) return (ExTE, ExTM, EyTE, EyTM, EzTE, EzTM, cBxTE, cBxTM, cByTE, cByTM, cBzTE, cBzTM) def fields(self, x=None, y=None): ExTE, ExTM, EyTE, EyTM, EzTE, EzTM, cBxTE, cBxTM, cByTE, cByTM, cBzTE, cBzTM = self.eval(x, y) Ex = ExTE + ExTM Ey = EyTE + EyTM Ez = EzTE + EzTM cBx = cBxTE + cBxTM cBy = cByTE + cByTM cBz = cBzTE + cBzTM return (Ex, Ey, Ez, cBx, cBy, cBz) def intensity(self, x=None, y=None): Ex, Ey, Ez, cBx, cBy, cBz = self.fields(x, y) cSz = .5 * (Ex * numpy.conj(cBy) - Ey * numpy.conj(cBx)) return cSz def TEfrac_old(self, x_=None, y_=None): if x_ is None: x = self.get_x() else: x = numpy.atleast_1d(x_) if y_ is None: y = self.get_y() else: y = numpy.atleast_1d(y_) Ex, Ey, Ez, cBx, cBy, cBz, cSz = self.fields(x, y) cSTE = .5 * EMpy.utils.trapz2(Ex * numpy.conj(cBy), y, x) cSTM = .5 * EMpy.utils.trapz2(-Ey * numpy.conj(cBx), y, x) return numpy.abs(cSTE) / (numpy.abs(cSTE) + numpy.abs(cSTM)) def TEfrac(self): Sx, Sy = self.__overlap(self) return Sx / (Sx - Sy) def overlap_old(self, m, x_=None, y_=None): if x_ is None: x = self.get_x() else: x = numpy.atleast_1d(x_) if y_ is None: y = self.get_y() else: y = numpy.atleast_1d(y_) Ex, Ey, Ez, cBx, cBy, cBz = self.fields(x, y) cSz = self.intensity(x, y) norm = scipy.sqrt(EMpy.utils.trapz2(cSz, y, x)) Ex1, Ey1, Ez1, cBx1, cBy1, cBz1 = m.fields(x, y) cSz1 = m.intensity(x, y) norm1 = scipy.sqrt(EMpy.utils.trapz2(cSz1, y, x)) return .5 * EMpy.utils.trapz2(Ex/norm * numpy.conj(cBy1/norm1) - Ey/norm * numpy.conj(cBx1/norm1), y, x) def __overlap_old(self, mode): nmodi = len(self.modie) k0 = 2. * numpy.pi / self.slicesx[0].wl kz = self.keff Sx = 0j Sy = 0j for mx, slice in enumerate(self.slicesx): for n1 in range(nmodi): phi_n1 = slice.modih[n1] phidot_n1 = dot(phi_n1) psi_n1 = slice.modie[n1] psisueps_n1 = sueps(psi_n1) psidotsueps_n1 = sueps(dot(psi_n1)) uh_n1 = copy.deepcopy(self.modih[n1]) # reduce to a single slice kfh_n1 = uh_n1.k[mx] uh_n1.k = numpy.atleast_1d(scipy.sqrt(kfh_n1**2 - kz**2)) uh_n1.sl = numpy.atleast_1d(uh_n1.sl[mx] * (k0/kfh_n1)**2) uh_n1.al = numpy.atleast_1d(uh_n1.al[mx]) uh_n1.sr = numpy.atleast_1d(uh_n1.sr[mx] * (k0/kfh_n1)**2) uh_n1.ar = numpy.atleast_1d(uh_n1.ar[mx]) uh_n1.U = numpy.atleast_1d(uh_n1.U[mx:mx+2]) uhdot_n1 = dot(uh_n1) ue_n1 = copy.deepcopy(self.modie[n1]) # reduce to a single slice kfe_n1 = ue_n1.k[mx] ue_n1.k = numpy.atleast_1d(scipy.sqrt(kfe_n1**2 - kz**2)) ue_n1.sl = numpy.atleast_1d(ue_n1.sl[mx] * (k0/kfe_n1)**2) ue_n1.al = numpy.atleast_1d(ue_n1.al[mx]) ue_n1.sr = numpy.atleast_1d(ue_n1.sr[mx] * (k0/kfe_n1)**2) ue_n1.ar = numpy.atleast_1d(ue_n1.ar[mx]) ue_n1.U = numpy.atleast_1d(ue_n1.U[mx:mx+2]) uedot_n1 = dot(ue_n1) for n2 in range(nmodi): phi_n2 = mode.slicesx[mx].modih[n2] phidot_n2 = dot(phi_n2) psi_n2 = mode.slicesx[mx].modie[n2] psisueps_n2 = sueps(psi_n2) psidotsueps_n2 = sueps(dot(psi_n2)) uh_n2 = copy.deepcopy(mode.modih[n2]) # reduce to a single slice kfh_n2 = uh_n2.k[mx] uh_n2.k = numpy.atleast_1d(scipy.sqrt(kfh_n2**2 - kz**2)) uh_n2.sl = numpy.atleast_1d(uh_n2.sl[mx] * (k0/kfh_n2)**2) uh_n2.al = numpy.atleast_1d(uh_n2.al[mx]) uh_n2.sr = numpy.atleast_1d(uh_n2.sr[mx] * (k0/kfh_n2)**2) uh_n2.ar = numpy.atleast_1d(uh_n2.ar[mx]) uh_n2.U = numpy.atleast_1d(uh_n2.U[mx:mx+2]) uhdot_n2 = dot(uh_n2) ue_n2 = copy.deepcopy(mode.modie[n2]) # reduce to a single slice kfe_n2 = ue_n2.k[mx] ue_n2.k = numpy.atleast_1d(scipy.sqrt(kfe_n2**2 - kz**2)) ue_n2.sl = numpy.atleast_1d(ue_n2.sl[mx] * (k0/kfe_n2)**2) ue_n2.al = numpy.atleast_1d(ue_n2.al[mx]) ue_n2.sr = numpy.atleast_1d(ue_n2.sr[mx] * (k0/kfe_n2)**2) ue_n2.ar = numpy.atleast_1d(ue_n2.ar[mx]) ue_n2.U = numpy.atleast_1d(ue_n2.U[mx:mx+2]) uedot_n2 = dot(ue_n2) Sx += kz * kfh_n2**2 / k0**3 * scalarprod(uh_n1, uh_n2) * scalarprod(phi_n1, phi_n2) \ - kfh_n2**2 / k0**4 * scalarprod(uedot_n1, uh_n2) * scalarprod(psidotsueps_n1, phi_n2) Sy += kfe_n1**2 * kz / k0**3 * scalarprod(ue_n1, ue_n2) * scalarprod(psisueps_n1, psi_n2) \ + kfe_n1**2 / k0**4 * scalarprod(ue_n1, uhdot_n2) * scalarprod(psisueps_n1, phidot_n2) return (Sx, Sy) def __overlap(self, mode): nmodi = len(self.modie) k0 = 2. * numpy.pi / self.slicesx[0].wl kz = self.keff Sx = 0j Sy = 0j for mx, slice in enumerate(self.slicesx): phi_n1s = [] phidot_n1s = [] psi_n1s = [] psisueps_n1s = [] psidotsueps_n1s = [] uh_n1s = [] uhdot_n1s = [] ue_n1s = [] uedot_n1s = [] kfe_n1s = [] kfh_n1s = [] phi_n2s = [] phidot_n2s = [] psi_n2s = [] psisueps_n2s = [] psidotsueps_n2s = [] uh_n2s = [] uhdot_n2s = [] ue_n2s = [] uedot_n2s = [] kfe_n2s = [] kfh_n2s = [] for n1 in range(nmodi): phi_n1 = slice.modih[n1] phi_n1s.append(phi_n1) phidot_n1s.append(dot(phi_n1)) psi_n1 = slice.modie[n1] psi_n1s.append(psi_n1) psisueps_n1s.append(sueps(psi_n1)) psidotsueps_n1s.append(sueps(dot(psi_n1))) uh_n1 = copy.deepcopy(self.modih[n1]) # reduce to a single slice kfh_n1 = uh_n1.k[mx] kfh_n1s.append(kfh_n1) uh_n1.k = numpy.atleast_1d(scipy.sqrt(kfh_n1**2 - kz**2)) uh_n1.sl = numpy.atleast_1d(uh_n1.sl[mx] * (k0/kfh_n1)**2) uh_n1.al = numpy.atleast_1d(uh_n1.al[mx]) uh_n1.sr = numpy.atleast_1d(uh_n1.sr[mx] * (k0/kfh_n1)**2) uh_n1.ar = numpy.atleast_1d(uh_n1.ar[mx]) uh_n1.U = numpy.atleast_1d(uh_n1.U[mx:mx+2]) uh_n1s.append(uh_n1) uhdot_n1s.append(dot(uh_n1)) ue_n1 = copy.deepcopy(self.modie[n1]) # reduce to a single slice kfe_n1 = ue_n1.k[mx] kfe_n1s.append(kfe_n1) ue_n1.k = numpy.atleast_1d(scipy.sqrt(kfe_n1**2 - kz**2)) ue_n1.sl = numpy.atleast_1d(ue_n1.sl[mx] * (k0/kfe_n1)**2) ue_n1.al = numpy.atleast_1d(ue_n1.al[mx]) ue_n1.sr = numpy.atleast_1d(ue_n1.sr[mx] * (k0/kfe_n1)**2) ue_n1.ar = numpy.atleast_1d(ue_n1.ar[mx]) ue_n1.U = numpy.atleast_1d(ue_n1.U[mx:mx+2]) ue_n1s.append(ue_n1) uedot_n1s.append(dot(ue_n1)) phi_n2 = mode.slicesx[mx].modih[n1] phi_n2s.append(phi_n2) phidot_n2s.append(dot(phi_n2)) psi_n2 = mode.slicesx[mx].modie[n1] psi_n2s.append(psi_n2) psisueps_n2s.append(sueps(psi_n2)) psidotsueps_n2s.append(sueps(dot(psi_n2))) uh_n2 = copy.deepcopy(mode.modih[n1]) # reduce to a single slice kfh_n2 = uh_n2.k[mx] kfh_n2s.append(kfh_n2) uh_n2.k = numpy.atleast_1d(scipy.sqrt(kfh_n2**2 - kz**2)) uh_n2.sl = numpy.atleast_1d(uh_n2.sl[mx] * (k0/kfh_n2)**2) uh_n2.al = numpy.atleast_1d(uh_n2.al[mx]) uh_n2.sr = numpy.atleast_1d(uh_n2.sr[mx] * (k0/kfh_n2)**2) uh_n2.ar = numpy.atleast_1d(uh_n2.ar[mx]) uh_n2.U = numpy.atleast_1d(uh_n2.U[mx:mx+2]) uh_n2s.append(uh_n2) uhdot_n2s.append(dot(uh_n2)) ue_n2 = copy.deepcopy(mode.modie[n1]) # reduce to a single slice kfe_n2 = ue_n2.k[mx] kfe_n2s.append(kfe_n2) ue_n2.k = numpy.atleast_1d(scipy.sqrt(kfe_n2**2 - kz**2)) ue_n2.sl = numpy.atleast_1d(ue_n2.sl[mx] * (k0/kfe_n2)**2) ue_n2.al = numpy.atleast_1d(ue_n2.al[mx]) ue_n2.sr = numpy.atleast_1d(ue_n2.sr[mx] * (k0/kfe_n2)**2) ue_n2.ar = numpy.atleast_1d(ue_n2.ar[mx]) ue_n2.U = numpy.atleast_1d(ue_n2.U[mx:mx+2]) ue_n2s.append(ue_n2) uedot_n2.append(dot(ue_n2)) for n1 in range(nmodi): uh_n1 = uh_n1s[n1] ue_n1 = ue_n1s[n1] uedot_n1 = uedot_n1s[n1] phi_n1 = phi_n1s[n1] psi_n1 = psi_n1s[n1] psidotsueps_n1 = psidotsueps_n1s[n1] psisueps_n1 = psisueps_n1s[n1] kfe_n1 = kfe_n1s[n1] for n2 in range(nmodi): uh_n2 = uh_n2s[n2] uhdot_n2 = uhdot_n2s[n2] ue_n2 = ue_n2s[n2] phi_n2 = phi_n2s[n2] phidot_n2 = phidot_n2s[n2] psi_n2 = psi_n2s[n2] kfh_n2 = kfh_n2s[n2] Sx += kz * kfh_n2**2 / k0**3 * scalarprod(uh_n1, uh_n2) * scalarprod(phi_n1, phi_n2) \ - kfh_n2**2 / k0**4 * scalarprod(uedot_n1, uh_n2) * scalarprod(psidotsueps_n1, phi_n2) Sy += kfe_n1**2 * kz / k0**3 * scalarprod(ue_n1, ue_n2) * scalarprod(psisueps_n1, psi_n2) \ + kfe_n1**2 / k0**4 * scalarprod(ue_n1, uhdot_n2) * scalarprod(psisueps_n1, phidot_n2) return (Sx, Sy) def overlap(self, mode): Sx, Sy = self.__overlap(mode) return Sx - Sy def norm(self): return scipy.sqrt(self.overlap(self)) def normalize(self): n = self.norm() for ue, uh in zip(self.modie, self.modih): ue.sl /= n ue.al /= n ue.sr /= n ue.ar /= n uh.sl /= n uh.al /= n uh.sr /= n uh.ar /= n def get_fields_for_FDTD(self, x, y): """Get mode's field on a staggered grid. Note: ignores some fields on the boudaries. """ x0 = self.get_x() y0 = self.get_y() Ex, Ey, Ez, cBx, cBy, cBz = self.fields(x0, y0) # Ex: ignores y = 0, max x_Ex_FDTD = EMpy.utils.centered1d(x) y_Ex_FDTD = y[1:-1] Ex_FDTD = EMpy.utils.interp2(x_Ex_FDTD, y_Ex_FDTD, x0, y0, Ex) # Ey: ignores x = 0, max x_Ey_FDTD = x[1:-1] y_Ey_FDTD = EMpy.utils.centered1d(y) Ey_FDTD = EMpy.utils.interp2(x_Ey_FDTD, y_Ey_FDTD, x0, y0, Ey) # Ez: ignores x, y = 0, max x_Ez_FDTD = x[1:-1] y_Ez_FDTD = y[1:-1] Ez_FDTD = EMpy.utils.interp2(x_Ez_FDTD, y_Ez_FDTD, x0, y0, Ez) # Hx: ignores x = 0, max, /120pi, reverse direction x_Hx_FDTD = x[1:-1] y_Hx_FDTD = EMpy.utils.centered1d(y) Hx_FDTD = EMpy.utils.interp2(x_Hx_FDTD, y_Hx_FDTD, x0, y0, cBx) / (-120. * numpy.pi) # OKKIO! # Hy: ignores y = 0, max, /120pi, reverse direction x_Hy_FDTD = EMpy.utils.centered1d(x) y_Hy_FDTD = y[1:-1] Hy_FDTD = EMpy.utils.interp2(x_Hy_FDTD, y_Hy_FDTD, x0, y0, Hy) / (-120. * numpy.pi) # Hz: /120pi, reverse direction x_Hz_FDTD = EMpy.utils.centered1d(x) y_Hz_FDTD = EMpy.utils.centered1d(y) Hz_FDTD = EMpy.utils.interp2(x_Hz_FDTD, y_Hz_FDTD, x0, y0, Hz) / (-120. * numpy.pi) return (Ex_FDTD, Ey_FDTD, Ez_FDTD, Hx_FDTD, Hy_FDTD, Hz_FDTD) def plot(self, x_=None, y_=None): if x_ is None: x = self.get_x() else: x = numpy.atleast_1d(x_) if y_ is None: y = self.get_y() else: y = numpy.atleast_1d(y_) f = self.fields(x, y) # fields pylab.figure() titles = ['Ex', 'Ey', 'Ez', 'cBx', 'cBy', 'cBz'] for i in range(6): subplot_id = 231 + i pylab.subplot(subplot_id) pylab.contour(x, y, numpy.abs(f[i])) pylab.xlabel('x') pylab.ylabel('y') pylab.title(titles[i]) pylab.axis('image') pylab.show() # power pylab.figure() pylab.contour(x, y, numpy.abs(f[-1])) pylab.xlabel('x') pylab.ylabel('y') pylab.title('cSz') pylab.axis('image') pylab.show() def __str__(self): return 'neff = %s' % (self.keff / (2 * numpy.pi / self.slicesx[0].wl)) class FMM(ModeSolver): pass class FMM1d(FMM): """Drive to simulate 1d structures. Examples ======== Find the first 3 TE modes of two slabs of refractive indeces 1 and 3, of thickness 1um each, for wl = 1, with symmetric boundary conditions: >>> import numpy >>> import FMM >>> Uy = numpy.array([0., 1., 2.]) >>> ny = numpy.array([1., 3.]) >>> wl = 1. >>> nmodi = 3 >>> simul = FMM.FMM1d(Uy, ny, 'SS').solve(wl, nmodi, 'TE') >>> keff_0_expected = 18.790809413149393 >>> keff_1_expected = 18.314611633384185 >>> keff_2_expected = 17.326387847565034 >>> assert(numpy.allclose(simul.modes[0].keff, keff_0_expected)) >>> assert(numpy.allclose(simul.modes[1].keff, keff_1_expected)) >>> assert(numpy.allclose(simul.modes[2].keff, keff_2_expected)) """ def __init__(self, Uy, ny, boundary): """Set coordinates of regions, refractive indeces and boundary conditions.""" self.Uy = Uy self.ny = ny self.boundary = boundary def solve(self, wl, nmodes, polarization, verbosity=0): """Find nmodes modes at a given wavelength and polarization.""" Message('Solving 1d modes.', 1).show(verbosity) self.wl = wl self.nmodes = nmodes self.polarization = polarization self.modes = FMM1d_y(self.Uy, self.ny, self.wl, self.nmodes, self.boundary, self.polarization, verbosity) return self class FMM2d(FMM): """Drive to simulate 2d structures. Examples ======== Find the first 2 modes of a lossy Si channel waveguide in SiO2, using only 3 1dmodes and with electric and magnetic bc on x and y, respectively: >>> import numpy >>> import FMM >>> wl = 1.55 >>> nmodislices = 3 >>> nmodi2d = 2 >>> Ux = numpy.array([0, 2, 2.4, 4.4]) >>> Uy = numpy.array([0, 2, 2.22, 4.22]) >>> boundary = Boundary(xleft='Electric Wall', yleft='Magnetic Wall', xright='Electric Wall', yright='Magnetic Wall') >>> n2 = 1.446 >>> n1 = 3.4757 - 1e-4j >>> refindex = numpy.array([[n2, n2, n2], [n2, n1, n2], [n2, n2, n2]]) >>> simul = FMM.FMM2d(Ux, Uy, refindex, boundary).solve(wl, nmodislices, nmodi2d) >>> keff0_expected = 9.666663697969399e+000 -4.028846755836984e-004j >>> keff1_expected = 7.210476803133368e+000 -2.605078086535284e-004j >>> assert(numpy.allclose(simul.modes[0].keff, keff0_expected)) >>> assert(numpy.allclose(simul.modes[1].keff, keff1_expected)) """ def __init__(self, Ux, Uy, rix, boundary): """Set coordinates of regions, refractive indeces and boundary conditions.""" self.Ux = Ux self.Uy = Uy self.rix = rix self.boundary = boundary def solve(self, wl, n1dmodes, nmodes, verbosity=0): """Find nmodes modes at a given wavelength using n1dmodes 1d modes in each slice.""" Message('Solving 2d modes', 1).show(verbosity) self.wl = wl self.n1dmodes = n1dmodes self.nmodes = nmodes self.slices = script1d(self.Ux, self.Uy, self.rix, self.wl, self.boundary, self.n1dmodes, verbosity) self.modes = FMM1d_x_component(self.slices, nmodes, verbosity) return self def analyticalsolution(nmodi, TETM, FMMpars): betay = FMMpars['beta'] epsilon = FMMpars['epsilon'] Uy = FMMpars['Uy'] by = FMMpars['boundary'] Nregions = len(epsilon) sl = numpy.zeros((nmodi,Nregions), dtype=complex) sr = numpy.zeros_like(sl) al = numpy.zeros_like(sl) ar = numpy.zeros_like(sl) # interval D = Uy[-1] - Uy[0] if TETM == 'TE': N = numpy.sqrt(2. / D) else: N = numpy.sqrt(2. / D * epsilon[0]) # boundary condition if by == 'AA': kn = (numpy.pi * numpy.arange(1, nmodi + 1) / D) kn = kn[:, numpy.newaxis] sl = numpy.sin(kn * (Uy[:-1] - Uy[0])) sr = numpy.sin(kn * (Uy[1:] - Uy[0])) al = numpy.cos(kn * (Uy[:-1] - Uy[0])) ar = numpy.cos(kn * (Uy[1:] - Uy[0])) sr[:, -1] = 0. sl[:, 0] = 0. elif by == 'AS': kn = (numpy.pi * (numpy.arange(0, nmodi) + .5) / D) kn = kn[:, numpy.newaxis] sl = numpy.sin(kn * (Uy[:-1] - Uy[0])) sr = numpy.sin(kn * (Uy[1:] - Uy[0])) al = numpy.cos(kn * (Uy[:-1] - Uy[0])) ar = numpy.cos(kn * (Uy[1:] - Uy[0])) ar[:, -1] = 0. sl[:, 0] = 0. elif by == 'SA': kn = (numpy.pi * (numpy.arange(0, nmodi) + .5) / D) kn = kn[:, numpy.newaxis] sl = numpy.cos(kn * (Uy[:-1] - Uy[0])) sr = numpy.cos(kn * (Uy[1:] - Uy[0])) al = -numpy.sin(kn * (Uy[:-1] - Uy[0])) ar = -numpy.sin(kn * (Uy[1:] - Uy[0])) sr[:, -1] = 0. al[:, 0] = 0. elif by == 'SS': kn = (numpy.pi * numpy.arange(0, nmodi) / D) kn = kn[:, numpy.newaxis] sl = numpy.cos(kn * (Uy[:-1] - Uy[0])) sr = numpy.cos(kn * (Uy[1:] - Uy[0])) al = -numpy.sin(kn * (Uy[:-1] - Uy[0])) ar = -numpy.sin(kn * (Uy[1:] - Uy[0])) ar[:, -1] = 0. al[:, 0] = 0. # normalizzazione sl *= N sr *= N for n in range(0, nmodi): al[n,:] *= N * kn[n] ar[n,:] *= N * kn[n] # caso speciale. se k=0 la funzione e' costante e la normalizzazione e' # diversa. capita solo con boundary SS e per il primo modo if by == 'SS': sqrt2 = numpy.sqrt(2.) sl[0,:] /= sqrt2 sr[0,:] /= sqrt2 al[0,:] /= sqrt2 ar[0,:] /= sqrt2 modi = [] for mk in range(0, nmodi): modo = FMMMode1dy() modo.sl = sl[mk,:].astype(complex) modo.sr = sr[mk,:].astype(complex) modo.al = al[mk,:].astype(complex) modo.ar = ar[mk,:].astype(complex) modo.k = kn[mk] * numpy.ones(Nregions) modo.U = Uy modo.keff = scipy.sqrt(betay[0]**2 - kn[mk]**2) modo.zero = 0. modo.pars = FMMpars modi.append(modo) return modi def sinxsux(x): return numpy.sinc(x / numpy.pi) def FMMshootingTM(kz_, FMMpars): betay = FMMpars['beta'] eps = FMMpars['epsilon'] Uy = FMMpars['Uy'] by = FMMpars['boundary'] kz = numpy.atleast_1d(kz_) Nregions = len(betay) d = numpy.diff(Uy) Delta = numpy.zeros_like(kz) sl = numpy.zeros(Nregions, dtype=complex) sr = numpy.zeros_like(sl) al = numpy.zeros_like(sl) ar = numpy.zeros_like(sl) k_ = scipy.sqrt(betay**2 - kz[:,numpy.newaxis]**2) kd = k_[:,numpy.newaxis] * d sinkdsuk_ = sinxsux(kd) * d coskd_ = numpy.cos(kd) sinkdk_ = numpy.sin(kd) * k_[:,numpy.newaxis] # left boundary condition if by[0] == 'A': al[0] = 1 elif by[0] == 'S': sl[0] = 1 else: raise ValueError('unrecognized left boundary condition') # right boundary condition if by[1] == 'A': ar[-1] = 1 elif by[1] == 'S': sr[-1] = 1 else: raise ValueError('unrecognized right boundary condition') # ciclo sui layer maxbetay = numpy.max(numpy.real(betay)) n1 = numpy.argmax(numpy.real(betay)) + 1 if n1 == Nregions: n1 = Nregions - 1 n2 = n1 + 1 modo = FMMMode1dy() for m in range(0, len(kz)): k = k_[m,:] sinkdsuk = sinkdsuk_[m,:][0] coskd = coskd_[m,:][0] sinkdk = sinkdk_[m,:][0] for idx in range(0, n1): sr[idx] = sl[idx] * coskd[idx] + al[idx] * sinkdsuk[idx] ar[idx] = al[idx] * coskd[idx] - sl[idx] * sinkdk[idx] #******************* requirement of continuity if idx < n1 - 1: sl[idx+1] = sr[idx]; al[idx+1] = ar[idx] / eps[idx] * eps[idx + 1]; #******************* for idx1 in range(Nregions - 1, n2 - 2, -1): sl[idx1] = sr[idx1] * coskd[idx1] - ar[idx1] * sinkdsuk[idx1] al[idx1] = ar[idx1] * coskd[idx1] + sr[idx1] * sinkdk[idx1] #******************* requirement of continuity if idx1 > n2: sr[idx1 - 1] = sl[idx1] ar[idx1 - 1] = al[idx1] / eps[idx1] * eps[idx1 - 1] #******************* Delta[m] = (eps[n1-1] * sr[n1-1] * al[n2-1] - eps[n2-1] * ar[n1-1] * sl[n2-1]) if len(kz) < 2: # normalize and save only if len(kz) == 1 # otherwise, modo is ignored and only Delta is useful # normalizza la propagazione sinistra e quella destra alfa = sr[n1-1] / sl[n2-1] sl[n2-1:] *= alfa sr[n2-1:] *= alfa al[n2-1:] *= alfa ar[n2-1:] *= alfa modo.sl = sl modo.sr = sr modo.al = al modo.ar = ar modo.k = k modo.U = Uy modo.keff = kz modo.zero = Delta modo.pars = FMMpars return (Delta, modo) def FMMshooting(kz_, FMMpars): betay = FMMpars['beta'] Uy = FMMpars['Uy'] by = FMMpars['boundary'] kz = numpy.atleast_1d(kz_) Nregions = len(betay) d = numpy.diff(Uy) Delta = numpy.zeros_like(kz) sl = numpy.zeros(Nregions, dtype=complex) sr = numpy.zeros_like(sl) al = numpy.zeros_like(sl) ar = numpy.zeros_like(sl) k_ = scipy.sqrt(betay**2 - kz[:,numpy.newaxis]**2) kd = k_[:,numpy.newaxis] * d sinkdsuk_ = sinxsux(kd) * d coskd_ = numpy.cos(kd) sinkdk_ = numpy.sin(kd) * k_[:,numpy.newaxis] # left boundary condition if by[0] == 'A': al[0] = 1 elif by[0] == 'S': sl[0] = 1 else: raise ValueError('unrecognized left boundary condition') # right boundary condition if by[1] == 'A': ar[-1] = 1 elif by[1] == 'S': sr[-1] = 1 else: raise ValueError('unrecognized right boundary condition') # ciclo sui layer maxbetay = numpy.max(numpy.real(betay)) n1 = numpy.argmax(numpy.real(betay)) + 1 if n1 == Nregions: n1 = Nregions - 1 n2 = n1 + 1 modo = FMMMode1dy() for m in range(0, len(kz)): k = k_[m,:] sinkdsuk = sinkdsuk_[m,:][0] coskd = coskd_[m,:][0] sinkdk = sinkdk_[m,:][0] for idx in range(0, n1): sr[idx] = sl[idx] * coskd[idx] + al[idx] * sinkdsuk[idx] ar[idx] = al[idx] * coskd[idx] - sl[idx] * sinkdk[idx] #******************* requirement of continuity if idx < n1 - 1: sl[idx + 1] = sr[idx]; al[idx + 1] = ar[idx]; #******************* for idx1 in range(Nregions - 1, n2 - 2, -1): sl[idx1] = sr[idx1] * coskd[idx1] - ar[idx1] * sinkdsuk[idx1] al[idx1] = ar[idx1] * coskd[idx1] + sr[idx1] * sinkdk[idx1] #******************* requirement of continuity if idx1 > n2: sr[idx1 - 1] = sl[idx1] ar[idx1 - 1] = al[idx1] #******************* Delta[m] = (sr[n1-1] * al[n2-1] - ar[n1-1] * sl[n2-1]) ## len_kz = len(kz) ## k = k_[0,:] ## sinkdsuk = sinkdsuk_[0,:][0] ## coskd = coskd_[0,:][0] ## sinkdk = sinkdk_[0,:][0] ## code = """ ## for (int m = 0; m < len_kz; ++m) { ## //k = k_(m,:); ## //sinkdsuk = sinkdsuk_(0,:); ## //coskd = coskd_(0,:); ## //sinkdk = sinkdk_(0,:); ## int nn1 = int(n1); ## for (int idx = 0; idx < nn1; ++idx) { ## sr(idx) = sl(idx) * coskd(idx) + al(idx) * sinkdsuk(idx); ## ar(idx) = al(idx) * coskd(idx) - sl(idx) * sinkdk(idx); ## if (idx < nn1 - 1) { ## sl(idx + 1) = sr(idx); ## al(idx + 1) = ar(idx); ## } ## } ## int nn2 = int(n2); ## for (int idx1 = Nregions - 1; idx1 > nn2 - 2; --idx1) { ## sl(idx1) = sr(idx1) * coskd(idx1) - ar(idx1) * sinkdsuk(idx1); ## al(idx1) = ar(idx1) * coskd(idx1) + sr(idx1) * sinkdk(idx1); ## if (idx1 > nn2) { ## sr(idx1 - 1) = sl(idx1); ## ar(idx1 - 1) = al(idx1); ## } ## } ## //Delta(m) = std::complex<double>(1) * (sr(nn1-1) * al(nn2-1) - ar(nn1-1) * sl(nn2-1)); ## } ## """ ## ## from scipy import weave ## from scipy.weave import converters ## weave.inline(code, ## ['n1', 'n2', 'Nregions', 'sl', 'sr', 'al', 'ar', 'len_kz', 'Delta', ## 'k', 'sinkdsuk', 'sinkdk', 'coskd', ## 'k_', 'sinkdsuk_', 'sinkdk_', 'coskd_'], ## type_converters = converters.blitz, ## compiler = 'gcc') if len(kz) < 2: # normalize and save only if len(kz) == 1 # otherwise, modo is ignored and only Delta is useful # normalizza la propagazione sinistra e quella destra alfa = sr[n1-1] / sl[n2-1] sl[n2-1:] *= alfa sr[n2-1:] *= alfa al[n2-1:] *= alfa ar[n2-1:] *= alfa modo.sl = sl modo.sr = sr modo.al = al modo.ar = ar modo.k = k modo.U = Uy modo.keff = kz modo.zero = Delta modo.pars = FMMpars return (Delta, modo) def remove_consecutives(x, y): b = numpy.r_[numpy.diff(x) == 1, 0].astype(int) ic = 0 flag = 0 l = [] for ib in range(len(b)): if flag == 0: c = [x[ib]] ic += 1 if b[ib] == 1: flag = 1 else: l.append(c) else: c.append(x[ib]) if b[ib] != 1: flag = 0 l.append(c) index = [] for il, ll in enumerate(l): newi = ll itmp = numpy.argmax(y[newi]) index.append(newi[0] + itmp) return index def findzerosnew(x, y, searchinterval): minsi = 2 * numpy.abs(x[1] - x[0]) if searchinterval < minsi: searchinterval = minsi dy = numpy.r_[0, numpy.diff(numpy.diff(scipy.log(y))), 0] idy = numpy.where(dy > 0.005)[0] if len(idy) == 0: zeri = numpy.array([]) z1 = numpy.array([]) z2 = numpy.array([]) else: ind = remove_consecutives(idy, dy) zeri = x[ind] z1 = numpy.zeros_like(zeri) z2 = numpy.zeros_like(zeri) dz = numpy.abs(numpy.diff(zeri)) if len(dz) == 0: z1[0] = zeri - searchinterval/2 z2[0] = zeri + searchinterval/2 else: delta = numpy.min([dz[0], searchinterval]) z1[0] = zeri[0] - delta/2 z2[0] = zeri[0] + delta/2 for idx in range(1, len(zeri) - 1): delta = numpy.min([dz[idx - 1], dz[idx], searchinterval]) z1[idx] = zeri[idx] - delta/2 z2[idx] = zeri[idx] + delta/2 delta =
numpy.min([dz[-1], searchinterval])
numpy.min
import numpy as np from scipy.spatial.distance import squareform from random import randint # there are more efficient algorithms for this # https://people.csail.mit.edu/virgi/6.890/papers/APBP.pdf def max_min(A, B): '''max-min product of two square matrices params: A, B: NxN numpy arrays ''' assert A.shape == B.shape return np.max(np.minimum(A[:, :, None], B[None, :, :]), axis=1) def mat_gromov_prod(dists, base): '''Gromov products of N-point metric space relative to base point Args: dists (ndarray): NxN matrix of pairwise distances base (int): index of the basepoint in 0...N-1 ''' assert dists.shape[0] == dists.shape[1] and 0 <= base < dists.shape[0] row = dists[base, :][None, :] col = dists[:, base][:, None] return 0.5*(row+col-dists) def delta_rel(dists, base=None): ''' Measure the delta-hyperbolicity constant of data with respect to basepoint, normalized by the diameter (max dist). Args: dists (ndarray): NxN matrix of pairwise distances base (int): index of basepoint in 0...N-1 (default = random) ''' if base is None: base = randint(0,dist.shape[0]-1) assert is_metric(dists) and 0 <= base < dists.shape[0] G = mat_gromov_prod(dists, base) delta = np.max(max_min(G,G)-G) diam = np.max(dists) return delta/diam def delta_sample(X, **kwargs): bs = kwargs.get("bs", X.shape[0]) tries = kwargs.get("tries", 10) dist = kwargs.get("dist", None) deltas = [] for i in range(tries): idx = np.random.choice(X.shape[0], bs) batch = X[idx] if dist is None: dists = np.linalg.norm( batch[None:,]-batch[:,None], axis=-1) else: dists = dist(batch,batch) deltas.append( delta_rel(dists,randint(0,bs-1)) ) return deltas def is_metric(X, tol=1e-8): return len(X.shape) == 2 and \ np.all( np.abs(X-X.T)<tol ) and\ np.all( np.abs(np.diag(X))<tol ) and\ np.all(X >= 0) def avg_distortion(metric1, metric2): ''' Average distortion between two metrics. Args: metric1, metric2 (ndarray): N x N distance matrices, or length N*(N-1)//2 compressed distance matrices Returns: average distortion (float) ''' assert metric1.shape == metric2.shape if len(metric1.shape) > 1: assert is_metric(metric1) X = squareform(metric1) else: X = metric1 if len(metric2.shape) > 1: assert is_metric(metric2) Y = squareform(metric2) else: Y = metric2 return np.mean(
np.abs(X-Y)
numpy.abs
from google.cloud import bigquery from google.oauth2 import service_account import pandas_gbq import pandas as pd from pandas.io import gbq import numpy as np from IPython import display import tensorflow as tf from tensorflow.python.data import Dataset import math from sklearn import metrics from matplotlib import pyplot as plt from sklearn.utils import shuffle from googleapiclient import discovery from googleapiclient import errors import time import re import os from google.cloud import storage import datetime import pytz class Auto_predictor(): def __init__(self, service_account_credential_file, project_id, dataset_id, model_name, bucket, sql, region = "us-east1", data_format = 'JSON', max_worker_count=8, version_name=None,runtime_version=None): timestamp = datetime.datetime.now(pytz.timezone("America/New_York")).strftime('%Y_%m_%d_%H_%M_%S') current_day = datetime.datetime.now(pytz.timezone('US/Eastern')).strftime('%Y-%m-%d') last_hour = datetime.datetime.now(pytz.timezone('US/Eastern')).replace(microsecond=0,second=0,minute=0).strftime("%H:%M:%S") self.credentials = service_account.Credentials.from_service_account_file(service_account_credential_file) self.project_id = project_id self.dataset_id = dataset_id self.model_name = model_name self.bucket = bucket self.sql = sql self.region = region self.data_format = data_format self.version_name = version_name self.max_worker_count = max_worker_count self.runtime_version = runtime_version self.job_id = '{}_{}'.format(model_name,timestamp) self.input_bucket = '{}/prediction_input/{}'.format(bucket,model_name) self.output_bucket = '{}/prediction_output/{}'.format(bucket,model_name) def __repr__(self): return ('model_name:{}\ninput_bucket:{}\noutput_bucket:{}\nsql:{}'.format(self.model_name,self.input_bucket,self.output_bucket,self.sql)) def prepare_input_data(self): # This function takes data from bigQuery, massages it or do any necessary feature engineering in a SQL query, and dumps the result into a GCS bucket # At the time of writing, the functionality of directly dumping bigQuery query result into a GCS bucket is not supported, # So I used a temp table for storing the query result before dumping it to the GCS bucket. client = bigquery.Client(credentials=self.credentials,project=self.project_id) job_config = bigquery.QueryJobConfig() table_ref = client.dataset(self.dataset_id).table("TEMP_TABLE") job_config.destination = table_ref job_config.write_disposition = bigquery.WriteDisposition.WRITE_TRUNCATE query_job = client.query(self.sql,location="US",job_config=job_config,) query_job.result() print("Saved query result to {}".format(table_ref.path)) job_config = bigquery.job.ExtractJobConfig() job_config.destination_format = bigquery.DestinationFormat.NEWLINE_DELIMITED_JSON gcs_destination = '{}/*.{}'.format(self.bucket,self.data_format.lower()) extract_job = client.extract_table(table_ref, gcs_destination, job_config = job_config, location='US') extract_job.result() print('Dumped {}:{}.{} to {}'.format(self.project_id, self.dataset_id, "TEMP_TABLE", self.bucket)) def batch_predict(self): # Google Cloud has specific naming requirements for project and model id project_id = 'projects/{}'.format(self.project_id) model_id = 'projects/{}/models/{}'.format(self.project_id, self.model_name) body = {'jobId' : self.job_id, 'predictionInput': {'dataFormat' : self.data_format, 'inputPaths' : self.input_bucket, 'outputPath' : self.output_bucket, 'region' : self.region, 'versionName': self.version_name, 'modelName' : model_id}} if self.max_worker_count: body['predictionInput']['maxWorkerCount'] = self.max_worker_count if self.runtime_version: body['predictionInput']['runtimeVersion'] = self.runtime_version # Make batch prediction ml = discovery.build('ml', 'v1', credentials=self.credentials) request = ml.projects().jobs().create(parent=project_id, body=body) request.execute() class Trainer(): def __init__(self, project_id, service_account_dir): self.project_id = project_id self.service_account_dir = service_account_dir os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = self.service_account_dir def forward_key_to_export(self,estimator): estimator = tf.contrib.estimator.forward_features(estimator, self.passed_through_id_fields) config = estimator.config def model_fn2(features, labels, mode): estimatorSpec = estimator._call_model_fn(features, labels, mode, config=config) if estimatorSpec.export_outputs: for ekey in self.passed_through_id_fields: estimatorSpec.export_outputs[ekey] = tf.estimator.export.PredictOutput(estimatorSpec.predictions) return estimatorSpec return tf.estimator.Estimator(model_fn=model_fn2, config=config) def auto_serving_fn(self): def adding_passing_through_ids(): fields = self.training_features.columns INSTANCE_KEY_COLUMN = [field for field in fields if field.lower() in self.passed_through_id_fields] INPUT_COLUMNS = set(tf.feature_column.numeric_column(field,dtype=tf.dtypes.float64) if field.lower() in self.passed_through_id_fields else tf.feature_column.numeric_column(field) for field in fields) inputs = {} features = {} for feat in INPUT_COLUMNS: inputs[feat.name] = tf.placeholder(shape=[None], dtype=feat.dtype) if feat.name in INSTANCE_KEY_COLUMN: features[feat.name] = tf.identity(inputs[feat.name]) else: features[feat.name] = inputs[feat.name] serving_input_rcvr = tf.estimator.export.ServingInputReceiver(features, inputs) return serving_input_rcvr serving_fn = adding_passing_through_ids return serving_fn() def construct_feature_columns(self, input_features): input_features_except_passthru_keys = input_features.copy().drop(self.passed_through_id_fields,axis = 1) return set([tf.feature_column.numeric_column(my_feature) for my_feature in input_features_except_passthru_keys]) def my_input_fn(self, features, targets, batch_size=1, shuffle=True, num_epochs=None, shuffle_num = 10000): features = {key:np.array(value) for key,value in dict(features).items()} ds = Dataset.from_tensor_slices((features,targets)) ds = ds.batch(batch_size).repeat(num_epochs) if shuffle: ds = ds.shuffle(shuffle_num) features, labels = ds.make_one_shot_iterator().get_next() return features, labels def predict_training_input_fn(self): return my_input_fn(self.training_features, self.training_targets[self.target_name], num_epochs=1, shuffle=False) def predict_validation_input_fn(self): return my_input_fn(self.validation_features, self.validation_targets[self.target_name], num_epochs=1, shuffle=False) def train(self, sql, steps, dropout_num, batch_size, hidden_units, target_name, gcs_bucket_name = "model_files", tmp_model_prefix = "temporary_models/auto_train", completed_model_prefix = "completed_models/auto_train", is_classification = True, learning_rate = 0.0003,decay_rate = 0.9,clip_gradients_by_norm = 5.0,passed_through_id_fields = []): self.is_classification = is_classification self.training_data = gbq.read_gbq(sql, self.project_id, dialect='standard') self.target_name = target_name self.gcs_bucket_name = self.project_id + "_" + gcs_bucket_name self.tmp_model_prefix = tmp_model_prefix self.completed_model_prefix = completed_model_prefix self.training_features = self.training_data.loc[:, self.training_data.columns != target_name] self.training_targets = self.training_data.loc[:, self.training_data.columns == target_name] # self.tmp_model_dir = "gs://{}/{}".format(gcs_bucket_name,tmp_model_prefix) self.completed_model_dir = "gs://{}/{}".format(self.gcs_bucket_name,completed_model_prefix) self.passed_through_id_fields = passed_through_id_fields # Create an estimator. optimizer = tf.contrib.estimator.clip_gradients_by_norm(tf.train.RMSPropOptimizer(learning_rate=learning_rate, decay=decay_rate),clip_gradients_by_norm) if is_classification: estimator = tf.estimator.DNNClassifier( feature_columns = self.construct_feature_columns(self.training_features), hidden_units = hidden_units, optimizer = optimizer, dropout = dropout_num #, #model_dir = self.tmp_model_dir ) else: estimator = tf.estimator.DNNRegressor( feature_columns = self.construct_feature_columns(self.training_features), hidden_units = hidden_units, optimizer = optimizer, dropout = dropout_num #, #model_dir = self.tmp_model_dir ) estimator = self.forward_key_to_export(estimator) training_input_fn = lambda: self.my_input_fn(self.training_features, self.training_targets[target_name], batch_size=batch_size) estimator.train(input_fn=training_input_fn, steps=steps) self.estimator = estimator print("training has been completed") def export_model(self): storage_client = storage.Client(project=self.project_id) try: bucket_name = storage_client.create_bucket(self.gcs_bucket_name) except: bucket_name = storage_client.get_bucket(self.gcs_bucket_name) completed_model_files = bucket_name.list_blobs(prefix=self.completed_model_dir) for file in completed_model_files: file.delete() self.completed_model_dir = self.estimator.export_savedmodel(export_dir_base = self.completed_model_dir, serving_input_receiver_fn = self.auto_serving_fn) self.completed_model_dir = re.sub("'","",re.sub("b'", "", str(self.completed_model_dir))) # temp_model_files = bucket_name.list_blobs(prefix=self.tmp_model_prefix) # for file in temp_model_files: # file.delete() print("Model has been exported to {}".format(self.completed_model_dir)) return self.completed_model_dir def validate(self, validation_data_sql): self.validation_data = gbq.read_gbq(validation_data_sql, self.project_id, dialect='standard') self.validation_features = self.validation_data[:, self.validation_data.columns != self.target_name] self.validation_targets = self.validation_data[:, self.validation_data.columns == self.target_name] training_predictions = self.estimator.predict(input_fn=self.predict_training_input_fn) validation_predictions = self.estimator.predict(input_fn=self.predict_validation_input_fn) if self.is_classification: training_predictions = [item for item in training_predictions] training_predictions = pd.concat([pd.DataFrame(np.array([item['class_ids'][0] for item in training_predictions]))], axis=1) training_predictions.columns = ['class_ids','classes','logistic','logits','probabilities'] training_predictions['label'] = pd.DataFrame(np.array(self.training_targets[self.target_name])) validation_predictions = [item for item in validation_predictions] validation_predictions = pd.concat([pd.DataFrame(
np.array([item['class_ids'][0] for item in validation_predictions])
numpy.array
# -*- coding: utf-8 -*-# """ File: Auto_Loan_ML.py Author: <NAME> Date: 3/15/20 Desc: Analysis of GM Financial Consumer Automobile Receivables Trust Data Tape Prediction of Delinquency via Tree-Based Feature Importance Methods """ """ ======================= Import dependencies ========================== """ import numpy as np import pandas as pd import os import glob from collections import OrderedDict import matplotlib.pyplot as plt import seaborn as sns import sklearn.metrics as sm from sklearn.model_selection import train_test_split, cross_val_score from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.ensemble import AdaBoostClassifier, AdaBoostRegressor from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.metrics import accuracy_score, classification_report from sklearn.inspection import permutation_importance from sklearn.pipeline import Pipeline from sklearn.preprocessing import OneHotEncoder """ ====================== Function definitions ========================== """ def getIndexes(dfObj, value): # Empty list listOfPos = [] # isin() method will return a dataframe with boolean values, True at the positions where element exists result = dfObj.isin([value]) # any() method will return a boolean series seriesObj = result.any() # Get list of columns where element exists columnNames = list(seriesObj[seriesObj == True].index) # Iterate over the list of columns and extract the row index where element exists for col in columnNames: rows = list(result[col][result[col] == True].index) for row in rows: listOfPos.append((row, col)) # This list contains a list tuples with # the index of element in the dataframe return listOfPos def plot_feature_importances(feature_importances, title, feature_names): # Normalize the importance values feature_importances = 100.0 * (feature_importances / max(feature_importances)) # Sort the index values and flip them so that they are arranged in decreasing order of importance index_sorted = np.flipud(
np.argsort(feature_importances)
numpy.argsort
import time import tensorflow as tf import numpy as np from gcn.utils import * from gcn.models import GCN, MLP, BCP # Set random seed seed = 123
np.random.seed(seed)
numpy.random.seed
import numpy as np from scipy.sparse import lil_matrix from scipy import stats from joblib import Parallel, delayed from joblib import load, dump import tempfile import shutil import os import warnings from ..processing import knee warnings.filterwarnings("ignore") def wgr_BOLD_event_vector(N, matrix, thr, k, temporal_mask): """ Detect BOLD event. event > thr & event < 3.1 """ data = lil_matrix((1, N)) matrix = matrix[:, np.newaxis] if 0 in np.array(temporal_mask).shape: matrix = stats.zscore(matrix, ddof=1) matrix = np.nan_to_num(matrix) for t in range(1 + k, N - k + 1): if matrix[t - 1, 0] > thr[0] and \ np.all(matrix[t - k - 1:t - 1, 0] < matrix[t - 1, 0]) and \ np.all(matrix[t - 1, 0] > matrix[t:t + k, 0]): data[0, t - 1] = 1 else: datm = np.mean(matrix[temporal_mask]) datstd = np.std(matrix[temporal_mask]) datstd[datstd == 0] = 1 matrix = np.divide((matrix - datm), datstd) for t in range(1 + k, N - k + 1): if temporal_mask[t-1]: if matrix[t - 1, 0] > thr[0] and \ np.all(matrix[t - k - 1:t - 1, 0] < matrix[t - 1, 0]) and \ np.all(matrix[t - 1, 0] > matrix[t:t + k, 0]): data[0, t - 1] = 1 return data def tor_make_deconv_mtx3(sf, tp, eres): docenter = 0 if type(sf) is not dict: sf2 = {} for i in range(0, sf.shape[1]): sf2[i] = sf[:, i] sf = sf2 if type(tp) is int: tp = np.tile(tp, (1, len(sf))) if len(tp) != len(sf): print('timepoints vectors (tp) and \ stick function (sf) lengths do not match!') return tbefore = 0 nsess = len(sf) numtrs = int(np.around(np.amax(sf[0].shape) / eres)) myzeros = np.zeros((numtrs, 1)) DX = np.zeros((numtrs, 1)) for i in range(0, len(sf)): Snumtrs = np.amax(sf[i].shape) / eres if(Snumtrs != np.round(Snumtrs)): print('length not evenly divisible by eres') if(numtrs != Snumtrs): print('different length than sf[0]') inums = np.nonzero(sf[i] > 0)[0] inums = inums / eres inums = np.ceil(inums).astype(int) sf[i] = np.ravel(myzeros) sf[i][inums] = 1 index = 0 for i in range(0, len(sf)): if tbefore != 0: for j in range(tbefore - 1, -1, -1): sf_temp = sf[i][j:] sf_temp = sf_temp[:, np.newaxis] mysf = np.concatenate((sf_temp, np.zeros((j, 1)))) if index == 0: DX[:, index] = np.ravel(mysf) else: DX = np.column_stack((DX, mysf)) index += 1 if index == 0: DX[:, index] = sf[i] else: DX = np.column_stack((DX, sf[i])) index += 1 inums = np.nonzero(sf[i] == 1)[0] for j in range(1, np.ravel(tp)[i]): myzeros = np.zeros((numtrs, 1)) inums = inums + 1 reg = myzeros inums = inums[inums < numtrs] reg[inums] = 1 while (np.amax(reg.shape) < DX.shape[0]): reg = np.concatenate((reg, np.zeros(1, 1))) DX = np.column_stack((DX, reg)) index += 1 if nsess < 2: DX = np.column_stack((DX, np.ones((DX.shape[0], 1)))) else: X = np.zeros((DX.shape[0], 1)) index = 0 scanlen = DX.shape[0] / nsess if np.around(scanlen) != scanlen: print('Model length is not an even multiple of scan length.') for startimg in range(0, DX.shape[0], int(np.around(scanlen))): if index == 0: X[startimg:startimg + int(np.around(scanlen)), index] = 1 else: X_temp = np.zeros((DX.shape[0], 1)) X_temp[startimg:startimg + int(np.around(scanlen)), 0] = 1 X = np.column_stack((X, X_temp)) index += 1 DX = np.column_stack((DX, X)) if docenter: wh = np.arange(1, DX.shape[1] - nsess + 1) DX[:, wh] = DX[:, wh] - np.tile(np.mean(DX[:, wh]), (DX.shape[0], 1)) return DX, sf def Fit_sFIR2(tc, TR, Runs, T, mode): DX, sf = tor_make_deconv_mtx3(Runs, T, 1) DX2 = DX[:, 0:T] num = T if mode == 1: C = np.arange(1, num + 1).reshape((1, num)).conj().T\ .dot(np.ones((1, num))) h =
np.sqrt(1 / (7 / TR))
numpy.sqrt
# -*- coding: utf-8 -*- """ invdisttree.py: inverse-distance-weighted interpolation using KDTree fast, solid, local """ from __future__ import division import numpy as np from scipy.spatial import cKDTree as KDTree from shapely.geometry import LineString # http://docs.scipy.org/doc/scipy/reference/spatial.html __date__ = "2010-11-09 Nov" # weights, doc class Invdisttree: """ Inverse-distance-weighted interpolation using KDTree Examples -------- >>> invdisttree = Invdisttree( X, z ) -- data points, values >>> interpol = invdisttree( q, nnear=3, eps=0, p=1, weights=None, stat=0 ) # interpolates z from the 3 points nearest each query point q; >>> interpol(q) Finds the 3 data points nearest point q, at distances d1 d2 d3 and returns the IDW average of the values z1 z2 z3 .. math:: (z1/d1 + z2/d2 + z3/d3) / (1/d1 + 1/d2 + 1/d3) = .55 z1 + .27 z2 + .18 z3 How many nearest neighbors should one take? 1. start with 8 11 14 .. 28 in 2d 3d 4d .. 10d; see Wendel's formula 2. make 3 runs with nnear= e.g. 6 8 10, and look at the results There is also a parameter p that weights nearer points more, farther points less. In 2d, the circles around query points have :math:`areas ~ distance^2` So p=2 is essentially inverse-area weighting: .. math:: (z1/area1 + z2/area2 + z3/area3)/ (1/area1 + 1/area2 + 1/area3) = .74 z1 + .18 z2 + .08 z3 Notes ----- If the components of the X coordinates measure different things, Euclidean distance can be way off. For example, if X0 is in the range 0 to 1 but X1 0 to 1000, the X1 distances will swamp X0; rescale the data, i.e. make X0.std() ~= X1.std() . """ def __init__( self, X, z, leafsize=10, stat=0 ): """Constructor using coordinates and data Parameters ---------- X : np.ndarray Coordinates of data points z : np.ndarray Data values at data points leafsize: int tree parameter stat : bool accumulate wsum, wn for average weights """ assert len(X) == len(z), "len(X) %d != len(z) %d" % (len(X), len(z)) self.tree = KDTree( X, leafsize=leafsize ) # build the tree self.x = X self.z = z self.stat = stat self.wn = 0 self.wsum = None; def __call__( self, q, nnear=6, eps=0, p=1, weights=None, gridboundary=None ): """ Apply the interpolator to find nearest neighbors of each query point Parameters ---------- q : Nx2 Destination points. may be one point, or a batch of points. eps: float approximate nearest, dist <= (1 + eps) * true nearest p: float power for decay with distance ` weights: float optional multipliers for :math:`1 / distance^p`, of the same shape as q gridboundary: True avoid crossing land Returns: Interpolated values """ if gridboundary is not None: raise NotImplementedError("not implemented with gridboundary option") q = np.asarray(q) qdim = q.ndim if qdim == 1: q = np.array([q]) if self.wsum is None: self.wsum = np.zeros(nnear) # The reason we use KDTree here is for faster computation and also # we want to find the nearest N points and their indices. self.distances, self.ix = self.tree.query( q, k=nnear, eps=eps ) interpol = np.zeros( (len(self.distances),) +
np.shape(self.z[0])
numpy.shape
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Tests for functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re import time import numpy as np from tensorflow.core.framework import function_pb2 from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors_impl from tensorflow.python.framework import function from tensorflow.python.framework import graph_to_function_def from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import clip_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import functional_ops from tensorflow.python.ops import gen_logging_ops from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import init_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import logging_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.platform import tf_logging def _OptimizerOptions(): for cse in [False, True]: for inline in [False, True]: for cfold in [False, True]: yield config_pb2.ConfigProto(graph_options=config_pb2.GraphOptions( optimizer_options=config_pb2.OptimizerOptions( opt_level=config_pb2.OptimizerOptions.L0, do_common_subexpression_elimination=cse, do_function_inlining=inline, do_constant_folding=cfold))) @test_util.with_c_api class FunctionTest(test.TestCase): """Test methods for verifying Function support. These test methods are used as mix-ins in two test cases: with and without C API support. """ def testIdentity(self): @function.Defun(dtypes.float32, func_name="MyIdentity") def MyIdentityFunc(a): return a with ops.Graph().as_default(): call = MyIdentityFunc([18.0]) self.assertEqual("MyIdentity", call.op.name) with session.Session() as sess: self.assertAllEqual([18.0], sess.run(call)) def testIdentityOutputName(self): @function.Defun( dtypes.float32, func_name="MyIdentity", out_names=["my_result_name"]) def MyIdentityFunc(a): return a with ops.Graph().as_default(): call = MyIdentityFunc([18.0]) self.assertEqual("MyIdentity", call.op.name) with session.Session() as sess: self.assertAllEqual([18.0], sess.run(call)) def testTooManyOutputNames(self): @function.Defun( dtypes.float32, func_name="MyIdentity", out_names=["my_result1", "my_result2"]) def MyIdentityFunc(a): return a with ops.Graph().as_default(): with self.assertRaisesRegexp( errors_impl.InvalidArgumentError, (r"output names must be either empty or equal in size to outputs. " "output names size = 2 outputs size = 1")): MyIdentityFunc([18.0]) def testDefineFunction2Args(self): @function.Defun(dtypes.float32, dtypes.float32, func_name="APlus2B") def APlus2B(a, b): return a + b * 2 with ops.Graph().as_default(): call = APlus2B([1.0], [2.0]) self.assertEqual("APlus2B", call.op.name) with session.Session() as sess: self.assertAllEqual([5.0], sess.run(call)) def testFunctionWithNoOutput(self): @function.Defun(dtypes.float32, dtypes.float32) def APlus2B(a, b): c = a + b * 2 # Create some ops to have nodes in the body print(c) # Using 'print' to make lint happy with ops.Graph().as_default(): # Call function. There should be no exceptions. APlus2B([1.0], [2.0]) def testDefineFunction2ArgsOutputName(self): @function.Defun( dtypes.float32, dtypes.float32, func_name="APlus2B", out_names=["my_result_name"]) def APlus2B(a, b): return a + b * 2 with ops.Graph().as_default(): call = APlus2B([1.0], [2.0]) self.assertEqual("APlus2B", call.op.name) with session.Session() as sess: self.assertAllEqual([5.0], sess.run(call)) def testDefineFunctionDuplicateOutputs(self): @function.Defun(dtypes.float32, func_name="Duplicate") def Duplicate(a): b = a + 1.0 return b, b g = ops.Graph() with g.as_default(): Duplicate([3.0]) func_sig = g.as_graph_def().library.function[0].signature # The names given to both outputs should be different # even though the same tensor is emitted to both. out_names = [a.name for a in func_sig.output_arg] self.assertEqual(2, len(out_names)) self.assertNotEqual(out_names[0], out_names[1]) def testGradientFunc(self): @function.Defun(dtypes.float32, func_name="XSquarePlusOneFn") def XSquarePlusOne(x): return x * x + 1.0 @function.Defun(dtypes.float32, dtypes.float32) def XSquarePlusOneGrad(x, dy): dx = functional_ops._symbolic_gradient( input=[x, dy], Tout=[dtypes.float32], f="XSquarePlusOneFn", name="dx") return dx g = ops.Graph() with g.as_default(): call_f = XSquarePlusOne([2.0]) call_g = XSquarePlusOneGrad([2.0], [0.1]) with session.Session() as sess: self.assertAllClose([5.0], sess.run(call_f)) self.assertAllClose([0.4], sess.run(call_g)) def testTanhSymGrad(self): @function.Defun(dtypes.float32) def Forward(x): return math_ops.reduce_sum(math_ops.tanh(x)) g = ops.Graph() with g.as_default(): x = array_ops.placeholder(dtypes.float32) y = Forward(x) dx = gradients_impl.gradients([y], [x]) inp = np.array([-1, 1, 2, -2], dtype=np.float32) feed = {x: inp} cfg = config_pb2.ConfigProto(graph_options=config_pb2.GraphOptions( optimizer_options=config_pb2.OptimizerOptions( opt_level=config_pb2.OptimizerOptions.L1, do_function_inlining=True))) with session.Session(graph=g, config=cfg) as sess: out, = sess.run(dx, feed) self.assertAllClose(1 - np.square(np.tanh(inp)), out) def testCustomGradient(self): dtype = dtypes.float32 @function.Defun(dtype, dtype, dtype) def XentLossGrad(logits, labels, dloss): dlogits = array_ops.reshape(dloss, [-1, 1]) * ( nn_ops.softmax(logits) - labels) dlabels = array_ops.zeros_like(labels) # Takes exp(dlogits) to differentiate it from the "correct" gradient. return math_ops.exp(dlogits), dlabels @function.Defun(dtype, dtype, grad_func=XentLossGrad) def XentLoss(logits, labels): return math_ops.reduce_sum(labels * math_ops.log(nn_ops.softmax(logits)), 1) g = ops.Graph() with g.as_default(): logits = array_ops.placeholder(dtype) labels = array_ops.placeholder(dtype) loss = XentLoss(logits, labels) dlogits = gradients_impl.gradients([loss], [logits]) x = np.random.uniform(-10., 10., size=(4, 9)).astype(np.float32) prob = np.exp(x) / np.sum(np.exp(x), 1, keepdims=1) y = np.random.uniform(-10., 10., size=(4, 9)).astype(np.float32) for cfg in _OptimizerOptions(): tf_logging.info("cfg = %s", cfg) with session.Session(graph=g, config=cfg) as sess: out, = sess.run(dlogits, {logits: x, labels: y}) self.assertAllClose(out, np.exp(prob - y)) def testCustomGradientError(self): dtype = dtypes.float32 @function.Defun(dtype, dtype, dtype) def Grad(x, dy, dz): # Should have returned 1 result. return x, dy + dz @function.Defun(dtype, grad_func=Grad) def Forward(x): return x, x g = ops.Graph() with g.as_default(): inp = array_ops.placeholder(dtype) out = math_ops.add_n(Forward(inp)) dinp = gradients_impl.gradients(out, [inp]) x = np.random.uniform(-10., 10., size=(4, 9)).astype(np.float32) with session.Session(graph=g) as sess: with self.assertRaisesRegexp( errors_impl.InvalidArgumentError, "SymGrad expects to return 1.*but get 2.*instead"): _ = sess.run(dinp, {inp: x}) def testSymGradShape(self): g = ops.Graph() with g.as_default(): x = array_ops.placeholder(dtypes.float32, [25, 4]) y = array_ops.placeholder(dtypes.float32, [200, 100]) dz = array_ops.placeholder(dtypes.float32, [1]) # We assume Foo is a function of (x, y) -> (z) Then, Foo's # gradient function is (x, y, dz) -> (dx, dy). dx's shape # should be the same as x's; and dy's shape should be the same # as y's. dx, dy = functional_ops._symbolic_gradient( input=[x, y, dz], Tout=[dtypes.float32] * 2, f="Foo") self.assertEqual(x.get_shape(), dx.get_shape()) self.assertEqual(y.get_shape(), dy.get_shape()) def testSymGradAttr(self): @function.Defun(noinline=True) def Foo(x): return x * 2 self.assertTrue( Foo.instantiate([dtypes.float32]).definition.attr["_noinline"].b) g = ops.Graph() with g.as_default(): x = constant_op.constant(3.0) y = Foo(x) dx, = gradients_impl.gradients(y, [x]) cfg = config_pb2.ConfigProto(graph_options=config_pb2.GraphOptions( optimizer_options=config_pb2.OptimizerOptions( opt_level=config_pb2.OptimizerOptions.L0, do_common_subexpression_elimination=True, do_function_inlining=True, do_constant_folding=True))) with self.test_session(graph=g, config=cfg): self.assertAllClose(y.eval(), 6.) self.assertAllClose(dx.eval(), 2.) def _testZNoDepOnY(self, use_const_grad_ys): @function.Defun(dtypes.float32, dtypes.float32) def Foo(x, y): # pylint: disable=unused-argument return x * 2 with ops.Graph().as_default(): # z = Foo(x, y). z doe x = constant_op.constant(1.0) y = constant_op.constant(2.0) z = Foo(x, y) if use_const_grad_ys: dx, dy = gradients_impl.gradients([z], [x, y], grad_ys=[1.0]) else: dx, dy = gradients_impl.gradients([z], [x, y]) with session.Session() as sess: dx_val, dy_val = sess.run([dx, dy]) self.assertEqual([2.0], dx_val) self.assertEqual([0.0], dy_val) def testZNoDepOnY(self): self._testZNoDepOnY(False) def testZNoDepOnYConstGradYs(self): # Tests for constant folding of grad_ys self._testZNoDepOnY(True) def testDefineFunctionNoArgs(self): @function.Defun(func_name="AConstant") def AConstant(): return constant_op.constant([42]) with ops.Graph().as_default(): call = AConstant() self.assertEqual("AConstant", call.op.name) with session.Session() as sess: self.assertAllEqual([42], sess.run(call)) def testDefineFunctionNames(self): @function.Defun(dtypes.float32, func_name="Foo") def Foo(a): return a + 1 with ops.Graph().as_default(): call1 = Foo([1.0]) self.assertEqual("Foo", call1.op.name) call2 = Foo([1.0]) self.assertEqual("Foo_1", call2.op.name) # pylint: disable=unexpected-keyword-arg call3 = Foo([1.0], name="mine") self.assertEqual("mine", call3.op.name) with ops.name_scope("my"): call4 = Foo([1.0], name="precious") self.assertEqual("my/precious", call4.op.name) def testNoOp(self): @function.Defun(dtypes.float32) def Foo(x): y = logging_ops.Print(x, [], "Hello") with ops.control_dependencies([y]): z = control_flow_ops.no_op() with ops.control_dependencies([z]): return x * 2 with ops.Graph().as_default(), self.test_session(): z = Foo(constant_op.constant(3.0)) self.assertAllEqual(z.eval(), 6.0) def testAssertOp(self): @function.Defun(dtypes.float32) def Foo(x): check = gen_logging_ops._assert(math_ops.greater(x, 0), [x]) with ops.control_dependencies([check]): return x * 2 g = ops.Graph() with g.as_default(), self.test_session(): self.assertAllEqual(Foo(constant_op.constant(3.0)).eval(), 6.0) with self.assertRaisesRegexp(errors_impl.InvalidArgumentError, "assertion failed.*-3"): self.assertAllEqual(Foo(constant_op.constant(-3.0)).eval(), 6.0) @test_util.disable_c_api # Op._add_control_inputs doesn't work with C API def testAssertWrapper(self): @function.Defun(dtypes.float32) def MyFn(x): with ops.control_dependencies( [control_flow_ops.Assert(math_ops.less_equal(x, 10.0), [x])]): return array_ops.identity(x) with self.test_session(): self.assertEqual(1.0, MyFn(1.0).eval()) with self.assertRaisesRegexp(errors_impl.InvalidArgumentError, "assertion"): _ = MyFn(100.0).eval() @test_util.disable_c_api # Op._add_control_inputs doesn't work with C API def testWhileLoopCallsFunc(self): with self.test_session(use_gpu=True) as sess: @function.Defun(dtypes.float32) def Times2(x): constant_two = constant_op.constant(2, dtypes.int32) two_on_gpu = math_ops.cast(constant_two, dtypes.float32) return x * two_on_gpu def Body(x): x2 = Times2(x) x2.set_shape([]) return x2 loop = control_flow_ops.while_loop(lambda x: x < 1e5, Body, [1.0]) ans = sess.run(loop) self.assertAllClose(ans, 131072.) @test_util.disable_c_api # Op._add_control_inputs doesn't work with C API def testControlFlowStrictness(self): """Inlined functions must not execute in a untaken control flow branch.""" @function.Defun(dtypes.int32) def AssertFail(x): # Assertion that always fails and does not have a data dependency on `x`. assert_false = control_flow_ops.Assert(False, [42]) with ops.control_dependencies([assert_false]): return array_ops.identity(x) with ops.device("CPU"): pred = array_ops.placeholder(dtypes.bool) x = array_ops.placeholder(dtypes.int32) cond = control_flow_ops.cond(pred, lambda: x + 1, lambda: AssertFail(x)) # pylint: disable=unnecessary-lambda loop = control_flow_ops.while_loop(lambda y: pred, lambda y: AssertFail(y), [x]) # pylint: enable=unnecessary-lambda # Enables inlining. config = config_pb2.ConfigProto(graph_options=config_pb2.GraphOptions( optimizer_options=config_pb2.OptimizerOptions( opt_level=config_pb2.OptimizerOptions.L0, do_common_subexpression_elimination=True, do_function_inlining=True, do_constant_folding=True))) with session.Session(config=config) as sess: # Since the 'False' branch is not taken, the assertion should not fire. self.assertEqual(4, sess.run(cond, {pred: True, x: 3})) # The assertion should still fire if the False branch is taken. with self.assertRaisesRegexp(errors_impl.InvalidArgumentError, "assertion"): sess.run(cond, {pred: False, x: 3}) # Similarly for loops. self.assertEqual(3, sess.run(loop, {pred: False, x: 3})) with self.assertRaisesRegexp(errors_impl.InvalidArgumentError, "assertion"): sess.run(loop, {pred: True, x: 3}) def testVar(self): @function.Defun(dtypes.float32) def Foo(x): return x * x + 1 g = ops.Graph() with g.as_default(): v = variables.Variable(constant_op.constant(10.0)) z = Foo(v) with self.test_session(graph=g): variables.global_variables_initializer().run() self.assertAllEqual(z.eval(), 101.) def testResourceVarAsImplicitInput(self): g = ops.Graph() with g.as_default(), ops.device("cpu:0"): v = variable_scope.get_variable( "var", (4, 4), dtypes.float32, use_resource=True) @function.Defun() def Foo(): return array_ops.identity(v) y = v.value() z = Foo() with self.test_session(graph=g): v.initializer.run() self.assertAllEqual(y.eval(), z.eval()) def testDefineErrors(self): with ops.Graph().as_default(): with self.assertRaisesRegexp(ValueError, "can not return None"): @function.Defun() def TwoNone(): return None, None _ = TwoNone.definition with self.assertRaisesRegexp(ValueError, "are not supported"): @function.Defun() def DefaultArg(unused_a=12): return constant_op.constant([1]) _ = DefaultArg.definition with self.assertRaisesRegexp(ValueError, "are not supported"): @function.Defun() def KwArgs(**unused_kwargs): return constant_op.constant([1]) _ = KwArgs.definition with self.assertRaisesRegexp(ValueError, "specified input types"): @function.Defun(dtypes.float32) def PlusMinusV2(a, b): return a + b, b - a _ = PlusMinusV2.definition with self.assertRaisesRegexp(ValueError, "specified input types"): @function.Defun(dtypes.float32, dtypes.float32, dtypes.float32) def PlusMinusV3(a, b): return a + b, b - a _ = PlusMinusV3.definition def testCallErrors(self): @function.Defun() def Const(): return constant_op.constant(1) @function.Defun(dtypes.int32) def PlusOne(a): return a + 1 @function.Defun(dtypes.int32, dtypes.int32) def PlusMinus(a, b): return a + b, b - a with ops.Graph().as_default(): _ = Const() # pylint: disable=too-many-function-args # pylint: disable=unexpected-keyword-arg # pylint: disable=no-value-for-parameter with self.assertRaisesRegexp(ValueError, "arguments: 0"): _ = Const(1) with self.assertRaisesRegexp(ValueError, "arguments: 0"): _ = Const(1, 2) with self.assertRaisesRegexp(ValueError, "arguments: 1"): _ = PlusOne() _ = PlusOne(1) with self.assertRaisesRegexp(ValueError, "arguments: 1"): _ = PlusOne(1, 2) with self.assertRaisesRegexp(ValueError, "arguments: 2"): _ = PlusMinus() with self.assertRaisesRegexp(ValueError, "arguments: 2"): _ = PlusMinus(1) _ = PlusMinus(1, 2) _ = PlusOne(1, name="p1") with self.assertRaisesRegexp(ValueError, "Unknown keyword arguments"): _ = PlusOne(1, device="/device:GPU:0") def testFunctionDecorator(self): @function.Defun(dtypes.float32, func_name="Minus1") def Minus1(b): return b - 1.0 with ops.Graph().as_default(): call1 = Minus1([2.]) self.assertTrue(isinstance(Minus1, function._DefinedFunction)) self.assertEqual(Minus1.name, "Minus1") # pylint: disable=unexpected-keyword-arg call2 = Minus1(call1, name="next") # pylint: enable=unexpected-keyword-arg self.assertEqual("next", call2.op.name) with session.Session() as sess: self.assertAllEqual([1], sess.run(call1)) self.assertAllEqual([0], sess.run(call2)) def testNestedFunction(self): @function.Defun(dtypes.float32) def Cube(x): return x * x * x @function.Defun(dtypes.float32, dtypes.float32) def CubeXPlusY(x, y): return Cube(x) + y with ops.Graph().as_default(): z = CubeXPlusY(3.0, -2.0) with self.test_session(): self.assertAllEqual(z.eval(), 25.0) def testNestedDefinedFunction(self): @function.Defun(dtypes.float32, dtypes.float32) def CubeXPlusY(x, y): @function.Defun(dtypes.float32) def Cube(x): return x * x * x return Cube(x) + y with ops.Graph().as_default(): z = CubeXPlusY(3.0, -2.0) with self.test_session(): self.assertAllEqual(z.eval(), 25.0) def testUnusedFunction(self): invoked = False # pylint: disable=unused-variable @function.Defun() def Unused(): invoked = True return constant_op.constant(42.) self.assertFalse(invoked) g = ops.Graph() with g.as_default(): @function.Defun() def Unused2(): invoked = True return constant_op.constant(7.) constant_op.constant(3.) # pylint: enable=unused-variable self.assertFalse(invoked) gdef = g.as_graph_def() self.assertEqual(0, len(gdef.library.function)) def testReduction(self): g = ops.Graph() # BN0 is computing batch normed matrix along rows. def BN0(x): mean = math_ops.reduce_mean(x, [0]) var = math_ops.reduce_mean(math_ops.square(x - mean)) # biased var rstd = math_ops.rsqrt(var + 1e-8) return (x - mean) * rstd # Wraps BatchNorm in a tf function. @function.Defun(dtypes.float32) def BN1(x): return BN0(x) with g.as_default(): x = array_ops.placeholder(dtypes.float32) y0 = BN0(x) # A plain graph y1 = BN1(x) # A tf function dx0, = gradients_impl.gradients([y0], [x]) dx1, = gradients_impl.gradients([y1], [x]) # Both should produce the same result and gradient. with self.test_session(graph=g) as sess: vals = sess.run([y0, y1, dx0, dx1], {x: np.random.uniform(size=(3, 7))}) self.assertAllClose(vals[0], vals[1]) self.assertAllClose(vals[2], vals[3]) def testCapture(self): g = ops.Graph() with g.as_default(): w = variables.Variable(constant_op.constant([[1.0]])) b = variables.Variable(constant_op.constant([2.0])) # Foo() captures w and b. @function.Defun(dtypes.float32) def Foo(x): # Plus() captures b. @function.Defun(dtypes.float32) def Plus(y): return y + b return Plus(math_ops.matmul(w, x)) y = Foo(constant_op.constant([[10.]])) with self.test_session(graph=g): variables.global_variables_initializer().run() self.assertAllEqual(y.eval(), [[12.0]]) def testCaptureControls(self): g = ops.Graph() with g.as_default(): x = constant_op.constant([10.0]) x = logging_ops.Print(x, [x], "outer") @function.Defun(dtypes.float32) def Foo(y): with ops.control_dependencies([x]): y = logging_ops.Print(y, [y], "inner") return y with self.assertRaisesRegexp(ValueError, "not an element of this graph."): # NOTE: We still do not support capturing control deps. _ = Foo(x) def testCaptureInWhileLoop(self): g = ops.Graph() with g.as_default(): x = constant_op.constant(1) @function.Defun() def Foo(): return control_flow_ops.while_loop(lambda i: i < 10, lambda i: i + x, [0]) y = Foo() with self.test_session(graph=g) as sess: self.assertEqual(sess.run(y), 10) def testCaptureInCond(self): g = ops.Graph() with g.as_default(): x = constant_op.constant(1) @function.Defun(dtypes.bool) def Foo(pred): return control_flow_ops.cond(pred, lambda: x, lambda: x + 1) y = Foo(True) z = Foo(False) with self.test_session(graph=g) as sess: self.assertEqual(sess.run(y), 1) self.assertEqual(sess.run(z), 2) def testStableName(self): @function.Defun() def Foo(x, y, z): return math_ops.tanh(math_ops.matmul(x, y) + z) # We added more randomness to function names in C API. # TODO(iga): Remove this if statement when we switch to C API. if ops._USE_C_API: # pylint: disable=protected-access self.assertEqual("Foo_aCYSbwBkR5A", Foo.instantiate([dtypes.float32] * 3).name) else: self.assertEqual("Foo_d643acf7", Foo.instantiate([dtypes.float32] * 3).name) def testSignatureHash(self): # Foo.Inner and Bar.Inner have identical function body but have # different signatures. They should be treated as two different functions. @function.Defun() def Foo(x): @function.Defun() def Inner(x): return x + 10. return Inner(x) @function.Defun() def Bar(x): @function.Defun() def Inner(x, unused_y, unused_z): return x + 10. return Inner(x, 2., 3.) g = ops.Graph() with g.as_default(): x = constant_op.constant(10.0) y = Foo(x) z = Bar(x) with self.test_session(graph=g) as sess: v0, v1 = sess.run([y, z]) self.assertAllEqual(v0, 20.) self.assertAllEqual(v1, 20.) def testShapeFunction(self): @function.Defun( dtypes.float32, shape_func=lambda op: [op.inputs[0].get_shape()]) def Foo(x): return x + 1.0 @function.Defun( shape_func=lambda op: [[1] + op.inputs[0].get_shape().as_list()]) def Bar(x): return array_ops.stack([x]) g = ops.Graph() with g.as_default(): x = Foo([1.0, 2.0]) self.assertEqual(x.get_shape().as_list(), [2]) y = Bar(array_ops.zeros([1, 2, 3])) self.assertAllEqual(y.get_shape().as_list(), [1, 1, 2, 3]) def testVariableReuse(self): def LinearWithReuse(input_tensor, reuse=None): size = input_tensor.shape.dims[1] with variable_scope.variable_scope("linear", reuse=reuse): w = variable_scope.get_variable( "w", shape=[size, size], dtype=input_tensor.dtype) return math_ops.matmul(input_tensor, w) @function.Defun(dtypes.float32) def Foo(inputs): inputs = array_ops.reshape(inputs, [32, 100]) hidden = LinearWithReuse(inputs) return LinearWithReuse(hidden, reuse=True) input_op = array_ops.placeholder(shape=[32, 100], dtype=dtypes.float32) output_op = Foo(input_op) global_vars = variables.global_variables() self.assertEqual(len(global_vars), 1) self.assertEqual(global_vars[0].name, "linear/w:0") with session.Session() as sess: sess.run(variables.global_variables_initializer()) output_val = sess.run( output_op, feed_dict={input_op: np.random.rand(32, 100)}) self.assertEqual(output_val.shape, (32, 100)) def testFunctionCallInDifferentVariableScopes(self): @function.Defun(dtypes.float32) def Foo(inputs): var = variable_scope.get_variable( "var", shape=[10], dtype=dtypes.float32, initializer=init_ops.ones_initializer()) return inputs + var input_op = array_ops.placeholder(shape=[10], dtype=dtypes.float32) with variable_scope.variable_scope("vs1"): out1_op = Foo(input_op) with variable_scope.variable_scope("vs2"): out2_op = Foo(input_op) global_vars = variables.global_variables() self.assertEqual(len(global_vars), 1) self.assertEqual(global_vars[0].name, "vs1/var:0") with session.Session() as sess: sess.run(variables.global_variables_initializer()) out1, out2 = sess.run( [out1_op, out2_op], feed_dict={input_op: np.linspace(1, 10, 10)}) self.assertAllEqual(out1, np.linspace(2, 11, 10)) self.assertAllEqual(out2, np.linspace(2, 11, 10)) def testTwoInputsSameOp(self): g = ops.Graph() with g.as_default(): m = array_ops.placeholder(dtypes.float32) s, u, v = linalg_ops.svd(m) ss = math_ops.reduce_sum(s) uu = math_ops.reduce_sum(u) vv = math_ops.reduce_sum(v) result = ss + uu + vv f = graph_to_function_def.graph_to_function_def( g, g.get_operations()[1:], # skip the placeholder [s, u, v], [result]) self.assertEqual(len(f.signature.input_arg), 3) def testGradientWithIntegerFunctionArgument(self): @function.Defun(dtypes.int32, dtypes.float32) def Foo(t, x): return x[t] g = ops.Graph() with g.as_default(): inp = array_ops.placeholder(dtypes.float32) t = constant_op.constant(0, dtypes.int32) out = Foo(t, inp) dinp, = gradients_impl.gradients(out, [inp]) x = np.zeros((2,)).astype(np.float32) with session.Session(graph=g) as sess: self.assertAllClose( np.array([1.0, 0.0]).astype(np.float32), sess.run(dinp, {inp: x})) def testStatefulFunction(self): @function.Defun() def FunctionWithStatelessOp(): return constant_op.constant(42.0) @function.Defun() def FunctionWithStatefulOp(): return random_ops.random_uniform([100], maxval=10, dtype=dtypes.int32) @function.Defun() def FunctionWithStatelessFunctionCall(): return FunctionWithStatelessOp() @function.Defun() def FunctionWithStatefulFunctionCall(): return FunctionWithStatefulOp() # Test that the `is_stateful` bit is propagated. self.assertFalse(FunctionWithStatelessOp.definition.signature.is_stateful) self.assertTrue(FunctionWithStatefulOp.definition.signature.is_stateful) self.assertFalse( FunctionWithStatelessFunctionCall.definition.signature.is_stateful) self.assertTrue( FunctionWithStatefulFunctionCall.definition.signature.is_stateful) # Ensure that two invocations of the same random-number-generating # function produce different results. result1 = FunctionWithStatefulFunctionCall() result2 = FunctionWithStatefulFunctionCall() # Statefulness affects how the function is treated by the various # optimization passes, so run the test in each optimizer # configuration. for config in _OptimizerOptions(): with session.Session(config=config) as sess: val1, val2 = sess.run((result1, result2)) self.assertFalse(all(val1 == val2)) val3, val4 = sess.run((result1, result2)) self.assertFalse(all(val3 == val1)) self.assertFalse(all(val4 == val2)) @test_util.with_c_api class FunctionsFromProtos(test.TestCase): def expectFunctionsEqual(self, func, grad_func=None, new_func=None): if new_func is None: # Make a copy of func.definition to avoid any bugs masked by using the # same object serialized_fdef = func.definition.SerializeToString() # Serialize and then deserialize `func` to create `new_func` fdef = function_pb2.FunctionDef.FromString(serialized_fdef) new_func = function._from_definition(fdef, grad_func=grad_func) self.assertEqual(func.name, new_func.name) self.assertEqual(func.definition, new_func.definition) self.assertEqual(func.grad_func_name, new_func.grad_func_name) self.assertEqual(func.declared_input_types, new_func.declared_input_types) self.assertEqual(func.captured_inputs, new_func.captured_inputs) def testBasic(self): @function.Defun(dtypes.float32, dtypes.float32) def Foo(x, y): return x + y self.expectFunctionsEqual(Foo) def testGradFunc(self): @function.Defun(dtypes.float32, dtypes.float32) def G(x, dy): return x * dy @function.Defun(dtypes.float32, grad_func=G) def F(x): return math_ops.exp(x) - math_ops.exp(-x) self.expectFunctionsEqual(F, grad_func=G) def testCapturedInputs(self): c = constant_op.constant(10, dtypes.int64) @function.Defun(dtypes.int64) def Foo(x): return x + c new_func = function._from_definition(Foo.definition) self.assertEqual(Foo.name, new_func.name) self.assertEqual(Foo.definition, new_func.definition) self.assertEqual(Foo.grad_func_name, new_func.grad_func_name) # Captured inputs are added as regular inputs to the function definition self.assertEqual(new_func.declared_input_types, Foo.declared_input_types + (dtypes.int64,)) self.assertEqual(len(new_func.captured_inputs), 0) def testNestedFunctions(self): @function.Defun(dtypes.float32) def Outer(x): @function.Defun(dtypes.float32) def Inner(y): return y + 1 return Inner(Inner(x)) self.expectFunctionsEqual(Outer) def testFromLibrary(self): # Define some functions with different gradient functions. Note that many of # the below functions are identical since function bodies don't matter for # this test. @function.Defun(dtypes.float32, dtypes.float32) def G1(x, dy): return x * dy @function.Defun(dtypes.float32, dtypes.float32) def G2(x, dy): return x * dy # F1 and F2 have the same gradient function @function.Defun(dtypes.float32, grad_func=G1) def F1(x): return math_ops.exp(x) - math_ops.exp(-x) @function.Defun(dtypes.float32, grad_func=G1) def F2(x): return math_ops.exp(x) - math_ops.exp(-x) # F3 has a different gradient function @function.Defun(dtypes.float32, grad_func=G2) def F3(x): return math_ops.exp(x) - math_ops.exp(-x) # F4 has no gradient function @function.Defun(dtypes.float32) def F4(x): return math_ops.exp(x) - math_ops.exp(-x) # Instantiate all functions g = ops.Graph() with g.as_default(): c = constant_op.constant(1.0, dtypes.float32) f1 = F1(c) f2 = F2(c) f3 = F3(c) f4 = F4(c) gradients_impl.gradients([f1, f2, f3, f4], c) library = g.as_graph_def().library new_funcs = function._from_library(library) def CheckNewFunc(func): new_func = [f for f in new_funcs if f.name == func.name] self.assertEqual(len(new_func), 1) self.expectFunctionsEqual(func, new_func=new_func[0]) CheckNewFunc(G1) CheckNewFunc(G2) CheckNewFunc(F1) CheckNewFunc(F2) CheckNewFunc(F3) CheckNewFunc(F4) def testFromLibraryEmptyLib(self): library = function_pb2.FunctionDefLibrary() self.assertEqual(len(function._from_library(library)), 0) def testFromLibraryMissingFuncDef(self): @function.Defun(dtypes.float32, dtypes.float32) def G1(x, dy): return x * dy @function.Defun(dtypes.float32) def F1(x): return math_ops.exp(x) - math_ops.exp(-x) gradient = function_pb2.GradientDef() gradient.function_name = F1.name gradient.gradient_func = G1.name # Create invalid function def that is missing G1 function def library = function_pb2.FunctionDefLibrary() library.gradient.extend([gradient]) library.function.extend([F1.definition]) with self.assertRaisesRegexp( ValueError, "FunctionDefLibrary missing 'G1_[0-9a-zA-Z]{8,11}' FunctionDef"): function._from_library(library) # Create invalid function def that is missing F1 function def library = function_pb2.FunctionDefLibrary() library.gradient.extend([gradient]) library.function.extend([G1.definition]) with self.assertRaisesRegexp( ValueError, "FunctionDefLibrary missing 'F1_[0-9a-zA-Z]{8,11}' FunctionDef"): function._from_library(library) def testFromLibraryCyclicGradFuncs(self): @function.Defun(dtypes.float32) def F1(x): return math_ops.exp(x) - math_ops.exp(-x) @function.Defun(dtypes.float32) def F2(x): return math_ops.exp(x) - math_ops.exp(-x) # Create invalid function def library where F1 has gradient function F2 and # F2 has gradient function F1 library = function_pb2.FunctionDefLibrary() library.function.extend([F1.definition, F2.definition]) gradient1 = function_pb2.GradientDef() gradient1.function_name = F1.name gradient1.gradient_func = F2.name gradient2 = function_pb2.GradientDef() gradient2.function_name = F2.name gradient2.gradient_func = F1.name library.gradient.extend([gradient1, gradient2]) with self.assertRaisesRegexp( ValueError, "FunctionDefLibrary contains cyclic gradient functions!"): function._from_library(library) @test_util.with_c_api class FunctionOverloadTest(test.TestCase): def testBasic(self): @function.Defun() def Sinh(x): return 1 / 2. * (math_ops.exp(x) - math_ops.exp(-x)) g = ops.Graph() with g.as_default(): x = Sinh(constant_op.constant(0.25, dtypes.float32)) y = Sinh(constant_op.constant(0.25, dtypes.float64)) with self.test_session(graph=g): self.assertAllClose(x.eval(), np.sinh(0.25)) self.assertAllClose(y.eval(),
np.sinh(0.25)
numpy.sinh
import numpy as np from sklearn.model_selection import train_test_split import seaborn as sns from sklearn.neural_network import MLPRegressor from sklearn.ensemble import ( AdaBoostRegressor, GradientBoostingRegressor, RandomForestRegressor) from sklearn.linear_model import Lasso, OrthogonalMatchingPursuit from rootcp import models from sklearn.datasets import make_regression from sklearn import datasets import intervals def oracleCP(X, y, model, alpha=0.1): model.fit(X, y) residual = model.conformity(y, model.predict(X)) q_alpha = np.quantile(residual, 1 - alpha) mu = model.predict(X[-1, :]) lb = mu - q_alpha ub = mu + q_alpha return [lb, ub] def splitCP(X, y, model, alpha=0.1): X_train, X_test, Y_train, Y_test = train_test_split(X[:-1], y, test_size=0.5) model.fit(X_train, Y_train) # Ranking on the calibration set sorted_residual = np.sort(model.conformity(Y_test, model.predict(X_test))) index = int((X.shape[0] / 2 + 1) * (1 - alpha)) # Double check index - 1 (because numpy tab start at 0) quantile = sorted_residual[index] mu_ = model.predict(X[-1, :]) return [mu_ - quantile, mu_ + quantile] def splitCPP(X, y, model, alpha=0.1): scp = splitCP(X, y, model, alpha) mu = 0.5 * (scp[0] + scp[1]) # y_mu = np.array(list(y) + [mu[0]]) y_mu = np.array(list(y) + [0]) model.fit(X, y_mu) y_pred = model.predict(X[-1]) print("y_pred =", y_pred, "y_scp =", mu) if scp[0] <= y_pred and y_pred <= scp[1]: bound = max(scp[1] - y_pred, y_pred - scp[0]) print("ok", scp[1] - scp[0], bound) return [y_pred - bound, y_pred + bound] return scp def ridgeCP(X, y, lmd, alpha=0.1): n_samples, n_features = X.shape H = X.T.dot(X) + lmd * np.eye(n_features) C = np.eye(n_samples) - X.dot(np.linalg.solve(H, X.T)) A = C.dot(list(y) + [0]) B = C[:, -1] negative_B = np.where(B < 0)[0] A[negative_B] *= -1 B[negative_B] *= -1 S, U, V = [], [], [] for i in range(n_samples): if B[i] != B[-1]: tmp_u_i = (A[i] - A[-1]) / (B[-1] - B[i]) tmp_v_i = -(A[i] + A[-1]) / (B[-1] + B[i]) u_i, v_i = np.sort([tmp_u_i, tmp_v_i]) U += [u_i] V += [v_i] elif B[i] != 0: tmp_uv = -0.5 * (A[i] + A[-1]) / B[i] U += [tmp_uv] V += [tmp_uv] if B[-1] > B[i]: S += [intervals.closed(U[i], V[i])] elif B[-1] < B[i]: intvl_u = intervals.openclosed(-np.inf, U[i]) intvl_v = intervals.closedopen(V[i], np.inf) S += [intvl_u.union(intvl_v)] elif B[-1] == B[i] and B[i] > 0 and A[-1] < A[i]: S += [intervals.closedopen(U[i], np.inf)] elif B[-1] == B[i] and B[i] > 0 and A[-1] > A[i]: S += [intervals.openclosed(-np.inf, U[i])] elif B[-1] == B[i] and B[i] == 0 and abs(A[-1]) <= abs(A[i]): S += [intervals.open(-np.inf, np.inf)] elif B[-1] == B[i] and B[i] == 0 and abs(A[-1]) > abs(A[i]): S += [intervals.empty()] elif B[-1] == B[i] and A[-1] == A[i]: S += [intervals.open(-np.inf, np.inf)] else: print("boom !!!") hat_y = np.sort([-np.inf] + U + V + [np.inf]) size = hat_y.shape[0] conf_pred = intervals.empty() p_values =
np.zeros(size)
numpy.zeros
import numpy as np from scipy.spatial import cKDTree def triage(scores, spike_index, triage_k, triage_percent, location_feature): """ Triage based on KNN distance. It removes triage_percent*100% of data Parameters ---------- scores: list (n_channels) A list such that scores[c] contains all scores whose main channel is c spike_index: list (n_channels) A list such that spike_index[c] cointains all spike times whose channel is c triage_k: int number of neighbors to consider triage_percent: float percentage of data to be triaged. It is a number between 0 and 1. Returns ------- scores: list (n_channels) scores after triage spike_index: list (n_channels) spike_index after traige """ # relevant info n_channels = np.max(spike_index[:, 1]) + 1 th = (1 - triage_percent)*100 idx_triage = np.zeros(scores.shape[0], 'bool') for channel in range(n_channels): idx_data = np.where(spike_index[:, 1] == channel)[0] scores_channel = scores[ idx_data, :, 0] nc = scores_channel.shape[0] if nc > triage_k + 1: if location_feature: th = (1 - triage_percent/2)*100 # get distance to nearest neighbors tree = cKDTree(scores_channel[:, :2]) dist, ind = tree.query(scores_channel[:, :2], k=triage_k + 1) dist = np.sum(dist, 1) # triage far ones idx_triage[idx_data[dist >
np.percentile(dist, th)
numpy.percentile
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([0,1,0,1,0,0,0,0,-1])
numpy.array
"""Physics functions for the dsigma pipeline.""" import numpy as np from astropy import constants as c from astropy import units as u from scipy.special import jv, jn_zeros from astropy.cosmology import FlatLambdaCDM __all__ = ['mpc_per_degree', 'projection_angle', 'critical_surface_density', 'effective_critical_surface_density', 'lens_magnification_shear_bias'] _sigma_crit_factor = (c.c**2 / (4 * np.pi * c.G)).to(u.Msun / u.pc).value def mpc_per_degree(z, cosmology=FlatLambdaCDM(H0=100, Om0=0.3), comoving=False): """Estimate the angular scale in Mpc/degree at certain redshift. Parameters ---------- cosmology : astropy.cosmology, optional Cosmology to assume for calculations. z : float or numpy array Redshift of the object. comoving : boolen Use comoving distance instead of physical distance when True. Default: False Returns ------- float or numpy array Physical scale in unit of Mpc/degree. """ if comoving: return (cosmology.comoving_transverse_distance(z).to(u.Mpc).value * np.deg2rad(1)) return (cosmology.angular_diameter_distance(z).to(u.Mpc).value * np.deg2rad(1)) def projection_angle(ra_l, dec_l, ra_s, dec_s): r"""Calculate projection angle between lens and sources. Parameters ---------- ra_l, dec_l : float or numpy array Coordinates of the lens galaxies in degrees. ra_s, dec_s : float or numpy array Coordinates of the source galaxies in degrees. Returns ------- cos_2phi, sin_2phi : float or numpy array The :math:`\cos` and :math:`\sin` of :math:`2 \phi`, where :math:`\phi` is the angle measured from right ascension direction to a line connecting the lens and source galaxies. """ # Convert everything into radians. ra_l, dec_l = np.deg2rad(ra_l), np.deg2rad(dec_l) ra_s, dec_s = np.deg2rad(ra_s), np.deg2rad(dec_s) # Calculate the tan(phi). mask = np.cos(dec_s) * np.sin(ra_s - ra_l) != 0 if hasattr(mask, "__len__"): tan_phi = ( (np.cos(dec_l) *
np.sin(dec_s)
numpy.sin
""" A minimal character-level LSTM model. Written by ZhengHe (@ZhengHe-MD) This is derived from the following scripts: - https://gist.github.com/karpathy/d4dee566867f8291f086 - https://github.com/eliben/deep-learning-samples/blob/master/min-char-rnn/min-char-rnn.py - https://github.com/nicodjimenez/lstm And you might find the following materials helpful: - http://karpathy.github.io/2015/05/21/rnn-effectiveness/ - https://nicodjimenez.github.io/2014/08/08/lstm.html - http://arxiv.org/abs/1506.00019 - https://colah.github.io/posts/2015-08-Understanding-LSTMs/ - https://explained.ai/matrix-calculus/index.html To run: $ python min_char_rnn_lstm.py <text file> ---- BSD License """ import numpy as np import sys if len(sys.argv) > 1: filename = sys.argv[1] else: filename = 'input.txt' with open(filename, 'r') as f: data = f.read() # All unique characters / entities in the data set. chars = list(set(data)) chars.sort() data_size, vocab_size = len(data), len(chars) print('data has %d characters, %d unique.' % (data_size, vocab_size)) # Each character in the vocabulary gets a unique integer index assigned, in the # half-open interval [0:N). These indices are useful to create one-hot encoded # vectors that represent characters in numerical computations. char_to_ix = {ch: i for i, ch in enumerate(chars)} ix_to_char = {i: ch for i, ch in enumerate(chars)} print('char_to_ix', char_to_ix) print('ix_to_char', ix_to_char) # Hyperparameters hidden_size = 50 # size of hidden layer of neurons seq_length = 16 # number of steps to unroll the RNN for learning_rate = 1e-1 ub, lb = 0.1, -0.1 # LSTM Wgs = np.random.randn(seq_length, hidden_size, hidden_size + vocab_size) * (ub - lb) + lb Wis = np.random.randn(seq_length, hidden_size, hidden_size + vocab_size) * (ub - lb) + lb Wfs = np.random.randn(seq_length, hidden_size, hidden_size + vocab_size) * (ub - lb) + lb Wos = np.random.randn(seq_length, hidden_size, hidden_size + vocab_size) * (ub - lb) + lb bgs = np.zeros((seq_length, hidden_size, 1)) bis = np.zeros((seq_length, hidden_size, 1)) bfs = np.zeros((seq_length, hidden_size, 1)) bos = np.zeros((seq_length, hidden_size, 1)) # Fully-connected Why = np.random.randn(vocab_size, hidden_size) * (ub - lb) + lb by = np.zeros((vocab_size, 1)) def lossFun(inputs, targets, hprev, sprev): assert len(inputs) == seq_length assert len(targets) == seq_length xs, hs, ss, ps, ys = {}, {}, {}, {}, {} gs, iis, fs, os = {}, {}, {}, {} # the `iis` here should be `is`, unfortunately `is` is a keyword in python # Initial incoming state. hs[-1] = np.copy(hprev) ss[-1] = np.copy(sprev) loss = 0 # Forward pass for t in range(seq_length): xs[t] = np.zeros((vocab_size, 1)) xs[t][inputs[t]] = 1 xc = np.vstack((xs[t], hs[t - 1])) gs[t] = np.tanh(np.dot(Wgs[t], xc) + bgs[t]) iis[t] = sigmoid(np.dot(Wis[t], xc) + bis[t]) fs[t] = sigmoid(np.dot(Wfs[t], xc) + bfs[t]) os[t] = sigmoid(
np.dot(Wos[t], xc)
numpy.dot
# Copyright (c) 2016 by <NAME> and the other collaborators on GitHub at # https://github.com/rmjarvis/Piff All rights reserved. # # Piff is free software: Redistribution and use in source and binary forms # with or without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the disclaimer given in the accompanying LICENSE # file. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the disclaimer given in the documentation # and/or other materials provided with the distribution. """ .. module:: interp """ from __future__ import print_function import numpy as np import scipy.linalg import galsim import warnings from .interp import Interp from .star import Star, StarFit class BasisInterp(Interp): """An Interp class that works whenever the interpolating functions are linear sums of basis functions. Does things the "slow way" to be stable to degenerate fits to individual stars, instead of fitting to parameter sets produced by single stars. First time coding this we will assume that each element of the PSF parameter vector p is a linear combination of the same set of basis functions across the focal plane, p_i = \sum_{j} q_{ij} K_j(u,v,other stellar params). The property degenerate_points is set to True to indicate that this interpolator uses the alpha/beta quadratic form of chisq for each sample, rather than assuming that a best-fit parameter vector is available at every sample. Internally we'll store the interpolation coefficients in a 2d array of dimensions (nparams, nbases) Note: This is an abstract base class. The concrete class you probably want to use is BasisPolynomial. """ def __init__(self): self.degenerate_points = True # This Interpolator uses chisq quadratic forms self.q = None def initialize(self, stars, logger=None): """Initialize both the interpolator to some state prefatory to any solve iterations and initialize the stars for use with this interpolator. This class will initialize everything to have constant PSF parameter vector taken from the first Star in the list. :param stars: A list of Star instances to use to initialize. :param logger: A logger object for logging debug info. [default: None] :returns: A new list of Stars which have their parameters initialized. """ c = stars[0].fit.params.copy() self.q = c[:,np.newaxis] * self.constant(1.)[np.newaxis,:] stars = self.interpolateList(stars) return stars def basis(self, star): """Return 1d array of polynomial basis values for this star :param star: A Star instance :returns: 1d numpy array with values of u^i v^j for 0<i+j<=order """ raise NotImplementedError("Cannot call `basis` for abstract base class BasisInterp. " "You probably want to use BasisPolynomial.") def constant(self, value=1.): """Return 1d array of coefficients that represent a polynomial with constant value. :param value: The value to use as the constant term. [default: 1.] :returns: 1d numpy array with values of u^i v^j for 0<i+j<=order """ raise NotImplementedError("Cannot call `constant` for abstract base class BasisInterp. " "You probably want to use BasisPolynomial.") def solve(self, stars, logger=None): """Solve for the interpolation coefficients given some data. The StarFit element of each Star in the list is assumed to hold valid alpha and beta members specifying depending of chisq on differential changes to its parameter vector. :param stars: A list of Star instances to interpolate between :param logger: A logger object for logging debug info. [default: None] """ logger = galsim.config.LoggerWrapper(logger) if self.q is None: raise RuntimeError("Attempt to solve() before initialize() of BasisInterp") # Empty A and B A = np.zeros( self.q.shape+self.q.shape, dtype=float) B = np.zeros_like(self.q) for s in stars: # Get the basis function values at this star K = self.basis(s) # Sum contributions into A, B B += s.fit.beta[:,np.newaxis] * K tmp = s.fit.alpha[:,:,np.newaxis] * K A += K[np.newaxis,:,np.newaxis,np.newaxis] * tmp[:,np.newaxis,:,:] # Reshape to have single axis for all q's B = B.flatten() nq = B.shape[0] A = A.reshape(nq,nq) logger.debug('Beginning solution of matrix size %d',A.shape[0]) # cf. comments in pixelgrid.py about this function in scipy 1.0.0 with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") logger.info('A.shape = %s',A.shape) logger.info('B.shape = %s',B.shape) dq = scipy.linalg.solve(A, B, assume_a='pos', check_finite=False) if len(w) > 0: logger.warning('Caught %s',w[0].message) logger.debug('norm(A dq - B) = %s',scipy.linalg.norm(A.dot(dq) - B)) logger.debug('norm(dq) = %s',scipy.linalg.norm(dq)) if False: logger.warning('Switching to svd solution') Sd,U = scipy.linalg.eigh(A) nsvd = np.sum(np.abs(Sd) > 1.e-15 * np.abs(Sd[-1])) logger.info('2-condition is %e',np.abs(Sd[-1]/Sd[0])) logger.info('nsvd = %d of %d',nsvd,len(Sd)) # Note: unlike scipy.linalg.svd, the Sd here is in *ascending* order, not descending. Sd[-nsvd:] = 1./Sd[-nsvd:] Sd[:-nsvd] = 0. S = np.diag(Sd) dq = U.dot(S.dot(U.T.dot(B))) logger.info('norm(A dq - B) = %s',scipy.linalg.norm(A.dot(dq) - B)) logger.info('norm(dq) = %s',scipy.linalg.norm(dq)) logger.info('norm(q) = %s',scipy.linalg.norm(self.q)) logger.debug('...finished solution') self.q += dq.reshape(self.q.shape) def interpolate(self, star, logger=None): """Perform the interpolation to find the interpolated parameter vector at some position. :param star: A Star instance to which one wants to interpolate :param logger: A logger object for logging debug info. [default: None] :returns: a new Star instance holding the interpolated parameters """ if self.q is None: raise RuntimeError("Attempt to interpolate() before initialize() of BasisInterp") K = self.basis(star) p = np.dot(self.q,K) fit = star.fit.newParams(p) return Star(star.data, fit) class BasisPolynomial(BasisInterp): """A version of the Polynomial interpolator that works with BasisModels and can use the quadratic form of the chisq information it calculates. It works better than the regular Polynomial interpolator when there is missing or degenerate information. The order is the highest power of a key to be used. This can be the same for all keys or you may provide a list of separate order values to be used for each key. (e.g. you may want to use 2nd order in the positions, but only 1st order in the color). All combinations of powers of keys that have total order <= max_order are used. The maximum order is normally the maximum order of any given key's order, but you may specify a larger value. (e.g. to use 1, x, y, xy, you would specify order=1, max_order=2.) :param order: The order to use for each key. Can be a single value (applied to all keys) or an array matching number of keys. :param keys: List of keys for properties that will be used as the polynomial arguments. [default: ('u','v')] :param max_order: The maximum total order to use for cross terms between keys. [default: None, which uses the maximum value of any individual key's order] :param logger: A logger object for logging debug info. [default: None] """ def __init__(self, order, keys=('u','v'), max_order=None, logger=None): super(BasisPolynomial, self).__init__() self._keys = keys if hasattr(order,'len'): if not len(order)==len(keys): raise ValueError('Number of provided orders does not match number of keys') self._orders = order else: self._orders = (order,) * len(keys) if max_order is None: self._max_order = np.max(self._orders) else: self._max_order = max_order if self._max_order<0 or np.any(np.array(self._orders) < 0): # Exception if we have any requests for negative orders raise ValueError('Negative polynomial order specified') # TODO: Need to update the Interp write command to handle lists. # Or write a custom BasisPolynomial.write function. self.kwargs = { 'order' : order, } # Now build a mask that picks the desired polynomial products # Start with 1d arrays giving orders in all dimensions ord_ranges = [np.arange(order+1,dtype=int) for order in self._orders] # Nifty trick to produce n-dim array holding total order sumorder = np.sum(np.ix_(*ord_ranges)) self._mask = sumorder <= self._max_order def getProperties(self, star): return np.array([star.data[k] for k in self._keys], dtype=float) def basis(self, star): """Return 1d array of polynomial basis values for this star :param star: A Star instance :returns: 1d numpy array with values of u^i v^j for 0<i+j<=order """ # Get the interpolation key values vals = self.getProperties(star) # Make 1d arrays of all needed powers of keys pows1d = [] for i,o in enumerate(self._orders): p = np.ones(o+1,dtype=float) p[1:] = vals[i] pows1d.append(np.cumprod(p)) # Use trick to produce outer product of all these powers pows2d = np.prod(
np.ix_(*pows1d)
numpy.ix_
import matplotlib.pyplot as plt import numpy as np import os import pickle import glob import re import pprint import pandas as pd detected_folder = '../laughter-detection/detected_train_lauthter/' # checked folder if laughter is detected. it contains detected and also undeted folder # laughter_file = 'dia991_utt7/' df = pd.read_csv('../MELD/data/MELD/train_sent_emo.csv', header=0) # video_utterances = meld_features[5] # emotion_labels = meld_features[2]#emotion labels:{'neutral': 0, 'surprise': 1, 'fear': 2, 'sadness': 3, 'joy': 4, 'disgust': 5, 'anger': 6} # sentiment_labels = meld_features[8] #sentiment labels: {'neutral': 0, 'positive': 1, 'negative': 2} sample = df[(df['Dialogue_ID'] == 0) & (df['Utterance_ID'] == 3)] # sample DialogueID && UtteranceID sample_utterance = sample['Utterance'].values.tolist() # sample utterance def functor(f, l): # change str to int function if isinstance(l,list): return [functor(f,i) for i in l] else: return f(l) # # change to list # utterance_lists = list(video_utterances.values()) # emotion_label_lists = list(emotion_labels.values()) # sentiment_label_lists = list(sentiment_labels.values()) # sentiment_label_lists_np = np.array(sentiment_label_lists) # get detected laughter index laughter_file_path = glob.glob(detected_folder + '*/laugh_0.wav') laughter_file = [os.path.basename(os.path.dirname(l)) for l in laughter_file_path] laughter_index = [l.replace('dia', '').replace('utt','').split('_', 1) for l in laughter_file] laughter_index = functor(int, laughter_index) # laughter_index = [dialogue_index, utterance_index in dialogue] laughter_index= sorted(laughter_index, key=lambda x: x[0]) # hold current utterance sentiment & previous utterance sentiment current_neutral = 0 current_positive = 0 current_negative = 0 previous_neutral = 0 previous_positive = 0 previous_negative = 0 # emotion # label index mapping = {'neutral': 0, 'surprise': 1, 'fear': 2, 'sadness': 3, 'joy': 4, 'disgust': 5, 'anger': 6} # current emotion sum current_neu = 0 current_sur = 0 current_fea = 0 current_sad = 0 current_joy = 0 current_dis = 0 current_ang = 0 # previous emotion sum pre_neu = 0 pre_sur = 0 pre_fea = 0 pre_sad = 0 pre_joy = 0 pre_dis = 0 pre_ang = 0 # check index error sum indexerror_sum = 0 for i, l in enumerate(laughter_index): dia_index = l[0] utt_index = l[1] current_df = df[(df['Dialogue_ID'] == dia_index) & (df['Utterance_ID'] == utt_index)] current_utt = current_df['Utterance'].values.tolist() current_senti = current_df['Sentiment'].values.tolist() current_emo = current_df['Emotion'].values.tolist() try: if current_senti == ['neutral']: current_neutral += 1 elif current_senti == ['positive']: current_positive += 1 elif current_senti == ['negative']: current_negative += 1 else: pass # label index mapping = {'neutral': 0, 'surprise': 1, 'fear': 2, 'sadness': 3, 'joy': 4, 'disgust': 5, 'anger': 6} if current_emo == ['neutral']: current_neu += 1 elif current_emo == ['surprise']: current_sur += 1 elif current_emo == ['fear']: current_fea += 1 elif current_emo == ['sadness']: current_sad += 1 elif current_emo == ['joy']: current_joy += 1 elif current_emo == ['disgust']: current_dis += 1 elif current_emo == ['anger']: current_ang += 1 else: pass # check previous sentiment if utt_index > 0: previous_df = df[(df['Dialogue_ID'] == dia_index) & (df['Utterance_ID'] == (utt_index-1))] pre_utt = previous_df['Utterance'].values.tolist() pre_senti = previous_df['Sentiment'].values.tolist() pre_emo = previous_df['Emotion'].values.tolist() if pre_senti == ['neutral']: previous_neutral += 1 elif pre_senti == ['positive']: previous_positive += 1 elif pre_senti== ['negative']: previous_negative += 1 else: pass # check previous emotion if pre_emo == ['neutral']: pre_neu += 1 elif pre_emo == ['surprise']: pre_sur += 1 elif pre_emo== ['fear']: pre_fea += 1 elif pre_emo == ['sadness']: pre_sad += 1 elif pre_emo == ['joy']: pre_joy += 1 elif pre_emo == ['disgust']: pre_dis += 1 elif pre_emo == ['anger']: pre_ang += 1 else: pass else: pass except IndexError: indexerror_sum += 1 except IndexError: indexerror_sum += 1 print('***IndexEroor***') def whole_senti_graph(): [neutral, positive, negative] = [4710, 2334, 2945] X = np.array(['neutral', 'positive', 'negative']) Y = np.array([neutral, positive, negative]) plt.title('Sentiment in Whole Utterance') plt.pie(Y, labels=X, counterclock=False, startangle=90, autopct="%1.1f%%") plt.show() def whole_emo_graph(): [neutral, surprise, fear, sadness, joy, disgust, anger] = [4710, 1205, 268, 683, 1743, 271, 1109] X = np.array(['neutral', 'surprise', 'fear', 'sadness', 'joy', 'disgust', 'anger']) Y = np.array([neutral, surprise, fear, sadness, joy, disgust, anger]) plt.title('Emotion in Whole Utterances') plt.pie(Y, labels=X, counterclock=False, startangle=90, autopct="%1.1f%%") plt.show() def current_senti_graph(): print("current_neutral:{} \ncurrent_positive:{}, \ncurrent_negative:{}".format(current_neutral, current_positive, current_negative)) print("IndexError_SUM:{}".format(indexerror_sum)) X = np.array(['current_neutral', 'current_positive', 'current_negative']) Y = np.array([current_neutral, current_positive, current_negative]) plt.title('Current_Sentiment') plt.pie(Y, labels=X, counterclock=False, startangle=90, autopct="%1.1f%%") plt.show() def previous_senti_graph(): print("previous_neutral:{} \n previous_positive:{}, \n previous_negarive:{}".format(previous_neutral, previous_positive, previous_negative)) X = np.array(['previous_neutral', 'previous_positive', 'previous_negative']) Y = np.array([previous_neutral, previous_positive, previous_negative]) plt.title('Previous_Sentiment') plt.pie(Y, labels=X, counterclock=False, startangle=90, autopct="%1.1f%%") plt.show() # emotion # label index mapping = {'neutral': 0, 'surprise': 1, 'fear': 2, 'sadness': 3, 'joy': 4, 'disgust': 5, 'anger': 6} def current_emo_graph(): print('current_neutral:{}, current_surprise:{}, current_fear:{}, current_sadness:{}, current_joy:{}, current_disgust:{}, current_anger:{}'.format(current_neu, current_sur, current_fea, current_sad, current_joy, current_dis, current_ang)) X = np.array(['neutral', 'surprise', 'fear', 'sadness', 'joy', 'disgust', 'anger']) Y = np.array([current_neu, current_sur, current_fea, current_sad, current_joy, current_dis, current_ang]) plt.title('Current_Emotion') plt.pie(Y, labels=X, counterclock=False, startangle=90, autopct="%1.1f%%") plt.show() def previous_emo_graph(): print('pre_neutral:{}, pre_surprise:{}, pre_fear:{}, pre_sadness:{}, pre_joy:{}, pre_disgust:{}, pre_anger:{}'.format(pre_neu, pre_sur, pre_fea, pre_sad, pre_joy, pre_dis, pre_ang)) X =
np.array(['neutral', 'surprise', 'fear', 'sadness', 'joy', 'disgust', 'anger'])
numpy.array
import numpy as np from kldmwr import distributions ############################################################################### # Derivatives of h = (1 + xi (x - mu) / sigma)^{-1 / xi} ############################################################################### def calc_h(x, p): phi = 1 + p[2] * (x - p[0]) / p[1] return phi ** (- 1 / p[2]) def calc_h_mu(x, p): phi = 1 + p[2] * (x - p[0]) / p[1] return 1 / p[1] * phi ** (- 1 / p[2] - 1) def calc_h_sg(x, p): phi = 1 + p[2] * (x - p[0]) / p[1] return (x - p[0]) / p[1] ** 2 * phi ** (-1 / p[2] - 1) def calc_h_xi(x, p): phi = 1 + p[2] * (x - p[0]) / p[1] return 1 / p[2] ** 2 * phi ** (-1 / p[2]) * np.log(phi) - \ (x - p[0]) / p[1] / p[2] * phi ** (-1 / p[2] - 1) def calc_h_mumu(x, p): phi = 1 + p[2] * (x - p[0]) / p[1] return (1 + p[2]) / p[1] ** 2 * phi ** (-1 / p[2] - 2) def calc_h_sgsg(x, p): phi = 1 + p[2] * (x - p[0]) / p[1] a = - 2 * (x - p[0]) / p[1] ** 3 * phi ** (-1 / p[2] - 1) b = (1 + p[2]) * (x - p[0]) ** 2 / p[1] ** 4 * phi ** (-1 / p[2] - 2) return a + b def calc_h_xixi(x, p): phi = 1 + p[2] * (x - p[0]) / p[1] a = - 2 / p[2] ** 3 * phi ** (-1 / p[2]) * np.log(phi) b = 1 / p[2] ** 4 * phi ** (-1 / p[2]) * np.log(phi) * np.log(phi) c = - 2 * (x - p[0]) / p[1] / p[2] ** 3 * phi ** (-1 / p[2] - 1) * np.log( phi) d = 2 * (x - p[0]) / p[1] / p[2] ** 2 * phi ** (-1 / p[2] - 1) e = ((x - p[0]) / p[1]) ** 2 * (1 + p[2]) / p[2] ** 2 * phi ** ( - 1 / p[2] - 2) return a + b + c + d + e def calc_h_musg(x, p): phi = 1 + p[2] * (x - p[0]) / p[1] a = - 1 / p[1] ** 2 * phi ** (-1 / p[2] - 1) b = (x - p[0]) / p[1] * (1 + p[2]) / p[1] ** 2 * phi ** (-1 / p[2] - 2) return a + b def calc_h_muxi(x, p): phi = 1 + p[2] * (x - p[0]) / p[1] a = 1 / p[1] / p[2] ** 2 * phi ** (-1 / p[2] - 1) * np.log(phi) b = - ((x - p[0]) / p[1]) * (1 + p[2]) / p[1] / p[2] * phi ** ( -1 / p[2] - 2) return a + b def calc_h_sgxi(x, p): phi = 1 + p[2] * (x - p[0]) / p[1] a = (x - p[0]) / p[1] ** 2 / p[2] ** 2 * phi ** (-1 / p[2] - 1) * np.log( phi) b = - ((x - p[0]) / p[1]) ** 2 * (1 + p[2]) / p[1] / p[2] * phi ** ( -1 / p[2] - 2) return a + b ############################################################################### # Derivatives of G ############################################################################### def calc_gg(x, p): return distributions.gev_cdf(x, p) def calc_gg_mu(x, p): return - calc_gg(x, p) * calc_h_mu(x, p) def calc_gg_sg(x, p): return - calc_gg(x, p) * calc_h_sg(x, p) def calc_gg_xi(x, p): return - calc_gg(x, p) * calc_h_xi(x, p) def calc_gg_mumu(x, p): return calc_gg(x, p) * \ (- calc_h_mumu(x, p) + calc_h_mu(x, p) * calc_h_mu(x, p)) def calc_gg_sgsg(x, p): return calc_gg(x, p) * \ (- calc_h_sgsg(x, p) + calc_h_sg(x, p) * calc_h_sg(x, p)) def calc_gg_xixi(x, p): return calc_gg(x, p) * \ (- calc_h_xixi(x, p) + calc_h_xi(x, p) * calc_h_xi(x, p)) def calc_gg_musg(x, p): return calc_gg(x, p) * \ (- calc_h_musg(x, p) + calc_h_mu(x, p) * calc_h_sg(x, p)) def calc_gg_muxi(x, p): return calc_gg(x, p) * \ (- calc_h_muxi(x, p) + calc_h_mu(x, p) * calc_h_xi(x, p)) def calc_gg_sgxi(x, p): return calc_gg(x, p) * \ (- calc_h_sgxi(x, p) + calc_h_sg(x, p) * calc_h_xi(x, p)) ############################################################################### # D_{k,i} / D_i, # D_{Kl, i} / D_i # (D_{k, i} / D_i)(D_{l, i} / D_i) # l_{kl, i} ############################################################################### def calc_eff(xv, p): return np.append([0], np.append(calc_gg(xv, p), [1])) def calc_eff_p(xv, p): eff_mu = np.append([0], np.append(calc_gg_mu(xv, p), [0])) eff_sg = np.append([0], np.append(calc_gg_sg(xv, p), [0])) eff_xi = np.append([0], np.append(calc_gg_xi(xv, p), [0])) eff_p = np.concatenate([(eff_mu, eff_sg, eff_xi)], axis=0) return eff_p def calc_gg_pp(x, p): a = np.array( [[calc_gg_mumu(x, p), calc_gg_musg(x, p), calc_gg_muxi(x, p)], [calc_gg_musg(x, p), calc_gg_sgsg(x, p), calc_gg_sgxi(x, p)], [calc_gg_muxi(x, p), calc_gg_sgxi(x, p), calc_gg_xixi(x, p)]]) return a def calc_eff_pp(xv, p): z331 = np.zeros((3, 3, 1)) return np.append(z331, np.append(calc_gg_pp(xv, p), z331, axis=-1), axis=-1) def calc_dd_p_o_dd(xv, p): """Returns D_p,i / D_i res[k, i] = D_{k, i} / D_i """ eff_p = calc_eff_p(xv, p) dgg_p = np.diff(eff_p, axis=-1) dff = np.diff(calc_eff(xv, p)) dff_arr = np.concatenate([(dff, dff, dff)], axis=0) return
np.divide(dgg_p, dff_arr)
numpy.divide
#!/usr/bin/env python # coding: utf-8 import enum try: import fitz except: pass import os import json import glob import sys import local_config sys.path.append(local_config.global_3rd_party) from os.path import join from src.ovotools.ovotools.params import AttrDict import numpy as np from collections import OrderedDict import torch import timeit import copy from pathlib import Path import PIL.ImageDraw import PIL.ImageFont from pathlib import Path import zipfile import data_utils.data as data import braille_utils.letters as letters import braille_utils.label_tools as lt from model import create_model_retinanet import pytorch_retinanet import pytorch_retinanet.encoder import braille_utils.postprocess as postprocess inference_width = 1024 model_weights = 'model.t7' params_fn = join(local_config.data_path, 'weights', 'param.txt') model_weights_fn = join(local_config.data_path, 'weights', model_weights) device = 'cuda:0' #device = 'cpu' cls_thresh = 0.3 nms_thresh = 0.02 REFINE_COEFFS = [0.083, 0.092, -0.083, -0.013] # Коэффициенты (в единицах h символа) для эмпирической коррекции # получившихся размеров, чтобы исправить неточность результатов для последующей разметки class OrientationAttempts(enum.IntEnum): NONE = 0 ROT180 = 1 INV = 2 INV_ROT180 = 3 ROT90 = 4 ROT270 = 5 INV_ROT90 = 6 INV_ROT270 = 7 class BraileInferenceImpl(torch.nn.Module): def __init__(self, params, model, device, label_is_valid, verbose=1): super(BraileInferenceImpl, self).__init__() self.verbose = verbose self.device = device if isinstance(model, torch.nn.Module): self.model_weights_fn = "" self.model = model else: self.model_weights_fn = model self.model, _, _ = create_model_retinanet.create_model_retinanet(params, device=device) self.model = self.model.to(device) self.model.load_state_dict(torch.load(self.model_weights_fn, map_location = 'cpu')) self.model.eval() #self.model = torch.jit.script(self.model) self.encoder = pytorch_retinanet.encoder.DataEncoder(**params.model_params.encoder_params) #self.encoder = encoder self.valid_mask = torch.tensor(label_is_valid).long() self.cls_thresh = cls_thresh self.nms_thresh = nms_thresh self.num_classes = [] if not params.data.get('class_as_6pt', False) else [1]*6 def calc_letter_statistics(self, cls_preds, cls_thresh, orientation_attempts): # type: (List[Tensor], float)->Tuple[int, Tuple[Tensor, Tensor, Tensor]] device = cls_preds[min(orientation_attempts)].device stats = [torch.zeros((1, 64,), device=device)]*8 for i, cls_pred in enumerate(cls_preds): if i in orientation_attempts: scores = cls_pred.sigmoid() scores[scores<cls_thresh] = torch.tensor(0.).to(scores.device) stat = scores.sum(1) assert list(stat.shape) == [1, 64] stats[i] = stat stat = torch.cat(stats, dim=0) valid_mask = self.valid_mask.to(stat.device) sum_valid = (stat*valid_mask).sum(1) sum_invalid = (stat*(1-valid_mask)).sum(1) err_score = (sum_invalid+1)/(sum_valid+1) best_idx = torch.argmin(err_score/(sum_valid+1)) # эвристика так себе придуманная return best_idx.item(), (err_score, sum_valid, sum_invalid) def forward(self, input_tensor, input_tensor_rotated, find_orientation, process_2_sides): # type: (Tensor, Tensor, int)->Tuple[Tensor,Tensor,Tensor,int, Tuple[Tensor, Tensor, Tensor]] t = timeit.default_timer() orientation_attempts = [OrientationAttempts.NONE] if find_orientation: orientation_attempts += [OrientationAttempts.ROT180, OrientationAttempts.ROT90, OrientationAttempts.ROT270] if process_2_sides: orientation_attempts += [OrientationAttempts.INV] if find_orientation: orientation_attempts += [OrientationAttempts.INV_ROT180, OrientationAttempts.INV_ROT90, OrientationAttempts.INV_ROT270] if len(self.num_classes) > 1: assert not find_orientation and not process_2_sides input_data = [None]*8 input_data[OrientationAttempts.NONE]= input_tensor.unsqueeze(0) if find_orientation: input_data[OrientationAttempts.ROT180] = torch.flip(input_data[OrientationAttempts.NONE], [2,3]) input_data[OrientationAttempts.ROT90] = input_tensor_rotated.unsqueeze(0) input_data[OrientationAttempts.ROT270] = torch.flip(input_data[OrientationAttempts.ROT90], [2, 3]) if process_2_sides: input_data[OrientationAttempts.INV] = torch.flip(-input_data[OrientationAttempts.NONE], [3]) if find_orientation: input_data[OrientationAttempts.INV_ROT180] = torch.flip(-input_data[OrientationAttempts.ROT180], [3]) input_data[OrientationAttempts.INV_ROT90] = torch.flip(-input_data[OrientationAttempts.ROT90], [3]) input_data[OrientationAttempts.INV_ROT270] = torch.flip(-input_data[OrientationAttempts.ROT270], [3]) loc_preds: List[Tensor] = [torch.tensor(0)]*8 cls_preds: List[Tensor] = [torch.tensor(0)]*8 if self.verbose >= 2: print(" forward.prepare", timeit.default_timer() - t) t = timeit.default_timer() for i, input_data_i in enumerate(input_data): if i in orientation_attempts: loc_pred, cls_pred = self.model(input_data_i) loc_preds[i] = loc_pred cls_preds[i] = cls_pred if self.verbose >= 2: print(" forward.model", timeit.default_timer() - t) t = timeit.default_timer() if find_orientation: best_idx, err_score = self.calc_letter_statistics(cls_preds, self.cls_thresh, orientation_attempts) else: best_idx, err_score = OrientationAttempts.NONE, (torch.tensor([0.]),torch.tensor([0.]),torch.tensor([0.])) if self.verbose >= 2: torch.cuda.synchronize(self.device) if best_idx in [OrientationAttempts.INV, OrientationAttempts.INV_ROT180, OrientationAttempts.INV_ROT90, OrientationAttempts.INV_ROT270]: best_idx -= 2 if self.verbose >= 2: print(" forward.calc_letter_statistics", timeit.default_timer() - t) t = timeit.default_timer() h,w = input_data[best_idx].shape[2:] boxes, labels, scores = self.encoder.decode(loc_preds[best_idx][0].cpu().data, cls_preds[best_idx][0].cpu().data, (w,h), cls_thresh = self.cls_thresh, nms_thresh = self.nms_thresh, num_classes=self.num_classes) if len(self.num_classes) > 1: labels = torch.tensor([lt.label010_to_int([str(s.item()+1) for s in lbl101]) for lbl101 in labels]) if process_2_sides: boxes2, labels2, scores2 = self.encoder.decode(loc_preds[best_idx+2][0].cpu().data, cls_preds[best_idx+2][0].cpu().data, (w, h), cls_thresh=self.cls_thresh, nms_thresh=self.nms_thresh, num_classes=self.num_classes) else: boxes2, labels2, scores2 = None, None, None if self.verbose >= 2: print(" forward.decode", timeit.default_timer() - t) t = timeit.default_timer() return boxes, labels, scores, best_idx, err_score, boxes2, labels2, scores2 class BrailleInference: DRAW_NONE = 0 DRAW_ORIGINAL = 1 DRAW_REFINED = 2 DRAW_BOTH = DRAW_ORIGINAL | DRAW_REFINED # 3 DRAW_FULL_CHARS = 4 def __init__(self, params_fn=params_fn, model_weights_fn=model_weights_fn, create_script = None, verbose=1, inference_width=inference_width, device=device): self.verbose = verbose if not torch.cuda.is_available() and device != 'cpu': print('CUDA not availabel. CPU is used') device = 'cpu' params = AttrDict.load(params_fn, verbose=verbose) params.data.net_hw = (inference_width,inference_width,) #(512,768) ###### (1024,1536) # params.data.batch_size = 1 ####### params.augmentation = AttrDict( img_width_range=(inference_width, inference_width), stretch_limit = 0.0, rotate_limit=0, ) self.preprocessor = data.ImagePreprocessor(params, mode = 'inference') if isinstance(model_weights_fn, torch.nn.Module): self.impl = BraileInferenceImpl(params, model_weights_fn, device, lt.label_is_valid, verbose=verbose) else: model_script_fn = model_weights_fn + '.pth' if create_script != False: self.impl = BraileInferenceImpl(params, model_weights_fn, device, lt.label_is_valid, verbose=verbose) if create_script is not None: self.impl = torch.jit.script(self.impl) if isinstance(self.impl, torch.jit.ScriptModule): torch.jit.save(self.impl, model_script_fn) if verbose >= 1: print("Model loaded and saved to " + model_script_fn) else: if verbose >= 1: print("Model loaded") else: self.impl = torch.jit.load(model_script_fn) if verbose >= 1: print("Model pth loaded") self.impl.to(device) def load_pdf(self, img_fn): try: pdf_file = fitz.open(img_fn) pg = pdf_file.loadPage(0) pdf = pg.getPixmap() cspace = pdf.colorspace if cspace is None: mode = "L" elif cspace.n == 1: mode = "L" if pdf.alpha == 0 else "LA" elif cspace.n == 3: mode = "RGB" if pdf.alpha == 0 else "RGBA" else: mode = "CMYK" img = PIL.Image.frombytes(mode, (pdf.width, pdf.height), pdf.samples) return img except Exception as exc: return None def run(self, img, lang, draw_refined, find_orientation, process_2_sides, align_results, repeat_on_aligned=True, gt_rects=[]): """ :param img: can be 1) PIL.Image 2) filename to image (.jpg etc.) or .pdf file """ if gt_rects: assert find_orientation == False, "gt_rects можно передавать только если ориентация задана" t = timeit.default_timer() if not isinstance(img, PIL.Image.Image): try: if Path(img).suffix=='.pdf': img = self.load_pdf(img) else: img = PIL.Image.open(img) except Exception as e: return None if self.verbose >= 2: print("run.reading image", timeit.default_timer() - t) # img.save(Path(results_dir) / 'original.jpg') # img.save(Path(results_dir) / 'original_100.jpg', quality=100) t = timeit.default_timer() if repeat_on_aligned and not process_2_sides: results_dict0 = self.run_impl(img, lang, draw_refined, find_orientation, process_2_sides=False, align=True, draw=False, gt_rects=gt_rects) if self.verbose >= 2: print("run.run_impl_1", timeit.default_timer() - t) # results_dict0['image'].save(Path(results_dir) / 're1.jpg') # results_dict0['image'].save(Path(results_dir) / 're1_100.jpg', quality=100) t = timeit.default_timer() results_dict = self.run_impl(results_dict0['image'], lang, draw_refined, find_orientation=False, process_2_sides=process_2_sides, align=False, draw=True, gt_rects=results_dict0['gt_rects']) results_dict['best_idx'] = results_dict0['best_idx'] results_dict['err_scores'] = results_dict0['err_scores'] results_dict['homography'] = results_dict0['homography'] else: results_dict = self.run_impl(img, lang, draw_refined, find_orientation, process_2_sides=process_2_sides, align=align_results, draw=True, gt_rects=gt_rects) if self.verbose >= 2: # results_dict['image'].save(Path(results_dir) / 're2.jpg') # results_dict['image'].save(Path(results_dir) / 're2_100.jpg', quality=100) print("run.run_impl", timeit.default_timer() - t) return results_dict # def refine_boxes(self, boxes): # """ # GVNC. Эмпирическая коррекция получившихся размеров чтобы исправить неточность результатов для последующей разметки # :param boxes: # :return: # """ # h = boxes[:, 3:4] - boxes[:, 1:2] # coefs = torch.tensor([REFINE_COEFFS]) # deltas = h * coefs # return boxes + deltas def refine_lines(self, lines): """ GVNC. Эмпирическая коррекция получившихся размеров чтобы исправить неточность результатов для последующей разметки :param boxes: :return: """ for ln in lines: for ch in ln.chars: h = ch.refined_box[3] - ch.refined_box[1] coefs = np.array(REFINE_COEFFS) deltas = h * coefs ch.refined_box = (
np.array(ch.refined_box)
numpy.array
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #CSPP Data below elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_inst/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_wfp/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'corrected_dissolved_oxygen' var_list[2].name = 'seawater_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_inst/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_wfp/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3A-FLORTD104/streamed/flort_d_data_record' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/04-FLNTUA103/recovered_inst/dpc_flnturtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/03-FLCDRA103/recovered_wfp/dpc_flcdrtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2B-PHSENA108/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3C-PARADA102/streamed/parad_sa_sample' var_list[0].name = 'time' var_list[1].name = 'par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3D-SPKIRA102/streamed/spkir_data_record' var_list[0].name = 'time' var_list[1].name = 'spkir_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data =
np.array([])
numpy.array
import numpy as np from multiprocessing import Pool from functools import partial from tqdm import trange from sys import exit from PreFRBLE.convenience import * from PreFRBLE.parameter import * from PreFRBLE.physics import * from PreFRBLE.LikelihoodFunction import LikelihoodFunction from PreFRBLE.Scenario import Scenario ############################################################################ ############### MATHEMATICAL LIKELIHOOD STANDARD OPERATIONS ################ ############################################################################ ### !!! depreceated, remove def Likelihood( data=np.arange(1,3), bins=10, range=None, density=True, log=False, weights=None, **kwargs ): """ wrapper for numpy.histogram that allows for log-scaled probability density function, used to compute likelihood function """ if log: if range is not None: range = np.log10(range) h, x = np.histogram( np.log10(np.abs(data)), bins=bins, range=range, weights=weights ) x = 10.**x h = h.astype('float64') if density: h = h / ( np.sum( h )*np.diff(x) ) else: if range is None: range = ( np.min(data), np.max(data) ) h, x = np.histogram( data, bins=bins, range=range, density=density, weights=weights ) L = LikelihoodFunction( P=h, x=x, **kwargs ) return L # return h, x Histogram = Likelihood ## old name, replace everywhere ### !!! depreceated, remove def LikelihoodSmooth( P=[], x=[], dev=[], mode='MovingAverage' ): """ Smooth likelihood function P(x) modes available: MovingAverage : smooth using moving average over 5 neighbouring boxes """ norm = LikelihoodNorm( P=P, x=x, dev=dev ) if mode == 'MovingAverage': box_pts = 5 P = np.convolve( P, np.ones(box_pts)/box_pts, mode='same' ) ## smoothing doesn't conserve normalization P *= norm/LikelihoodNorm( P=P, x=x, dev=dev ) res = [P, x] if len(dev)>0: res.append(dev) return res ### !!! depreceated, remove def LikelihoodNorm( P=[], x=[], dev=[] ): """ Compute norm of likelihood function P """ return np.sum(P*np.diff(x)) ### !!! depreceated, remove def LikelihoodDeviation( P=[], x=[], N=1 ): """ compute relative deviation (Poisson noise) of likelihood function of individual model obtained from sample of N events """ res = ( P*np.diff(x)*N )**-0.5 res[
np.isinf(res)
numpy.isinf
from .utils.coordinates_helper import view2pixel from .neural_network.NeuralNetwork import NeuralNetwork from .utils.sky_extractor import extract_sky from .utils.fixes import fix_dead_pixels from datetime import datetime, timedelta from matplotlib import path import matplotlib.patches as patches import matplotlib.pyplot as plt import matplotlib.widgets as widgets import numpy as np from os import walk from os.path import join, splitext import cv2 from PIL import Image IMAGES_EXT = '.jpg' ORIGINAL_WIDTH = 5184 ORIGINAL_HEIGHT = 3456 CROP_SIZE = 2300 NETWORK_INPUT_SIZE = 512 NETWORK_OUTPUT_SIZE = 128 BATCH_SIZE = 1 def preprocess_images(images): preprocessed_images = [] for image in images: preprocessed = fix_dead_pixels(image) preprocessed = extract_sky(preprocessed, NETWORK_INPUT_SIZE) preprocessed = np.divide(preprocessed, 255) preprocessed_images.append(preprocessed) return preprocessed_images g_display_images = False end = False def turn_off_images(_): global g_display_images g_display_images = False plt.close() def stop_processing(_): global end end = True plt.close() def next_image(_): plt.close() def estimate_cloudiness(image_paths, coordinates, display_images): global g_display_images global end g_display_images = display_images percentages = [] input_coordinates = [] output_coordinates = [] for x, y in coordinates: input_coordinates.append(( round((x - (ORIGINAL_WIDTH - CROP_SIZE) / 2) / (CROP_SIZE / NETWORK_INPUT_SIZE)), round((y - (ORIGINAL_HEIGHT - CROP_SIZE) / 2) / (CROP_SIZE / NETWORK_INPUT_SIZE)) )) output_coordinates.append(( round((x - (ORIGINAL_WIDTH - CROP_SIZE) / 2) / (CROP_SIZE / NETWORK_OUTPUT_SIZE)), round((y - (ORIGINAL_HEIGHT - CROP_SIZE) / 2) / (CROP_SIZE / NETWORK_OUTPUT_SIZE)) )) output_polygon = path.Path(output_coordinates) neural_network = NeuralNetwork() for i in range(0, len(image_paths), BATCH_SIZE): print('Processing {}/{}'.format(i + 1, len(image_paths))) images = [] for j in range(BATCH_SIZE): if i + j >= len(image_paths): break image = cv2.imread(image_paths[i + j]) images.append(image) preprocessed_images = preprocess_images(images) cloud_outputs = neural_network.run(preprocessed_images) for i, cloud_output in enumerate(cloud_outputs[0]): points_inside = 0 cloudiness = 0 for y in range(cloud_output.shape[0]): for x in range(cloud_output.shape[1]): if output_polygon.contains_point((x, y)): cloudiness += cloud_output[y, x, 0] points_inside += 1 if points_inside > 0: percentages.append(int(round(100 * cloudiness / points_inside))) else: print('ERROR: Invalid coordinates or image') percentages.append(-1) if g_display_images: plt.figure(figsize=(10, 5)) plt.figtext(0.43, 0.94, 'Cloudiness: ' + str(percentages[-1]) + '%', size='x-large') subplot = plt.subplot(121) plt.imshow(preprocessed_images[i][:, :, ::-1]) plt.axis('off') plt.title('Night Sky', size='medium') input_polygon_patch = patches.Polygon(
np.array(input_coordinates)
numpy.array
# Copyright 2016-2018, Rigetti Computing # # This source code is licensed under the Apache License, Version 2.0 found in # the LICENSE.txt file in the root directory of this source tree. """ QuantumFlow Gate Decompositions """ from typing import Sequence, Tuple import itertools import numpy as np from numpy import pi from .qubits import asarray from .config import TOLERANCE from .gates import Gate from .measures import gates_close from .stdgates import RN, CANONICAL, TZ, TY from .circuits import Circuit __all__ = ['bloch_decomposition', 'zyz_decomposition', 'kronecker_decomposition', 'canonical_decomposition', 'canonical_coords'] def bloch_decomposition(gate: Gate) -> Circuit: """ Converts a 1-qubit gate into a RN gate, a 1-qubit rotation of angle theta about axis (nx, ny, nz) in the Bloch sphere. Returns: A Circuit containing a single RN gate """ if gate.qubit_nb != 1: raise ValueError('Expected 1-qubit gate') U = asarray(gate.asoperator()) U /= np.linalg.det(U) ** (1/2) nx = - U[0, 1].imag ny = - U[0, 1].real nz = - U[0, 0].imag N = np.sqrt(nx**2 + ny**2 + nz**2) if N == 0: # Identity nx, ny, nz = 1, 1, 1 else: nx /= N ny /= N nz /= N sin_halftheta = N cos_halftheta = U[0, 0].real theta = 2 * np.arctan2(sin_halftheta, cos_halftheta) # We return a Circuit (rather than just a gate) to keep the # interface of decomposition routines uniform. return Circuit([RN(theta, nx, ny, nz, *gate.qubits)]) # DOCME TESTME def zyz_decomposition(gate: Gate) -> Circuit: """ Returns the Euler Z-Y-Z decomposition of a local 1-qubit gate. """ if gate.qubit_nb != 1: raise ValueError('Expected 1-qubit gate') q, = gate.qubits U = asarray(gate.asoperator()) U /= np.linalg.det(U) ** (1/2) # SU(2) if abs(U[0, 0]) > abs(U[1, 0]): theta1 = 2 * np.arccos(min(abs(U[0, 0]), 1)) else: theta1 = 2 * np.arcsin(min(abs(U[1, 0]), 1)) cos_halftheta1 = np.cos(theta1/2) if not np.isclose(cos_halftheta1, 0.0): phase = U[1, 1] / cos_halftheta1 theta0_plus_theta2 = 2 * np.arctan2(np.imag(phase), np.real(phase)) else: theta0_plus_theta2 = 0.0 sin_halftheta1 = np.sin(theta1/2) if not np.isclose(sin_halftheta1, 0.0): phase = U[1, 0] / sin_halftheta1 theta0_sub_theta2 = 2 * np.arctan2(np.imag(phase), np.real(phase)) else: theta0_sub_theta2 = 0.0 theta0 = (theta0_plus_theta2 + theta0_sub_theta2) / 2 theta2 = (theta0_plus_theta2 - theta0_sub_theta2) / 2 t0 = theta0/np.pi t1 = theta1/np.pi t2 = theta2/np.pi circ1 = Circuit() circ1 += TZ(t2, q) circ1 += TY(t1, q) circ1 += TZ(t0, q) return circ1 def kronecker_decomposition(gate: Gate) -> Circuit: """ Decompose a 2-qubit unitary composed of two 1-qubit local gates. Uses the "Nearest Kronecker Product" algorithm. Will give erratic results if the gate is not the direct product of two 1-qubit gates. """ # An alternative approach would be to take partial traces, but # this approach appears to be more robust. if gate.qubit_nb != 2: raise ValueError('Expected 2-qubit gate') U = asarray(gate.asoperator()) rank = 2**gate.qubit_nb U /= np.linalg.det(U) ** (1/rank) R = np.stack([U[0:2, 0:2].reshape(4), U[0:2, 2:4].reshape(4), U[2:4, 0:2].reshape(4), U[2:4, 2:4].reshape(4)]) u, s, vh = np.linalg.svd(R) v = vh.transpose() A = (
np.sqrt(s[0])
numpy.sqrt
import copy import gc import numpy from numpy.linalg import LinAlgError import joblib import pandas import psutil import pygmo from scipy.optimize import minimize from scipy.optimize import differential_evolution import time from typing import Dict, List, Tuple import warnings from .constants import Constants from .constants import Messages from .datatypes import Measurement from .datatypes import Sensitivity from .generalized_islands import ArchipelagoHelpers from .generalized_islands import LossCalculator from .generalized_islands import ParallelEstimationInfo from .model_checking import ModelChecker from .oed import CovOptimality from .parameter import Parameter from .parameter import ParameterMapper from .parameter import ParameterManager from .simulation import ExtendedSimulator from .utils import Calculations from .utils import OwnDict from .utils import Helpers EPS64 = Constants.eps_float64 PRETTY_METRICS = Constants.pretty_metrics SINGLE_ID = Constants.single_id class Caretaker(): """ Manages (takes care of) all major methods related to simulation, estimation, and evaluation of dynamic bioprocess models and its observation functions. Exposes several convient methods of the individual classes in this module. """ def __init__(self, bioprocess_model_class, model_parameters, states:list=None, initial_values:dict=None, replicate_ids:list=None, initial_switches:list=None, model_name:str=None, observation_functions_parameters:List[tuple]=None, model_checking_assistance:bool=True, ): """ Arguments --------- bioprocess_model_class : Subclass of BioprocessModel This class implements the bioprocess model. model_parameters : list or dict The model parameters, as specified in `bioprocess_model_class`. Keyword arguments ----------------- states : list The model states, as specified in `bioprocess_model_class`. Default is none, which enforces `initial_values` not to be None. initial_values : dict Initial values to the model, keys must match the states with a trailing '0'. Default is None, which enforces `states` not to be None. replicate_ids : list Unique ids of replicates, for which the full model applies. The parameters, as specified for the model and observation functions are considered as global ones, which may have different names and values for each replicate. Default is None, which implies a single replicate model. initial_switches : list A list of booleans, indicating the initial state of switches. Number of switches must correpond to the number of return events in method `state_events`, if this method is implemented by the inheriting class. Default is None, which enables auto-detection of initial switches, which all will be False. model_name : str A descriptive model name. Default is None. observation_funtions_parameters : list of tuples Each tuple stores a subclass of ObservationFunction and a dictionary of its correponding parametrization. Default is None, which implies that there are no ObservationFunctions. model_checking_assistance : bool Runs a few sanity and call checks on the implemented model """ # store arguements for later use self.__bioprocess_model_class = bioprocess_model_class self.__model_parameters = model_parameters self.__states = states self.__initial_values = initial_values self.__replicate_ids = replicate_ids self.__initial_switches = initial_switches self.__model_name = model_name self.__observation_functions_parameters = observation_functions_parameters self.replicate_ids = replicate_ids if model_name is None: self.model_name = bioprocess_model_class.__name__ else: self.model_name = model_name # Create an ExtendendSimulator instance for each replicate id model_checker = ModelChecker() self.simulators = {} for _replicate_id in self.replicate_ids: if _replicate_id is None: _model_name = model_name else: _model_name = f'{model_name}_{_replicate_id}' _simulator = ExtendedSimulator( bioprocess_model_class, model_parameters, states, initial_values, initial_switches, _model_name, observation_functions_parameters, _replicate_id, ) if model_checking_assistance: if not model_checker.check_model_consistency(copy.deepcopy(_simulator)): warnings.warn(f'There might by some issues for {_model_name} with replicate_id {_replicate_id}') self.simulators[_replicate_id] = _simulator # Create a ParameterManager object self._parameter_manager = ParameterManager( self.replicate_ids, self.simulators[self.replicate_ids[0]].get_all_parameters(), ) self.optimizer_kwargs = None #%% Properties @property def replicate_ids(self) -> list: return self._replicate_ids @replicate_ids.setter def replicate_ids(self, value): if value is None: self._replicate_ids = [SINGLE_ID] else: if not Helpers.has_unique_ids(value): raise ValueError(Messages.non_unique_ids) self._replicate_ids = value @property def parameter_mapping(self): return self._parameter_manager.parameter_mapping @property def optimizer_kwargs(self) -> dict: return self._optimizer_kwargs @optimizer_kwargs.setter def optimizer_kwargs(self, value): if value is not None and not isinstance(value, dict): raise ValueError('Optimizer kwargs must be either `None` or a dictionary') self._optimizer_kwargs = value #%% Public methods def add_replicate(self, replicate_id:str, mappings:List[ParameterMapper]=None): """ Adds another replicate to the multi model Caretaker object. Arguments --------- replicate_id : str The new replicate_id to be added. Keyword arguments ----------------- mappings : list of ParameterMapper or tuple A list parameter mappings that should be applied to the new replicate_id. Default is None, which implies that the local parameters names for the new replicate correspond to the global names. Raises ------ AttributeError In case the Caretaker object was created without explicit `replicate_ids` argument. ValueError The new replicate_id is not unique including the extisting ones. KeyError Any of the `mappings` aims not for the new replicate_id. """ # store current parameter mapping _parameter_mappers = self._parameter_manager.get_parameter_mappers() _parameters = self._get_all_parameters() if len(self.replicate_ids) == 1 and self.replicate_ids[0] is None: raise AttributeError('Cannot add replicate_id to implicitly defined single replicate Caretaker object') _updated_replicate_ids = copy.deepcopy(self.replicate_ids) _updated_replicate_ids.append(replicate_id) if not Helpers.has_unique_ids(_updated_replicate_ids): raise ValueError(Messages.non_unique_ids) if mappings is not None: for _mapping in mappings: if _mapping.replicate_id != replicate_id: raise KeyError('The given mapping does not aim for the new replicate') self.__init__( bioprocess_model_class=self.__bioprocess_model_class, model_parameters=self.__model_parameters, states=self.__states, initial_values=self.__initial_values, replicate_ids=_updated_replicate_ids, initial_switches=self.__initial_switches, model_name=self.__model_name, observation_functions_parameters=self.__observation_functions_parameters, ) self.set_parameters(_parameters) self.apply_mappings(_parameter_mappers) if mappings is not None: self.apply_mappings(mappings) def simulate(self, t:numpy.ndarray, parameters:dict=None, verbosity:int=40, reset_afterwards:bool=False, suppress_stdout:bool=True) -> list: """ Runs a forward simulation for the fully specified model and its observation functions (if specified). Arguments --------- t : numpy.ndarray or float The time points for integration. In case a single time point is provided, the solver will treat this as final integration time and chooses the intermediate steps on its own. Keyword arguments ----------------- parameters : dict In case a simulation for specific parameter values is wanted. Default is None. verbosity : int Prints solver statistics (quiet = 50, whisper = 40, normal = 30, loud = 20, scream = 10). Default is 30. suppress_stdout : bool No printouts of integrator warnings, which are directed to stdout by the assimulo package. Set to False for model debugging purposes. Default is True. Returns ------- simulations : list The collection of simulations results as list of ModelState or Observation objects. """ if parameters is not None: _original_parameters = self._get_all_parameters() self.set_parameters(parameters) simulations = [] for _id in self.simulators.keys(): _simulator = self.simulators[_id] simulations.extend(_simulator.simulate(t=t, verbosity=verbosity, reset_afterwards=reset_afterwards, suppress_stdout=suppress_stdout)) if parameters is not None: self.set_parameters(_original_parameters) return simulations def estimate(self, unknowns:dict, measurements:List[Measurement], bounds:List[Tuple]=None, metric:str='negLL', use_global_optimizer:bool=None, report_level:int=0, reset_afterwards:bool=False, handle_CVodeError:bool=True, optimizer_kwargs:dict=None, ) -> Tuple[dict, dict]: """ Estimates values for requested unknowns according to a specific metric, given some measurements. Arguments --------- unknowns : dict or list The parameters to be estimated. Can be any of the model parameters, initial values or observation parameters. Providing a list of valid unknowns causes the use of scipy's differential evolution global optimizer. A dictionary with parameter:guess as key-value pairs is needed to use the local but faster minimizer. measurements : List[Measurement] The data from which the parameter estimation is performed. Can provide a Measurement object for any model state or observation. Keyword arguments ----------------- bounds : list of tuples Bounds for for each unknown to be estimated. Must be provided for use with differential evolution optimizer. Default is None. metric : str The metric according to which the loss to be minimized is calculated. Can be one of, e.g. `negLL` (negative log-likelihood), 'SS' (sum of squares), or `WSS` (weighted sum of squares). Default is `negLL`, which implies that the corresponding Measurement object are accordingly specified. use_global_optimizer : bool Enforce the use of differential evolution optimizer. Default is None, which makes this decision based on the the type of `unknowns` and `bounds`. report_level : int Enables informative output about the estimation process. Default is 0, which is no output. 1 = prints estimated parameters and runtime of the estimation job. 2 = prints additionally the `OptimizeResult` result object, as returned by the optimizer 3 = prints additionally handled CVodeErrors, which arise from toxic parameters. This has only effect in case `handle_CVodeError` is True 4 = prints additionally the progress of the optimizer. reset_afterwards : bool To reset the Caretaker object after the estimation has finished. Default is False. handle_CVodeError : bool Catches CVodeError raised by the solver, in order to not interrupt the estimations for toxic parameter values. Default is True. Returns ------- estimations : dict Key-value pairs of the unknowns and corresponding estimated values. estimation_info : dict Additional information about the estimation job. Raises ------ KeyError Non-unique unknowns are provided. ValueError Invalid unknowns shall be estimated. ValueError No bounds are provided for use of differential evolution optimizer. TypeError A list containing not only Measurement objects is provided. Warns ----- UserWarning The `optimizer_kwargs` argument is not None. """ for _item in measurements: if not isinstance(_item, Measurement): raise TypeError('Must provide a list of Measurement objects') _start = time.time() if not Helpers.has_unique_ids(unknowns): raise KeyError(Messages.bad_unknowns) # test if parameters are estimated that are not known to the model _valid_unknowns = self._get_valid_parameter_names() for _unknown in unknowns: if _unknown not in _valid_unknowns: raise ValueError(f'Detected invalid unknown to be estimated: {_unknown} vs. {_valid_unknowns}') if use_global_optimizer == False and not isinstance(unknowns, dict): raise ValueError('Must provide initial guesses to use the local minimizer') # sort unknowns and corresponding bounds alphabetically and case-insensitive # Decide also whether to use the local or global minimizer _unknowns_names_sorted = sorted(unknowns, key=str.lower) if isinstance(unknowns, dict): _unknowns = {_unknown_name : unknowns[_unknown_name] for _unknown_name in _unknowns_names_sorted} elif isinstance(unknowns, list): _unknowns = {_unknown_name : None for _unknown_name in _unknowns_names_sorted} if use_global_optimizer is None: use_global_optimizer = True if use_global_optimizer and bounds is None: raise ValueError(Messages.missing_bounds) if bounds is not None: try: _bounds = [bounds[unknowns.index(_unknown_name)] for _unknown_name in _unknowns_names_sorted] except AttributeError: _bounds = [bounds[list(unknowns.keys()).index(_unknown_name)] for _unknown_name in _unknowns_names_sorted] # To protect for integration error when a bound is integer 0 _bounds = Helpers.bounds_to_floats(_bounds) else: _bounds = None # Check for optimizer_kwargs to be used _optimizer_kwargs = {} if self.optimizer_kwargs is None: _warning_flag = False else: _optimizer_kwargs.update(self.optimizer_kwargs) _warning_flag = True # check if the keyword argument `optimizer_kwargs` was set, which has a higher priority over the corresponding Caretaker property if optimizer_kwargs is not None: _optimizer_kwargs = optimizer_kwargs if _warning_flag: warnings.warn('Using the `optimizer_kwargs` keyword argument overrides the Caretaker property `optimizer_kwargs`.', UserWarning) if report_level >= 3: verbosity_CVodeError = True else: verbosity_CVodeError = False if report_level >= 4 and 'disp' not in _optimizer_kwargs.keys(): _optimizer_kwargs['disp'] = True if use_global_optimizer: minimizer_scope = 'differential evolution optimizer' if 'popsize' not in _optimizer_kwargs.keys(): popsize = 5*len(_unknowns) _optimizer_kwargs['popsize'] = popsize opt = differential_evolution(self._loss_fun_scipy, bounds=_bounds, args=(_unknowns, metric, measurements, handle_CVodeError, verbosity_CVodeError, ), **_optimizer_kwargs, ) else: minimizer_scope = 'local minimizer' if 'disp' in _optimizer_kwargs.keys(): options = {'disp' : _optimizer_kwargs['disp']} del _optimizer_kwargs['disp'] _optimizer_kwargs['options'] = options opt = minimize(self._loss_fun_scipy, list(_unknowns.values()), args=(_unknowns, metric, measurements, handle_CVodeError, verbosity_CVodeError, ), bounds=_bounds, **_optimizer_kwargs, ) # Preparing returns estimations = {_unknown : value for _unknown, value in zip(_unknowns, opt.x)} estimation_info = {} estimation_info['opt_info'] = opt if metric in list(PRETTY_METRICS.keys()): estimation_info['metric'] = PRETTY_METRICS[metric] else: estimation_info['metric'] = metric estimation_info['loss'] = opt.fun _end = time.time() estimation_info['runtime_min'] = (_end - _start)/60 if report_level >= 1: print(f'\n----------Results from {minimizer_scope}') print('\nEstimated parameters:') for estimation in estimations.keys(): print(f'{estimation}: {estimations[estimation]}') print(f'\nRuntime was {estimation_info["runtime_min"]:.2f} min') if report_level >= 2: print('\n----------') print(opt) return estimations, estimation_info def estimate_parallel(self, unknowns:list, measurements:List[Measurement], bounds:List[Tuple], metric:str='negLL', report_level:int=0, optimizers:List[str]='de1220', optimizers_kwargs:List[dict]={}, log_each_nth_gen:int=None, rel_pop_size:float=10.0, evolutions:int=5, archipelago_kwargs:dict={}, atol_islands:float=None, rtol_islands:float=1e-6, max_runtime_min:float=None, max_evotime_min:float=None, max_memory_share:float=0.95, handle_CVodeError:bool=True, loss_calculator:LossCalculator=LossCalculator, ) -> Tuple[dict, ParallelEstimationInfo]: """ Estimates values for requested unknowns according to a specific metric, given some measurements, using the generalized island model for parallelization that allows for global optimization. This is provided by the pygmo package, which runs parallel evolutions of populations, with migration of improved variants between the populations occuring. For further info and use of pygmo, see https://github.com/esa/pygmo2, doi:10.5281/zenodo.3603747. Arguments --------- unknowns : dict or list The parameters to be estimated. Can be any of the model parameters, initial values or observation parameters. measurements : List[Measurement] The data from which the parameter estimation is performed. Can provide a Measurement object for any model state or observation. bounds : list of tuples Bounds for for each unknown to be estimated, in the following form [(lower, upper), ...] Keyword arguments ---------------- metric : str The metric according to which the loss to be minimized is calculated. Can be one of, e.g. `negLL` (negative log-likelihood), `SS` (sum of squares), or `WSS` (weighted sum of squares). Default is `negLL`, which implies that the corresponding Measurement object are accordingly specified. report_level : int Enables informative output about the estimation process. Information will be printed after each evolution. Default is 0, which is no output. 1 = Prints the best loss, as well as information about archipelago creation and evolution. For each completed evolution, a dot is printed. 2 = Prints additionally the best loss after each evolution 3 = Prints additionally average loss among all islands, and the runtime of each evolution. 4 = Prints additionally the parameter values for the best loss, and the average parameter values among the champions of all islands in the `archipelago` after the evolutions. optimizers : List[str] or str A list of names for the pygmo optimization algorithms of choice. For a list of such to be conveniently used, see `PygmoOptimizers` class of this module. In case a list with one item is used, this optimizer is used for all explicitly or implicitly (default None of `n_islands`) defined nunmber islands. In case a list with >1 optimizers is used, the corresponding number of islands will be created within the archipelago. The currently supported list of optimizer can be found at pyfoomb.generalized_islands.PygmoOptimizers.optimizers Default is `de1220`, which makes each island to use this algorithm. optimizers_kwargs : List[dict] or dict A list of optimizer_kwargs as dicts, corresponding to the list of optimizers. In case more >1 optimizers are used, the 1-item list of optimizer_kwargs will be applied to all of the optimizers. Default is `[{}]`, i.e. no additional optimizer kwargs. log_each_nth_gen : int Specifies at which each n-th generation the algorithm stores logs. Can be later extracted from the returned `archipelago` instance. Note that only the log from the last evolution is stored in the archipelago. Default is None, which disables logging. rel_pop_size : float Determines the population size on each island, relative to the number of unknown to be estimated, i.e. pop_size = rel_pop_size * len(unknowns), rounded to the next integer. Default is 10, which creates population sizes 10 times the number of unknowns. evolutions : int Defines how often the populations on the islands are evolved. Migrations between the populations of the islands occur after each finished evolution. Migration depends of the topology of the archipelago, as well as the defined migration polices, which are parts of `archipelago_kwargs`. Default is 5, which triggers five rounds of evolution. archipelago_kwargs : dict The keyword arguments for instantiation of the archipelago. In case `archipelago_kwargs` has no key `t`, the `pygmo.fully_connected()` topology will be used Default is {}, i.e. an empty dictionary, which implies the use of `pygmo.fully_connected()` topology. atol_islands : float Defines a stopping criterion that is checked after each evolution. If the std of the islands' losses < atol_islands + rtol_islands * abs(mean(islands' losses)), then the optimization is stopped. Default is None, which implies no effect for this argument. rtol_islands : float Defines a stopping criterion that is checked after each evolution. If the std of the islands' losses < atol_islands + rtol_islands * abs(mean(islands' losses)), then the optimization is stopped. Default is 1e-6. max_runtime_min : float The maximun time in min the estimation process may take. The current runtimee is evaluated after each completion of an evolution. Default is None, which implies there is no maximum runtime for the estimation process. max_evotime_min : float The maximum cumulative pure evolution time the estimation process is allowed to take. In contrast to the `max_runtime_min` stopping criterion, only the evolution runtime is considered, without runtime needed for checking stopping criteria, reporting prints outs between each evolution, etc. Default is None. max_memory_share : float Defines the allowed memory share in usage, for which no evolutions are run anymore. Default is 0.95, meaning that repeat are only run if used memory share is less than 95 %. handle_CVodeError : bool Catches CVodeError raised by the solver, in order to not interrupt the estimations for toxic parameter values. Default is True. loss_calculator : LossCalculator By subclassing `LossCalculator`, user-defined constraints can be implemented. The resulting subclass needs to be provided. Default is LossCalculator, which implements no additional constraints Returns ------- best_estimates : dict The estimated parameters, according to the best champion among all populations of the archipelago, aftet the last evolution. estimation_result : ParallelEstimationInfo Stores the archipelago and the history of the previous evolutions. Needed to continue an estimation process. Raises ------ KeyError Non-unique unknowns are provided. ValueError Invalid unknowns shall be estimated. """ _start = time.time() if len(unknowns) != len(bounds): raise ValueError('Number of unkowns does not match number of pairs of upper and lower bounds.') if not isinstance(optimizers, list) and isinstance(optimizers, str): optimizers = [optimizers] if not isinstance(optimizers_kwargs, list) and isinstance(optimizers_kwargs, dict): optimizers_kwargs = [optimizers_kwargs] if not Helpers.has_unique_ids(unknowns): raise KeyError(Messages.bad_unknowns) # test if parameters are estimated that are not known to the model _valid_unknowns = self._get_valid_parameter_names() for _unknown in unknowns: if _unknown not in _valid_unknowns: raise ValueError(f'Detected invalid unknown to be estimated: {_unknown} vs. {_valid_unknowns}') # sort unknowns and corresponding bounds _unknowns_names_sorted = sorted(unknowns, key=str.lower) _unknowns = [_unknown_name for _unknown_name in _unknowns_names_sorted] _bounds = [bounds[unknowns.index(_unknown_name)] for _unknown_name in _unknowns_names_sorted] if report_level >= 5: _verbosity_CVodeError = True else: _verbosity_CVodeError = False # get the problem pg_problem = pygmo.problem( loss_calculator( unknowns=_unknowns, bounds=_bounds, metric=metric, measurements=measurements, caretaker_loss_fun=self.loss_function, handle_CVodeError=handle_CVodeError, verbosity_CVodeError=_verbosity_CVodeError, ), ) # get the archipelago archipelago = ArchipelagoHelpers.create_archipelago( _unknowns, optimizers, optimizers_kwargs, pg_problem, rel_pop_size, archipelago_kwargs, log_each_nth_gen, report_level, ) archipelago.problem = loss_calculator estimation_result = ParallelEstimationInfo(archipelago=archipelago) return self.estimate_parallel_continued( estimation_result=estimation_result, evolutions=evolutions, report_level=report_level, atol_islands=atol_islands, rtol_islands=rtol_islands, max_runtime_min=max_runtime_min, max_evotime_min=max_evotime_min, max_memory_share=max_memory_share, start_time=_start, ) def estimate_parallel_continued(self, estimation_result:ParallelEstimationInfo, evolutions:int=1, report_level:int=0, atol_islands:float=None, rtol_islands:float=1e-6, max_runtime_min:float=None, max_evotime_min:float=None, max_memory_share:float=0.95, start_time:float=None, ) -> Tuple[dict, ParallelEstimationInfo]: """ Continues a parallel parameter estimation job by running more evolutions on a corresponding archipelago object. Arguments --------- estimation_result : ParallelEstimationInfo Stores the archipelago and the history of the previous evolutions as returned by method 'estimate_parallel'. Needed to continue an estimation process. Keyword arguments ----------------- evolutions : int Defines how often the populations on the islands are evolved. Migrations between the populations of the islands occur after an evolution. report_level : int Enables informative output about the estimation process. Information will be printed after each evolution. Default is 0, which is no output. 1 = Prints the best loss, as well as information about archipelago creation and evolution. For each completed evolution, a dot is printed. 2 = Prints additionally the best loss after each evolution 3 = Prints additionally average loss among all islands, and the runtime of each evolution. 4 = Prints additionally the parameter values for the best loss, and the average parameter values among the champions of all islands in the `archipelago` after the evolutions. atol_islands : float Defines a stopping criterion that is checked after each evolution. If the std of the islands' losses < atol_islands + rtol_islands * abs(mean(islands' losses)), then the optimization is stopped. Default is None, which implies no effect for this argument. rtol_islands : float Defines a stopping criterion that is checked after each evolution. If the std of the islands' losses < atol_islands + rtol_islands * abs(mean(islands' losses)), then the optimization is stopped. Default is 1e-6. max_runtime_min : float The maximum runtime in min the estimation process is allowed to take. The current runtime is evaluated after each completion of an evolution. Default is None, which implies that there is no time limit for the estimation process. max_evotime_min : float The maximum cumulative pure evolution time the estimation process is allowed to take. In contrast to the `max_runtime_min` stopping criterion, only the evolution runtime is considered, without runtime needed for checking stopping criteria, reporting prints outs between each evolution, etc. Default is None. max_memory_share : float Defines the allowed memory share in usage, for which no evolutions are run anymore. Default is 0.95, meaning that repeat are only run if used memory share is less than 95 %. start_time : float In case a total runtime, started from another method, shall be reported. Default is None, which measured the total run time only within this method. Returns ------- best_estimates : dict The estimated parameters, according to the best champion among all populations of the archipelago, aftet the last evolution. estimation_result : ParallelEstimationInfo Stores the archipelago and the history of the previous evolutions. Needed to continue an estimation process. Raises ------ ValueError Not all island of the archipelago have the same unknowns. """ if start_time is None: start_time = time.time() archipelago = estimation_result.archipelago evolutions_trail = estimation_result.evolutions_trail.copy() if report_level >= 1: if not evolutions_trail['evo_time_min']: _filler = '' else: _filler = 'additional ' print(f'Running {_filler}{evolutions} evolutions for all {len(archipelago)} islands of the archipelago...\n') _current_evotime_min = 0 for _evolution in range(1, evolutions+1): _evo_start = time.time() archipelago.evolve() archipelago.wait_check() _evo_end = time.time() _evo_time_min = (_evo_end - _evo_start)/60 _current_evotime_min += _evo_time_min best_estimates, best_loss, estimates_info = ArchipelagoHelpers.extract_archipelago_results(archipelago) evolutions_trail['evo_time_min'].append(_evo_time_min) evolutions_trail['best_losses'].append(best_loss) evolutions_trail['best_estimates'].append(best_estimates) evolutions_trail['estimates_info'].append(estimates_info) if report_level == 1: if _evolution % 120 == 0: end = '\n' else: end = '' print('.', end=end) elif report_level >= 2: ArchipelagoHelpers.report_evolution_result(evolutions_trail, report_level) # evaluate stopping criteria after each evolution _current_runtime_min = (time.time() - start_time)/60 stopping_criteria = ArchipelagoHelpers.check_evolution_stop( current_losses=estimates_info['losses'], atol_islands=atol_islands, rtol_islands=rtol_islands, current_runtime_min=_current_runtime_min, max_runtime_min=max_runtime_min, current_evotime_min=_current_evotime_min, max_evotime_min=max_evotime_min, max_memory_share=max_memory_share, ) if any(stopping_criteria.values()): if report_level >= 1: print(f'\nReached a stopping criterion after evolution {len(evolutions_trail["evo_time_min"])}:') for _st in stopping_criteria: print(f'{_st}: {stopping_criteria[_st]}') early_stop = True break else: early_stop = False if report_level >= 1: if not early_stop: print(f'\nCompleted {_evolution} {_filler}evolution runs.') print('\nEstimated parameters:') for p in best_estimates: print(f'{p}: {best_estimates[p]}') print('') ArchipelagoHelpers.report_evolution_result(evolutions_trail, report_level=3) _runtime_min = (time.time() - start_time)/60 evolutions_trail['cum_runtime_min'].append(_runtime_min) if report_level >= 1: if _runtime_min/60 > 1: print(f'\nTotal runtime was {_runtime_min/60:.2f} h\n') else: print(f'\nTotal runtime was {_runtime_min:.2f} min\n') estimation_result = ParallelEstimationInfo(archipelago=archipelago, evolutions_trail=evolutions_trail) return best_estimates, estimation_result def estimate_parallel_MC_sampling(self, unknowns:list, measurements:List[Measurement], bounds:List[Tuple], mc_samples:int=25, reuse_errors_as_weights:bool=True, metric:str='negLL', report_level:int=0, optimizers:List[str]='de1220', optimizers_kwargs:List[dict]={}, rel_pop_size:float=10.0, evolutions:int=25, archipelago_kwargs:dict={}, atol_islands:float=None, rtol_islands:float=1e-6, n_islands:int=4, handle_CVodeError:bool=True, loss_calculator:LossCalculator=LossCalculator, jobs_to_save:int=None, max_memory_share:float=0.95, ) -> pandas.DataFrame: """ Performs Monte-Carlo sampling from measurements to create new measurements, according to the statitical distribution of the respective Measurement objects. For each newly created measurement, the requested unknowns (parameters) are estimated, resulting in an empirical distribution of parameter values. these empirical distributions for the parameters can be assessed for uncertainties and correlations. For each MC sample, a parallel estimation procedure is carried out, for details see methods `estimate_parallel` and `estimate_parallel_continued`. Depending on the available number of CPUs on your machine, these estimation procedure are run in parallel. The selection of suitable hyperparameters, e.g. which optimizers, etc., use method `estimate_parallel` and refer to corresponding Jupyter notebooks. NOTE: To increase the number of MC samples to an arbiratry high number, set `repeats_to_save` argument. Afterwards, the results saved to disk can be read and merged. NOTE: This method puts considerable computational load on your machine. Arguments --------- unknowns : dict or list The parameters to be estimated. Can be any of the model parameters, initial values or observation parameters. measurements : List[Measurement] The measurements from which the parameters are to be estimated. bounds : List[tuple] List of tuples (lower, upper), one tuple for each parameter. Must be provided when using the global optimizer. Default is None. Keyword arguments ----------------- mc_samples : int The number of MC samples that shall be drawn from the measurement data. Default is 25. reuse_errors_as_weights : bool Uses the measurement errors as weights for each set of measurement samples drawn. Default is True. metric : str The metric according to which the loss to be minimized is calculated. Can be one of, e.g. `negLL` (negative log-likelihood), 'SS' (sum of squares), or `WSS` (weighted sum of squares). Default is `negLL`, which implies that the corresponding Measurement objects are accordingly specified. report_level : int Enables informative output about the estimation process. Default is 0, which is no output. 1 = Prints a dot for each processing batch, the total runtime and the ratio of samples that reached convergence. 2 = Prints likewise for 1, but with more information on each batch. 3 = Prints additionally the runtime of each batch, as well as as summary for the obtained parameter distributions. 4 = Prints additionally the reason for a MS sample to finish (i.e., whether convergence or the maximum number of evolutions was reached). 5 = Prints additionally information on the creation of the archipelagos for each batch 6 = Prints additionally the current evolution for each MC samples, and report any handled integration error. optimizers : List[str] or str A list of names for the pygmo optimization algorithms of choice. For a list of such to be conveniently used, see `PygmoOptimizers` class of this module. In case a list with one item is used, this optimizer is used for all explicitly or implicitly (default None of `n_islands`) defined nunmber islands. In case a list with >1 optimizers is used, the corresponding number of islands will be created within the archipelago. The currently supported list of optimizer can be found at pyfoomb.generalized_islands.PygmoOptimizers.optimizers Default is `de1220`, which makes each island to use this algorithm. optimizers_kwargs : List[dict] or dict A list of optimizer_kwargs as dicts, corresponding to the list of optimizers. In case more >1 optimizers are used, the 1-item list of optimizer_kwargs will be applied to all of the optimizers. Default is `{}`, i.e. no additional optimizer kwargs. rel_pop_size : float Determines the population size on each island, relative to the number of unknown to be estimated, i.e. pop_size = rel_pop_size * len(unknowns), rounded to the next integer. Default is 10, which creates population sizes 10 times the number of unknowns. evolutions : int Defines how often the populations on the islands are evolved. Migrations between the populations of the islands occur after each finished evolution. Migration depends of the topology of the archipelago, as well as the defined migration polices, which are parts of `archipelago_kwargs`. Default is 5, which triggers five rounds of evolution. archipelago_kwargs : dict The keyword arguments for instantiation of the archipelago. In case `archipelago_kwargs` has no key `t`, the `pygmo.fully_connected()` topology will be used Default is {}, i.e. an empty dictionary, which implies the use of `pygmo.fully_connected()` topology. atol_islands : float Defines a stopping criterion that is checked after each evolution. If the std of the islands' losses < atol_islands + rtol_islands * abs(mean(islands' losses)), then the optimization is stopped. Default is None, which implies no effect for this argument. rtol_islands : float Defines a stopping criterion that is checked after each evolution. If the std of the islands' losses < atol_islands + rtol_islands * abs(mean(islands' losses)), then the optimization is stopped. Default is 1e-6. n_islands : int Specifies the number of parallel estimations per MC samples for all archipelagos in an estimation batch. In case a list of optimizers is provided, the number of islands is implicitly defined by its length. Must use values > 1. Default is 4. handle_CVodeError : bool Catches CVodeError raised by the solver, in order to not interrupt the estimations for toxic parameter values. Default is True. loss_calculator : LossCalculator By subclassing `LossCalculator`, user-defined constraints can be implemented. The resulting subclass needs to be provided. Default is LossCalculator, which implements no additional constraints jobs_to_save : int Set to repeatedly run the specifified number of MC samples and to save the results from each repeat to file. Default is None, which causes no result storage ti file. max_memory_share : float Defines the allowed memory share in usage, for which no repeats are run anymore. Has only effect if `jobs_to_save` is not None. Default is 0.95, meaning that repeat are only run if used memory share is less than 95 %. Returns ------- estimates : pandas.DataFrame The values from repeated estimation for the requested unknowns. Only converged estimations are included. Raises ------ AttributeError Measurements have no errors. ValueError Degree of archipelago parallelization is < 2. TypeError A list containing not only Measurement objects is provided. KeyError: Non-unique unknowns detected. ValueError: Invalid parameters shall be estimated. """ if jobs_to_save is None: _estimate = self._estimate_parallel_MC_sampling( unknowns=unknowns, measurements=measurements, bounds=bounds, mc_samples=mc_samples, reuse_errors_as_weights=reuse_errors_as_weights, metric=metric, report_level=report_level, optimizers=optimizers, optimizers_kwargs=optimizers_kwargs, rel_pop_size=rel_pop_size, evolutions=evolutions, archipelago_kwargs=archipelago_kwargs, atol_islands=atol_islands, rtol_islands=rtol_islands, n_islands=n_islands, handle_CVodeError=handle_CVodeError, loss_calculator=loss_calculator, ) return pandas.DataFrame.from_dict(_estimate) _estimate_batches = [] session_id = int(time.monotonic()) for i in range(1, jobs_to_save+1): curr_memory_share = psutil.virtual_memory().percent/100 if curr_memory_share > max_memory_share: print(f'Cannot run MC estimation job due to low memory: {(1-curr_memory_share)*100:.2f} % free memory left') else: _estimate_batch = self._estimate_parallel_MC_sampling( unknowns=unknowns, measurements=measurements, bounds=bounds, mc_samples=mc_samples, reuse_errors_as_weights=reuse_errors_as_weights, metric=metric, report_level=report_level, optimizers=optimizers, optimizers_kwargs=optimizers_kwargs, rel_pop_size=rel_pop_size, evolutions=evolutions, archipelago_kwargs=archipelago_kwargs, atol_islands=atol_islands, rtol_islands=rtol_islands, n_islands=n_islands, handle_CVodeError=handle_CVodeError, loss_calculator=loss_calculator, ) _filename = f'{self.model_name}_MC-sample-estimates_session-id-{session_id}_job-{i}.xlsx' _df = pandas.DataFrame.from_dict(_estimate_batch) _estimate_batches.append(_df) _df.to_excel(_filename) if report_level > 0: print(f'Current memory usage is {psutil.virtual_memory().percent:.2f} %.\nSaved results of job #{i} to file: {_filename}\n') return pandas.concat(_estimate_batches, ignore_index=True) def _estimate_parallel_MC_sampling(self, unknowns:list, measurements:List[Measurement], bounds:List[Tuple], mc_samples:int=25, reuse_errors_as_weights:bool=True, metric:str='negLL', report_level:int=0, optimizers:List[str]='de1220', optimizers_kwargs:List[dict]={}, rel_pop_size:float=10.0, evolutions:int=25, archipelago_kwargs:dict={}, atol_islands:float=None, rtol_islands:float=1e-6, n_islands:int=4, handle_CVodeError:bool=True, loss_calculator:LossCalculator=LossCalculator, ) -> dict: """ Performs Monte-Carlo sampling from measurements to create new measurements, according to the statitical distribution of the respective Measurement objects. For each newly created measurement, the requested unknowns (parameters) are estimated, resulting in an empirical distribution of parameter values. these empirical distributions for the parameters can be assessed for uncertainties and correlations. For each MC sample, a parallel estimation procedure is carried out, for details see methods `estimate_parallel` and `estimate_parallel_continued`. Depending on the available number of CPUs on your machine, these estimation procedure are run in parallel. The selection of suitable hyperparameters, e.g. which optimizers, etc., use method `estimate_parallel` and refer to corresponding Jupyter notebooks. NOTE: To increase the number of MC samples to an arbiratry high number, run this method several times and store intermediate results. Afterwards, these can be merged. NOTE: This method puts considerable computational load on your machine. Arguments --------- unknowns : dict or list The parameters to be estimated. Can be any of the model parameters, initial values or observation parameters. measurements : List[Measurement] The measurements from which the parameters are to be estimated. bounds : List[tuple] List of tuples (lower, upper), one tuple for each parameter. Must be provided when using the global optimizer. Default is None. Keyword arguments ----------------- mc_samples : int The number of MC samples that shall be drawn from the measurement data. Default is 25. reuse_errors_as_weights : bool Uses the measurement errors as weights for each set of measurement samples drawn. Default is True. metric : str The metric according to which the loss to be minimized is calculated. Can be one of, e.g. `negLL` (negative log-likelihood), 'SS' (sum of squares), or `WSS` (weighted sum of squares). Default is `negLL`, which implies that the corresponding Measurement objects are accordingly specified. report_level : int Enables informative output about the estimation process. Default is 0, which is no output. 1 = Prints a dot for each processing batch, the total runtime and the ratio of samples that reached convergence. 2 = Prints likewise for 1, but with more information on each batch. 3 = Prints additionally the runtime of each batch, as well as as summary for the obtained parameter distributions. 4 = Prints additionally the reason for a MS sample to finish (i.e., whether convergence or the maximum number of evolutions was reached). 5 = Prints additionally information on the creation of the archipelagos for each batch 6 = Prints additionally the current evolution for each MC samples, and report any handled integration error. optimizers : List[str] or str A list of names for the pygmo optimization algorithms of choice. For a list of such to be conveniently used, see `PygmoOptimizers` class of this module. In case a list with one item is used, this optimizer is used for all explicitly or implicitly (default None of `n_islands`) defined nunmber islands. In case a list with >1 optimizers is used, the corresponding number of islands will be created within the archipelago. The currently supported list of optimizer can be found at pyfoomb.generalized_islands.PygmoOptimizers.optimizers Default is `de1220`, which makes each island to use this algorithm. optimizers_kwargs : List[dict] or dict A list of optimizer_kwargs as dicts, corresponding to the list of optimizers. In case more >1 optimizers are used, the 1-item list of optimizer_kwargs will be applied to all of the optimizers. Default is `{}`, i.e. no additional optimizer kwargs. rel_pop_size : float Determines the population size on each island, relative to the number of unknown to be estimated, i.e. pop_size = rel_pop_size * len(unknowns), rounded to the next integer. Default is 10, which creates population sizes 10 times the number of unknowns. evolutions : int Defines how often the populations on the islands are evolved. Migrations between the populations of the islands occur after each finished evolution. Migration depends of the topology of the archipelago, as well as the defined migration polices, which are parts of `archipelago_kwargs`. Default is 5, which triggers five rounds of evolution. archipelago_kwargs : dict The keyword arguments for instantiation of the archipelago. In case `archipelago_kwargs` has no key `t`, the `pygmo.fully_connected()` topology will be used Default is {}, i.e. an empty dictionary, which implies the use of `pygmo.fully_connected()` topology. atol_islands : float Defines a stopping criterion that is checked after each evolution. If the std of the islands' losses < atol_islands + rtol_islands * abs(mean(islands' losses)), then the optimization is stopped. Default is None, which implies no effect for this argument. rtol_islands : float Defines a stopping criterion that is checked after each evolution. If the std of the islands' losses < atol_islands + rtol_islands * abs(mean(islands' losses)), then the optimization is stopped. Default is 1e-6. n_islands : int Specifies the number of parallel estimations per MC samples for all archipelagos in an estimation batch. In case a list of optimizers is provided, the number of islands is implicitly defined by its length. Must use values > 1. Default is 4. handle_CVodeError : bool Catches CVodeError raised by the solver, in order to not interrupt the estimations for toxic parameter values. Default is True. loss_calculator : LossCalculator By subclassing `LossCalculator`, user-defined constraints can be implemented. The resulting subclass needs to be provided. Default is LossCalculator, which implements no additional constraints Returns ------- estimates : dict The values from repeated estimation for the requested unknowns. Only converged estimations are included. estimates_info : dict Contains additional information for all finished jobs. Raises ------ AttributeError Measurements have no errors. ValueError Degree of archipelago parallelization is < 2. TypeError A list containing not only Measurement objects is provided. KeyError: Non-unique unknowns detected. ValueError: Invalid parameters shall be estimated. """ _start = time.time() # Some input error checkings if len(unknowns) != len(bounds): raise ValueError('Number of unkowns does not match number of pairs of upper and lower bounds.') for _item in measurements: if not isinstance(_item, Measurement): raise TypeError('Must provide a list of Measurement objects') if not Helpers.all_measurements_have_errors(measurements): raise AttributeError('Measurements must have errors') if not Helpers.has_unique_ids(unknowns): raise KeyError(Messages.bad_unknowns) _valid_unknowns = self._get_valid_parameter_names() for _unknown in unknowns: if _unknown not in _valid_unknowns: raise ValueError(f'Detected invalid unknown to be estimated: {_unknown} vs. {_valid_unknowns}') # Sort unknowns and corresponding bounds _unknowns_names_sorted = sorted(unknowns, key=str.lower) _unknowns = [_unknown_name for _unknown_name in _unknowns_names_sorted] _bounds = [bounds[unknowns.index(_unknown_name)] for _unknown_name in _unknowns_names_sorted] if report_level >= 6: _verbosity_CVodeError = True else: _verbosity_CVodeError = False # Check whether to use the same optimizer for all islands or a list of optimizers if isinstance(optimizers, str): optimizers = [optimizers]*n_islands elif isinstance(optimizers, list): n_islands = len(optimizers) if isinstance(optimizers_kwargs, dict): optimizers_kwargs = [optimizers_kwargs]*n_islands if n_islands < 2: raise ValueError('Must use at least 2 islands per archipelago, either by specifying `n_islands` or using a list with more than 1 optimizers for kwargs `optimizers`.') if atol_islands is None: atol_islands = 0.0 if rtol_islands is None: rtol_islands = 0.0 # Calculate the number of archipelagos that can be run in parallel n_archis = max([int(numpy.floor(joblib.cpu_count()/n_islands)), 1]) # Collects all finished estimation jobs _mc_estimates = [] # Run parallel estimation jobs batch-wise for i in range(1, mc_samples+1, n_archis): _batch_no = int((i-1+n_archis)/n_archis) if report_level == 1: if _batch_no % 120 == 0: end = '\n' else: end = '' print('.', end=end) elif report_level >= 2: if report_level >= 3: _insert = '\n' else: _insert = '' _current_samples = [_sample for _sample in range(i, _batch_no*n_archis+1) if _sample <= mc_samples] _first = _current_samples[0] _last = f' to {_current_samples[-1]}' if _current_samples[-1] != _first else '' print(f'{_insert}------- Starting batch #{_batch_no} for MC sample {_first}{_last}.') # Initialize the current batch _batch_start = time.time() mc_count = i active_archis = [] # Create a batch of achipelagos for j in range(n_archis): if mc_count+j > mc_samples: break # Create the problem for a MC sample _pg_problem = pygmo.problem( loss_calculator( unknowns=_unknowns, bounds=_bounds, metric=metric, measurements=self._draw_measurement_samples(measurements, reuse_errors_as_weights), caretaker_loss_fun=self.loss_function, handle_CVodeError=handle_CVodeError, verbosity_CVodeError=_verbosity_CVodeError, ) ) # Create the archipelago for the current problem _archi = ArchipelagoHelpers.create_archipelago( unknowns=_unknowns, optimizers=optimizers, optimizers_kwargs=optimizers_kwargs, pg_problem=_pg_problem, rel_pop_size=rel_pop_size, archipelago_kwargs=archipelago_kwargs, log_each_nth_gen=None, report_level=0, ) _archi.mc_info = f'MC sample #{mc_count+j}' _archi.finished = False _archi.problem = loss_calculator _archi.wait_check() if report_level >= 5: print(f'{_archi.mc_info}: created archipelago with {len(_archi)} islands') active_archis.append(_archi) # Evolve the archipelagos in the current batch for j in range(len(active_archis)): for evo in range(1, evolutions+1): # Start an async evolution for all non-converged archis for _archi in active_archis: if not _archi.finished: if report_level >= 6: print(f'\t{_archi.mc_info}: running evolution {evo}') _archi.evolve() # Wait for all archis to finish for _archi in active_archis: if not _archi.finished: _archi.wait_check() # Check the archis for results for _archi in active_archis: # Calculate convergence criterion _losses = numpy.array(_archi.get_champions_f()).flatten() _stop_criterion = atol_islands + rtol_islands * numpy.abs(numpy.mean(_losses)) _abs_std = numpy.std(_losses, ddof=1) # Check for convergence for the non-finished archi if _abs_std < _stop_criterion and not _archi.finished: _best_estimates = ArchipelagoHelpers.estimates_from_archipelago(_archi) _best_estimates['convergence'] = True _best_estimates['max_evos'] = False _best_estimates['archi'] = f'{_archi.mc_info}' _best_estimates['losses'] = _losses _archi.finished = True _mc_estimates.append(_best_estimates) if report_level >= 4: print(f'{_archi.mc_info}: convergence') # Check for max evolutions for the non-finished archi elif evo == evolutions and not _archi.finished: _best_estimates = ArchipelagoHelpers.estimates_from_archipelago(_archi) _best_estimates['convergence'] = False _best_estimates['max_evos'] = True _best_estimates['archi'] = f'{_archi.mc_info}' _best_estimates['losses'] = _losses _archi.finished = True _mc_estimates.append(_best_estimates) if report_level >= 4: print(f'{_archi.mc_info}: no convergence after max. evolutions ({evo}).') if all([_archi.finished for _archi in active_archis]): del active_archis gc.collect() active_archis = [] break if all([_archi.finished for _archi in active_archis]): del active_archis gc.collect() active_archis = [] break if report_level >= 3: print(f'Runtime for batch {_batch_no} was {(time.time() - _batch_start)/60:.2f} min.') # All requested MC samples were run if mc_count > mc_samples: break # Comprehend results aug_unknowns = [*_unknowns, 'convergence', 'max_evos', 'archi', 'losses'] estimates_info = {str(_p) : [] for _p in aug_unknowns} for _mc_estimate in _mc_estimates: for _p in _mc_estimate: estimates_info[_p].append(_mc_estimate[_p]) estimates = { str(_p) : numpy.array(numpy.array(estimates_info[_p])[estimates_info['convergence']]) # include only samples that converged for _p in _unknowns } if report_level >= 1: _end = time.time() # Runtime was > 1 h if (_end-_start)/3600 > 1: print(f'\n-----------------------------------------------\nTotal runtime was {(_end-_start)/3600:.2f} h.') else: print(f'\n-----------------------------------------------\nTotal runtime was {(_end-_start)/60:.2f} min.') print(f'Convergence ratio was {numpy.sum(estimates_info["convergence"])/len(estimates_info["convergence"])*100:.1f} %.') if report_level >= 3: print('\nSummaries for empirical parameter distributions\n-----------------------------------------------') print(pandas.DataFrame(estimates).describe().T) return estimates def estimate_repeatedly(self, unknowns:list, measurements:List[Measurement], bounds:List[tuple], metric:str='negLL', jobs:int=10, rel_jobs:float=None, report_level:int=0, reset_afterwards:bool=False, handle_CVodeError:bool=True, ) -> Tuple[dict, list]: """ Runs a several global estimations for the requested unknowns. Resulting distributions for the estimated parameters can be inspected for measures of dispersion or correlations among parameters. In case a rather high number of estimation jobs is run, the resulting distributions can be nicely investigated using the Visualization.show_parameter_distributions method. NOTE: This method puts considerable computational load on your machine. Arguments --------- unknowns : list or dict The parameters to be estimated. Can be any of the model parameters, initial values or observation parameters. In case a dict is provided, the corresponding values are ignored. measurements : List[Measurement] The data, from which the repeated estimation is performed. Can provide a Measurement object for any model state or observation. bounds : List[Tuple] Bounds for for each unknown to be estimated. Keyword arguments ----------------- metric : str The metric according to which the loss to be minimized is calculated. Can be one of, e.g. `negLL` (negative log-likelihood), 'SS' (sum of squares), or `WSS` (weighted sum of squares). Default is `negLL`, which implies that the corresponding Measurement object are accordingly specified. jobs : int The number of estimation jobs that are requested. Default is 10. rel_jobs : float Number of estimation jobs, relative to the number of unknowns: rel_jobs * number of unknowns. Overrides jobs argument. Default is None, which implies use of `jobs`. report_level : int Enables informative output about the estimation process. Default is 0, which is no output. 1 = prints a summary of the empirical parameter distributions and basic information about the parallization. 2 = reports additionally about each parallel estimation job. reset_afterwards : bool To reset the Caretaker object after the estimation has finished. Default is False. handle_CVodeError : bool Catches CVodeError raised by the solver, in order to not interrupt the estimations for toxic parameter values. Default is True. Returns ------- repeated_estimates : dict The values from repeated estimation for the requested unknowns. results : list Contains estimation_info dicts for each estimation job. TypeError A list containing not only Measurement objects is provided. Warns ----- UserWarning Property `optimizer_kwargs` of this Caretaker instance has key `disp`. """ warnings.warn( 'This method will be deprecated in future releases of pyFOOMB.', PendingDeprecationWarning ) for _item in measurements: if not isinstance(_item, Measurement): raise TypeError('Must provide a list of Measurement objects') if isinstance(unknowns, list): unknowns = {unknown : None for unknown in unknowns} # rel_jobs overrides jobs if rel_jobs is not None: jobs = int(numpy.ceil(rel_jobs * len(bounds))) if self.optimizer_kwargs is not None: if 'disp' in self.optimizer_kwargs.keys(): warnings.warn( 'Reporting progress for each single optimization job is deactivated for parallel multi-estimation methods', UserWarning, ) # collect arg instances for each parallel job arg_instances = [ { 'unknowns' : unknowns, 'measurements' : measurements, 'bounds' : bounds, 'metric' : metric, 'use_global_optimizer' : True, 'handle_CVodeError' : handle_CVodeError, 'optimizer_kwargs' : {'disp' : False}, } for job in range(jobs) ] parallel_verbosity = 0 if report_level >= 1: parallel_verbosity = 1 if report_level >= 2: parallel_verbosity = 11 # do the jobs repeated_estimates, results = self._estimate_parallelized_helper(arg_instances, unknowns, parallel_verbosity) if report_level >= 1: print('\nSummaries for empirical parameter distributions\n-----------------------------------------------') print(pandas.DataFrame(repeated_estimates).describe().T) if report_level >= 2: _runtimes_min = [result[1]['runtime_min'] for result in results] print(f'\nAverage runtime per estimation job was {numpy.mean(_runtimes_min):.2f} +/- {numpy.std(_runtimes_min, ddof=1):.2f} min') return repeated_estimates, results def estimate_MC_sampling(self, unknowns:list, measurements:List[Measurement], bounds:List[tuple]=None, metric:str='negLL', reuse_errors_as_weights:bool=True, mc_samples:int=100, rel_mc_samples:float=None, report_level:int=0, reset_afterwards:bool=True, use_global_optimizer:bool=True, handle_CVodeError:bool=True, ) -> Tuple[dict, dict]: """ Performs Monte-Carlo sampling from measurements, and re-estimates parameters. Per default, global optimization is used. Resulting bootstrapped distributions for the parameters can be assessed for parameter uncertainties and correlations. NOTE: This method puts considerable computational load on your machine. Arguments --------- unknowns : dict or list The parameters to be estimated. Can be any of the model parameters, initial values or observation parameters. Providing a list of valid unknowns causes the use of scipy's differential evolution optimizer. To use the local minimizer, unknowns must be of type dict, with initial guesses as values. measurements : List[Measurement] The measurements from which the parameters are to be estimated. Keyword arguments ----------------- bounds : List[tuple] List of tuples (lower, upper), one tuple for each parameter. Must be provided when using the global optimizer. Default is None. metric : str The metric according to which the loss to be minimized is calculated. Can be one of, e.g. `negLL` (negative log-likelihood), 'SS' (sum of squares), or `WSS` (weighted sum of squares). Default is `negLL`, which implies that the corresponding Measurement object are accordingly specified. reuse_errors_as_weights : bool Uses the measurement errors as weights for each set of measurement samples drawn. Default is True. mc_samples : int The number of MC samples that shall be drawn from the measurement data. Default is 100. rel_mc_samples : float Number of MC samples = rel_mc_samples * number of measurement points. Overrides mc_samples. Default is None. report_level : int Enables informative output about the estimation process. Default is 0, which is no output. 1 = prints a summary of the empirical parameter distributions and basic information about the parallization. 2 = reports additionally about each parallel estimation job. reset_afterwards : bool Resets the Caretaker object after the estimation has finished. Default is False. use_global_optimizer : bool Use global optimizer instead of local minimizer for repeated parameter estimation. Default is True. parallel_verbosity : int Control output level of the parallel job work, default is 0. See joblib documentation for futher details. handle_CVodeError : bool Catches CVodeError raised by the solver, in order to not interrupt the estimations for toxic parameter values. Default is True. Returns ------- repeated_estimates : dict The values from repeated estimation for the requested unknowns. results : list Contains estimation_info dicts for each estimation job. Raises ------ TypeError No initial guesses are provided when using the local optimizer. TypeError No bounds provided when using the global optimizer. ValueError Measurements have no errors. TypeError A list containing not only Measurement objects is provided. Warns ----- UserWarning Property `optimizer_kwargs` of this Caretaker instance has key `disp`. """ warnings.warn( 'This method will be deprecated in future releases of pyFOOMB. Use method `estimate_parallel_MC_sampling` instead', PendingDeprecationWarning ) for _item in measurements: if not isinstance(_item, Measurement): raise TypeError('Must provide a list of Measurement objects') # Error handling if not use_global_optimizer and not isinstance(unknowns, dict): raise ValueError('Must provide initial guesses when using the local optimizer') if use_global_optimizer and bounds is None: raise ValueError('Must provide bounds to use the global optimizer') if not Helpers.all_measurements_have_errors(measurements): raise AttributeError('Measurements cannot have no errors') if isinstance(unknowns, list): unknowns = {unknown : None for unknown in unknowns} if self.optimizer_kwargs is not None: if 'disp' in self.optimizer_kwargs.keys(): warnings.warn( 'Reporting progress for each single optimization job is deactivated for parallel multi-estimation methods', UserWarning, ) # calcuate number of estimation jobs if rel_mc_samples is not None: n_meas = numpy.sum([len(measurement.timepoints) for measurement in measurements]) mc_samples = int(numpy.ceil(n_meas * rel_mc_samples)) # collect arg instances for parallel jobs arg_instances = [] for i in range(mc_samples): _rnd_measurements = self._draw_measurement_samples(measurements, reuse_errors_as_weights) arg_instances.append( { 'unknowns' : unknowns, 'measurements' : _rnd_measurements, 'bounds' : bounds, 'metric' : metric, 'handle_CVodeError' : handle_CVodeError, 'use_global_optimizer' : use_global_optimizer, 'reset_afterwards' : True, 'optimizer_kwargs' : {'disp' : False}, } ) parallel_verbosity = 0 if report_level >= 1: parallel_verbosity = 1 if report_level >= 2: parallel_verbosity = 11 # do the jobs repeated_estimates, results = self._estimate_parallelized_helper(arg_instances, unknowns, parallel_verbosity) if report_level >= 1: print('\nSummaries for empirical parameter distributions\n-----------------------------------------------') print(pandas.DataFrame(repeated_estimates).describe().T) if report_level >= 2: _runtimes_min = [result[1]['runtime_min'] for result in results] print(f'\nAverage runtime per estimation job was {numpy.mean(_runtimes_min):.2f} +/- {numpy.std(_runtimes_min, ddof=1):.2f} min') return repeated_estimates, results def get_sensitivities(self, measurements:List[Measurement]=None, responses:list='all', parameters:list=None, tfinal:float=None, abs_h:float=None, rel_h:float=1e-3, handle_CVodeError:bool=True, verbosity_CVodeError:bool=False, ) -> List[Sensitivity]: """ Approximates sensitivities of model responses w.r.t. parameters using Central Difference Quotient: f'(x) = f(x+h) - f(x-h) / (2*h). Indicates how a model response (i.e., a state or observation) changes dynamically in time with a small change in a certain parameters (i.e., a model parameter, initial value, or observation parameter). Keyword arguments ----------------- measurements : List[Measurement] Can provide a Measurement object for any model state or observation. Default is None, which implies that `tfinal` cannot be None. responses : list Specific model responses (state or observable), for which the sensitivities are requested. Default is `all´, which causes sensitivities for all model responses. parameters (list or dict, default=None) : The parameters for which the sensitivities are requested. In case a dict is provided, the corresponding values will be set. In case a list is provided, the corresponding values for the current mapping will be used. tfinal : float The final integration time. Default is None, which implies that `measurements` cannot be None. abs_h : float Absolute perturbation for central difference quotient. `rel_h` must be set to None for `abs_h` to take effect. Default is None. rel_h : float Relative pertubation for central difference quotient. Overrides use of abs_h. Absolute perturbation for each parametric sensitivity is then calculated according to: abs_h = rel_h * max(1, |p|). Default is 1e-3. handle_CVodeError : bool Catches CVodeError raised by the solver, in order to not interrupt the estimations for toxic parameter values. Default is True. verbosity_CVodeError : bool Enables informative output during handling CVodeErrors. Default is False. Returns ------- sensitivities : List[Sensitivities] Raises ------ TypeError Wrong type for kwarg `responses`. ValueError Non-unique (case-insensitive) respones given. ValueError Non-unique (case-insensitive) parameters given. ValueError Given parameters are not known according to the current parameter mapping. ValueError Neither measurements dict nor tfinal is provided. TypeError Wrong type for kwarg `parameters`. TypeError A list containing not only Measurement objects is provided. """ if not isinstance(responses, list) and responses != 'all': raise TypeError('Responses must be either of type list or `all`') if responses != 'all': if not Helpers.has_unique_ids(responses): raise ValueError(Messages.non_unique_ids) if measurements is not None: for _item in measurements: if not isinstance(_item, Measurement): raise TypeError(f'Must provide a list of Measurement objects: {_item} in {measurements}') # timepoints for integration t = numpy.array([]) if measurements is not None: t = numpy.append(t, Helpers.get_unique_timepoints(measurements)) if tfinal is not None: tfinal = numpy.array(tfinal) if t.size == 0: t = numpy.append(t, tfinal) elif tfinal > max(t): t = numpy.append(t, tfinal) if t.size == 0: raise ValueError('Must provide either measurements or tfinal') if t.size == 1: _simulations = self.simulate(t=t, verbosity=50) t = Helpers.get_unique_timepoints(_simulations) # set parameters if provided _parameter_names = self._get_valid_parameter_names() if parameters is not None: if not Helpers.has_unique_ids(parameters): raise ValueError(Messages.non_unique_ids) if not set(parameters).issubset(set(_parameter_names)): raise ValueError(f'Invalid parameters: {set(parameters).difference(set(_parameter_names))}. Valid parameters are: {_parameter_names}.') if isinstance(parameters, dict): self.set_parameters(parameters) elif isinstance(parameters, list): _parameters = self._get_all_parameters() parameters = {p : _parameters[p] for p in parameters} else: parameters = self._get_all_parameters() sensitivities = [] for _id in self.replicate_ids: sensitivities.extend(self._get_sensitivities_parallel(_id, parameters, rel_h, abs_h, t, responses)) return sensitivities def get_information_matrix(self, measurements:List[Measurement], estimates:dict, sensitivities:List[Sensitivity]=None, handle_CVodeError:bool=True, verbosity_CVodeError:bool=False, ) -> numpy.ndarray: """ Constructs Fisher information matrix (FIM) by calculating a FIM at each distinct timepoint where at least one measurement was made. The time-varying FIMs are added up to the FIM. FIM(t) are build using sensitivities, which are approximated using the central difference quotient method. FIM is of shape (n_estimated_parameters, n_estimated_parameters), with parameters sorted alphabetically (case-insensitive). Non-intertible FIM indicates that parameter(s) cannot be identified from the given measurements. Arguments --------- measurements : List[Measurement] Can provide a Measurement object for any model state or observation. estimates : dict The parameters (model parameters, initial values, observation parameters) that have been estimated previously. Keyword arguments ----------------- sensitivities : List[Sensitivity] These may have been calculated previously using the method `get_sensitivities`. Default is None, which causes calculation of sensitivities. handle_CVodeError : bool Catches CVodeError raised by the solver, in order to not interrupt the estimations for toxic parameter values. Default is True. verbosity_CVodeError : bool Enables informative output during handling CVodeErrors. Default is False. Returns ------- FIM : numpy.ndarray Fisher information matrix is of shape (n_estimated_parameters, n_estimated_parameters), with values of rows and cols corresponding to the parameters (sorted alphabetically case-insensitive). Raises ------ TypeError A list containing not only Measurement objects is provided. TypeError A list containing not only Sensitivity objects is provided. """ for _item in measurements: if not isinstance(_item, Measurement): raise TypeError('Must provide a list of Measurement objects') if sensitivities is None: sensitivities = self.get_sensitivities( measurements=measurements, parameters=estimates, handle_CVodeError=handle_CVodeError, ) else: for _item in sensitivities: if not isinstance(_item, Sensitivity): raise TypeError('Must provide a list of Sensitivity objects') all_t = Helpers.get_unique_timepoints(measurements) FIMs = {} FIM = numpy.full(shape=(len(estimates), len(estimates)), fill_value=0) for _id in self.replicate_ids: FIMs[_id] = [] for _t in all_t: _FIM_t = self._get_information_matrix_at_t(t=_t, measurements=measurements, estimates=estimates, sensitivities=sensitivities, replicate_id=_id) FIMs[_id].append(_FIM_t) FIM = FIM + _FIM_t return FIM def get_parameter_uncertainties(self, estimates:dict, measurements:List[Measurement], sensitivities:List[Sensitivity]=None, report_level:int=0, handle_CVodeError:bool=True, verbosity_CVodeError:bool=True, ) -> dict: """ Calculates uncertainties for estimated parameters, based on variance-covariance matrix derived from sensitivity-based Fisher information matrix. NOTE: The parameter variance-covariance matrix represents a symmetric, linear approximation to the parameter (co)-variances. Other methods such a Monte-Carlo sampling can discover non-linear correlations, but require significant computational load. Arguments --------- estimates : dict Dictionary holding the previously estimated parameter values. measurements : List[Measurement] The measurements from which the parameters have been estimated. Keyword arguments ----------------- sensitivities : List[Sensitivity] These may have been calculated previously using the method `get_sensitivities`. Default is None, which causes calculation of sensitivities. report_level : int Controls depth of informative output, default is 0 which is no output. handle_CVodeError : bool Catches CVodeError raised by the solver, in order to not interrupt the estimations for toxic parameter values. Default is True. verbosity_CVodeError : bool Enables informative output during handling CVodeErrors. Default is False. Returns ------- parameter_information : dict A dictionary summarizing the parameters, their values and standard errors. Raises ------ TypeError A list containing not only Measurement objects is provided. TypeError A list containing not only Sensitivity objects is provided. """ for _item in measurements: if not isinstance(_item, Measurement): raise TypeError('Must provide a list of Measurement objects') if sensitivities is None: sensitivities = self.get_sensitivities( measurements=measurements, parameters=estimates, handle_CVodeError=handle_CVodeError, verbosity_CVodeError=verbosity_CVodeError, ) else: for _item in sensitivities: if not isinstance(_item, Sensitivity): raise TypeError('Must provide a list of Sensitivity objects') matrices = self.get_parameter_matrices(measurements=measurements, estimates=estimates, sensitivities=sensitivities) std_errs = numpy.sqrt(numpy.diag(matrices['Cov'])) if report_level>=1: print('\nEstimated parameters:\n----------') for _p, _err in zip(sorted(estimates.keys(), key=str.lower), std_errs): print(f'{_p}: {estimates[_p]:.2e} +/- {_err:.2e} ({abs(_err/estimates[_p]*100):.2f} %)') parameter_information = {} parameter_information['Parameters'] = sorted(estimates.keys(), key=str.lower) parameter_information['Values'] = numpy.array([estimates[_p] for _p in sorted(estimates.keys(), key=str.lower)]) parameter_information['StdErrs'] = std_errs return parameter_information def get_optimality_criteria(self, Cov:numpy.ndarray, report_level:int=0) -> dict: """ Calculates single-value optimality criteria from a parameter variance-covariance matrix. Arguments --------- Cov : numpy.ndarray The parameter covariance matrix for the estimated parameters. Keyword arguments ----------------- report_level : int Controls informative output on optimality criteria. Default is 0, which is no print output. Returns ------- opt_criteria : dict The calculated optimality criteria. """ criteria = ['A', 'D', 'E', 'E_mod'] cov_evaluator = CovOptimality() opt_criteria = {_criterion : cov_evaluator.get_value(_criterion, Cov) for _criterion in criteria} if report_level >=1: print('\nOptimality criteria:\n----------') for _criterion in criteria: print(f'{_criterion}: {opt_criteria[_criterion]:.2e}') return opt_criteria def get_parameter_matrices(self, estimates:dict, measurements:List[Measurement], sensitivities:List[Sensitivity]=None, handle_CVodeError:bool=True, ) -> Dict[str, numpy.ndarray]: """ Calculate Fisher information matrix FIM, as well as corresponding variance-covariance matrix Cov and correlation matrix Corr. Arguments --------- estimates : dict Dictionary holding the previously estimated parameter values. measurements : List[Measurement] The measurements from which the parameters have been estimated. Keyword arguments ----------------- sensitivities : List[Sensitivity] These may have been calculated previously using the method `get_sensitivities`. Default is None, which causes calculation of sensitivities. handle_CVodeError : bool Catches CVodeError raised by the solver, in order to not interrupt the estimations for toxic parameter values. Default is True. Returns ------- matrices : Dict[str, numpy.ndarray] The different parameter matrices. Raises ------ TypeError A list containing not only Measurement objects is provided. TypeError A list containing not only Sensitivity objects is provided. """ for _item in measurements: if not isinstance(_item, Measurement): raise TypeError('Must provide a list of Measurement objects') if sensitivities is not None: for _item in sensitivities: if not isinstance(_item, Sensitivity): raise TypeError('Must provide a list of Sensitivity objects') FIM = self.get_information_matrix(measurements=measurements, estimates=estimates, sensitivities=sensitivities, handle_CVodeError=handle_CVodeError) try: Cov = numpy.linalg.inv(FIM) except LinAlgError: warnings.warn('Information matrix not invertible.', UserWarning) Cov = numpy.full(shape=FIM.shape, fill_value=numpy.inf) Corr = Calculations.cov_into_corr(Cov) matrices = {} matrices['FIM'] = FIM matrices['Cov'] = Cov matrices['Corr'] = Corr return matrices def set_integrator_kwargs(self, integrator_kwargs:dict): """ Set some options for the used CVode integrator. These are propagated to all internally handled ExtendedSimulator instances. Typical options are `atol` or `rtol`. For all options, see https://jmodelica.org/assimulo/ODE_CVode.html. Note that not all options may have an effect due to the use of the integrator in this package. Arguments --------- integrator_kwargs : dict The CVode integrator options to be set. """ for _id in self.replicate_ids: self.simulators[_id].integrator_kwargs = integrator_kwargs def set_parameters(self, parameters:dict): """ Assigns specfic values to parameters, according to the current parameter mapping. Arguments --------- values : dict Key-value pairs for parameters that are to be set. """ self._parameter_manager.set_parameter_values(parameters) self._propagate_parameters_through_simulators() def reset(self): """ Resets the Caretaker object to its state after instantiation, preserving the current replicates """ self.__init__( bioprocess_model_class=self.__bioprocess_model_class, model_parameters=self.__model_parameters, states=self.__states, initial_values=self.__initial_values, replicate_ids=self.__replicate_ids, initial_switches=self.__initial_switches, model_name=self.__model_name, observation_functions_parameters=self.__observation_functions_parameters, ) def apply_mappings(self, mappings:list): """ A list of mappings that are applied to the parameters among the replicates. An item of the mappings list must either be a tuple with the structure (replicate_id, global_name, local_name, value) or a ParameterMapper instance according to ParameterMapper(replicate_id=..., global_name=..., local_name=..., value=...). NOTE: replicate_id can also be a list, which applies the mapping to all replicate in this list. NOTE: replicate_id can also be `all`, which applies the mapping to all replicates. Arguments --------- mappings : list of ParameterMapper and/or tuple A list of mappings, which can be a tupe or ParameterMapper objects, or a mix of them. Example: [ParameterMapper(replicate_id=..., global_name=..., local_name=..., value=...), ] Example: [(replicate_id, global_name, local_name, value), ] Example : [ ParameterMapper(replicate_id=..., global_name=..., local_name=..., value=...), (replicate_id, global_name, local_name, value), ] Raises ------ TypeError Any mapping is not a tuple or ParameterMapper object. ValueError Any mapping has an invalid replicate id. ValueError Any mapping has a invalid global parameter name. Warns ----- UserWarning This method is called from implicitly defined single replicate Caretaker objects. """ if not (len(self.replicate_ids) == 1 and self.replicate_ids[0] == SINGLE_ID): self._parameter_manager.apply_mappings(mappings) self._propagate_parameters_through_simulators() else: warnings.warn( 'Parameter mappings cannot be applied for single replicate Caretaker objects. Use `set_parameters()` method instead.', UserWarning ) #%% Private methods def _get_sensitivities_parallel(self, replicate_id:str, parameters:list, rel_h:float, abs_h:float, t:numpy.ndarray, responses:list) -> List[Sensitivity]: """ Calculates sensitivities in parallel for a specific replicate_id. Arguments --------- replicate_id : str The replicate_id for which the sensitivities are requested. parameters : list The model parameters, initial values and/or observation parameters for which the sensitivites are requested rel_h : float The central difference perturbation values, relative to the parameters. abs_h = float The absolute central difference perturbation value. t : numpy.ndarray The timepoints at which the sensitivities are to be calculated. responses : list The model states and/or observations for which the sensitivities are to be calculated. Returns ------- List[Sensitivity] Raises ------ ValueError Sensitivities are to be calculated for unknown model responses. """ # Calculate sensitivities for each replicate arg_instances = [] if responses == 'all': _responses = self.simulators[replicate_id]._get_allowed_measurement_keys() elif not set(responses).issubset(set(self.simulators[replicate_id]._get_allowed_measurement_keys())): raise ValueError( f'Invalid model responses for sensitivity calculation. {set(responses).difference(set(self.simulators[replicate_id]._get_allowed_measurement_keys()))}' ) else: _responses = responses # Collect arg instances for _response in _responses: for _parameter in parameters: arg_instance = (replicate_id, _response, _parameter, rel_h, abs_h, parameters, t) arg_instances.append(arg_instance) # Do the parallel work for this replicate_id n_cpus = joblib.cpu_count() if len(arg_instances) < n_cpus: n_jobs = len(arg_instances) else: n_jobs = n_cpus with joblib.parallel_backend('loky', n_jobs=n_jobs): sensitivities = joblib.Parallel(verbose=0)(map(joblib.delayed(self._d_response_i_wrt_d_parameter_j_central_difference), arg_instances)) return list(sensitivities) def _d_response_i_wrt_d_parameter_j_central_difference(self, arg) -> Sensitivity: """ Helper method for parallelization of sensitivity calculation. """ replicate_id, response_i, parameter_j, rel_h, abs_h, parameters, t = arg # set parameter perturbation if rel_h is not None: abs_h = rel_h * max([1, abs(parameters[parameter_j])]) if abs_h*1.1 <= EPS64: warnings.warn(f'Parameter perturbation for finite differences is in the same order of machine precision. {abs_h} vs. {EPS64}', UserWarning) # forward simulations with parameter forward perturbation _pars_plus = copy.deepcopy(parameters) _pars_plus[parameter_j] = _pars_plus[parameter_j] + abs_h self.set_parameters(_pars_plus) simulation_plus = self.simulators[replicate_id].simulate(t=t, verbosity=50) simulation_plus_resp_i = Helpers.extract_time_series(simulation_plus, name=response_i, replicate_id=replicate_id) y_plus = simulation_plus_resp_i.values # forward simulations with parameter backward perturbation _pars_minus = copy.deepcopy(parameters) _pars_minus[parameter_j] = _pars_minus[parameter_j] - abs_h self.set_parameters(_pars_minus) simulation_minus = self.simulators[replicate_id].simulate(t=t, verbosity=50) simulation_minus_resp_i = Helpers.extract_time_series(simulation_minus, name=response_i, replicate_id=replicate_id) y_minus = simulation_minus_resp_i.values # approx fprime dyi_dthetai = (y_plus - y_minus) / (2 * abs_h) timepoints = simulation_plus_resp_i.timepoints return Sensitivity(timepoints=timepoints, values=dyi_dthetai, response=response_i, parameter=parameter_j, h=abs_h, replicate_id=replicate_id) def _draw_measurement_samples(self, measurements:List[Measurement], reuse_errors_as_weights:bool=True) -> List[Measurement]: """ Helper method for `estimate_MC_sampling` method. Arguments --------- measurements : List[Measurement] The measurements from which the parameters have been estimated. Assumes that this argument was run through method `utils.Helpers.check_kinetic_data_dict()` Keyword arguments ----------------- reuse_errors_as_weights : bool Uses the measurement errors as weights for each set of measurement samples drawn. Default is True. Returns ------- rnd_measurements : List[Measurement] A copy of the `measurements` argument, but with its `values` property replaced with random values, according to its `distribution` property. Its `errors` property is replaced by a vector of ones, if the keyword argument `reuse_errors_as_weights` was False. """ rnd_measurements = copy.deepcopy(measurements) for i in range(len(measurements)): _rnd_values = measurements[i]._get_random_samples_values() rnd_measurements[i].values = _rnd_values if not reuse_errors_as_weights: rnd_measurements[i].errors = numpy.ones_like(_rnd_values) return rnd_measurements def _estimate_parallelized_helper(self, arg_instances, unknowns, parallel_verbosity): """ Helper method for `estimate_MC_sampling` and `estimate_repeatedly` methods. """ jobs = len(arg_instances) # do the jobs n_cpus = joblib.cpu_count() if jobs < n_cpus: n_jobs = jobs else: n_jobs = n_cpus with joblib.parallel_backend('loky', n_jobs=n_jobs): results = joblib.Parallel(verbose=parallel_verbosity)(map(joblib.delayed(self._parallel_estimate_wrapper), arg_instances)) # collect returns repeated_estimates = {p : [] for p in unknowns.keys()} for result in results: for p in repeated_estimates.keys(): repeated_estimates[p].append(result[0][p]) return repeated_estimates, results def _get_all_parameters(self) -> dict: """ Get all currently specified local parameters and their values. """ parameters = {} for _p in self._parameter_manager._parameters: parameters[_p.local_name] = _p.value return {_p : parameters[_p] for _p in sorted(parameters.keys(), key=str.lower)} def _get_information_matrix_at_t(self, t:float, measurements:List[Measurement], estimates:dict, sensitivities:List[Sensitivity], replicate_id:str) -> numpy.ndarray: """ Calculates Fisher information matrix a timepoint t. Arguments --------- t : float Timepoint at which the FIM is calculated measurements : List[Measurement] The measurements from which the parameters have been estimated. estimates : dict The parameters which have been estimated from the measurements. sensitivities : List[Sensitivity] Sensitivities that have been calculated from the measurements and estimated parameters. Returns ------- FIM_t : numpy.ndarray Fisher information matrix at timepoint t, has size n_parameters x n_parameters Raises ------ AttributeError Measurement objects have no error property set. """ if not Helpers.all_measurements_have_errors(measurements): raise AttributeError('Measurement errors property not set.') measured_responses = sorted(set([measurement.name for measurement in measurements]), key=str.lower) estimated_parameters = sorted(estimates.keys(), key=str.lower) S_t = numpy.full(shape=(len(measured_responses), len(estimated_parameters)), fill_value=numpy.nan) err = numpy.full(shape=len(measured_responses), fill_value=numpy.nan) for i, _measured_response in enumerate(measured_responses): for j, _parameter in enumerate(estimated_parameters): _sensitivity = Helpers.extract_time_series( sensitivities, name=f'd({_measured_response})/d({_parameter})', replicate_id=replicate_id, ) _measurement = Helpers.extract_time_series( measurements, name=_measured_response, replicate_id=replicate_id, ) # only account for this response if it has been measured if _measurement is not None and t in _measurement.timepoints: S_t[i, j] = _sensitivity.values[numpy.argwhere(_sensitivity.timepoints==t)] err[i] = _measurement.errors[numpy.argwhere(_measurement.timepoints==t)] else: S_t[i, j] = 0 err[i] = numpy.inf Sigma_t = numpy.diag(
numpy.square(err)
numpy.square
import os import json import numpy as np import math import time from math import inf import bpy from mathutils import Vector from . import animation import importlib importlib.reload(animation) # convert deg to rad DEG_TO_RAD = math.pi / 180.0 # direction names for minecraft cube face UVs DIRECTIONS = np.array([ "north", "east", "west", "south", "up", "down", ]) # normals for minecraft directions in BLENDER world space # e.g. blender (-1, 0, 0) is minecraft north (0, 0, -1) # shape (f,n,v) = (6,6,3) # f = 6: number of cuboid faces to test # n = 6: number of normal directions # v = 3: vector coordinates (x,y,z) DIRECTION_NORMALS = np.array([ [-1., 0., 0.], [ 0., 1., 0.], [ 0., -1., 0.], [ 1., 0., 0.], [ 0., 0., 1.], [ 0., 0., -1.], ]) DIRECTION_NORMALS = np.tile(DIRECTION_NORMALS[np.newaxis,...], (6,1,1)) def index_of(val, in_list): """Return index of value in in_list""" try: return in_list.index(val) except ValueError: return -1 def merge_dict_properties(dict_original, d): """Merge inner dict properties""" for k in d: if k in dict_original and isinstance(dict_original[k], dict): dict_original[k].update(d[k]) else: dict_original[k] = d[k] return dict_original def get_base_path(filepath_parts, curr_branch=None, new_branch=None): """"Typical path formats for texture is like: "textures": { "skin": "entity/wolf/wolf9" }, Matches the base path before branch, then get base path of other branch curr_branch = "shapes" new_branch = "textures" filepath_parts = ["C:", "vs", "resources", "shapes", "entity", "land", "wolf-male.json"] | Matched branch point new base path = ["C:", "vs", "resources"] + ["textures"] """ # match base path idx_base_path = index_of(curr_branch, filepath_parts) if idx_base_path != -1: # system agnostic path join joined_path = os.path.join(os.sep, filepath_parts[0] + os.sep, *filepath_parts[1:idx_base_path], new_branch) return joined_path else: return "" # failed def create_textured_principled_bsdf(mat_name, tex_path): """Create new material with `mat_name` and texture path `tex_path` """ mat = bpy.data.materials.new(mat_name) mat.use_nodes = True node_tree = mat.node_tree nodes = node_tree.nodes bsdf = nodes.get("Principled BSDF") # add texture node if bsdf is not None: if "Base Color" in bsdf.inputs: tex_input = nodes.new(type="ShaderNodeTexImage") tex_input.interpolation = "Closest" # load image, if fail make a new image with filepath set to tex path try: img = bpy.data.images.load(tex_path, check_existing=True) except: print("FAILED TO LOAD IMAGE:", tex_path) img = bpy.data.images.new(os.path.split(tex_path)[-1], width=16, height=16) img.filepath = tex_path tex_input.image = img node_tree.links.new(tex_input.outputs[0], bsdf.inputs["Base Color"]) # disable shininess if "Specular" in bsdf.inputs: bsdf.inputs["Specular"].default_value = 0.0 return mat def parse_element( e, parent_cube_origin, parent_rotation_origin, # = blender origin textures, tex_width=16.0, tex_height=16.0, import_uvs=True, ): """Load a single element into a Blender object. Note vintage story cube origins are relative to the parent's "from" corner, the origin input is the parent cube's from vertex. from to (relative to parent_cube_origin) | | v v | x | child |_______| | | xp <------------parent rotation origin |.____ parent (blender origin) parent_cube_origin . (0,0,0) New locations in blender space: child_blender_origin = parent_cube_origin - parent_rotation_origin + child_rotation_origin from_blender_local = from - child_rotation_origin to_blender_local = to - child_rotation_origin Return tuple of: obj, # new Blender object local_cube_origin, # local space "to" cube corner origin new_cube_origin, # global space cube corner origin new_rotation_origin # local space rotation (Blender) origin """ # get cube min/max v_min = np.array([e["from"][2], e["from"][0], e["from"][1]]) v_max = np.array([e["to"][2], e["to"][0], e["to"][1]]) # get rotation origin location = np.array([ parent_cube_origin[0] - parent_rotation_origin[0], parent_cube_origin[1] - parent_rotation_origin[1], parent_cube_origin[2] - parent_rotation_origin[2], ]) if "rotationOrigin" in e: # add rotation origin child_rotation_origin = np.array([ e["rotationOrigin"][2], e["rotationOrigin"][0], e["rotationOrigin"][1], ]) location = location + child_rotation_origin else: child_rotation_origin = np.array([0.0, 0.0, 0.0]) # this cube corner origin new_cube_origin = parent_cube_origin + v_min new_rotation_origin = parent_rotation_origin + location # get euler rotation rot_euler = np.array([0.0, 0.0, 0.0]) if "rotationX" in e: rot_euler[1] = e["rotationX"] * DEG_TO_RAD if "rotationY" in e: rot_euler[2] = e["rotationY"] * DEG_TO_RAD if "rotationZ" in e: rot_euler[0] = e["rotationZ"] * DEG_TO_RAD # create cube bpy.ops.mesh.primitive_cube_add(location=location, rotation=rot_euler) obj = bpy.context.active_object mesh = obj.data mesh_materials = {} # tex_name => material_index # center local mesh coordiantes v_min = v_min - child_rotation_origin v_max = v_max - child_rotation_origin # set vertices mesh.vertices[0].co[:] = v_min[0], v_min[1], v_min[2] mesh.vertices[1].co[:] = v_min[0], v_min[1], v_max[2] mesh.vertices[2].co[:] = v_min[0], v_max[1], v_min[2] mesh.vertices[3].co[:] = v_min[0], v_max[1], v_max[2] mesh.vertices[4].co[:] = v_max[0], v_min[1], v_min[2] mesh.vertices[5].co[:] = v_max[0], v_min[1], v_max[2] mesh.vertices[6].co[:] = v_max[0], v_max[1], v_min[2] mesh.vertices[7].co[:] = v_max[0], v_max[1], v_max[2] # set face uvs uv = e.get("faces") if uv is not None: if import_uvs: face_normals = np.zeros((6,1,3)) for i, face in enumerate(mesh.polygons): face_normals[i,0,0:3] = face.normal # map face normal -> face name # NOTE: this process may not be necessary since new blender # objects are created with the same face normal order, # so could directly map index -> minecraft face name. # keeping this in case the order changes in future face_directions = np.argmax(np.sum(face_normals * DIRECTION_NORMALS, axis=2), axis=1) face_directions = DIRECTIONS[face_directions] # set uvs face order in blender loop, determined experimentally uv_layer = mesh.uv_layers.active.data for uv_direction, face in zip(face_directions, mesh.polygons): face_uv = uv.get(uv_direction) if face_uv is not None: if "uv" in face_uv: # unpack uv coords in minecraft coord space [xmin, ymin, xmax, ymax] # transform from minecraft [0, 16] space +x,-y space to blender [0,1] +x,+y face_uv_coords = face_uv["uv"] xmin = face_uv_coords[0] / tex_width ymin = 1.0 - face_uv_coords[3] / tex_height xmax = face_uv_coords[2] / tex_width ymax = 1.0 - face_uv_coords[1] / tex_height else: xmin = 0.0 ymin = 1.0 xmax = 1.0 ymax = 0.0 # write uv coords based on rotation k = face.loop_start if "rotation" not in face_uv or face_uv["rotation"] == 0: uv_layer[k].uv[0:2] = xmax, ymin uv_layer[k+1].uv[0:2] = xmax, ymax uv_layer[k+2].uv[0:2] = xmin, ymax uv_layer[k+3].uv[0:2] = xmin, ymin elif face_uv["rotation"] == 90: uv_layer[k].uv[0:2] = xmax, ymax uv_layer[k+1].uv[0:2] = xmin, ymax uv_layer[k+2].uv[0:2] = xmin, ymin uv_layer[k+3].uv[0:2] = xmax, ymin elif face_uv["rotation"] == 180: uv_layer[k].uv[0:2] = xmin, ymax uv_layer[k+1].uv[0:2] = xmin, ymin uv_layer[k+2].uv[0:2] = xmax, ymin uv_layer[k+3].uv[0:2] = xmax, ymax elif face_uv["rotation"] == 270: uv_layer[k].uv[0:2] = xmin, ymin uv_layer[k+1].uv[0:2] = xmax, ymin uv_layer[k+2].uv[0:2] = xmax, ymax uv_layer[k+3].uv[0:2] = xmin, ymax else: # invalid rotation, should never occur... do default uv_layer[k].uv[0:2] = xmax, ymin uv_layer[k+1].uv[0:2] = xmax, ymax uv_layer[k+2].uv[0:2] = xmin, ymax uv_layer[k+3].uv[0:2] = xmin, ymin # assign material if "texture" in face_uv: tex_name = face_uv["texture"][1:] # remove the "#" in start if tex_name in mesh_materials: face.material_index = mesh_materials[tex_name] elif tex_name in textures: # need new mapping idx = len(obj.data.materials) obj.data.materials.append(textures[tex_name]) mesh_materials[tex_name] = idx face.material_index = idx # set name (choose whatever is available or "cube" if no name or comment is given) obj.name = e.get("name") or "cube" return obj, v_min, new_cube_origin, new_rotation_origin def parse_attachpoint( e, # json element parent_cube_origin, # cube corner origin of parent ): """Load attachment point associated with a cube, convert into a Blender empty object with special name: "attach_AttachPointName" where the suffix is the "code": "AttachPointName" in the element. This format is used for exporting attachpoints from Blender. Location in json is relative to cube origin not rotation origin. For some reason json number is a string...wtf? """ px = float(e.get("posX") or 0.0) py = float(e.get("posY") or 0.0) pz = float(e.get("posZ") or 0.0) rx = float(e.get("rotationX") or 0.0) ry = float(e.get("rotationY") or 0.0) rz = float(e.get("rotationZ") or 0.0) # get location, rotation converted to Blender space location = np.array([ pz + parent_cube_origin[0], px + parent_cube_origin[1], py + parent_cube_origin[2], ]) rotation = DEG_TO_RAD * np.array([rz, rx, ry]) # create object bpy.ops.object.empty_add(type="ARROWS", radius=1.0, location=location, rotation=rotation) obj = bpy.context.active_object obj.show_in_front = True obj.name = "attach_" + (e.get("code") or "attachpoint") return obj def rebuild_hierarchy_with_bones( root_objects, ): """Wrapper to make armature and replace cubes in hierarchy with bones. This is multi step process due to how Blender EditBone and PoseBones work """ bpy.ops.object.mode_set(mode="OBJECT") # ensure correct starting context bpy.ops.object.add(type="ARMATURE", enter_editmode=True) armature = bpy.context.active_object armature.show_in_front = True for obj in root_objects: add_bone_to_armature_from_object( obj, armature, None, ) # switch to pose mode, set bone positions from object transform bpy.ops.object.mode_set(mode="POSE") for obj in root_objects: set_bone_pose_from_object( obj, armature, ) # set rest pose, not sure if we want this or not... bpy.ops.pose.armature_apply() bpy.ops.object.mode_set(mode="OBJECT") return armature def add_bone_to_armature_from_object( obj, armature, parent_bone, ): # skip non mesh (e.g. attach points) if not isinstance(obj.data, bpy.types.Mesh): return bone = armature.data.edit_bones.new(obj.name) # this orients bone to blender XYZ bone.head = (0., 0., 0.) bone.tail = (0., 1., 0.) if parent_bone is not None: bone.parent = parent_bone bone.use_connect = False for child in obj.children: add_bone_to_armature_from_object( child, armature, bone, ) def set_bone_pose_from_object( obj, armature, ): # skip non mesh (e.g. attach points) if not isinstance(obj.data, bpy.types.Mesh): return name = obj.name pose_bone = armature.pose.bones[name] pose_bone.location = ( obj.location.x, obj.location.y, obj.location.z, ) pose_bone.rotation_mode = "XYZ" pose_bone.rotation_euler = obj.rotation_euler # now parent obj to bone obj.parent = armature obj.parent_type = "BONE" obj.parent_bone = name obj.location = (0., -1.0, 0.) obj.rotation_euler = (0., 0., 0.) for child in obj.children: set_bone_pose_from_object( child, armature, ) def parse_animation( e, # json element armature, # armature to associate action with stats, # import stats ): def add_keyframe_point(fcu, frame, val): """Helper to add keyframe point to fcurve""" idx = len(fcu.keyframe_points) fcu.keyframe_points.add(1) fcu.keyframe_points[idx].interpolation = "LINEAR" fcu.keyframe_points[idx].co = frame, val name = e["code"] # use code as name instead of name field action = bpy.data.actions.new(name=name) # flag to repeat animation (insert duplicate keyframe at end) repeat_animation = False # add special marker for onActivityStopped and onAnimationEnd num_frames = e.get("quantityframes") or 0 if "onAnimationEnd" in e: marker = action.pose_markers.new(name="onAnimationEnd_{}".format(e["onAnimationEnd"])) marker.frame = num_frames - 1 if e["onAnimationEnd"].lower() != "hold": # death animations hold on finish repeat_animation = True if "onActivityStopped" in e: marker = action.pose_markers.new(name="onActivityStopped_{}".format(e["onActivityStopped"])) marker.frame = num_frames + 20 # load keyframe data animation_adapter = animation.AnimationAdapter(action, name=name) # insert first keyframe at end to properly loop keyframes = e["keyframes"].copy() if repeat_animation and len(keyframes) > 0 and num_frames > 0: # make copy of frame 0 and insert at num_frames-1 keyframe_0_copy = { "frame": num_frames - 1, "elements": keyframes[0]["elements"], } keyframes.append(keyframe_0_copy) for keyframe in keyframes: frame = keyframe["frame"] for bone, data in keyframe["elements"].items(): fcu_name_prefix = "pose.bones[\"{}\"]".format(bone) fcu_name_location = fcu_name_prefix + ".location" fcu_name_rotation = fcu_name_prefix + ".rotation_euler" # add bone => rotation mode animation_adapter.set_bone_rotation_mode(bone, "rotation_euler") # position fcurves fcu_px = animation_adapter.get(fcu_name_location, 0) fcu_py = animation_adapter.get(fcu_name_location, 1) fcu_pz = animation_adapter.get(fcu_name_location, 2) # euler rotation fcurves fcu_rx = animation_adapter.get(fcu_name_rotation, 0) fcu_ry = animation_adapter.get(fcu_name_rotation, 1) fcu_rz = animation_adapter.get(fcu_name_rotation, 2) # add keyframe points (note vintage story ZXY -> XYZ) if "offsetX" in data: add_keyframe_point(fcu_py, frame, data["offsetX"]) if "offsetY" in data: add_keyframe_point(fcu_pz, frame, data["offsetY"]) if "offsetZ" in data: add_keyframe_point(fcu_px, frame, data["offsetZ"]) if "rotationX" in data: add_keyframe_point(fcu_ry, frame, data["rotationX"] * DEG_TO_RAD) if "rotationY" in data: add_keyframe_point(fcu_rz, frame, data["rotationY"] * DEG_TO_RAD) if "rotationZ" in data: add_keyframe_point(fcu_rx, frame, data["rotationZ"] * DEG_TO_RAD) # resample animations for blender animation_adapter.resample_to_blender() # update stats stats.animations += 1 def load_element( element, parent, cube_origin, rotation_origin, all_objects, textures, tex_width=16.0, tex_height=16.0, import_uvs=True, stats=None, ): """Recursively load a geometry cuboid""" obj, local_cube_origin, new_cube_origin, new_rotation_origin = parse_element( element, cube_origin, rotation_origin, textures, tex_width=tex_width, tex_height=tex_height, import_uvs=import_uvs, ) all_objects.append(obj) # set parent if parent is not None: obj.parent = parent # increment stats (debugging) if stats: stats.cubes += 1 # parse attach points if "attachmentpoints" in element: for attachpoint in element["attachmentpoints"]: p = parse_attachpoint( attachpoint, local_cube_origin, ) p.parent = obj all_objects.append(p) # increment stats (debugging) if stats: stats.attachpoints += 1 # recursively load children if "children" in element: for child in element["children"]: load_element( child, obj, new_cube_origin, new_rotation_origin, all_objects, textures, tex_width, tex_height, import_uvs, stats=stats, ) return obj class ImportStats(): """Track statistics on imported data""" def __init__(self): self.cubes = 0 self.attachpoints = 0 self.animations = 0 self.textures = 0 def load(context, filepath, import_uvs=True, # import face uvs import_textures=True, # import textures into materials import_animations=True, # load animations translate_origin=None, # origin translate either [x, y, z] or None recenter_to_origin=False, # recenter model to origin, overrides translate origin debug_stats=True, # print statistics on imported models **kwargs ): """Main import function""" # debug t_start = time.process_time() stats = ImportStats() if debug_stats else None with open(filepath, "r") as f: s = f.read() try: data = json.loads(s) except Exception as err: # sometimes format is in loose json, `name: value` instead of `"name": value` # this tries to add quotes to keys without double quotes # this simple regex fails if any strings contain colons try: import re s2 = re.sub("(\w+):", r'"\1":', s) data = json.loads(s2) # unhandled issue except Exception as err: raise err # data = json.load(f) # chunks of import file path, to get base directory filepath_parts = filepath.split(os.path.sep) # check if groups in .json, not a spec, used by this exporter as additional data to group models together if "groups" in data: groups = data["groups"] else: groups = {} # objects created root_objects = [] # root level objects all_objects = [] # all objects added # vintage story coordinate system origin if translate_origin is not None: translate_origin = Vector(translate_origin) # set scene collection as active scene_collection = bpy.context.view_layer.layer_collection bpy.context.view_layer.active_layer_collection = scene_collection # ============================================= # import textures, create map of material name => material # ============================================= """Assume two types of texture formats: "textures:" { "down": "#bottom", # texture alias to another texture "bottom": "block/stone", # actual texture image } Loading textures is two pass: 1. load all actual texture images 2. map aliases to loaded texture images """ tex_width = data["textureWidth"] if "textureWidth" in data else 16.0 tex_height = data["textureHeight"] if "textureHeight" in data else 16.0 textures = {} if import_textures and "textures" in data: # get textures base path for models tex_base_path = get_base_path(filepath_parts, curr_branch="shapes", new_branch="textures") # load texture images for tex_name, tex_path in data["textures"].items(): # skip aliases if tex_path[0] == "#": continue filepath_tex = os.path.join(tex_base_path, *tex_path.split("/")) + ".png" textures[tex_name] = create_textured_principled_bsdf(tex_name, filepath_tex) # update stats if stats: stats.textures += 1 # map texture aliases for tex_name, tex_path in data["textures"].items(): if tex_path[0] == "#": tex_path = tex_path[1:] if tex_path in textures: textures[tex_name] = textures[tex_path] # ============================================= # recursively import geometry, uvs # ============================================= root_origin = np.array([0.0, 0.0, 0.0]) root_elements = data["elements"] for e in root_elements: obj = load_element( e, None, root_origin, root_origin, all_objects, textures, tex_width=tex_width, tex_height=tex_height, import_uvs=True, stats=stats, ) root_objects.append(obj) # ============================================= # model post-processing # ============================================= if recenter_to_origin: # model bounding box vector model_v_min = np.array([inf, inf, inf]) model_v_max = np.array([-inf, -inf, -inf]) # re-used buffer v_world = np.zeros((3, 8)) # get bounding box for obj in root_objects: mesh = obj.data mat_world = obj.matrix_world for i, v in enumerate(mesh.vertices): v_world[0:3,i] = mat_world @ v.co model_v_min = np.amin(
np.append(v_world, model_v_min[...,np.newaxis], axis=1)
numpy.append
import numpy as np import matplotlib.pyplot as plt from matplotlib.image import imread from mpl_toolkits.mplot3d import Axes3D # 与门 权重偏置 AND_W = np.array([0.5, 0.5]) AND_B = -0.7 # 与非门 权重偏置 NAND_W = np.array([-0.5, -0.5]) NAND_B = 0.7 # 或门 权重偏置 OR_W = np.array([0.5, 0.5]) OR_B = -0.3 # 感知机 def Perceptron(x): return np.array(x > 0, dtype=np.int) # sigmoid def Sigmoid(x): return 1 / (1 + np.exp(-x)) # Relu def Relu(x): return np.maximum(0, x) # 这个激活函数在"分类"中,比较常用 def Softmax(a): c=np.max(a) exp_a = np.exp(a-c) y = exp_a / np.sum(exp_a) return y # 异或门 def XOR(x1, x2): local_x1 = Perceptron(np.sum(np.array([x1, x2])*NAND_W)+NAND_B) local_x2 = Perceptron(np.sum(np.array([x1, x2])*OR_W)+OR_B) return Sigmoid(np.sum(np.array([local_x1, local_x2])*AND_W)+AND_B) def test1(): print(XOR(0, 0)) print(XOR(1, 0)) print(XOR(0, 1)) print(XOR(1, 1)) def test2(): x = np.arange(-10, 10, 0.1) y1 = Perceptron(x) y2 = Sigmoid(x) plt.plot(x, x,linestyle='--',label="x") plt.plot(x, y1,label="Perceptron") plt.plot(x, y2,label="Sigmoid") plt.xlabel("X") plt.ylabel("Y") plt.ylim(-0.01, 1.01) # 指定y轴的范围 plt.legend() plt.show() #第三章 def identity_function(x): return x def test3(): # 输入层 X = np.array([1.0, 0.5])#输入层 W1 = np.array([[0.1, 0.3, 0.5], [0.2, 0.4, 0.6]])#输入层权重 B1 = np.array([0.1, 0.2, 0.3])#输入层偏置 A1 = np.dot(X, W1) + B1 Z1 = Sigmoid(A1) #print(A1) # [0.3, 0.7, 1.1] #print(Z1) # [0.57444252, 0.66818777, 0.75026011] # 隐含层 W2 = np.array([[0.1, 0.4], [0.2, 0.5], [0.3, 0.6]]) B2 = np.array([0.1, 0.2]) A2 = np.dot(Z1, W2) + B2 Z2 = Sigmoid(A2) # 输出层 W3 = np.array([[0.1, 0.3], [0.2, 0.4]]) B3 = np.array([0.1, 0.2]) A3 = np.dot(Z2, W3) + B3 Y = identity_function(A3) # 或者Y = A3 print(Y) # 把test3规整下: # 网络权重和偏置 def init_network(): network = {} network['W1'] = np.array([[0.1, 0.3, 0.5], [0.2, 0.4, 0.6]]) network['b1'] = np.array([0.1, 0.2, 0.3]) network['W2'] = np.array([[0.1, 0.4], [0.2, 0.5], [0.3, 0.6]]) network['b2'] = np.array([0.1, 0.2]) network['W3'] = np.array([[0.1, 0.3], [0.2, 0.4]]) network['b3'] = np.array([0.1, 0.2]) return network # 前向运算 def forward(network, x): W1, W2, W3 = network['W1'], network['W2'], network['W3'] b1, b2, b3 = network['b1'], network['b2'], network['b3'] a1 = np.dot(x, W1) + b1 z1 = Sigmoid(a1) a2 = np.dot(z1, W2) + b2 z2 = Sigmoid(a2) a3 = np.dot(z2, W3) + b3 y = identity_function(a3) return y # 测试数据 def test4(): network = init_network() x = np.array([1.0, 0.5]) y = forward(network, x) print(y) # [ 0.31682708 0.69627909] def test5(): a=
np.array([0.3,2.9,4.0])
numpy.array
import tensorflow as tf import numpy as np np.set_printoptions(threshold=np.nan) import matplotlib.pyplot as plt import data_handler as dh import os import sys class MDN(object): ''' Contains useful methods for training, testing, and validating a mixture density network. ''' def __init__(self, session, input_size, num_gaussians=3, num_lstm_cells=300, save=False): ''' Sets up the computation graph for the MDN. Bishop, et. al, use a mixture of univariate gaussians, which allows them to avoid futzing around with off-diagonal covariance matrix terms. Univariate gaussians have proven to be insufficient for prediction, so this model uses full covariance matrices for the mixture components. ''' dtype = tf.float32 self.session = session self.weights = [] self.biases = [] self.layers = [] self.init_states = [] self.num_lstm_layers = 3 self.num_gaussians = num_gaussians self.input_size = input_size self.l2_penalty = 0.00001 num_means = num_gaussians*(input_size - 1) num_variances = num_gaussians*(input_size - 1) num_correlations = num_gaussians*(1) output_size = num_gaussians + num_means + num_variances \ + num_correlations + 1 print("output size:", output_size) print("output size per gaussian:", (output_size - 1)/num_gaussians) with tf.variable_scope("mdn"): self.input_data = tf.placeholder(dtype=dtype, shape=[None, None, input_size], name="batch_input") self.output_data = tf.placeholder(dtype=dtype, shape=[None, None, input_size], name="batch_targets") batch_size = tf.shape(self.input_data)[0] seq_length = tf.shape(self.input_data)[1] print("batch_size info: ", batch_size) # For each layer of lstm's, create a set of placeholders to contain # values passed to each lstm cell's initial recurrent state. for i in range(self.num_lstm_layers): ph_c = tf.placeholder(dtype=dtype, shape=[None, num_lstm_cells]) ph_h = tf.placeholder(dtype=dtype, shape=[None, num_lstm_cells]) self.init_states.append( tf.nn.rnn_cell.LSTMStateTuple(ph_c, ph_h)) self.init_states = tuple(self.init_states) lstm_layers = [] for i in range(self.num_lstm_layers): lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(num_lstm_cells) if i < self.num_lstm_layers - 1: self.layers.append(lstm_cell) lstm_layers.append(self.layers[-1]) else: self.layers.append(tf.contrib.rnn.ResidualWrapper(lstm_cell)) lstm_layers.append(self.layers[-1]) # Get a list of LSTM cells in the current set of layers, then pass those # to the MultiRNNCell method. self.multi_lstm_cell = tf.nn.rnn_cell.MultiRNNCell(lstm_layers) # LSTM layers outputs, self.last_lstm_state = \ tf.nn.dynamic_rnn(self.multi_lstm_cell, self.input_data, dtype=dtype, initial_state=self.init_states) self.zero_states = self.multi_lstm_cell.zero_state(batch_size, dtype=dtype) outputs_flat = tf.reshape(outputs, [-1, num_lstm_cells], name="dynamic_rnn_reshape") self.layers.append(outputs_flat) # Output layer shape = [num_lstm_cells, output_size] self.layers.append(self._linear_op(self.layers[-1], shape)) # Get the mixture components splits = [num_means, num_variances, num_correlations, num_gaussians, 1] pieces = tf.split(self.layers[-1], splits, axis=1) self.means = pieces[0] self.stdevs = tf.nn.softplus(pieces[1]) self.correls = 0.9999*tf.nn.tanh(pieces[2]) self.mix_weights = tf.nn.softmax(pieces[3]) self.stroke = tf.nn.sigmoid(pieces[4]) # Reshape the means, stdevs, correlations, and mixture weights for # friendly returns means_shape = [batch_size, seq_length, num_gaussians, 2] stdevs_shape = [batch_size, seq_length, num_gaussians, 2] mixes_shape = [batch_size, seq_length, num_gaussians, 1] correls_shape = [batch_size, seq_length, num_gaussians, 2] self.means_ = tf.reshape(self.means, means_shape) self.stdevs_ = tf.reshape(self.stdevs, stdevs_shape) self.mix_weights_ = tf.reshape(self.mix_weights, mixes_shape) self.correls_ = tf.reshape(self.correls, correls_shape) outputs_flat = tf.reshape(self.output_data, [-1, input_size]) gauss_values, stroke = tf.split(outputs_flat, [input_size-1, 1], axis=1) # Grab these for sampling from the network. self.gauss_params = \ self._get_gaussian_params(self.means, self.stdevs, self.correls, num_gaussians) # These are for training or evaluating the network. self.gauss_evals = self._eval_gaussians(gauss_values, self.means, self.stdevs, self.correls, num_gaussians) print(self.gauss_evals.shape, self.mix_weights.shape) print(pieces[3].shape) self.mixture = tf.reduce_sum(self.gauss_evals*self.mix_weights, axis=-1) stroke_loss = \ tf.nn.sigmoid_cross_entropy_with_logits(labels=stroke, logits=pieces[4]) print("unreduced stroke loss shape:", stroke_loss.shape) #a = self.gauss_evals*self.mix_weights #print("unreduced mixture shape:", a.shape) self.stroke_loss = tf.reduce_sum(stroke_loss, axis=-1) print(self.stroke_loss.shape) self.loss = tf.reduce_mean(-1*tf.log(self.mixture + 1e-8) + self.stroke_loss, name="loss") self.loss += self.l2_penalty*tf.reduce_sum([tf.nn.l2_loss(v) for v in tf.trainable_variables()]) # Need to clip gradients (?) optimizer = tf.train.RMSPropOptimizer(learning_rate=0.0004) self.train_op = optimizer.minimize(self.loss) if save: self.saver = tf.train.Saver() def _get_weights(self, shape, name="requested_weight"): ''' Returns a location of a Rank(2) tensor of weights and a Rank(1) tensor of biases within the self.weights and self.biases lists. ''' weights = tf.Variable(tf.random_normal(shape, stddev=0.1), name=name) biases = tf.Variable(tf.random_normal([shape[-1]], stddev=0.1), name=name) self.weights.append(weights) self.biases.append(biases) return (len(self.weights) - 1, len(self.biases) - 1) def _linear_op(self, input_tensor, shape): ''' Perform simple matmul and bias offset between the input_tensor and a tensor of weights that will be generated in this method. So you specify an input tensor and the shape of the weight matrix, and this method does the following: create weight: W with shape = "shape" create bias: b with shape = "shape[1]" matmul(input_tensor, W) + b ''' (W_loc, b_loc) = self._get_weights(shape, "linear_op_weights") return tf.matmul(input_tensor, self.weights[W_loc]) + self.biases[b_loc] def _get_gaussian_params(self, means, stdevs, correls, num_gaussians): ''' Returns the parameters of the densities in the GMM. ''' with tf.variable_scope("gmm_breakdown"): comp_means = tf.split(means, num_gaussians, axis=1) comp_stdevs = tf.split(stdevs, num_gaussians, axis=1) comp_correls = tf.split(correls, num_gaussians, axis=1) return (comp_means, comp_stdevs, comp_correls) def _eval_gaussians(self, values, means, stdevs, correls, num_gaussians): ''' Takes tensors of values, means, and stdevs, and returns tensors of gaussians parametrized by 'means', 'stdevs', and 'correls' evaluated at 'values'. Here we assume that 'values' only contains components relevant to the GMM on the output. values -> [bs*sl, M] stdevs -> [bs*sl, num_gaussians*M] means -> [bs*sl, num_gaussians*M] correls -> [bs*sl, num_gaussians] ''' print("gaussian component shapes:") print("\tvalues:", values.shape) print("\tstdevs:", stdevs.shape) print("\tmeans:", means.shape) print("\tcorrels:", correls.shape) with tf.variable_scope("gmm_evaluation"): comp_means = tf.split(means, num_gaussians, axis=1) comp_stdevs = tf.split(stdevs, num_gaussians, axis=1) comp_correls = tf.split(correls, num_gaussians, axis=1) gaussians = [] for i in range(num_gaussians): correls_denom = tf.reduce_sum(1 - comp_correls[i]*comp_correls[i], axis=1) factor = 1./(2*np.pi*tf.reduce_prod(comp_stdevs[i], axis=1)*tf.sqrt(correls_denom) + 1e-8) print("\tfactor", i, ":", factor.shape) #print(self.session.run([tf.shape(comp_means[i]), tf.shape(comp_stdevs[i])])) norms = (values - comp_means[i])/(comp_stdevs[i] + 1e-8) exponents = -(1/(2*correls_denom + 1e-8))*(tf.reduce_sum(norms*norms, axis=1) - tf.reduce_prod(norms, axis=1)*2*tf.reduce_sum(comp_correls[i], axis=1)) print("\texponents", i, ":", exponents.shape) #ind_gaussians.append(factors*tf.exp(exponents)) gaussians.append(factor*tf.exp(exponents)) # You have a gaussian for each set of components of the mixture model, # now you just have to reduce those components into the pieces of the GMM. #gaussians = [tf.reduce_prod(g, axis=-1) for g in ind_gaussians] stacked_gaussians = tf.stack(gaussians, axis=1) print("stacked gaussians shape:", stacked_gaussians.shape) return stacked_gaussians def _get_mixture_sample(self, params, mix): ''' Returns a single sample from the GMM defined by params and the mixture weights. Assumes that 'params' is a list of GMM parameters. Assumes that 'mix' is a simple numpy array, where the mixture's shape is one-dimensional, and its size is the number of gaussians in the mixture. ''' # params[0] --> means # params[1] --> variance terms # params[2] --> correlation terms # Variance terms aren't in matrix form, but we know what a 2D gaussian # with correlated variables looks like, so we use this form to construct # a 2D gaussian by filling in the covariance matrix and means. sample = np.zeros_like(params[0][0]) for i in range(self.num_gaussians): mean = params[0][i] #print(" mixture_sample mean shape:", mean.shape) cov = np.zeros((self.input_size - 1, self.input_size - 1)) for j in range(self.input_size - 1): #print(" mixture_sample cov shape:", params[1][i].shape) cov[j,j] = params[1][i][j] #cov[j,1-j] = params[2][i][0] cov[j,1-j] = params[2][i] # Zero probably removed by squeeze operation #print("covariance: ", cov) sample += mix[i]*np.random.multivariate_normal(mean, cov) return sample[np.newaxis, np.newaxis, :] def train_batch(self, batch_in, batch_out): ''' Trains the MDN on a single batch of input. Returns the loss, parameters of each gaussian, and the weights associated with each density in the Gaussian Mixture. ''' (batch_size, sequence_length, input_size) = batch_in.shape feeds = { self.input_data: batch_in, self.output_data: batch_out } zero_states = self.session.run(self.zero_states, feed_dict=feeds) for i in range(self.num_lstm_layers): feeds[self.init_states[i][0]] = zero_states[i][0] feeds[self.init_states[i][1]] = zero_states[i][1] fetches = [ self.train_op, self.loss, self.gauss_evals, self.mixture, self.means_, self.stdevs_, self.mix_weights_, self.stroke, self.gauss_params ] _, loss, gauss_eval, mix_eval, means_, stdevs_, mix, stroke, params = self.session.run(fetches, feed_dict=feeds) print("shape of means:", means_.shape) print("shape of stdevs:", stdevs_.shape) correls = params[2] max_correl = 0 for i in range(self.num_gaussians): max_correl = max(max_correl, np.amax(np.sum((correls[i]*correls[i]), axis=1))) print("max_correl denom:", max_correl) if max_correl > 1: print("OUT OF BOUNDS VALUE FOR MAX_CORREL") sys.exit(-1) if loss == np.nan: print("LOSS IS NAN") sys.exit(-1) return (loss, means_, stdevs_, mix, gauss_eval, mix_eval, stroke) def validate_batch(self, batch_in, batch_out): ''' Runs the network on the given input batch and calculates a loss using the output batch. No training is performed. ''' (batch_size, sequence_length, input_size) = batch_in.shape feeds = { self.input_data: batch_in, self.output_data: batch_out } zero_states = self.session.run(self.zero_states, feed_dict=feeds) for i in range(self.num_lstm_layers): feeds[self.init_states[i][0]] = zero_states[i][0] feeds[self.init_states[i][1]] = zero_states[i][1] fetches = [ self.loss, self.means_, self.stdevs_, self._mix_weights ] loss, means_, stdevs_, mix = self.session.run(fetches, feed_dict=feeds) return (loss, means_, stdevs_, mix) def _run_once(self, input_, stroke_, initial_states): ''' Takes a single input, (e.g. batch_size = 1, sequence_length = 1), passes it to the MDN, grabs the mixture parameters and final recurrent state of the MDN. Then it takes the mixture parameters and samples from them. The MDN returns the sampled value, other outputs, and the final recurrent state. Assumes input_.shape = [1, 1, input_size - 1] Assumes stroke_.shape = [1, 1, 1] ''' #print('run_once input and stroke shapes:', input_.shape, stroke_.shape) # Concatenate stroke and (dx, dy) input to get (1, 1, 3) input tensor. feeds = { self.input_data:
np.concatenate([input_, stroke_], axis=-1)
numpy.concatenate
#!/usr/bin/env python # -*- coding: utf-8 -*- # The MIT License (MIT) # Copyright (c) 2017 <NAME> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ============================================================================= # DOC # ============================================================================= """feets.extractors.ext_signature Tests""" # ============================================================================= # IMPORTS # ============================================================================= from feets import extractors from matplotlib.testing.decorators import check_figures_equal import numpy as np import seaborn as sns # ============================================================================= # Test cases # ============================================================================= @check_figures_equal() def test_plot_SignaturePhMag(fig_test, fig_ref): # fig test ext = extractors.Signature() kwargs = ext.get_default_params() kwargs.update( feature="SignaturePhMag", value=[[1, 2, 3, 4]], ax=fig_test.subplots(), plot_kws={}, time=[1, 2, 3, 4], magnitude=[1, 2, 3, 4], error=[1, 2, 3, 4], features={"PeriodLS": 1, "Amplitude": 10}, ) ext.plot(**kwargs) # expected eax = fig_ref.subplots() eax.set_title( f"SignaturePhMag - {kwargs['phase_bins']}x{kwargs['mag_bins']}" ) eax.set_xlabel("Phase") eax.set_ylabel("Magnitude") sns.heatmap(kwargs["value"], ax=eax, **kwargs["plot_kws"]) def test_multiple_peaks_period_ls(): random = np.random.RandomState(54) lc = { "time": np.arange(100) + random.uniform(size=100), "magnitude": random.normal(size=100), "error": None, } # one peak ls_ext_1 = extractors.LombScargle() ls_ext_2 = extractors.LombScargle(peaks=2) amp_ext = extractors.Amplitude() sig_ext = extractors.Signature() rs0 = ls_ext_1.extract(features={}, **lc) rs0.update(amp_ext.extract(features=rs0, **lc)) rs0.update(sig_ext.extract(features=rs0, **lc)) rs1 = ls_ext_2.extract(features={}, **lc) rs1.update(amp_ext.extract(features=rs1, **lc)) rs1.update(sig_ext.extract(features=rs1, **lc)) assert np.all(rs0["PeriodLS"][0] == rs1["PeriodLS"][0]) assert np.all(rs0["Amplitude"] == rs1["Amplitude"]) assert
np.all(rs0["SignaturePhMag"] == rs1["SignaturePhMag"])
numpy.all
from flask import Flask, render_template, request import numpy as np import re import base64 from PIL import Image from scipy.misc import imsave, imread, imresize from util.train import conv from util.prepare_data import normalize import json app = Flask(__name__) model = conv(classes=9,input_shape=(28, 28, 1)) model.load("./model/doodle_classifier_1.0.tflearn") @app.route("/", methods=["GET", "POST"]) def ready(): global model if request.method == "GET": return render_template("index.html") if request.method == "POST": data = request.form["payload"].split(",")[1] img = base64.decodestring(data.encode('ascii')) with open('temp.png', 'wb') as output: output.write(img) x = imread('temp.png', mode='L') # resize input image to 28x28 x = imresize(x, (28, 28)) x = np.expand_dims(x, axis=0) x =
np.reshape(x, (28, 28, 1))
numpy.reshape
""" pyart.io._sigmet_noaa_hh ======================== Functions needed for reading Sigmet files from the airborne radar located on NOAA's Hurricane Hunter aircraft. .. autosummary:: :toctree: generated/ _decode_noaa_hh_hdr _georeference_yprime """ import numpy as np from ._sigmetfile import bin4_to_angle, bin2_to_angle def _decode_noaa_hh_hdr( raw_extended_headers, filemetadata, azimuth, elevation, position_source='irs', heading_source='irs'): """ Extract data from Sigmet extended headers produced by NOAA Hurricane Hunter airborne radars. Parameters ---------- raw_extended_headers : ndarray Raw Sigmet extended headers. filemetadata : FileMetadata FileMetadata class from which metadata will be derived. azimuth : dict Dictionary of azimuth angles recorded in Sigmet file. elevation : dict Dictionary of elevation angles recorded in Sigmet file. position_source: {'irs', 'gps', 'aamps'}, optional Instrument from which to derive position parameters. heading_source: {'irs', 'aamps'} Instrument from which to derive heading parameters. Returns ------- latitude : dict Dictionary containing latitude data and metadata. longitude : dict Dictionary containing longitude data and metadata. altitude : dict Dictionary containing altitude data and metadata. heading_params : dict Dictionary of dictionary containing aircraft heading data and metadata. Contains 'heading', 'roll', pitch', 'drift', 'rotation', 'tilt' and 'georefs_applied' dictionaries. """ xhdr = np.rec.fromstring(raw_extended_headers[..., :68].tostring(), dtype=list(NOAA_HH_EXTENDED_HEADER)) # rotation and tilt from azimuth/elevation angles rotation = filemetadata('rotation') tilt = filemetadata('tilt') rotation_data = 90. - elevation['data'].copy() rotation_data[rotation_data < 0] += 360. rotation['data'] = rotation_data tilt_data = azimuth['data'].copy() tilt_data[tilt_data > 180] -= 360. tilt['data'] = tilt_data # airborne parameters heading = filemetadata('heading') roll = filemetadata('roll') pitch = filemetadata('pitch') drift = filemetadata('drift') if heading_source == 'irs': heading_data = bin2_to_angle(xhdr['irs_heading']) roll_data = bin2_to_angle(xhdr['irs_roll']) pitch_data = bin2_to_angle(xhdr['irs_pitch']) drift_data = bin2_to_angle(xhdr['irs_drift']) elif heading_source == 'aamps': heading_data = bin2_to_angle(xhdr['aamps_heading']) roll_data = bin2_to_angle(xhdr['aamps_roll']) pitch_data = bin2_to_angle(xhdr['aamps_pitch']) drift_data = bin2_to_angle(xhdr['aamps_drift']) else: raise ValueError('Unknown heading_source') heading['data'] = heading_data roll['data'] = roll_data pitch['data'] = pitch_data drift['data'] = drift_data # georeferenced azimuth and elevation az, elev = _georeference_yprime( roll_data, pitch_data, heading_data, drift_data, rotation_data, tilt_data) azimuth['data'] = az elevation['data'] = elev georefs_applied = filemetadata('georefs_applied') georefs_applied['data'] = np.ones(az.shape, dtype='int8') # positions: latitude, longitude, altitude latitude = filemetadata('latitude') longitude = filemetadata('longitude') altitude = filemetadata('altitude') if position_source == 'gps': lat_data = bin4_to_angle(xhdr['gps_lat']) lon_data = bin4_to_angle(xhdr['gps_long']) alt_data = xhdr['gps_alt'] / 100. elif position_source == 'aamps': lat_data = bin4_to_angle(xhdr['aamps_lat']) lon_data = bin4_to_angle(xhdr['aamps_long']) alt_data = xhdr['aamps_alt'] / 100. elif position_source == 'irs': lat_data = bin4_to_angle(xhdr['irs_lat']) lon_data = bin4_to_angle(xhdr['irs_long']) alt_data = xhdr['gps_alt'] / 100. else: raise ValueError('Invalid position_source') latitude['data'] = lat_data longitude['data'] = lon_data altitude['data'] = alt_data extended_header_params = { 'heading': heading, 'roll': roll, 'pitch': pitch, 'drift': drift, 'rotation': rotation, 'tilt': tilt, 'georefs_applied': georefs_applied} return (latitude, longitude, altitude, extended_header_params) def _georeference_yprime(roll, pitch, heading, drift, rotation, tilt): """ Compute georeferenced azimuth and elevation angles for a Y-prime radar. This is the georeferencing needed for the tail doppler radar on the NOAA P3 aircraft. """ # Adapted from Radx's SigmetRadxFile::_computeAzEl method found in # SigmetRadxFile.cc # Transforms defined in Wen-Chau Lee et al, JTech, 1994, 11, 572-578. # Convert to radians and use variable names from Wen-Chau Lee paper R = np.radians(roll) # roll P = np.radians(pitch) # pitch H = np.radians(heading) # heading D = np.radians(drift) # drift T = H + D # track theta_a = np.radians(rotation) tau_a = np.radians(tilt) # Eq. (9) x_t = (np.cos(theta_a + R) * np.sin(D) * np.cos(tau_a) * np.sin(P) + np.cos(D) * np.sin(theta_a + R) * np.cos(tau_a) - np.sin(D) * np.cos(P) * np.sin(tau_a)) y_t = (-np.cos(theta_a + R) * np.cos(D) * np.cos(tau_a) * np.sin(P) + np.sin(D) * np.sin(theta_a + R) * np.cos(tau_a) + np.cos(P) * np.cos(D) * np.sin(tau_a)) z_t = (np.cos(P) * np.cos(tau_a) * np.cos(theta_a + R) + np.sin(P) *
np.sin(tau_a)
numpy.sin
from sklearn import svm import numpy as np import sys sys.path.append("..") import data_tools as dt import compartment_analysis as ca from matplotlib import pyplot as plt import os import linear_algebra as la import array_tools as at from scipy import stats as st #import plotting as plot res_kb = 100 cell_type1 = sys.argv[1] cell_type2 = sys.argv[2] chroms = range(1, int(sys.argv[3])) x_means = [] y_means = [] z_means = [] x_lengths = [] y_lengths = [] z_lengths = [] for chrom in chroms: path1 = "hic_data/{}_{}_{}kb.bed".format(cell_type1, chrom, res_kb) path2 = "hic_data/{}_{}_{}kb.bed".format(cell_type2, chrom, res_kb) if os.path.isfile(path1) and os.path.isfile(path2): os.system("python ../multimds.py --full -w 0 {} {}".format(path1, path2)) structure1 = dt.structure_from_file("hic_data/{}_{}_{}kb_structure.tsv".format(cell_type1, chrom, res_kb)) structure2 = dt.structure_from_file("hic_data/{}_{}_{}kb_structure.tsv".format(cell_type2, chrom, res_kb)) #plot.plot_structures_interactive((structure1, structure2)) #compartments contacts1 = dt.matFromBed(path1, structure1) contacts2 = dt.matFromBed(path2, structure2) at.makeSymmetric(contacts1) at.makeSymmetric(contacts2) compartments1 = np.array(ca.get_compartments(contacts1)) compartments2 = np.array(ca.get_compartments(contacts2)) r, p = st.pearsonr(compartments1, compartments2) if r < 0: compartments2 = -compartments2 #SVR coords1 = structure1.getCoords() coords2 = structure2.getCoords() coords = np.concatenate((coords1, coords2)) compartments = np.concatenate((compartments1, compartments2)) clf = svm.LinearSVR() clf.fit(coords, compartments) coef = clf.coef_ transformed_coords1 = np.array(la.change_coordinate_system(coef, coords1)) transformed_coords2 = np.array(la.change_coordinate_system(coef, coords2)) x_diffs = transformed_coords1[:,0] - transformed_coords2[:,0] y_diffs = transformed_coords1[:,1] - transformed_coords2[:,1] z_diffs = transformed_coords1[:,2] - transformed_coords2[:,2] x_means.append(np.mean(np.abs(x_diffs))) y_means.append(np.mean(np.abs(y_diffs))) z_means.append(np.mean(np.abs(z_diffs))) #axis lengths centroid1 = np.mean(transformed_coords1, axis=0) centroid2 = np.mean(transformed_coords2, axis=0) x_length1 = np.mean([np.abs(coord1[0] - centroid1[0]) for coord1 in transformed_coords1]) y_length1 = np.mean([np.abs(coord1[1] - centroid1[1]) for coord1 in transformed_coords1]) z_length1 = np.mean([np.abs(coord1[2] - centroid1[2]) for coord1 in transformed_coords1]) x_length2 = np.mean([np.abs(coord2[0] - centroid2[0]) for coord2 in transformed_coords2]) y_length2 = np.mean([np.abs(coord2[1] - centroid2[1]) for coord2 in transformed_coords2]) z_length2 = np.mean([np.abs(coord2[2] - centroid2[2]) for coord2 in transformed_coords2]) x_lengths.append(
np.mean((x_length1, x_length2))
numpy.mean
import numpy as np from phi import struct from phi.math.math_util import is_static_shape # creates normal distributed noise that can vary over the batch def generateNoise(grid, var, mean=0, seed=0, dtype=np.float32): size = grid.data.shape rand = np.random.RandomState(seed) def array(shape): result = np.ones(size) for i in range(size[0]): result[i] = rand.normal(mean, var[i], size=size[1:]).astype(dtype) return result return struct.map(array, grid, leaf_condition=is_static_shape) # creates randomized parameters for grid generation (v_parameter in paramType is varied over batch) def generateParams(paramType, batch, dim, noiseStrength, vf1, vf2, vf3, vf4, vf5, vf7, vo1, vo2, vod, vnoise): f1 = (-0.5 + np.random.rand(dim,dim) ) * 0.4 # range +- 0.4 , initial main dir f2 = (-0.5 + np.random.rand(dim,dim) ) * 0.4 # reduced ranger for frequencies , freq1 f3 = (-0.5 + np.random.rand(dim,dim) ) * 0.3 # freq2 f4 = (-0.5 + np.random.rand(dim,dim) ) * 0.3 # freq3 f5 = (-0.5 + np.random.rand(dim,dim) ) * 0.2 # freq4 f7 = (-0.5 + np.random.rand(dim,dim) ) * 100.0 # forcing shift, dir&speed o1 = 0. + ( np.random.rand(dim,dim)*100. ) # offsets, minor influence o2 = 0. + ( np.random.rand(dim,dim)*100. ) # nu = 0.0002 * ( 1+ np.random.rand()*500. ) # diffusion # switch between "static" (near 1) and "forced" (=0) cases smoothly sfCase = 0. + ( np.random.rand(dim,dim)*1. ) # enlarge regular init for "static" staticF = (1.+2.*sfCase) f1 *= staticF f2 *= staticF f3 *= staticF f4 *= staticF f5 *= staticF f6 = (1.-sfCase) * 0.1 # note, factor is just forcing strength scaling for f6 factor fd = 1. / (1. + np.random.randint(6, size=(dim,dim))) od = 0. + np.random.rand(dim,dim)*100. f1 = np.repeat(f1[np.newaxis,...], batch, axis=0) f2 = np.repeat(f2[np.newaxis,...], batch, axis=0) f3 = np.repeat(f3[np.newaxis,...], batch, axis=0) f4 = np.repeat(f4[np.newaxis,...], batch, axis=0) f5 = np.repeat(f5[np.newaxis,...], batch, axis=0) f6 = np.repeat(f6[np.newaxis,...], batch, axis=0) f7 = np.repeat(f7[np.newaxis,...], batch, axis=0) o1 = np.repeat(o1[np.newaxis,...], batch, axis=0) o2 = np.repeat(o2[np.newaxis,...], batch, axis=0) fd = np.repeat(fd[np.newaxis,...], batch, axis=0) od = np.repeat(od[np.newaxis,...], batch, axis=0) noise = noiseStrength * np.ones(batch) # normally constant noise level amount = np.repeat(np.arange(batch)[...,np.newaxis], dim, axis=1) amount = np.repeat(amount[...,np.newaxis], dim, axis=2) if paramType == "f1": f1 += vf1 * amount elif paramType == "f1neg": f1 -= vf1 * amount elif paramType == "f2": f2 += vf2 * amount elif paramType == "f2neg": f2 -= vf2 * amount elif paramType == "f3": f3 += vf3 * amount elif paramType == "f3neg": f3 -= vf3 * amount elif paramType == "f4": f4 += vf4 * amount elif paramType == "f4neg": f4 -= vf4 * amount elif paramType == "f5": f5 += vf5 * amount elif paramType == "f5neg": f5 -= vf5 * amount elif paramType == "f7": f7 += vf7 * amount elif paramType == "f7neg": f7 -= vf7 * amount elif paramType == "o1": o1 += vo1 * amount elif paramType == "o1neg": o1 -= vo1 * amount elif paramType == "o2": o2 += vo2 * amount elif paramType == "o2neg": o2 -= vo2 * amount elif paramType == "od": od += vod * amount elif paramType == "odneg": od -= vod * amount elif paramType == "noise": noise = vnoise * np.arange(batch) # increasing noise level else: raise ValueError("Unknown parameter type!") params = { "nu" : np.array(nu), "f1" : f1, "f2" : f2, "f3" : f3, "f4" : f4, "f5" : f5, "f6" : f6, "f7" : f7, "o1" : o1, "o2" : o2, "fd" : fd, "od" : od, "noise" : noise, } return params # utilizes parameters generated with generateParams for grid initialization def createParameterizedGrid(grid, gridType, age, dim, params): p = params size = np.array(grid.shape) def array(shape): mesh = np.meshgrid(np.arange(0, size[1]), np.arange(0, size[2]), np.arange(0, size[3]), indexing='ij') mesh = np.transpose(np.asarray(mesh), (1,2,3,0))[...,np.newaxis] mesh =
np.repeat(mesh, dim, axis=dim+1)
numpy.repeat
import pysplishsplash import gym import pickle import numpy as np import torch import argparse import os,sys import time from scipy.ndimage import gaussian_filter,gaussian_filter1d from scipy.stats import linregress from scipy.spatial.transform import Rotation as R import math import matplotlib.pyplot as plt from tqdm import tqdm,trange device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def convert_state_to_torch(state): features = torch.FloatTensor(np.array([state[0]]).reshape(1, -1)).to(device) particles = torch.FloatTensor(state[1].reshape(1,*state[1].shape)).to(device) return features,particles def evalstuff(state,action,td3): features,particles = convert_state_to_torch(state) features[-1] = 0 #td3.actor.eval() #td3.critic.eval() #print("likestuff",td3.actor(features,particles),td3.critic.Q1(features,particles, td3.actor(features,particles))) #print("action",action) q_val = policy.eval_q(state,action) #print(state[0],action,q_val) #print("chosen",q_val) #print("zero",policy.eval_q(state,[0])) #print("special",policy.eval_q(state,[1])) #print("one",policy.eval_q(state,[1,1,1])) return (q_val[0][0]+q_val[1][0])/2 def train(state,td3): batch_size = 32 all_feat = [] all_part = [] for _ in range(batch_size): f,p = convert_state_to_torch(state) all_feat.append(f) all_part.append(p) features = torch.cat(all_feat,0) particles = torch.cat(all_part,0) td3._actor_learn(features,particles) def plot_q_compare(rew_lists,q_lists,discount,path,show=False): maxi = max(len(x) for x in rew_lists) print([len(x) for x in rew_lists]) emp_rewards = [0 for _ in range(len(rew_lists))] emp_avg = [] q_avg = [] for i in range(maxi-1,-1,-1): for j in range(len(rew_lists)): emp_pot = [] q_pot = [] if len(rew_lists[j]) > i: emp_rewards[j] = emp_rewards[j]*discount + rew_lists[j][i] emp_pot.append(emp_rewards[j]) q_pot.append(q_lists[j][i]) emp_avg.append(np.mean(emp_pot)) q_avg.append(np.mean(q_pot)) emp_avg.reverse() q_avg.reverse() plt.plot(emp_avg,label="empirical Q value (discounted)") plt.plot(q_avg,label="TD3 computed Q value") plt.xlabel("time step") plt.ylabel("Q-value") plt.legend() plt.savefig(path) if show: plt.show() plt.cla() def running_mean(x, N): cumsum = np.cumsum(np.insert(x, 0, 0)) return (cumsum[N:] - cumsum[:-N]) / float(N) def smooth_compare(x_ax1,x_ax2,vals1,vals2,xlabel,ylabel,legend_vals,path,show=False,sigma=5): fig = plt.figure(figsize=(10,4)) lims = (max(min(x_ax1),min(x_ax2)),min(max(x_ax1),max(x_ax2))) v1 = gaussian_filter1d(np.array(vals1,dtype=np.float),sigma) v2 = gaussian_filter1d(np.array(vals2,dtype=np.float),sigma) plt.plot(x_ax1[:len(v1)],v1,label=legend_vals[0],color="#00664d",linewidth=2) plt.plot(x_ax1[:len(vals1)],vals1,color="#00664d",alpha=0.4,linewidth=0.8) plt.plot(x_ax2[:len(v2)],v2,label=legend_vals[1],color="#e65c00",linewidth=2) plt.plot(x_ax2[:len(vals2)],vals2,color="#e65c00",alpha=0.4,linewidth=0.8) if ylabel=="Deviation from target fill level (ml)": plt.ylim(0,50) if ylabel=="Spilled": plt.ylim(0,5) plt.xticks(np.arange(lims[0],lims[1]+1,20)) plt.xlim(lims[0],lims[1]) plt.xlabel(xlabel) plt.ylabel(ylabel) #plt.title(title) plt.legend() plt.tight_layout() plt.savefig(path) if show: plt.show() plt.cla() def plot_mean(x_ax,vals,xlabel,ylabel,legend_val,title,path,show=False,sigma=5): #plt.rcParams.update({'font.size': 17}) rm = gaussian_filter1d(np.array(vals,dtype=np.float),sigma) fig = plt.figure(figsize=(10,4)) plt.plot(x_ax,vals,label=legend_val) plt.plot(x_ax[:len(rm)],rm,label="gaussian smoothed",linewidth=4.0) plt.xticks(np.arange(min(x_ax),max(x_ax)+1,60)) plt.xlim((min(x_ax),max(x_ax))) plt.xlabel(xlabel) plt.ylabel(ylabel) if title=="Absolute deviation from target fill level": plt.ylim(0,50) plt.title(title) plt.legend() plt.tight_layout() plt.savefig(path) if show: plt.show() plt.cla() def plot_action(all_action_list,path,show=False): max_len = max(len(x) for x in all_action_list) avg_actions = [] for i in range(max_len): pot = [] for acs in all_action_list: if len(acs)>i: pot.append(acs[i]) avg_actions.append(np.mean(pot)) plt.plot(avg_actions) plt.xlabel("Step") plt.ylabel("Avg rotation action") plt.title("avg rotation action per step") plt.savefig(path) if show: plt.show() plt.cla() def plot_2d(tsps,spills,values,title,path,show=False,sigma=5): #S,T = np.meshgrid(tsps,spills) V = np.array(values).reshape((len(tsps),len(tsps))) print(V) V = gaussian_filter(V,sigma=5) #plt.pcolormesh(T,S,V,shading="gouraud") plt.imshow(V,interpolation="bilinear",cmap='RdBu',origin="lower")#,extent=[tsps[0],tsps[-1],spills[0],spills[-1]]) plt.xticks(range(0,len(tsps),4),[round(x,2) for x in tsps[::4]]) plt.yticks(range(0,len(spills),4),[round(x,2) for x in spills[::4]]) plt.xlabel("time step punish") plt.ylabel("spill punish") plt.colorbar() plt.title(title) plt.savefig(path) if show: plt.show() plt.clf() def eval_2d(policy,eval_env,seed,path,root_episodes=30,sigma=5,render=False): os.makedirs(path,exist_ok=True) policy.critic.eval() policy.actor.eval() eval_env.seed(seed + 100) eval_env.fixed_tsp = True eval_env.fixed_spill = True spills = np.linspace(eval_env.spill_range[0],eval_env.spill_range[1],num=root_episodes) tsps = np.linspace(eval_env.time_step_punish_range[0],eval_env.time_step_punish_range[1],num=root_episodes) all_q_val_lists = [] b_list = [] all_reward_lists = [] max_angle_list = [] all_action_list = [] spill_list = [] glass_list = [] print("Evaluating") """for spill in tqdm(spills): for tsp in tsps: state, done = eval_env.reset(use_gui=render), False eval_env.spill_punish = spill eval_env.time_step_punish = tsp b = 0 reward_list = [] q_val_list = [] action_list = [] max_angle = 0 while not done: b+=1 action = policy.select_action(state) action_list.append(action) max_angle = max(state[0][0],max_angle) q_val_list.append(evalstuff(state,action,policy)) state, reward, done, _ = eval_env.step(action) if render: eval_env.render() reward_list.append(reward) all_q_val_lists.append(q_val_list) all_reward_lists.append(reward_list) all_action_list.append(action_list) spill_list.append(eval_env.particle_locations["spilled"]) glass_list.append(eval_env.particle_locations["glass"]) max_angle_list.append(max_angle) b_list.append(b) rew_list = [np.sum(x) for x in all_reward_lists] all_arrays = np.array([b_list,max_angle_list,spill_list,glass_list,[np.sum(x) for x in all_reward_lists]]) np.save(os.path.join(path,"all_arrays.npy"),all_arrays)""" b_list,max_angle_list,spill_list,glass_list,rew_list = np.load(os.path.join(path,"all_arrays.npy")) #plot_2d(tsps,spills,glass_list,"Fill state",os.path.join(path,"fill_state.svg")) #plot_2d(tsps,spills,spill_list,"Spilled",os.path.join(path,"spilled.svg")) #plot_2d(tsps,spills,max_angle_list,"Max angle",os.path.join(path,"max_angle.svg")) #plot_2d(tsps,spills,rew_list,"Total return",os.path.join(path,"total_return.svg")) plot_2d(tsps,spills,b_list,"episode_length",os.path.join(path,"episode_length.svg"),sigma=sigma) #plot_q_compare(all_reward_lists,all_q_val_lists,args.discount) def compare2(load1,load2,name1,name2,min_rot1,min_rot2,basepath="plots/test",sigma=5,to_eval="targ"): os.makedirs(basepath,exist_ok=True) name_map = {"tsp":"Time Step Punish", "spill":"Spill Punish", "targ":"Target fill level (ml)"} with open(load1,"rb") as f: all_q_val_lists1, b_list1, all_reward_lists1, max_angle_list1, all_action_list1, ev_list1, spill_list1, glass_list1, avg_reward1 = pickle.load(f) with open(load2,"rb") as f: all_q_val_lists2, b_list2, all_reward_lists2, max_angle_list2, all_action_list2, ev_list2, spill_list2, glass_list2, avg_reward2 = pickle.load(f) print(np.sum(spill_list1),np.sum(spill_list2)) reward_sum1 = [np.sum(x) for x in all_reward_lists1] reward_sum2 = [np.sum(x) for x in all_reward_lists2] for i in range(len(max_angle_list1)): radians = max_angle_list1[i]*(math.pi-min_rot1)+min_rot1 degrees = (radians*180)/math.pi max_angle_list1[i] = degrees for i in range(len(max_angle_list2)): radians = max_angle_list2[i]*(math.pi-min_rot2)+min_rot2 degrees = (radians*180)/math.pi max_angle_list2[i] = degrees if to_eval=="targ": dev_list1 = (np.array(glass_list1)-np.array(ev_list1)) dev_list2 = (np.array(glass_list2)-np.array(ev_list2)) smooth_compare(ev_list1,ev_list2,dev_list1,dev_list2,"Target fill level (ml)","Deviation from target fill level (ml)", [name1,name2],os.path.join(basepath,"deviation.svg"),sigma=sigma) smooth_compare(ev_list1,ev_list2,np.abs(dev_list1),np.abs(dev_list2),"Target fill level (ml)","Deviation from target fill level (ml)", [name1,name2],os.path.join(basepath,"abs_deviation.svg"),sigma=sigma) smooth_compare(ev_list1,ev_list2,b_list1,b_list2,name_map[to_eval],"Episode length (steps)", [name1,name2],os.path.join(basepath,"epi_length.svg"),sigma=sigma) smooth_compare(ev_list1,ev_list2,max_angle_list1,max_angle_list2,name_map[to_eval],"Angle (Degrees)", [name1,name2],os.path.join(basepath,"angle.svg"),sigma=sigma) smooth_compare(ev_list1,ev_list2,reward_sum1,reward_sum2,name_map[to_eval],"Return", [name1,name2],os.path.join(basepath,"return.svg"),sigma=sigma) smooth_compare(ev_list1,ev_list2,spill_list1,spill_list2,name_map[to_eval],"Spilled", [name1,name2],os.path.join(basepath,"spilled.svg"),sigma=sigma) smooth_compare(ev_list1,ev_list2,glass_list1,glass_list2,name_map[to_eval],"fill-level (ml)", [name1,name2],os.path.join(basepath,"fill_state.svg"),sigma=sigma) def rotation_volume_analysis(policy,eval_env,save_path,render=False): eval_env.fixed_tsp = True eval_env.fixed_spill = True eval_env.time_step_punish = 1 eval_env.spill_punish = 25 eval_env.fixed_target_fill = True targ_fills = [120,150,180,210] action_lists = [] rotation_lists = [] volumes_lists = [] for tf in targ_fills: eval_env.target_fill_state = tf state, done = eval_env.reset(use_gui=render), False action_list = [] rotation_list = [] volumes_list = [] while not done: action = policy.select_action(state) if render: eval_env.render() volumes_list.append(eval_env.particle_locations["glass"]) action_list.append(action[0]) bottle_radians = R.from_matrix(env.bottle.rotation).as_euler("zyx")[0] rotation_list.append((bottle_radians/math.pi)*180) state, reward, done, _ = eval_env.step(action) action_lists.append(action_list) rotation_lists.append(rotation_list) volumes_lists.append(volumes_list) with open(save_path,"wb") as f: pickle.dump({"targ_fills":targ_fills, "actions":action_lists, "rotations":rotation_lists, "volumes":volumes_lists},f) def eval_1d(policy, eval_env, seed, basepath="plots/test", eval_episodes=10, to_eval="tsp", N=5, render=False, load=None): os.makedirs(basepath,exist_ok=True) name_map = {"tsp":"Time Step Punish", "spill":"Spill Punish", "targ":"Target fill level (ml)"} if load is None: policy.critic.eval() policy.actor.eval() eval_env.seed(seed + 100) eval_env.fixed_tsp = True eval_env.fixed_spill = True eval_env.fixed_target_fill = True eval_env.target_fill_state = eval_env.max_in_glass eval_env.time_step_punish = 1 eval_env.spill_punish = 25 all_q_val_lists = [] b_list = [] all_reward_lists = [] max_angle_list = [] all_action_list = [] ev_list = [] spill_list = [] glass_list = [] print("Evaluating") for i in trange(eval_episodes): state, done = eval_env.reset(use_gui=render), False if to_eval == "tsp": tsp = (eval_env.time_step_punish_range[0]+(eval_env.time_step_punish_range[1] - eval_env.time_step_punish_range[0])/(eval_episodes-1) * i) ev_list.append(tsp) eval_env.time_step_punish = tsp elif to_eval == "spill": spill_punish = (eval_env.spill_range[0]+(eval_env.spill_range[1] - eval_env.spill_range[0])/(eval_episodes-1) * i) eval_env.spill_punish = spill_punish ev_list.append(spill_punish) elif to_eval == "targ": target_fill = (eval_env.target_fill_range[0]+(eval_env.target_fill_range[1] - eval_env.target_fill_range[0])/(eval_episodes-1) * i) eval_env.target_fill_state = target_fill print(target_fill) ev_list.append(target_fill) b = 0 reward_list = [] q_val_list = [] action_list = [] max_angle = 0 while not done: b+=1 action = policy.select_action(state) action_list.append(action) angle = state[0][0] if type(state)==tuple else state[0] max_angle = max(angle,max_angle) q_val_list.append(evalstuff(state,action,policy)) state, reward, done, _ = eval_env.step(action) if render: eval_env.render() reward_list.append(reward) all_q_val_lists.append(q_val_list) all_reward_lists.append(reward_list) all_action_list.append(action_list) spill_list.append(eval_env.particle_locations["spilled"]) glass_list.append(eval_env.particle_locations["glass"]) max_angle_list.append(max_angle) b_list.append(b) avg_reward = np.mean([np.sum(x) for x in all_reward_lists]) with open(os.path.join(basepath,"data.pkl"),"wb") as f: to_save = [all_q_val_lists, b_list, all_reward_lists, max_angle_list, all_action_list, ev_list, spill_list, glass_list, avg_reward] pickle.dump(to_save,f) else: with open(os.path.join(basepath,"data.pkl"),"rb") as f: all_q_val_lists, b_list, all_reward_lists, max_angle_list, all_action_list, ev_list, spill_list, glass_list, avg_reward = pickle.load(f) for i in range(len(max_angle_list)): radians = max_angle_list[i]*(math.pi-env.min_rotation)+env.min_rotation degrees = (radians*180)/math.pi max_angle_list[i] = degrees ev_list = np.array(ev_list) print(linregress(ev_list[ev_list>=100],np.array(b_list)[ev_list>=100])) #print(linregress(ev_list[ev_list>=0],np.array(max_angle_list)[ev_list>=0])) if to_eval=="targ": dev_list = (np.array(glass_list)-np.array(ev_list)) #percent_list = (np.array(glass_list)-np.array(ev_list))/np.array(ev_list) #percent_list*=100 #print(linregress(ev_list[ev_list>=340],np.abs(dev_list[ev_list>=340]))) plot_mean(ev_list,dev_list,name_map[to_eval],"Deviation from target fill level (ml)","Deviation", "Deviation from target fill level",os.path.join(basepath,f"{to_eval}_deviation.svg"),sigma=N) plot_mean(ev_list,np.abs(dev_list),name_map[to_eval],"Absolute deviation from target fill level (ml)","Deviation", "Absolute deviation from target fill level",os.path.join(basepath,f"{to_eval}_abs_deviation.svg"),sigma=N) plot_mean(ev_list,b_list,name_map[to_eval],"Episode length","Episode length", "Episode lengths",os.path.join(basepath,f"{to_eval}_episode_length.svg"),sigma=N) plot_mean(ev_list,max_angle_list,name_map[to_eval],"Degrees","Degrees", f"Maximum angle of inclination",os.path.join(basepath,f"{to_eval}_angle.svg"),sigma=N) reward_sum = [np.sum(x) for x in all_reward_lists] plot_mean(ev_list,reward_sum,name_map[to_eval],"Return","total return","total return", os.path.join(basepath,f"{to_eval}_return.svg"),sigma=N) plot_action(all_action_list,os.path.join(basepath,"action.svg")) plot_mean(ev_list,spill_list,name_map[to_eval],"Spilled","num particles spilled", "Particles Spilled",os.path.join(basepath,f"{to_eval}_spilled.svg"),sigma=N) plot_mean(ev_list,glass_list,name_map[to_eval],"particles in glass","num particles in glass", "Final fill state",os.path.join(basepath,f"{to_eval}_fill.svg"),sigma=N) plot_q_compare(all_reward_lists,all_q_val_lists,args.discount,os.path.join(basepath,"q_compare.svg")) print("---------------------------------------") print(f"Evaluation over {eval_episodes} episodes: {avg_reward:.3f}") print(f"Avg episode length {np.mean(b_list)}") print("---------------------------------------") eval_env.fixed_tsp = False eval_env.reset(use_gui=False) return avg_reward if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--policy", default="TD3_particles") # Policy name (TD3, DDPG or OurDDPG) parser.add_argument("--env", default="water_pouring:Pouring-mdp-v0") # OpenAI gym environment name parser.add_argument("--seed", default=0, type=int) # Sets Gym, PyTorch and Numpy seeds parser.add_argument("--start_timesteps", default=5e4, type=int) # Time steps initial random policy is used parser.add_argument("--eval_freq", default=1e2, type=int) # How often (time steps) we evaluate parser.add_argument("--max_timesteps", default=1e6, type=int) # Max time steps to run environment parser.add_argument("--expl_noise", default=0.1, type=float) # Std of Gaussian exploration noise parser.add_argument("--batch_size", default=256, type=int) # Batch size for both actor and critic parser.add_argument("--discount", default=0.99, type=float) # Discount factor parser.add_argument("--policy_uncertainty",default=0.3, type=float) # Std of env policy uncertainty parser.add_argument("--tau", default=0.005, type=float) # Target network update rate parser.add_argument("--policy_noise", default=0.2, type=float) # Noise added to target policy during critic update parser.add_argument("--noise_clip", default=0.5, type=float) # Range to clip target policy noise parser.add_argument("--policy_freq", default=2, type=int) # Frequency of delayed policy updates #parser.add_argument("--time_step_punish", default=0.1, type=float) parser.add_argument("--save_model", action="store_true") # Save model and optimizer parameters parser.add_argument("--load_model", default="") # Model load file name, "" doesn't load, "default" uses file_name parser.add_argument("--norm",type=str, default="layer") parser.add_argument("--render", action="store_true") parser.add_argument("--path",type=str, default="plots/test") parser.add_argument("--to_eval",type=str, default="tsp") parser.add_argument("--eval_episodes",type=int,default=100) parser.add_argument("--running_num",type=int, default=5) parser.add_argument("--load",type=str, default="") parser.add_argument("--load2",type=str, default="") parser.add_argument("--name1",type=str, default="default1") parser.add_argument("--name2",type=str, default="default2") parser.add_argument("--min_rot1",type=float, default=1.22) parser.add_argument("--min_rot2",type=float, default=1.22) parser.add_argument("--human_compare",action="store_true") parser.add_argument("--jerk_punish",type=float, default=0) parser.add_argument("--rot_vol_analysis",action="store_true") args = parser.parse_args() if args.load2!="": compare2(args.load,args.load2,args.name1,args.name2,args.min_rot1,args.min_rot2,basepath=args.path,sigma=args.running_num,to_eval=args.to_eval) exit() env_kwargs = { "policy_uncertainty":args.policy_uncertainty, "jerk_punish":args.jerk_punish } if args.human_compare: env_kwargs["scene_base"] = "scenes/smaller_scene.json" env = gym.make(args.env,**env_kwargs) if args.human_compare: env.max_in_glass = 215 env.target_fill_range = [114,209] print(env.observation_space,env.action_space) print("made Env") env.seed(args.seed) torch.manual_seed(args.seed)
np.random.seed(args.seed)
numpy.random.seed
import numpy as np import matplotlib.pyplot as plt from qibo.models import Circuit from qibo import gates import aux_functions as aux def rw_circuit(qubits, parameters, X=True): """Circuit that implements the amplitude distributor part of the option pricing algorithm. Args: qubits (int): number of qubits used for the unary basis. paramters (list): values to be introduces into the fSim gates for amplitude distribution. X (bool): whether or not the first X gate is executed. Returns: generator that yield the gates needed for the amplitude distributor circuit """ if qubits%2==0: mid1 = int(qubits/2) mid0 = int(mid1-1) if X: yield gates.X(mid1) yield gates.fSim(mid1, mid0, parameters[mid0]/2, 0) for i in range(mid0): yield gates.fSim(mid0-i, mid0-i-1, parameters[mid0-i-1]/2, 0) yield gates.fSim(mid1+i, mid1+i+1, parameters[mid1+i]/2, 0) else: mid = int((qubits-1)/2) if X: yield gates.X(mid) for i in range(mid): yield gates.fSim(mid-i, mid-i-1, parameters[mid-i-1]/2, 0) yield gates.fSim(mid+i, mid+i+1, parameters[mid+i]/2, 0) def rw_circuit_inv(qubits, parameters, X=True): """Circuit that implements the amplitude distributor part of the option pricing algorithm in reverse. Used in the amplitude estimation part of the algorithm. Args: qubits (int): number of qubits used for the unary basis. paramters (list): values to be introduces into the fSim gates for amplitude distribution. X (bool): whether or not the first X gate is executed. Returns: generator that yield the gates needed for the amplitude distributor circuit in reverse order. """ if qubits%2==0: mid1 = int(qubits/2) mid0 = int(mid1-1) for i in range(mid0 - 1, -1, -1): yield gates.fSim(mid0 - i, mid0 - i - 1, -parameters[mid0 - i - 1]/2, 0) yield gates.fSim(mid1 + i, mid1 + i + 1, -parameters[mid1 + i]/2, 0) yield gates.fSim(mid1, mid0, -parameters[mid0]/2, 0) if X: yield gates.X(mid1) else: mid = int((qubits-1)/2) for i in range(mid - 1, -1, -1): yield gates.fSim(mid + i, mid + i + 1, -parameters[mid + i] / 2, 0) yield gates.fSim(mid - i, mid - i - 1, -parameters[mid - i - 1] / 2, 0) if X: yield gates.X(mid) def create_qc(qubits): """Creation of the quantum circuit and registers where the circuit will be implemented. Args: qubits (int): number of qubits used for the unary basis. Returns: q (list): quantum register encoding the asset's price in the unary bases. ancilla (int): qubit that encodes the payoff of the options. circuit (Circuit): quantum circuit with enough allocated space for the algorithm to run. """ q = [i for i in range(qubits)] ancilla = qubits circuit = Circuit(qubits+1) return q, ancilla, circuit def rw_parameters(qubits, pdf): """Parameters that encode a target probability distribution into the unary basis Args: qubits (int): number of qubits used for the unary basis. pdf (list): known probability distribution function that wants to be reproduced. Returns: paramters (list): values to be introduces into the fSim gates for amplitude distribution. """ if qubits%2==0: mid = qubits // 2 else: mid = (qubits-1)//2 #Important to keep track of the centre last = 1 parameters = [] for i in range(mid-1): angle = 2 * np.arctan(np.sqrt(pdf[i]/(pdf[i+1] * last))) parameters.append(angle) last = (np.cos(angle/2))**2 #The last solution is needed to solve the next one angle = 2 * np.arcsin(np.sqrt(pdf[mid-1]/last)) parameters.append(angle) last = (np.cos(angle/2))**2 for i in range(mid, qubits-1): angle = 2 * np.arccos(np.sqrt(pdf[i]/last)) parameters.append(angle) last *= (np.sin(angle/2))**2 return parameters def measure_probability(q): """Measuring gates on the unary basis qubits to check the validity of the amplitude distributor. Args: q (list): quantum register encoding the asset's price in the unary bases. Returns: generator that yels the measuring gates to check the probability distribution. """ yield gates.M(*q, register_name='prob') #No measure on the ancilla qubit is necessary def extract_probability(qubits, counts, samples): """Measuring gates on the unary basis qubits to check the validity of the amplitude distributor. Args: qubits (int): number of qubits used for the unary basis. counts (dict): times each output has been measured. samples (int): number of samples for normalization. Returns: prob (list): normalized probabilities for the measured outcomes. """ form = '{0:0%sb}' % str(qubits) # qubits? prob = [] for i in reversed(range(qubits)): prob.append(counts.get(form.format(2**i), 0)/samples) return prob def get_pdf(qubits, S0, sig, r, T): """Get a pdf to input into the quantum register from a target probability distribution. Args: qubits (int): number of qubits used for the unary basis. S0 (real): initial asset price. sig (real): market volatility. r (real): market rate. T (real): maturity time. Returns: values (np.array): price values associated to the unary basis. pdf (np.array): probability distribution for the asset's price evolution. """ mu = (r - 0.5 * sig ** 2) * T + np.log(S0) mean = np.exp(mu + 0.5 * T * sig ** 2) variance = (np.exp(T * sig ** 2) - 1) * np.exp(2 * mu + T * sig ** 2) values = np.linspace(max(mean - 3 * np.sqrt(variance), 0), mean + 3 * np.sqrt(variance), qubits) pdf = aux.log_normal(values, mu, sig * np.sqrt(T)) return values, pdf def load_quantum_sim(qu, S0, sig, r, T): """Get a pdf to input into the quantum register from a target probability distribution. Args: qubits (int): number of qubits used for the unary basis. S0 (real): initial asset price. sig (real): market volatility. r (real): market rate. T (real): maturity time. Returns: circuit (Circuit): quantum circuit with the target probability encoded in the unary basis values (np.array): price values associated to the unary basis. pdf (np.array): probability distribution for the asset's price evolution. """ (values, pdf) = get_pdf(qu, S0, sig, r, T) q, ancilla, circuit = create_qc(qu) lognormal_parameters = rw_parameters(qu, pdf) # Solve for the parameters needed to create the target lognormal distribution circuit.add(rw_circuit(qu, lognormal_parameters)) # Build the probaility loading circuit with the adjusted parameters circuit.add(measure_probability(q)) #Circuit to test the precision of the probability loading algorithm return circuit, (values, pdf) def run_quantum_sim(qubits, circuit, shots): """Execute the quantum circuit and extract the probability of measuring each state of the unary basis Args: qubits (int): number of qubits used for the unary basis. circuit (Circuit): quantum circuit with the target probability encoded in the unary basis. shots (int): number of samples to extract from the circuit. Returns: prob_sim (list): normalized probability of each possible output in the unary basis. """ result = circuit(nshots=shots) frequencies = result.frequencies(binary=True, registers=False) prob_sim = extract_probability(qubits, frequencies, shots) return prob_sim def payoff_circuit(qubits, ancilla, K, S): """Quantum circuit that encodes the expected payoff into the probability of measuring an acilla qubit. Args: qubits (int): number of qubits used for the unary basis. ancilla (int): qubit that encodes the payoff of the options. K (real): strike price. S (np.array): equivalent asset price for each element of the unary basis. Returns: generator that yields the gates required to encode the payoff into an ancillary qubit. """ for i in range(qubits): #Determine the first qubit's price that qK = i #surpasses the strike price if K<S[i]: break for i in range(qK, qubits): #Control-RY rotations controled by states angle = 2 * np.arcsin(np.sqrt((S[i]-K)/(S[qubits-1]-K))) #with higher value than the strike yield gates.RY(ancilla, angle).controlled_by(i) #targeting the ancilla qubit def payoff_circuit_inv(qubits, ancilla, K, S): """Quantum circuit that encodes the expected payoff into the probability of measuring an acilla qubit in reverse. Circuit used in the amplitude estimation part of the algorithm. Args: qubits (int): number of qubits used for the unary basis. ancilla (int): qubit that encodes the payoff of the options. K (real): strike price. S (np.array): equivalent asset price for each element of the unary basis. Returns: generator that yields the gates required for the inverse of the circuit used to encode the payoff into an ancillary qubit. """ for i in range(qubits): #Determine the first qubit's price that qK = i #surpasses the strike price if K<S[i]: break for i in range(qK, qubits): #Control-RY rotations controled by states angle = 2 * np.arcsin(np.sqrt((S[i]-K)/(S[qubits-1]-K))) #with higher value than the strike yield gates.RY(ancilla, -angle).controlled_by(i) #targeting the ancilla qubit def measure_payoff(q, ancilla): """Measurement gates needed to measure the expected payoff and perform post-selection Args: q (list): quantum register encoding the asset's price in the unary bases. ancilla (int): qubit that encodes the payoff of the options. Returns: generator that yields the measurement gates to recover the expected payoff. """ yield gates.M(*(q+[ancilla]), register_name='payoff') def load_payoff_quantum_sim(qubits, S0, sig, r, T, K): """Measurement gates needed to measure the expected payoff and perform post-selection Args: qubits (int): number of qubits used for the unary basis. S0 (real): initial asset price. sig (real): market volatility. r (real): market rate. T (real): maturity time. K (real): strike price. Returns: circuit (Circuit): full quantum circuit with the amplitude distributor and payoff estimator. S (np.array): equivalent asset price for each element of the unary basis. """ mu = (r - 0.5 * sig ** 2) * T + np.log(S0) mean = np.exp(mu + 0.5 * T * sig ** 2) variance = (np.exp(T * sig ** 2) - 1) * np.exp(2 * mu + T * sig ** 2) S = np.linspace(max(mean - 3 * np.sqrt(variance), 0), mean + 3 * np.sqrt(variance), qubits) ln = aux.log_normal(S, mu, sig * np.sqrt(T)) q, ancilla, circuit = create_qc(qubits) lognormal_parameters = rw_parameters(qubits, ln) circuit.add(rw_circuit(qubits, lognormal_parameters)) circuit.add(payoff_circuit(qubits, ancilla, K, S)) circuit.add(measure_payoff(q, ancilla)) return circuit, S def run_payoff_quantum_sim(qubits, circuit, shots, S, K): """Exacute the circuit that estimates the payoff of the option in the unary representation. Includes post-selection scheme. Args: qubits (int): number of qubits used for the unary basis. circuit (Circuit): full quantum circuit with the amplitude distributor and payoff estimator. shots (int): number of shots to be performed S (np.array): equivalent asset price for each element of the unary basis. K (real): strike price. Returns: qu_payoff_sim (real): estimated payoff from the probability of the ancillary qubit. """ job_payoff_sim = circuit(nshots=shots) counts_payoff_sim = job_payoff_sim.frequencies(binary=True, registers=False) ones=0 zeroes=0 for key in counts_payoff_sim.keys(): # Post-selection unary = 0 for i in range(0,qubits): unary+=int(key[i]) if unary==1: if int(key[qubits])==0: zeroes+=counts_payoff_sim.get(key) else: ones+=counts_payoff_sim.get(key) qu_payoff_sim = ones * (S[qubits - 1]-K) / (ones + zeroes) return qu_payoff_sim def diff_qu_cl(qu_payoff_sim, cl_payoff): """Calculation of the error from the simulated results and the classical expeted value. Args: qu_payoff_sim (real): estimated payoff from the probability of the ancillary qubit. cl_payoff (real): exact value computed classically. Returns: error (real): relative error between the simulated and exact result, in percentage. """ error = (100 * np.abs(qu_payoff_sim - cl_payoff) / cl_payoff) return error def diffusion_operator(qubits): """Quantum circuit that performs the diffusion operator, part of the amplitude estimation algorithm. Args: qubits (int): number of qubits used for the unary basis. Returns: generator that yield the necessary gates to perform the diffusion operator. """ if qubits%2==0: mid = int(qubits/2) else: mid = int((qubits-1)/2) #The random walk starts from the middle qubit yield gates.X(qubits) yield gates.H(qubits) yield gates.CNOT(mid, qubits) yield gates.H(qubits) yield gates.X(qubits) def oracle_operator(qubits): """Quantum circuit that performs the oracle operator, part of the amplitude estimation algorithm. Args: qubits (int): number of qubits used for the unary basis. Returns: generator that yield the necessary gates to perform the oracke operator. """ yield gates.Z(qubits) def Q(qubits, ancilla, K, S, lognormal_parameters): """Quantum circuit that performs the main operator for the amplitude estimation algorithm. Args: qubits (int): number of qubits used for the unary basis. ancilla (int): qubit that encodes the payoff of the options. K (real): strike price. S (np.array): equivalent asset price for each element of the unary basis. lognormal_parameters (list): values to be introduces into the fSim gates for amplitude distribution. Returns: generator that yield the necessary gates to perform the main operator for AE. """ yield oracle_operator(qubits) yield payoff_circuit_inv(qubits, ancilla, K, S) yield rw_circuit_inv(qubits, lognormal_parameters, X=False) yield diffusion_operator(qubits) yield rw_circuit(qubits, lognormal_parameters, X=False) yield payoff_circuit(qubits, ancilla, K, S) def load_Q_operator(qubits, iterations, S0, sig, r, T, K): """Quantum circuit that performs the main operator for the amplitude estimation algorithm. Args: qubits (int): number of qubits used for the unary basis. iterations (int): number of consecutive implementations of operator Q. S0 (real): initial asset price. sig (real): market volatility. r (real): market rate. T (real): maturity time. K (real): strike price. Returns: circuit (Circuit): quantum circuit that performs the m=iterations step of the iterative amplitude estimation algorithm. """ iterations = int(iterations) mu = (r - 0.5 * sig ** 2) * T + np.log(S0) mean = np.exp(mu + 0.5 * T * sig ** 2) variance = (np.exp(T * sig ** 2) - 1) * np.exp(2 * mu + T * sig ** 2) S = np.linspace(max(mean - 3 * np.sqrt(variance), 0), mean + 3 * np.sqrt(variance), qubits) ln = aux.log_normal(S, mu, sig * np.sqrt(T)) lognormal_parameters = rw_parameters(qubits,ln) q, ancilla, circuit = create_qc(qubits) circuit.add(rw_circuit(qubits, lognormal_parameters)) circuit.add(payoff_circuit(qubits, ancilla, K, S)) for i in range(iterations): circuit.add(Q(qubits, ancilla, K, S, lognormal_parameters)) circuit.add(measure_payoff(q, ancilla)) return circuit def run_Q_operator(qubits, circuit, shots): """Execution of the quantum circuit for a step in the used amplitude estimation algorithm. Args: qubits (int): number of qubits used for the unary basis. circuit (Circuit): quantum circuit that performs the m=iterations step of the iterative amplitude estimation algorithm. shots (int): number of shots to be taken in intermediate steps of the AE algorithm. Returns: ones (int): number of measured ones after post-selection. zeroes (int): number of measured zeroes after post-selection. """ job_payoff_sim = circuit(nshots=shots) counts_payoff_sim = job_payoff_sim.frequencies(binary=True, registers=False) ones = 0 zeroes = 0 for key in counts_payoff_sim.keys(): unary = 0 for i in range(0, qubits): unary += int(key[i]) if unary == 1: if int(key[qubits]) == 0: zeroes += counts_payoff_sim.get(key) else: ones += counts_payoff_sim.get(key) return ones, zeroes def paint_prob_distribution(bins, prob_sim, S0, sig, r, T): """Funtion that returns a histogram with the probabilities of the outcome measures and compares it with the target probability distribution. Args: bins (int): number of bins of precision. prob_sim (list): probabilities from measuring the quantum circuit. S0 (real): initial asset price. sig (real): market volatility. r (real): market rate. T (real): maturity time. Returns: image of the probability histogram in a .png file. """ from scipy.integrate import trapz mu = (r - 0.5 * sig ** 2) * T + np.log(S0) mean = np.exp(mu + 0.5 * T * sig ** 2) variance = (np.exp(T * sig ** 2) - 1) * np.exp(2 * mu + T * sig ** 2) S = np.linspace(max(mean - 3 * np.sqrt(variance), 0), mean + 3 * np.sqrt(variance),bins) width = (S[1] - S[0]) / 1.2 fig, ax = plt.subplots() ax.bar(S, prob_sim, width, label='Quantum', alpha=0.8) x = np.linspace(max(mean - 3 * np.sqrt(variance), 0), mean + 3 * np.sqrt(variance), bins * 100) y = aux.log_normal(x, mu, sig * np.sqrt(T)) y = y * trapz(prob_sim, S) / trapz(y, x) ax.plot(x, y, label='PDF', color='black') plt.ylabel('Probability') plt.xlabel('Option price') plt.title('Option price distribution for {} qubits '.format(bins)) ax.legend() fig.tight_layout() fig.savefig('Probability_distribution.png') def paint_AE(a, a_conf, bins, M, data, shots=10000, alpha = 0.05): """Visualization of the results of applying amplitude estimation to the option pricing algorithm. Args: a (np.array): estimated values for the probability of measuring the ancilla. a_conf (np.array): errors on the estimation of the probability of measuring the ancilla. bins (int): number of bins of precision. M (int): total number of aplications of the Q operator. data (tuple): data necessary to characterize the probability distribution. shots (int): number of shots to be taken in intermediate steps of the AE algorithm. alpha (real): confidence interval. Returns: images of the results and uncertainties of performing amplitude estimation up to M times in .png format. """ S0, sig, r, T, K = data values, pdf = get_pdf(bins, S0, sig, r, T) a_un = np.sum(pdf[values >= K] * (values[values >= K] - K)) cl_payoff = aux.classical_payoff(S0, sig, r, T, K, samples=1000000) fig, ax = plt.subplots() un_data = a * (values[bins - 1] - K) un_conf = a_conf * (values[bins - 1] - K) ax.scatter(np.arange(M + 1), un_data, c='C0', marker='x', zorder=10, label='Measurements') ax.fill_between(np.arange(M + 1), un_data - un_conf, un_data + un_conf, color='C0', alpha=0.3) ax.plot([0, M], [cl_payoff, cl_payoff], c='black', ls='--', label='Cl. payoff') ax.plot([0, M], [a_un, a_un], c='blue', ls='--', label='Optimal approximation') ax.set(ylim=[0.15, 0.17]) ax.legend() fig.tight_layout() fig.savefig('Amplitude_Estimation_Results.png') from scipy.special import erfinv z = erfinv(1 - alpha / 2) fig, bx = plt.subplots() bx.scatter(np.arange(M + 1), un_conf, c='C0', marker='x', zorder=10, label='Measurements') a_max = (np.max(values) - K) bound_down = np.sqrt(un_data) * np.sqrt(a_max - un_data) * z / np.sqrt(shots) / np.cumsum( 1 + 2 * (
np.arange(M + 1)
numpy.arange
#!/usr/bin/env python # Copyright 2014-2020 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from pyscf import lib from pyscf import ao2mo from pyscf.cc.rintermediates import _get_vvvv # noqa from pyscf.cc.ccsd import BLKMIN # Ref: Gauss and Stanton, J. Chem. Phys. 103, 3561 (1995) Table III def make_tau(t2, t1, r1, fac=1, out=None): t1a, t1b = t1 r1a, r1b = r1 tau1aa = make_tau_aa(t2[0], t1a, r1a, fac, out) tau1bb = make_tau_aa(t2[2], t1b, r1b, fac, out) tau1ab = make_tau_ab(t2[1], t1, r1, fac, out) return tau1aa, tau1ab, tau1bb def make_tau_aa(t2aa, t1a, r1a, fac=1, out=None): tau1aa = np.einsum('ia,jb->ijab', t1a, r1a) tau1aa-= np.einsum('ia,jb->jiab', t1a, r1a) tau1aa = tau1aa - tau1aa.transpose(0,1,3,2) tau1aa *= fac * .5 tau1aa += t2aa return tau1aa def make_tau_ab(t2ab, t1, r1, fac=1, out=None): t1a, t1b = t1 r1a, r1b = r1 tau1ab = np.einsum('ia,jb->ijab', t1a, r1b) tau1ab+= np.einsum('ia,jb->ijab', r1a, t1b) tau1ab *= fac * .5 tau1ab += t2ab return tau1ab def Foo(t1, t2, eris): t1a, t1b = t1 t2aa, t2ab, t2bb = t2 nocca, noccb, nvira, nvirb = t2ab.shape eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) tilaa, tilab, tilbb = make_tau(t2, t1, t1, fac=0.5) Fooa = lib.einsum('inef,menf->mi', tilaa, eris_ovov) Fooa += lib.einsum('iNeF,meNF->mi', tilab, eris_ovOV) Foob = lib.einsum('inef,menf->mi', tilbb, eris_OVOV) Foob += lib.einsum('nIfE,nfME->MI', tilab, eris_ovOV) eris_ovoo = np.asarray(eris.ovoo) eris_OVOO = np.asarray(eris.OVOO) eris_OVoo = np.asarray(eris.OVoo) eris_ovOO = np.asarray(eris.ovOO) Fooa += np.einsum('ne,nemi->mi', t1a, eris_ovoo) Fooa -= np.einsum('ne,meni->mi', t1a, eris_ovoo) Fooa += np.einsum('NE,NEmi->mi', t1b, eris_OVoo) Foob += np.einsum('ne,nemi->mi', t1b, eris_OVOO) Foob -= np.einsum('ne,meni->mi', t1b, eris_OVOO) Foob += np.einsum('ne,neMI->MI', t1a, eris_ovOO) fooa = eris.focka[:nocca,:nocca] foob = eris.fockb[:noccb,:noccb] fova = eris.focka[:nocca,nocca:] fovb = eris.fockb[:noccb,noccb:] Fova, Fovb = Fov(t1, t2, eris) Fooa += fooa + 0.5*lib.einsum('me,ie->mi', Fova+fova, t1a) Foob += foob + 0.5*lib.einsum('me,ie->mi', Fovb+fovb, t1b) return Fooa, Foob def Fvv(t1, t2, eris): t1a, t1b = t1 t2aa, t2ab, t2bb = t2 nocca, noccb, nvira, nvirb = t2ab.shape Fvva = 0 Fvvb = 0 tauaa, tauab, taubb = make_tau(t2, t1, t1) #:eris_ovvv = lib.unpack_tril(np.asarray(eris.ovvv).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvira,nvira) #:ovvv = eris_ovvv - eris_ovvv.transpose(0,3,2,1) #:self.Fvva = np.einsum('mf,mfae->ae', t1a, ovvv) mem_now = lib.current_memory()[0] max_memory = max(0, lib.param.MAX_MEMORY - mem_now) blksize = min(nocca, max(BLKMIN, int(max_memory*1e6/8/(nvira**3*3)))) for p0,p1 in lib.prange(0, nocca, blksize): ovvv = eris.get_ovvv(slice(p0,p1)) # ovvv = eris.ovvv[p0:p1] ovvv = ovvv - ovvv.transpose(0,3,2,1) Fvva += np.einsum('mf,mfae->ae', t1a[p0:p1], ovvv) ovvv = None #:eris_OVVV = lib.unpack_tril(np.asarray(eris.OVVV).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvirb,nvirb) #:OVVV = eris_OVVV - eris_OVVV.transpose(0,3,2,1) #:self.Fvvb = np.einsum('mf,mfae->ae', t1b, OVVV) #:self.wOVVO = lib.einsum('jf,mebf->mbej', t1b, OVVV) #:self.wOVOO = 0.5 * lib.einsum('mebf,ijef->mbij', OVVV, taubb) blksize = min(noccb, max(BLKMIN, int(max_memory*1e6/8/(nvirb**3*3)))) for p0, p1 in lib.prange(0, noccb, blksize): OVVV = eris.get_OVVV(slice(p0,p1)) # OVVV = eris.OVVV[p0:p1] OVVV = OVVV - OVVV.transpose(0,3,2,1) Fvvb += np.einsum('mf,mfae->ae', t1b[p0:p1], OVVV) OVVV = None #:eris_ovVV = lib.unpack_tril(np.asarray(eris.ovVV).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvirb,nvirb) #:self.Fvvb += np.einsum('mf,mfAE->AE', t1a, eris_ovVV) #:self.woVvO = lib.einsum('JF,meBF->mBeJ', t1b, eris_ovVV) #:self.woVVo = lib.einsum('jf,mfBE->mBEj',-t1a, eris_ovVV) #:self.woVoO = 0.5 * lib.einsum('meBF,iJeF->mBiJ', eris_ovVV, tauab) #:self.woVoO += 0.5 * lib.einsum('mfBE,iJfE->mBiJ', eris_ovVV, tauab) blksize = min(nocca, max(BLKMIN, int(max_memory*1e6/8/(nvira*nvirb**2*3)))) for p0,p1 in lib.prange(0, nocca, blksize): ovVV = eris.get_ovVV(slice(p0,p1)) # ovVV = eris.ovVV[p0:p1] Fvvb += np.einsum('mf,mfAE->AE', t1a[p0:p1], ovVV) ovVV = None #:eris_OVvv = lib.unpack_tril(np.asarray(eris.OVvv).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvira,nvira) #:self.Fvva += np.einsum('MF,MFae->ae', t1b, eris_OVvv) #:self.wOvVo = lib.einsum('jf,MEbf->MbEj', t1a, eris_OVvv) #:self.wOvvO = lib.einsum('JF,MFbe->MbeJ',-t1b, eris_OVvv) #:self.wOvOo = 0.5 * lib.einsum('MEbf,jIfE->MbIj', eris_OVvv, tauab) #:self.wOvOo += 0.5 * lib.einsum('MFbe,jIeF->MbIj', eris_OVvv, tauab) blksize = min(noccb, max(BLKMIN, int(max_memory*1e6/8/(nvirb*nvira**2*3)))) for p0, p1 in lib.prange(0, noccb, blksize): OVvv = eris.get_OVvv(slice(p0,p1)) # OVvv = eris.OVvv[p0:p1] Fvva += np.einsum('MF,MFae->ae', t1b[p0:p1], OVvv) OVvv = None eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) tilaa, tilab, tilbb = make_tau(t2, t1, t1, fac=0.5) Fvva -= lib.einsum('mnaf,menf->ae', tilaa, eris_ovov) Fvva -= lib.einsum('mNaF,meNF->ae', tilab, eris_ovOV) Fvvb -= lib.einsum('mnaf,menf->ae', tilbb, eris_OVOV) Fvvb -= lib.einsum('nMfA,nfME->AE', tilab, eris_ovOV) fvva = eris.focka[nocca:,nocca:] fvvb = eris.fockb[noccb:,noccb:] fova = eris.focka[:nocca,nocca:] fovb = eris.fockb[:noccb,noccb:] Fova, Fovb = Fov(t1, t2, eris) Fvva += fvva - 0.5*lib.einsum('me,ma->ae', Fova+fova, t1a) Fvvb += fvvb - 0.5*lib.einsum('me,ma->ae', Fovb+fovb, t1b) return Fvva, Fvvb def Fov(t1, t2, eris): t1a, t1b = t1 t2aa, t2ab, t2bb = t2 nocca, noccb, nvira, nvirb = t2ab.shape fova = eris.focka[:nocca,nocca:] fovb = eris.fockb[:noccb,noccb:] eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) ovov = eris_ovov - eris_ovov.transpose(0,3,2,1) OVOV = eris_OVOV - eris_OVOV.transpose(0,3,2,1) Fova = np.einsum('nf,menf->me', t1a, ovov) Fova+= np.einsum('NF,meNF->me', t1b, eris_ovOV) Fova += fova Fovb = np.einsum('nf,menf->me', t1b, OVOV) Fovb+= np.einsum('nf,nfME->ME', t1a, eris_ovOV) Fovb += fovb return Fova, Fovb def Woooo(t1, t2, eris): t1a, t1b = t1 t2aa, t2ab, t2bb = t2 eris_ovoo = np.asarray(eris.ovoo) eris_OVOO = np.asarray(eris.OVOO) eris_OVoo = np.asarray(eris.OVoo) eris_ovOO = np.asarray(eris.ovOO) ovoo = eris_ovoo - eris_ovoo.transpose(2,1,0,3) OVOO = eris_OVOO - eris_OVOO.transpose(2,1,0,3) woooo = lib.einsum('je,nemi->minj', t1a, ovoo) wOOOO = lib.einsum('je,nemi->minj', t1b, OVOO) wooOO = lib.einsum('JE,NEmi->miNJ', t1b, eris_OVoo) woOOo = lib.einsum('je,meNI->mINj',-t1a, eris_ovOO) woooo += np.asarray(eris.oooo) wOOOO += np.asarray(eris.OOOO) wooOO += np.asarray(eris.ooOO) woooo = woooo - woooo.transpose(0,3,2,1) wOOOO = wOOOO - wOOOO.transpose(0,3,2,1) wooOO = wooOO - woOOo.transpose(0,3,2,1) eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) ovov = eris_ovov - eris_ovov.transpose(0,3,2,1) OVOV = eris_OVOV - eris_OVOV.transpose(0,3,2,1) tauaa, tauab, taubb = make_tau(t2, t1, t1) woooo += 0.5*lib.einsum('ijef,menf->minj', tauaa, ovov) wOOOO += 0.5*lib.einsum('ijef,menf->minj', taubb, OVOV) wooOO += lib.einsum('iJeF,meNF->miNJ', tauab, eris_ovOV) wOOoo = None return woooo, wooOO, wOOoo, wOOOO def Wooov(t1, t2, eris): t1a, t1b = t1 t2aa, t2ab, t2bb = t2 dtype = np.result_type(t1a, t1b, t2aa, t2ab, t2bb) eris_ovoo = np.asarray(eris.ovoo) eris_OVOO = np.asarray(eris.OVOO) eris_OVoo = np.asarray(eris.OVoo) eris_ovOO = np.asarray(eris.ovOO) ovoo = eris_ovoo - eris_ovoo.transpose(2,1,0,3) OVOO = eris_OVOO - eris_OVOO.transpose(2,1,0,3) wooov = np.array( ovoo.transpose(2,3,0,1), dtype=dtype) wOOOV = np.array( OVOO.transpose(2,3,0,1), dtype=dtype) wooOV = np.array(eris_OVoo.transpose(2,3,0,1), dtype=dtype) wOOov = np.array(eris_ovOO.transpose(2,3,0,1), dtype=dtype) eris_ovoo = eris_OVOO = eris_ovOO = eris_OVoo = None eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) ovov = eris_ovov - eris_ovov.transpose(0,3,2,1) OVOV = eris_OVOV - eris_OVOV.transpose(0,3,2,1) wooov += lib.einsum('if,mfne->mine', t1a, ovov) wOOOV += lib.einsum('if,mfne->mine', t1b, OVOV) wooOV += lib.einsum('if,mfNE->miNE', t1a, eris_ovOV) wOOov += lib.einsum('IF,neMF->MIne', t1b, eris_ovOV) return wooov, wooOV, wOOov, wOOOV def Woovo(t1, t2, eris): t1a, t1b = t1 t2aa, t2ab, t2bb = t2 nocca, noccb, nvira, nvirb = t2ab.shape dtype = np.result_type(t1a, t1b, t2aa, t2ab, t2bb) wovoo = np.zeros((nocca,nvira,nocca,nocca), dtype=dtype) wOVOO = np.zeros((noccb,nvirb,noccb,noccb), dtype=dtype) woVoO = np.zeros((nocca,nvirb,nocca,noccb), dtype=dtype) wOvOo = np.zeros((noccb,nvira,noccb,nocca), dtype=dtype) tauaa, tauab, taubb = make_tau(t2, t1, t1) #:eris_ovvv = lib.unpack_tril(np.asarray(eris.ovvv).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvira,nvira) #:ovvv = eris_ovvv - eris_ovvv.transpose(0,3,2,1) #:self.wovoo = 0.5 * lib.einsum('mebf,ijef->mbij', eris_ovvv, tauaa) #:self.wovoo -= 0.5 * lib.einsum('mfbe,ijef->mbij', eris_ovvv, tauaa) mem_now = lib.current_memory()[0] max_memory = max(0, lib.param.MAX_MEMORY - mem_now) blksize = min(nocca, max(BLKMIN, int(max_memory*1e6/8/(nvira**3*3)))) for p0,p1 in lib.prange(0, nocca, blksize): ovvv = eris.get_ovvv(slice(p0,p1)) # ovvv = eris.ovvv[p0:p1] ovvv = ovvv - ovvv.transpose(0,3,2,1) wovoo[p0:p1] = 0.5 * lib.einsum('mebf,ijef->mbij', ovvv, tauaa) ovvv = None #:eris_OVVV = lib.unpack_tril(np.asarray(eris.OVVV).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvirb,nvirb) #:OVVV = eris_OVVV - eris_OVVV.transpose(0,3,2,1) #:self.wOVOO = 0.5 * lib.einsum('mebf,ijef->mbij', OVVV, taubb) blksize = min(noccb, max(BLKMIN, int(max_memory*1e6/8/(nvirb**3*3)))) for p0, p1 in lib.prange(0, noccb, blksize): OVVV = eris.get_OVVV(slice(p0,p1)) # OVVV = eris.OVVV[p0:p1] OVVV = OVVV - OVVV.transpose(0,3,2,1) wOVOO[p0:p1] = 0.5 * lib.einsum('mebf,ijef->mbij', OVVV, taubb) OVVV = None #:eris_ovVV = lib.unpack_tril(np.asarray(eris.ovVV).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvirb,nvirb) #:self.Fvvb += np.einsum('mf,mfAE->AE', t1a, eris_ovVV) #:self.woVvO = lib.einsum('JF,meBF->mBeJ', t1b, eris_ovVV) #:self.woVVo = lib.einsum('jf,mfBE->mBEj',-t1a, eris_ovVV) #:self.woVoO = 0.5 * lib.einsum('meBF,iJeF->mBiJ', eris_ovVV, tauab) #:self.woVoO += 0.5 * lib.einsum('mfBE,iJfE->mBiJ', eris_ovVV, tauab) blksize = min(nocca, max(BLKMIN, int(max_memory*1e6/8/(nvira*nvirb**2*3)))) for p0,p1 in lib.prange(0, nocca, blksize): ovVV = eris.get_ovVV(slice(p0,p1)) # ovVV = eris.ovVV[p0:p1] woVoO[p0:p1] = 0.5 * lib.einsum('meBF,iJeF->mBiJ', ovVV, tauab) woVoO[p0:p1]+= 0.5 * lib.einsum('mfBE,iJfE->mBiJ', ovVV, tauab) ovVV = None #:eris_OVvv = lib.unpack_tril(np.asarray(eris.OVvv).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvira,nvira) #:self.Fvva += np.einsum('MF,MFae->ae', t1b, eris_OVvv) #:self.wOvVo = lib.einsum('jf,MEbf->MbEj', t1a, eris_OVvv) #:self.wOvvO = lib.einsum('JF,MFbe->MbeJ',-t1b, eris_OVvv) #:self.wOvOo = 0.5 * lib.einsum('MEbf,jIfE->MbIj', eris_OVvv, tauab) #:self.wOvOo += 0.5 * lib.einsum('MFbe,jIeF->MbIj', eris_OVvv, tauab) blksize = min(noccb, max(BLKMIN, int(max_memory*1e6/8/(nvirb*nvira**2*3)))) for p0, p1 in lib.prange(0, noccb, blksize): OVvv = eris.get_OVvv(slice(p0,p1)) # OVvv = eris.OVvv[p0:p1] wOvOo[p0:p1] = 0.5 * lib.einsum('MEbf,jIfE->MbIj', OVvv, tauab) wOvOo[p0:p1]+= 0.5 * lib.einsum('MFbe,jIeF->MbIj', OVvv, tauab) OVvv = None eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) ovov = eris_ovov - eris_ovov.transpose(0,3,2,1) OVOV = eris_OVOV - eris_OVOV.transpose(0,3,2,1) tilaa, tilab, tilbb = make_tau(t2, t1, t1, fac=0.5) eris_ovoo = np.asarray(eris.ovoo) eris_OVOO = np.asarray(eris.OVOO) eris_OVoo = np.asarray(eris.OVoo) eris_ovOO = np.asarray(eris.ovOO) ovoo = eris_ovoo - eris_ovoo.transpose(2,1,0,3) OVOO = eris_OVOO - eris_OVOO.transpose(2,1,0,3) tmpaa = lib.einsum('nemi,jnbe->mbij', ovoo, t2aa) tmpaa+= lib.einsum('NEmi,jNbE->mbij', eris_OVoo, t2ab) tmpbb = lib.einsum('nemi,jnbe->mbij', OVOO, t2bb) tmpbb+= lib.einsum('neMI,nJeB->MBIJ', eris_ovOO, t2ab) woVoO += lib.einsum('nemi,nJeB->mBiJ', ovoo, t2ab) woVoO += lib.einsum('NEmi,JNBE->mBiJ', eris_OVoo, t2bb) woVoO -= lib.einsum('meNI,jNeB->mBjI', eris_ovOO, t2ab) wOvOo += lib.einsum('NEMI,jNbE->MbIj', OVOO, t2ab) wOvOo += lib.einsum('neMI,jnbe->MbIj', eris_ovOO, t2aa) wOvOo -= lib.einsum('MEni,nJbE->MbJi', eris_OVoo, t2ab) wovoo += tmpaa - tmpaa.transpose(0,1,3,2) wOVOO += tmpbb - tmpbb.transpose(0,1,3,2) tmp1aa = lib.einsum('njbf,menf->mbej', t2aa, ovov) tmp1aa-= lib.einsum('jNbF,meNF->mbej', t2ab, eris_ovOV) tmp1bb = lib.einsum('njbf,menf->mbej', t2bb, OVOV) tmp1bb-= lib.einsum('nJfB,nfME->MBEJ', t2ab, eris_ovOV) tmp1ab = lib.einsum('NJBF,meNF->mBeJ', t2bb, eris_ovOV) tmp1ab-= lib.einsum('nJfB,menf->mBeJ', t2ab, ovov) tmp1ba = lib.einsum('njbf,nfME->MbEj', t2aa, eris_ovOV) tmp1ba-= lib.einsum('jNbF,MENF->MbEj', t2ab, OVOV) tmp1abba =-lib.einsum('jNfB,mfNE->mBEj', t2ab, eris_ovOV) tmp1baab =-lib.einsum('nJbF,neMF->MbeJ', t2ab, eris_ovOV) tmpaa = lib.einsum('ie,mbej->mbij', t1a, tmp1aa) tmpbb = lib.einsum('ie,mbej->mbij', t1b, tmp1bb) tmpab = lib.einsum('ie,mBeJ->mBiJ', t1a, tmp1ab) tmpab-= lib.einsum('IE,mBEj->mBjI', t1b, tmp1abba) tmpba = lib.einsum('IE,MbEj->MbIj', t1b, tmp1ba) tmpba-= lib.einsum('ie,MbeJ->MbJi', t1a, tmp1baab) wovoo -= tmpaa - tmpaa.transpose(0,1,3,2) wOVOO -= tmpbb - tmpbb.transpose(0,1,3,2) woVoO -= tmpab wOvOo -= tmpba eris_ovov = eris_OVOV = eris_ovOV = None eris_ovoo = np.asarray(eris.ovoo) eris_OVOO = np.asarray(eris.OVOO) eris_ovOO = np.asarray(eris.ovOO) eris_OVoo = np.asarray(eris.OVoo) wovoo += eris_ovoo.transpose(3,1,2,0) - eris_ovoo.transpose(2,1,0,3) wOVOO += eris_OVOO.transpose(3,1,2,0) - eris_OVOO.transpose(2,1,0,3) woVoO += eris_OVoo.transpose(3,1,2,0) wOvOo += eris_ovOO.transpose(3,1,2,0) eris_ovoo = eris_OVOO = eris_ovOO = eris_OVoo = None eris_ovvo = np.asarray(eris.ovvo) eris_OVVO = np.asarray(eris.OVVO) eris_OVvo =
np.asarray(eris.OVvo)
numpy.asarray
"""Analysis tab""" from sample.widgets import responsive as tk, pyplot, utils, audio, logging from sample import plots from tkinter import messagebox, filedialog import numpy as np import json import os class AnalysisTab(utils.DataOnRootMixin, tk.Frame): """Tab for SAMPLE analysis Args: pad_top_w (float): Padding for top axes width (as a fraction of the whole figure) pad_top_h (float): Padding for top axes height (as a fraction of the whole figure) pad_bottom_w (float): Padding for bottom axis width (as a fraction of the whole figure) pad_bottom_h (float): Padding for bottom axis height (as a fraction of the whole figure) args: Positional arguments for :class:`tkinter.ttk.Frame` kwargs: Keyword arguments for :class:`tkinter.ttk.Frame`""" def __init__( self, *args, pad_top_w: float = 0.09, pad_top_wm: float = 0.02, pad_top_h: float = 0.02, pad_bottom_w: float = 0.05, pad_bottom_h: float = 0.05, **kwargs ): super().__init__(*args, **kwargs) self.filedialog_dir_save = None self.responsive(1, 1) # --- Pyplot widgets ----------------------------------------------------- self.plt = pyplot.PyplotFrame(self) self.plt.grid(row=0) top_width = 0.5 - pad_top_w - 0.5 * pad_top_wm top_height = 0.5 - 2 * pad_top_h self.ax = ( self.plt.fig.add_axes(( pad_top_w, 0.5 + pad_top_h, top_width, top_height, )), self.plt.fig.add_axes(( 0.50 + pad_top_wm / 2, 0.50 + pad_top_h, top_width, top_height, )), self.plt.fig.add_axes(( pad_bottom_w, pad_bottom_h, 1 - 2 * pad_bottom_w, 0.5 - 2 * pad_bottom_h, )), ) fc = utils.root_color(self, "TLabel", "background") if fc is not None: self.plt.fig.set_facecolor(fc) for ax in self.ax: ax.set_frame_on(False) ax.set_xticks(()) ax.set_yticks(()) # ------------------------------------------------------------------------ self.progressbar = tk.Progressbar(self, maximum=1, value=0) self.progressbar.grid(row=1) self.bottom_row = tk.Frame(self) self.bottom_row.grid(row=2) self.bottom_row.responsive(1, 4) # Analysis button self.analysis_button = tk.Button(self.bottom_row, text="Analyze") self.analysis_button.bind("<Button-1>", self.analysis_cbk) self.analysis_button.grid(column=0, row=0) # Audio play buttons self._tmp_audio = None self.play_button_o = tk.Button(self.bottom_row, text="Play Original") self.play_button_o.grid(column=1, row=0) self.play_button_o.bind("<Button-1>", self.play_cbk(True)) self.play_button_r = tk.Button(self.bottom_row, text="Play Resynthesis") self.play_button_r.grid(column=2, row=0) self.play_button_r.bind("<Button-1>", self.play_cbk(False)) # Export button self.export_button = tk.Button(self.bottom_row, text="Export") self.export_button.bind("<Button-1>", self.export_cbk) self.export_button.grid(column=3, row=0) def update_plot(self): """Update analysis and resynthesis figure""" for ax in self.ax: ax.clear() m = self.sample_object.sinusoidal_model stft = np.array([mx for mx, _ in m.intermediate_["stft"]]).T if m.reverse: stft = np.fliplr(stft) tmax = len(m.intermediate_["stft"]) * m.h / m.fs plots.sine_tracking_2d(m, ax=self.ax) if tmax > 0: xlim = (0, tmax) else: xlim = self.ax[0].get_xlim() ylim = self.ax[0].get_ylim() self.ax[0].imshow( stft, cmap="Greys", origin="lower", aspect="auto", extent=(*xlim, 0, m.fs/2), ) self.ax[0].set_ylim(ylim) self.ax[0].set_xlim(xlim) self.ax[0].grid(False) self.ax[0].set_title("") self.ax[0].set_ylabel("frequency (Hz)") self.ax[1].set_title("") self.ax[1].set_ylabel("magnitude (dB)") self.ax[1].yaxis.tick_right() self.ax[1].yaxis.set_label_position("right") x = self.audio_x[self.audio_trim_start:self.audio_trim_stop] t =
np.arange(x.size)
numpy.arange
#!/usr/bin/env python # coding: utf-8 # Import libraries import numpy as np import os , csv from os import listdir import matplotlib.pyplot as plt import pandas as pd from scipy.sparse import csr_matrix from scipy.interpolate import interp1d from sklearn.decomposition import TruncatedSVD # Load desired data from 1 session 1 animal # Note that there are 340 trials in 1 session # (For more info https://github.com/nsteinme/steinmetz-et-al-2019/wiki/data-files) ''' data_path = '/Users/xinweichia/Documents/connected_lizards/Steinmetz_dataset/Richards_2017-10-31' trials_intervals = np.load(data_path+'/'+'trials.intervals.npy') # in seconds spike_times = np.load(data_path+'/'+'spikes.times.npy') * 1000 # Unbinned spike times in ms trials_gocue_times = np.load(data_path+'/'+'trials.goCue_times.npy') trials_response_choice = np.load(data_path+'/'+'trials.response_choice.npy') # -1 left, 1, right, 0 no response spontaneous_intervals = np.load(data_path+'/'+'spontaneous.intervals.npy') trials_response_time = np.load(data_path+'/'+'trials.response_times.npy') spike_clusters = np.load(data_path+'/'+'spikes.clusters.npy') site_positions = np.load(data_path+'/'+'channels.sitePositions.npy') clusters_depths = np.load(data_path+'/'+'clusters.depths.npy') clusters_annotation = np.load(data_path+'/'+'clusters._phy_annotation.npy') channel_sites = np.load(data_path+'/'+'channels.site.npy') channels_brainlocation = pd.read_csv(data_path+'/'+'channels.brainLocation.tsv', sep='\t') clusters_probes = np.load(data_path+'/'+'clusters.probes.npy') channels_probe = np.load(data_path+'/'+'channels.probe.npy') trials_visual_time = np.load(data_path+'/'+'trials.visualStim_times.npy') visual_times = trials_visual_time # Behaviour data wheel_movement = np.load(data_path+'/'+'wheelMoves.type.npy') wheel_intervals = np.load(data_path+'/'+'wheelMoves.intervals.npy') ''' # Taken from https://github.com/MouseLand/steinmetz2019_NMA/blob/master/steinmetz_loader.py # To obtain brain regions def get_good_cells(fdirpath): # # location in brain of each neuron brain_loc = os.path.join(fdirpath, "channels.brainLocation.tsv") good_cells = (np.load(os.path.join(fdirpath, "clusters._phy_annotation.npy")) >= 2 ).flatten() clust_channel = np.load(os.path.join(fdirpath, "clusters.peakChannel.npy")).astype(int) - 1 br = [] with open(brain_loc, 'r') as tsv: tsvin = csv.reader(tsv, delimiter="\t") k=0 for row in tsvin: if k>0: br.append(row[-1]) k+=1 br = np.array(br) good_cells = np.logical_and(good_cells, clust_channel.flatten()<len(br)) brain_region = br[clust_channel[:,0]] return good_cells, brain_region, br #good_cells, brain_regions ,br = get_good_cells(data_path) # Get brain regions #EDIT Add cluster annotation, spike_clusters def bin_spikes(spike_times,spike_clusters,clusters_annotation, bin_size = 10): # Using clusters._phy_annotation.npy obtain valid clusters (i.e. >= 2) # valid_clusters_idx = np.array(np.where(clusters_annotation>=2))[0] spike_time_cells = np.empty(len(clusters_annotation), dtype=object) # Initalise empty object for i in (np.arange(len(np.unique(spike_clusters)))): # Create a spike time arrays, where each array in the array is a spike time of a cell spike_time_cells[i] = spike_times[(np.where(spike_clusters == i)[0])] # Bin spike times into 10ms intervals spike_time_binned = np.empty(len(np.unique(spike_clusters)), dtype=object) # Initalise empty object sum_spikes = np.empty(len(np.unique(spike_clusters)), dtype=object) # Initalise empty object for cell_num in np.arange(len(spike_time_cells)): spike_time_hist = np.histogram(spike_time_cells[cell_num],bins = np.arange(0,np.floor(spike_time_cells[cell_num][-1]),bin_size)) spike_time_binned[cell_num] = spike_time_hist[0] sum_spikes[cell_num] = np.sum(spike_time_binned[cell_num]) cell_spikes_max = np.argmax(sum_spikes) # cell with the maximum number of spikes for plotting purposes # Spike_time_binned returns binned spikes sorted into cells # Spike_time_cells returns UNbinned spikes sorted into cells # cell_spikes_max returns a single cell index that has the max number of spikes (i.e most active cell) return spike_time_binned, spike_time_cells, cell_spikes_max #spike_time_binned, spike_time_cells, cell_spikes_max = bin_spikes(spike_times,10) # Sort cells into trial types and relevant epoch # (Need to change the sorting into matrices rather than vectors) #EDIT Add Trials Intervals def sort_cells_trials(spike_time_binned,spike_time_cells, trials_intervals,trials_visual_time,epoch_duration = 400 , bin_size = 10): # Epoch duration is defined as the period after the visual stimulus # Sort into trials spike_time_binned_trial = np.empty(len(spike_time_binned), dtype=object) spike_time_binned_trial_response = np.empty(len(spike_time_binned), dtype=object) for cell_num in np.arange(len(spike_time_binned)): spike_time_binned_trial[cell_num] = np.empty(len(trials_intervals), dtype=object) spike_time_binned_trial_response[cell_num] = np.empty(len(trials_intervals), dtype=object) for i,trials_start_end in enumerate(trials_intervals): # Sort spikes into their trial numbers. spike_time_binned_trial[cell_num][i] = spike_time_binned[cell_num][ int(np.floor(trials_start_end[0]*(1000/bin_size))) : int(np.floor(trials_start_end[1]*(1000/bin_size)))] # Using visual onset to splice a trial into visual onset : visual onset +400ms spike_time_binned_trial_response[cell_num][i] = spike_time_binned[cell_num][(int(np.floor(trials_visual_time[i]*(1000/bin_size)))) : (int(
np.floor(trials_visual_time[i]*(1000/bin_size))
numpy.floor
import utm as UTM import unittest import numpy as np class UTMTestCase(unittest.TestCase): def assert_utm_equal(self, a, b): self.assertTrue(np.allclose(a[0], b[0])) self.assertTrue(np.allclose(a[1], b[1])) self.assertEqual(a[2], b[2]) self.assertEqual(a[3].upper(), b[3].upper()) def assert_latlon_equal(self, a, b): self.assertTrue(np.allclose(a[0], b[0], rtol=1e-4, atol=1e-4)) self.assertTrue(np.allclose(a[1], b[1], rtol=1e-4, atol=1e-4)) class KnownValues(UTMTestCase): known_values = [ # Aachen, Germany ( (50.77535, 6.08389), (294409, 5628898, 32, 'U'), {'northern': True}, ), # New York, USA ( (40.71435, -74.00597), (583960, 4507523, 18, 'T'), {'northern': True}, ), # Wellington, New Zealand ( (-41.28646, 174.77624), (313784, 5427057, 60, 'G'), {'northern': False}, ), # Capetown, South Africa ( (-33.92487, 18.42406), (261878, 6243186, 34, 'H'), {'northern': False}, ), # Mendoza, Argentina ( (-32.89018, -68.84405), (514586, 6360877, 19, 'h'), {'northern': False}, ), # Fairbanks, Alaska, USA ( (64.83778, -147.71639), (466013, 7190568, 6, 'W'), {'northern': True}, ), # <NAME>, Scotland, UK ( (56.79680, -5.00601), (377486, 6296562, 30, 'V'), {'northern': True}, ), # Latitude 84 ( (84, -5.00601), (476594, 9328501, 30, 'X'), {'northern': True}, ), ] def test_from_latlon(self): lats = np.array([0.0, 3.0, 6.0]) lons = np.array([0.0, 1.0, 3.4]) result = UTM.from_latlon(lats, lons) self.assert_utm_equal((np.array([166021.44317933032, 277707.83075574087, 544268.12794623]), np.array([0.0, 331796.29167519242, 663220.7198366751]), 31, 'N'), result) for latlon, utm, _ in self.known_values: result = UTM.from_latlon(*[np.array([x]) for x in latlon]) self.assert_utm_equal(utm, result) def test_to_latlon(self): result = UTM.to_latlon(np.array([166021.44317933032, 277707.83075574087, 544268.12794623]), np.array([0.0, 331796.29167519242, 663220.7198366751]), 31, 'N') self.assert_latlon_equal((np.array([0.0, 3.0, 6.0]), np.array([0.0, 1.0, 3.4])), result) for latlon, utm, utm_kw in self.known_values: utm = [np.array([x]) for x in utm[:2]] + list(utm[2:]) result = UTM.to_latlon(*utm) self.assert_latlon_equal(latlon, result) class BadInput(UTMTestCase): def test_from_latlon_range_checks(self): '''from_latlon should fail with out-of-bounds input''' self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon, np.array(-100), np.array(0)) self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon, np.array(-80.1), np.array(0)) for i in range(-8000, 8400): UTM.from_latlon(np.array(i / 100.0), np.array(0)) self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon, np.array(84.1), np.array(0)) self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon, np.array(100), np.array(0)) self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon, np.array(0), np.array(-300)) self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon, np.array(0), np.array(-180.1)) for i in range(-18000, 18000): UTM.from_latlon(np.array(0), np.array(i / 100.0)) self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon, np.array(0), np.array(180.1)) self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon, np.array(0), np.array(300)) self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon, np.array(-100), np.array(-300)) self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon, np.array(100), np.array(-300)) self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon, np.array(-100), np.array(300)) self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon, np.array(100), np.array(300)) # test forcing zone ranges # NYC should be zone 18T self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon, np.array(40.71435), np.array(-74.00597), 70, 'T') self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon, np.array(40.71435), np.array(-74.00597), 18, 'A') def test_to_latlon_range_checks(self): '''to_latlon should fail with out-of-bounds input''' # test easting range self.assertRaises( UTM.OutOfRangeError, UTM.to_latlon, np.array(0), np.array(5000000), 32, 'U') self.assertRaises( UTM.OutOfRangeError, UTM.to_latlon, np.array(99999), np.array(5000000), 32, 'U') for i in range(100000, 999999, 1000): UTM.to_latlon(np.array(i), np.array(5000000), 32, 'U') self.assertRaises( UTM.OutOfRangeError, UTM.to_latlon, np.array(1000000), np.array(5000000), 32, 'U') self.assertRaises( UTM.OutOfRangeError, UTM.to_latlon, np.array(100000000000), np.array(5000000), 32, 'U') # test northing range self.assertRaises( UTM.OutOfRangeError, UTM.to_latlon, np.array(500000), np.array(-100000), 32, 'U') self.assertRaises( UTM.OutOfRangeError, UTM.to_latlon, np.array(500000), np.array(-1), 32, 'U') for i in range(10, 10000000, 1000): UTM.to_latlon(np.array(500000), np.array(i), 32, 'U') self.assertRaises( UTM.OutOfRangeError, UTM.to_latlon, np.array(500000), np.array(10000001), 32, 'U') self.assertRaises( UTM.OutOfRangeError, UTM.to_latlon, np.array(500000), np.array(50000000), 32, 'U') # test zone numbers self.assertRaises( UTM.OutOfRangeError, UTM.to_latlon, np.array(500000), np.array(5000000), 0, 'U') for i in range(1, 60): UTM.to_latlon(np.array(500000), np.array(5000000), i, 'U') self.assertRaises( UTM.OutOfRangeError, UTM.to_latlon, np.array(500000), np.array(5000000), 61, 'U') self.assertRaises( UTM.OutOfRangeError, UTM.to_latlon, np.array(500000),
np.array(5000000)
numpy.array
import numpy as np def make_cell_division_times(n_divisions, n_replicates=8, std=.1, seed=None, drop_p=.05, maxtime=10): """ Simulate Cell division times for n_divisions. The division times are drawn between 0 and maxtime. Dropout events are simulated for cells to be dropped due to technical variance. Cell stages increase exponentially (*2) for each cell division. The first cell stage cannot have dropout events. :param n_divisions: number of divions the cells do. :param n_replicates: number of cells in the beginning. :param std: amount of noise (in standard deviation) to add. :param seed: seed for reproduceability. :param drop_p: drop probability for each cell after first cell stage. :param maxtime: the end point in time. """ seed = seed or np.random.randint(1000,10000) np.random.seed(seed) # Make random blobs of data with varying varainces, dependend on blob size. # This reflects cells of similar expression, and therefore, expresses cell stages/differentiation. class_sizes = n_replicates*(2**np.arange(0, n_divisions+1))#np.diff(np.r_[0, class_centers, n_data]) n_data = class_sizes.sum() class_centers = (np.linspace(0,n_data,n_divisions+2)).astype(int) class_centers = np.int64((class_centers[:-1] + class_centers[1:])/2) class_vars = np.ones(class_sizes.size)*std#(max_variance/class_sizes.max())*class_sizes #class_vars = (std/class_sizes.max())*class_sizes # Each cell has their own center, such that the higher # cell stages have a plateue distribution (multimodal normal distribution) # such that biological variation is captured better t = [] for mu, st, size in zip(np.exp(np.linspace(0,np.log(maxtime),n_data)[class_centers]), class_vars, class_sizes): stage = int(size/n_replicates) offset = (2*st)#/float(stage) # make cell centers for each cell stage: # cell_centers = np.random.normal(mu, var/2., stage) cell_centers = np.random.uniform((1-.1)*mu, (1+.1)*mu, stage) # Then make replicates around the centers cell_individuals = np.random.uniform(cell_centers-offset, cell_centers+offset, (n_replicates,stage)).flatten() # cell_individuals = np.random.normal(cell_centers, var, (n_replicates,stage)).flatten() #cell_individuals = np.random.uniform((1-offset)*mu, (1+offset)*mu, n_replicates*stage) t = np.r_[t, cell_individuals] t = t[:,None] t.sort(0) labels = [] cell_stage = 1 for size in class_sizes: labels.extend([cell_stage]*size) cell_stage *= 2 labels = np.r_[labels] # Now we want to simulate some techincal drop out events, # where cells where destroyed or fell out due to technical variation, # Thus, we go hyper geometric, and the first cell stage cannot # fall out: #dropout_p = np.zeros(n_replicates) #for i in range(1,n_divisions+1): # stage_size = n_replicates*(2**i) # dropout_p = np.r_[dropout_p, np.repeat(2.0**i, stage_size)] #dropout_p /= dropout_p.max() #dropout_p *= drop_p dropout_p = np.ones(n_data) * drop_p dropout_p[:n_replicates] = 0 dropouts = np.random.binomial(1, 1.-dropout_p).astype(bool) return t[dropouts], labels[dropouts], seed import GPy from GPy.util import diag from scipy.stats import norm def simulate_latent_space(t, labels, seed=None, var=.2, split_prob=.1, gap=.75): """ Simulate splitting events in the latent space. The input time t is a one dimensional array having the times in it. The labels is a int array-like, which holds the labels for the wanted cell types. Basically it is an array of repetitions of 1 to number of cell types, e.g.: array([1..1,2..2,3..3,4..4]) for 4 cell types. :param array_like t: the time as [nx1] array, where n is the number of cells. :param array_like labels: the labels for the cells before splitting. :param int seed: the seed for this splitting, for reproducability. :param scalar var: the variance of spread of the first split, increasing after that. :param [0,1] split_prop: probability of split in the beginning, halfs with each split. :param [0,1] gap: the gap size between splitends and the beginning of the next. The method returns Xsim, seed, labels, time:: - Xsim is the two dimensional latent space with splits included. - seed is the seed generated, for reproduceability. - labels are the corrected labels, for split events. - time is the corrected timeline for split events. """ seed = seed or np.random.randint(1000,10000) np.random.seed(seed) n_data = t.shape[0] newlabs = [] assert np.issubdtype(labels.dtype, np.int_) and np.greater(labels, 0).all(), "labels need to be of positive integer dtype, 0 is not allowed" ulabs = [] for x in range(n_data): if labels[x] not in ulabs: ulabs.append(labels[x]) Xsim = np.zeros((n_data, 2)) split_ends = [Xsim[0]] prev_ms = [[.1,.1]] split_end_times = [t[labels==ulabs[0]].max()] t = np.sort(t.copy(), 0) tmax = t.max() for lab in ulabs: fil = (lab==labels).nonzero()[0] # zero out, for simulating linear relation within cluster: new_se = [] new_m = [] new_set = [] splits = np.array_split(fil, len(split_ends)) i = 1 for s in range(len(split_ends)): # for all previously done splits: prev_m = prev_ms[s] split = splits[s] split_end = split_ends[s] split_end_time = split_end_times[s] pre_theta = None prev_split_time = None for split in np.array_split(split, np.random.binomial(1, split_prob)+1): newlabs.extend(["{} {}".format(_c, i) for _c in labels[split]]) i += 1 # If we split a collection into two, we want the two times to match up now: if prev_split_time is None: prev_split_time = t[split].ptp() else: t[split.min():] -= prev_split_time t[split] -= (t[split.min()]-split_end_time) # make splits longer, the farther in we are into # the split process, it scales with sqrt(<split#>) x = t[split].copy() x -= x.min() x /= x.max() x *= np.sqrt(lab) # rotate m away a little from the previous direction: if pre_theta is None: pre_theta = theta = np.random.uniform(-45, 45) else: theta = ((pre_theta+90)%90)-90 theta *= (np.pi/180.) # radians for rotation matrix rot_m = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta),
np.cos(theta)
numpy.cos
import numpy as np from ._base import GraphWorld, grid_to_adj class CliffWalking(GraphWorld): """Cliff-walking task environment. Parameters ---------- cliff : float Value of falling off cliff. Attributes ---------- states : array, shape = (n,) Indices of states. n_states : int Total number of states. viable_states : array Indices of viable states. n_viable_states : int Number of viable states. info : DataFrame Pandas DataFrame storing the dynamics of the Markov decision process. Rows correspond to each viable Q-value, whereas each column contains its associated information. References ---------- 1. <NAME>., & <NAME>. (2018). Reinforcement learning: An introduction. MIT press. 2. <NAME>. (2003). Reinforcement learning under circumstances beyond its control. """ def __init__(self, cliff=-100): ## Define gridworld. self.grid = np.arange(11 * 12, dtype=int).reshape(11,12) self.shape = self.grid.shape ## Define start/terminal states. start = 120 terminal =
np.array([121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131])
numpy.array
from abc import ABC, abstractmethod from sigpipes import features from sigpipes.sigcontainer import SigContainer, DPath from sigpipes.sigfuture import SigFuture, SignalSpace from sigpipes.auxtools import seq_wrap from sigpipes.auxtools import TimeUnit import gzip from typing import Sequence, Union, Iterable, Optional, MutableMapping, Any, Mapping import collections.abc import sys import fractions from pathlib import Path import numpy as np import scipy.signal as sig import scipy.fftpack as fft from deprecated import deprecated class SigOperator: """ Base abstract class of signal operators. """ def apply(self, container: SigContainer) -> Any: raise NotImplementedError("Abstract method") def prepare_container(self, container: SigContainer) -> SigContainer: """ Prepare container at the beginning of apply method. (this method must be called at the first line of `apply` method) Args: container: prepared signal container """ return container def __ror__(self, container: Union[SigContainer, Sequence[SigContainer], "SigOperator"] ) -> Any: """ Pipe operator for streamlining of signal operators Args: container: left operand i.e signal container (input), sequence of containers (multiple inputs) or another signal operator (formation of compound operators). Returns: - for container as input: container, sequence of containers, or another data structures (only consumers) - for sequence of containers as input: sequence of containers, sequence of another data structures (only consumers) - for signal operators in both operands: compound signal operator """ if isinstance(container, SigContainer): container.d["log"].append(self.log()) return self.apply(container) elif isinstance(container, collections.abc.Sequence): return [c | self for c in container] elif isinstance(container, SigOperator): return CompoundSigOperator(container, self) elif isinstance(container, SigFuture): if isinstance(self, ParallelSigOperator): return self.par_apply(container) else: return SigFuture(container, fn=self.apply, sigspace=self.sigspace_transformation(container.sigspace), node_description=self.log()) else: raise TypeError("Unsupported left operand of pipe") def __or__(self, other): return CompoundSigOperator(self, other) def log(self): """ Identification of operation for logging purposes. Returns: Simple (and if possible short) identification. """ return self.__class__.__name__ def sigspace_transformation(self, sigspace:SignalSpace) -> SignalSpace: return sigspace class ParallelSigOperator(ABC): @abstractmethod def par_apply(self, future: SigFuture) -> SigFuture: pass class Identity(SigOperator): """ Base class for operators which do not modify container. """ def apply(self, container: SigContainer) -> SigContainer: container = self.prepare_container(container) return container def log(self): return "#" + self.__class__.__name__ class MaybeConsumerOperator(Identity): """ Abstract class for operators which can works as final consumers i.e. it can produce different representation of signal data e.g. dataframes, matplot figures, etc. """ pass class CompoundSigOperator(SigOperator): def __init__(self, left_operator: SigOperator, right_operator: SigOperator) -> None: self.left = left_operator self.right = right_operator def apply(self, container: SigContainer): container = self.prepare_container(container) return container | self.left | self.right def log(self): return "#COMP" class Print(Identity): """ Operator which prints debug text representation into text output """ def __init__(self, output=">", header=True): """ Args: output: file like object or name of output file (">" is stdout out, ">2" stderr) header: the header with log-id is printed """ self.output = output self.header = header def apply(self, container: SigContainer) -> SigContainer: container = self.prepare_container(container) if self.output == ">": f = sys.stdout elif self.output == ">2": f = sys.stderr elif isinstance(self.output, str): f = open(self.output, "wt") # open in apply, because the file objects are not pickable else: f = self.output if self.header: print(container.id, file=f) print("-"*40, file=f) print(str(container), file=f) return container class SigModifierOperator(SigOperator): """ Abstract class for operators which modify signal data. """ def prepare_container(self, container: SigContainer) -> SigContainer: return SigContainer(container.d.deepcopy(shared_folders=["annotations"], empty_folders=["meta"])) class Sample(SigModifierOperator): """ Sample (continuous interval) of signal (for all channels) """ def __init__(self, start: Union[int, float, np.timedelta64], end: Union[int, float, np.timedelta64]): """ Args: start: start point of sample. integer: sample number, float: time in seconds, np.timedelta64: time represented by standard time representation of numpy) end: end point of sample (see `start` for interpretation) """ self.start = start self.end = end def apply(self, container: SigContainer) -> SigContainer: container = self.prepare_container(container) fs = container.d["signals/fs"] lag = container.lag start = TimeUnit.to_sample(self.start, fs, TimeUnit.time_unit_mapper(self.start), lag) end = TimeUnit.to_sample(self.end, fs, TimeUnit.time_unit_mapper(self.end), lag) container.d["signals/data"] = container.d["signals/data"][:, start:end] container.d["signals/lag"] = lag - start if "annotations" in container.d: adict = container.d["annotations"] newdict = SigContainer.cut_annots(adict, start, end) adict.update(newdict) return container def log(self): return f"SAMP@{str(self.start)}@{str(self.end)}" class ChannelSelect(SigOperator): """ Selection of limited subset of channels. """ def __init__(self, selector: Sequence[int]) -> None: """ Args: selector: sequence of (integer) indexes of channels """ self.selector = selector def prepare_container(self, container: SigContainer) -> SigContainer: return SigContainer(container.d.deepcopy(shared_folders=["annotations"], empty_folders=["signals"])) def apply(self, container: SigContainer) -> SigContainer: nc = self.prepare_container(container) nc.d["signals/data"] = container.d["signals/data"][self.selector, :] nc.d["signals/channels"] = np.array(container.d["signals/channels"])[self.selector].tolist() nc.d["signals/units"] = np.array(container.d["signals/units"])[self.selector].tolist() nc.d["signals/fs"] = container.d["signals/fs"] if "meta" in nc.d: nc.d.map(lambda a: a[self.selector], root="meta") return nc def log(self): return f"CHSEL@{','.join(str(s) for s in self.selector)}" class MetaProducerOperator(SigOperator): """ Abstract class for operators which product metadata (i.e. data inferred from signals) """ def prepare_container(self, container: SigContainer) -> SigContainer: return SigContainer(container.d.deepcopy(["signals", "annotation"])) class FeatureExtractor(MetaProducerOperator): def __init__(self, features_dict: Mapping[str, Union[bool,float,Sequence[float]]] = None, *, wamp_threshold: Union[float, Sequence[float]] = (), zc_diff_threshold: float = (), zc_mul_threshold = (), sc_threshold: float = ()): self.feature_dict = features_dict if features_dict is not None else {feature: True for feature in features.NON_THRESHOLD} if wamp_threshold: self.feature_dict["WAMP"] = wamp_threshold if zc_diff_threshold and zc_mul_threshold: self.feature_dict["ZC"] = zip(zc_diff_threshold, zc_mul_threshold) if sc_threshold: self.feature_dict["SC"] = sc_threshold def apply(self, container: SigContainer) -> SigContainer: container = self.prepare_container(container) n = container.sample_count data = container.d["signals/data"] fkeys = {key for key in self.feature_dict.keys() if self.feature_dict[key]} thresholds = {key : value for key,value in self.feature_dict.items() if key in features.WITH_THRESHOLD} fdict = features.features(data, fkeys, thresholds) path = "meta/features" container.d.make_folder(path) container.d[path].update(fdict) return container class FeatureExtraction(MetaProducerOperator): """ Extraction of basic features of signal. """ def __init__(self, *, wamp_threshold: Union[float, Sequence[float]] = (), zc_diff_threshold: float = 0.0, zc_mul_threshold = 0.0, sc_threshold: float = 0.0): """ Args: wamp_threshold: threshold value (or sequence of values) foe WAMP feature """ self.wamp_threshold = seq_wrap(wamp_threshold) self.target = "features" self.zc_diff_threshold = zc_diff_threshold self.zc_mul_threshold = zc_mul_threshold self.sc_threshold = sc_threshold def apply(self, container: SigContainer) -> SigContainer: container = self.prepare_container(container) n = container.sample_count data = container.d["signals/data"] absum = np.sum(
np.abs(data)
numpy.abs
''' ----------------------------------------------- File Name: data_seg$ Description: Author: Jing$ Date: 6/29/2021$ ----------------------------------------------- ''' from __future__ import division import warnings warnings.filterwarnings('ignore') # ignore warnings import os os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" # only show error import numpy as np import pandas as pd import cv2 as cv from PIL import Image import skimage.io as io from skimage import img_as_ubyte import os from medpy.metric.binary import dc, hd, assd from keras import backend as K from keras.optimizers import Adam #from tensorflow.keras.optimizers import Adam # only for doubleunet from keras.callbacks import CSVLogger, ModelCheckpoint, EarlyStopping import segmentation_models as sm from model_seg import * from doubleu_net import * def load_data(img_path_aug, img_path_ori, gt_path_aug, gt_path_ori, csv_aug, csv_ori, H, W): df_ori = pd.read_csv(csv_ori) df_aug = pd.read_csv(csv_aug) filename_list_ori = df_ori['filename'].values filename_list_aug = df_aug['filename'].values pixel_size_ori = df_ori['pixel size(mm)'].values hcpx_ori = df_ori['head circumference(px)'].values img_ori = [] label_ori = [] img_aug = [] label_aug = [] pixel_ori = [] label_hc = [] for (i, f) in enumerate(filename_list_ori): img = Image.open(img_path_ori + f).convert('RGB') # 3 channels img = img.resize((H,W)) img = np.array(img) img_norm = (img - np.mean(img)) / np.std(img) # normalize img_ori.append(img_norm) pixel_ori.append(pixel_size_ori[i]) label_hc.append(hcpx_ori[i]) gt = Image.open(gt_path_ori + f).convert('L') gt = gt.resize((H,W)) gt = np.array(gt) gt[gt > 0.5] = 1 # normalize gt[gt <= 0.5] = 0 gt = gt[:, :, np.newaxis] label_ori.append(gt) for (i, f) in enumerate(filename_list_aug): img = Image.open(img_path_aug + f).convert('RGB') img = img.resize((H,W)) img = np.array(img) img_norm = (img - np.mean(img)) / np.std(img) # normalize # img = img_norm[:, :, np.newaxis] img_aug.append(img_norm) gt = Image.open(gt_path_aug + f).convert('L') gt = gt.resize((H,W)) gt = np.array(gt) gt[gt > 0.5] = 1 # normalize gt[gt <= 0.5] = 0 gt = gt[:, :, np.newaxis] label_aug.append(gt) print("load data successfully!") return np.asarray(img_aug, dtype=np.float64), np.asarray(label_aug),
np.asarray(label_hc)
numpy.asarray
""" Copyright (C) 2019. Huawei Technologies Co., Ltd and McGill University. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the MIT License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the MIT License for more details. """ import numpy as np from src.utils import reparameterized_to_beta, reparameterized_to_pi, graph_preparation, metric_perp_avg, \ bernuli_distrbution, step_size_function, accuracy_avg, initialize_theta_phi_with_better_initialization class MMSBM_SGMCMC: def __init__(self, flags, n, k, edges, nonedges, beta_prior, membership_prior, theta_constant, phi_constant, true_labels, better_initialization_flag, step_size_scalar, node_neighbors_dict, val_set_index, mu=1, max_iter=10000): """ follows the notations in the original paper :param flags: hyper-parameters for GCN and MMSBM :param n: node number :param k: class number :param edges: edge indices :param nonedges: non-edge indices :param beta_prior: prior for the community strength :param membership_prior: prior for the membership :param theta_constant: re-parameterization constant for community strength beta :param phi_constant: re-parameterization constant for membership :param true_labels: ground truth labels :param better_initialization_flag: a flag indicate if we train the MMSBM from scratch or we use the better initialization output from gcn :param step_size_scalar: step size for the MMSBM :param node_neighbors_dict: a dict for query the neighborhood node indices :param val_set_index: indices for the validation set """ self.gamma_scale = flags.gamma_scale self.better_initialization_flag = better_initialization_flag self.step_size_scalar = step_size_scalar self.flags = flags self.n = n # number of nodes self.k = k self.val_set_index = val_set_index self.alpha = 1.0 / k self.mu = mu self.tao = 1024 self.n_list_set = np.array([i for i in range(self.n)]) self.max_iter = max_iter self.mini_batch_nodes = flags.batch_size self.true_labels = true_labels self.sample_n = 20 # sample size for update each local parameters self.T = 1 # sample number of pi and beta for each edge during the evaluation process self.test_edges_n = 500 # test set edges for the perplexity test self.delta = flags.delta self.node_neighbors_dict = node_neighbors_dict self.avg_predict_label = 0 # variable initialization (random initialization) if not self.better_initialization_flag: self.phi = np.random.gamma(self.alpha, 1, size=(self.n, self.k)) self.theta = np.random.gamma(self.mu, 1, size=(self.k, 2)) self.beta, self.theta_constant = reparameterized_to_beta(self.theta) self.pi, self.phi_constant = reparameterized_to_pi(self.phi, self.n) self.initial_prediction_labels = self.pi.argmax(axis=1) else: self.theta_constant = theta_constant self.phi_constant = phi_constant self.beta = beta_prior self.pi = membership_prior self.initial_prediction_labels = membership_prior.argmax(axis=1) self.theta, self.phi = initialize_theta_phi_with_better_initialization(self.beta, self.pi, self.theta_constant, self.phi_constant, k) self.MCMC_MMSBM_prediction_labels = self.initial_prediction_labels self.B = np.ones((self.k, self.k)) * flags.delta # Info of the given topology, split into the edges and non-edges self.edges = edges self.nonedges = nonedges self.edges_n, self.nonedges_n, self.test_set, self.y_test_set = graph_preparation(self.edges, self.nonedges, test_edges_n=self.test_edges_n) self.sampled_non_edges_ratio = self.flags.sampled_non_edges_ratio self.sampled_non_edges_n = int(self.sampled_non_edges_ratio * self.nonedges_n) self.dir = 'figures/' def Z_constant_mini_batch_phi(self, node_a_membership, node_b_membership, link_index_mini_batch): bernuli_delta_mini_batch = np.ones((len(node_a_membership), 1)) * (1 - self.delta) bernuli_delta_mini_batch[link_index_mini_batch] = self.delta Z_constant_mini_batch = bernuli_delta_mini_batch.copy() for k in range(self.k): bernuli_beta_k_mini_batch = np.ones((len(node_a_membership), 1)) * (1 - self.beta[k]) bernuli_beta_k_mini_batch[link_index_mini_batch] = self.beta[k] pi_a_k = (node_a_membership[:, k]).reshape(len(node_a_membership), 1) pi_b_k = (node_b_membership[:, k]).reshape(len(node_b_membership), 1) Z_constant_mini_batch += (bernuli_beta_k_mini_batch - bernuli_delta_mini_batch) * pi_a_k * pi_b_k return Z_constant_mini_batch def Z_constant_mini_batch(self, node_a_membership, node_b_membership, links_flag): if links_flag: bernuli_delta_mini_batch = np.ones((len(node_a_membership), 1)) * self.delta else: bernuli_delta_mini_batch = np.ones((len(node_a_membership), 1)) * (1 - self.delta) Z_constant_mini_batch = bernuli_delta_mini_batch.copy() for k in range(self.k): if links_flag: bernuli_beta_k_mini_batch = np.ones((len(node_a_membership), 1)) * self.beta[k] else: bernuli_beta_k_mini_batch = np.ones((len(node_a_membership), 1)) * (1 - self.beta[k]) pi_a_k = (node_a_membership[:, k]).reshape(len(node_a_membership), 1) pi_b_k = (node_b_membership[:, k]).reshape(len(node_b_membership), 1) Z_constant_mini_batch += (bernuli_beta_k_mini_batch - bernuli_delta_mini_batch) * pi_a_k * pi_b_k return Z_constant_mini_batch def function_f_ab_k_k(self, node_a_membership, node_b_membership, observation_ab, k): f_ab_k_k = bernuli_distrbution(observation_ab, self.beta[k]) * node_a_membership[k] * node_b_membership[k] return f_ab_k_k def function_f_ab_k_mini_batch_pi(self, k, node_a_membership, node_b_membership, links_index): bernuli_delta_mini_batch = np.ones((len(node_a_membership), 1)) * (1 - self.delta) bernuli_delta_mini_batch[links_index] = self.delta bernuli_beta_k_mini_batch = np.ones((len(node_a_membership), 1)) * (1 - self.beta[k]) bernuli_beta_k_mini_batch[links_index] = self.beta[k] node_a_k = (node_a_membership[:, k]).reshape(len(node_a_membership), 1) node_b_k = (node_b_membership[:, k]).reshape(len(node_b_membership), 1) f_ab_k_mini_batch = node_a_k * ( bernuli_beta_k_mini_batch * node_b_k + bernuli_delta_mini_batch * (1 - node_b_k)) return f_ab_k_mini_batch def function_f_ab_k_k_mini_batch(self, k, node_a_membership, node_b_membership, link_flag): if link_flag: f_ab_k_k_mini_batch = np.ones((len(node_a_membership), 1)) * self.beta[k] else: f_ab_k_k_mini_batch = np.ones((len(node_a_membership), 1)) * (1 - self.beta[k]) f_ab_k_k_mini_batch = f_ab_k_k_mini_batch * (node_a_membership[:, k]).reshape(len(node_b_membership), 1) * ( node_b_membership[:, k]).reshape(len(node_b_membership), 1) return f_ab_k_k_mini_batch def update_phi(self, batch_nodes_index, step_size, n_list_set): n = self.mini_batch_nodes grad_phi = np.zeros((n, self.k)) # select edges node_a = np.zeros(n * n).astype(int) node_b = np.zeros(n * n).astype(int) y_mini_batch = np.zeros(n * n).astype(int) corrections = np.zeros(n * n) for i, node in enumerate(batch_nodes_index): # deal with links node_neighbors = self.node_neighbors_dict[node] links_n = len(node_neighbors) node_a[i * n:i * n + n] = node node_b[i * n:i * n + links_n] = node_neighbors y_mini_batch[i * n:i * n + links_n] = 1 # deal with non-links non_neighbors = np.setdiff1d(n_list_set, node_neighbors) non_neighbors = np.setdiff1d(non_neighbors, np.array([node])) np.random.shuffle(non_neighbors) sampled_node_neighbors = non_neighbors[:n - links_n] node_b[(i * n + links_n):(i * n + n)] = sampled_node_neighbors corrections[i * n: i * n + links_n] = 1 corrections[(i * n + links_n):(i * n + n)] = float(self.n - links_n - 1) / (self.mini_batch_nodes - links_n) corrections = corrections.reshape(n, n) pi_a = self.pi[node_a] pi_b = self.pi[node_b] phi_a = self.phi[node_a] links_index = np.where(y_mini_batch == 1)[0] Z_ab_mini_batch = self.Z_constant_mini_batch_phi(pi_a, pi_b, links_index) for k in range(self.k): f_ab_k_mini_batch = self.function_f_ab_k_mini_batch_pi(k, pi_a, pi_b, links_index) phi_a_k = (phi_a[:, k]).reshape(n * n, 1) temp_denumerator = Z_ab_mini_batch * phi_a_k denumerator = temp_denumerator.copy() index_zero = np.where(temp_denumerator == 0)[0] denumerator[index_zero] = 10 ** (-25) temp = f_ab_k_mini_batch / denumerator - np.ones((n * n, 1)) / ((np.sum(phi_a, axis=1)).reshape( n * n, 1)) temp = temp.reshape(n, n) * corrections grad_phi[:, k] = np.sum(temp, axis=1) temp_phi = np.abs(self.phi[batch_nodes_index] + step_size / 2 * ( - self.phi[batch_nodes_index] * self.gamma_scale + grad_phi * self.phi[batch_nodes_index])) return temp_phi # @do_profile(follow=[]) def update_theta(self, step_size): grad_theta = np.zeros((self.k, 2)) sample_non_edges_index = np.random.randint(self.nonedges_n, size=self.sampled_non_edges_n) non_edges_index_a = self.nonedges[0][sample_non_edges_index] non_edges_index_b = self.nonedges[1][sample_non_edges_index] pi_a_non_links = self.pi[non_edges_index_a] pi_b_non_links = self.pi[non_edges_index_b] z_ab_non_links = self.Z_constant_mini_batch(pi_a_non_links, pi_b_non_links, links_flag=False) edges_index_a = self.edges[0] edges_index_b = self.edges[1] pi_a_links = self.pi[edges_index_a] pi_b_links = self.pi[edges_index_b] z_ab_links = self.Z_constant_mini_batch(pi_a_links, pi_b_links, links_flag=True) correction = float(self.nonedges_n) / len(non_edges_index_a) for k in range(self.k): f_ab_kk_mini_batch_links = self.function_f_ab_k_k_mini_batch(k, pi_a_links, pi_b_links, link_flag=True) links_term = f_ab_kk_mini_batch_links / z_ab_links f_ab_kk_mini_batch_non_links = self.function_f_ab_k_k_mini_batch(k, pi_a_non_links, pi_b_non_links, link_flag=False) non_links_term = (f_ab_kk_mini_batch_non_links / z_ab_non_links) * correction theta_k = (np.sum(self.theta, axis=1))[k] if self.theta[k][0] < 10 ** (-50): self.theta[k][0] = 10 ** (-50) if self.theta[k][1] < 10 ** (-50): self.theta[k][1] = 10 ** (-50) # print(self.theta[k][0], self.theta[k][1], theta_k) grad_theta[k][0] = np.sum(links_term * (-1.0 / theta_k)) \ + np.sum(non_links_term * (1.0 / self.theta[k][0] - 1.0 / theta_k)) grad_theta[k][1] = np.sum(links_term * (1.0 / self.theta[k][1] - 1.0 / theta_k)) \ + np.sum(non_links_term * (-1.0 / theta_k)) temp_theta = np.abs( self.theta + (step_size / 2) * (-self.theta * self.gamma_scale + grad_theta * self.theta)) return temp_theta def train_one_epoch(self, step_size, n_list_set): batch_nodes_index =
np.random.choice(self.n, size=self.mini_batch_nodes, replace=False)
numpy.random.choice
import copy import functools import gc from hfutils.constants import TASK_TO_LABELS from seaborn.distributions import histplot import torch import logging import numpy as np from transformers.data.data_collator import ( DataCollatorForSeq2Seq, default_data_collator, ) from transformers import T5ForConditionalGeneration, T5Tokenizer import seaborn as sns import matplotlib import matplotlib.pyplot as plt from sklearn.mixture import GaussianMixture from scipy.optimize import minimize from sklearn.mixture import GaussianMixture import os import sys from torch.nn.modules.activation import Threshold from datasets import Dataset, concatenate_datasets from datasets import load_dataset, load_metric from tqdm import tqdm from transformers import AutoTokenizer, AutoModel, T5ForConditionalGeneration from torch.utils.data import ( DataLoader, RandomSampler, SequentialSampler, TensorDataset, dataloader, ) from sklearn.model_selection import train_test_split from hfutils.logger import Logger from hfutils.constants import token2label from hfutils.arg_parser import HfArguments from hfutils.loader import ModelLoader, DatasetLoader from hfutils.temperature_scaling import ModelWithTemperature from hfutils.monte_carlo import monte_carlo_bounds from hfutils.calibration import agg_logits, g_scaling_helper, temperature_scaling_helper, temperature_scale, temperature_scaling home_dir = os.path.expanduser(("~")) base_dir = os.path.join(home_dir, os.path.join("model-finetune", "outputs", "google")) task_name = "mnli" # HACK the longest number of labels tokenizer = T5Tokenizer.from_pretrained(f"{home_dir}/HuggingFace/google/t5-small-lm-adapt", use_fast=False) label_tokens = [ tokenizer(label, max_length=2, truncation=True).input_ids[0] for label in TASK_TO_LABELS[task_name] if label is not None ] model_keys = [ "S", "M", "L", "XL", ] device_map = [ "cuda:0", "cuda:0", "cuda:0", "cuda:1", ] energy_discount_factor = [ 1 / 40, 3 / 40, 10 / 40, 40 / 40, ] model_paths = [ f"{base_dir}/t5-small-lm-adapt/all/checkpoint-4500", f"{base_dir}/t5-base-lm-adapt/all/checkpoint-2000", f"{base_dir}/t5-large-lm-adapt/all/checkpoint-1500", f"{base_dir}/t5-xl-lm-adapt/all/checkpoint-1500", ] model_energy = dict(zip(model_keys, energy_discount_factor)) model_paths = dict(zip(model_keys, model_paths)) model_device = dict(zip(model_keys, device_map)) logger = Logger(__file__, "info", 5000000, 5) models = dict() for key in model_paths: logger.debug("key %s, path %s, device %s", key, model_paths[key], model_device[key]) models[key] = T5ForConditionalGeneration.from_pretrained(model_paths[key]) models[key] = models[key].to(model_device[key]) models[key].eval() torch.cuda.empty_cache() gc.collect() logger.info("model loaded") # ------------- Dataset Prepare -------------- from hfutils.loader import t5_preprocess_function, load_glue_val from functools import partial preprocess_function = partial( t5_preprocess_function, tokenizer=tokenizer, padding="max_length", max_length=128, ) eval_dataset = load_glue_val(preprocess_function).shuffle() # eval_dataset = eval_dataset.select([x for x in range(1000)]) data_collator = DataCollatorForSeq2Seq(tokenizer) # train_len = int(len(eval_dataset) * 0.4) split_dataset = eval_dataset.train_test_split(train_size=0.4) train, test = split_dataset["train"], split_dataset["test"] # train_raw, test_raw = split_dataset["train"], split_dataset["test"] print(train, test) train_len = len(train) test_len = len(test) train_dataloader = DataLoader( train, collate_fn=data_collator, batch_size=16, ) test_dataloader = DataLoader( test, collate_fn=data_collator, batch_size=16, ) m = torch.nn.Softmax(dim=1) logger.info("data loaded") # ------------- Train Temperature -------------- print("temperature loaded") n_models = len(model_keys) num_labels = 0 def model_inference(model, batch, temperature=None, device="cuda:0"): input_ids = batch["input_ids"] attention_mask = batch["attention_mask"] input_ids = input_ids.to(device) attention_mask = attention_mask.to(device) outputs = model.generate( input_ids=input_ids, attention_mask=attention_mask, do_sample=False, # disable sampling to test if batching affects output return_dict_in_generate=True, output_scores=True, ) logits = outputs.scores[0][:, label_tokens] if temperature is not None: logits = temperature(logits) return logits # ============= COLLECT TRAIN LOGITS ================= # import torch.multiprocessing as mp labels_list = [] for batch in tqdm(train_dataloader, desc="Collect Labels"): label = token2label(batch["labels"][:, 0], label_tokens) labels_list += label labels = torch.as_tensor(labels_list, dtype=torch.int64) # def run_train(key, model_outputs): # all_logits = [] # # labels_list = [] # for batch in tqdm(train_dataloader, desc="Collect Train Data"): # # label = token2label(batch["labels"][:, 0], label_tokens) # logits = model_inference(models[key], batch, device=model_device[key]) # all_logits.append(logits) # # if len(labels_list) < train_len: # # labels_list += label # all_logits = torch.cat(all_logits) # model_outputs[key] = all_logits # # labels = torch.as_tensor(labels_list, dtype=torch.int64) # # return labels # manager = mp.Manager() # model_outputs = manager.dict() # if __name__ == '__main__': # mp.set_start_method('spawn') # pool = mp.Pool(len(model_keys)) # pool.map(functools.partial(run_train, model_outputs=model_outputs), model_keys) model_outputs = {} for key in model_keys: all_logits = [] # labels_list = [] for batch in tqdm(train_dataloader, desc=f"Collect Train Data {key}"): # label = token2label(batch["labels"][:, 0], label_tokens) logits = model_inference(models[key], batch, device=model_device[key]) all_logits.append(logits) # if len(labels_list) < train_len: # labels_list += label all_logits = torch.cat(all_logits) model_outputs[key] = all_logits # labels = torch.as_tensor(labels_list, dtype=torch.int64) # ============= TRAIN TEMPERATURE ============= epoches = [ 500, 500, 500, 500 ] model_epoches = dict(zip(model_keys, epoches)) model_temperature = g_scaling_helper(model_outputs, labels, model_epoches, len(label_tokens)) print("temperature", model_temperature) for key in model_keys: model_outputs[key] = model_temperature[key](model_outputs[key]) torch.save(model_temperature[key].state_dict(), os.path.join("tests", "confidence", f"t5_glue_glayer-{key}")) # ============= TRAIN HYPERPARAMETER ============= num_models = len(model_keys) m = torch.nn.Softmax(dim=1) # hist_probs = [] # hist_logits = None # for i, key in enumerate(model_keys): # hist_logits = agg_logits( # hist_logits if key != model_keys[-1] else None, # model_outputs[key], # 0.6 # ) # probs, _ = torch.max(m(hist_logits), dim=1) # probs = probs.detach().cpu().numpy() # hist_probs.append(probs) def total_reward(threshold): reward = 0 energy = 0 mask = np.array([False] * train_len) alpha = threshold[-1] threshold = threshold[:-1] hist_logits = None for i, key in enumerate(model_keys): hist_logits = agg_logits( hist_logits if key != model_keys[-1] else None, model_outputs[key], alpha ) probs, _ = torch.max(m(hist_logits), dim=1) probs = probs.detach().cpu().numpy() # probs = hist_probs[i] processed = ( (probs >= threshold[i]) if key in model_keys[:-1] else np.array([True] * train_len) ) # print(mask, processed) processed_probs = probs[(~mask) & processed] reward += np.around(
np.sum(processed_probs)
numpy.sum
import numpy as np metric_optimum = { "MAE": "min", "MSE": "min", "accuracy": "max", "sensitivity": "max", "specificity": "max", "PPV": "max", "NPV": "max", "BA": "max", "loss": "min", } class MetricModule: def __init__(self, metrics, n_classes=2): self.n_classes = n_classes # Check if wanted metrics are implemented list_fn = [ method_name for method_name in dir(MetricModule) if callable(getattr(MetricModule, method_name)) ] self.metrics = dict() for metric in metrics: if f"{metric.lower()}_fn" in list_fn: self.metrics[metric] = getattr(MetricModule, f"{metric.lower()}_fn") else: raise ValueError( f"The metric {metric} is not implemented in the module" ) def apply(self, y, y_pred): """ This is a function to calculate the different metrics based on the list of true label and predicted label Args: y (List): list of labels y_pred (List): list of predictions Returns: (Dict[str:float]) metrics results """ if y is not None and y_pred is not None: results = dict() y = np.array(y) y_pred = np.array(y_pred) for metric_key, metric_fn in self.metrics.items(): metric_args = list(metric_fn.__code__.co_varnames) if "class_number" in metric_args: for class_number in range(self.n_classes): results[f"{metric_key}-{class_number}"] = metric_fn( y, y_pred, class_number ) else: results[metric_key] = metric_fn(y, y_pred) else: results = dict() return results @staticmethod def mae_fn(y, y_pred): """ Args: y (List): list of labels y_pred (List): list of predictions Returns: (float) mean absolute error """ return np.mean(np.abs(y - y_pred)) @staticmethod def mse_fn(y, y_pred): """ Args: y (List): list of labels y_pred (List): list of predictions Returns: (float) mean squared error """ return np.mean(np.square(y - y_pred)) @staticmethod def accuracy_fn(y, y_pred): """ Args: y (List): list of labels y_pred (List): list of predictions Returns: (float) accuracy """ true = np.sum(y_pred == y) return true / len(y) @staticmethod def sensitivity_fn(y, y_pred, class_number): """ Args: y (List): list of labels y_pred (List): list of predictions class_number (int): number of the class studied Returns: (float) sensitivity """ true_positive = np.sum((y_pred == class_number) & (y == class_number)) false_negative = np.sum((y_pred != class_number) & (y == class_number)) if (true_positive + false_negative) != 0: return true_positive / (true_positive + false_negative) else: return 0.0 @staticmethod def specificity_fn(y, y_pred, class_number): """ Args: y (List): list of labels y_pred (List): list of predictions class_number (int): number of the class studied Returns: (float) specificity """ true_negative = np.sum((y_pred != class_number) & (y != class_number)) false_positive = np.sum((y_pred == class_number) & (y != class_number)) if (false_positive + true_negative) != 0: return true_negative / (false_positive + true_negative) else: return 0.0 @staticmethod def ppv_fn(y, y_pred, class_number): """ Args: y (List): list of labels y_pred (List): list of predictions class_number (int): number of the class studied Returns: (float) positive predictive value """ true_positive = np.sum((y_pred == class_number) & (y == class_number)) false_positive = np.sum((y_pred == class_number) & (y != class_number)) if (true_positive + false_positive) != 0: return true_positive / (true_positive + false_positive) else: return 0.0 @staticmethod def npv_fn(y, y_pred, class_number): """ Args: y (List): list of labels y_pred (List): list of predictions class_number (int): number of the class studied Returns: (float) negative predictive value """ true_negative = np.sum((y_pred != class_number) & (y != class_number)) false_negative = np.sum((y_pred != class_number) & (y == class_number)) if (true_negative + false_negative) != 0: return true_negative / (true_negative + false_negative) else: return 0.0 @staticmethod def ba_fn(y, y_pred, class_number): """ Args: y (List): list of labels y_pred (List): list of predictions class_number (int): number of the class studied Returns: (float) balanced accuracy """ return ( MetricModule.sensitivity_fn(y, y_pred, class_number) + MetricModule.specificity_fn(y, y_pred, class_number) ) / 2 @staticmethod def confusion_matrix_fn(y, y_pred): """ Args: y (List): list of labels y_pred (List): list of predictions Returns: (Dict[str:float]) confusion matrix """ true_positive = np.sum((y_pred == 1) & (y == 1)) true_negative = np.sum((y_pred == 0) & (y == 0)) false_positive =
np.sum((y_pred == 1) & (y == 0))
numpy.sum
#Version #-------- #Companion Code Version: 1.0 # # #Citation #--------- #Any part of this code used in your work should be cited as follows: # #<NAME>, <NAME> and <NAME>, "Distributed learning of human mobility patterns from cellular network data," #in Proc. 51st Annu. Conf. on Information Sciences and Systems (CISS), 2017, Companion Code, ver. 1.0. #-------------------------------------------------------------------------- # #CODE OUTLINE: #We first generate synthetic data and then distribute data across sites in such a way that each site contains a subset #of the global dictionary. Finally, representation errors for cloud NN-K-SVD, localized NN-K-SVD and centralized NN-K-SVD are computed. import time import random import numpy as np from generategraph import gengraph from sparsecoding import sparse_encode_nnmp from centralizeddictionarylearning import dict_learning_nnksvd from distributeddictionarylearning import cloud_nnksvd def generate_dict(n_features, n_atom): D = np.abs(np.random.randn(n_features, n_atom)) D /= np.tile( np.sqrt((D ** 2).sum(axis=0)), (n_features, 1) ) return D NodeN = 10 p = 0.5 networkg = gengraph(NodeN, p) """ Generate dictionary and data """ random.seed(time.time()) n_features = 20 TotalAtoms = 50 print("generating dictionary...") D_gt = generate_dict(n_features, TotalAtoms) LocalAtomN = 40 sp = 3 LocalTrainSamples = 150 TestSamples = 500 Y = [[] for i in range(NodeN)] for i in range(NodeN): indexes = np.random.permutation(range(TotalAtoms))[:LocalAtomN] tempD = D_gt[:,indexes] tempCoef = np.zeros([LocalAtomN, LocalTrainSamples]) for j in range(LocalTrainSamples): atomidx = np.random.permutation(range(LocalAtomN))[:sp] tempCoef[atomidx,j] = np.abs(np.random.randn(sp)) tempY = np.dot(tempD, tempCoef) tempY /= np.tile( np.sqrt((tempY ** 2).sum(axis=0)), (n_features, 1) ) Y[i] = tempY Y_central = np.zeros([n_features, LocalTrainSamples*NodeN]) for i in range(NodeN): Y_central[:,np.arange(LocalTrainSamples*i,LocalTrainSamples*(i+1))] = Y[i] TestCoef = np.zeros([TotalAtoms, TestSamples]) for i in range(TestSamples): atomidx = np.random.permutation(range(TotalAtoms))[:sp] TestCoef[atomidx,i] = np.abs(np.random.randn(sp)) Ytest = np.dot(D_gt, TestCoef) Ytest /= np.tile( np.sqrt((Ytest ** 2).sum(axis=0)), (n_features, 1) ) """ set parameters """ max_iter = 30 powerIterations = 5 consensusIterations = 10 D_init = generate_dict(n_features, TotalAtoms) d_init = np.abs(np.random.randn(1,n_features)) d_init /= np.linalg.norm(d_init) coefupdateiter = 20 """ distributed dictionary learning """ Dksvd = cloud_nnksvd(Y, TotalAtoms, D_init, sp, NodeN, networkg, d_init, max_iter, coefupdateiter, powerIterations, consensusIterations) TestDistriErrorMat = np.zeros([max_iter+1, NodeN]) for i in range(max_iter+1): print(i) for j in range(NodeN): temptheta2 = sparse_encode_nnmp(Ytest, Dksvd[:,:,i,j], sp, coefupdateiter) TestDistriErrorMat[i,j] = np.mean( ((Ytest - np.dot(Dksvd[:,:,i,j], temptheta2)) ** 2).sum(axis=0) ) """ localized dictionary learning """ D_local =
np.zeros([n_features, TotalAtoms, max_iter+1, NodeN])
numpy.zeros
""" ================================================ My own Gaussion Mixture Model for SV genotyping. Learn form scikit-learn ================================================ Author : <NAME> Date : 2014-01-06 14:33:45 """ import sys import numpy as np from scipy import linalg from sklearn import cluster from sklearn.base import BaseEstimator from sklearn.utils.extmath import logsumexp EPS = np.finfo(float).eps class GMM ( BaseEstimator ) : """ Copy from scikit-learn """ def __init__(self, n_components=1, covariance_type='diag', random_state=None, thresh=1e-2, min_covar=1e-3, n_iter=100, n_init=10, params='wmc', init_params='wmc'): self.n_components = n_components self.covariance_type = covariance_type self.thresh = thresh self.min_covar = min_covar self.random_state = random_state self.n_iter = n_iter self.n_init = n_init self.params = params self.init_params = init_params self.init_means = [] self.init_covars = [] self.category = [] # For genotype if not covariance_type in ['spherical', 'tied', 'diag', 'full']: raise ValueError( 'Invalid value for covariance_type: %s' % covariance_type ) if n_init < 1: raise ValueError('GMM estimation requires at least one run') self.weights_ = np.ones(self.n_components) / self.n_components # flag to indicate exit status of fit() method: converged (True) or # n_iter reached (False) def score_samples(self, X): """Return the per-sample likelihood of the data under the model. Compute the log probability of X under the model and return the posterior distribution (responsibilities) of each mixture component for each element of X. Parameters ---------- X: array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob : array_like, shape (n_samples,) Log probabilities of each data point in X. responsibilities : array_like, shape (n_samples, n_components) Posterior probabilities of each mixture component for each observation """ X = np.asarray(X) if X.ndim == 1: X = X[:, np.newaxis] if X.size == 0: return np.array([]), np.empty((0, self.n_components)) if X.shape[1] != self.means_.shape[1]: raise ValueError('The shape of X is not compatible with self') lpr = (log_multivariate_normal_density(X, self.means_, self.covars_,self.covariance_type) + np.log(self.weights_)) logprob = logsumexp(lpr, axis=1) responsibilities = np.exp(lpr - logprob[:, np.newaxis]) return logprob, responsibilities def predict(self, X): """ Predict label for data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = (n_samples,) """ logprob, responsibilities = self.score_samples(X) return responsibilities.argmax(axis=1) def predict_proba(self, X): """ Predict posterior probability of data under each Gaussian in the model. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- responsibilities : array-like, shape = (n_samples, n_components) Returns the probability of the sample for each Gaussian (state) in the model. """ logprob, responsibilities = self.score_samples(X) return responsibilities def fit(self, X): """ Copy form scikit-learn: gmm.py Estimate model parameters with the expectation-maximization algorithm. A initialization step is performed before entering the em algorithm. If you want to avoid this step, set the keyword argument init_params to the empty string '' when creating the GMM object. Likewise, if you would like just to do an initialization, set n_iter=0. Parameters ---------- X : array_like, shape (n, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. """ X = np.asarray(X, dtype=np.float) if X.ndim == 1: X = X[:, np.newaxis] if X.shape[0] < self.n_components: raise ValueError( 'GMM estimation with %s components, but got only %s samples' % (self.n_components, X.shape[0])) lowest_bias = np.infty c1,c2,c3 = '1/1', '0/1', '0/0' m1,m2,m3 = 0.001 , 0.5 , 1.0 v1,v2,v3 = 0.002, 0.002, 0.002 category = np.array([ [c1,c2,c3], [c1,c2], [c1,c3], [c2,c3] , [c1] , [c2] , [c3] ]) init_means = np.array([ [[ m1],[ m2] , [ m3]], [[ m1],[ m2]], [[m1],[m3]], [[m2],[m3]], [[m1]] , [[m2]] , [[m3]] ]) init_covars = np.array([ [[[ v1]],[[ v2]],[[ v3]]], [[[ v1]],[[ v2]]], [[[ v1]],[[ v3]]], [[[ v2]],[[ v3]]], [[[ v1]]] , [[[ v2]]] , [[[ v3]]] ]) bestCovars, bestMeans, bestWeights, bestConverged, bestCategory = [], [], [], [], [] for i, (m,v,c) in enumerate( zip(init_means, init_covars, category) ) : if i == 0 and self.n_components != 3 : continue if i < 4 and self.n_components == 1 : continue self.init_means = np.array(m) self.init_covars = np.array(v) self.category = np.array(c) best_params,bias = self.training(X) if lowest_bias > bias : lowest_bias = bias bestCovars = best_params['covars'] bestMeans = best_params['means'] bestWeights = best_params['weights'] bestConverged = best_params['converged'] bestCategory = best_params['category'] if self.n_components == 3 : break if self.n_components == 2 and i == 3 : break bestWeights = np.tile(1.0 / self.n_components, self.n_components) self.covars_ = bestCovars self.means_ = bestMeans self.weights_ = bestWeights self.converged_ = bestConverged self.category = bestCategory return self #### def training(self, X): max_log_prob = -np.infty lowest_bias = np.infty wmin, wmax = 0.8, 1.2 # Factor intervel [wmin, wmax] for w in np.linspace(wmin, wmax, self.n_init): if 'm' in self.init_params or not hasattr(self, 'means_'): #self.means_ = cluster.KMeans(n_clusters=self.n_components, random_state=self.random_state).fit(X).cluster_centers_ self.means_ = w * self.init_means if 'w' in self.init_params or not hasattr(self, 'weights_'): self.weights_= np.tile(1.0 / self.n_components, self.n_components) if 'c' in self.init_params or not hasattr(self, 'covars_'): """ cv = np.cov(X.T) + self.min_covar * np.eye(X.shape[1]) if not cv.shape : cv.shape = (1, 1) self.covars_ = distribute_covar_matrix_to_match_covariance_type(cv, self.covariance_type, self.n_components) """ self.covars_ = self.init_covars # EM algorithms log_likelihood = [] # reset self.converged_ to False self.converged_= False for i in range(self.n_iter): # Expectation step curr_log_likelihood, responsibilities = self.score_samples(X) log_likelihood.append(curr_log_likelihood.sum()) # Check for convergence. if i > 0 and abs(log_likelihood[-1] - log_likelihood[-2]) < self.thresh: self.converged_ = True break #Maximization step self._do_mstep(X, responsibilities, self.params, self.min_covar) if self.n_components == 3: curr_bias =(self.means_[0][0]-self.init_means[0][0])+np.abs(self.means_[1][0]-self.init_means[1][0])+(self.init_means[2][0]-self.means_[2][0]) elif self.n_components == 2: curr_bias =np.abs(self.means_[0][0] - self.init_means[0][0]) + np.abs(self.init_means[1][0] - self.means_[1][0]) elif self.n_components == 1: curr_bias =np.abs (self.means_[0][0] - self.init_means[0][0]) else : print >> sys.stderr, '[ERROR] The companent could only between [1,3]. But yours is ', self.n_components sys.exit(1) self.Label2Genotype() if w == wmin: max_log_prob = log_likelihood[-1] best_params = {'weights':self.weights_, 'means':self.means_, 'covars':self.covars_, 'converged':self.converged_, 'category':self.category} if self.converged_: lowest_bias = curr_bias if self.converged_ and lowest_bias > curr_bias: max_log_prob = log_likelihood[-1] lowest_bias = curr_bias best_params = {'weights': self.weights_, 'means': self.means_, 'covars': self.covars_, 'converged': self.converged_, 'category':self.category} # check the existence of an init param that was not subject to # likelihood computation issue. if np.isneginf(max_log_prob) and self.n_iter: raise RuntimeError( "EM algorithm was never able to compute a valid likelihood " + "given initial parameters. Try different init parameters " + "(or increasing n_init) or check for degenerate data." ) # if neendshift : # self.covars_ = tmp_params['covars'] # self.means_ = tmp_params['means'] # self.weights_ = tmp_params['weights'] # self.converged_ = tmp_params['converged'] # self.category = tmp_params['category'] return best_params, lowest_bias def _do_mstep(self, X, responsibilities, params, min_covar=0): """ Perform the Mstep of the EM algorithm and return the class weihgts. """ weights = responsibilities.sum(axis=0) weighted_X_sum = np.dot(responsibilities.T, X) inverse_weights = 1.0 / (weights[:, np.newaxis] + 10 * EPS) if 'w' in params: self.weights_ = (weights / (weights.sum() + 10 * EPS) + EPS) if 'm' in params: self.means_ = weighted_X_sum * inverse_weights if 'c' in params: covar_mstep_func = _covar_mstep_funcs[self.covariance_type] self.covars_ = covar_mstep_func(self, X, responsibilities, weighted_X_sum, inverse_weights,min_covar) return weights """ Here is just for genotyping process """ # Decide the different guassion mu(mean) to seperate the genotype def Label2Genotype(self): label2genotype = {} if self.converged_: if len(self.means_) > 3 : print >> sys.stderr, 'Do not allow more than 3 components. But you set', len(self.means_) sys.exit(1) for label,mu in enumerate(self.means_[:,0]): best_distance, bestIndx = np.infty, 0 for i,m in enumerate(self.init_means[:,0]): distance = np.abs(mu - m) if distance < best_distance: bestIndx = i best_distance = distance label2genotype[label] = self.category[bestIndx] # Put False if there are more than one 'label' points to the same 'genotype' g2c = {v:k for k,v in label2genotype.items()} if len(label2genotype) != len(g2c): self.converged_ = False else : label2genotype = { label: './.' for label in range( self.n_components ) } return label2genotype def Mendel(self, genotype, sample2col, family): ngIndx = [] m,n,num = 0.0,0.0,0 # m is match; n is not match for k,v in family.items(): #if v[0] not in sample2col or v[1] not in sample2col : continue if k not in sample2col or v[0] not in sample2col or v[1] not in sample2col: continue if k not in sample2col : print >> sys.stderr, 'The sample name is not in vcf file! ', k sys.exit(1) # c1 is son; c2 and c3 are the parents c1,c2,c3 = genotype[ sample2col[k] ], genotype[ sample2col[v[0]] ], genotype[ sample2col[v[1]] ] if c1 == './.' or c2 == './.' or c3 == './.': continue num += 1; ng = False if c2 == c3 : if c2 == '0/0' or c2 == '1/1' : if c1 == c2 : m += 1 else : n += 1 ng = True else : # c2 == '0/1' and c3 == '0/1' m += 1 elif c2 == '0/1' and c3 == '1/1' : if c1 == '0/0' : n += 1 ng = True else : m += 1 elif c2 == '0/1' and c3 == '0/0' : if c1 == '1/1' : n += 1 ng = True else : m += 1 elif c2 == '1/1' and c3 == '0/1' : if c1 == '0/0' : n += 1 ng = True else : m += 1 elif c2 == '1/1' and c3 == '0/0' : if c1 == '1/1' or c1 == '0/0': n += 1 ng = True else : m += 1 elif c2 == '0/0' and c3 == '0/1' : if c1 == '1/1' : n += 1 ng = True else : m += 1 elif c2 == '0/0' and c3 == '1/1' : if c1 == '0/0' or c1 == '1/1' : n += 1 ng = True else : m += 1 if ng : ngIndx.append(sample2col[k]) ngIndx.append(sample2col[v[0]]) ngIndx.append(sample2col[v[1]]) return m,n,num,set(ngIndx) ### def log_multivariate_normal_density(X, means, covars, covariance_type='full'): """ Log probability for full covariance matrices. """ X = np.asarray(X) if X.ndim == 1: X = X[:, np.newaxis] if X.size == 0: return np.array([]) if X.shape[1] != means.shape[1]: raise ValueError('The shape of X is not compatible with self') log_multivariate_normal_density_dict = { 'full' : _log_multivariate_normal_density_full } return log_multivariate_normal_density_dict[covariance_type]( X, means, covars ) def _log_multivariate_normal_density_full(X, means, covars, min_covar=1.e-7): """ Log probability for full covariance matrices. """ if hasattr(linalg, 'solve_triangular'): # only in scipy since 0.9 solve_triangular = linalg.solve_triangular else: # slower, but works solve_triangular = linalg.solve n_samples, n_dim = X.shape nmix = len(means) log_prob = np.empty((n_samples, nmix)) for c, (mu, cv) in enumerate(zip(means, covars)): try: cv_chol = linalg.cholesky(cv, lower=True) except linalg.LinAlgError: # The model is most probabily stuck in a component with too # few observations, we need to reinitialize this components cv_chol = linalg.cholesky(cv + min_covar * np.eye(n_dim), lower=True) cv_log_det = 2 * np.sum(np.log(np.diagonal(cv_chol))) cv_sol = solve_triangular(cv_chol, (X - mu).T, lower=True).T log_prob[:, c] = - .5 * (np.sum(cv_sol ** 2, axis=1) + n_dim * np.log(2 * np.pi) + cv_log_det) return log_prob def distribute_covar_matrix_to_match_covariance_type( tied_cv, covariance_type, n_components) : """ Create all the covariance matrices from a given template """ if covariance_type == 'spherical': cv = np.tile(tied_cv.mean() * np.ones(tied_cv.shape[1]), (n_components, 1)) elif covariance_type == 'tied': cv = tied_cv elif covariance_type == 'diag': cv = np.tile(np.diag(tied_cv), (n_components, 1)) elif covariance_type == 'full': cv = np.tile(tied_cv, (n_components, 1, 1)) else: raise ValueError("covariance_type must be one of " + "'spherical', 'tied', 'diag', 'full'") return cv def _covar_mstep_full(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): """Performing the covariance M step for full cases""" # Eq. 12 from <NAME>, "Fitting a Conditional Linear Gaussian # Distribution" n_features = X.shape[1] cv =
np.empty((gmm.n_components, n_features, n_features))
numpy.empty
''' hi_rct_sim.py === Description === Main simulation workhorse for the Heterogeneous-Intent Randomized Clinical Trial Recommender System === Parameters === - Unobserved Confounder Distributions: defines the priors on UCs, U: P(U) - True Reward Distribution: defines the causal distribution over P(Y | do(X), U) - Intent Distributions: define the intent distributions over latent causes P(I | U) - Sample Size: determines the same size of the training set, which will be simulated from parameters above === Results === - Excel and Graphical representations of u-regret experienced by agents in the parameterized MABUC ''' import numpy as np import plotly as py import plotly.graph_objs as go import time import multiprocessing from plotly import tools from joblib import Parallel, delayed from hi_rct_utl import * from hi_rct_lrn import HI_RCT_Learner from hi_rct_actor import HI_RCT_Actor from hi_rct_agent import * # ---------------------------------------------------------------- # Configure Simulation Parameters # ---------------------------------------------------------------- # UC Params P_S = np.array( # S = 0 1 [0.5, 0.5] ) P_R = np.array( # R = 0 1 [0.5, 0.5] ) P_U = [P_S, P_R] # True Reward Params P_TR = np.array([ # S = 0 0 1 1 # R = 0 1 0 1 [0.7, 0.8, 0.6, 0.7], # X = 0 [0.9, 0.7, 0.7, 0.5] # X = 1 ]) # Actor Intent Params P_I_A0 = np.array([ # I^{A0} = XOR(S,R) # S = 0 0 1 1 # R = 0 1 0 1 [1.0, 0.0, 0.0, 1.0], # X = 0 [0.0, 1.0, 1.0, 0.0] # X = 1 ]) P_I_A1 = np.array([ # I^{A1} = s # S = 0 0 1 1 # R = 0 1 0 1 [1.0, 1.0, 0.0, 0.0], # X = 0 [0.0, 0.0, 1.0, 1.0] # X = 1 ]) P_I_A2 = np.array([ # I^{A2} ~ s # S = 0 0 1 1 # R = 0 1 0 1 [0.96, 0.96, 0.04, 0.04], # X = 0 [0.04, 0.04, 0.96, 0.96] # X = 1 ]) P_I_A3 = np.array([ # I^{A3} ~ XOR(S,R) # S = 0 0 1 1 # R = 0 1 0 1 [0.96, 0.04, 0.04, 0.96], # X = 0 [0.04, 0.96, 0.96, 0.04] # X = 1 ]) P_I = [P_I_A0, P_I_A1, P_I_A2] P_I_RDT = [P_I_A1, P_I_A2, P_I_A2, P_I_A2, P_I_A2, P_I_A0, P_I_A3, P_I_A3, P_I_A3, P_I_A3] best_actor_inds = (0, 5) # Used to compare performance against "oracle" agent U_DOM = X_DOM = Y_DOM = [0, 1] U_COUNT = len(P_U) I_COUNT = len(P_I) # Sampling and MC Parameters SIM_NAME = "_10act_iec_samp_w_cal" N = 10000 # Training set sample size IEC_TOL = 0.10 # IEC Difference Tolerance CAL_SIZE = 20 # Calibration set size for relevant agents RDC_N = 1000 # Number of MC simulations for RDC sim RDC_T = 10000 # Number of trials per MC simulation for RDC sim VERBOSE = False # Enables [True] / Disables reporting some features REP_INT = 10 # Interval of sims before reporting N_CORES = multiprocessing.cpu_count()-1 np.random.seed(0) # For reproducible results # ---------------------------------------------------------------- # Simulation Functions # ---------------------------------------------------------------- def gen_sample (): ''' Simulates the HI-RCT with each unit t consisting of: [U_t, {I^{A_i}_t}+, X_t, Y_t] ''' # Draw UC States first UCs = np.empty((N, U_COUNT), int) for i, u in enumerate(P_U): UCs[:, i] = np.random.choice(U_DOM, p=u, size=N) # Draw Intents, Randomized Treatments, and then Outcomes ITOs = np.empty((N, I_COUNT + 2), int) for j in range(N): u = UCs[j, :] u_ind = get_dist_index(u) # Intents drawn from state of U for i, a in enumerate(P_I): ITOs[j, i] = np.random.choice(X_DOM, p=a[:, u_ind]) # Treatment assigned at random x = ITOs[j, I_COUNT] = np.random.choice(X_DOM) # Reward Y sampled based on U, X ITOs[j, I_COUNT + 1] = np.random.choice(Y_DOM, p=[1 - P_TR[x, u_ind], P_TR[x, u_ind]]) return np.hstack((UCs, ITOs)) def run_sim (actors, agents, n): ''' Runs a single MC iteration of the simulation ''' if (n % REP_INT == 0): print(" ...starting %d / %d simulations" % (n, RDC_N)) AG_COUNT = len(agents) ag_reg = np.zeros((AG_COUNT, RDC_T)) ag_opt = np.zeros((AG_COUNT, RDC_T)) for a in agents: a.clear_hist() a.calibrate() # For agents that employ HI-RCT only # RDC Test-set data created a priori for fair comparison UCs = np.empty((RDC_T, len(P_U)), int) for i, u in enumerate(P_U): UCs[:, i] = np.random.choice(U_DOM, p=u, size=RDC_T) for t in range(RDC_T): # Get current round's actor intents u_t = UCs[t, :] u_ind = get_dist_index(u_t) # Find the optimal action and reward rate for this t best_x_t = np.argmax(P_TR[:, u_ind]) max_t = P_TR[best_x_t, u_ind] i_t = [a.get_intent(u_t) for a in actors] # Determine chosen action and reward for each agent # within this trial, t for a_ind, ag in enumerate(agents): x_t = ag.choose(i_t) y_t = np.random.choice(Y_DOM, p=[1 - P_TR[x_t, u_ind], P_TR[x_t, u_ind]]) ag.give_feedback(i_t, x_t, y_t) r_t = max_t - y_t ag_reg[a_ind, t] += r_t ag_opt[a_ind, t] += int(x_t == best_x_t) return [ag_reg, ag_opt] def gen_graph (cum_reg, cum_opt, names, colors): ''' Reporting mechanism that generates graphical reports on the probability that each agent takes the optimal action and the agent's cumulative u-regret, both as a function of the current trial ''' AG_COUNT = cum_reg.shape[0] traces = [] fig = tools.make_subplots(rows=1, cols=2, subplot_titles=('Probability of Optimal Action', 'Cumulative u-Regret')) fig['layout']['xaxis1'].update(title='Trial', range=[0, RDC_T]) fig['layout']['xaxis2'].update(title='Trial', range=[0, RDC_T]) fig['layout']['yaxis1'].update(title='Probability of Optimal Action') fig['layout']['yaxis2'].update(title='Cumulative u-Regret') # Plot cumulative u-regret for a in range(AG_COUNT): trace = go.Scatter( x = list(range(RDC_T)), y = cum_opt[a, :], line = dict( color = colors[a] ), name = names[a] ) fig.append_trace(trace, 1, 1) # Plot optimal arm choice for a in range(AG_COUNT): trace = go.Scatter( x = list(range(RDC_T)), y = cum_reg[a, :], line = dict( color = colors[a] ), name = "[REG]" + names[a], showlegend = False ) fig.append_trace(trace, 1, 2) py.offline.plot(fig, filename=("./plots/cum_reg" + SIM_NAME + ".html")) # ---------------------------------------------------------------- # Simulation Workhorse # ---------------------------------------------------------------- if __name__ == "__main__": start_t = time.clock() print("=== HI-RCT Simulation Beginning ===") # NOTE: Can be placed inside of the sim loop to generate each # MC iteration: # ---------------- # Generate training data for this run complete_data = gen_sample() training_data = complete_data[:,2:] # Train model on training set to learn IECs training_model = HI_RCT_Learner(complete_data, training_data, IEC_TOL, U_DOM, X_DOM, Y_DOM, VERBOSE=VERBOSE) # ---------------- # Configure current run's actors actors = [HI_RCT_Actor(X_DOM, Y_DOM, a) for a in P_I_RDT] # Initialize learning agents agents = [ Agent_HI_RDT(training_model, actors), Agent_HI_RDT_IEC_Learned(training_model, actors, IEC_TOL), Agent_HI_RCT_RDT_Rand(training_model, actors, IEC_TOL, CAL_SIZE), Agent_HI_RCT_RDT_Heur(training_model, actors, IEC_TOL, CAL_SIZE), Agent_HI_RDT_IEC_Given(training_model, actors, best_actor_inds), Agent_HI_RDT_IEC_Given_Cal(training_model, actors, best_actor_inds, IEC_TOL, CAL_SIZE), ] ag_names = [ "HI-RDC-A", "HI-RDC-L", "HI-RDC-RCT-R", "HI-RDC-RCT-H", "Oracle", "Oracle w/ Cal", ] ag_colors = [ ('rgb(255, 0, 0)'), ('rgb(0, 0, 255)'), ('rgb(255, 165, 0)'), ('rgb(255, 0, 255)'), ('rgb(0, 128, 0)'), ('rgb(112, 128, 144)'), ('rgb(255, 215, 0)'), ('rgb(128, 128, 0)') ] AG_COUNT = len(agents) # Record-keeping data structures across simulations round_reg = np.zeros((AG_COUNT, RDC_T)) round_opt = np.zeros((AG_COUNT, RDC_T)) cum_reg = np.zeros((AG_COUNT, RDC_T)) cum_reg_rep = np.zeros((AG_COUNT, RDC_N)) # MAIN WORKHORSE: sim_results = Parallel(n_jobs=N_CORES, verbose=1)(delayed(run_sim)(actors, agents, i) for i in range(RDC_N)) for (ind, r) in enumerate(sim_results): cum_reg_rep[:, ind] = [np.sum(r[0][i, :]) for i in range(AG_COUNT)] round_reg += r[0] round_opt += r[1] # Reporting phase: for a in range(AG_COUNT): cum_reg[a] = np.array([np.sum(round_reg[a, 0:i+1]) for i in range(RDC_T)]) cum_reg = cum_reg / RDC_N cum_opt = round_opt / RDC_N gen_graph(cum_reg, cum_opt, ag_names, ag_colors) np.savetxt("./plots/cum_reg_rep" + SIM_NAME + ".csv", cum_reg_rep, delimiter=",")
np.savetxt("./plots/cum_reg" + SIM_NAME + ".csv", cum_reg, delimiter=",")
numpy.savetxt
import sys import numpy as np from timeit import default_timer as timer from scipy.sparse import block_diag, coo_matrix from common.estimator import EstimatorModel from common.regression import max_affine_predict from optim.quadprog import qp_solve, convert_matrix_to_qp_solver_format, QP_BACKEND__DEFAULT class PCNLSEstimatorModel(EstimatorModel): """The model of PCNLS estimators.""" def __init__( self, weights, nqpiter, seconds, obj_val, proj_obj_val, max_viol, regularizer, dual_vars, ): EstimatorModel.__init__(self, weights) self.regularizer = regularizer self.nqpiter = nqpiter self.seconds = seconds self.obj_val = obj_val self.proj_obj_val = proj_obj_val self.max_viol = max_viol self.dual_vars = dual_vars def pcnls_train( X, y, partition, regularizer=0.0, L=None, backend=QP_BACKEND__DEFAULT, verbose=False, init_weights=None, init_dual_vars=None, ): """Training a PCNLS estimator. :param X: data matrix (each row is a sample) :param y: target vector :param partition: partition to be induced by the trained max-affine function :param regularizer: ridge regularization parameter on the gradients :param L: maximum Lipschitz constant (as the max-norm of the gradients) :param backend: quadratic programming solver :param verbose: whether to print verbose output :param init_weights: warm starting weights for QP :param init_dual_vars: warm starting dual variables for QP :return: PCNLSEstimatorModel object having the results """ n, d = X.shape assert len(y) == n if len(y.shape) > 1: assert len(y.shape) == 2 and y.shape[1] == 1 y = y.ravel() if verbose > 0: print('Training PCNLS, n: {}, K: {}, d: {}, L: {}, regularizer: {}'.format( partition.npoints, partition.ncells, X.shape[1], L, regularizer, )) start = timer() H, g, A, b, cell_idx = pcnls_qp_data( X, y, partition, regularizer=regularizer, L=L, ) if init_weights is not None: init_weights = init_weights.ravel() nqpiter = 1 res = qp_solve( H, g, A, b, x0=init_weights, y0=init_dual_vars, backend=backend, verbose=verbose, ) weights = res.primal_soln dual_vars = res.dual_soln max_viol = max(0.0, np.max(A.dot(weights) - b)) obj_val = 0.5*weights.dot(H.dot(weights)) + g.dot(weights) weights = np.reshape(weights, (partition.ncells, (1+X.shape[1]))) yhat = max_affine_predict(weights, X) proj_obj_val = 0.5 * (np.sum(np.square(y - yhat)) - y.dot(y)) return PCNLSEstimatorModel( weights=weights, nqpiter=nqpiter, seconds=(timer() - start), obj_val=obj_val, proj_obj_val=proj_obj_val, max_viol=max_viol, regularizer=regularizer, dual_vars=dual_vars, ) def _add_L_to_Ab(L, K, d, A_data, A_rows, A_cols, row_idx): """Adding the Lipschitz constraints to the end of the constraint parameters A and b.""" d1 = d + 1 if L is not None: for k in range(K): col0 = k * d1 + 1 for l in range(d): A_data += [1.0, -1.0] A_rows += [row_idx, row_idx + 1] row_idx += 2 col = col0 + l A_cols += [col, col] b = np.zeros(row_idx) if L is not None: b[-2*K*d:] = L return A_data, A_rows, A_cols, row_idx, b def pcnls_qp_data( X, y, partition, regularizer=0.0, L=None, backend=QP_BACKEND__DEFAULT, ): """Constructing max-affine convex regression matrices for quadratic programming (QP). QP format: 0.5*(w'*H*w) + g'*w + 0.5*regularizer*(w'*w), s.t. A*w <= b and max_i|w[i]| <= L. :param X: data matrix (each row is a sample, without augmented leading 1s) :param y: target vector :param partition: induced partition by the considered max-affine functions :param regularizer: ridge regression regularizer :param L: maximum Lipschitz constant (as the max-norm of the gradients) :param backend: quadratic programming solver :return: QP parameters H, g, A, b, and the constraint row index for each cell >>> from common.partition import singleton_partition >>> X = np.array([[1.1, 1.1], [-1.2, 1.2], [-1.3, -1.3], [0.4, 0.4], [1.5, -1.5]]) >>> y = np.array([1.1, 1.2, 1.3, 0.4, 0.5]) >>> p = singleton_partition(len(y)) >>> H, g, A, b, cell_idx = pcnls_qp_data(X, y, p, regularizer=0.1) >>> cell_idx array([ 0, 4, 8, 12, 16]) >>> H.shape (15, 15) >>> np.linalg.matrix_rank(H.toarray()) 15 >>> H.nnz 45 >>> H.toarray()[:, :9] array([[ 1. , 1.1 , 1.1 , 0. , 0. , 0. , 0. , 0. , 0. ], [ 1.1 , 1.31, 1.21, 0. , 0. , 0. , 0. , 0. , 0. ], [ 1.1 , 1.21, 1.31, 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 1. , -1.2 , 1.2 , 0. , 0. , 0. ], [ 0. , 0. , 0. , -1.2 , 1.54, -1.44, 0. , 0. , 0. ], [ 0. , 0. , 0. , 1.2 , -1.44, 1.54, 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 1. , -1.3 , -1.3 ], [ 0. , 0. , 0. , 0. , 0. , 0. , -1.3 , 1.79, 1.69], [ 0. , 0. , 0. , 0. , 0. , 0. , -1.3 , 1.69, 1.79], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ]]) >>> g array([-1.1 , -1.21, -1.21, -1.2 , 1.44, -1.44, -1.3 , 1.69, 1.69, -0.4 , -0.16, -0.16, -0.5 , -0.75, 0.75]) >>> A.shape (20, 15) >>> np.linalg.matrix_rank(A.toarray()) 12 >>> A.toarray()[:, :9] array([[-1. , -1.1, -1.1, 1. , 1.1, 1.1, 0. , 0. , 0. ], [-1. , -1.1, -1.1, 0. , 0. , 0. , 1. , 1.1, 1.1], [-1. , -1.1, -1.1, 0. , 0. , 0. , 0. , 0. , 0. ], [-1. , -1.1, -1.1, 0. , 0. , 0. , 0. , 0. , 0. ], [ 1. , -1.2, 1.2, -1. , 1.2, -1.2, 0. , 0. , 0. ], [ 0. , 0. , 0. , -1. , 1.2, -1.2, 1. , -1.2, 1.2], [ 0. , 0. , 0. , -1. , 1.2, -1.2, 0. , 0. , 0. ], [ 0. , 0. , 0. , -1. , 1.2, -1.2, 0. , 0. , 0. ], [ 1. , -1.3, -1.3, 0. , 0. , 0. , -1. , 1.3, 1.3], [ 0. , 0. , 0. , 1. , -1.3, -1.3, -1. , 1.3, 1.3], [ 0. , 0. , 0. , 0. , 0. , 0. , -1. , 1.3, 1.3], [ 0. , 0. , 0. , 0. , 0. , 0. , -1. , 1.3, 1.3], [ 1. , 0.4, 0.4, 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 1. , 0.4, 0.4, 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 1. , 0.4, 0.4], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 1. , 1.5, -1.5, 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 1. , 1.5, -1.5, 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 1. , 1.5, -1.5], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ]]) >>> A.nnz 120 >>> b.shape (20,) >>> np.sum(np.abs(b)) 0.0 >>> H, g, A, b, cell_idx = pcnls_qp_data(X, y, p, L=5.0) >>> A.toarray()[:33, :9] array([[-1. , -1.1, -1.1, 1. , 1.1, 1.1, 0. , 0. , 0. ], [-1. , -1.1, -1.1, 0. , 0. , 0. , 1. , 1.1, 1.1], [-1. , -1.1, -1.1, 0. , 0. , 0. , 0. , 0. , 0. ], [-1. , -1.1, -1.1, 0. , 0. , 0. , 0. , 0. , 0. ], [ 1. , -1.2, 1.2, -1. , 1.2, -1.2, 0. , 0. , 0. ], [ 0. , 0. , 0. , -1. , 1.2, -1.2, 1. , -1.2, 1.2], [ 0. , 0. , 0. , -1. , 1.2, -1.2, 0. , 0. , 0. ], [ 0. , 0. , 0. , -1. , 1.2, -1.2, 0. , 0. , 0. ], [ 1. , -1.3, -1.3, 0. , 0. , 0. , -1. , 1.3, 1.3], [ 0. , 0. , 0. , 1. , -1.3, -1.3, -1. , 1.3, 1.3], [ 0. , 0. , 0. , 0. , 0. , 0. , -1. , 1.3, 1.3], [ 0. , 0. , 0. , 0. , 0. , 0. , -1. , 1.3, 1.3], [ 1. , 0.4, 0.4, 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 1. , 0.4, 0.4, 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 1. , 0.4, 0.4], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 1. , 1.5, -1.5, 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 1. , 1.5, -1.5, 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 1. , 1.5, -1.5], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , -1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , -1. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 1. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , -1. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 1. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , -1. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 1. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. , -1. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 1. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , -1. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ]]) >>> b array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5.]) """ n, d = X.shape K = partition.ncells assert n == partition.npoints assert n >= K, 'Too few data points, n: {}, K: {}'.format(n, K) assert n > d, 'Too few data points, n: {}, d: {}'.format(n, d) if y.shape == (n, 1): y = y[:, 0] assert y.shape == (n,), 'Invalid y.shape: {}'.format(y.shape) X = np.insert(X, 0, 1.0, axis=1) d1 = d+1 # bias extended input dimension assert X.shape == (n, d1) nvars = K*d1 # number of variables of QP regmat = None if regularizer > 0.0: regmat = regularizer * np.eye(d1) regmat[0, 0] = 0.0 H_mats = [] g_mats = [] A_data = [] A_rows = [] A_cols = [] row_idx = 0 cell_idx = [] for j, cell_j in enumerate(partition.cells): cell_idx.append(row_idx) cellX = X[cell_j, :] cell_size = cellX.shape[0] cellXX = np.dot(cellX.transpose(), cellX) if regmat is not None: cellXX += regmat H_mats.append(cellXX) g_mats.append(-np.dot(cellX.transpose(), y[cell_j])) data = list(np.hstack((cellX, -cellX)).flatten()) row_offsets = np.kron(range(cell_size), np.ones(2*d1)) col_j = [j*d1+offset for offset in range(d1)] for k in range(K): if k == j: continue rows = [row_idx + row for row in row_offsets] row_idx += cell_size col_k = [k*d1+offset for offset in range(d1)] A_data += data A_rows += rows A_cols += list(np.kron(col_k + col_j,
np.ones((cell_size, 1))
numpy.ones
import h5py import numpy as np import numpy.ma as ma import numpy.lib.recfunctions as rfn import logging ref_region_dtype = np.dtype([('start','i8'), ('stop','i8')]) def print_ref(grp): ''' Print out all references in file (or group) ''' l = list() grp.visititems(lambda n,d: l.append((n,d))\ if n.endswith('/ref') and isinstance(d,h5py.Dataset) else None ) if not len(l): return max_length = max([len(n) for n,d in l]) for n,d in l: print(n+' '*(max_length-len(n))+' '+str(d)) def print_data(grp): ''' Print out all datasets in file (or group) ''' l = list() grp.visititems(lambda n,d: l.append((n,d))\ if n.endswith('/data') and isinstance(d,h5py.Dataset) else None ) if not len(l): return max_length = max([len(n) for n,d in l]) for n,d in l: print(n+' '*(max_length-len(n))+' '+str(d)) def print_attr(grp): ''' Print out all attributes in file (or group) ''' l = list() grp.visititems(lambda n,d: l.append((n,d.attrs))\ if len(d.attrs) and not (n.endswith('/ref') or n.endswith('/ref_region'))\ else None ) if not len(l): return max_length = max([len(k) for n,d in l for k in d]) for n,d in l: print(n) for k,v in d.items(): print('\t'+k+':'+' '*(max_length-len(k))+' '+str(v)) def dereference_chain(sel, refs, data=None, regions=None, mask=None, ref_directions=None, indices_only=False): ''' Load a "chain" of references. Allows traversal of multiple layers of references, e.g. for three datasets ``A``, ``B``, and ``C`` linked ``A->B->C``. One can use a selection in ``A`` and load the ``C`` data associated with it. Example usage:: sel = slice(0,100) refs = [f['A/ref/B/ref'], f['C/ref/B/ref']] ref_dirs = [(0,1), (1,0)] data = f['C/data'] regions = [f['A/ref/B/ref_region'], f['B/ref/C/ref_region']] mask = np.r_[sel] > 50 c_data = dereference_chain(sel, refs, data, regions=regions, mask=mask, ref_directions=ref_dirs) c_data.shape # (100, max_a2b_assoc, max_b2c_assoc) :param sel: iterable of indices, a slice, or an integer, see ``sel`` argument in ``dereference`` :param refs: a list of reference datasets to load, in order, see ``ref`` argument in ``dereference`` :param data: a dataset to load dereferenced data from, optional if ``indices_only=True`` :param regions: lookup table into ``refs`` for each selection, see ``region`` argument in ``dereference`` :param mask: a boolean mask into the first selection, true will not load the entry :param ref_directions: intepretation of reference datasets, see ``ref_direction`` argument in ``dereference`` :param indices_only: flag to skip loading the data and instead just return indices into the final dataset ''' sel = np.r_[sel] mask = np.zeros_like(sel, dtype=bool) | (mask if mask is not None else False) sel = ma.array(sel, mask=mask, shrink=False) shape = (len(sel),) dref = None nsteps = len(refs) for i in range(nsteps): dset = data if i == nsteps-1 else None ref = refs[i] ref_dir = ref_directions[i] if ref_directions else (0,1) # default to (0,1) reg = regions[i] if regions else None dref = dereference(sel.data.ravel(), ref, data=dset, region=reg, mask=mask.ravel(), ref_direction=ref_dir, indices_only=True if i != nsteps-1 else indices_only) shape += dref.shape[-1:] mask = np.expand_dims(mask, axis=-1) | \ (rfn.structured_to_unstructured(dref.mask).any(axis=-1).reshape(shape) \ if dref.mask.dtype.kind == 'V' else dref.mask.reshape(shape)) dref = ma.array(dref.data.reshape(shape), mask=mask, shrink=False) if i != nsteps-1: sel = dref return dref def dereference(sel, ref, data=None, region=None, mask=None, ref_direction=(0,1), indices_only=False, as_masked=True): ''' Load ``data`` referred to by ``ref`` that corresponds to the desired positions specified in ``sel``. :param sel: iterable of indices, an index, or a ``slice`` to match against ``ref[:,ref_direction[0]]``. Return value will have same first dimension as ``sel``, e.g. ``dereference(slice(100), ref, data).shape[0] == 100`` :param ref: a shape (N,2) ``h5py.Dataset`` or array of pairs of indices linking ``sel`` and ``data`` :param data: a ``h5py.Dataset`` or array to load dereferenced data from, can be omitted if ``indices_only==True`` :param region: a 1D ``h5py.Dataset`` or array with a structured array type of [('start','i8'), ('stop','i8')]; 'start' defines the earliest index within the ``ref`` dataset for each value in ``sel``, and 'stop' defines the last index + 1 within the ``ref`` dataset (optional). If a ``h5py.Dataset`` is used, the ``sel`` spec will be used to load data from the dataset (i.e. ``region[sel]``), otherwise ``len(sel) == len(region)`` and a 1:1 correspondence is assumed :param mask: mask off specific items in selection (boolean, True == don't dereference selection), len(mask) == len(np.r_[sel]) :param ref_direction: defines how to interpret second dimension of ``ref``. ``ref[:,ref_direction[0]]`` are matched against items in ``sel``, and ``ref[:,ref_direction[1]]`` are indices into the ``data`` array (``default=(0,1)``). So for a simple example: ``dereference([0,1,2], [[1,0], [2,1]], ['A','B','C','D'], ref_direction=(0,1))`` returns an array equivalent to ``[[],['A'],['B']]`` and ``dereference([0,1,2], [[1,0], [2,1]], ['A','B','C','D'], ref_direction=(1,0))`` returns an array equivalent to ``[['B'],['C'],[]]`` :param indices_only: if ``True``, only returns the indices into ``data``, does not fetch data from ``data`` :returns: ``numpy`` masked array (or if ``as_masked=False`` a ``list``) of length equivalent to ``sel`` ''' # set up selection sel_mask = mask sel_idcs = np.r_[sel][~sel_mask] if sel_mask is not None else np.r_[sel] n_elem = len(sel_idcs) if sel_mask is None else len(sel_mask) return_dtype = data.dtype if not indices_only else ref.dtype if not len(sel_idcs) and n_elem: # special case for if there is nothing selected in the mask if as_masked: return ma.array(np.empty((n_elem,1), dtype=return_dtype), mask=True, shrink=False) else: return [np.empty(0, data.dtype) for _ in range(n_elem)] elif not len(sel_idcs): if as_masked: return ma.array(np.empty((0,1), dtype=return_dtype), mask=True, shrink=False) else: return [] # load fast region lookup if region is not None: if isinstance(region, h5py.Dataset): if isinstance(sel, slice): region = region[sel] # load parent reference region information else: region_offset = np.min(sel_idcs) region_sel = slice(region_offset, int(np.max(sel_idcs)+1)) region = region[region_sel][sel_idcs - region_offset] else: region = region[sel_idcs] # load relevant references region_valid = region['start'] != region['stop'] if region is not None else None if not region is None and np.count_nonzero(region_valid) == 0: # special case for if there are no valid references if as_masked: return ma.array(np.empty((n_elem,1), dtype=return_dtype), mask=True) else: return [np.empty(0, return_dtype) for _ in range(n_elem)] ref_offset = np.min(region[region_valid]['start']) if region is not None else 0 ref_sel = slice(ref_offset, int(np.max(region[region_valid]['stop']))) if region is not None else slice(ref_offset,len(ref)) ref = ref[ref_sel] # if no valid references, return if len(ref) == 0: if as_masked: return ma.array(np.empty((n_elem,1), dtype=return_dtype), mask=True) else: return [np.empty(0, return_dtype) for _ in range(n_elem)] # load relevant data dset_offset = np.min(ref[:,ref_direction[1]]) dset_sel = slice(dset_offset, int(np.max(ref[:,ref_direction[1]])+1)) dset = data[dset_sel] if not indices_only else None # load child dataset region # create a region array, if one was not given if region is None: region = np.zeros(len(sel_idcs), dtype=ref_region_dtype) region['start'] = ref_sel.start region['stop'] = ref_sel.stop if not as_masked: # dump into list using subregion masks if indices_only: indices = [ ref[st:sp,ref_direction[1]][ (ref[st:sp,ref_direction[0]] == i) ] for i,st,sp in zip(sel_idcs, region['start']-ref_offset, region['stop']-ref_offset) ] return indices else: data = [ dset[ref[st:sp,ref_direction[1]][ (ref[st:sp,ref_direction[0]] == i) ] - dset_offset] for i,st,sp in zip(sel_idcs, region['start']-ref_offset, region['stop']-ref_offset) ] return data # the rest of this is index manipulation to convert from sel -> ref -> data # first using only the unique references and then casting it back into the # original selection # first get mapping from unique selection back into the selection uniq_sel, uniq_inv = np.unique(sel_idcs, return_inverse=True) # only use references that are relevant to the selection ref_mask = np.isin(ref[:,ref_direction[0]], uniq_sel) if not np.any(ref_mask): # special case if no valid references for selection return ma.array(
np.empty((n_elem,1), dtype=return_dtype)
numpy.empty
import numpy as np import scipy.ndimage as ndi import SimpleITK import warnings from skimage.measure import regionprops import cv2 CORRECTION = 255 def nodule_size(nodule): tmp = nodule.copy() tmp[tmp != 0] = 255 tmp = tmp.astype(int) properties = regionprops(tmp) width = 0.0 height = 0.0 for p in properties: min_row, min_col, max_row, max_col = p.bbox width = max_row - min_row height = max_col - min_col return width, height def get_nodule_diameter(seg_image): seg_image = np.mean(seg_image, axis=1) seg_image[seg_image != 0] = 255 seg_image = seg_image.astype(int) properties = regionprops(seg_image) for p in properties: min_row, min_col, max_row, max_col = p.bbox diameter = max(max_row - min_row, max_col - min_col) return diameter def generate_2d(X_ct, p_lambda=0.85): ''' Generate 2D digitally reconstructed radiographs from CT scan. (DRR, fake CXR, simulated CXR) X_ct: CT scan p-lambda: β controls the boosting of X-ray absorption as the tissue density increases. We have chosen β=0.85 for our experiments after performing a visual comparison with real chest X-rays. ''' X_ct[X_ct > 400] = 400 X_ct[X_ct < -500] = -500 X_ct += 1024 # 1424 524 698.748232 X_ct = X_ct / 1000.0 X_ct *= p_lambda X_ct[X_ct > 1] = 1 # 1.0 0.4454 0.5866707652 X_ct_2d = np.mean(np.exp(X_ct), axis=1) return X_ct_2d def resample(image, voxel_spacing, new_spacing=None, new_shape=None, order=1): """ Resamples the scan according to the either new spacing or new shape When new_spacing and new_shape are provided, new_shape has the priority use order = 1 for nearest neighbor and order = 3 for cubic interpolation @author: <NAME>+ <NAME> """ assert new_spacing is not None or new_shape is not None if np.dtype(image[0, 0, 0]) is np.dtype(np.int16) and np.min( image) < 0 and np.max(image) > 50 and order == 1: warnings.warn( "Order 1 selected for image that looks as a scan, try using order 3" ) if np.dtype(image[0, 0, 0]) in [ np.dtype(np.uint8), np.dtype(np.int16) ] and np.min(image) == 0 and
np.max(image)
numpy.max
#!/usr/bin/env python import numpy as np from time import time import pyfftw from numpy.fft import fft, ifft, fftshift, ifftshift, fft2, ifft2 from scipy.special import jv as besselj import finufftpy def translations_brute_force(Shathat, Mhat, cmul_trans): # Shathat: (q, te, k) # Mhat: (im, k × γ) # cmul_trans: (tr, k × γ) n_trans = cmul_trans.shape[-2] n_images = Mhat.shape[-2] Shathat = Shathat.transpose((2, 0, 1)) # Shathat: (q, te, k) n_templates = Shathat.shape[-2] ngridr = Shathat.shape[-1] n_gamma = Shathat.shape[-3] Mhat = Mhat.reshape((n_images, ngridr, n_gamma)) cmul_trans = cmul_trans.reshape((n_trans, ngridr, n_gamma)) # Mhat: (im, k, γ) # cmul_trans: (tr, k, γ) Mhat = Mhat[:, np.newaxis, :, :] cmul_trans = cmul_trans[np.newaxis, :, :, :] # Mhat: (im, 1, k, γ) # cmul_trans: (1, tr, k, γ) Mhat = Mhat.transpose((3, 2, 0, 1)).copy() cmul_trans = cmul_trans.transpose((3, 2, 0, 1)).copy() # Mhat: (γ, k, im, 1) # cmul_trans: (γ, k, 1, tr) Mhat_trans = pyfftw.empty_aligned((n_gamma, ngridr, n_images, n_trans), dtype='complex128') # Mhat_trans: (γ, k, im × tr) plan = pyfftw.FFTW(Mhat_trans, Mhat_trans, axes=(0,), direction='FFTW_FORWARD', flags=('FFTW_ESTIMATE',), threads=12) tmr_start = time() np.multiply(Mhat, cmul_trans, out=Mhat_trans) plan() Mhathat_trans = Mhat_trans.reshape((n_gamma, ngridr, n_images * n_trans)) # Mhathat_trans: (q, k, im × tr) ptm = time() - tmr_start tmr_start = time() c_n2 = np.zeros((n_gamma, n_templates, n_images*n_trans), dtype=np.complex128) # c_n2: (q, te, im × tr) for k1 in range(n_gamma): k1p = (k1 + n_gamma // 2) % n_gamma c_n2[k1, :, :] = np.matmul(np.conj(Shathat[k1p, :, :]), Mhathat_trans[k1, :, :]) c_n2 = 2 * np.pi * c_n2 c_n2 = ifft(c_n2, axis=0) # c_n2: (γ, te, im × tr) c_n2 = c_n2.reshape((n_gamma, n_templates, n_images, n_trans)) c_n2 = np.real(c_n2) # c_n2: (γ, te, im, tr) tm = time() - tmr_start return c_n2, ptm, tm def translations_brute_force_batch(Shathat, Mhat, pf_grid, tr_grid, n_psi, n_batch_im=None, n_batch_trans=500): n_templates = Shathat.shape[0] n_images = Mhat.shape[0] trans = tr_grid['trans'] n_trans = tr_grid['n_trans'] if n_batch_im is None: n_batch_im = n_images n_batch_trans = min(n_batch_trans, n_trans) zprods1 = np.zeros((n_psi, n_templates, n_images, n_trans)) # zprods1: (γ, te, im, tr) tm1 = 0 precomp1 = 0 for cn in range(0, n_images, n_batch_im): idx_im = range(cn, min(cn + n_batch_im, n_images)) for ttt in range(0, n_trans, n_batch_trans): idx_trans = range(ttt, min(ttt + n_batch_trans, n_trans)) cmul_trans = pft_phase_shift(-trans[idx_trans, :], pf_grid) # cmul_trans: (tr, k × γ) tmp, ptm, tm = translations_brute_force( Shathat, Mhat[idx_im, :], cmul_trans) zprods1[np.ix_(range(n_psi), range(n_templates), idx_im, idx_trans)] = tmp precomp1 += ptm tm1 += tm zprods1 = zprods1.transpose((2, 1, 0, 3)) return zprods1, precomp1, tm1 def svd_decomposition_alignment(SSS, Mhat, n_bessel, all_rnks, BigMul_left): ngridr = SSS.shape[-1] n_templates = SSS.shape[-2] n_gamma = SSS.shape[-3] n_images = Mhat.shape[-2] n_trans = BigMul_left.shape[-1] tmr_start = time() Mhathat = Mhat.reshape((n_images, ngridr, n_gamma)) Mhathat = fftshift(fft(Mhathat, axis=-1), axes=-1) / n_gamma MMM = np.zeros((n_images, 2 * n_bessel + 1, ngridr, n_gamma), dtype=np.complex128) for im in range(n_images): for qp in range(-n_bessel, n_bessel + 1): tmp = Mhathat[im, :, :] MMM[im, qp + n_bessel, :, :] = np.roll(tmp, -qp, axis=-1) MMM = MMM.transpose((1, 3, 2, 0)).copy() precomp2 = time() - tmr_start tmr_start = time() BigMul_right = np.zeros((sum(all_rnks), n_gamma, n_templates, n_images), dtype=np.complex128) for qp in range(-n_bessel, n_bessel + 1): rnk = all_rnks[qp + n_bessel] ofst = sum(all_rnks[:qp + n_bessel]) for ll in range(rnk): for q in range(n_gamma): tmp = np.matmul(SSS[ofst + ll, q, :, :], MMM[qp + n_bessel, q, :, :]) BigMul_right[ofst + ll, q, :, :] = tmp BigMul_right = BigMul_right.transpose((3, 2, 1, 0)).copy() c_n = np.zeros((n_images, n_templates, n_gamma, n_trans), dtype=np.complex128) for im in range(n_images): for tt in range(n_templates): c_n[im, tt, :, :] = np.matmul(BigMul_right[im, tt, :, :], BigMul_left) c_n = 2 * np.pi * c_n zprods = ifft(ifftshift(c_n, axes=-2), axis=-2) * n_gamma tm2 = time() - tmr_start return zprods, precomp2, tm2 def cartesian_to_pft(templates, T, pf_grid): xnodesr = pf_grid['xnodesr'] n_psi = pf_grid['n_psi'] ngridr = xnodesr.shape[0] n_templates = templates.shape[0] N = templates.shape[1] dx = T / N dy = T / N wx = pf_grid['wx'] wy = pf_grid['wy'] Shat = np.zeros((n_templates, ngridr * n_psi), dtype=np.complex128) upsampfac = 1.25 fcc = np.empty(len(wx), dtype=np.complex128) for k in range(n_templates): template = templates[k, :, :] # Need to force Fortran ordering because that's what the FINUFFT # interface expects. gg = np.asfortranarray(template.transpose((1, 0))) isign = -1 eps = 1e-6 # Note: Crashes if gg is a 1D vector (raveled). Why? finufftpy.nufft2d2(wx * dx, wy * dy, fcc, isign, eps, gg, upsampfac=upsampfac) Shat[k, :] = fcc return Shat def pft_to_cartesian(Shat, T, N, pf_grid): xnodesr = pf_grid['xnodesr'] n_psi = pf_grid['n_psi'] quad_wts = pf_grid['quad_wts'] ngridr = xnodesr.shape[0] n_templates = Shat.shape[0] dx = T / N dy = T / N wx = pf_grid['wx'] wy = pf_grid['wy'] templates1 = np.zeros((n_templates, N, N)) # Again, Fortran ordering is necessary for FINUFFT. gxx = np.empty((N, N), dtype=np.complex128, order='F') upsampfac = 1.25 for k in range(n_templates): fcc1 = Shat[k, :] * quad_wts isign = 1 eps = 1e-6 finufftpy.nufft2d1(wx * dx, wy * dy, fcc1, isign, eps, N, N, gxx, upsampfac=upsampfac) gxx = gxx*dx*dy/(4*np.pi**2) templates1[k, :, :] = np.real(gxx.transpose((1, 0))) return templates1 def rotate_pft(fcc, rgamma, pf_grid): xnodesr = pf_grid['xnodesr'] n_psi = pf_grid['n_psi'] ngridr = xnodesr.shape[0] ngridc = n_psi * np.ones(ngridr, dtype=np.int32) fcc_rot = np.zeros(fcc.shape, dtype=np.complex128) cnt = 0 for rr in range(ngridr): tmp = fcc[:, cnt:cnt + ngridc[rr]] ffcc = fft(tmp) n_theta = ngridc[rr] wth = ifftshift(np.arange(-n_theta/2, n_theta/2)) mul = np.exp(-1j * wth * rgamma[:, np.newaxis]) ffcc_rot = ffcc * mul tmp = ifft(ffcc_rot) fcc_rot[:, cnt:cnt + ngridc[rr]] = tmp cnt += ngridc[rr] return fcc_rot def pft_phase_shift(sh, pf_grid): all_psi = pf_grid['all_psi'] quad_xnodesr = pf_grid['all_r'] phase = (np.cos(all_psi) * sh[:, np.newaxis, 0] + np.sin(all_psi) * sh[:, np.newaxis, 1]) cmul = np.exp(-1j * quad_xnodesr * phase) return cmul def translate_pft(fcc, sh, pf_grid): cmul = pft_phase_shift(sh, pf_grid) return fcc * cmul def pft_norm(Mhat, pf_grid): quad_wts = pf_grid['quad_wts'] return np.sqrt(np.sum((np.abs(Mhat) ** 2) * quad_wts, axis=-1)) def pft_to_fb(Shat, pf_grid): ngridr = pf_grid['ngridr'] n_psi = pf_grid['n_psi'] quad_wts = pf_grid['quad_wts'] n_templates = Shat.shape[0] quad_wts_sq = quad_wts.reshape((ngridr, n_psi)) Shathat = Shat.reshape((n_templates, ngridr, n_psi)) # Shathat: (te, k, γ) Shathat = np.fft.fftshift(np.fft.fft(Shathat, axis=-1), axes=-1) Shathat = Shathat * quad_wts_sq[np.newaxis, :, :] # Shathat: (te, k, q) # There was a 2π factor missing before. Let's remove it. Shathat = Shathat / (2 * np.pi) return Shathat def make_tensor_grid(rmax, ngridr, n_psi): dr = rmax/ngridr xnodesr = dr*np.arange(1, ngridr+1) weights = dr*np.ones(ngridr) psi = 2 * np.pi / n_psi * np.arange(n_psi) all_psi = np.repeat(psi[np.newaxis, :], ngridr, axis=0) all_psi = np.ravel(all_psi) all_r = np.repeat(xnodesr[:, np.newaxis], n_psi, axis=1) all_r = np.ravel(all_r) wts_theta = 2 * np.pi / n_psi quad_wts = wts_theta * xnodesr * weights quad_wts = np.repeat(quad_wts[:, np.newaxis], n_psi, axis=-1) quad_wts = np.ravel(quad_wts) wx = np.zeros(n_psi * ngridr) wy = np.zeros(n_psi * ngridr) cnt = 0 for rr in range(ngridr): dd = xnodesr[rr] theta = 2 * np.pi / n_psi * np.arange(n_psi) wx[cnt:cnt + n_psi] = dd * np.cos(theta) wy[cnt:cnt + n_psi] = dd * np.sin(theta) cnt = cnt + n_psi grid = dict() grid['rmax'] = rmax grid['ngridr'] = ngridr grid['n_psi'] = n_psi grid['xnodesr'] = xnodesr grid['all_psi'] = all_psi grid['all_r'] = all_r grid['quad_wts'] = quad_wts grid['wx'] = wx grid['wy'] = wy return grid def make_adaptive_grid(delta_range, dx, oversampling): all_delta = dx / oversampling * np.arange(oversampling * delta_range + 1e-10) n_delta = all_delta.shape[0] n_omega = oversampling * np.int32(np.ceil(2 * np.pi / dx * all_delta)) n_trans = np.sum(n_omega) trans = np.zeros((n_trans, 2)) cnt = 0 for kk in range(n_delta): n_om = n_omega[kk] all_om = 2 * np.pi * np.arange(n_om) / n_om trans[cnt:cnt + n_om, 0] = all_delta[kk] * np.cos(all_om) trans[cnt:cnt + n_om, 1] = all_delta[kk] * np.sin(all_om) cnt += n_om grid = dict() grid['all_delta'] = all_delta grid['n_delta'] = n_delta grid['n_omega'] = n_omega grid['n_trans'] = n_trans grid['trans'] = trans return grid def make_cartesian_grid(delta_range, dx, oversampling): Nkeep = 2 * oversampling * delta_range xfine = dx * np.arange(-Nkeep // 2, Nkeep // 2) trans = xfine trans = np.meshgrid(trans, trans, indexing='ij') trans = np.stack(trans[::-1], -1) trans = trans.reshape((Nkeep ** 2, 2)) grid = {'n_trans': Nkeep ** 2, 'trans': trans} return grid def extract_alignments(inner_prods3, tr_grid): n_images = inner_prods3.shape[0] n_templates = inner_prods3.shape[1] n_psi = inner_prods3.shape[2] n_trans = inner_prods3.shape[3] trans = tr_grid['trans'] inner_prods3 = inner_prods3.reshape((n_images, n_templates*n_psi*n_trans)) est_template_ind = np.zeros(n_images, dtype=np.int32) est_trans = np.zeros((n_images, 2)) est_gamma = np.zeros(n_images) idx = inner_prods3.argmax(axis=-1) for cn in range(n_images): I3, I2, I1 = np.unravel_index(idx[cn], (n_templates, n_psi, n_trans)) shiftx = trans[I1, 0] shifty = trans[I1, 1] rgamma = I2 * 2 * np.pi / n_psi est_template_ind[cn] = I3 est_trans[cn, 0] = shiftx est_trans[cn, 1] = shifty est_gamma[cn] = rgamma return est_template_ind, est_trans, est_gamma def rotations_brute_force(fimages, Shat, n_gamma, pf_grid, Nfine): eval_results = False if Shat.ndim == 2: Shat = Shat[np.newaxis, :, :] n_images, N, _ = fimages.shape n_templates, ngridr, ngridp = Shat.shape quad_wts_sq = pf_grid['quad_wts'].reshape((ngridr, ngridp)) wx = pf_grid['wx'] wy = pf_grid['wy'] all_gamma = 2 * np.pi / n_gamma * np.arange(n_gamma) tmr_start = time() Shathat = fft(Shat) / ngridp # Shat: (te, k, γ) # Shathat: (te, k, q) Shathat = Shathat.reshape((n_templates, 1, ngridr, ngridp)) # Shathat: (te, 1, k, q) wth = ifftshift(np.arange(-ngridp / 2, ngridp / 2)) mul = np.exp(-1j * wth[np.newaxis, :] * all_gamma[:,np.newaxis]) # mul: (γ, q) Shathat_rot = Shathat * mul[:, np.newaxis, :] # Shathat_rot: (te, γ, k, q) # NOTE: This can be sped up by using PyFFTW. However, for the execution to # be efficent, the plan must be created using FFTW_MEASURE, which takes a # long time. The solution will be to separate this our to the BFR # “planning” stage for some fixed number of images–template pairs, then # loop over these, computing the IFFT batchwise at execution (since the # exact number of pairs is not known as planning time). Shat_rot = ifft(Shathat_rot) fx1 = quad_wts_sq * Shat_rot T = 2 dx = dy = T / N templates_rot = np.empty((N, N, n_gamma, n_templates), dtype=np.complex128, order='F') upsampfac = 1.25 isign = 1 eps = 1e-2 finufftpy.nufft2d1many(wx * dx, wy * dy, fx1, isign, eps, N, N, templates_rot, upsampfac=upsampfac) templates_rot = templates_rot / (4 * np.pi ** 2) # templates_rot: (trx, try, γ, te) templates_rot = templates_rot.transpose((3, 2, 1, 0)).copy() # templates_rot: (te, γ, try, trx) ftemplates_rot = fft2(ifftshift(templates_rot, axes=(-2, -1))) # ftemplates_rot: (te, γ, trky, trkx) precomp = time() - tmr_start tmr_start = time() ftemplates_rot = ftemplates_rot[:, np.newaxis, :, :, :] # ftemplates_rot: (te, im, γ, trky, trkx) fxx = fimages[:, np.newaxis, :, :] * np.conj(ftemplates_rot) # ftemplates_rot: (te, im, γ, trky, trkx) inner_prods = pyfftw.zeros_aligned((n_templates, n_images, n_gamma, Nfine, Nfine), dtype='complex128') inner_prods[:, :, :, :N // 2, :N // 2] = fxx[:, :, :, :N // 2, :N // 2] inner_prods[:, :, :, :N // 2, -N // 2:] = fxx[:, :, :, :N // 2, -N // 2:] inner_prods[:, :, :, -N // 2:, :N // 2] = fxx[:, :, :, -N // 2:, :N // 2] inner_prods[:, :, :, -N // 2:, -N // 2:] = fxx[:, :, :, -N // 2:, -N // 2:] plan = pyfftw.FFTW(inner_prods, inner_prods, axes=(-2, -1), direction='FFTW_BACKWARD', flags=('FFTW_MEASURE',), threads=12) plan() inner_prods = np.real(inner_prods) inner_prods *= (Nfine / N) ** 2 # inner_prods: (te, im, γ, try, trx) comp = time() - tmr_start return inner_prods, precomp, comp def calc_ftk_svd(n_bessel, eps, pf_grid, tr_grid): all_UU = [None] * (2 * n_bessel + 1) all_SSVV = [None] * (2 * n_bessel + 1) all_rnks = np.zeros(2 * n_bessel + 1, dtype=np.int32) xnodesr = pf_grid['xnodesr'] all_delta = tr_grid['all_delta'] n_delta = tr_grid['n_delta'] n_omega = tr_grid['n_omega'] n_trans = tr_grid['n_trans'] for qp in range(-n_bessel, n_bessel + 1): J_n = besselj(qp, -all_delta[:, np.newaxis] * xnodesr[np.newaxis, :]) U, S, Vh =
np.linalg.svd(J_n)
numpy.linalg.svd
''' Utility functions to analyze particle data. @author: <NAME> <<EMAIL>> Units: unless otherwise noted, all quantities are in (combinations of): mass [M_sun] position [kpc comoving] distance, radius [kpc physical] velocity [km / s] time [Gyr] ''' # system ---- from __future__ import absolute_import, division, print_function # python 2 compatability import numpy as np from numpy import Inf # local ---- from . import basic as ut from . import halo_property from . import orbit from . import catalog #=================================================================================================== # utilities - parsing input arguments #=================================================================================================== def parse_species(part, species): ''' Parse input list of species to ensure all are in catalog. Parameters ---------- part : dict : catalog of particles species : str or list : name[s] of particle species to analyze Returns ------- species : list : name[s] of particle species ''' Say = ut.io.SayClass(parse_species) if np.isscalar(species): species = [species] if species == ['all'] or species == ['total']: species = list(part.keys()) elif species == ['baryon']: species = ['gas', 'star'] for spec in list(species): if spec not in part: species.remove(spec) Say.say('! {} not in particle catalog'.format(spec)) return species def parse_indices(part_spec, part_indices): ''' Parse input list of particle indices. If none, generate via arange. Parameters ---------- part_spec : dict : catalog of particles of given species part_indices : array-like : indices of particles Returns ------- part_indices : array : indices of particles ''' if part_indices is None or not len(part_indices): if 'position' in part_spec: part_indices = ut.array.get_arange(part_spec['position'].shape[0]) elif 'id' in part_spec: part_indices = ut.array.get_arange(part_spec['id'].size) elif 'mass' in part_spec: part_indices = ut.array.get_arange(part_spec['mass'].size) return part_indices def parse_property(parts_or_species, property_name, property_values=None, single_host=True): ''' Get property values, either input or stored in particle catalog. List-ify as necessary to match input particle catalog. Parameters ---------- parts_or_species : dict or string or list thereof : catalog[s] of particles or string[s] of species property_name : str : options: 'center_position', 'center_velocity', 'indices' property_values : float/array or list thereof : property values to assign single_host : bool : use only the primary host (if not input any property_values) Returns ------- property_values : float or list ''' def parse_property_single(part_or_spec, property_name, property_values, single_host): if property_name in ['center_position', 'center_velocity']: if property_values is None or not len(property_values): if property_name == 'center_position': property_values = part_or_spec.host_positions elif property_name == 'center_velocity': # default to the primary host property_values = part_or_spec.host_velocities if property_values is None or not len(property_values): raise ValueError('no input {} and no {} in input catalog'.format( property_name, property_name)) if single_host: property_values = property_values[0] # use omly the primary host if isinstance(property_values, list): raise ValueError('input list of {}s but input single catalog'.format(property_name)) return property_values assert property_name in ['center_position', 'center_velocity', 'indices'] if isinstance(parts_or_species, list): # input list of particle catalogs if (property_values is None or not len(property_values) or not isinstance(property_values, list)): property_values = [property_values for _ in parts_or_species] if len(property_values) != len(parts_or_species): raise ValueError('number of input {}s not match number of input catalogs'.format( property_name)) for i, part_or_spec in enumerate(parts_or_species): property_values[i] = parse_property_single( part_or_spec, property_name, property_values[i], single_host) else: # input single particle catalog property_values = parse_property_single( parts_or_species, property_name, property_values, single_host) return property_values #=================================================================================================== # id <-> index conversion #=================================================================================================== def assign_id_to_index( part, species=['all'], id_name='id', id_min=0, store_as_dict=False, print_diagnostic=True): ''' Assign, to particle dictionary, arrays that points from object id to species kind and index in species array. This is useful for analyses multi-species catalogs with intermixed ids. Do not assign pointers for ids below id_min. Parameters ---------- part : dict : catalog of particles of various species species : str or list : name[s] of species to use: 'all' = use all in particle dictionary id_name : str : key name for particle id id_min : int : minimum id in catalog store_as_dict : bool : whether to store id-to-index pointer as dict instead of array print_diagnostic : bool : whether to print diagnostic information ''' Say = ut.io.SayClass(assign_id_to_index) # get list of species that have valid id key species = parse_species(part, species) for spec in species: assert id_name in part[spec] # get list of all ids ids_all = [] for spec in species: ids_all.extend(part[spec][id_name]) ids_all = np.array(ids_all, dtype=part[spec][id_name].dtype) if print_diagnostic: # check if duplicate ids within species for spec in species: masks = (part[spec][id_name] >= id_min) total_number = np.sum(masks) unique_number = np.unique(part[spec][id_name][masks]).size if total_number != unique_number: Say.say('species {} has {} ids that are repeated'.format( spec, total_number - unique_number)) # check if duplicate ids across species if len(species) > 1: masks = (ids_all >= id_min) total_number = np.sum(masks) unique_number = np.unique(ids_all[masks]).size if total_number != unique_number: Say.say('across all species, {} ids are repeated'.format( total_number - unique_number)) Say.say('maximum id = {}'.format(ids_all.max())) part.id_to_index = {} if store_as_dict: # store pointers as a dictionary # store overall dictionary (across all species) and dictionary within each species for spec in species: part[spec].id_to_index = {} for part_i, part_id in enumerate(part[spec][id_name]): if part_id in part.id_to_index: # redundant ids - add to existing entry as list if isinstance(part.id_to_index[part_id], tuple): part.id_to_index[part_id] = [part.id_to_index[part_id]] part.id_to_index[part_id].append((spec, part_i)) if part_id in part[spec].id_to_index: if np.isscalar(part[spec].id_to_index[part_id]): part[spec].id_to_index[part_id] = [part[spec].id_to_index[part_id]] part[spec].id_to_index[part_id].append(part_i) else: # new id - add as new entry part.id_to_index[part_id] = (spec, part_i) part[spec].id_to_index[part_id] = part_i # convert lists to arrays dtype = part[spec][id_name].dtype for part_id in part[spec].id_to_index: if isinstance(part[spec].id_to_index[part_id], list): part[spec].id_to_index[part_id] = np.array( part[spec].id_to_index[part_id], dtype=dtype) else: # store pointers as arrays part.id_to_index['species'] = np.zeros(ids_all.max() + 1, dtype='|S6') dtype = ut.array.parse_data_type(ids_all.max() + 1) part.id_to_index['index'] = ut.array.get_array_null(ids_all.max() + 1, dtype=dtype) for spec in species: masks = (part[spec][id_name] >= id_min) part.id_to_index['species'][part[spec][id_name][masks]] = spec part.id_to_index['index'][part[spec][id_name][masks]] = ut.array.get_arange( part[spec][id_name], dtype=dtype)[masks] #=================================================================================================== # position, velocity #=================================================================================================== def get_center_positions( part, species=['star', 'dark', 'gas'], part_indicess=None, method='center-of-mass', center_number=1, exclusion_distance=200, center_positions=None, distance_max=Inf, compare_centers=False, return_array=True): ''' Get position[s] of center of mass [kpc comoving] using iterative zoom-in on input species. Parameters ---------- part : dict : dictionary of particles species : str or list : name[s] of species to use: 'all' = use all in particle dictionary part_indicess : array or list of arrays : indices of particle to use to define center use this to include only particles that you know are relevant method : str : method of centering: 'center-of-mass', 'potential' center_number : int : number of centers to compute exclusion_distance : float : radius around previous center to cut before finding next center [kpc comoving] center_position : array-like : initial center position[s] to use distance_max : float : maximum radius to consider initially compare_centers : bool : whether to run sanity check to compare centers via zoom v potential return_array : bool : whether to return single array instead of array of arrays, if center_number = 1 Returns ------- center_positions : array or array of arrays: position[s] of center[s] [kpc comoving] ''' Say = ut.io.SayClass(get_center_positions) assert method in ['center-of-mass', 'potential'] species = parse_species(part, species) part_indicess = parse_property(species, 'indices', part_indicess) if center_positions is None or np.ndim(center_positions) == 1: # list-ify center_positions center_positions = [center_positions for _ in range(center_number)] if np.shape(center_positions)[0] != center_number: raise ValueError('! input center_positions = {} but also input center_number = {}'.format( center_positions, center_number)) if method == 'potential': if len(species) > 1: Say.say('! using only first species = {} for centering via potential'.format( species[0])) if 'potential' not in part[species[0]]: Say.say('! {} does not have potential, using center-of-mass zoom instead'.format( species[0])) method = 'center-of-mass' if method == 'potential': # use single (first) species spec_i = 0 spec_name = species[spec_i] part_indices = parse_indices(spec_name, part_indicess[spec_i]) for center_i, center_position in enumerate(center_positions): if center_i > 0: # cull out particles near previous center distances = get_distances_wrt_center( part, spec_name, part_indices, center_positions[center_i - 1], total_distance=True, return_array=True) # exclusion distance in [kpc comoving] part_indices = part_indices[ distances > (exclusion_distance * part.info['scalefactor'])] if center_position is not None and distance_max > 0 and distance_max < Inf: # impose distance cut around input center part_indices = get_indices_within_coordinates( part, spec_name, [0, distance_max], center_position, part_indicess=part_indices, return_array=True) part_index = np.nanargmin(part[spec_name]['potential'][part_indices]) center_positions[center_i] = part[spec_name]['position'][part_index] else: for spec_i, spec_name in enumerate(species): part_indices = parse_indices(part[spec_name], part_indicess[spec_i]) if spec_i == 0: positions = part[spec_name]['position'][part_indices] masses = part[spec_name]['mass'][part_indices] else: positions = np.concatenate( [positions, part[spec_name]['position'][part_indices]]) masses = np.concatenate([masses, part[spec_name]['mass'][part_indices]]) for center_i, center_position in enumerate(center_positions): if center_i > 0: # remove particles near previous center distances = ut.coordinate.get_distances( positions, center_positions[center_i - 1], part.info['box.length'], part.snapshot['scalefactor'], total_distance=True) # [kpc physical] masks = (distances > (exclusion_distance * part.info['scalefactor'])) positions = positions[masks] masses = masses[masks] center_positions[center_i] = ut.coordinate.get_center_position_zoom( positions, masses, part.info['box.length'], center_position=center_position, distance_max=distance_max) center_positions = np.array(center_positions) if compare_centers: position_dif_max = 1 # [kpc comoving] if 'potential' not in part[species[0]]: Say.say('! {} not have potential, cannot compare against zoom center-of-mass'.format( species[0])) return center_positions if method == 'potential': method_other = 'center-of-mass' else: method_other = 'potential' center_positions_other = get_center_positions( part, species, part_indicess, method_other, center_number, exclusion_distance, center_positions, distance_max, compare_centers=False, return_array=False) position_difs = np.abs(center_positions - center_positions_other) for pi, position_dif in enumerate(position_difs): if np.max(position_dif) > position_dif_max: Say.say('! offset center positions') Say.say('center position via {}: '.format(method), end='') ut.io.print_array(center_positions[pi], '{:.3f}') Say.say('center position via {}: '.format(method_other), end='') ut.io.print_array(center_positions_other[pi], '{:.3f}') Say.say('position difference: ', end='') ut.io.print_array(position_dif, '{:.3f}') if return_array and center_number == 1: center_positions = center_positions[0] return center_positions def get_center_velocities( part, species_name='star', part_indices=None, distance_max=15, center_positions=None, return_array=True): ''' Get velocity[s] [km / s] of center of mass of input species. Parameters ---------- part : dict : dictionary of particles species_name : str : name of particle species to use part_indices : array : indices of particle to use to define center use this to exclude particles that you know are not relevant distance_max : float : maximum radius to consider [kpc physical] center_positions : array or list of arrays: center position[s] [kpc comoving] if None, will use default center position[s] in catalog return_array : bool : whether to return single array instead of array of arrays, if input single center position Returns ------- center_velocities : array or array of arrays : velocity[s] of center of mass [km / s] ''' center_positions = parse_property(part, 'center_position', center_positions, single_host=False) part_indices = parse_indices(part[species_name], part_indices) distance_max /= part.snapshot['scalefactor'] # convert to [kpc comoving] to match positions center_velocities = np.zeros(center_positions.shape, part[species_name]['velocity'].dtype) for center_i, center_position in enumerate(center_positions): center_velocities[center_i] = ut.coordinate.get_center_velocity( part[species_name]['velocity'][part_indices], part[species_name]['mass'][part_indices], part[species_name]['position'][part_indices], center_position, distance_max, part.info['box.length']) if return_array and len(center_velocities) == 1: center_velocities = center_velocities[0] return center_velocities def get_distances_wrt_center( part, species=['star'], part_indicess=None, center_position=None, rotation=None, coordinate_system='cartesian', total_distance=False, return_array=True): ''' Get distances (scalar or vector) between input particles and center_position (input or stored in particle catalog). Parameters ---------- part : dict : catalog of particles at snapshot species : str or list : name[s] of particle species to compute part_indicess : array or list : indices[s] of particles to compute, one array per input species center_position : array : position of center [kpc comoving] if None, will use default center position in particle catalog rotation : bool or array : whether to rotate particles two options: (a) if input array of eigen-vectors, will define rotation axes for all species (b) if True, will rotate to align with principal axes defined by input species coordinate_system : str : which coordinates to get distances in: 'cartesian' (default), 'cylindrical', 'spherical' total_distance : bool : whether to compute total/scalar distance return_array : bool : whether to return single array instead of dict if input single species Returns ------- dist : array (object number x dimension number) or dict thereof : [kpc physical] 3-D distance vectors aligned with default x,y,z axes OR 3-D distance vectors aligned with major, medium, minor axis OR 2-D distance vectors along major axes and along minor axis OR 1-D scalar distances OR dictionary of above for each species ''' assert coordinate_system in ('cartesian', 'cylindrical', 'spherical') species = parse_species(part, species) center_position = parse_property(part, 'center_position', center_position) part_indicess = parse_property(species, 'indices', part_indicess) dist = {} for spec_i, spec in enumerate(species): part_indices = parse_indices(part[spec], part_indicess[spec_i]) dist[spec] = ut.coordinate.get_distances( part[spec]['position'][part_indices], center_position, part.info['box.length'], part.snapshot['scalefactor'], total_distance) # [kpc physical] if not total_distance: if rotation is not None: if rotation is True: # get principal axes stored in particle dictionary if (len(part[spec].host_rotation_tensors) and len(part[spec].host_rotation_tensors[0])): rotation_tensor = part[spec].host_rotation_tensors[0] else: raise ValueError('! cannot find principal_axes_tensor in species dict') elif len(rotation): # use input rotation vectors rotation_tensor = rotation dist[spec] = ut.coordinate.get_coordinates_rotated(dist[spec], rotation_tensor) if coordinate_system in ['cylindrical', 'spherical']: dist[spec] = ut.coordinate.get_positions_in_coordinate_system( dist[spec], 'cartesian', coordinate_system) if return_array and len(species) == 1: dist = dist[species[0]] return dist def get_velocities_wrt_center( part, species=['star'], part_indicess=None, center_velocity=None, center_position=None, rotation=False, coordinate_system='cartesian', total_velocity=False, return_array=True): ''' Get velocities (either scalar or vector) between input particles and center_velocity (input or stored in particle catalog). Parameters ---------- part : dict : catalog of particles at snapshot species : str or list : name[s] of particle species to get part_indicess : array or list : indices[s] of particles to select, one array per input species center_velocity : array : center velocity [km / s] if None, will use default center velocity in catalog center_position : array : center position [kpc comoving], to use in computing Hubble flow if None, will use default center position in catalog rotation : bool or array : whether to rotate particles two options: (a) if input array of eigen-vectors, will define rotation axes for all species (b) if True, will rotate to align with principal axes defined by input species coordinate_system : str : which coordinates to get positions in: 'cartesian' (default), 'cylindrical', 'spherical' total_velocity : bool : whether to compute total/scalar velocity return_array : bool : whether to return array (instead of dict) if input single species Returns ------- vel : array or dict thereof : velocities (object number x dimension number, or object number) [km / s] ''' assert coordinate_system in ('cartesian', 'cylindrical', 'spherical') species = parse_species(part, species) center_velocity = parse_property(part, 'center_velocity', center_velocity) center_position = parse_property(part, 'center_position', center_position) part_indicess = parse_property(species, 'indices', part_indicess) vel = {} for spec_i, spec in enumerate(species): part_indices = parse_indices(part[spec], part_indicess[spec_i]) vel[spec] = ut.coordinate.get_velocity_differences( part[spec]['velocity'][part_indices], center_velocity, part[spec]['position'][part_indices], center_position, part.info['box.length'], part.snapshot['scalefactor'], part.snapshot['time.hubble'], total_velocity) if not total_velocity: if rotation is not None: if rotation is True: # get principal axes stored in particle dictionary if (len(part[spec].host_rotation_tensors) and len(part[spec].host_rotation_tensors[0])): rotation_tensor = part[spec].host_rotation_tensors[0] else: raise ValueError('! cannot find principal_axes_tensor in species dict') elif len(rotation): # use input rotation vectors rotation_tensor = rotation vel[spec] = ut.coordinate.get_coordinates_rotated(vel[spec], rotation_tensor) if coordinate_system in ('cylindrical', 'spherical'): # need to compute distance vectors distances = ut.coordinate.get_distances( part[spec]['position'][part_indices], center_position, part.info['box.length'], part.snapshot['scalefactor']) # [kpc physical] if rotation is not None: # need to rotate distances too distances = ut.coordinate.get_coordinates_rotated(distances, rotation_tensor) vel[spec] = ut.coordinate.get_velocities_in_coordinate_system( vel[spec], distances, 'cartesian', coordinate_system) if return_array and len(species) == 1: vel = vel[species[0]] return vel def get_orbit_dictionary( part, species=['star'], part_indicess=None, center_position=None, center_velocity=None, return_single=True): ''' Get dictionary of orbital parameters. Parameters ---------- part : dict : catalog of particles at snapshot species : str or list : name[s] of particle species to compute part_indicess : array or list : indices[s] of particles to select, one array per input species center_position : array : center (reference) position center_position : array : center (reference) velociy return_single : bool : whether to return single dict instead of dict of dicts, if single species Returns ------- orb : dict : dictionary of orbital properties, one for each species (unless scalarize is True) ''' species = parse_species(part, species) center_position = parse_property(part, 'center_position', center_position) center_velocity = parse_property(part, 'center_velocity', center_velocity) part_indicess = parse_property(species, 'indices', part_indicess) orb = {} for spec_i, spec in enumerate(species): part_indices = parse_indices(part[spec], part_indicess[spec_i]) distance_vectors = ut.coordinate.get_distances( part[spec]['position'][part_indices], center_position, part.info['box.length'], part.snapshot['scalefactor']) velocity_vectors = ut.coordinate.get_velocity_differences( part[spec]['velocity'][part_indices], center_velocity, part[spec]['position'][part_indices], center_position, part.info['box.length'], part.snapshot['scalefactor'], part.snapshot['time.hubble']) orb[spec] = orbit.get_orbit_dictionary(distance_vectors, velocity_vectors) if return_single and len(species) == 1: orb = orb[species[0]] return orb #=================================================================================================== # subsample #=================================================================================================== def get_indices_within_coordinates( part, species=['star'], distance_limitss=[], center_position=None, velocity_limitss=[], center_velocity=None, rotation=None, coordinate_system='cartesian', part_indicess=None, return_array=True): ''' Get indices of particles that are within distance and/or velocity coordinate limits from center (either input or stored in particle catalog). Parameters ---------- part : dict : catalog of particles at snapshot species : str or list : name[s] of particle species to use distance_limitss : list or list of lists: min and max distance[s], relative to center, to get particles [kpc physical] default is 1-D list, but can be 2-D or 3-D list to select separately along dimensions if 2-D or 3-D, need to input *signed* limits center_position : array : center position [kpc comoving] if None, will use default center position in particle catalog velocity_limitss : list or list of lists: min and max velocities, relative to center, to get particles [km / s] default is 1-D list, but can be 2-D or 3-D list to select separately along dimensions if 2-D or 3-D, need to input *signed* limits center_velocity : array : center velocity [km / s] if None, will use default center velocity in particle catalog rotation : bool or array : whether to rotate particle coordinates two options: (a) if input array of eigen-vectors, will use to define rotation axes for all species (b) if True, will rotate to align with principal axes defined by each input species coordinate_system : str : which coordinates to get positions in: 'cartesian' (default), 'cylindrical', 'spherical' part_indicess : array : prior indices[s] of particles to select, one array per input species return_array : bool : whether to return single array instead of dict, if input single species Returns ------- part_index : dict or array : array or dict of arrays of indices of particles in region ''' assert coordinate_system in ['cartesian', 'cylindrical', 'spherical'] species = parse_species(part, species) center_position = parse_property(part, 'center_position', center_position) if velocity_limitss is not None and len(velocity_limitss): center_velocity = parse_property(part, 'center_velocity', center_velocity) part_indicess = parse_property(species, 'indices', part_indicess) part_index = {} for spec_i, spec in enumerate(species): part_indices = parse_indices(part[spec], part_indicess[spec_i]) if len(part_indices) and distance_limitss is not None and len(distance_limitss): distance_limits_dimen = np.ndim(distance_limitss) if distance_limits_dimen == 1: total_distance = True elif distance_limits_dimen == 2: total_distance = False assert len(distance_limitss) in [2, 3] else: raise ValueError('! cannot parse distance_limitss = {}'.format(distance_limitss)) if (distance_limits_dimen == 1 and distance_limitss[0] <= 0 and distance_limitss[1] >= Inf): pass # null case, no actual limits imposed, so skip rest else: """ # an attempt to be clever, but gains seem modest distances = np.abs(coordinate.get_position_difference( part[spec]['position'] - center_position, part.info['box.length'])) * part.snapshot['scalefactor'] # [kpc physical] for dimension_i in range(part[spec]['position'].shape[1]): masks *= ((distances[:, dimension_i] < np.max(distance_limits)) * (distances[:, dimension_i] >= np.min(distance_limits))) part_indices[spec] = part_indices[spec][masks] distances = distances[masks] distances = np.sum(distances ** 2, 1) # assume 3-d position """ distancess = get_distances_wrt_center( part, spec, part_indices, center_position, rotation, coordinate_system, total_distance) if distance_limits_dimen == 1: # distances are absolute masks = ( (distancess >= np.min(distance_limitss)) * (distancess < np.max(distance_limitss)) ) elif distance_limits_dimen == 2: if len(distance_limitss) == 2: # distances are signed masks = ( (distancess[0] >= np.min(distance_limitss[0])) * (distancess[0] < np.max(distance_limitss[0])) * (distancess[1] >= np.min(distance_limitss[1])) * (distancess[1] < np.max(distance_limitss[1])) ) elif distance_limits_dimen == 3: # distances are signed masks = ( (distancess[0] >= np.min(distance_limitss[0])) * (distancess[0] < np.max(distance_limitss[0])) * (distancess[1] >= np.min(distance_limitss[1])) * (distancess[1] < np.max(distance_limitss[1])) (distancess[2] >= np.min(distance_limitss[2])) * (distancess[2] < np.max(distance_limitss[2])) ) part_indices = part_indices[masks] if len(part_indices) and velocity_limitss is not None and len(velocity_limitss): velocity_limits_dimen = np.ndim(velocity_limitss) if velocity_limits_dimen == 1: return_total_velocity = True elif velocity_limits_dimen == 2: return_total_velocity = False assert len(velocity_limitss) in [2, 3] else: raise ValueError('! cannot parse velocity_limitss = {}'.format(velocity_limitss)) if (velocity_limits_dimen == 1 and velocity_limitss[0] <= 0 and velocity_limitss[1] >= Inf): pass # null case, no actual limits imposed, so skip rest else: velocitiess = get_velocities_wrt_center( part, spec, part_indices, center_velocity, center_position, rotation, coordinate_system, return_total_velocity) if velocity_limits_dimen == 1: # velocities are absolute masks = ( (velocitiess >= np.min(velocity_limitss)) * (velocitiess < np.max(velocity_limitss)) ) elif velocity_limits_dimen == 2: if len(velocity_limitss) == 2: # velocities are signed masks = ( (velocitiess[0] >= np.min(velocity_limitss[0])) * (velocitiess[0] < np.max(velocity_limitss[0])) * (velocitiess[1] >= np.min(velocity_limitss[1])) * (velocitiess[1] < np.max(velocity_limitss[1])) ) elif len(velocity_limitss) == 3: # velocities are signed masks = ( (velocitiess[0] >= np.min(velocity_limitss[0])) * (velocitiess[0] < np.max(velocity_limitss[0])) * (velocitiess[1] >= np.min(velocity_limitss[1])) * (velocitiess[1] < np.max(velocity_limitss[1])) (velocitiess[2] >= np.min(velocity_limitss[2])) * (velocitiess[2] < np.max(velocity_limitss[2])) ) part_indices = part_indices[masks] part_index[spec] = part_indices if return_array and len(species) == 1: part_index = part_index[species[0]] return part_index def get_indices_id_kind( part, species=['star'], id_kind='unique', part_indicess=None, return_array=True): ''' Get indices of particles that either are unique (no other particles of same species have same id) or multiple (other particle of same species has same id). Parameters ---------- part : dict : catalog of particles at snapshot species : str or list : name[s] of particle species split_kind : str : id kind of particles to get: 'unique', 'multiple' part_indicess : array : prior indices[s] of particles to select, one array per input species return_array : bool : whether to return single array instead of dict, if input single species Returns ------- part_index : dict or array : array or dict of arrays of indices of particles of given split kind ''' species = parse_species(part, species) part_indicess = parse_property(species, 'indices', part_indicess) assert id_kind in ['unique', 'multiple'] part_index = {} for spec_i, spec in enumerate(species): part_indices = parse_indices(part[spec], part_indicess[spec_i]) _pids, piis, counts = np.unique( part[spec]['id'][part_indices], return_index=True, return_counts=True) pis_unsplit = np.sort(part_indices[piis[counts == 1]]) if id_kind == 'unique': part_index[spec] = pis_unsplit elif id_kind == 'multiple': part_index[spec] = np.setdiff1d(part_indices, pis_unsplit) else: raise ValueError('! not recognize id_kind = {}'.format(id_kind)) if return_array and len(species) == 1: part_index = part_index[species[0]] return part_index #=================================================================================================== # halo/galaxy major/minor axes #=================================================================================================== def get_principal_axes( part, species_name='star', distance_max=Inf, mass_percent=None, age_percent=None, age_limits=[], center_positions=None, center_velocities=None, part_indices=None, return_array=True, print_results=True): ''' Get reverse-sorted eigen-vectors, eigen-values, and axis ratios of principal axes of each host galaxy/halo. Ensure that principal axes are oriented so median v_phi > 0. Parameters ---------- part : dict : catalog of particles at snapshot species : str or list : name[s] of particle species to use distance_max : float : maximum distance to select particles [kpc physical] mass_percent : float : keep particles within the distance that encloses mass percent [0, 100] of all particles within distance_max age_percent : float : use the youngest age_percent of particles within distance cut age_limits : float : use only particles within age limits center_positions : array or array of arrays : position[s] of center[s] [kpc comoving] center_velocities : array or array of arrays : velocity[s] of center[s] [km / s] part_indices : array : indices[s] of particles to select return_array : bool : whether to return single array for each property, instead of array of arrays, if single host print_results : bool : whether to print axis ratios Returns ------- principal_axes = { 'rotation.tensor': array : rotation vectors that define max, med, min axes 'eigen.values': array : eigen-values of max, med, min axes 'axis.ratios': array : ratios of principal axes } ''' Say = ut.io.SayClass(get_principal_axes) center_positions = parse_property(part, 'center_position', center_positions, single_host=False) center_velocities = parse_property( part, 'center_velocity', center_velocities, single_host=False) part_indices = parse_indices(part[species_name], part_indices) principal_axes = { 'rotation.tensor': [], 'eigen.values': [], 'axis.ratios': [], } for center_i, center_position in enumerate(center_positions): distance_vectors = ut.coordinate.get_distances( part[species_name]['position'][part_indices], center_position, part.info['box.length'], part.snapshot['scalefactor']) # [kpc physical] distances = np.sqrt(np.sum(distance_vectors ** 2, 1)) masks = (distances < distance_max) if mass_percent: distance_percent = ut.math.percentile_weighted( distances[masks], mass_percent, part[species_name].prop('mass', part_indices[masks])) masks *= (distances < distance_percent) if age_percent or (age_limits is not None and len(age_limits)): if 'form.scalefactor' not in part[species_name]: raise ValueError('! input age constraints but age not in {} catalog'.format( species_name)) if age_percent and (age_limits is not None and len(age_limits)): Say.say('input both age_percent and age_limits, using only age_percent') if age_percent: age_max = ut.math.percentile_weighted( part[species_name].prop('age', part_indices[masks]), age_percent, part[species_name].prop('mass', part_indices[masks])) age_limits_use = [0, age_max] else: age_limits_use = age_limits Say.say('using {} particles with age = {} Gyr'.format( species_name, ut.array.get_limits_string(age_limits_use))) masks *= ((part[species_name].prop('age', part_indices) >= min(age_limits_use)) * (part[species_name].prop('age', part_indices) < max(age_limits_use))) rotation_tensor, eigen_values, axis_ratios = ut.coordinate.get_principal_axes( distance_vectors[masks], part[species_name].prop('mass', part_indices[masks]), print_results) # test if need to flip a principal axis to ensure that net v_phi > 0 velocity_vectors = ut.coordinate.get_velocity_differences( part[species_name].prop('velocity', part_indices[masks]), center_velocities[center_i]) velocity_vectors_rot = ut.coordinate.get_coordinates_rotated( velocity_vectors, rotation_tensor) distance_vectors_rot = ut.coordinate.get_coordinates_rotated( distance_vectors[masks], rotation_tensor) velocity_vectors_cyl = ut.coordinate.get_velocities_in_coordinate_system( velocity_vectors_rot, distance_vectors_rot, 'cartesian', 'cylindrical') if np.median(velocity_vectors_cyl[:, 2]) < 0: rotation_tensor[1] *= -1 # flip so net v_phi is positive principal_axes['rotation.tensor'].append(rotation_tensor) principal_axes['eigen.values'].append(eigen_values) principal_axes['axis.ratios'].append(axis_ratios) for k in principal_axes: principal_axes[k] = np.array(principal_axes[k]) if return_array and np.shape(center_positions)[0] == 1: for k in principal_axes: principal_axes[k] = principal_axes[k][0] return principal_axes #=================================================================================================== # halo/galaxy radius #=================================================================================================== def get_halo_properties( part, species=['dark', 'star', 'gas'], virial_kind='200m', distance_limits=[10, 600], distance_bin_width=0.02, distance_scaling='log', center_position=None, return_array=True, print_results=True): ''' Compute halo radius according to virial_kind. Return this radius, the mass from each species within this radius, and particle indices within this radius (if get_part_indices). Parameters ---------- part : dict : catalog of particles at snapshot species : str or list : name[s] of particle species to use: 'all' = use all in dictionary virial_kind : str : virial overdensity definition '200m' -> average density is 200 x matter '200c' -> average density is 200 x critical 'vir' -> average density is Bryan & Norman 'fof.100m' -> edge density is 100 x matter, for FoF(ll=0.168) 'fof.60m' -> edge density is 60 x matter, for FoF(ll=0.2) distance_limits : list : min and max distance to consider [kpc physical] distance_bin_width : float : width of distance bin distance_scaling : str : scaling of distance: 'log', 'linear' center_position : array : center position to use if None, will use default center position in catalog return_array : bool : whether to return array (instead of dict) if input single species print_results : bool : whether to print radius and mass Returns ------- halo_prop : dict : dictionary of halo properties: radius : float : halo radius [kpc physical] mass : float : mass within radius [M_sun] indices : array : indices of partices within radius (if get_part_indices) ''' distance_limits = np.asarray(distance_limits) Say = ut.io.SayClass(get_halo_properties) species = parse_species(part, species) center_position = parse_property(part, 'center_position', center_position) HaloProperty = halo_property.HaloPropertyClass(part.Cosmology, part.snapshot['redshift']) DistanceBin = ut.binning.DistanceBinClass( distance_scaling, distance_limits, width=distance_bin_width, dimension_number=3) overdensity, reference_density = HaloProperty.get_overdensity(virial_kind, units='kpc physical') virial_density = overdensity * reference_density mass_cum_in_bins = np.zeros(DistanceBin.number) distancess = [] for spec_i, spec in enumerate(species): distances = ut.coordinate.get_distances( part[spec]['position'], center_position, part.info['box.length'], part.snapshot['scalefactor'], total_distance=True) # [kpc physical] distancess.append(distances) mass_in_bins = DistanceBin.get_histogram(distancess[spec_i], False, part[spec]['mass']) # get mass within distance minimum, for computing cumulative values distance_indices = np.where(distancess[spec_i] < np.min(distance_limits))[0] mass_cum_in_bins += (np.sum(part[spec]['mass'][distance_indices]) + np.cumsum(mass_in_bins)) if part.info['baryonic'] and len(species) == 1 and species[0] == 'dark': # correct for baryonic mass if analyzing only dark matter in baryonic simulation Say.say('! using only dark particles, so correcting for baryonic mass') mass_factor = 1 + part.Cosmology['omega_baryon'] / part.Cosmology['omega_matter'] mass_cum_in_bins *= mass_factor # cumulative densities in bins density_cum_in_bins = mass_cum_in_bins / DistanceBin.volumes_cum # get smallest radius that satisfies virial density for d_bin_i in range(DistanceBin.number - 1): if (density_cum_in_bins[d_bin_i] >= virial_density and density_cum_in_bins[d_bin_i + 1] < virial_density): # interpolate in log space log_halo_radius = np.interp( np.log10(virial_density), np.log10(density_cum_in_bins[[d_bin_i + 1, d_bin_i]]), DistanceBin.log_maxs[[d_bin_i + 1, d_bin_i]]) halo_radius = 10 ** log_halo_radius break else: Say.say('! could not determine halo R_{}'.format(virial_kind)) if density_cum_in_bins[0] < virial_density: Say.say('distance min = {:.1f} kpc already is below virial density = {}'.format( distance_limits.min(), virial_density)) Say.say('decrease distance_limits') elif density_cum_in_bins[-1] > virial_density: Say.say('distance max = {:.1f} kpc still is above virial density = {}'.format( distance_limits.max(), virial_density)) Say.say('increase distance_limits') else: Say.say('not sure why!') return # get maximum of V_circ = sqrt(G M(< r) / r) vel_circ_in_bins = ut.constant.km_per_kpc * np.sqrt( ut.constant.grav_kpc_msun_sec * mass_cum_in_bins / DistanceBin.maxs) vel_circ_max = np.max(vel_circ_in_bins) vel_circ_max_radius = DistanceBin.maxs[np.argmax(vel_circ_in_bins)] halo_mass = 0 part_indices = {} for spec_i, spec in enumerate(species): masks = (distancess[spec_i] < halo_radius) halo_mass += np.sum(part[spec]['mass'][masks]) part_indices[spec] = ut.array.get_arange(part[spec]['mass'])[masks] if print_results: Say.say( 'R_{} = {:.1f} kpc\n M_{} = {} M_sun, log = {}\n V_max = {:.1f} km/s'.format( virial_kind, halo_radius, virial_kind, ut.io.get_string_from_numbers(halo_mass, 2), ut.io.get_string_from_numbers(np.log10(halo_mass), 2), vel_circ_max) ) halo_prop = {} halo_prop['radius'] = halo_radius halo_prop['mass'] = halo_mass halo_prop['vel.circ.max'] = vel_circ_max halo_prop['vel.circ.max.radius'] = vel_circ_max_radius if return_array and len(species) == 1: part_indices = part_indices[species[0]] halo_prop['indices'] = part_indices return halo_prop def get_galaxy_properties( part, species_name='star', edge_kind='mass.percent', edge_value=90, distance_max=20, distance_bin_width=0.02, distance_scaling='log', center_position=None, axis_kind='', rotation_tensor=None, rotation_distance_max=20, other_axis_distance_limits=None, part_indices=None, print_results=True): ''' Compute galaxy radius according to edge_kind. Return this radius, the mass from species within this radius, particle indices within this radius, and rotation vectors (if applicable). Parameters ---------- part : dict : catalog of particles at snapshot species_name : str : name of particle species to use edge_kind : str : method to define galaxy radius 'mass.percent' = radius at which edge_value (percent) of stellar mass within distance_max 'density' = radius at which density is edge_value [log(M_sun / kpc^3)] edge_value : float : value to use to define galaxy radius mass_percent : float : percent of mass (out to distance_max) to define radius distance_max : float : maximum distance to consider [kpc physical] distance_bin_width : float : width of distance bin distance_scaling : str : distance bin scaling: 'log', 'linear' axis_kind : str : 'major', 'minor', 'both' rotation_tensor : array : rotation vectors that define principal axes rotation_distance_max : float : maximum distance to use in defining rotation vectors of principal axes [kpc physical] other_axis_distance_limits : float : min and max distances along other axis[s] to keep particles [kpc physical] center_position : array : center position [kpc comoving] if None, will use default center position in catalog part_indices : array : star particle indices (if already know which ones are close) print_results : bool : whether to print radius and mass of galaxy Returns ------- gal_prop : dict : dictionary of galaxy properties: radius or radius.major & radius.minor : float : galaxy radius[s] [kpc physical] mass : float : mass within radius[s] [M_sun] indices : array : indices of partices within radius[s] (if get_part_indices) rotation.vectors : array : eigen-vectors that defined rotation ''' def get_radius_mass_indices( masses, distances, distance_scaling, distance_limits, distance_bin_width, dimension_number, edge_kind, edge_value): ''' Utility function. ''' Say = ut.io.SayClass(get_radius_mass_indices) DistanceBin = ut.binning.DistanceBinClass( distance_scaling, distance_limits, width=distance_bin_width, dimension_number=dimension_number) # get masses in distance bins mass_in_bins = DistanceBin.get_histogram(distances, False, masses) if edge_kind == 'mass.percent': # get mass within distance minimum, for computing cumulative values d_indices = np.where(distances < np.min(distance_limits))[0] log_masses_cum = ut.math.get_log(np.sum(masses[d_indices]) + np.cumsum(mass_in_bins)) log_mass = np.log10(edge_value / 100) + log_masses_cum.max() try: # interpolate in log space log_radius = np.interp(log_mass, log_masses_cum, DistanceBin.log_maxs) except ValueError: Say.say('! could not find object radius - increase distance_max') return elif edge_kind == 'density': log_density_in_bins = ut.math.get_log(mass_in_bins / DistanceBin.volumes) # use only bins with defined density (has particles) d_bin_indices = np.arange(DistanceBin.number)[np.isfinite(log_density_in_bins)] # get smallest radius that satisfies density threshold for d_bin_ii, d_bin_i in enumerate(d_bin_indices): d_bin_i_plus_1 = d_bin_indices[d_bin_ii + 1] if (log_density_in_bins[d_bin_i] >= edge_value and log_density_in_bins[d_bin_i_plus_1] < edge_value): # interpolate in log space log_radius = np.interp( edge_value, log_density_in_bins[[d_bin_i_plus_1, d_bin_i]], DistanceBin.log_maxs[[d_bin_i_plus_1, d_bin_i]]) break else: Say.say('! could not find object radius - increase distance_max') return radius = 10 ** log_radius masks = (distances < radius) mass = np.sum(masses[masks]) indices = ut.array.get_arange(masses)[masks] return radius, mass, indices # start function Say = ut.io.SayClass(get_galaxy_properties) distance_min = 0.001 # [kpc physical] distance_limits = [distance_min, distance_max] if edge_kind == 'mass.percent': # dealing with cumulative value - stable enough to decrease bin with distance_bin_width *= 0.1 center_position = parse_property(part, 'center_position', center_position) if part_indices is None or not len(part_indices): part_indices = ut.array.get_arange(part[species_name]['position'].shape[0]) distance_vectors = ut.coordinate.get_distances( part[species_name]['position'][part_indices], center_position, part.info['box.length'], part.snapshot['scalefactor']) # [kpc physical] distances = np.sqrt(np.sum(distance_vectors ** 2, 1)) # 3-D distance masses = part[species_name].prop('mass', part_indices) if axis_kind: # radius along 2-D major axes (projected radius) or along 1-D minor axis (height) assert axis_kind in ['major', 'minor', 'both'] if rotation_tensor is None or not len(rotation_tensor): if (len(part[species_name].host_rotation_tensors) and len(part[species_name].host_rotation_tensors[0])): # use only the primary host rotation_tensor = part[species_name].host_rotation_tensors[0] else: masks = (distances < rotation_distance_max) rotation_tensor = ut.coordinate.get_principal_axes( distance_vectors[masks], masses[masks])[0] distance_vectors = ut.coordinate.get_coordinates_rotated( distance_vectors, rotation_tensor=rotation_tensor) distances_cyl = ut.coordinate.get_positions_in_coordinate_system( distance_vectors, 'cartesian', 'cylindrical') major_distances, minor_distances = distances_cyl[:, 0], distances_cyl[:, 1] minor_distances = np.abs(minor_distances) # need only absolute distances if axis_kind in ['major', 'minor']: if axis_kind == 'minor': dimension_number = 1 distances = minor_distances other_distances = major_distances elif axis_kind == 'major': dimension_number = 2 distances = major_distances other_distances = minor_distances if (other_axis_distance_limits is not None and (min(other_axis_distance_limits) > 0 or max(other_axis_distance_limits) < Inf)): masks = ((other_distances >= min(other_axis_distance_limits)) * (other_distances < max(other_axis_distance_limits))) distances = distances[masks] masses = masses[masks] else: # spherical average dimension_number = 3 gal_prop = {} if axis_kind == 'both': # first get 3-D radius galaxy_radius_3d, _galaxy_mass_3d, indices = get_radius_mass_indices( masses, distances, distance_scaling, distance_limits, distance_bin_width, 3, edge_kind, edge_value) galaxy_radius_major = galaxy_radius_3d axes_mass_dif = 1 # then iterate to get both major and minor axes while axes_mass_dif > 0.005: # get 1-D radius along minor axis masks = (major_distances < galaxy_radius_major) galaxy_radius_minor, galaxy_mass_minor, indices = get_radius_mass_indices( masses[masks], minor_distances[masks], distance_scaling, distance_limits, distance_bin_width, 1, edge_kind, edge_value) # get 2-D radius along major axes masks = (minor_distances < galaxy_radius_minor) galaxy_radius_major, galaxy_mass_major, indices = get_radius_mass_indices( masses[masks], major_distances[masks], distance_scaling, distance_limits, distance_bin_width, 2, edge_kind, edge_value) axes_mass_dif = (abs(galaxy_mass_major - galaxy_mass_minor) / (0.5 * (galaxy_mass_major + galaxy_mass_minor))) indices = (major_distances < galaxy_radius_major) * (minor_distances < galaxy_radius_minor) gal_prop['radius.major'] = galaxy_radius_major gal_prop['radius.minor'] = galaxy_radius_minor gal_prop['mass'] = galaxy_mass_major gal_prop['log mass'] = np.log10(galaxy_mass_major) gal_prop['rotation.tensor'] = rotation_tensor gal_prop['indices'] = part_indices[indices] if print_results: Say.say('R_{:.0f} along major, minor axes = {:.2f}, {:.2f} kpc physical'.format( edge_value, galaxy_radius_major, galaxy_radius_minor)) else: galaxy_radius, galaxy_mass, indices = get_radius_mass_indices( masses, distances, distance_scaling, distance_limits, distance_bin_width, dimension_number, edge_kind, edge_value) gal_prop['radius'] = galaxy_radius gal_prop['mass'] = galaxy_mass gal_prop['log mass'] = np.log10(galaxy_mass) gal_prop['indices'] = part_indices[indices] if print_results: Say.say('R_{:.0f} = {:.2f} kpc physical'.format(edge_value, galaxy_radius)) if print_results: Say.say('M_star = {:.2e} M_sun, log = {:.2f}'.format( gal_prop['mass'], gal_prop['log mass'])) return gal_prop #=================================================================================================== # profiles of properties #=================================================================================================== class SpeciesProfileClass(ut.binning.DistanceBinClass): ''' Get profiles of either histogram/sum or stastitics (such as average, median) of given property for given particle species. __init__ is defined via ut.binning.DistanceBinClass ''' def get_profiles( self, part, species=['all'], property_name='', property_statistic='sum', weight_by_mass=False, center_position=None, center_velocity=None, rotation=None, other_axis_distance_limits=None, property_select={}, part_indicess=None): ''' Parse inputs into either get_sum_profiles() or get_statistics_profiles(). If know what you want, can skip this and jump to those functions. Parameters ---------- part : dict : catalog of particles species : str or list : name[s] of particle species to compute mass from property_name : str : name of property to get statistics of property_statistic : str : statistic to get profile of: 'sum', 'sum.cum', 'density', 'density.cum', 'vel.circ' weight_by_mass : bool : whether to weight property by species mass center_position : array : position of center center_velocity : array : velocity of center rotation : bool or array : whether to rotate particles - two options: (a) if input array of eigen-vectors, will define rotation axes (b) if True, will rotate to align with principal axes stored in species dictionary other_axis_distance_limits : float : min and max distances along other axis[s] to keep particles [kpc physical] property_select : dict : (other) properties to select on: names as keys and limits as values part_indicess : array (species number x particle number) : indices of particles from which to select Returns ------- pros : dict : dictionary of profiles for each particle species ''' if ('sum' in property_statistic or 'vel.circ' in property_statistic or 'density' in property_statistic): pros = self.get_sum_profiles( part, species, property_name, center_position, rotation, other_axis_distance_limits, property_select, part_indicess) else: pros = self.get_statistics_profiles( part, species, property_name, weight_by_mass, center_position, center_velocity, rotation, other_axis_distance_limits, property_select, part_indicess) for k in pros: if '.cum' in property_statistic or 'vel.circ' in property_statistic: pros[k]['distance'] = pros[k]['distance.cum'] pros[k]['log distance'] = pros[k]['log distance.cum'] else: pros[k]['distance'] = pros[k]['distance.mid'] pros[k]['log distance'] = pros[k]['log distance.mid'] return pros def get_sum_profiles( self, part, species=['all'], property_name='mass', center_position=None, rotation=None, other_axis_distance_limits=None, property_select={}, part_indicess=None): ''' Get profiles of summed quantity (such as mass or density) for given property for each particle species. Parameters ---------- part : dict : catalog of particles species : str or list : name[s] of particle species to compute mass from property_name : str : property to get sum of center_position : list : center position rotation : bool or array : whether to rotate particles - two options: (a) if input array of eigen-vectors, will define rotation axes (b) if True, will rotate to align with principal axes stored in species dictionary other_axis_distance_limits : float : min and max distances along other axis[s] to keep particles [kpc physical] property_select : dict : (other) properties to select on: names as keys and limits as values part_indicess : array (species number x particle number) : indices of particles from which to select Returns ------- pros : dict : dictionary of profiles for each particle species ''' if 'gas' in species and 'consume.time' in property_name: pros_mass = self.get_sum_profiles( part, species, 'mass', center_position, rotation, other_axis_distance_limits, property_select, part_indicess) pros_sfr = self.get_sum_profiles( part, species, 'sfr', center_position, rotation, other_axis_distance_limits, property_select, part_indicess) pros = pros_sfr for k in pros_sfr['gas']: if 'distance' not in k: pros['gas'][k] = pros_mass['gas'][k] / pros_sfr['gas'][k] / 1e9 return pros pros = {} Fraction = ut.math.FractionClass() if np.isscalar(species): species = [species] if species == ['baryon']: # treat this case specially for baryon fraction species = ['gas', 'star', 'dark', 'dark2'] species = parse_species(part, species) center_position = parse_property(part, 'center_position', center_position) part_indicess = parse_property(species, 'indices', part_indicess) assert 0 < self.dimension_number <= 3 for spec_i, spec in enumerate(species): part_indices = part_indicess[spec_i] if part_indices is None or not len(part_indices): part_indices = ut.array.get_arange(part[spec].prop(property_name)) if property_select: part_indices = catalog.get_indices_catalog( part[spec], property_select, part_indices) prop_values = part[spec].prop(property_name, part_indices) if self.dimension_number == 3: # simple case: profile using scalar distance distances = ut.coordinate.get_distances( part[spec]['position'][part_indices], center_position, part.info['box.length'], part.snapshot['scalefactor'], total_distance=True) # [kpc physical] elif self.dimension_number in [1, 2]: # other cases: profile along R (2 major axes) or Z (minor axis) if rotation is not None and not isinstance(rotation, bool) and len(rotation): rotation_tensor = rotation elif (len(part[spec].host_rotation_tensors) and len(part[spec].host_rotation_tensors[0])): rotation_tensor = part[spec].host_rotation_tensors[0] else: raise ValueError('want 2-D or 1-D profile but no means to define rotation') distancess = get_distances_wrt_center( part, spec, part_indices, center_position, rotation_tensor, coordinate_system='cylindrical') # ensure all distances are positive definite distancess = np.abs(distancess) if self.dimension_number == 1: # compute profile along minor axis (Z) distances = distancess[:, 1] other_distances = distancess[:, 0] elif self.dimension_number == 2: # compute profile along major axes (R) distances = distancess[:, 0] other_distances = distancess[:, 1] if (other_axis_distance_limits is not None and (min(other_axis_distance_limits) > 0 or max(other_axis_distance_limits) < Inf)): masks = ((other_distances >= min(other_axis_distance_limits)) * (other_distances < max(other_axis_distance_limits))) distances = distances[masks] prop_values = prop_values[masks] pros[spec] = self.get_sum_profile(distances, prop_values) # defined in DistanceBinClass props = [pro_prop for pro_prop in pros[species[0]] if 'distance' not in pro_prop] props_dist = [pro_prop for pro_prop in pros[species[0]] if 'distance' in pro_prop] if property_name == 'mass': # create dictionary for baryonic mass if 'star' in species or 'gas' in species: spec_new = 'baryon' pros[spec_new] = {} for spec in np.intersect1d(species, ['star', 'gas']): for pro_prop in props: if pro_prop not in pros[spec_new]: pros[spec_new][pro_prop] =
np.array(pros[spec][pro_prop])
numpy.array
#!/usr/local/bin/python import argparse import os import sys import pandas as pd import numpy as np import time pd.options.mode.chained_assignment = None parser = argparse.ArgumentParser(prog='snvScore') parser.add_argument('SampleBED',type=str,help='Path to the mosdepth per-base BED output') parser.add_argument('SNVGermlineTXT',type=str,help='Path to Clivar-generated table with pathogenic germline SNVs') parser.add_argument('SNVSomaticTXT',type=str,help='Path to Clivar-generated table with pathogenic somatic SNVs') parser.add_argument('Threshold',type=int,nargs='?',help='SNV coverage quality threshold (optional, positive)',default=0) args = parser.parse_args() sample_name = args.SampleBED while sample_name.find('/')!=-1: sample_name = sample_name[sample_name.find('/')+1:] def snv_coverage(snv,chrom_cover): snv = snv.dropna() snv['coverage']=0.0 snv=snv.drop_duplicates() snv = snv.reset_index(drop=True) cover_reg = chrom_cover[(chrom_cover.end>snv.position.iloc[0]) & (chrom_cover.start<=snv.position.iloc[-1])] cover_reg = cover_reg.reset_index(drop=True) for ind in snv.index: buf = cover_reg[(cover_reg.end>snv.position[ind]) & (cover_reg.start<=snv.position[ind])] snv.coverage[ind] = buf.coverage return snv def CatchChromoRegs(BED_fname,chrom_names): BED = open(BED_fname, 'rt') # chrom_names = ['chr1', 'chr2', 'chr3', 'chr4', 'chr5', 'chr6', 'chr7', 'chr8', # 'chr9', 'chr10', 'chr11', 'chr12', 'chr13', 'chr14', 'chr15', # 'chr16', 'chr17', 'chr18', 'chr19', 'chr20', 'chr21', 'chr22', # 'chrX', 'chrY','chrM'] chrom_start_pos = np.zeros(len(chrom_names)+1,dtype='int32') line_num = 0 for chrom,i in zip(chrom_names,np.arange(len(chrom_names))): pos_catched = False while not pos_catched: line = BED.readline() line = line[:line.find('\t')] if line == chrom: pos_catched = True chrom_start_pos[i] = line_num line_num+=1 while line =='chrM': line = BED.readline() line = line[:line.find('\t')] line_num+=1 chrom_start_pos[-1]=line_num-1 return chrom_start_pos def ExecuteClinicalCoverageDepthCalc(chrom_names,SNVG,SNVS,SampleBED): snv_cov = pd.DataFrame(columns=['chr','position','coverage','type']) all_cov = np.array([]) # start = time.time() res = CatchChromoRegs(SampleBED,chrom_names) rows = ['' for i in range(24)] for chrom,chr_num in zip(chrom_names[:-1],np.arange(24)): # for chrom,chr_num in zip(chrom_names[:3],np.arange(3)): chrom_cover = pd.read_csv(SampleBED,delimiter='\t',header=None,names=['chr','start','end','coverage'],skiprows=res[chr_num],nrows=res[chr_num+1]-res[chr_num]) all_cov = np.append(all_cov,chrom_cover.coverage.values,axis=0) snvg_part = SNVG[SNVG.chr==chrom] snvs_part = SNVS[SNVS.chr==chrom] if snvg_part.size>0: snvg_part = snv_coverage(snvg_part,chrom_cover) snvg_part['type'] = 'germline' snv_cov=pd.concat([snv_cov,snvg_part]) germ_row = '%8.0f %10.0f %6.0f %6.0f %6.0f '%(len(snvg_part), np.median(snvg_part.coverage), np.std(snvg_part.coverage), np.min(snvg_part.coverage), np.max(snvg_part.coverage)) else: germ_row = '%8.0f %10.0f %6.0f %6.0f %6.0f '%(0,0,0,0,0) if snvs_part.size>0: snvs_part=snv_coverage(snvs_part,chrom_cover) snvs_part['type'] = 'somatic' snv_cov=pd.concat([snv_cov,snvs_part]) soma_row = '%8.0f %10.0f %6.0f %6.0f %6.0f'%(len(snvs_part), np.median(snvs_part.coverage), np.std(snvs_part.coverage),
np.min(snvs_part.coverage)
numpy.min
import math import numpy as np import matplotlib.pyplot as plt def sigmoid(x): return 1 / (1 + math.exp(-x)) # Function to know if we have a CCW turn def CCW(p1, p2, p3): if (p3[1]-p1[1])*(p2[0]-p1[0]) >= (p2[1]-p1[1])*(p3[0]-p1[0]): return True return False # Main function: def create_convex_hull(S): """takes in an [np array] of points! and return a convex hull """ n = len(S) P = [None] * n l = np.where(S[:,0] == np.min(S[:,0])) pointOnHull = S[l[0][0]] i = 0 while True: P[i] = pointOnHull endpoint = S[0] for j in range(1,n): if (endpoint[0] == pointOnHull[0] and endpoint[1] == pointOnHull[1]) or not CCW(S[j],P[i],endpoint): endpoint = S[j] i = i + 1 pointOnHull = endpoint if endpoint[0] == P[0][0] and endpoint[1] == P[0][1]: break for i in range(n): if P[-1] is None: del P[-1] return np.array(P) def euclidean_dist(pos1, pos2): return math.sqrt((pos1[0] - pos2[0]) ** 2 + (pos1[1] - pos2[1]) ** 2) def compute_centroid(vertices): """ helper function: input: vertices: a list of vertices of a polygon under the assumption that all vertices are ordered either clockwise/counterclockwise output: centroid: position of (x, y) tuple of the polygon relative to the local origin of polygon. """ c_x = 0 c_y = 0 area = 0 n = len(vertices) for i in range(n): curr = vertices[(i - n) % n] next = vertices[(i + 1 - n) % n] diff = (curr[0] * next[1] - curr[1] * next[0]) c_x += (curr[0] + next[0]) * diff c_y += (curr[1] + next[1]) * diff area += diff area = area / 2 c_x = c_x / (6 * area) c_y = c_y / (6 * area) return c_x, c_y def compute_area(vertices): """ helper function: input: vertices: a list of vertices of a polygon under the assumption that all vertices are ordered either clockwise/counterclockwise output: centroid: position of (x, y) tuple of the polygon relative to the local origin of polygon. """ c_x = 0 c_y = 0 area = 0 n = len(vertices) for i in range(n): curr = vertices[(i - n) % n] next = vertices[(i + 1 - n) % n] diff = (curr[0] * next[1] - curr[1] * next[0]) c_x += (curr[0] + next[0]) * diff c_y += (curr[1] + next[1]) * diff area += diff area = area / 2 return abs(area) def normalize(vector): """ helper function: input: vector: (x, y) force vector output: vector: (x, y) force vector with normalized magnitude 1 """ mag = math.sqrt(vector[0] ** 2 + vector[1] ** 2)+1e-6 return vector[0] / mag, vector[1] / mag def normalize_vector(x, eps=1e-9): mean = np.mean(x) std = np.std(x) x = (x - mean)/(std+eps) return x def side_of_point_on_line(start_pt, end_pt, query_pt): det = (end_pt[0] - start_pt[0]) * (query_pt[1] - start_pt[1]) - (end_pt[1] - start_pt[1]) * (query_pt[0] - start_pt[0]) if det > 0: return 1 elif det < 0: return -1 else: return 0 def pointToLineDistance(e1, e2, p1): numerator = np.abs((e2[1] - e1[1])*p1[0] - (e2[0] - e1[0])*p1[1] + e2[0]*e1[1] - e1[0]*e2[1]) normalization = np.sqrt((e2[1] - e1[1])**2 + (e2[0] - e1[0])**2) return numerator/normalization def scalarProject(start_pt, end_pt, point): a = np.array(point) - np.array(start_pt) unit_b = normalize(np.array(end_pt) - np.array(start_pt)) return a[0]*unit_b[0]+a[1]*unit_b[1] def projectedPtToStartDistance(e1, e2, p1): d1 = pointToLineDistance(e1, e2, p1) d2 = euclidean_dist(e1, p1) if abs(d1) > abs(d2): return None return math.sqrt(d2 ** 2 - d1 ** 2) def two_line_intersect(e1, e2, e3, e4): denom = (e1[0]-e2[0])*(e3[1]-e4[1]) - (e1[1]-e2[1])*(e3[0]-e4[0]) f1 = (e1[0]*e2[1] - e1[1]*e2[0]) f2 = (e3[0]*e4[1] - e3[1]*e4[0]) if denom == 0: return None pt = ((f1*(e3[0] - e4[0]) - f2 * (e1[0] - e2[0])) / (denom+1e-6), (f1*(e3[1] - e4[1]) - f2 * (e1[1] - e2[1]))/(denom+1e-6)) kap = np.dot(np.array(pt) - np.array(e3), np.array(e4) - np.array(e3)) kab = np.dot(np.array(e4) - np.array(e3), np.array(e4) - np.array(e3)) if kap > kab or kap < 0: return None else: return pt # return pt def find_max_contact_range(vertices, e1, e2): p = np.array(e1) - np.array(e2) vector = (1, -(p[0] / (p[1] + 1e-6))) # print(vector) max_contact_range = 0 start_pt = None max_dist = 0 for i in range(len(vertices)): dist = pointToLineDistance(e1, e2, vertices[i]) if dist > max_dist: max_dist = dist start_pt = vertices[i] # print(start_pt) if not start_pt is None: end_pt = np.array(start_pt) + np.array(vector) start_pt = np.array(start_pt) - np.array(vector) intersect_list = set() for j in range(len(vertices)): intersect = two_line_intersect(start_pt, end_pt, vertices[j], vertices[(j + 1) % len(vertices)]) # print(vertices[j], vertices[(j + 1) % len(vertices)]) # print(intersect) if not intersect is None: add = True for pt in intersect_list: if euclidean_dist(pt, intersect) < 0.01: add = False if add: intersect_list.add(intersect) # print(intersect_list) if len(intersect_list) == 2: # print(intersect_list) intersect_list = list(intersect_list) contact_range = euclidean_dist(intersect_list[0], intersect_list[1]) if contact_range > max_contact_range: max_contact_range = contact_range # for i in range(len(vertices)): # perp_end_pt = np.array(vertices[i]) + np.array(vector) # intersect_list = [] # for j in range(len(vertices)): # intersect = two_line_intersect(vertices[i], perp_end_pt, vertices[j], vertices[(j + 1) % len(vertices)]) # if not intersect is None: # intersect_list.append(intersect) # print(intersect_list) # if len(intersect_list) == 2: # # print(intersect_list) # contact_range = euclidean_dist(intersect_list[0], intersect_list[1]) # if contact_range > max_contact_range: # max_contact_range = contact_range return max_contact_range, list(intersect_list) def find_collision_dist_convex_hull(start_pt, vector, centroid, vertices): abs_vertices = np.array(vertices) + np.array(centroid) end_pt =
np.array(start_pt)
numpy.array
""" bitmap utils and much of the ctc code modified From <NAME>, Rakesh and <NAME> """ # Author: <NAME> # License: BSD 3-clause from theano import tensor from scipy import linalg import theano import numpy as np import matplotlib.pyplot as plt eps = 1E-12 characters = np.array([ 0x0, 0x808080800080000, 0x2828000000000000, 0x287C287C280000, 0x81E281C0A3C0800, 0x6094681629060000, 0x1C20201926190000, 0x808000000000000, 0x810202010080000, 0x1008040408100000, 0x2A1C3E1C2A000000, 0x8083E08080000, 0x81000, 0x3C00000000, 0x80000, 0x204081020400000, 0x1824424224180000, 0x8180808081C0000, 0x3C420418207E0000, 0x3C420418423C0000, 0x81828487C080000, 0x7E407C02423C0000, 0x3C407C42423C0000, 0x7E04081020400000, 0x3C423C42423C0000, 0x3C42423E023C0000, 0x80000080000, 0x80000081000, 0x6186018060000, 0x7E007E000000, 0x60180618600000, 0x3844041800100000, 0x3C449C945C201C, 0x1818243C42420000, 0x7844784444780000, 0x3844808044380000, 0x7844444444780000, 0x7C407840407C0000, 0x7C40784040400000, 0x3844809C44380000, 0x42427E4242420000, 0x3E080808083E0000, 0x1C04040444380000, 0x4448507048440000, 0x40404040407E0000, 0x4163554941410000, 0x4262524A46420000, 0x1C222222221C0000, 0x7844784040400000, 0x1C222222221C0200, 0x7844785048440000, 0x1C22100C221C0000, 0x7F08080808080000, 0x42424242423C0000, 0x8142422424180000, 0x4141495563410000, 0x4224181824420000, 0x4122140808080000, 0x7E040810207E0000, 0x3820202020380000, 0x4020100804020000, 0x3808080808380000, 0x1028000000000000, 0x7E0000, 0x1008000000000000, 0x3C023E463A0000, 0x40407C42625C0000, 0x1C20201C0000, 0x2023E42463A0000, 0x3C427E403C0000, 0x18103810100000, 0x344C44340438, 0x2020382424240000, 0x800080808080000, 0x800180808080870, 0x20202428302C0000, 0x1010101010180000, 0x665A42420000, 0x2E3222220000, 0x3C42423C0000, 0x5C62427C4040, 0x3A46423E0202, 0x2C3220200000, 0x1C201804380000, 0x103C1010180000, 0x2222261A0000, 0x424224180000, 0x81815A660000, 0x422418660000, 0x422214081060, 0x3C08103C0000, 0x1C103030101C0000, 0x808080808080800, 0x38080C0C08380000, 0x324C000000, ], dtype=np.uint64) bitmap = np.unpackbits(characters.view(np.uint8)).reshape(characters.shape[0], 8, 8) bitmap = bitmap[:, ::-1, :] chars = " !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~" mapping = {c: i for i, c in enumerate(chars)} def string_to_image(string): return np.hstack(np.array([bitmap[mapping[c]] for c in string])).T[:, ::-1] def string_to_index(string): return np.asarray([mapping[c] for c in string]) def recurrence_relation(y, y_mask): # with blank symbol of -1 this falls back to the recurrence that fails # with repeating symbols! blank_symbol = -1 n_y = y.shape[0] blanks = tensor.zeros((2, y.shape[1])) + blank_symbol ybb = tensor.concatenate((y, blanks), axis=0).T sec_diag = (tensor.neq(ybb[:, :-2], ybb[:, 2:]) * tensor.eq(ybb[:, 1:-1], blank_symbol) * y_mask.T) # r1: LxL # r2: LxL # r3: LxLxB r2 = tensor.eye(n_y, k=1) r3 = (tensor.eye(n_y, k=2).dimshuffle(0, 1, 'x') * sec_diag.dimshuffle(1, 'x', 0)) return r2, r3 def _epslog(x): return tensor.cast(tensor.log(tensor.clip(x, 1E-12, 1E12)), theano.config.floatX) def _log_add(a, b): max_ = tensor.maximum(a, b) return (max_ + tensor.log1p(tensor.exp(a + b - 2 * max_))) def _log_dot_matrix(x, z): inf = 1E12 log_dot = tensor.dot(x, z) zeros_to_minus_inf = (z.max(axis=0) - 1) * inf return log_dot + zeros_to_minus_inf def _log_dot_tensor(x, z): inf = 1E12 log_dot = (x.dimshuffle(1, 'x', 0) * z).sum(axis=0).T zeros_to_minus_inf = (z.max(axis=0) - 1) * inf return log_dot + zeros_to_minus_inf.T def class_batch_to_labeling_batch(y, y_hat, y_hat_mask): # ?? y_hat = y_hat.dimshuffle(0, 2, 1) y_hat = y_hat * y_hat_mask.dimshuffle(0, 'x', 1) batch_size = y_hat.shape[2] res = y_hat[:, y.astype('int32'), tensor.arange(batch_size)] return res def log_path_probs(y, y_mask, y_hat, y_hat_mask): pred_y = class_batch_to_labeling_batch(y, y_hat, y_hat_mask) r2, r3 = recurrence_relation(y, y_mask) def step(log_p_curr, log_p_prev): p1 = log_p_prev p2 = _log_dot_matrix(p1, r2) p3 = _log_dot_tensor(p1, r3) p123 = _log_add(p3, _log_add(p1, p2)) return (log_p_curr.T + p123 + _epslog(y_mask.T)) log_probabilities, _ = theano.scan( step, sequences=[_epslog(pred_y)], outputs_info=[_epslog(tensor.eye(y.shape[0])[0] * tensor.ones(y.T.shape))]) return log_probabilities def log_ctc_cost(y, y_mask, y_hat, y_hat_mask): y_hat_mask_len = tensor.sum(y_hat_mask, axis=0, dtype='int32') y_mask_len = tensor.sum(y_mask, axis=0, dtype='int32') log_probs = log_path_probs(y, y_mask, y_hat, y_hat_mask) batch_size = log_probs.shape[1] labels_prob = _log_add( log_probs[y_hat_mask_len - 1, tensor.arange(batch_size), y_mask_len - 1], log_probs[y_hat_mask_len - 1, tensor.arange(batch_size), y_mask_len - 2]) avg_cost = tensor.mean(-labels_prob) return avg_cost def as_shared(arr, name=None): if type(arr) in [float, int]: if name is not None: return theano.shared(np.cast[theano.config.floatX](arr)) else: return theano.shared(np.cast[theano.config.floatX](arr), name=name) if name is not None: return theano.shared(value=arr, borrow=True) else: return theano.shared(value=arr, name=name, borrow=True) def np_zeros(shape): """ Builds a numpy variable filled with zeros """ return np.zeros(shape).astype(theano.config.floatX) def np_ones(shape): """ Builds a numpy variable filled with zeros """ return np.ones(shape).astype(theano.config.floatX) def np_rand(shape, random_state): # Make sure bounds aren't the same return random_state.uniform(low=-0.08, high=0.08, size=shape).astype( theano.config.floatX) def np_randn(shape, random_state): """ Builds a numpy variable filled with random normal values """ return (0.01 * random_state.randn(*shape)).astype(theano.config.floatX) def np_tanh_fan(shape, random_state): # The . after the 6 is critical! shape has dtype int... bound = np.sqrt(6. /
np.sum(shape)
numpy.sum
import os import cv2 import matplotlib.pyplot as plt import numpy as np from skimage import data, color from skimage.morphology import disk import skimage.filters.rank as sfr from PIL import Image, ImageEnhance from skimage import exposure import collections from phasepack import phasecong, phasecongmono, phasesym, phasesymmono import pyfftw import math from math import pi def Principle_Vessel_Segmentation_for_MA_and_HE(path): #主干血管分割 img = cv2.imread(path) _, green, _ = cv2.split(img) r1 = cv2.morphologyEx(green, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)), iterations=1) R1 = cv2.morphologyEx(r1, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)), iterations=1) r2 = cv2.morphologyEx(R1, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (11, 11)), iterations=1) R2 = cv2.morphologyEx(r2, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (11, 11)), iterations=1) r3 = cv2.morphologyEx(R2, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (23, 23)), iterations=1) R3 = cv2.morphologyEx(r3, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (23, 23)), iterations=1) morph_contrast_enhanced_green = R3 clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8)) f5 = clahe.apply(cv2.subtract(morph_contrast_enhanced_green, green)) ret, f6 = cv2.threshold(f5, 30, 255, cv2.THRESH_BINARY) # 用来计算 mask mask = np.ones(f6.shape[:2], dtype="uint8") * 255 im = cv2.bitwise_and(f6, f6, mask=mask) ret, fin = cv2.threshold(im, 11, 255, cv2.THRESH_BINARY_INV) newfin = cv2.erode(fin, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)), iterations=1) kernel = np.ones((3, 3), np.uint8) erosion = cv2.erode(newfin, kernel) dst = cv2.dilate(erosion, kernel) dst = 255 - dst contours, hierarchy = cv2.findContours(dst, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: if cv2.contourArea(cnt) <= 2000: cv2.drawContours(dst, [cnt], -1, 0, -1) dst = cv2.erode(dst, np.ones((2, 2), np.uint8)) dst = cv2.dilate(dst, np.ones((2, 2), np.uint8)) dst = cv2.erode(dst, np.ones((5, 5), np.uint8)) dst = cv2.dilate(dst, np.ones((5, 5), np.uint8)) contours, hierarchy = cv2.findContours(dst, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: if cv2.contourArea(cnt) <= 1500: cv2.drawContours(dst, [cnt], -1, 0, -1) return dst def Principle_Vessel_Segmentation_for_EX_and_SE(path): img = cv2.imread(path) _, green, _ = cv2.split(img) r1 = cv2.morphologyEx(green, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)), iterations=1) R1 = cv2.morphologyEx(r1, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)), iterations=1) r2 = cv2.morphologyEx(R1, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (11, 11)), iterations=1) R2 = cv2.morphologyEx(r2, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (11, 11)), iterations=1) r3 = cv2.morphologyEx(R2, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (23, 23)), iterations=1) R3 = cv2.morphologyEx(r3, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (23, 23)), iterations=1) morph_contrast_enhanced_green = R3 clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) f5 = clahe.apply(cv2.subtract(morph_contrast_enhanced_green, green)) ret, f6 = cv2.threshold(f5, 15, 255, cv2.THRESH_BINARY) # 用来计算 mask mask = np.ones(f5.shape[:2], dtype="uint8") * 255 contours, hierarchy = cv2.findContours(f6, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: if cv2.contourArea(cnt) <= 2000: cv2.drawContours(mask, [cnt], -1, 0, -1) im = cv2.bitwise_and(f5, f5, mask=mask) ret, fin = cv2.threshold(im, 15, 255, cv2.THRESH_BINARY_INV) newfin = cv2.erode(fin, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)), iterations=1) kernel = np.ones((5, 5), np.uint8) erosion = cv2.erode(newfin, kernel) dst = cv2.dilate(erosion, kernel) return dst def Ocular_boundary_Pextraction(path): #眼球边界检测 img = cv2.imread(path) _, green, _ = cv2.split(img) erosion = cv2.dilate(green, kernel=np.ones((3, 3), np.uint8)) dst = cv2.erode(erosion, kernel=np.ones((3, 3), np.uint8)) contours, hierarchy = cv2.findContours(dst, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) if len(contours) != 0: area = [] for k in range(len(contours)): area.append(cv2.contourArea(contours[k])) max_idx = np.argmax(np.array(area)) dst = cv2.drawContours(dst, contours, max_idx, 255, cv2.FILLED) h = dst.shape[0] w = dst.shape[1] c = max(h, w) cv2.circle(dst, (round(w / 2), round(h / 2)), round(c / 2 - 8), (255, 255, 255), -1) dst = cv2.erode(dst, kernel=
np.ones((12, 12), np.uint8)
numpy.ones
import tensorflow as tf from spinup.algos.ude_td3.core import get_vars from spinup.utils.logx import Logger import numpy as np class UncertaintyModule(object): """This class is to provide functions to investigate dropout-based uncertainty change trajectories.""" def __init__(self, act_dim, obs_dim, n_post_action, obs_set_size, track_obs_set_unc_frequency, pi, x_ph, a_ph, pi_dropout_mask_phs, pi_dropout_mask_generator, rnd_targ_act, rnd_pred_act, rnd_targ_cri, rnd_pred_cri, logger_kwargs, tf_var_scope_main='main', tf_var_scope_target='target', tf_var_scope_unc='uncertainty', uncertainty_type='dropout'): self.act_dim = act_dim self.obs_dim = obs_dim self.n_post_action = n_post_action # policy self.pi = pi self.x_ph = x_ph self.a_ph = a_ph # dropout self.pi_dropout_mask_phs = pi_dropout_mask_phs self.pi_dropout_mask_generator = pi_dropout_mask_generator # rnd self.rnd_targ_act = rnd_targ_act self.rnd_pred_act = rnd_pred_act self.rnd_targ_cri = rnd_targ_cri self.rnd_pred_cri = rnd_pred_cri self.obs_set_size = obs_set_size self.obs_set_is_empty = True self.track_obs_set_unc_frequency = track_obs_set_unc_frequency self.tf_var_scope_main = tf_var_scope_main self.tf_var_scope_target = tf_var_scope_target self.tf_var_scope_unc = tf_var_scope_unc self.uncertainty_logger = Logger(output_fname='{}_uncertainty.txt'.format(uncertainty_type), **logger_kwargs) self.sample_logger = Logger(output_fname='{}_sample_observation.txt'.format(uncertainty_type), **logger_kwargs) # TODO: target policy def uncertainty_policy_update_targ(self,sess): """Update uncertainty policy to current policy""" sess.run(tf.group([tf.assign(v_unc, v_main) for v_main, v_unc in zip(get_vars(self.tf_var_scope_target), get_vars(self.tf_var_scope_unc))])) def uncertainty_policy_update(self, sess): """Update uncertainty policy to current policy""" sess.run(tf.group([tf.assign(v_unc, v_main) for v_main, v_unc in zip(get_vars(self.tf_var_scope_main), get_vars(self.tf_var_scope_unc))])) def sample_obs_set_from_replay_buffer(self, replay_buffer): """Sample an obs set from replay buffer.""" self.obs_set = replay_buffer.sample_batch(self.obs_set_size)['obs1'] self.obs_set_is_empty = False # Save sampled observations for i, o in enumerate(self.obs_set): self.sample_logger.log_tabular('Observation', i) # import pdb; pdb.set_trace() for dim, o_i in enumerate(o): self.sample_logger.log_tabular('o_{}'.format(dim), o_i) self.sample_logger.dump_tabular(print_data=False) def calculate_obs_set_uncertainty(self, sess, epoch, step): self.uncertainty_logger.log_tabular('Epoch', epoch) self.uncertainty_logger.log_tabular('Step', step) for obs_i, obs in enumerate(self.obs_set): # Calculate uncertainty a_post = self.get_post_samples(obs, sess, step) a_cov = np.cov(a_post, rowvar=False) for unc_i, unc_v in enumerate(np.array(a_cov).flatten(order='C')): self.uncertainty_logger.log_tabular('Obs{}_unc_{}'.format(obs_i, unc_i), unc_v) # Calculate RND prediction error rnd_targ, rnd_pred, rnd_pred_error = self.calculate_actor_RND_pred_error(obs, sess) for rnd_i in range(self.act_dim): self.uncertainty_logger.log_tabular('Obs{}_rnd_t_{}'.format(obs_i, rnd_i), rnd_targ[rnd_i]) self.uncertainty_logger.log_tabular('Obs{}_rnd_p_{}'.format(obs_i, rnd_i), rnd_pred[rnd_i]) self.uncertainty_logger.log_tabular('Obs{}_rnd_error'.format(obs_i), rnd_pred_error) self.uncertainty_logger.dump_tabular(print_data=False) def calculate_actor_RND_pred_error(self, obs, sess): feed_dictionary = {self.x_ph: obs.reshape(1, -1)} targ, pred = sess.run([self.rnd_targ_act, self.rnd_pred_act], feed_dict=feed_dictionary) pred_error = np.sqrt(np.sum((pred-targ)**2)) return targ[0], pred[0], pred_error def calculate_critic_RND_pred_error(self, obs, act, sess): feed_dictionary = {self.x_ph: obs.reshape(1, -1), self.a_ph: act.reshape(1, -1)} targ, pred = sess.run([self.rnd_targ_cri, self.rnd_pred_cri], feed_dict=feed_dictionary) pred_error = np.sqrt(np.sum(pred-targ)**2) return targ[0], pred[0], pred_error def get_post_samples(self, obs, sess): """Return a post sample matrix for an observation.""" return np.zeros(self.n_post_action, self.act_dim) class DropoutUncertaintyModule(UncertaintyModule): """This class is to provide functions to investigate dropout-based uncertainty change trajectories.""" def __init__(self, act_dim, obs_dim, n_post_action, obs_set_size, track_obs_set_unc_frequency, x_ph, a_ph, pi, q1, q2, pi_dropout_mask_phs, pi_dropout_mask_generator, q1_dropout_mask_phs, q1_dropout_mask_generator, q2_dropout_mask_phs, q2_dropout_mask_generator, rnd_targ_act, rnd_pred_act, rnd_targ_cri, rnd_pred_cri, logger_kwargs, tf_var_scope_main='main', tf_var_scope_target='target', tf_var_scope_unc='uncertainty'): super().__init__(act_dim, obs_dim, n_post_action, obs_set_size, track_obs_set_unc_frequency, pi, x_ph, a_ph, pi_dropout_mask_phs, pi_dropout_mask_generator, rnd_targ_act, rnd_pred_act, rnd_targ_cri, rnd_pred_cri, logger_kwargs, tf_var_scope_main, tf_var_scope_target, tf_var_scope_unc, 'dropout') self.q1 = q1 self.q2 = q2 self.q1_dropout_mask_phs = q1_dropout_mask_phs self.q1_dropout_mask_generator = q1_dropout_mask_generator self.q2_dropout_mask_phs = q2_dropout_mask_phs self.q2_dropout_mask_generator = q2_dropout_mask_generator self.dropout_masks_set_pi = {i:pi_dropout_mask_generator.generate_dropout_mask() for i in range(n_post_action)} self.dropout_masks_set_q1 = {i:q1_dropout_mask_generator.generate_dropout_mask() for i in range(n_post_action)} self.dropout_masks_set_q2 = {i:q2_dropout_mask_generator.generate_dropout_mask() for i in range(n_post_action)} self.delayed_dropout_masks_update = False self.delayed_dropout_masks_update_freq = 1000 def uncertainty_pi_dropout_masks_update(self): """Update uncertainty dropout_masks.""" self.dropout_masks_set_pi = {i: self.pi_dropout_mask_generator.generate_dropout_mask() for i in range(self.n_post_action)} def uncertainty_q_dropout_masks_update(self): """Update uncertainty dropout_masks.""" self.dropout_masks_set_q1 = {i: self.q1_dropout_mask_generator.generate_dropout_mask() for i in range(self.n_post_action)} self.dropout_masks_set_q2 = {i: self.q2_dropout_mask_generator.generate_dropout_mask() for i in range(self.n_post_action)} def get_post_samples(self, obs, sess, step_index): """Return a post sample matrix for an observation.""" feed_dictionary = {self.x_ph: obs.reshape(1, -1)} a_post =
np.zeros((self.n_post_action, self.act_dim))
numpy.zeros
import sys import numpy as np from src.qrl import QRL from src.tools.tools import timeit from src.environments.Game2Enemies import Game2Enemies from src.tools.helpers import stepToString from defines import * if len(sys.argv) < 5: # initialize standard parameters total_episodes = NUM_EPISODES learning_rate = LEARNING_RATE discount_rate = DISCOUNT_RATE decay_rate = DECAY_RATE else: # initialize with given parameter-values total_episodes = int(sys.argv[1]) learning_rate = float(sys.argv[2]) discount_rate = float(sys.argv[3]) decay_rate = float(sys.argv[4]) qrl = QRL.QRL(env=Game2Enemies(map_name=MAP_NAME), learning_rate=learning_rate, discount_rate=discount_rate, decay_rate=decay_rate) exec_time = timeit(qrl.run, [total_episodes, "qtables/190427_20"], 1) # store exec_time in file with open("performance.csv", 'a') as file: s = "%i,%.2f,%.2f,%.5f,%f;\n" % (total_episodes, learning_rate, discount_rate, decay_rate, exec_time) file.write(s) if SHOW_QTABLE: print("=== Q-Table ===============================") qrl.loadFromFile() qrl.qtable.show() if SHOW_MAP: print("====== MAP Layout ==================\n") qrl.environment.reset() qrl.environment.render() print("\n") numSteps = [] total_rewards = np.zeros(NUM_TESTS) for i in range(NUM_TESTS): steps = qrl.test(render=False) numSteps.append(len(steps)) for step in steps: total_rewards[i] += step[3] if SHOW_ONLY_SUBPAR and total_rewards[i] >= THRESHOLD: continue if SHOW_TESTS: print("===== Test Game %i =====================" % (i+1)) for j in range(len(steps)): output = stepToString(steps[j]) print(j if j >= 10 else "%i " % j, output) print("Total Reward: %i\n" % total_rewards[i]) print("\n Average Number of Steps taken %.2f" % np.mean(numSteps)) print("\nMedian Reward: %.2f; Mean Reward: %.2f" % (
np.median(total_rewards)
numpy.median
"""Unified interface to all dynamic graph model experiments""" import math import logging import time import sys import os import random import argparse from tqdm import tqdm import torch import torch.nn as nn import torch.optim as optim import pandas as pd import numpy as np import pickle from sklearn.metrics import average_precision_score from sklearn.metrics import f1_score from sklearn.metrics import roc_auc_score from sklearn.metrics import mean_absolute_error # from utils import EarlyStopMonitor from module import TGAN from graph import NeighborFinder from kde import kde_fair class LR(torch.nn.Module): def __init__(self, dim, drop=0.3): super().__init__() self.fc_1 = torch.nn.Linear(dim, 80) self.fc_2 = torch.nn.Linear(80, 10) self.fc_3 = torch.nn.Linear(10, 1) self.act = torch.nn.ReLU() self.dropout = torch.nn.Dropout(p=drop, inplace=True) def forward(self, x): x = self.act(self.fc_1(x)) x = self.dropout(x) x = self.act(self.fc_2(x)) x = self.dropout(x) return self.fc_3(x).squeeze(dim=1) class Adversary(nn.Module): def __init__(self, n_input, n_sensitive, n_hidden=32): super(Adversary, self).__init__() self.network = nn.Sequential( nn.Linear(n_input, n_hidden), nn.ReLU(), nn.Linear(n_hidden, n_hidden), nn.ReLU(), nn.Linear(n_hidden, n_hidden), nn.ReLU(), nn.Linear(n_hidden, n_sensitive), ) def forward(self, x): return torch.sigmoid(self.network(x)) def pretrain_adversary(idx_list, train_src_l, train_ts_l, n_label, Sn_feat, \ clf, adv, tgan, adv_optimizer, adv_criterion, epochs): num_test_instance = len(train_src_l) num_test_batch = math.ceil(num_test_instance / BATCH_SIZE) for epoch in tqdm(range(epochs)): np.random.shuffle(idx_list) tgan = tgan.eval() clf= clf.eval() adv = adv.train() #num_batch for k in range(num_test_batch): s_idx = k * BATCH_SIZE e_idx = min(num_instance - 1, s_idx + BATCH_SIZE) src_l_cut = train_src_l[s_idx:e_idx] ts_l_cut = train_ts_l[s_idx:e_idx] # label_l_cut = train_label_l[s_idx:e_idx] label_l_cut = n_label[src_l_cut] Sn_feat_cut = Sn_feat[src_l_cut] adv_optimizer.zero_grad() with torch.no_grad(): src_embed = tgan.tem_conv(src_l_cut, ts_l_cut, NODE_LAYER) src_label = torch.from_numpy(label_l_cut).float().to(device) src_Sn_feat = torch.from_numpy(Sn_feat_cut).float().to(device) lr_prob = clf(src_embed).sigmoid() lr_prob = torch.unsqueeze(lr_prob, 1) p_z = adv(lr_prob).flatten() adv_loss = adv_criterion(p_z, src_Sn_feat) * args.hyper_pent adv_loss.backward() adv_optimizer.step() return adv def pretrain_classifier(idx_list, train_src_l, train_ts_l, n_label, Sn_feat, \ clf, tgan, clf_optimizer, clf_criterion, epochs): num_test_instance = len(train_src_l) num_test_batch = math.ceil(num_test_instance / BATCH_SIZE) for epoch in tqdm(range(epochs)): np.random.shuffle(idx_list) tgan = tgan.eval() clf = clf.train() #num_batch for k in range(num_test_batch): s_idx = k * BATCH_SIZE e_idx = min(num_instance - 1, s_idx + BATCH_SIZE) src_l_cut = train_src_l[s_idx:e_idx] ts_l_cut = train_ts_l[s_idx:e_idx] # label_l_cut = train_label_l[s_idx:e_idx] label_l_cut = n_label[src_l_cut] Sn_feat_cut = Sn_feat[src_l_cut] clf_optimizer.zero_grad() with torch.no_grad(): src_embed = tgan.tem_conv(src_l_cut, ts_l_cut, NODE_LAYER) src_label = torch.from_numpy(label_l_cut).float().to(device) src_Sn_feat = torch.from_numpy(Sn_feat_cut).float().to(device) lr_prob = clf(src_embed).sigmoid() lr_loss = clf_criterion(lr_prob, src_label) lr_loss.backward() clf_optimizer.step() return clf random.seed(222) np.random.seed(222) torch.manual_seed(222) ### Argument and global variables parser = argparse.ArgumentParser('Interface for TGAT experiments on node classification') parser.add_argument('-d', '--data', type=str, help='data sources to use, try wikipedia or reddit', default='wikipedia') parser.add_argument('--bs', type=int, default=30, help='batch_size') parser.add_argument('--prefix', type=str, default='') parser.add_argument('--n_degree', type=int, default=50, help='number of neighbors to sample') parser.add_argument('--n_neg', type=int, default=1) parser.add_argument('--n_head', type=int, default=2) parser.add_argument('--n_epoch', type=int, default=15, help='number of epochs') parser.add_argument('--n_layer', type=int, default=2) parser.add_argument('--lr', type=float, default=3e-4) parser.add_argument('--tune', action='store_true', help='parameters tunning mode, use train-test split on training data only.') parser.add_argument('--drop_out', type=float, default=0.1, help='dropout probability') parser.add_argument('--gpu', type=int, default=0, help='idx for the gpu to use') parser.add_argument('--node_dim', type=int, default=None, help='Dimentions of the node embedding') parser.add_argument('--time_dim', type=int, default=None, help='Dimentions of the time embedding') parser.add_argument('--agg_method', type=str, choices=['attn', 'lstm', 'mean'], help='local aggregation method', default='attn') parser.add_argument('--attn_mode', type=str, choices=['prod', 'map'], default='prod') parser.add_argument('--time', type=str, choices=['time', 'pos', 'empty'], help='how to use time information', default='time') parser.add_argument('--new_node', action='store_true', help='model new node') parser.add_argument('--uniform', action='store_true', help='take uniform sampling from temporal neighbors') parser.add_argument('--running_times', type=int, default=5, help='number of running times') parser.add_argument('--day_times', type=int, default=1, help='number of recording day in the dataset') parser.add_argument('--features_type', type=str, default='s', help='type of sensitive attributes (h or s)') parser.add_argument('--clf', type=str, choices=['clf', 'reg'], default='clf', help='nodel classificaltion/regression') parser.add_argument('--sens_bn', type=str, choices=['yes', 'no'], default='no', help='sensitive attributes binary') parser.add_argument('--hyper_pent', type=float, default=1.0, help='Hyperparmeters for penalty') try: args = parser.parse_args() except: parser.print_help() sys.exit(0) BATCH_SIZE = args.bs NUM_NEIGHBORS = args.n_degree NUM_NEG = 1 NUM_EPOCH = args.n_epoch NUM_HEADS = args.n_head DROP_OUT = args.drop_out GPU = args.gpu UNIFORM = args.uniform NEW_NODE = args.new_node USE_TIME = args.time AGG_METHOD = args.agg_method ATTN_MODE = args.attn_mode SEQ_LEN = NUM_NEIGHBORS DATA = args.data NUM_LAYER = args.n_layer LEARNING_RATE = args.lr NODE_LAYER = 1 NODE_DIM = args.node_dim TIME_DIM = args.time_dim RUNNING_TIME = args.running_times time_duration = args.day_times features_type = args.features_type hyper_pent = args.hyper_pent # code_root_path = './code/' code_root_path = './' data_root_path = '/data/zhimengj/dataset/Harris/' ### Load data and train val test split if DATA=='harris': g_df = pd.read_csv(data_root_path + '{}_edge_{}.csv'.format(DATA, time_duration)) e_feat = np.load(data_root_path + '{}_edge_{}.npy'.format(DATA,time_duration)) # print(f'e_feat={e_feat.shape}') n_feat = np.load(data_root_path + '{}_node.npy'.format(DATA)) if args.clf=='clf': n_label = np.load(data_root_path + '{}_Ynode.npy'.format(DATA)) else: n_label = np.load(data_root_path + '{}_Ynode2.npy'.format(DATA)) if DATA=='harris': val_time, test_time = 0.60 * time_duration * 6, 0.8 * time_duration * 6 else: val_time, test_time = list(np.quantile(g_df.ts, [0.60, 0.80])) # print(f'val_time={val_time}') # print(f'test_time={test_time}') if DATA=='harris': Sn_feat = pickle.load( open(data_root_path + '{}_Snode.p'.format(DATA), "rb") ) SHn_feat = (Sn_feat > np.mean(Sn_feat)).astype(int) # val_time, test_time = list(np.quantile(g_df.ts, [0.70, 0.85])) src_l = g_df.u.values dst_l = g_df.i.values e_idx_l = g_df.idx.values # label_l = g_df.label.values ts_l = g_df.ts.values max_src_index = src_l.max() max_idx = max(src_l.max(), dst_l.max()) total_node_set = set(np.unique(np.hstack([g_df.u.values, g_df.i.values]))) def eval_epoch_clf(src_l, dst_l, ts_l, n_label, batch_size, lr_model, tgan, num_layer=NODE_LAYER): val_acc, val_ap, val_f1, val_auc = [], [], [], [] pred_prob = np.zeros(len(src_l)) loss = 0 num_instance = len(src_l) num_batch = math.ceil(num_instance / batch_size) with torch.no_grad(): lr_model.eval() tgan.eval() for k in range(num_batch): s_idx = k * batch_size e_idx = min(num_instance - 1, s_idx + batch_size) src_l_cut = src_l[s_idx:e_idx] # dst_l_cut = dst_l[s_idx:e_idx] ts_l_cut = ts_l[s_idx:e_idx] # label_l_cut = label_l[s_idx:e_idx] label_l_cut = n_label[src_l_cut] size = len(src_l_cut) src_embed = tgan.tem_conv(src_l_cut, ts_l_cut, num_layer) src_label = torch.from_numpy(label_l_cut).float().to(device) lr_prob = lr_model(src_embed).sigmoid() loss += clf_criterion_eval(lr_prob, src_label).item() pred_prob[s_idx:e_idx] = lr_prob.cpu().numpy() pred_label = pred_prob > 0.5 auc_roc = roc_auc_score(n_label[src_l], pred_prob) val_acc = (pred_label == n_label[src_l]).mean() val_ap = average_precision_score(n_label[src_l], pred_prob) # val_f1 = f1_score(label_l, pred_prob) val_auc = roc_auc_score(n_label[src_l], pred_prob) return np.around(val_acc, 4),
np.around(val_ap, 4)
numpy.around
# -*- coding: utf-8 -*- """ Created on Tue Nov 17 11:13:31 2015 @author: kremin """ import numpy as np import matplotlib.pyplot as plt from matplotlib import gridspec import scipy.signal as signal import pdb def plot_skylines(axi,red_est): '''Take an axis object and plot the location of skylines as well as emission and absorption lines at a redshift of red_est.''' # Edited to include sdss lines # Converting to values used in code SDSS Wave /1.00027 = these waves # Red = HK # Purple = OII, Halpha # Black = sky # Blue = Emission # Orange = Absorption\ emission_lines = np.array([2798.4,4101.8,4340.5,4861.4,4959.,5006.9,6548.1, 6583.5,6716.5,6730.9])*(1.+red_est) sky_lines = [5577.,5893.,6300.,7244.,7913.7,8344.6,8827.1] absorption_lines = np.array([4304.4,5175.3,5894.,8498.1,8542.1,8662.2])*(1.+red_est) pspecs = [] #np.ndarray((4+len(emission_lines)+len(absorption_lines),)) pspecs.append(axi.axvline(3726.1*(1.+red_est),ls='--',alpha=0.7,c='purple')) pspecs.append(axi.axvline(6562.8*(1.+red_est),ls='--',alpha=0.7,c='purple')) pspecs.append(axi.axvline(3933.7*(1.+red_est),ls='--',alpha=0.7,c='red')) pspecs.append(axi.axvline(3968.5*(1.+red_est),ls='--',alpha=0.7,c='red')) for vlin in emission_lines: pspecs.append(axi.axvline(vlin,ls='--',alpha=0.7,c='blue')) for vlin in sky_lines: axi.axvline(vlin,ls='-.',alpha=0.7,c='black') for vlin in absorption_lines: pspecs.append(axi.axvline(vlin,ls='--',alpha=0.7,c='orange')) return pspecs def summary_plot(waves, flux, templ_waves, template,zest,z_test,corrs,plt_name,frame_name,mock_photoz=None): '''Display the spectrum and reference lines for the best fitting redshift.''' cont_subd_flux = flux - signal.medfilt(flux,171) cont_subd_temp_flux = template - signal.medfilt(template,171) cont_subd_flux = cont_subd_flux/np.std(cont_subd_flux) cont_subd_temp_flux = cont_subd_temp_flux/np.std(cont_subd_temp_flux) temp_shifted_waves = templ_waves*(1+zest) plt.figure(figsize=(10, 10)) gs = gridspec.GridSpec(3, 1, height_ratios=[2, 1, 1]) plt.tight_layout() ax = plt.subplot(gs[0]) plt.subplots_adjust(bottom=0.1) #pdb.set_trace() alp = 0.5 ax.plot(waves,flux,label='Target {}'.format(frame_name),alpha=alp+0.1) tl,th = np.nanquantile(template,[0.2,0.8]) fl,fh = np.nanquantile(flux,[0.2,0.8]) modtemplate = 0.75*(fh-fl)*template/(th-tl) if np.nanmax(modtemplate)>np.nanmax(flux): modtemplate = modtemplate*0.5 ax.plot(temp_shifted_waves,modtemplate,alpha=alp,label='SDSS Template') ax.set_xlim(waves[0],waves[-1]) last_ind = np.max(np.where(temp_shifted_waves<waves[-1])) shortnd_temp_flux = cont_subd_temp_flux[:last_ind] if len(shortnd_temp_flux)>0: ax.set_ylim(np.min([np.nanmin(flux),
np.nanmin(modtemplate)
numpy.nanmin
import numpy as np import unittest from optpy import optimization class TestFunctionWithApproxJacobian(unittest.TestCase): def test_function(self): def f(x): return np.sum(x**2) func = optimization.FunctionWithApproxJacobian(f, epsilon=1e-8) point = np.array([1.0, 2.0, 3.0]) self.assertEqual(func(point), 14.0) np.testing.assert_allclose(func.jac(point), [[2.0, 4.0, 6.0]]) class TestParameterManager(unittest.TestCase): def test_build_vector(self): parameter_manager = optimization.ParameterManager(['x1', 'x2', 'x3'], ['x1', 'x2'], x1=1.0, x2=np.array([2.0, 3.0]), x3=4.0) np.testing.assert_allclose(parameter_manager.build_vector(), [1.0, 2.0, 3.0]) np.testing.assert_allclose(parameter_manager.build_vector(x1=4), [4.0, 2.0, 3.0]) def test_extract_parameters(self): parameter_manager = optimization.ParameterManager(['x1', 'x2', 'x3'], ['x1', 'x2'], x1=1.0, x2=np.array([2.0, 3.0]), x3=4.0) x = np.array([5.0, 6.0, 7.0]) params = parameter_manager.extract_parameters(x) np.testing.assert_allclose(params['x1'], 5.0) np.testing.assert_allclose(params['x2'], [6.0, 7.0]) np.testing.assert_allclose(params['x3'], 4.0) def test_build_vector_0d_array(self): parameter_manager = optimization.ParameterManager(['x1', 'x2', 'x3'], ['x1', 'x2'], x1=np.array(1.0), x2=np.array([2.0, 3.0]), x3=4.0) np.testing.assert_allclose(parameter_manager.build_vector(), [1.0, 2.0, 3.0]) np.testing.assert_allclose(parameter_manager.build_vector(x1=4), [4.0, 2.0, 3.0]) def test_extract_parameters_0d_array(self): parameter_manager = optimization.ParameterManager(['x1', 'x2', 'x3'], ['x1', 'x2'], x1=np.array(1.0), x2=np.array([2.0, 3.0]), x3=4.0) x = np.array([5.0, 6.0, 7.0]) params = parameter_manager.extract_parameters(x) np.testing.assert_allclose(params['x1'], 5.0) np.testing.assert_allclose(params['x2'], [6.0, 7.0]) np.testing.assert_allclose(params['x3'], 4.0) class TestKeywordParameterManager(unittest.TestCase): def test_build_vector(self): parameter_manager = optimization.KeywordParameterManager({'x1': 1.0, 'x2': np.array([2.0, 3.0]), 'x3': 4.0}, ['x1', 'x2']) np.testing.assert_allclose(parameter_manager.build_vector(), [1.0, 2.0, 3.0]) np.testing.assert_allclose(parameter_manager.build_vector(x1=4), [4.0, 2.0, 3.0]) def test_extract_parameters(self): parameter_manager = optimization.KeywordParameterManager({'x1': 1.0, 'x2': np.array([2.0, 3.0]), 'x3': 4.0}, ['x1', 'x2']) x = np.array([5.0, 6.0, 7.0]) params = parameter_manager.extract_parameters(x) np.testing.assert_allclose(params['x1'], 5.0) np.testing.assert_allclose(params['x2'], [6.0, 7.0]) np.testing.assert_allclose(params['x3'], 4.0) def test_build_vector_0d_array(self): parameter_manager = optimization.KeywordParameterManager({'x1': np.array(1.0), 'x2': np.array([2.0, 3.0]), 'x3': 4.0}, ['x1', 'x2']) np.testing.assert_allclose(parameter_manager.build_vector(), [1.0, 2.0, 3.0]) np.testing.assert_allclose(parameter_manager.build_vector(x1=4), [4.0, 2.0, 3.0]) def test_extract_parameters_0d_array(self): parameter_manager = optimization.KeywordParameterManager({'x1': np.array(1.0), 'x2': np.array([2.0, 3.0]), 'x3': 4.0}, ['x1', 'x2']) x = np.array([5.0, 6.0, 7.0]) params = parameter_manager.extract_parameters(x) np.testing.assert_allclose(params['x1'], 5.0) np.testing.assert_allclose(params['x2'], [6.0, 7.0]) np.testing.assert_allclose(params['x3'], 4.0) class TestWrapParameterManager(unittest.TestCase): def test_wrap_parameter_manager(self): parameter_manager = optimization.ParameterManager(['x1', 'x2', 'x3'], ['x1', 'x2'], x1=1.0, x2=np.array([2.0, 2.0]), x3=1.0) def f(x1, x2, x3): return x1+2*x2.sum()+3*x3 new_f = optimization.wrap_parameter_manager(f, parameter_manager) self.assertEqual(new_f(np.array([1, 2, 3])), 14) def test_wrap_keyword_parameter_manager(self): parameter_manager = optimization.KeywordParameterManager({'x1': 1.0, 'x2': np.array([2.0, 2.0]), 'x3': 1.0}, ['x1', 'x2']) def f(x1, x2, x3): return x1+2*x2.sum()+3*x3 new_f = optimization.wrap_parameter_manager(f, parameter_manager) self.assertEqual(new_f(np.array([1, 2, 3])), 14) class TestMinimize(unittest.TestCase): method='SLSQP' def test_simple(self): parameter_manager = optimization.ParameterManager(['x1', 'x2', 'x3'], ['x1', 'x2'], x1=1.0, x2=np.array([2.0, 2.0]), x3=1.0) def f(x1, x2, x3): return np.sum(x1**2)+np.sum(x2**2) res = optimization.minimize(f, parameter_manager, method=self.method) np.testing.assert_allclose(res.x1, 0.0) np.testing.assert_allclose(res.x2, [0.0, 0.0]) np.testing.assert_allclose(res.x3, 1.0) def test_with_equality_constraint(self): parameter_manager = optimization.ParameterManager(['x1', 'x2', 'x3'], ['x1', 'x2'], x1=1.0, x2=np.array([2.0, 2.0]), x3=1.0) def f(x1, x2, x3): return np.sum(x1**2)+np.sum(x2**2) def constraint(x1, x2, x3): return x1-1.0 constraints = [{'type': 'eq', 'fun': constraint}] res = optimization.minimize(f, parameter_manager, method=self.method, constraints = constraints) np.testing.assert_allclose(res.x1, 1.0) np.testing.assert_allclose(res.x2, [0.0, 0.0]) np.testing.assert_allclose(res.x3, 1.0) def test_with_inequality_constraint(self): parameter_manager = optimization.ParameterManager(['x1', 'x2', 'x3'], ['x1', 'x2'], x1=1.0, x2=np.array([2.0, 0.0]), x3=1.0) def f(x1, x2, x3): return np.sum(x1**2)+np.sum(x2**2) def constraint(x1, x2, x3): return x2.sum()-1 constraints = [{'type': 'ineq', 'fun': constraint}] res = optimization.minimize(f, parameter_manager, method=self.method, constraints = constraints) np.testing.assert_allclose(res.x1, 0.0, atol=1e-8) np.testing.assert_allclose(res.x2, [0.5, 0.5])
np.testing.assert_allclose(res.x3, 1.0)
numpy.testing.assert_allclose
import pytest from sympl import ( DataArray, set_direction_names, get_numpy_array, restore_dimensions, get_numpy_arrays_with_properties, restore_data_arrays_with_properties, InvalidStateError, InvalidPropertyDictError) import numpy as np import unittest """ get_numpy_arrays_with_properties: - returns numpy arrays in the dict - those numpy arrays should have same dtype as original data * even when unit conversion happens - properly collects dimensions along a direction - they should actually be the same numpy arrays (with memory) as original data if no conversion happens * even when units are specified (so long as they match) - should be the same quantities as requested by the properties * contain all * not contain extra * raise exception if some are missing - units * converts if requested and present * does nothing if not requested whether or not present * raises exception if not requested or not present * unit conversion should not modify the input array - requires "dims" to be specified, raises exception if they aren't - match_dims_like * should work if matched dimensions are identical * should raise exception if matched dimensions are not identical * should require value to be a quantity in property_dictionary * should require all A matches to look like B and all B matches to look like A - should raise ValueError when explicitly specified dimension is not present - should return a scalar array when called on a scalar DataArray Test case for when wildcard dimension doesn't match anything - the error message needs to be much more descriptive e.g. dims=['x', 'y', 'z'] and state=['foo', 'y', 'z'] restore_data_arrays_with_properties: - should return a dictionary of DataArrays - DataArray values should be the same arrays as original data if no conversion happens - properly restores collected dimensions - if conversion does happen, dtype should be the same as the input - should return same quantities as requested by the properties * contain all * not contain extra * raise exception if some are missing - units * should be the same value as specified in output_properties dict - requires dims_like to be specified, raises exception if it's not * returned DataArray should have same dimensions as dims_like object * exception should be raised if dims_like is wrong (shape is incompatible) * should return coords like the dims_like quantity Should add any created exceptions to the docstrings for these functions """ def test_get_numpy_array_3d_no_change(): array = DataArray( np.random.randn(2, 3, 4), dims=['x', 'y', 'z'], attrs={'units': ''}, ) numpy_array = get_numpy_array(array, ['x', 'y', 'z']) assert np.byte_bounds(numpy_array) == np.byte_bounds(array.values) assert np.all(numpy_array == array.values) assert numpy_array.base is array.values def test_get_numpy_array_3d_reverse(): array = DataArray( np.random.randn(2, 3, 4), dims=['x', 'y', 'z'], attrs={'units': ''}, ) numpy_array = get_numpy_array(array, ['z', 'y', 'x']) assert numpy_array.shape == (4, 3, 2) assert np.all(np.transpose(numpy_array, (2, 1, 0)) == array.values) assert np.byte_bounds(numpy_array) == np.byte_bounds(array.values) assert numpy_array.base is array.values def test_get_numpy_array_2d_reverse(): array = DataArray( np.random.randn(2, 3), dims=['y', 'z'], attrs={'units': ''}, ) numpy_array = get_numpy_array(array, ['z', 'y']) assert numpy_array.shape == (3, 2) assert np.all(
np.transpose(numpy_array, (1, 0))
numpy.transpose
""" pyart.correct.filters ===================== Functions for creating gate filters (masks) which can be used it various corrections routines in Py-ART. .. autosummary:: :toctree: generated/ moment_based_gate_filter .. autosummary:: :toctree: generated/ :template: dev_template.rst GateFilter """ import numpy as np from ..config import get_field_name def moment_based_gate_filter( radar, ncp_field=None, rhv_field=None, refl_field=None, min_ncp=0.5, min_rhv=None, min_refl=-20., max_refl=100.0): """ Create a filter which removes undesired gates based on moments. Creates a gate filter in which the following gates are excluded: * Gates where the reflectivity is outside the interval min_refl, max_refl. * Gates where the normalized coherent power is below min_ncp. * Gates where the cross correlation ratio is below min_rhi. Using the default parameter this filtering is disabled. * Gates where any of the above three fields are masked or contain invalid values (NaNs or infs). * If any of these three fields do not exist in the radar that fields filter criteria is not applied. Parameters ---------- radar : Radar Radar object from which the gate filter will be built. refl_field, ncp_field, rhv_field : str Names of the radar fields which contain the reflectivity, normalized coherent power (signal quality index) and cross correlation ratio (RhoHV) from which the gate filter will be created using the above criteria. A value of None for any of these parameters will use the default field name as defined in the Py-ART configuration file. min_ncp, min_rhv : float Minimum values for the normalized coherence power and cross correlation ratio. Gates in these fields below these limits as well as gates which are masked or contain invalid values will be excluded and not used in calculation which use the filter. A value of None will disable filtering based upon the given field including removing masked or gates with an invalid value. To disable the thresholding but retain the masked and invalid filter set the parameter to a value below the lowest value in the field. min_refl, max_refl : float Minimum and maximum values for the reflectivity. Gates outside of this interval as well as gates which are masked or contain invalid values will be excluded and not used in calculation which use this filter. A value or None for one of these parameters will disable the minimum or maximum filtering but retain the other. A value of None for both of these values will disable all filtering based upon the reflectivity including removing masked or gates with an invalid value. To disable the interval filtering but retain the masked and invalid filter set the parameters to values above and below the lowest and greatest values in the reflectivity field. Returns ------- gatefilter : :py:class:`GateFilter` A gate filter based upon the described criteria. This can be used as a gatefilter parameter to various functions in pyart.correct. """ # parse the field parameters if refl_field is None: refl_field = get_field_name('reflectivity') if ncp_field is None: ncp_field = get_field_name('normalized_coherent_power') if rhv_field is None: rhv_field = get_field_name('cross_correlation_ratio') # filter gates based upon field parameters gatefilter = GateFilter(radar) if (min_ncp is not None) and (ncp_field in radar.fields): gatefilter.exclude_below(ncp_field, min_ncp) gatefilter.exclude_masked(ncp_field) gatefilter.exclude_invalid(ncp_field) if (min_rhv is not None) and (rhv_field in radar.fields): gatefilter.exclude_below(rhv_field, min_rhv) gatefilter.exclude_masked(rhv_field) gatefilter.exclude_invalid(rhv_field) if refl_field in radar.fields: if min_refl is not None: gatefilter.exclude_below(refl_field, min_refl) gatefilter.exclude_masked(refl_field) gatefilter.exclude_invalid(refl_field) if max_refl is not None: gatefilter.exclude_above(refl_field, max_refl) gatefilter.exclude_masked(refl_field) gatefilter.exclude_invalid(refl_field) return gatefilter class GateFilter(object): """ A class for building a boolean arrays for filtering gates based on a set of condition typically based on the values in the radar fields. These filter can be used in various algorithms and calculations within Py-ART. See :py:func:`pyart.correct.GateFilter.exclude_below` for method parameter details. Parameters ---------- radar : Radar Radar object from which gate filter will be build. exclude_based : bool, optional True, the default and suggested method, will begin with all gates included and then use the exclude methods to exclude gates based on conditions. False will begin with all gates excluded from which a set of gates to include should be set using the include methods. Attributes ---------- gate_excluded : array, dtype=bool Boolean array indicating if a gate should be excluded from a calculation. Elements marked True indicate the corresponding gate should be excluded. Those marked False should be included. This is read-only attribute, any changes to the array will NOT be reflected in gate_included and will be lost when the attribute is accessed again. gate_included : array, dtype=bool Boolean array indicating if a gate should be included in a calculation. Elements marked True indicate the corresponding gate should be include. Those marked False should be excluded. This is read-only attribute, any changes to the array will NOT be reflected in gate_excluded and will be lost when the attribute is accessed again. Examples -------- >>> import pyart >>> radar = pyart.io.read('radar_file.nc') >>> gatefilter = pyart.correct.GateFilter(radar) >>> gatefilter.exclude_below('reflectivity', 10) >>> gatefilter.exclude_below('normalized_coherent_power', 0.75) """ def __init__(self, radar, exclude_based=True): """ initialize """ self._radar = radar shape = (radar.nrays, radar.ngates) if exclude_based: # start with all gates included, exclude gates based on a set # of rules using the exclude_ methods. self._gate_excluded = np.zeros(shape, dtype=np.bool) else: # start with all gates excluded, include gates based on a set # of rules using the include_ methods. self._gate_excluded = np.ones(shape, dtype=np.bool) # Implemetation is based on marking excluded gates stored in the private # _gate_excluded attribute. The gate_included attribute can be found # by taking the ones complement of gates_included. def copy(self): """ Return a copy of the gatefilter. """ a = GateFilter(self._radar) a._gate_excluded = self._gate_excluded.copy() return a @property def gate_included(self): return ~self._gate_excluded.copy() @property def gate_excluded(self): return self._gate_excluded.copy() def _get_fdata(self, field): """ Check that the field exists and retrieve field data. """ self._radar.check_field_exists(field) return self._radar.fields[field]['data'] def _merge(self, marked, op, exclude_masked): """ Merge an array of marked gates with the exclude array. """ # exclude masked elements in marked by replacing them with the value # of the exclude_masked flag. This does nothing if marked is a # non-masked array. if exclude_masked not in [True, False]: raise ValueError("exclude_masked must be 'True' or 'False'") marked =
np.ma.filled(marked, exclude_masked)
numpy.ma.filled
# nuScenes dev-kit. # Code written by <NAME>, 2018. # Licensed under the Creative Commons [see licence.txt] #from __future__ import annotations import torch import numpy as np from pyquaternion import Quaternion class Box: """ Simple data class representing a 3d box including, label, score and velocity. """ def __init__(self, center, size, orientation, label=np.nan, score=np.nan, velocity=(np.nan, np.nan, np.nan), name=None): """ :param center: [<float>: 3]. Center of box given as x, y, z. :param size: [<float>: 3]. Size of box in width, length, height. :param orientation: <Quaternion>. Box orientation. :param label: <int>. Integer label, optional. :param score: <float>. Classification score, optional. :param velocity: [<float>: 3]. Box velocity in x, y, z direction. :param name: <str>. Box name, optional. Can be used e.g. for denote category name. """ assert not np.any(np.isnan(center)) assert not np.any(np.isnan(size)) assert len(center) == 3 assert len(size) == 3 # assert type(orientation) == Quaternion self.center = np.array(center) self.wlh = np.array(size) self.orientation = orientation self.label = int(label) if not np.isnan(label) else label self.score = float(score) if not np.isnan(score) else score self.velocity = np.array(velocity) self.name = name def __eq__(self, other): center = np.allclose(self.center, other.center) wlh = np.allclose(self.wlh, other.wlh) orientation = np.allclose(self.orientation.elements, other.orientation.elements) label = (self.label == other.label) or (np.isnan(self.label) and np.isnan(other.label)) score = (self.score == other.score) or (np.isnan(self.score) and np.isnan(other.score)) vel = (np.allclose(self.velocity, other.velocity) or (np.all(np.isnan(self.velocity)) and np.all(np.isnan(other.velocity)))) return center and wlh and orientation and label and score and vel def __repr__(self): repr_str = 'label: {}, score: {:.2f}, xyz: [{:.2f}, {:.2f}, {:.2f}], wlh: [{:.2f}, {:.2f}, {:.2f}], ' \ 'rot axis: [{:.2f}, {:.2f}, {:.2f}], ang(degrees): {:.2f}, ang(rad): {:.2f}, ' \ 'vel: {:.2f}, {:.2f}, {:.2f}, name: {}' return repr_str.format(self.label, self.score, self.center[0], self.center[1], self.center[2], self.wlh[0], self.wlh[1], self.wlh[2], self.orientation.axis[0], self.orientation.axis[1], self.orientation.axis[2], self.orientation.degrees, self.orientation.radians, self.velocity[0], self.velocity[1], self.velocity[2], self.name) def encode(self): """ Encodes the box instance to a JSON-friendly vector representation. :return: [<float>: 16]. List of floats encoding the box. """ return self.center.tolist() + self.wlh.tolist() + self.orientation.elements.tolist() + [self.label] + [self.score] + self.velocity.tolist() + [self.name] @classmethod def decode(cls, data): """ Instantiates a Box instance from encoded vector representation. :param data: [<float>: 16]. Output from encode. :return: <Box>. """ return Box(data[0:3], data[3:6], Quaternion(data[6:10]), label=data[10], score=data[11], velocity=data[12:15], name=data[15]) @property def rotation_matrix(self): """ Return a rotation matrix. :return: <np.float: (3, 3)>. """ return self.orientation.rotation_matrix def translate(self, x): """ Applies a translation. :param x: <np.float: 3, 1>. Translation in x, y, z direction. :return: <None>. """ self.center += x def rotate(self, quaternion): """ Rotates box. :param quaternion: <Quaternion>. Rotation to apply. :return: <None>. """ self.center = np.dot(quaternion.rotation_matrix, self.center) self.orientation = quaternion * self.orientation self.velocity = np.dot(quaternion.rotation_matrix, self.velocity) def transform(self, transf_matrix): transformed = np.dot(transf_matrix[0:3,0:4].T, self.center) self.center = transformed[0:3]/transformed[3] self.orientation = self.orientation* Quaternion(matrix = transf_matrix[0:3,0:3]) self.velocity = np.dot(transf_matrix[0:3,0:3], self.velocity) def corners(self, wlh_factor=1.0): """ Returns the bounding box corners. :param wlh_factor: <float>. Multiply w, l, h by a factor to inflate or deflate the box. :return: <np.float: 3, 8>. First four corners are the ones facing forward. The last four are the ones facing backwards. """ w, l, h = self.wlh * wlh_factor # 3D bounding box corners. (Convention: x points forward, y to the left, z up.) x_corners = l / 2 * np.array([1, 1, 1, 1, -1, -1, -1, -1]) y_corners = w / 2 * np.array([1, -1, -1, 1, 1, -1, -1, 1]) z_corners = h / 2 * np.array([1, 1, -1, -1, 1, 1, -1, -1]) corners =
np.vstack((x_corners, y_corners, z_corners))
numpy.vstack
######################## # Create a 4-panel plot of photo-z quality for Paper 2 ######################## import numpy as np, pylab, ldac, os from readtxtfile import readtxtfile ######################## def makeHexbin(specz, photz, xlabel = 'Reference Redshift', ylabel = 'Photo-$z$', gridsize = 100, bins = None): fig = pylab.figure() ax = fig.add_axes([0.12, 0.12, 0.95 - 0.12, 0.95 - 0.12]) ax.hexbin(specz, photz, gridsize = gridsize, extent=[0, 1.5, 0, 1.5], cmap = pylab.cm.binary, bins=bins) ax.plot([0, 1.5], [0, 1.5], 'r-', linewidth=1.25) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) return fig ############################## def cosmos30plot(data = None): if data is None: data = {} if 'bpz' not in data: data['bpz'] = ldac.openObjectFile('/u/ki/dapple/subaru/COSMOS_PHOTOZ/PHOTOMETRY_W-C-IC_BVRIZ/COSMOS_PHOTOZ.APER.1.CWWSB_capak.list.all.bpz.tab', 'STDTAB') if 'cosmos' not in data: data['cosmos'] = ldac.openObjectFile('/u/ki/dapple/nfs12/cosmos/cosmos.cat') if 'galaxies' not in data: data['galaxies'] = ldac.openObjectFile('/u/ki/dapple/nfs12/cosmos/simulations/publication/highsn/BVRIZ/bpz.cat', 'STDTAB') bpz = data['bpz'] cosmos = data['cosmos'] galaxies = data['galaxies'] filter = galaxies['BPZ_ODDS'] > 0.5 galaxies = galaxies.filter(filter) mbpz = bpz.matchById(galaxies) mcosmos = cosmos.matchById(mbpz, 'SeqNr', 'id') fig = makeHexbin(mcosmos['zp_best'], mbpz['BPZ_Z_B'], xlabel=r'COSMOS-30 Photo-$z$', ylabel=r'{\it B}$_{\rm J}${\it V}$_{\rm J}${\it r}$^{+}${\it i}$^{+}${\it z}$^{+}$ Photo-$z$', gridsize = 50, bins=None) # fig.axes[0].text(1.1, 0.05, '\emph{Log Color Scale}') fig.savefig('publication/cosmos30comp.pdf') return fig, data ############################### def zcosmosplot(data = None): if data is None: data = {} if 'bpz' not in data: data['bpz'] = ldac.openObjectFile('/u/ki/dapple/subaru/COSMOS_PHOTOZ/PHOTOMETRY_W-C-IC_BVRIZ/COSMOS_PHOTOZ.APER.1.CWWSB_capak.list.all.bpz.tab', 'STDTAB') if 'galaxies' not in data: data['galaxies'] = ldac.openObjectFile('/u/ki/dapple/nfs12/cosmos/simulations/publication/highsn/BVRIZ/bpz.cat', 'STDTAB') if 'zcat' not in data: data['zcat'] = ldac.openObjectFile('/u/ki/dapple/nfs12/cosmos/zcosmos.matched.cat') if 'refbpz' not in data: data['refbpz'] = ldac.openObjectFile('/u/ki/dapple/subaru/COSMOS_PHOTOZ/PHOTOMETRY_W-C-IC_BVRIZ/bpz.zcosmos.matched.cat', 'STDTAB') bpz = data['bpz'] galaxies = data['galaxies'] zcat = data['zcat'] refbpz = data['refbpz'] filter = galaxies['BPZ_ODDS'] > 0.5 galaxies = galaxies.filter(filter) mbpz = bpz.matchById(galaxies) cat1 = mbpz cat2 = refbpz cat1id = 'SeqNr' cat2id = 'SeqNr' cat1order = {} for i, x in enumerate(cat1[cat1id]): cat1order[x] = i cat1KeepOrder = [] cat2Keep = [] for x in cat2[cat2id]: if x in cat1order: cat1KeepOrder.append(cat1order[x]) cat2Keep.append(True) else: cat2Keep.append(False) cat1keep = np.array(cat1KeepOrder) cat2keep =
np.array(cat2Keep)
numpy.array
"""Code for setting up, and running, and collecting data from PV-DER simulations.""" from __future__ import division import numpy as np import math import cmath import time import pdb import six from pvder.utility_classes import Utilities from pvder.grid_components import Grid from pvder.simulation_utilities import SimulationUtilities #from pvder.simulation_utilities_experimental import SimulationUtilitiesExperimental from pvder import utility_functions from pvder import defaults,templates from pvder.logutil import LogUtil class DynamicSimulation(Grid,SimulationUtilities,Utilities): """ Utility class for running simulations.""" count = 0 tStart = 0.0 tInc = defaults.DEFAULT_DELTA_T DEBUG_SOLVER = False DEBUG_SIMULATION = False DEBUG_CONTROLLERS = False DEBUG_VOLTAGES = False DEBUG_CURRENTS = False DEBUG_POWER = False DEBUG_PLL = False jac_list = ['SolarPVDERThreePhase','SolarPVDERSinglePhase','SolarPVDERThreePhaseBalanced'] def __init__(self,PV_model,events,gridModel = None,tStop = 0.5, LOOP_MODE = False,COLLECT_SOLUTION = True,jacFlag = False, verbosity ='INFO',solverType ='odeint',identifier = None): """Creates an instance of `GridSimulation`. Args: PV_model: An instance of `SolarPV_DER`. events: An instance of `SimulationEvents`. grid_model: An instance of `GridModel` (only need to be suppled in stand alone simulation). tStop: A scalar specifying the end time for simulation. tInc: A scalar specifying the time step for simulation. LOOP_MODE: A boolean specifying whether simulation is run in loop. """ try: DynamicSimulation.count = DynamicSimulation.count + 1 #Increment count to keep track of number of simulation instances self.name_instance(identifier) #Generate a name for the instance self.tStop = tStop self.t = self.t_calc() self.PV_model = PV_model self.DER_model_type = type(self.PV_model).__name__ self.simulation_events = events self.simulation_events.del_t_event = self.tInc self.initialize_solver(solver_type=solverType) self.SOLVER_CONVERGENCE = False self.convergence_failure_list =[] self.LOOP_MODE = LOOP_MODE self.COLLECT_SOLUTION = COLLECT_SOLUTION self.jacFlag = jacFlag self.check_jac_availability() if self.PV_model.standAlone and gridModel is not None: self.grid_model = gridModel elif self.PV_model.standAlone and gridModel is None: raise ValueError('`Grid` instance need to provided in stand alone mode for creating `GridSimulation` instance!') #Remove existing simulation events #self.simulation_events.remove_solar_event(3.0) #self.simulation_events.remove_load_event(4.0) #self.simulation_events.remove_grid_event(5.0) self.solution_time = None #Always reset solution time to None if self.LOOP_MODE: self.reset_stored_trajectories() self.initialize_y0_t() except: LogUtil.exception_handler() @property def y0(self): """ Combine all initial conditions from solution.""" try: if type(self.PV_model).__name__ == 'SolarPVDERThreePhase': y0 = [self.iaR_t[-1], self.iaI_t[-1], self.xaR_t[-1], self.xaI_t[-1], self.uaR_t[-1],self.uaI_t[-1],\ self.ibR_t[-1], self.ibI_t[-1], self.xbR_t[-1], self.xbI_t[-1], self.ubR_t[-1],self.ubI_t[-1],\ self.icR_t[-1], self.icI_t[-1], self.xcR_t[-1], self.xcI_t[-1], self.ucR_t[-1],self.ucI_t[-1],\ self.Vdc_t[-1], self.xDC_t[-1],self.xQ_t[-1], self.xPLL_t[-1],self.wte_t[-1]] elif type(self.PV_model).__name__ == 'SolarPVDERSinglePhase': y0 =[self.iaR_t[-1], self.iaI_t[-1], self.xaR_t[-1], self.xaI_t[-1], self.uaR_t[-1],self.uaI_t[-1],\ self.Vdc_t[-1], self.xDC_t[-1],self.xQ_t[-1], self.xPLL_t[-1],self.wte_t[-1]] elif type(self.PV_model).__name__ == 'SolarPVDERSinglePhaseConstantVdc': y0 =[self.iaR_t[-1], self.iaI_t[-1], self.xaR_t[-1], self.xaI_t[-1], self.uaR_t[-1],self.uaI_t[-1],\ self.xP_t[-1],self.xQ_t[-1], self.xPLL_t[-1],self.wte_t[-1]] elif type(self.PV_model).__name__ == 'SolarPVDERThreePhaseConstantVdc': y0 =[self.iaR_t[-1], self.iaI_t[-1], self.xaR_t[-1], self.xaI_t[-1], self.uaR_t[-1],self.uaI_t[-1], self.ibR_t[-1], self.ibI_t[-1], self.xbR_t[-1], self.xbI_t[-1], self.ubR_t[-1],self.ubI_t[-1], self.icR_t[-1], self.icI_t[-1], self.xcR_t[-1], self.xcI_t[-1], self.ucR_t[-1],self.ucI_t[-1], self.xP_t[-1],self.xQ_t[-1], self.xPLL_t[-1],self.wte_t[-1]] elif self.DER_model_type == 'SolarPVDERThreePhaseBalanced': y0 =[self.iaR_t[-1], self.iaI_t[-1], self.xaR_t[-1], self.xaI_t[-1], self.uaR_t[-1],self.uaI_t[-1], self.Vdc_t[-1], self.xDC_t[-1],self.xQ_t[-1], self.xPLL_t[-1],self.wte_t[-1]] elif self.DER_model_type == 'SolarPVDERThreePhaseNumba': y0 = [self.iaR_t[-1], self.iaI_t[-1], self.xaR_t[-1], self.xaI_t[-1], self.uaR_t[-1],self.uaI_t[-1],\ self.ibR_t[-1], self.ibI_t[-1], self.xbR_t[-1], self.xbI_t[-1], self.ubR_t[-1],self.ubI_t[-1],\ self.icR_t[-1], self.icI_t[-1], self.xcR_t[-1], self.xcI_t[-1], self.ucR_t[-1],self.ucI_t[-1],\ self.Vdc_t[-1], self.xDC_t[-1],self.xQ_t[-1], self.xPLL_t[-1],self.wte_t[-1]] return y0 except: LogUtil.exception_handler() #@property def t_calc(self): """Vector of time steps for simulation""" try: #if (self.tStop - self.tStart) <= self.tInc: # self.tStop = self.tStart + 1e-6 #+ self.tInc return np.arange(self.tStart, self.tStop + self.tInc, self.tInc) except: LogUtil.exception_handler() def check_jac_availability(self): """Check if Jacobian matrix is available.""" try: if self.jacFlag: if not self.DER_model_type in self.jac_list: raise ValueError('{}:Jacobian matrix is not available for DER model:{}'.format(self.name,self.DER_model_type)) except: LogUtil.exception_handler() def initialize_y0_t(self): """Initialize y0_t.""" try: self.iaR_t = np.array([self.PV_model.y0[0]]) self.iaI_t = np.array([self.PV_model.y0[1]]) self.xaR_t = np.array([self.PV_model.y0[2]]) self.xaI_t = np.array([self.PV_model.y0[3]]) self.uaR_t = np.array([self.PV_model.y0[4]]) self.uaI_t = np.array([self.PV_model.y0[5]]) if type(self.PV_model).__name__ == 'SolarPVDERSinglePhase': self.Vdc_t = np.array([self.PV_model.y0[6]]) #DC link voltage variable self.xDC_t = np.array([self.PV_model.y0[7]]) #DC link voltage control variable self.xQ_t = np.array([self.PV_model.y0[8]]) #Reactive power control variable self.xPLL_t = np.array([self.PV_model.y0[9]]) #PLL variables self.wte_t = np.array([self.PV_model.y0[10]]) #Frequency integration to get angle elif (self.DER_model_type == 'SolarPVDERThreePhase') or (self.DER_model_type == 'SolarPVDERThreePhaseNumba'): self.ibR_t = np.array([self.PV_model.y0[6]]) self.ibI_t = np.array([self.PV_model.y0[7]]) self.xbR_t = np.array([self.PV_model.y0[8]]) self.xbI_t = np.array([self.PV_model.y0[9]]) self.ubR_t = np.array([self.PV_model.y0[10]]) self.ubI_t = np.array([self.PV_model.y0[11]]) self.icR_t = np.array([self.PV_model.y0[12]]) self.icI_t = np.array([self.PV_model.y0[13]]) self.xcR_t = np.array([self.PV_model.y0[14]]) self.xcI_t = np.array([self.PV_model.y0[15]]) self.ucR_t = np.array([self.PV_model.y0[16]]) self.ucI_t = np.array([self.PV_model.y0[17]]) self.Vdc_t = np.array([self.PV_model.y0[18]]) self.xDC_t = np.array([self.PV_model.y0[19]]) self.xQ_t = np.array([self.PV_model.y0[20]]) self.xPLL_t = np.array([self.PV_model.y0[21]]) self.wte_t = np.array([self.PV_model.y0[22]]) elif type(self.PV_model).__name__ == 'SolarPVDERThreePhaseConstantVdc': self.ibR_t = np.array([self.PV_model.y0[6]]) self.ibI_t = np.array([self.PV_model.y0[7]]) self.xbR_t = np.array([self.PV_model.y0[8]]) self.xbI_t = np.array([self.PV_model.y0[9]]) self.ubR_t = np.array([self.PV_model.y0[10]]) self.ubI_t = np.array([self.PV_model.y0[11]]) self.icR_t = np.array([self.PV_model.y0[12]]) self.icI_t = np.array([self.PV_model.y0[13]]) self.xcR_t = np.array([self.PV_model.y0[14]]) self.xcI_t = np.array([self.PV_model.y0[15]]) self.ucR_t = np.array([self.PV_model.y0[16]]) self.ucI_t = np.array([self.PV_model.y0[17]]) self.Vdc_t = np.array([self.PV_model.Vdc]) #Voltage is constant self.xP_t = np.array([self.PV_model.y0[18]]) #Active power control variable self.xQ_t = np.array([self.PV_model.y0[19]]) #Reactive power control variable self.xPLL_t = np.array([self.PV_model.y0[20]]) #PLL variables self.wte_t = np.array([self.PV_model.y0[21]]) #Frequency integration to get angle elif type(self.PV_model).__name__ == 'SolarPVDERThreePhaseBalanced': ia_t = self.iaR_t+self.iaI_t*1j xa_t = self.xaR_t+self.xaI_t*1j ua_t = self.uaR_t+self.uaI_t*1j ib_t = utility_functions.Ub_calc(ia_t) xb_t = utility_functions.Ub_calc(xa_t) ub_t = utility_functions.Ub_calc(ua_t) ic_t = utility_functions.Uc_calc(ia_t) xc_t = utility_functions.Uc_calc(xa_t) uc_t = utility_functions.Uc_calc(ua_t) self.ibR_t = ib_t.real self.ibI_t = ib_t.imag self.xbR_t = xb_t.real self.xbI_t = xb_t.imag self.ubR_t = ub_t.real self.ubI_t = ub_t.imag self.icR_t = ic_t.real self.icI_t = ic_t.imag self.xcR_t = xc_t.real self.xcI_t = xc_t.imag self.ucR_t = uc_t.real self.ucI_t = uc_t.imag self.Vdc_t = np.array([self.PV_model.y0[6]]) #DC link voltage variable self.xDC_t = np.array([self.PV_model.y0[7]]) #DC link voltage control variable self.xQ_t = np.array([self.PV_model.y0[8]]) #Reactive power control variable self.xPLL_t = np.array([self.PV_model.y0[9]]) #PLL variables self.wte_t = np.array([self.PV_model.y0[10]]) #Frequency integration to get angle elif type(self.PV_model).__name__ == 'SolarPVDERSinglePhaseConstantVdc': self.Vdc_t = np.array([self.PV_model.Vdc]) #Voltage is constant self.xP_t = np.array([self.PV_model.y0[6]]) #Active power control variable self.xQ_t = np.array([self.PV_model.y0[7]]) #Reactive power control variable self.xPLL_t = np.array([self.PV_model.y0[8]]) #PLL variables self.wte_t = np.array([self.PV_model.y0[9]]) #Frequency integration to get angle except: LogUtil.exception_handler() def reset_stored_trajectories(self): """Reset for plotting.""" try: self._t_t = np.array(0.0) self.Vdc_t = self._Vdc_t = np.array(self.PV_model.Vdc) self.ia_t = self._ia_t = np.array(self.PV_model.ia) self.ma_t = self._ma_t = np.array(self.PV_model.ma) self.vta_t = self._vta_t = np.array(self.PV_model.vta) self.va_t = self._va_t = np.array(self.PV_model.va) self.ma_absolute_t = self._ma_absolute_t = np.array(abs(self.PV_model.ma)) self.Varms_t = self._Varms_t = np.array(abs(self.PV_model.va)/math.sqrt(2)) if type(self.PV_model).__name__ in templates.three_phase_models: self.mb_absolute_t = self._mb_absolute_t = np.array(abs(self.PV_model.mb)) self.mc_absolute_t = self._mc_absolute_t = np.array(abs(self.PV_model.mc)) self.Vbrms_t = self._Vbrms_t = np.array(abs(self.PV_model.vb)/math.sqrt(2)) self.Vcrms_t = self._Vcrms_t = np.array(abs(self.PV_model.vc)/math.sqrt(2)) self.ib_t = self._ib_t = np.array(self.PV_model.ib) self.mb_t = self._mb_t = np.array(self.PV_model.mb) self.vtb_t = self._vtb_t = np.array(self.PV_model.vtb) self.vb_t = self._vb_t = np.array(self.PV_model.vb) self.ic_t = self._ic_t = np.array(self.PV_model.ic) self.mc_t = self._mc_t = np.array(self.PV_model.mc) self.vtc_t = self._vtc_t = np.array(self.PV_model.vtc) self.vc_t = self._vc_t =
np.array(self.PV_model.vc)
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- # from __future__ import absolute_import, division, print_function import locale import matplotlib as mpl from matplotlib import docstring import numpy as np import random from matplotlib.projections.polar import PolarAxes from numpy.lib.twodim_base import histogram2d import matplotlib.pyplot as plt ZBASE = -1000 # The starting zorder for all drawing, negative to have the grid on VAR_DEFAULT = "speed" DIR_DEFAULT = "direction" FIGSIZE_DEFAULT = (8, 8) DPI_DEFAULT = 80 CALM_CIRCLE_COLOR = "red" CALM_CIRCLE_ALPHA = 0.4 class WindAxesFactory(object): """ Factory class to create WindroseAxes or WindAxes """ @staticmethod def create(typ, ax=None, *args, **kwargs): """ Create Mandatory: Parameters ---------- typ : string, 'windroseaxes' or 'windaxes' Type of axes to create * windroseaxes : a WindroseAxes axe * windaxe : a WindAxes axe ax : matplotlib.Axes, optional A matplotlib axe """ typ = typ.lower() d = {"windroseaxes": WindroseAxes, "windaxes": WindAxes} if typ in d.keys(): cls = d[typ] if isinstance(ax, cls): return ax else: ax = cls.from_ax(ax, *args, **kwargs) return ax else: raise NotImplementedError("typ=%r but it might be in %s" % (typ, d.keys())) class WindroseAxes(PolarAxes): """ Create a windrose axes """ name = "windrose" def __init__(self, *args, **kwargs): """ See Axes base class for args and kwargs documentation """ # Uncomment to have the possibility to change the resolution directly # when the instance is created # self.RESOLUTION = kwargs.pop('resolution', 100) self.rmax = kwargs.pop("rmax", None) self.theta_labels = kwargs.pop("theta_labels", ["E", "N-E", "N", "N-W", "W", "S-W", "S", "S-E"]) PolarAxes.__init__(self, *args, **kwargs) self.set_aspect("equal", adjustable="box", anchor="C") self.radii_angle = 67.5 self.cla() @staticmethod def from_ax(ax=None, fig=None, rmax=None, theta_labels=None, rect=None, *args, **kwargs): """ Return a WindroseAxes object for the figure `fig`. """ if ax is None: if fig is None: fig = plt.figure( figsize=FIGSIZE_DEFAULT, dpi=DPI_DEFAULT, facecolor="w", edgecolor="w", ) if rect is None: rect = [0.1, 0.1, 0.8, 0.8] ax = WindroseAxes(fig, rect, rmax=rmax, theta_labels=theta_labels, *args, **kwargs) fig.add_axes(ax) return ax else: return ax def cla(self): """ Clear the current axes """ PolarAxes.cla(self) self.theta_angles = np.arange(0, 360, 22.5) self.set_thetagrids(angles=self.theta_angles, labels=self.theta_labels) self._info = {"dir": list(), "bins": list(), "table": list()} self.patches_list = list() self.calm_count = None def _colors(self, cmap, n): """ Returns a list of n colors based on the colormap cmap """ return [cmap(i) for i in np.linspace(0.0, 1.0, n)] def set_radii_angle(self, **kwargs): """ Set the radii labels angle """ kwargs.pop("labels", None) angle = kwargs.pop("angle", None) if angle is None: angle = self.radii_angle self.radii_angle = angle N = 5 rmax = self.get_rmax() radii = np.linspace(0, rmax, N + 1) if rmax % N == 0: fmt = "%d" else: fmt = "%.1f" radii_labels = [fmt % r for r in radii] # radii_labels[0] = "" # Removing label 0 self.set_rgrids( radii=radii[1:], labels=radii_labels[1:], angle=self.radii_angle, **kwargs ) def _update(self): if not self.rmax: self.rmax = np.max(np.sum(self._info["table"], axis=0)) calm_count = self.calm_count or 0 self.set_rmax(rmax=self.rmax + calm_count) self.set_radii_angle(angle=self.radii_angle) def legend(self, loc="lower left", decimal_places=1, units=None, **kwargs): """ Sets the legend location and her properties. Parameters ---------- loc : int, string or pair of floats, default: 'lower left' see :obj:`matplotlib.pyplot.legend`. decimal_places : int, default 1 The decimal places of the formated legend units: str, default None Other Parameters ---------------- isaxes : boolean, default True whether this is an axes legend prop : FontProperties(size='smaller') the font property borderpad : float the fractional whitespace inside the legend border shadow : boolean if True, draw a shadow behind legend labelspacing : float, 0.005 the vertical space between the legend entries handlelenght : float, 0.05 the length of the legend lines handletextsep : float, 0.02 the space between the legend line and legend text borderaxespad : float, 0.02 the border between the axes and legend edge kwarg Every other kwarg argument supported by :obj:`matplotlib.pyplot.legend` """ def get_handles(): handles = list() for p in self.patches_list: if isinstance(p, mpl.patches.Polygon) or isinstance( p, mpl.patches.Rectangle ): color = p.get_facecolor() elif isinstance(p, mpl.lines.Line2D): color = p.get_color() else: raise AttributeError("Can't handle patches") handles.append( mpl.patches.Rectangle( (0, 0), 0.2, 0.2, facecolor=color, edgecolor="black" ) ) return handles def get_labels(decimal_places=1, units=None): _decimal_places = str(decimal_places) fmt = "[%." + _decimal_places + "f " + ": %0." + _decimal_places + "f" labels = np.copy(self._info["bins"]) if locale.getlocale()[0] in ["fr_FR"]: fmt += "[" else: fmt += ")" if units: fmt += ' ' + units labels = [fmt % (labels[i], labels[i + 1]) for i in range(len(labels) - 1)] return labels kwargs.pop("labels", None) kwargs.pop("handles", None) # decimal_places = kwargs.pop('decimal_places', 1) handles = get_handles() labels = get_labels(decimal_places, units) self.legend_ = mpl.legend.Legend(self, handles, labels, loc, **kwargs) return self.legend_ def set_legend(self, **pyplot_arguments): if "borderaxespad" not in pyplot_arguments: pyplot_arguments["borderaxespad"] = -0.10 legend = self.legend(**pyplot_arguments) plt.setp(legend.get_texts(), fontsize=8) return legend def _init_plot(self, direction, var, **kwargs): """ Internal method used by all plotting commands Parameters ---------- direction : 1D array, directions the wind blows from, North centred var : 1D array, values of the variable to compute. Typically the wind speeds Other Parameters ---------------- normed : boolean, default False blowto : boolean, default False colors : str or list of str, default None The colors of the plot. cmap : color map, default `jet` A :obj:`matplotlib.cm` colormap for the plot. Warning! It overrides `colors`. weibull_factors : mean_values : frequency : kwarg Any argument accepted by :obj:`matplotlib.pyplot.plot`. """ # if weibull factors are entered overwrite direction and var if "weibull_factors" in kwargs or "mean_values" in kwargs: if "weibull_factors" in kwargs and "mean_values" in kwargs: raise TypeError("cannot specify both weibull_factors and mean_values") statistic_type = "unset" if "weibull_factors" in kwargs: statistic_type = "weibull" val = kwargs.pop("weibull_factors") elif "mean_values" in kwargs: statistic_type = "mean" val = kwargs.pop("mean_values") if val: if "frequency" not in kwargs: raise TypeError( "specify 'frequency' argument for statistical input" ) windFrequencies = kwargs.pop("frequency") if len(windFrequencies) != len(direction) or len(direction) != len(var): if len(windFrequencies) != len(direction): raise TypeError("len(frequency) != len(direction)") elif len(direction) != len(var): raise TypeError("len(frequency) != len(direction)") windSpeeds = [] windDirections = [] for dbin in range(len(direction)): for _ in range(int(windFrequencies[dbin] * 10000)): if statistic_type == "weibull": windSpeeds.append( random.weibullvariate(var[dbin][0], var[dbin][1]) ) elif statistic_type == "mean": windSpeeds.append( random.weibullvariate(var[dbin] * 2 / np.sqrt(np.pi), 2) ) windDirections.append(direction[dbin]) var, direction = windSpeeds, windDirections # self.cla() kwargs.pop("zorder", None) # Init of the bins array if not set bins = kwargs.pop("bins", None) if bins is None: bins = np.linspace(np.min(var), np.max(var), 6) if isinstance(bins, int): bins = np.linspace(np.min(var), np.max(var), bins) bins = np.asarray(bins) nbins = len(bins) # Number of sectors nsector = kwargs.pop("nsector", None) if nsector is None: nsector = 16 # Sets the colors table based on the colormap or the "colors" argument colors = kwargs.pop("colors", None) cmap = kwargs.pop("cmap", None) if colors is not None: if isinstance(colors, str): colors = [colors] * nbins if isinstance(colors, (tuple, list)): if len(colors) != nbins: raise ValueError("colors and bins must have same length") else: if cmap is None: cmap = mpl.cm.jet colors = self._colors(cmap, nbins) # Building the angles list angles = np.arange(0, -2 * np.pi, -2 * np.pi / nsector) + np.pi / 2 normed = kwargs.pop("normed", False) blowto = kwargs.pop("blowto", False) # Calm condition calm_limit = kwargs.pop("calm_limit", None) if calm_limit is not None: mask = var > calm_limit self.calm_count = len(var) - np.count_nonzero(mask) if normed: self.calm_count = self.calm_count * 100 / len(var) var = var[mask] direction = direction[mask] # Set the global information dictionnary self._info["dir"], self._info["bins"], self._info["table"] = histogram( direction, var, bins, nsector, normed, blowto ) return bins, nbins, nsector, colors, angles, kwargs def _calm_circle(self): """ Draw the calm centered circle and return the initial offset for plots methods """ if self.calm_count and self.calm_count > 0: circle = mpl.patches.Circle( (0., 0.), self.calm_count, transform=self.transData._b, color=CALM_CIRCLE_COLOR, alpha=CALM_CIRCLE_ALPHA, ) self.add_artist(circle) return self.calm_count or 0 def contour(self, direction, var, **kwargs): """ Plot a windrose in linear mode. For each var bins, a line will be draw on the axes, a segment between each sector (center to center). Each line can be formated (color, width, ...) like with standard plot pylab command. Parameters ---------- direction : 1D array directions the wind blows from, North centred var : 1D array values of the variable to compute. Typically the wind speeds. Other Parameters ---------------- sector : integer, optional number of sectors used to compute the windrose table. If not set, nsectors=16, then each sector will be 360/16=22.5°, and the resulting computed table will be aligned with the cardinals points. bins : 1D array or integer, optional number of bins, or a sequence of bins variable. If not set, bins=6, then bins=linspace(min(var), max(var), 6) blowto : bool, optional If True, the windrose will be pi rotated, to show where the wind blow to (usefull for pollutant rose). colors : string or tuple, optional one string color ('k' or 'black'), in this case all bins will be plotted in this color; a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted in different colors in the order specified. cmap : a cm Colormap instance from :obj:`matplotlib.cm`, optional if cmap == None and colors == None, a default Colormap is used. others kwargs Any supported argument of :obj:`matplotlib.pyplot.plot` """ bins, nbins, nsector, colors, angles, kwargs = self._init_plot( direction, var, **kwargs ) # closing lines angles = np.hstack((angles, angles[-1] - 2 * np.pi / nsector)) vals = np.hstack( ( self._info["table"], np.reshape( self._info["table"][:, 0], (self._info["table"].shape[0], 1) ), ) ) offset = self._calm_circle() for i in range(nbins): val = vals[i, :] + offset offset += vals[i, :] zorder = ZBASE + nbins - i patch = self.plot(angles, val, color=colors[i], zorder=zorder, **kwargs) self.patches_list.extend(patch) self._update() def contourf(self, direction, var, **kwargs): """ Plot a windrose in filled mode. For each var bins, a line will be draw on the axes, a segment between each sector (center to center). Each line can be formated (color, width, ...) like with standard plot pylab command. Parameters ---------- direction : 1D array directions the wind blows from, North centred var : 1D array values of the variable to compute. Typically the wind speeds Other Parameters ---------------- nsector: integer, optional number of sectors used to compute the windrose table. If not set, nsectors=16, then each sector will be 360/16=22.5°, and the resulting computed table will be aligned with the cardinals points. bins : 1D array or integer, optional number of bins, or a sequence of bins variable. If not set, bins=6, then bins=linspace(min(`var`), max(`var`), 6) blowto : bool, optional If True, the windrose will be pi rotated, to show where the wind blow to (usefull for pollutant rose). colors : string or tuple, optional one string color ('k' or 'black'), in this case all bins will be plotted in this color; a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted in different colors in the order specified. cmap : a cm Colormap instance from :obj:`matplotlib.cm`, optional if cmap == None and colors == None, a default Colormap is used. others kwargs Any supported argument of :obj:`matplotlib.pyplot.plot` """ bins, nbins, nsector, colors, angles, kwargs = self._init_plot( direction, var, **kwargs ) kwargs.pop("facecolor", None) kwargs.pop("edgecolor", None) # closing lines angles = np.hstack((angles, angles[-1] - 2 * np.pi / nsector)) vals = np.hstack( ( self._info["table"], np.reshape( self._info["table"][:, 0], (self._info["table"].shape[0], 1) ), ) ) offset = self._calm_circle() for i in range(nbins): val = vals[i, :] + offset offset += vals[i, :] zorder = ZBASE + nbins - i patch = self.fill(
np.append(angles, 0)
numpy.append
"""Implement the GeometricProgram class""" import sys from time import time from collections import defaultdict import numpy as np from ..nomials import NomialData from ..small_classes import CootMatrix, SolverLog, Numbers from ..keydict import KeyDict, KeySet from ..small_scripts import mag from ..solution_array import SolutionArray from .costed import CostedConstraintSet DEFAULT_SOLVER_KWARGS = {"cvxopt": {"kktsolver": "ldl"}} class GeometricProgram(CostedConstraintSet, NomialData): # pylint: disable=too-many-instance-attributes """Standard mathematical representation of a GP. Arguments --------- cost : Constraint Posynomial to minimize when solving constraints : list of Posynomials Constraints to maintain when solving (implicitly Posynomials <= 1) GeometricProgram does not accept equality constraints (e.g. x == 1); instead use two inequality constraints (e.g. x <= 1, 1/x <= 1) verbosity : int (optional) If verbosity is greater than zero, warns about missing bounds on creation. Attributes with side effects ---------------------------- `solver_out` and `solver_log` are set during a solve `result` is set at the end of a solve if solution status is optimal Examples -------- >>> gp = gpkit.geometric_program.GeometricProgram( # minimize x, [ # subject to 1/x # <= 1, implicitly ]) >>> gp.solve() """ def __init__(self, cost, constraints, substitutions, allow_missingbounds=False): # pylint:disable=super-init-not-called # initialize attributes modified by internal methods self.result = None self.v_ss = None self.nu_by_posy = None self.solver_log = None self.solver_out = None # GPs get varkeys from NomialData._reset, in .gen() self.__bare_init__(cost, constraints, substitutions, varkeys=False) for key, sub in self.substitutions.items(): if hasattr(sub, "exp") and not sub.exp: sub = sub.value if hasattr(sub, "units"): sub = sub.to(key.units or "dimensionless").magnitude self.substitutions[key] = sub # only allow Numbers and ndarrays if not isinstance(sub, (Numbers, np.ndarray)): raise ValueError("substitution {%s: %s} with value type %s is" " not allowed in .substitutions; such" " substitutions must be done by using" " .subinplace()." % (key, sub, type(sub))) self.posynomials = [cost.sub(self.substitutions)] self.posynomials.extend(self.as_posyslt1(self.substitutions)) self.hmaps = [p.hmap for p in self.posynomials] ## Generate various maps into the posy- and monomials # k [j]: number of monomials (columns of F) present in each constraint self.k = [len(hm) for hm in self.hmaps] p_idxs = [] # p_idxs [i]: posynomial index of each monomial self.m_idxs = [] # m_idxs [i]: monomial indices of each posynomial for i, p_len in enumerate(self.k): self.m_idxs.append(list(range(len(p_idxs), len(p_idxs) + p_len))) p_idxs += [i]*p_len self.p_idxs = np.array(p_idxs) # m_idxs: first exp-index of each monomial equality self.meq_idxs = [sum(self.k[:i]) for i, p in enumerate(self.posynomials) if getattr(p, "from_meq", False)] self.gen() # A [i, v]: sparse matrix of powers in each monomial if any(c <= 0 for c in self._cs): raise ValueError("GeometricPrograms cannot contain Signomials.") if self.missingbounds and not allow_missingbounds: boundstrs = "\n".join(" %s has no %s bound%s" % (v, b, x) for (v, b), x in self.missingbounds.items()) raise ValueError("Geometric Program is not fully bounded:\n" + boundstrs) def gen(self): "Generates nomial and solve data (A, p_idxs) from posynomials" self._reset() # method from NomialData self._exps, self._cs = [], [] for hmap in self.hmaps: self._exps.extend(hmap.keys()) self._cs.extend(hmap.values()) self.A, self.missingbounds = genA(self.exps, self.varlocs, self.meq_idxs) @property def varkeys(self): "The GP's varkeys, created when necessary." if self._varkeys is None: self._varkeys = KeySet(self.varlocs) return self._varkeys # pylint: disable=too-many-statements, too-many-locals def solve(self, solver=None, verbosity=1, warn_on_check=False, process_result=True, **kwargs): """Solves a GeometricProgram and returns the solution. Arguments --------- solver : str or function (optional) By default uses one of the solvers found during installation. If set to "mosek", "mosek_cli", or "cvxopt", uses that solver. If set to a function, passes that function cs, A, p_idxs, and k. verbosity : int (optional) If greater than 0, prints solver name and solve time. **kwargs : Passed to solver constructor and solver function. Returns ------- result : dict A dictionary containing the translated solver result; keys below. cost : float The value of the objective at the solution. variables : dict The value of each variable at the solution. sensitivities : dict monomials : array of floats Each monomial's dual variable value at the solution. posynomials : array of floats Each posynomials's dual variable value at the solution. """ def _get_solver(solver): """Get the solverfn and solvername associated with solver""" if solver is None: from .. import settings solver = settings.get("default_solver", None) if not solver: raise ValueError( "No solver was given; perhaps gpkit was not properly" " installed, or found no solvers during the" " installation process.") if solver == "cvxopt": from .._cvxopt import cvxoptimize solverfn = cvxoptimize elif solver == "mosek_cli": from .._mosek import cli_expopt solverfn = cli_expopt.imize_fn(**kwargs) elif solver == "mosek": from .._mosek import expopt solverfn = expopt.imize elif hasattr(solver, "__call__"): solverfn = solver solver = solver.__name__ else: raise ValueError("Unknown solver '%s'." % solver) return solverfn, solver solverfn, solvername = _get_solver(solver) starttime = time() if verbosity > 0: print("Using solver '%s'" % solvername) print("Solving for %i variables." % len(self.varlocs)) solver_kwargs = DEFAULT_SOLVER_KWARGS.get(solvername, {}) solver_kwargs.update(kwargs) # NOTE: SIDE EFFECTS AS WE LOG SOLVER'S STDOUT AND OUTPUT original_stdout = sys.stdout self.solver_log = SolverLog(verbosity-1, original_stdout) try: sys.stdout = self.solver_log # CAPTURED solver_out = solverfn(c=self.cs, A=self.A, p_idxs=self.p_idxs, k=self.k, **solver_kwargs) self.solver_out = solver_out finally: sys.stdout = original_stdout # STDOUT HAS BEEN RETURNED. ENDING SIDE EFFECTS. self.solver_log = "\n".join(self.solver_log) soltime = time() - starttime if verbosity > 0: print("Solving took %.3g seconds." % (soltime,)) tic = time() # allow mosek's NEAR_DUAL_FEAS solution status, because our check # will catch anything that's not actually near enough. # TODO: implement this in the mosek / mosek_cli interfaces, not here. solver_status = str(solver_out.get("status", None)) if solver_status.lower() not in ["optimal", "near_dual_feas"]: raise RuntimeWarning( "final status of solver '%s' was '%s', not 'optimal'.\n\n" "The solver's result is stored in model.program.solver_out. " "A result dict can be generated via " "program._compile_result(program.solver_out)." % (solvername, solver_status)) if solver_status.lower() == "near_dual_feas": print(RuntimeWarning( "final status of solver '%s' was '%s', not 'optimal'.\n\n" % (solvername, solver_status))) self.result = self._compile_result(solver_out) # NOTE: SIDE EFFECTS if verbosity > 1: print("result packing took %.2g%% of solve time" % ((time() - tic) / soltime * 100)) tic = time() try: self.check_solution(self.result["cost"], solver_out['primal'], nu=solver_out["nu"], la=solver_out["la"]) except RuntimeWarning as e: if warn_on_check: print("Solution check warning: %s" % e) else: raise e if verbosity > 1: print("solution checking took %.2g%% of solve time" % ((time() - tic) / soltime * 100)) if process_result: self.process_result(self.result) self.result["soltime"] = soltime return self.result def _generate_nula(self, solver_out): solver_out["primal"] = np.ravel(solver_out['primal']) if "nu" in solver_out: # solver gave us monomial sensitivities, generate posynomial ones nu = np.ravel(solver_out["nu"]) self.nu_by_posy = [nu[mi] for mi in self.m_idxs] la = np.array([sum(nup) for nup in self.nu_by_posy]) elif "la" in solver_out: # solver gave us posynomial sensitivities, generate monomial ones la = np.ravel(solver_out["la"]) if len(la) == len(self.hmaps) - 1: # assume the solver dropped the cost's sensitivity (always 1.0) la = np.hstack(([1.0], la)) Ax = np.ravel(self.A.dot(solver_out['primal'])) z = Ax + np.log(self.cs) m_iss = [self.p_idxs == i for i in range(len(la))] self.nu_by_posy = [la[p_i]*np.exp(z[m_is])/sum(np.exp(z[m_is])) for p_i, m_is in enumerate(m_iss)] nu = np.hstack(self.nu_by_posy) else: raise RuntimeWarning("The dual solution was not returned.") solver_out["nu"], solver_out["la"] = nu, la def _compile_result(self, solver_out): """Creates a result dict (as returned by solve() from solver output This internal method is called from within the solve() method, unless solver_out["status"] is not "optimal", in which case a RuntimeWarning is raised prior to this method being called. In that case, users may use this method to attempt to create a results dict from the output of the failed solve. Arguments --------- solver_out: dict dict in format returned by solverfn within GeometricProgram.solve Returns ------- result: dict dict in format returned by GeometricProgram.solve() """ self._generate_nula(solver_out) primal = solver_out["primal"] nu, la = solver_out["nu"], solver_out["la"] # confirm lengths before calling zip if not self.varlocs and len(primal) == 1 and primal[0] == 0: primal = [] # an empty result, as returned by MOSEK assert len(self.varlocs) == len(primal) result = {"freevariables": KeyDict(zip(self.varlocs, np.exp(primal)))} # get cost # if "objective" in solver_out: result["cost"] = float(solver_out["objective"]) else: # use self.posynomials[0] because the cost may have had constants freev = result["freevariables"] cost = self.posynomials[0].sub(freev) if cost.varkeys: raise ValueError("cost contains unsolved variables %s" % cost.varkeys.keys()) result["cost"] = mag(cost.c) # get sensitivities # result["constants"] = KeyDict(self.substitutions) result["variables"] = KeyDict(result["freevariables"]) result["variables"].update(result["constants"]) result["sensitivities"] = {"nu": nu, "la": la} self.v_ss = self.sens_from_dual(la[1:].tolist(), self.nu_by_posy[1:], result) # add cost's sensitivity in (nu could be self.nu_by_posy[0]) cost_senss = {var: sum([self.cost.exps[i][var]*nu[i] for i in locs]) for (var, locs) in self.cost.varlocs.items()} # not using HashVector addition because we want to preseve zeros var_senss = self.v_ss.copy() for key, value in cost_senss.items(): var_senss[key] = value + var_senss.get(key, 0) # carry linked sensitivities over to their constants for v in var_senss.keys(): if v.gradients: dlogcost_dlogv = var_senss.pop(v) val = result["constants"][v] for c, dv_dc in v.gradients.items(): dlogv_dlogc = dv_dc * result["constants"][c]/val accum = var_senss.get(c, 0) var_senss[c] = dlogcost_dlogv*dlogv_dlogc + accum if v in cost_senss: if c in self.cost.varkeys: dlogcost_dlogv = cost_senss.pop(v) accum = cost_senss.get(c, 0) cost_senss[c] = dlogcost_dlogv*dlogv_dlogc + accum result["sensitivities"]["cost"] = cost_senss result["sensitivities"]["variables"] = KeyDict(var_senss) const_senss = {k: v for k, v in var_senss.items() if k in result["constants"]} result["sensitivities"]["constants"] = KeyDict(const_senss) return SolutionArray(result) # TODO: set tol by solver? or otherwise return it to 1e-5 for mosek def check_solution(self, cost, primal, nu, la, tol=1e-3, abstol=1e-20): """Run a series of checks to mathematically confirm sol solves this GP Arguments --------- cost: float cost returned by solver primal: list primal solution returned by solver nu: numpy.ndarray monomial lagrange multiplier la: numpy.ndarray posynomial lagrange multiplier Raises ------ RuntimeWarning, if any problems are found """ def _almost_equal(num1, num2): "local almost equal test" return (num1 == num2 or abs((num1 - num2) / (num1 + num2)) < tol or abs(num1 - num2) < abstol) A = self.A.tocsr() # check primal sol primal_exp_vals = self.cs * np.exp(A.dot(primal)) # c*e^Ax if not _almost_equal(primal_exp_vals[self.m_idxs[0]].sum(), cost): raise RuntimeWarning("Primal solution computed cost did not match" " solver-returned cost: %s vs %s" % (primal_exp_vals[self.m_idxs[0]].sum(), cost)) for mi in self.m_idxs[1:]: if primal_exp_vals[mi].sum() > 1 + tol: raise RuntimeWarning("Primal solution violates constraint:" " %s is greater than 1." % primal_exp_vals[mi].sum()) # check dual sol # note: follows dual formulation in section 3.1 of # http://web.mit.edu/~whoburg/www/papers/hoburg_phd_thesis.pdf if not _almost_equal(self.nu_by_posy[0].sum(), 1.): raise RuntimeWarning("Dual variables associated with objective sum" " to %s, not 1" % self.nu_by_posy[0].sum()) if any(nu < 0): if all(nu > -tol/1000.): # HACK, see issue 528 print("Allowing negative dual variable(s) as small as" " %s." % min(nu)) else: raise RuntimeWarning("Dual solution has negative entries as" " small as %s." % min(nu)) ATnu = A.T.dot(nu) if any(
np.abs(ATnu)
numpy.abs
import numpy as np from utils import file_helper, pulse_helper TILECAL = 1 NUMBER_OF_CELLS = 1 # Represents all possible probabilities of the cell receive signals # Example: 0.5 equals 50% of chance of receiving a signal in a collision. # We can use an array to generate signas for several probabilities. # signal_probabilities = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] signal_probabilities = [1.0] def _number_of_samples_based_on(TILECAL): return 7 if TILECAL else 10 # Generates a base data that will be randomized to simulate the real signal def _base_data(number_of_data): mu, sigma = 30, 1.5 # Mean and standard deviation return np.random.normal(mu, sigma, number_of_data) # Base data def _pileup_indexes(number_of_data): pu_indexes = np.random.permutation(number_of_data) # What about when "signal_probability" is float? pu_indexes = pu_indexes[0:int(signal_probability * number_of_data)] return pu_indexes def _pileup(): pileup_mean = 100 # Exponential pileup mean return np.random.exponential(pileup_mean) # pileup should be added in the position "i" and then in its corners. # for exemple, for n=100, i=97, and a 7th dimension signal we will have pileup # added at positions 94, 95, 96, 97, 98, 99, 100 def _apply_pileup_indexes_when_tilecal(i, pu_indexes, x): pu = np.multiply(_pileup(), pulse_helper.get_jitter_pulse()) if pu_indexes[i] < 4: for j in range(pu_indexes[i]-2, 3): x[pu_indexes[i] + j] = x[pu_indexes[i] + j] + pu[j + 4] elif pu_indexes[i] > (number_of_data - 3): for j in range(-4, number_of_data - pu_indexes[i]): x[pu_indexes[i] + j] = x[pu_indexes[i] + j] + pu[j + 4] else: for j in range(-4, 3): x[pu_indexes[i] + j] = x[pu_indexes[i] + j] + pu[j + 4] return x def _apply_pileup_indexes(i, pu_indexes, x): pu = np.multiply(_pileup(), pulse_helper.get_pulse_paper_COF()) if pu_indexes[i] < 3: for j in range(pu_indexes[i]-2, 7): x[pu_indexes[i] + j] = x[pu_indexes[i] + j] + pu[j + 3] elif pu_indexes[i] > 999993: for j in range(-3, number_of_data - pu_indexes[i]): x[pu_indexes[i] + j] = x[pu_indexes[i] + j] + pu[j + 3] else: for j in range(-3, 7): x[pu_indexes[i] + j] = x[pu_indexes[i] + j] + pu[j + 3] return x if __name__ == '__main__': # Creating the dataset. number_of_events = 10000000 number_of_samples = _number_of_samples_based_on(TILECAL) number_of_data = number_of_samples * number_of_events # Control when generate noise or signal is_noise = 1 for level in range(0, len(signal_probabilities)): print('Processing: for {0:2.6f}\n' .format(signal_probabilities[level])) signal_probability = signal_probabilities[level] # Signal_probability signal_mean = 300 # Exponential signal mean x = _base_data(number_of_data) pu_indexes = _pileup_indexes(number_of_data) if signal_probability > 0: for i in range(0, int(signal_probability * number_of_data)): if TILECAL: x = _apply_pileup_indexes_when_tilecal(i, pu_indexes, x) else: # NOT TESTED!!! print('NOT TESTED!!!') x = _apply_pileup_indexes(i, pu_indexes, x) # Formatting data data = np.reshape(x, (number_of_samples, number_of_events)) data =
np.transpose(data)
numpy.transpose
## regressionVec.py ## vector-valued regression (with diagonal covariance noise matrix) from __future__ import division, print_function, absolute_import import numpy as np import tensorflow as tf import itertools as it import scipy.special as ss def eNet(alpha, lam, v): """Elastic-net regularization penalty""" return lam * (alpha * tf.reduce_sum(tf.abs(v)) + (1-alpha) * tf.reduce_sum(tf.square(v))) def calcMargiProb(cadId, M): """Returns p(M=j) in vector form""" return np.array([np.sum(cadId == m) for m in range(M)]) / cadId.shape[0] def calcJointProb(G, cadId, M): """Returns p(M=j, x in C_i) in matrix form""" jointProbMat = np.zeros((M,M)) # p(M=j, x in C_i) for i,j in it.product(range(M), range(M)): jointProbMat[i,j] = np.sum(G[cadId==i,j]) jointProbMat /= G.shape[0] return jointProbMat def calcCondiProb(jointProb, margProb): """Returns p(M = j | x in C_i)""" return np.divide(jointProb, margProb[:,None], out=np.zeros_like(jointProb), where=margProb[:,None]!=0) def estEntropy(condProb): """Returns estimated entropy for each cadre""" return -np.sum(ss.xlogy(condProb, condProb), axis=1) / np.log(2) class regressionCadreModel(object): def __init__(self, M=2, gamma=10., lambda_d=0.01, lambda_W=0.01, alpha_d=0.9, alpha_W=0.9, Tmax=10000, record=100, eta=1e-3, Nba=50, eps=1e-3): ## hyperparameters / structure self.M = M # number of cadres self.gamma = gamma # cadre assignment sharpness self.lambda_d = lambda_d # regularization strengths self.lambda_W = lambda_W self.alpha_d = alpha_d # elastic net mixing weights self.alpha_W = alpha_W self.cadFts = None # cadre-assignment feature indices self.tarFts = None # target-prediction feature indices self.fitted = False ## optimization settings self.Tmax = Tmax # maximum iterations self.record = record # record points self.eta = eta # initial stepsize self.Nba = Nba # minibatch size self.eps = eps # convergence tolerance ## parameters self.W = 0 # regression weights self.W0 = 0 # regression biases self.C = 0 # cadre centers self.d = 0 # cadre assignment weights self.sigma = 0 # prediction noise ## data self.X = None # copy of input data self.Y = None # copy of target values ## outputs self.loss = [] # loss trajectory def get_params(self, deep=True): return {'M': self.M, 'gamma': self.gamma, 'lambda_d': self.lambda_d, 'lambda_W': self.lambda_W, 'alpha_d': self.alpha_d, 'alpha_W': self.alpha_W, 'Tmax': self.Tmax, 'record': self.record, 'eta': self.eta, 'Nba': self.Nba, 'eps': self.eps} def set_params(self, **parameters): for parameter, value in parameters.items(): setattr(self, parameter, value) return self def fit(self, Xtr, Ytr, cadFts=None, tarFts=None, inits=dict(), seed=16162): """Fit regression cadre model""" if cadFts is not None: self.cadFts = cadFts else: self.cadFts = np.arange(Xtr.shape[1]) if tarFts is not None: self.tarFts = tarFts else: self.tarFts = np.arange(Xtr.shape[1]) Pcad, Ptar, Py, Ntr = len(self.cadFts), len(self.tarFts), Ytr.shape[1], Xtr.shape[0] # number of ((cadre-assignment, target-prediction) features, training observations) self.fitted = True self.X = Xtr self.Y = Ytr ############################################ ## tensorflow parameters and placeholders ## ############################################ tf.reset_default_graph() ## cadre centers parameter if 'C' in inits: C = tf.Variable(inits['C'], dtype=tf.float64, name='C') else: C = tf.Variable(np.random.normal(loc=0., scale=0.1, size=(Pcad,self.M)), dtype=tf.float64, name='C') ## cadre determination weights parameter if 'd' in inits: d = tf.Variable(inits['d'], dtype=tf.float64, name='d') else: d = tf.Variable(np.random.uniform(size=(Pcad)), dtype=tf.float64, name='d') ## regression hyperplane weights parameter if 'W' in inits: W = tf.Variable(inits['W'], dtype=tf.float64, name='W') else: W = tf.Variable(np.random.normal(loc=0., scale=0.1, size=(Py, Ptar,self.M)), dtype=tf.float64, name='W') ## regression hyperplane bias parameter if 'W0' in inits: W0 = tf.Variable(inits['w0'], dtype=tf.float64, name='w0') else: W0 = tf.Variable(tf.zeros(shape=(Py,self.M), dtype=tf.float64), dtype=tf.float64, name='w0') ## model error parameter if 'sigma' in inits: sigma = tf.Variable(inits['sigma'], dtype=tf.float64, name='sigma') else: sigma = tf.Variable(0.1 * np.ones((Py,1)), dtype=tf.float64, name='sigma') Xcad = tf.placeholder(dtype=tf.float64, shape=(None,Pcad), name='Xcad') Xtar = tf.placeholder(dtype=tf.float64, shape=(None,Ptar), name='Xtar') N = tf.cast(tf.gather(tf.shape(Xcad), 0), dtype=tf.float64, name='N') Y = tf.placeholder(dtype=tf.float64, shape=(None,Py), name='Y') ## T[n,m] = ||x^n - c^m||^2_D T = tf.einsum('npm,p->nm', tf.square(tf.map_fn(lambda x: tf.expand_dims(x,1) - C, Xcad)), tf.abs(d)) ## G[n,m] = g_m(x^n) ## = 1 / sum_m' exp(gamma(T[n,m] - T[n,m'])) G = 1 / tf.map_fn(lambda t: tf.reduce_sum(tf.exp(self.gamma*(tf.expand_dims(t,1) - tf.expand_dims(t,0))), axis=1), T, name='G') ## E[n,y,m] = e^m_y(x^n) E = tf.add(tf.einsum('np,ypm->nym', Xtar, W), W0, name='E') ## F[n,y] = f_y(x^n) F = tf.einsum('nm,nym->ny', G, E, name='F') ## L = 1 / N sum_n sum_m g_m(x^n) * (e_m(x^n) - y_n) ^2 L = (1/2 + 1/N)*tf.reduce_sum(tf.log(sigma**2)) + 1/2*tf.reduce_sum(tf.reduce_mean((F - Y)**2, axis=1) / sigma ** 2) + (eNet(self.alpha_d, self.lambda_d, d) + eNet(self.alpha_W, self.lambda_W, W) / Py) / 2 / N / tf.reduce_prod(sigma)**2 optimizer = tf.train.AdamOptimizer(learning_rate=self.eta).minimize(L) #################### ## learning model ## #################### with tf.Session() as sess: tf.global_variables_initializer().run() ## perform optimization for t in range(self.Tmax): inds = np.random.choice(Ntr, self.Nba, replace=False) sess.run(optimizer, feed_dict={Xcad: Xtr[np.ix_(inds, self.cadFts)], Xtar: Xtr[np.ix_(inds, self.tarFts)], Y: Ytr[inds]}) # record-keeping if not t % self.record: self.loss.append(L.eval(feed_dict={ Xcad: Xtr[:,self.cadFts], Xtar: Xtr[:,self.tarFts], Y: Ytr})) if len(self.loss) > 2 and (np.abs(self.loss[-1] - self.loss[-2]) < self.eps): break self.C, self.d, self.W, self.W0, self.sigma = C.eval(), d.eval(), W.eval(), W0.eval(), sigma.eval() return self def predictFull(self, Xnew): """Returns predicted values, cadre weights, and cadre estimates for new data""" if not self.fitted: print('warning: model not yet fit') tf.reset_default_graph() C = tf.Variable(self.C, dtype=tf.float64, name='C') d = tf.Variable(self.d, dtype=tf.float64, name='d') W = tf.Variable(self.W, dtype=tf.float64, name='W') W0 = tf.Variable(self.W0, dtype=tf.float64, name='w0') Xcad = tf.placeholder(dtype=tf.float64, shape=(None,len(self.cadFts)), name='X') Xtar = tf.placeholder(dtype=tf.float64, shape=(None,len(self.tarFts)), name='X') ## T[n,m] = ||x^n - c^m||^2_D T = tf.einsum('npm,p->nm', tf.square(tf.map_fn(lambda x: tf.expand_dims(x,1) - C, Xcad)), tf.abs(d)) ## G[n,m] = g_m(x^n) ## = 1 / sum_m' exp(gamma(T[n,m] - T[n,m'])) G = 1 / tf.map_fn(lambda t: tf.reduce_sum(tf.exp(self.gamma*(tf.expand_dims(t,1) - tf.expand_dims(t,0))), axis=1), T, name='G') ## E[n,y,m] = e^m_y(x^n) E = tf.add(tf.einsum('np,ypm->nym', Xtar, W), W0, name='E') ## F[n,y] = f_y(x^n) F = tf.einsum('nm,nym->ny', G, E, name='F') bstCd = tf.argmax(G, axis=1, name='bestCadre') with tf.Session() as sess: tf.global_variables_initializer().run() Fnew, Gnew, mNew = sess.run([F, G, bstCd], feed_dict={Xcad: Xnew[:,self.cadFts], Xtar: Xnew[:,self.tarFts]}) return Fnew, Gnew, mNew def predict(self, Xnew): """Returns predicted values for new data""" return self.predictFull(Xnew)[0] def score(self, Xnew, Ynew): """Returns average sum-of-squares for new data""" Fnew = self.predict(Xnew) return ((Fnew - np.squeeze(Ynew))**2).mean() def entropy(self, Xnew): """Returns estimated entropy for each cadre""" G, m = self.predictFull(Xnew)[1:] marg = calcMargiProb(m, self.M) jont = calcJointProb(G, m, self.M) cond = calcCondiProb(jont, marg) return estEntropy(cond) def getNumberParams(self): """Returns number of parameters of a model""" return
np.prod(self.C.shape)
numpy.prod
import numpy as np print("") print("Ejercicio 1.1") A = np.array([[4, -2, 1, ], [3, 6, -4], [2, 1, 8]]) A_inversa = np.linalg.inv(A) print("") print("Matriz A") print(A) print("") print("Matriz A^-1") print(A_inversa) print("") print("Verificando A * A^-1") print(A@A_inversa) print("") print("Ejercicio 1.2") A_inversa_analitica = (1/263)*np.array([[52, 17, 2],[-32, 30, 19],[-9, -8, 30]]) print("") print("Cifras significativas en A^{-1}") print(np.log10(np.abs(A_inversa-A_inversa_analitica))) print("") print("Ejercicio 2") b =
np.array([12, -25, 32])
numpy.array
""" Module containing the three basic classes: Parameters, Particles, Species. """ from copy import deepcopy from numpy import array, cross, ndarray, pi, sqrt, tanh, zeros from scipy.constants import physical_constants from scipy.linalg import norm from .plasma import Species from .utilities.exceptions import ParticlesError class Parameters: """ Class containing all the constants and physical constants of the simulation. Parameters ---------- dic : dict, optional Dictionary to be copied. Attributes ---------- a_ws : float Wigner-Seitz radius. Calculated from the ``total_num_density`` . equilibration_steps : int Total number of equilibration timesteps. eq_dump_step : int Equilibration dump interval. magnetization_steps : int Total number of magnetization timesteps. mag_dump_step : int Magnetization dump interval. production_steps : int Total number of production timesteps. prod_dump_step : int Production dump interval. box_volume : float Volume of simulation box. pbox_volume : float Volume of initial particle box. dimensions : int Number of non-zero dimensions. Default = 3. fourpie0: float Electrostatic constant :math:`4\\pi \\epsilon_0`. num_species : int Number of species. kB : float Boltzmann constant obtained from ``scipy.constants``. hbar : float Reduced Planck's constant. hbar2 : float Square of reduced Planck's constant. a0 : float Bohr Radius. c0 : float Speed of light. qe : float Elementary charge. me : float Electron mass. eps0 : float Vacuum electrical permittivity. eV2K : float Conversion factor from eV to Kelvin obtained from ``scipy.constants``. J2erg : float Conversion factor from Joules to erg. Needed for cgs units. QFactor : float Charge Factor defined as :math:`\mathcal Q = \sum_{i}^{N} q_{i}^2` . Lx : float Box length in the :math:`x` direction. Ly : float Box length in the :math:`y` direction. Lz : float Box length in the :math:`z` direction. e1 : float Unit vector in the :math:`x` direction. e2 : float Unit vector in the :math:`y` direction. e3 : float Unit vector in the :math:`z` direction. LPx : float Initial particle box length in the :math:`x` direction. LPy : float Initial particle box length in the :math:`y` direction. LPz : float Initial particle box length in the :math:`z` direction. ep1 : float Unit vector of the initial particle box in the :math:`x` direction. ep2 : float Unit vector of the initial particle box in the :math:`y` direction. ep3 : float Unit vector of the initial particle box in the :math:`z` direction. input_file : str YAML Input file with all the simulation's parameters. T_desired : float Target temperature for the equilibration phase. species_num : numpy.ndarray Number of particles of each species. Shape = (``num_species``) species_concentrations : numpy.ndarray Concentration of each species. Shape = (``num_species``) species_temperatures : numpy.ndarray Initial temperature of each species. Shape = (``num_species``) species_masses : numpy.ndarray Mass of each species. Shape = (``num_species``) species_charges : numpy.ndarray Charge of each species. Shape = (``num_species``) species_names : list Name of each species. Len = (``num_species``) species_plasma_frequencies : numpy.ndarray Plasma Frequency of each species. Shape = (``num_species``) species_num_dens : numpy.ndarray Number density of each species. Shape = (``num_species``) total_ion_temperature : float Total initial ion temperature calculated as `` = species_concentration @ species_temperatures``. total_net_charge : float Total charge in the system. total_num_density : float Total number density. Calculated from the sum of :attr:`Species.number_density`. total_num_ptcls : int Total number of particles. Calculated from the sum of :attr:`Species.num`. measure : bool Flag for production phase. verbose : bool Flag for screen output. simulations_dir : str Name of directory where to store simulations. job_dir : str Directory name of the current job/run production_dir : str Directory name where to store simulation's files of the production phase. Default = 'Production'. equilibration_dir : str Directory name where to store simulation's file of the equilibration phase. Default = 'Equilibration'. preprocessing_dir : str Directory name where to store preprocessing files. Default = "PreProcessing". postprocessing_dir : str Directory name where to store postprocessing files. Default = "PostProcessing". prod_dump_dir : str Directory name where to store production phase's simulation's checkpoints. Default = 'dumps'. eq_dump_dir : str Directory name where to store equilibration phase's simulation's checkpoints. Default = 'dumps'. job_id : str Appendix of all simulation's files. log_file : str Filename of the simulation's log. np_per_side : numpy.ndarray Number of particles per simulation's box side. The product of its components should be equal to ``total_num_ptcls``. pre_run : bool Flag for preprocessing phase. """ def __init__(self, dic: dict = None) -> None: self.particles_input_file = None self.load_perturb = 0.0 self.initial_lattice_config = "simple_cubic" self.load_rejection_radius = None self.load_halton_bases = None self.load_method = None self.potential_type = None self.units = None self.electron_magnetic_energy = None self.input_file = None # Sim box geometry self.Lx = 0.0 self.Ly = 0.0 self.Lz = 0.0 self.LPx = 0.0 self.LPy = 0.0 self.LPz = 0.0 self.e1 = None self.e2 = None self.e3 = None self.ep1 = None self.ep2 = None self.ep3 = None self.box_lengths = None self.pbox_lengths = None self.box_volume = 0.0 self.pbox_volume = 0.0 self.dimensions = 3 # Physical Constants and conversion units self.J2erg = 1.0e7 # erg/J self.eps0 = physical_constants["vacuum electric permittivity"][0] self.fourpie0 = 4.0 * pi * self.eps0 self.mp = physical_constants["proton mass"][0] self.me = physical_constants["electron mass"][0] self.qe = physical_constants["elementary charge"][0] self.hbar = physical_constants["reduced Planck constant"][0] self.hbar2 = self.hbar**2 self.c0 = physical_constants["speed of light in vacuum"][0] self.eV2K = physical_constants["electron volt-kelvin relationship"][0] self.eV2J = physical_constants["electron volt-joule relationship"][0] self.a0 = physical_constants["Bohr radius"][0] self.kB = physical_constants["Boltzmann constant"][0] self.kB_eV = physical_constants["Boltzmann constant in eV/K"][0] self.a_ws = 0.0 # Phases self.equilibration_phase = True self.electrostatic_equilibration = True self.magnetization_phase = False self.production_phase = True # Timing self.equilibration_steps = 0 self.production_steps = 0 self.magnetization_steps = 0 self.eq_dump_step = 1 self.prod_dump_step = 1 self.mag_dump_step = 1 # Control self.job_id = None self.job_dir = None self.log_file = None self.measure = False self.magnetized = False self.plot_style = None self.pre_run = False self.simulations_dir = "Simulations" self.production_dir = "Production" self.magnetization_dir = "Magnetization" self.equilibration_dir = "Equilibration" self.preprocessing_dir = "PreProcessing" self.postprocessing_dir = "PostProcessing" self.prod_dump_dir = "dumps" self.eq_dump_dir = "dumps" self.mag_dump_dir = "dumps" self.verbose = True self.restart_step = None self.np_per_side = None self.num_species = 1 self.magnetic_field = None self.species_lj_sigmas = None self.species_names = None self.species_num = None self.species_num_dens = None self.species_concentrations = None self.species_temperatures = None self.species_temperatures_eV = None self.species_masses = None self.species_charges = None self.species_plasma_frequencies = None self.species_cyclotron_frequencies = None self.species_couplings = None self.coupling_constant = 0.0 self.total_num_density = 0.0 self.total_num_ptcls = 0 self.total_plasma_frequency = 0.0 self.total_debye_length = 0.0 self.total_mass_density = 0.0 self.total_ion_temperature = 0.0 self.T_desired = 0.0 self.total_net_charge = 0.0 self.QFactor = 0.0 self.average_charge = None self.average_mass = None self.hydrodynamic_frequency = None if dic: self.from_dict(dic) def __repr__(self): sortedDict = dict(sorted(self.__dict__.items(), key=lambda x: x[0].lower())) disp = "Parameters( \n" for key, value in sortedDict.items(): disp += "\t{} : {}\n".format(key, value) disp += ")" return disp def __copy__(self): """Make a shallow copy of the object using copy by creating a new instance of the object and copying its __dict__.""" # Create a new object _copy = type(self)(dic=self.__dict__) return _copy def __deepcopy__(self, memodict={}): """ Make a deepcopy of the object. Parameters ---------- memodict: dict Dictionary of id's to copies Returns ------- _copy: :class:`sarkas.core.Parameters` A new Parameters class. """ id_self = id(self) # memorization avoids unnecessary recursion _copy = memodict.get(id_self) if _copy is None: _copy = type(self)() # Make a deepcopy of the mutable arrays using numpy copy function for k, v in self.__dict__.items(): _copy.__dict__[k] = deepcopy(v, memodict) return _copy def calc_coupling_constant(self, species: list): """ Calculate the coupling constant of each species and the total coupling constant. For more information see the theory pages. Parameters ---------- species: list List of ``sarkas.plasma.Species`` objects. """ z_avg = (self.species_charges.transpose()) @ self.species_concentrations for i, sp in enumerate(species): const = self.fourpie0 * self.kB sp.calc_coupling(self.a_ws, z_avg, const) self.species_couplings[i] = sp.coupling self.coupling_constant += sp.concentration * sp.coupling def calc_electron_properties(self, species: list): """Check whether the electrons are a dynamical species or not.""" # Check for electrons as dynamical species if "e" not in self.species_names: electrons = { "name": "electron_background", "number_density": ( self.species_charges.transpose() @ self.species_concentrations * self.total_num_density / self.qe ), } if hasattr(self, "electron_temperature_eV"): electrons["temperature_eV"] = self.electron_temperature_eV electrons["temperature"] = self.eV2K * self.electron_temperature_eV elif hasattr(self, "electron_temperature"): electrons["temperature"] = self.electron_temperature electrons["temperature_eV"] = self.electron_temperature / self.eV2K else: electrons["temperature"] = self.total_ion_temperature electrons["temperature_eV"] = self.total_ion_temperature / self.eV2K electrons["mass"] = self.me electrons["Z"] = -1.0 electrons["charge"] = electrons["Z"] * self.qe electrons["spin_degeneracy"] = 2.0 e_species = Species(electrons) e_species.copy_params(self) e_species.calc_ws_radius() e_species.calc_plasma_frequency() e_species.calc_debye_length() e_species.calc_landau_length() # Electron should be the last species if not dynamical species.append(e_species) else: # Electron should be the first species if dynamical e_species = species[0] e_species.calc_debroglie_wavelength() e_species.calc_quantum_attributes(spin_statistics="fermi-dirac") # Electron WS radius e_species.a_ws = (3.0 / (4.0 * pi * e_species.number_density)) ** (1.0 / 3.0) # Brueckner parameters e_species.rs = e_species.a_ws / self.a0 # Other electron parameters e_species.degeneracy_parameter = self.kB * e_species.temperature / e_species.Fermi_energy e_species.relativistic_parameter = self.hbar * e_species.Fermi_wavenumber / (self.me * self.c0) # Eq. 1 in Murillo Phys Rev E 81 036403 (2010) e_species.coupling = e_species.charge**2 / ( self.fourpie0 * e_species.Fermi_energy * e_species.a_ws * sqrt(1.0 + e_species.degeneracy_parameter**2) ) # Warm Dense Matter Parameter, Eq.3 in Murillo Phys Rev E 81 036403 (2010) e_species.wdm_parameter = 2.0 / (e_species.degeneracy_parameter + 1.0 / e_species.degeneracy_parameter) e_species.wdm_parameter *= 2.0 / (e_species.coupling + 1.0 / e_species.coupling) if self.magnetized: b_mag = norm(self.magnetic_field) # magnitude of B if self.units == "cgs": e_species.cyclotron_frequency = self.qe * b_mag / self.c0 / self.me else: e_species.cyclotron_frequency = self.qe * b_mag / self.me # Inverse temperature for convenience beta_e = 1.0 / (self.kB * e_species.temperature) e_species.magnetic_energy = self.hbar * e_species.cyclotron_frequency tan_arg = 0.5 * self.hbar * e_species.cyclotron_frequency * beta_e # Perpendicular correction e_species.horing_perp_correction = (e_species.plasma_frequency / e_species.cyclotron_frequency) ** 2 e_species.horing_perp_correction *= 1.0 - tan_arg / tanh(tan_arg) e_species.horing_perp_correction += 1 # Parallel correction e_species.horing_par_correction = 1 - (self.hbar * beta_e * e_species.plasma_frequency) ** 2 / 12.0 # Quantum Anisotropy Parameter e_species.horing_delta = self.horing_perp_correction - 1 e_species.horing_delta += (self.hbar * beta_e * e_species.cyclotron_frequency) ** 2 / 12 e_species.horing_delta /= self.horing_par_correction def calc_parameters(self, species: list): """ Assign the parsed parameters. Parameters ---------- species : list List of :class:`sarkas.plasma.Species` . """ self.set_species_attributes(species) self.create_species_arrays(species) if self.magnetized: self.magnetic_field = array(self.magnetic_field, dtype=float) self.calc_magnetic_parameters(species) self.sim_box_setup() def calc_magnetic_parameters(self, species: list): """ Calculate cyclotron frequency in case of a magnetized simulation. Parameters ---------- species: list, List of :class:`sarkas.plasma.Species`. """ self.species_cyclotron_frequencies = zeros(self.num_species) for i, sp in enumerate(species): if self.units == "cgs": sp.calc_cyclotron_frequency(norm(self.magnetic_field) / self.c0) else: sp.calc_cyclotron_frequency(norm(self.magnetic_field)) sp.beta_c = sp.cyclotron_frequency / sp.plasma_frequency self.species_cyclotron_frequencies[i] = sp.cyclotron_frequency def check_units(self) -> None: """Adjust default physical constants for cgs unit system and check for LJ potential.""" # Physical constants if self.units == "cgs": self.kB *= self.J2erg self.c0 *= 1e2 # cm/s self.mp *= 1e3 # Coulomb to statCoulomb conversion factor. See https://en.wikipedia.org/wiki/Statcoulomb C2statC = 1.0e-01 * self.c0 self.hbar = self.J2erg * self.hbar self.hbar2 = self.hbar**2 self.qe *= C2statC self.me *= 1.0e3 self.eps0 = 1.0 self.fourpie0 = 1.0 self.a0 *= 1e2 if self.potential_type == "lj": self.fourpie0 = 1.0 self.species_lj_sigmas = zeros(self.num_species) def create_species_arrays(self, species: list): """ Get species information into arrays for the postprocessing part. Parameters ---------- species : list List of :class:`sarkas.plasma.Species` . """ self.num_species = len(species) # Initialize the arrays containing species attributes. This is needed for postprocessing self.species_names = [] self.species_num = zeros(self.num_species, dtype=int) self.species_num_dens = zeros(self.num_species) self.species_concentrations = zeros(self.num_species) self.species_temperatures = zeros(self.num_species) self.species_temperatures_eV = zeros(self.num_species) self.species_masses =
zeros(self.num_species)
numpy.zeros
#!/usr/bin/env python # builtin modules import os # dependencies import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Ellipse, Wedge from uncertainties import unumpy from dtk import control # local module imports from . import bicycle from . import inertia from . import com from . import io from . import geometry from . import period from . import rider #from plot import plot_eigenvalues class Bicycle(object): """ An object for a bicycle. A bicycle has parameters and can have a rider attached to it. That's about it for now. """ def __new__(cls, bicycleName, pathToData='.', forceRawCalc=False, forcePeriodCalc=False): '''Returns a NoneType object if there is no directory for the bicycle.''' # is there a data directory for this bicycle? if not, tell the user to # put some data in the folder so we have something to work with! try: pathToBicycle = os.path.join(pathToData, 'bicycles', bicycleName) if os.path.isdir(pathToBicycle) == True: print("We have foundeth a directory named: " + "{0}.".format(pathToBicycle)) return super(Bicycle, cls).__new__(cls) else: raise ValueError except: mes = """Are you nuts?! Make a directory called '{0}' with basic data for your bicycle in this directory: '{1}'. Then I can actually create a bicycle object. You may either need to change to the correct directory or reset the pathToData argument.""".format(bicycleName, pathToData) print(mes) return None def __init__(self, bicycleName, pathToData='.', forceRawCalc=False, forcePeriodCalc=False): """ Creates a bicycle object and sets the parameters based on the available data. Parameters ---------- bicycleName : string The short name of your bicicleta. It should be one word with the first letter capitalized and all other letters lower case. You should have a matching directory under `<pathToData>/bicycles/`. For example: `<pathToData>/bicycles/Shortname`. pathToData : string This is the path to the folder where the bicycle/rider parameters and raw data are stored. The default is the current working directory. forceRawCalc : boolean Forces a recalculation of the benchmark parameters from the measured parameters. Otherwise it will only run the calculation if there is no benchmark parameter file. forcePeriodCalc : boolean Forces a recalculation of the periods from the oscillation data. Notes ----- Bicycles are assumed not to have a rider when initially loaded. """ self.bicycleName = bicycleName pathToBicycles = os.path.join(pathToData, 'bicycles') # the directory where the files for this bicycle are stored self.directory = os.path.join(pathToBicycles, bicycleName) # bicycles are assumed not to have a rider when initially loaded self.hasRider = False self.riderPar = {} self.human = None self.parameters = {} # if there are some parameter files, then load them if 'Parameters' in os.listdir(self.directory): parDir = os.path.join(self.directory, 'Parameters') parFiles = os.listdir(parDir) for parFile in parFiles: # remove the extension fname = os.path.splitext(parFile)[0] # get the bike and the parameter set type bike, ptype = io.space_out_camel_case(fname, output='list') # load the parameters pathToFile = os.path.join(parDir, parFile) self.parameters[ptype] = io.load_parameter_text_file(pathToFile) # this is where the raw data files from the pendulum oscillations are # stored rawDataDir = os.path.join(self.directory, 'RawData') # it would be more robust to see if there are enough files in the # RawData directory, but that isn't implemented yet. For now you'll # just get and error sometime down the road when a period for the # missing files is needed. isRawDataDir = 'RawData' in os.listdir(self.directory) if isRawDataDir: print("Found the RawData directory:", rawDataDir) isMeasuredFile = bicycleName + 'Measured.txt' in os.listdir(rawDataDir) else: isMeasuredFile = False isBenchmark = 'Benchmark' in self.parameters.keys() # the user wants to force a recalc and the data is there conOne = forceRawCalc and isRawDataDir and isMeasuredFile # the user doesn't want to force a recalc and there are no benchmark # parameters conTwo = not forceRawCalc and not isBenchmark if conOne or conTwo: print("Recalcuting the parameters.") par, extras = self.calculate_from_measured( forcePeriodCalc=forcePeriodCalc) self.parameters['Benchmark'] = par self.extras = extras print("The glory of the %s parameters are upon you!" % self.bicycleName) elif not forceRawCalc and isBenchmark: # we already have what we need stmt1 = "Looks like you've already got some parameters for %s, " stmt2 = "use forceRawCalc to recalculate." print((stmt1 + stmt2) % self.bicycleName) # load the measured.txt file if it exists pathToRawFile = os.path.join(rawDataDir, self.bicycleName + 'Measured.txt') try: self.parameters['Measured'] = \ io.load_parameter_text_file(pathToRawFile) except IOError: pass else: print('''There is no data available. Create bicycles/{sn}/Parameters/{sn}Benchmark.txt and/or fill bicycle/{sn}/RawData/ with pendulum data mat files and the {sn}Measured.txt file'''.format(sn=bicycleName)) def __str__(self): if self.hasRider: desc = "{0} with {1} on board.".format(self.bicycleName, self.riderName) else: desc = "{0} with no one on board.".format(self.bicycleName) return desc def save_parameters(self, filetype='text'): """ Saves all the parameter sets to file. Parameters ---------- filetype : string, optional - 'text' : a text file with parameters as `c = 0.10+/-0.01\n` - 'matlab' : matlab .mat file - 'pickle' : python pickled dictionary """ if self.hasRider: pathToData = os.path.split(os.path.split(self.directory)[0])[0] pathToParDir = os.path.join(pathToData, 'riders', self.riderName, 'Parameters') pathToCombDir = os.path.join(pathToParDir, 'Combined') if not os.path.exists(pathToCombDir): os.makedirs(pathToCombDir) fileName = self.riderName + self.bicycleName # don't resave the measured parameters psets = [x for x in self.riderPar.keys() if x != 'Measured'] parameters = self.riderPar print(('This bicycle has a rider, {0}, so the data will be ' + 'saved here: {1}').format(self.riderName, pathToParDir)) else: pathToParDir = os.path.join(self.directory, 'Parameters') fileName = self.bicycleName # don't resave the measured parameters psets = [x for x in self.parameters.keys() if x != 'Measured'] parameters = self.parameters print(('This bicycle has no rider so the data will be ' + 'saved here: {0}').format(pathToParDir)) if filetype == 'text': for pset in psets: fileName = fileName + pset + '.txt' pathToTxtFile = os.path.join(pathToParDir, fileName) io.write_parameter_text_file(pathToTxtFile, parameters[pset]) if self.hasRider: pathToCombFile = os.path.join(pathToCombDir, fileName) io.write_parameter_text_file(pathToCombFile, self.parameters[pset]) elif filetype == 'matlab': # this should handle the uncertainties properly raise NotImplementedError("Doesn't work yet.") elif filetype == 'pickle': raise NotImplementedError("Doesn't work yet.") def show_pendulum_photos(self): """ Opens up the pendulum photos in eye of gnome for inspection. This only works in Linux and if eog is installed. Maybe check pythons xdg-mime model for having this work cross platform. """ photoDir = os.path.join(self.directory, 'Photos') try: if os.path.isdir(photoDir): os.system('eog ' + os.path.join(photoDir, '*.*')) else: print("There are no photos of your bicycle.") except: raise NotImplementedError("This works only works for linux with " + "Eye of Gnome installed.") def steer_assembly_moment_of_inertia(self, handlebar=True, fork=True, wheel=True, aboutSteerAxis=False, nominal=False): """ Returns the inertia tensor of the steer assembly with respect to a reference frame aligned with the steer axis. Parameters ---------- handlebar : boolean, optional If true the handlebar will be included in the calculation. fork : boolean, optional If true the fork will be included in the calculation. wheel : boolean, optional If true then the wheel will be included in the calculation. aboutSteerAxis : boolean, optional If true the inertia tensor will be with respect to a point made from the projection of the center of mass onto the steer axis. nominal : boolean, optional If true the nominal values will be returned instead of a uarray. Returns ------- iAss : float Inertia tensor of the specified steer assembly parts with respect to a reference frame aligned with the steer axis. Notes ----- The 3 component is aligned with the steer axis (pointing downward), the 1 component is perpendicular to the steer axis (pointing forward) and the 2 component is perpendicular to the steer axis (pointing to the right). This function does not currently take into account the flywheel, D, if it is defined, beware. """ # load in the Benchmark parameter set par = self.parameters['Benchmark'] if 'mD' in par.keys(): print("You have a flywheel defined. Beware that it is ignored in " + "the calculations and the results do not reflect that it is " + "there.") # there should always be either an H (handlebar/fork) and sometimes # there is a G (handlebar) and S (fork) if the fork and handlebar were # measured separately try: if fork and handlebar: # handlebar/fork I = inertia.part_inertia_tensor(par, 'H') m = par['mH'] x = par['xH'] z = par['zH'] elif fork and not handlebar: # fork alone I = inertia.part_inertia_tensor(par, 'S') m = par['mS'] x = par['xS'] z = par['zS'] elif handlebar and not fork: # handlebar alone I = inertia.part_inertia_tensor(par, 'G') m = par['mG'] x = par['xG'] z = par['zG'] else: # if neither set to zero I = np.zeros((3, 3)) m = 0. x = 0. z = 0. except KeyError: raise ValueError("The fork and handlebar were not measured " + "separately for this bicycle." + " Try making both the fork and handlebar either" + " both True or both False.") if wheel: # list the mass and com of the handlebar/assembly and the front # wheel masses = np.array([m, par['mF']]) coords = np.array([[x, par['w']], [0., 0.], [z, -par['rF']]]) # mass and com of the entire assembly mAss, cAss = com.total_com(coords, masses) # front wheel inertia in the benchmark reference frame about the # com IF = inertia.part_inertia_tensor(par, 'F') # distance from the fork/handlebar assembly (without wheel) to the # new center of mass for the assembly with the wheel d = np.array([x - cAss[0], 0., z - cAss[2]]) # distance from the front wheel center to the new center of mass # for the assembly with the wheel dF = np.array([par['w'] - cAss[0], 0., -par['rF'] - cAss[2]]) # this is the inertia of the assembly about the com with reference # to the benchmark bicycle reference frame iAss = (inertia.parallel_axis(I, m, d) + inertia.parallel_axis(IF, par['mF'], dF)) # this is the inertia of the assembly about a reference frame aligned with # the steer axis and through the center of mass iAssRot = inertia.rotate_inertia_tensor(iAss, par['lam']) else: # don't add the wheel mAss = m cAss = np.array([x, 0., z]) iAssRot = inertia.rotate_inertia_tensor(I, par['lam']) if aboutSteerAxis: # this is the distance from the assembly com to the steer axis distance = geometry.distance_to_steer_axis(par['w'], par['c'], par['lam'], cAss) print("handlebar cg distance", distance) # now calculate the inertia about the steer axis of the rotated frame iAss = inertia.parallel_axis(iAssRot, mAss, np.array([distance, 0., 0.])) else: iAss = iAssRot if nominal: return unumpy.nominal_values(iAss) else: return iAss def calculate_from_measured(self, forcePeriodCalc=False): '''Calculates the parameters from measured data.''' rawDataDir = os.path.join(self.directory, 'RawData') pathToRawFile = os.path.join(rawDataDir, self.bicycleName + 'Measured.txt') # load the measured parameters self.parameters['Measured'] = io.load_parameter_text_file(pathToRawFile) forkIsSplit = is_fork_split(self.parameters['Measured']) # if the the user doesn't specifiy to force period calculation, then # see if enough data is actually available in the *Measured.txt file to # do the calculations if not forcePeriodCalc: forcePeriodCalc = period.check_for_period(self.parameters['Measured'], forkIsSplit) if forcePeriodCalc == True: # get the list of mat files associated with this bike matFiles = [x for x in os.listdir(rawDataDir) if x.endswith('.mat')] matFiles.sort() # calculate the period for each file for this bicycle periods = period.calc_periods_for_files(rawDataDir, matFiles, forkIsSplit) # add the periods to the measured parameters self.parameters['Measured'].update(periods) io.write_periods_to_file(pathToRawFile, periods) return calculate_benchmark_from_measured(self.parameters['Measured']) def add_rider(self, riderName, reCalc=False, draw=False): """ Adds the inertial effects of a rigid rider to the bicycle. Parameters ---------- riderName : string A rider name that corresponds to a folder in `<pathToData>/riders/`. reCalc : boolean, optional If true, the rider parameters will be recalculated. draw : boolean, optional If true, visual python will be used to draw a three dimensional image of the rider. """ # can't draw the rider model without the human object if draw: reCalc=True # first check to see if a rider has already been added if self.hasRider == True: print(("D'oh! This bicycle already has {0} as a " + "rider!").format(self.riderName)) else: print("There is no rider on the bicycle, now adding " + "{0}.".format(riderName)) pathToData = os.path.split(os.path.split(self.directory)[0])[0] # get the path to the rider's folder pathToRider = os.path.join(pathToData, 'riders', riderName) # load in the parameters bicyclePar = self.parameters['Benchmark'] bicycleName = self.bicycleName if reCalc == True: print("Calculating the human configuration.") # run the calculations try: measuredPar = self.parameters['Measured'] except KeyError: print('The measured bicycle parameters need to be ' + 'available, create your bicycle such that they ' + 'are available.') raise riderPar, human, bicycleRiderPar =\ rider.configure_rider(pathToRider, bicycleName, bicyclePar, measuredPar, draw) else: pathToParFile = os.path.join(pathToRider, 'Parameters', riderName + self.bicycleName + 'Benchmark.txt') try: # load the parameter file riderPar = io.load_parameter_text_file(pathToParFile) except IOError: # file doesn't exist so run the calculations print("No parameter files found, calculating the human " + "configuration.") try: measuredPar = self.parameters['Measured'] except KeyError: print('The measured bicycle parameters need to be ' + 'available, create your bicycle such that they ' + 'are available.') raise riderPar, human, bicycleRiderPar =\ rider.configure_rider(pathToRider, bicycleName, bicyclePar, measuredPar, draw) else: print("Loaded the precalculated parameters from " + "{0}".format(pathToParFile)) bicycleRiderPar = inertia.combine_bike_rider(bicyclePar, riderPar) # set the attributes self.riderPar['Benchmark'] = riderPar try: self.human = human except NameError: self.human = None self.parameters['Benchmark'] = bicycleRiderPar self.riderName = riderName self.hasRider = True def plot_bicycle_geometry(self, show=True, pendulum=True, centerOfMass=True, inertiaEllipse=True): '''Returns a figure showing the basic bicycle geometry, the centers of mass and the moments of inertia. Notes ----- If the flywheel is defined, it's center of mass corresponds to the front wheel and is not depicted in the plot. ''' par = io.remove_uncertainties(self.parameters['Benchmark']) parts = get_parts_in_parameters(par) try: slopes = io.remove_uncertainties(self.extras['slopes']) intercepts = io.remove_uncertainties(self.extras['intercepts']) penInertias = io.remove_uncertainties(self.extras['pendulumInertias']) except AttributeError: pendulum = False fig = plt.figure() ax = plt.axes() # define some colors for the parts numColors = len(parts) cmap = plt.get_cmap('gist_rainbow') partColors = {} for i, part in enumerate(parts): partColors[part] = cmap(1. * i / numColors) if inertiaEllipse: # plot the principal moments of inertia for j, part in enumerate(parts): I = inertia.part_inertia_tensor(par, part) Ip, C = inertia.principal_axes(I) if part == 'R': center = np.array([0., par['rR']]) elif part in 'FD': center = np.array([par['w'], par['rF']]) else: center = np.array([par['x' + part], -par['z' + part]]) # which row in C is the y vector uy = np.array([0., 1., 0.]) for i, row in enumerate(C): if np.abs(np.sum(row - uy)) < 1E-10: yrow = i # remove the row for the y vector Ip2D = np.delete(Ip, yrow, 0) # remove the column and row associated with the y C2D = np.delete(np.delete(C, yrow, 0), 1, 1) # make an ellipse Imin = Ip2D[0] Imax = Ip2D[1] # get width and height of a ellipse with the major axis equal # to one unitWidth = 1. / 2. / np.sqrt(Imin) * np.sqrt(Imin) unitHeight = 1. / 2. / np.sqrt(Imax) * np.sqrt(Imin) # now scaled the width and height relative to the maximum # principal moment of inertia width = Imax * unitWidth height = Imax * unitHeight angle = -np.degrees(np.arccos(C2D[0, 0])) ellipse = Ellipse((center[0], center[1]), width, height, angle=angle, fill=False, color=partColors[part], alpha=0.25) ax.add_patch(ellipse) # plot the ground line x = np.array([-par['rR'], par['w'] + par['rF']]) plt.plot(x, np.zeros_like(x), 'k') # plot the rear wheel c = plt.Circle((0., par['rR']), radius=par['rR'], fill=False) ax.add_patch(c) # plot the front wheel c = plt.Circle((par['w'], par['rF']), radius=par['rF'], fill=False) ax.add_patch(c) # plot the fundamental bike deex, deez = geometry.fundamental_geometry_plot_data(par) plt.plot(deex, -deez, 'k') # plot the steer axis dx3 = deex[2] + deez[2] * (deex[2] - deex[1]) / (deez[1] - deez[2]) plt.plot([deex[2], dx3], [-deez[2], 0.], 'k--') # don't plot the pendulum lines if a rider has been added because the # inertia has changed if self.hasRider: pendulum = False if pendulum: # plot the pendulum axes for the measured parts for j, pair in enumerate(slopes.items()): part, slopeSet = pair xcom, zcom = par['x' + part], par['z' + part] for i, m in enumerate(slopeSet): b = intercepts[part][i] xPoint, zPoint = geometry.project_point_on_line((m, b), (xcom, zcom)) comLineLength = penInertias[part][i] xPlus = comLineLength / 2. * np.cos(np.arctan(m)) x = np.array([xPoint - xPlus, xPoint + xPlus]) z = -m * x - b plt.plot(x, z, color=partColors[part]) # label the pendulum lines with a number plt.text(x[0], z[0], str(i + 1)) if centerOfMass: # plot the center of mass location def com_symbol(ax, center, radius, color='b'): '''Returns axis with center of mass symbol.''' c = plt.Circle(center, radius=radius, fill=False) w1 = Wedge(center, radius, 0., 90., color=color, ec=None, alpha=0.5) w2 = Wedge(center, radius, 180., 270., color=color, ec=None, alpha=0.5) ax.add_patch(w1) ax.add_patch(w2) ax.add_patch(c) return ax # radius of the CoM symbol sRad = 0.03 # front wheel CoM ax = com_symbol(ax, (par['w'], par['rF']), sRad, color=partColors['F']) plt.text(par['w'] + sRad, par['rF'] + sRad, 'F') # rear wheel CoM ax = com_symbol(ax, (0., par['rR']), sRad, color=partColors['R']) plt.text(0. + sRad, par['rR'] + sRad, 'R') for j, part in enumerate([x for x in parts if x not in 'RFD']): xcom = par['x' + part] zcom = par['z' + part] ax = com_symbol(ax, (xcom, -zcom), sRad, color=partColors[part]) plt.text(xcom + sRad, -zcom + sRad, part) if 'H' not in parts: ax = com_symbol(ax, (par['xH'], -par['zH']), sRad) plt.text(par['xH'] + sRad, -par['zH'] + sRad, 'H') plt.axis('equal') plt.ylim((0., 1.)) plt.title(self.bicycleName) # if there is a rider on the bike, make a simple stick figure if self.human: human = self.human mpar = self.parameters['Measured'] bpar = self.parameters['Benchmark'] # K2: lower leg, tip of foot to knee start = rider.yeadon_vec_to_bicycle_vec(human.K2.end_pos, mpar, bpar) end = rider.yeadon_vec_to_bicycle_vec(human.K2.pos, mpar, bpar) plt.plot([start[0, 0], end[0, 0]], [-start[2, 0], -end[2, 0]], 'k') # K1: upper leg, knee to hip start = rider.yeadon_vec_to_bicycle_vec(human.K2.pos, mpar, bpar) end = rider.yeadon_vec_to_bicycle_vec(human.K1.pos, mpar, bpar) plt.plot([start[0, 0], end[0, 0]], [-start[2, 0], -end[2, 0]], 'k') # torso start = rider.yeadon_vec_to_bicycle_vec(human.K1.pos, mpar, bpar) end = rider.yeadon_vec_to_bicycle_vec(human.B1.pos, mpar, bpar) plt.plot([start[0, 0], end[0, 0]], [-start[2, 0], -end[2, 0]], 'k') # B1: upper arm start = rider.yeadon_vec_to_bicycle_vec(human.B1.pos, mpar, bpar) end = rider.yeadon_vec_to_bicycle_vec(human.B2.pos, mpar, bpar) plt.plot([start[0, 0], end[0, 0]], [-start[2, 0], -end[2, 0]], 'k') # B2: lower arm, elbow to tip of fingers start = rider.yeadon_vec_to_bicycle_vec(human.B2.pos, mpar, bpar) end = rider.yeadon_vec_to_bicycle_vec(human.B2.end_pos, mpar, bpar) plt.plot([start[0, 0], end[0, 0]], [-start[2, 0], -end[2, 0]], 'k') # C: chest/head start = rider.yeadon_vec_to_bicycle_vec(human.B1.pos, mpar, bpar) end = rider.yeadon_vec_to_bicycle_vec(human.C.end_pos, mpar, bpar) plt.plot([start[0, 0], end[0, 0]], [-start[2, 0], -end[2, 0]], 'k') if show: fig.show() return fig def canonical(self, nominal=False): """ Returns the canonical velocity and gravity independent matrices for the Whipple bicycle model linearized about the nominal configuration. Parameters ---------- nominal : boolean, optional The default is false and uarrays are returned with the calculated uncertainties. If true ndarrays are returned without uncertainties. Returns ------- M : uarray, shape(2,2) Mass matrix. C1 : uarray, shape(2,2) Velocity independent damping matrix. K0 : uarray, shape(2,2) Gravity independent part of the stiffness matrix. K2 : uarray, shape(2,2) Velocity squared independent part of the stiffness matrix. Notes ----- The canonical matrices complete the following equation: M * q'' + v * C1 * q' + [g * K0 + v**2 * K2] * q = f where: q = [phi, delta] f = [Tphi, Tdelta] phi Bicycle roll angle. delta Steer angle. Tphi Roll torque. Tdelta Steer torque. v Bicylce speed. If you have a flywheel defined, body D, it will completely be ignored in these results. These results are strictly for the Whipple bicycle model. """ par = self.parameters['Benchmark'] M, C1, K0, K2 = bicycle.benchmark_par_to_canonical(par) if nominal is True: return (unumpy.nominal_values(M), unumpy.nominal_values(C1), unumpy.nominal_values(K0), unumpy.nominal_values(K2)) elif nominal is False: return M, C1, K0, K2 else: raise ValueError('nominal must be True or False') def state_space(self, speed, nominal=False): """ Returns the A and B matrices for the Whipple model linearized about the upright constant velocity configuration. Parameters ---------- speed : float The speed of the bicycle. nominal : boolean, optional The default is false and uarrays are returned with the calculated uncertainties. If true ndarrays are returned without uncertainties. Returns ------- A : ndarray, shape(4,4) The state matrix. B : ndarray, shape(4,2) The input matrix. Notes ----- ``A`` and ``B`` describe the Whipple model in state space form: x' = A * x + B * u where The states are [roll angle, steer angle, roll rate, steer rate] The inputs are [roll torque, steer torque] If you have a flywheel defined, body D, it will completely be ignored in these results. These results are strictly for the Whipple bicycle model. """ M, C1, K0, K2 = self.canonical() g = self.parameters['Benchmark']['g'] A, B = bicycle.ab_matrix(M, C1, K0, K2, speed, g) if nominal is True: return (unumpy.nominal_values(A), unumpy.nominal_values(B)) elif nominal is False: return A, B else: raise ValueError('nominal must be True or False') def eig(self, speeds): '''Returns the eigenvalues and eigenvectors of the Whipple bicycle model linearized about the nominal configuration. Parameters ---------- speeds : ndarray, shape (n,) or float The speed at which to calculate the eigenvalues. Returns ------- evals : ndarray, shape (n, 4) eigenvalues evecs : ndarray, shape (n, 4, 4) eigenvectors Notes ----- If you have a flywheel defined, body D, it will completely be ignored in these results. These results are strictly for the Whipple bicycle model. ''' # this allows you to enter a float try: speeds.shape except AttributeError: speeds = np.array([speeds]) par = io.remove_uncertainties(self.parameters['Benchmark']) M, C1, K0, K2 = bicycle.benchmark_par_to_canonical(par) m, n = 4, speeds.shape[0] evals = np.zeros((n, m), dtype='complex128') evecs = np.zeros((n, m, m), dtype='complex128') for i, speed in enumerate(speeds): A, B = bicycle.ab_matrix(M, C1, K0, K2, speed, par['g']) w, v = np.linalg.eig(A) evals[i] = w evecs[i] = v return evals, evecs def plot_eigenvalues_vs_speed(self, speeds, fig=None, generic=False, color='black', show=False, largest=False, linestyle='-'): """Returns a plot of the eigenvalues versus speed for the current benchmark parameters. Parameters ---------- speeds : ndarray, shape(n,) An array of speeds to calculate the eigenvalues at. fig : matplotlib figure, optional A figure to plot to. generic : boolean If true the lines will all be the same color and the modes will not be labeled. color : matplotlib color If generic is true this will be the color of the plot lines. largest : boolean If true, only the largest eigenvalue is plotted. Notes ----- If you have a flywheel defined, body D, it will completely be ignored in these results. These results are strictly for the Whipple bicycle model. """ # sort the speeds in case they aren't speeds = np.sort(speeds) # figure properties figwidth = 6. # in inches goldenMean = (np.sqrt(5.0) - 1.0) / 2.0 figsize = [figwidth, figwidth * goldenMean] params = {#'backend': 'ps', 'axes.labelsize': 8, 'text.fontsize': 10, 'legend.fontsize': 8, 'xtick.labelsize': 6, 'ytick.labelsize': 6, 'figure.figsize': figsize } plt.rcParams.update(params) if not fig: fig = plt.figure(figsize=figsize) plt.axes([0.125, 0.2, 0.95 - 0.125, 0.85 - 0.2]) evals, evecs = self.eig(speeds) if largest: generic = True if generic: weaveColor = color capsizeColor = color casterColor = color legend = ['_nolegend_'] * 6 legend[5] = self.bicycleName maxLabel = self.bicycleName else: weaveColor = 'blue' capsizeColor = 'red' casterColor = 'green' legend = ['Imaginary Weave', 'Imaginary Capsize', 'Imaginary Caster', 'Real Weave', 'Real Capsize', 'Real Caster'] maxLabel = 'Max Eigenvalue' if largest: maxEval = np.max(np.real(evals), axis=1) plt.plot(speeds, maxEval, color=color, label=maxLabel, linestyle=linestyle, linewidth=1.5) # x axis line plt.plot(speeds, np.zeros_like(speeds), 'k-', label='_nolegend_', linewidth=1.5) plt.ylim((np.min(maxEval), np.max(maxEval))) plt.ylabel('Real Part of the Largest Eigenvalue [1/s]') else: wea, cap, cas = bicycle.sort_modes(evals, evecs) # imaginary components plt.plot(speeds, np.abs(np.imag(wea['evals'])), color=weaveColor, label=legend[0], linestyle='--') plt.plot(speeds, np.abs(np.imag(cap['evals'])), color=capsizeColor, label=legend[1], linestyle='--') plt.plot(speeds, np.abs(np.imag(cas['evals'])), color=casterColor, label=legend[2], linestyle='--') # x axis line plt.plot(speeds, np.zeros_like(speeds), 'k-', label='_nolegend_', linewidth=1.5) # plot the real parts of the eigenvalues plt.plot(speeds, np.real(wea['evals']), color=weaveColor, label=legend[3]) plt.plot(speeds, np.real(cap['evals']), color=capsizeColor, label=legend[4]) plt.plot(speeds, np.real(cas['evals']), color=casterColor, label=legend[5]) # set labels and limits plt.ylim((np.min(np.real(evals)), np.max(np.imag(evals)))) plt.ylabel('Real and Imaginary Parts of the Eigenvalue [1/s]') plt.xlim((speeds[0], speeds[-1])) plt.xlabel('Speed [m/s]') if generic: plt.title('Eigenvalues vs Speed') else: plt.title('%s\nEigenvalues vs Speed' % self.bicycleName) plt.legend() if show: plt.show() return fig def plot_bode(self, speed, u, y, **kwargs): """Returns a Bode plot. Parameters ---------- speed : float The speed at which to evaluate the system. u : integer An integer between 0 and 1 corresponding to the inputs roll torque and steer torque. y : integer An integer between 0 and 3 corresponding to the inputs roll angle steer angle, roll rate, steer rate. kwargs : keyword pairs Any options that can be passed to dtk.bode. Returns ------- mag : ndarray, shape(1000,) The magnitude in dB of the frequency reponse. phase : ndarray, shape(1000,) The phase in degress of the frequency response. fig : matplotlib figure The Bode plot. """ A, B = self.state_space(speed, nominal=True) C = np.eye(A.shape[0]) D = np.zeros_like(B) w = np.logspace(0, 2, 1000) outputNames = ['Roll Angle', 'Steer Angle', 'Roll Rate', 'Steer Rate'] inputNames = ['Roll Torque', 'Steer Torque'] if 'title' not in kwargs.keys(): kwargs['title'] = inputNames[u] + ' to ' + outputNames[y] bode = control.bode((A, B[:, u], C[y, :], D[y, u]), w, **kwargs) return bode def compare_bode_speeds(self, speeds, u, y, fig=None): """Returns a figure with the Bode plots of multiple bicycles. Parameters ---------- speeds : list A list of speeds at which to evaluate the system. u : integer An integer between 0 and 1 corresponding to the inputs roll torque and steer torque. y : integer An integer between 0 and 3 corresponding to the inputs roll angle, steer angle, roll rate, steer rate. Returns ------- fig : matplotlib.Figure instance The Bode plot. Notes ----- The phases are matched around zero degrees at with respect to the first frequency. """ if fig is None: fig = plt.figure() for speed in speeds: self.plot_bode(speed, u, y, label=str(speed) + ' m/s', fig=fig) # take care of phase misalignment phaseLines = fig.ax2.lines for line in phaseLines: firstValue = line.get_ydata()[0] n = np.ceil(np.floor(abs(firstValue / 180.)) / 2.) line.set_ydata(line.get_ydata() - np.sign(firstValue) * n * 360.) return fig def get_parts_in_parameters(par): '''Returns a list of parts in a parameter dictionary. Parameters ---------- par : dictionary Benchmark bicycle parameters. Returns ------- parts : list Unique list of parts that contain one or more of 'H', 'B', 'F', 'R', 'S', 'G', 'D'. ''' parts = [x[1] for x in par.keys() if x.startswith('m')] return parts def calculate_benchmark_from_measured(mp): '''Returns the benchmark (Meijaard 2007) parameter set based on the measured data. Parameters ---------- mp : dictionary Complete set of measured data. Returns ------- par : dictionary Benchmark bicycle parameter set. ''' forkIsSplit = is_fork_split(mp) par = {} # calculate the wheelbase, steer axis tilt and trail par = geometry.calculate_benchmark_geometry(mp, par) # masses par['mB'] = mp['mB'] par['mF'] = mp['mF'] par['mR'] = mp['mR'] try: # we measured the mass of the flywheel plus the mass of the front # wheel, mp['mD'], so to get the actual mass of the flywheel, subtract # the mass of the front wheel par['mD'] = mp['mD'] - mp['mF'] except KeyError: pass if forkIsSplit: par['mS'] = mp['mS'] par['mG'] = mp['mG'] else: par['mH'] = mp['mH'] # get the slopes, intercepts and betas for each part slopes, intercepts, betas = com.part_com_lines(mp, par, forkIsSplit) # calculate the centers of mass for part in slopes.keys(): par['x' + part], par['z' + part] = com.center_of_mass(slopes[part], intercepts[part]) # find the center of mass of the handlebar/fork assembly if the fork was # split if forkIsSplit: coordinates = np.array([[par['xS'], par['xG']], [0., 0.], [par['zS'], par['zG']]]) masses = np.array([par['mS'], par['mG']]) mH, cH = inertia.total_com(coordinates, masses) par['mH'] = mH par['xH'] = cH[0] par['zH'] = cH[2] # local accelation due to gravity par['g'] = mp['g'] # calculate the wheel y inertias par['IFyy'] = inertia.compound_pendulum_inertia(mp['mF'], mp['g'], mp['lF'], mp['TcF1']) par['IRyy'] = inertia.compound_pendulum_inertia(mp['mR'], mp['g'], mp['lR'], mp['TcR1']) try: # we measured the inertia of the front wheel with the flywheel inside iFlywheelPlusFwheel = inertia.compound_pendulum_inertia(mp['mD'], mp['g'], mp['lF'], mp['TcD1']) par['IDyy'] = iFlywheelPlusFwheel - par['IFyy'] except KeyError: pass # calculate the y inertias for the frame and fork lB = (par['xB']**2 + (par['zB'] + par['rR'])**2)**(0.5) par['IByy'] = inertia.compound_pendulum_inertia(mp['mB'], mp['g'], lB, mp['TcB1']) if forkIsSplit: # fork lS = ((par['xS'] - par['w'])**2 + (par['zS'] + par['rF'])**2)**(0.5) par['ISyy'] = inertia.compound_pendulum_inertia(mp['mS'], mp['g'], lS, mp['TcS1']) # handlebar l1, l2 = geometry.calculate_l1_l2(mp['h6'], mp['h7'], mp['d5'], mp['d6'], mp['l']) u1, u2 = geometry.fwheel_to_handlebar_ref(par['lam'], l1, l2) lG = ((par['xG'] - par['w'] + u1)**2 + (par['zG'] + par['rF'] + u2)**2)**(.5) par['IGyy'] = inertia.compound_pendulum_inertia(mp['mG'], mp['g'], lG, mp['TcG1']) else: lH = ((par['xH'] - par['w'])**2 + (par['zH'] + par['rF'])**2)**(0.5) par['IHyy'] = inertia.compound_pendulum_inertia(mp['mH'], mp['g'], lH, mp['TcH1']) # calculate the stiffness of the torsional pendulum IPxx, IPyy, IPzz = inertia.tube_inertia(mp['lP'], mp['mP'], mp['dP'] / 2., 0.) torStiff = inertia.torsional_pendulum_stiffness(IPyy, mp['TtP1']) #print("Torsional pendulum stiffness:", torStiff) # calculate the wheel x/z inertias par['IFxx'] = inertia.tor_inertia(torStiff, mp['TtF1']) par['IRxx'] = inertia.tor_inertia(torStiff, mp['TtR1']) try: par['IDxx'] = inertia.tor_inertia(torStiff, mp['TtD1']) - par['IFxx'] except KeyError: pass pendulumInertias = {} # calculate the in plane moments of inertia for part, slopeSet in slopes.items(): # the number of orientations for this part numOrien = len(slopeSet) # intialize arrays to store the inertia values and orientation angles penInertia = np.zeros(numOrien, dtype=object) beta = np.array(betas[part]) # fill arrays of the inertias for i in range(numOrien): penInertia[i] = inertia.tor_inertia(torStiff, mp['Tt' + part + str(i + 1)]) # store these inertias pendulumInertias[part] = list(penInertia) inert = inertia.inertia_components(penInertia, beta) for i, axis in enumerate(['xx', 'xz', 'zz']): par['I' + part + axis] = inert[i] if forkIsSplit: # combine the moments of inertia to find the total handlebar/fork MoI IG = inertia.part_inertia_tensor(par, 'G') IS = inertia.part_inertia_tensor(par, 'S') # columns are parts, rows = x, y, z coordinates = np.array([[par['xG'], par['xS']], [0., 0.], [par['zG'], par['zS']]]) masses =
np.array([par['mG'], par['mS']])
numpy.array